Yaskawa sigma 7 ошибки

Model: SGD7W-A20A000F70
-7W SERVOPACK with
FT/EX Specification
for Gantry Applications
-7-Series AC Servo Drive
Product Manual
MANUAL NO.   SIEP S800002 29C
SERVOPACK Ratings
and Specifications
Position Correction
Ta bl e
Maintenance
Parameter Lists
Synchronized Stopping
Position Deviation 
between Axes 
Overflow Detection
1
2
3
4
5
6
7
Basic Information on
SERVOPACKs
Copyright © 2017 YASKAWA ELECTRIC CORPORATION
All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system, or transmitted, in any form, or by any means, mechanical, elec-
tronic, photocopying, recording, or otherwise, without the prior written permission 
of Yaskawa. No patent liability is assumed with respect to the use of the informa-
tion contained herein. Moreover, because Yaskawa is constantly striving to 
improve its high-quality products, the information contained in this manual is sub-
ject to change without notice. Every precaution has been taken in the preparation 
of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or 
omissions. Neither is any liability assumed for damages resulting from the use of 
the information contained in this publication.
iii
About this Manual
This manual provides information on the Σ-7-Series AC Servo Drive Σ-7W SERVOPACK for Gantry 
Applications.
Read and understand this manual to ensure correct usage of the Σ-7-Series AC Servo Drives.
Keep this manual in a safe place so that it can be referred to whenever necessary.
Outline of Manual
The contents of the chapters of this manual are described in the following table.
When using the 
Σ
-7-Series for Gantry Applications, read and understand this manual and the manuals 
given in the following table.
Item This Manual
Σ-7-Series AC Servo Drive
Σ-7W SERVOPACK 
Product Manual
MECHATROLINK-III 
Communications Reference
(Manual No.: SIEP S800001 29)
Basic Informa-
tion
on SERVO-
PACKs
The 
Σ-7 Series – 1.1
Product Introduction 1.1 –
Interpreting the Nameplate – 1.2
Part Names – 1.3
Model Designations 1.2 –
Combinations of SERVOPACKs and 
Servomotors
–1.5
Functions 1.4 –
SigmaWin+ 1.5 –
Selecting a
SERVOPACK
Ratings 2.1 –
SERVOPACK Overload Protection 
Characteristics
2.2 –
Specifications 2.3 –
Block Diagrams – 2.2
External Dimensions – 2.3
Examples of Standard Connections between 
SERVOPACKs and Peripheral Devices
–2.4
SERVOPACK Installation – Chapter 3
Wiring and Connecting SERVOPACKs – Chapter 4
Basic Functions That Require Setting before Operation – Chapter 5
Application Functions – Chapter 6
Trial Operation and Actual Operation – Chapter 7
Tuning – Chapter 8
Monitoring – Chapter 9
Position Correction Table Chapter 3 –
Synchronized Stopping Chapter 4 –
Position Deviation between Axes Overflow Detection Chapter 5 –
Continued on next page.
iv
Maintenance
Inspections and Part Replacement – 10.1
Alarm Displays 6.1 –
Warning Displays 6.2 –
Troubleshooting Based on the Operation and 
Conditions of the Servomotor
6.3 –
Parameter Lists
Interpreting the Parameter Lists 7.1 –
List of Servo Parameters 7.2 –
List of MECHATROLINK-III Common 
Parameters
7.3 –
Appendices
Interpreting Panel Displays – 12.1
Corresponding SERVOPACK and SigmaWin+ 
Function Names
– 12.2
Continued from previous page.
Item This Manual
Σ-7-Series AC Servo Drive
Σ-7W SERVOPACK 
Product Manual
MECHATROLINK-III 
Communications Reference
(Manual No.: SIEP S800001 29)
v
Related Documents
The relationships between the documents that are related to the Servo Drives are shown in the following 
figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer 
to these documents as required.
Manuals Catalogs
Σ-7-Series 
Operation 
Interface
Operating 
Manuals
System Components
 
Machine 
Controller 
and 
Servo Drive
General 
Catalog
 
MP3300 
Catalog
Machine Controllers
 
Σ-7-Series 
Catalog  
Servo Drives
Machine Controllers
SERVOPACKs: 
Σ-7S and Σ-7W
SERVOPACKs with Built-in Controllers: 
Σ-7C
Servomotors
Other Documents
 
Built-in 
Function 
Manuals

Σ-7-Series
Σ-7S/Σ-7W 
SERVOPACK 
Product 
Manuals

Σ-7-Series
Σ-7S/Σ-7W 
SERVOPACK 
Hardware Option
Product Manuals

Option 
Module 
User’s 
Manuals
Σ-7-Series
Σ-7S/Σ-7W 
SERVOPACK
FT/EX 
Product 
Manuals
(such as this manual)
Option 
Module 
User’s 
Manual
Σ-7-Series 
Servomotor 
Product 
Manuals
Σ-7-Series 
Σ-7C
SERVOPACK
Product Manual

Σ-7-Series 
Σ-7C
SERVOPACK
Troubleshooting 
Manual
 
Enclosed 
Documents

Enclosed 
Documents
 
Built-in 
Function 
Manuals

Enclosed 
Documents
Σ-7-Series 
Peripheral 
Device 
Selection 
Manual
Σ-7-Series 
MECHATROLINK 
Communications 
Command 
Manuals
Programming 
Manuals
Distributed 
I/O Module 
User’s 
Manual
vi
Classification Document Name Document No. Description

Machine Controller and 
Servo Drive
General Catalog
Machine Controller and 
AC Servo Drive 
Solutions Catalog
KAEP S800001 22
Describes the features and applica-
tion examples for combinations of 
MP3000-Series Machine Control-
lers and Σ-7-Series AC Servo 
Drives.

MP3300 Catalog
Machine Controller
MP3300
KAEP C880725 03
Provides detailed information on 
MP3300 Machine Controllers, 
including features and specifica-
tions.

Σ-7-Series Catalog
AC Servo Drives
Σ-7 Series
KAEP S800001 23
Provides detailed information on Σ-
7-Series AC Servo Drives, including 
features and specifications.

Built-in Function Manuals
Σ-7-Series AC Servo Drive 
Σ-7C SERVOPACK 
Motion Control 
User’s Manual
SIEP S800002 03
Provides detailed information on 
the specifications, system configu-
ration, and application methods of 
the Motion Control Function Mod-
ules (SVD, SVC4, and SVR4) for Σ-
7-Series Σ-7C SERVOPACKs.
Machine Controller 
MP3000 Series 
Communications 
User’s Manual
SIEP C880725 12
Provides detailed information on 
the specifications, system configu-
ration, and communications con-
nection methods for the Ethernet 
communications that are used with 
MP3000-Series Machine Control-
lers and Σ-7-Series Σ-7C SERVO-
PACKs.

Option Module 
User’s Manuals
Machine Controller 
MP2000 Series 
Communication Module 
User’s Manual
SIEP C880700 04
Provide detailed information on the 
specifications and communica-
tions methods for the Communica-
tions Modules that can be mounted 
to MP3000-Series Machine Con-
trollers and Σ-7-Series Σ-7C 
SERVOPACKs.
Machine Controller 
MP2000 Series 
262IF-01 FL-net 
Communication Module 
User’s Manual
SIEP C880700 36
Machine Controller 
MP2000 Series 
263IF-01 EtherNet/IP 
Communication Module 
User’s Manual
SIEP C880700 39
Machine Controller 
MP2000 Series 
I/O Module 
User’s Manual
SIEP C880700 34
Provide detailed information on the 
specifications and communica-
tions methods for the I/O Modules 
that can be mounted to MP3000-
Series Machine Controllers and Σ-
7-Series Σ-7C SERVOPACKs.
Machine Controller 
MP2000 Series 
Analog Input/Analog Output 
Module AI-01/AO-01
User’s Manual
SIEP C880700 26
Machine Controller 
MP2000 Series 
Counter Module CNTR-01
User’s Manual
SIEP C880700 27
Continued on next page.
vii

Enclosed Documents
Σ-7-Series AC Servo Drive 
Σ-7S and Σ-7W SERVOPACK 
Safety Precautions
TOMP C710828 00
Provides detailed information for 
the safe usage of Σ-7-Series 
SERVOPACKs.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Safety Precautions
Option Module
TOBP C720829 00
Provides detailed information for 
the safe usage of Option Modules.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Installation Guide
Command Option Module
TOBP C720829 01
Provides detailed procedures for 
installing the Command Option 
Module in a SERVOPACK.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Installation Guide
Fully-closed Module
TOBP C720829 03
Provides detailed procedures for 
installing the Fully-closed Module in 
a SERVOPACK.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Installation Guide
Safety Module
TOBP C720829 06
Provides detailed procedures for 
installing the Safety Module in a 
SERVOPACK.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Installation Guide
INDEXER Module
TOBP C720829 02
Provides detailed procedures for 
installing the INDEXER Module in a 
SERVOPACK.
Σ-V-Series/Σ-V-Series 
for Large-Capacity Models/
Σ-7-Series
Installation Guide
DeviceNet Module
TOBP C720829 07
Provides detailed procedures for 
installing the DeviceNet Module in a 
SERVOPACK.

Σ-7-Series 
Σ-7C SERVOPACK 
Product Manual
Σ-7-Series AC Servo Drive 
Σ-7C SERVOPACK 
Product Manual
SIEP S800002 04
Provides detailed information on 
selecting Σ-7-Series Σ-7C SERVO-
PACKs; installing, connecting, set-
ting, testing in trial operation, and 
tuning Servo Drives; writing, moni-
toring, and maintaining programs; 
and other information.

Σ-7-Series 
Σ-7C SERVOPACK 
Troubleshooting 
Manual
Σ-7-Series AC Servo Drive 
Σ-7C SERVOPACK 
Troubleshooting Manual
SIEP S800002 07
Provides detailed troubleshooting 
information for Σ-7-Series Σ-7C 
SERVOPACKs.
Continued on next page.
Continued from previous page.
Classification Document Name Document No. Description
viii

Σ-7-Series 
Σ-7S/Σ-7W 
SERVOPACK 
Product Manuals
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
MECHATROLINK-III 
Communications References 
Product Manual
SIEP S800001 28
Provide detailed information on
selecting Σ-7-Series Σ-7S and
Σ-7W SERVOPACKs; installing,
connecting, setting, testing in trial
operation, tuning, monitoring, and
maintaining Server Drives; and
other information.
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
MECHATROLINK-II 
Communications References 
Product Manual
SIEP S800001 27
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
Analog Voltage/Pulse Train 
References 
Product Manual
SIEP S800001 26
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK 
Command Option Attachable 
Type with INDEXER Module
Product Manual
SIEP S800001 64
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK 
Command Option Attachable 
Type with DeviceNet Module
Product Manual
SIEP S800001 70
Σ-7-Series AC Servo Drive 
Σ-7W SERVOPACK with 
MECHATROLINK-III 
Communications References 
Product Manual
SIEP S800001 29

Σ-7-Series 
Σ-7S/Σ-7W 
SERVOPACK with 
Hardware Option 
Specifications 
Product Manuals
Σ-7-Series AC Servo Drive 
Σ-7S/Σ-7W SERVOPACK with
Hardware Option 
Specifications
Dynamic Brake 
Product Manual
SIEP S800001 73
Provide detailed information on 
Hardware Options for Σ-7-Series 
SERVOPACKs.
Σ-7-Series AC Servo Drive 
Σ-7W/Σ-7C SERVOPACK with
Hardware Option 
Specifications 
HWBB Function
Product Manual
SIEP S800001 72
Continued on next page.
Continued from previous page.
Classification Document Name Document No. Description
ix
Σ-7-Series 
Σ-7S/Σ-7W SERVOPACK 
FT/EX 
Product Manuals
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
FT/EX Specification for 
Indexing Application 
Product Manual
SIEP S800001 84
Provide detailed information on the 
FT/EX Option for Σ-7-Series 
SERVOPACKs.
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
FT/EX Specification for 
Tracking Application 
Product Manual
SIEP S800001 89
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
FT/EX Specification 
for Application with 
Special Motor, 
SGM7D Motor 
Product Manual
SIEP S800001 91
Σ-7-Series AC Servo Drive 
Σ-7S SERVOPACK with 
FT/EX Specification 
for Press and Injection 
Molding Application 
Product Manual
SIEP S800001 94
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK with
FT/EX Specification
for Transfer and Alignment
Application
Product Manual
SIEP S800001 95
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK with
FT/EX Specification
for Torque/Force Assistance
for Conveyance Application
Product Manual
SIEP S800002 09
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK with
FT/EX Specification
for Cutting Application
Feed Shaft Motor
Product Manual
SIEP S800002 10
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK with
FT/EX Specification
for Three-Point Latching
for Conveyance Application
Product Manual
SIEP S800002 17
Σ-7-Series AC Servo Drive
Σ-7S SERVOPACK with
FT/EX Specification
for Semi-/Fully-Closed Loop
Control Online Switching
for Conveyance Application
Product Manual
SIEP S800002 27
Σ-7-Series AC Servo Drive
Σ-7W SERVOPACK with
FT/EX Specification
for Gantry Applications
Product Manual
This manual 
(SIEP S800002 29)
Continued on next page.
Continued from previous page.
Classification Document Name Document No. Description
x
Option Module 
User’s Manual
AC Servo Drives 
Σ-V Series/Σ-V Series 
for Large-Capacity Models/
Σ-7 Series
User’s Manual
Safety Module
SIEP C720829 06
Provides detailed information 
required for the design and mainte-
nance of a Safety Module.
Enclosed Documents
AC Servo Drive 
Rotary Servomotor 
Safety Precautions
TOBP C230260 00
Provides detailed information for 
the safe usage of Rotary Servomo-
tors and Direct Drive Servomotors.
AC Servomotor 
Linear Σ Series
Safety Precautions
TOBP C230800 00
Provides detailed information for 
the safe usage of Linear Servomo-
tors.
Σ-7-Series 
Servomotor 
Product Manuals
Σ-7-Series AC Servo Drive 
Rotary Servomotor 
Product Manual
SIEP S800001 36
Provide detailed information on 
selecting, installing, and connecting 
the Σ-7-Series Servomotors.
Σ-7-Series AC Servo Drive 
Linear Servomotor 
Product Manual
SIEP S800001 37
Σ-7-Series AC Servo Drive 
Direct Drive Servomotor 
Product Manual
SIEP S800001 38
Σ-7-Series 
Peripheral Device 
Selection Manual
Σ-7-Series AC Servo Drive 
Peripheral Device 
Selection Manual
SIEP S800001 32
Provides the following information 
in detail for Σ-7-Series Servo Sys-
tems.
• Cables: Models, dimensions, wir-
ing materials, connector models, 
and connection specifications
• Peripheral devices: Models, 
specifications, diagrams, and 
selection (calculation) methods
Σ-7-Series 
MECHATROLINK 
Communications 
Command Manuals
Σ-7-Series AC Servo Drive 
MECHATROLINK-II 
Communications 
Command Manual
SIEP S800001 30
Provides detailed information on 
the MECHATROLINK-II communi-
cations commands that are used 
for a Σ-7-Series Servo System.
Σ-7-Series AC Servo Drive 
MECHATROLINK-III 
Communications 
Standard Servo Profile 
Command Manual
SIEP S800001 31
Provides detailed information on 
the MECHATROLINK-III communi-
cations standard servo profile com-
mands that are used for a Σ-7-
Series S
ervo System.
Continued on next page.
Continued from previous page.
Classification Document Name Document No. Description
xi
Programming 
Manuals
Machine Controller 
MP3000 Series 
Ladder Programming 
Manual
SIEP C880725 13
Provides detailed information on 
the ladder programming specifica-
tions and instructions for MP3000-
Series Machine Controllers and Σ-
7-Series Σ-7C SERVOPACKs.
Machine Controller 
MP3000 Series 
Motion Programming 
Manual
SIEP C880725 14
Provides detailed information on 
the motion programming and 
sequence programming specifica-
tions and instructions for MP3000-
Series Machine Controllers and Σ-
7-Series Σ-7C SERVOPACKs.
Σ-7-Series 
Operation Interface 
Operating Manuals
Machine Controller 
MP2000/MP3000 Series 
Engineering Tool 
MPE720 Version 7 
User’s Manual
SIEP C880761 03
Describes in detail how to operate 
MPE720 version 7.
Σ-7-Series AC Servo Drive 
Digital Operator 
Operating Manual
SIEP S800001 33
Describes the operating proce-
dures for a Digital Operator for a 
Σ-7-Series Servo System.
AC Servo Drive 
Engineering Tool 
SigmaWin+ 
Operation Manual
SIET S800001 34
Provides detailed operating proce-
dures for the SigmaWin+ Engineer-
ing Tool for a Σ-7-Series Servo 
System.
Distributed 
I/O Module 
User’s Manual
MECHATROLINK-III 
Compatible I/O Module 
User’s Manual
SIEP C880781 04
Describes the functions, specifica-
tions, operating methods, and 
MECHATROLINK-III communica-
tions for the Remote I/O Modules 
for MP2000/MP3000-Series 
Machine Controllers.
Continued from previous page.
Classification Document Name Document No. Description
xii
Using This Manual
 Technical Terms Used in This Manual
The following terms are used in this manual.
 Differences in Terms for Rotary Servomotors and Linear Servomotors
There are differences in the terms that are used for Rotary Servomotors and Linear Servomotors. 
This manual primarily describes Rotary Servomotors. If you are using a Linear Servomotor, you 
need to interpret the terms as given in the following table.
Ter m  Meaning
Servomotor A Σ-7-Series Rotary Servomotor or Linear Servomotor.
Rotary Servomotor
A generic term used for a Σ-7-Series Rotary Servomotor (SGM7M, SGM7J, SGM7A, SGM7P, 
SGM7G, or SGMMV).
Linear Servomotor
A generic term used for a Σ-7-Series Linear Servomotor (SGLG, SGLF, or SGLT).
SERVOPACK
A Σ-7-Series Σ-7W Servo Amplifier with MECHATROLINK-III Communications References.
Servo Drive
The combination of a Servomotor and SERVOPACK.
Servo System
A servo control system that includes the combination of a Servo Drive with a host controller 
and peripheral devices.
servo ON
Supplying power to the motor.
servo OFF
Not supplying power to the motor.
base block (BB)
Shutting OFF the power supply to the motor by shutting OFF the base current to the power 
transistor in the SERVOPACK.
servo lock
A state in which the motor is stopped and is in a position loop with a position reference of 0.
Main Circuit Cable
One of the cables that connect to the main circuit terminals, including the Main Circuit Power 
Supply Cable, Control Power Supply Cable, and Servomotor Main Circuit Cable.
SigmaWin+
The Engineering Tool for setting up and tuning Servo Drives or a computer in which the Engi-
neering Tool is installed.
active alarm axis The axis on which the alarm is active.
synchronized 
stopping axis
The axis that is synchronized to and stopped with the axis on which the alarm is active when 
Synchronized Stopping is enabled.
Absolute Encoder
The general term used for absolute encoders with batteries and batteryless absolute encod-
ers.
In cases where the general term causes confusion, the term “batteryless absolute encoder” 
may also be used.
Rotary Servomotors Linear Servomotors
torque force
moment of inertia mass
rotation movement
forward rotation and reverse rotation forward movement and reverse movement
CW and CCW pulse trains forward and reverse pulse trains
rotary encoder linear encoder
absolute rotary encoder absolute linear encoder
incremental rotary encoder incremental linear encoder
unit: min
-1
unit: mm/s
unit: N·m unit: N
xiii
 Notation Used in this Manual
 Notation for Reverse Signals
The names of reverse signals (i.e., ones that are valid when low) are written with a forward slash (/) 
before the signal abbreviation.
Notation Example
BK
is written as /BK.
 Notation for Parameters
The notation depends on whether the parameter requires a numeric setting (parameter for numeric 
setting) or requires the selection of a function (parameter for selecting functions).
•
Parameters for Numeric Settings
Notation Example
n.0
(default setting)
Do not detect preventative maintenance warnings.
n.1
Detect preventative maintenance warnings.
Parameter Meaning When Enabled Classication
After restart Setup
This is the setting range for the parameter.
Pn00F
Parameter number
The notation “n.” indicates a parameter for selecting functions.
Each  indicates the setting for one digit.
The notation shown here means that the first digit from the right is set to 1.
If  All Axes  is given here, the parameter applies to both axes A and B.
If you change the setting, the new setting will be applied to both axes.
Pn100
Speed Loop Gain
Position
Speed
Setting Range
10 to 20,000 0.1 Hz 400 Immediately
Setting Unit Default Setting When Enabled
Classication
Tuning
Parameter number
If  All Axes  is given 
here, the parameter 
applies to both axes A 
and B.
If you change the 
setting, the new setting 
will be applied to both 
axes.
All Axes
Position Torque
The control methods for which the parameters apply are given.
Speed
: Speed control : Position control : Torque control
This is the 
parameter setting 
before shipment.
This is when any 
change made to the 
parameter will 
become effective.
This is the parameter 
classication.
This is the minimum 
unit (setting increment) 
that you can set for 
the parameter.
This column explains the 
selections for the function.
•
Parameters for Selecting Functions
Notation Examples for Pn002
Pn002 = 
n.
X
Indicates the rst digit from 
the right in Pn002.
Pn002 = 
n.
1
Indicates that the rst digit from 
the right in Pn002 is set to 1.
Pn002 = 
n.
X
Indicates the second digit 
from the right in Pn002.
Pn002 = 
n.
1
Indicates that the second digit from 
the right in Pn002 is set to 1.
Pn002 =
n.
X
Indicates the third digit from 
the right in Pn002.
Pn002 = 
n.
1
Indicates that the third digit from 
the right in Pn002 is set to 1.
Pn002 =
n.X

Indicates the fourth digit from 
the right in Pn002.
Pn002 = 
n.1

Indicates that the fourth digit from 
the right in Pn002 is set to 1.
n.0 0 0 0
Notation
Digit Notation Numeric Value Notation
Meaning Notation Meaning
xiv
 Engineering Tools Used in This Manual
This manual uses the interfaces of the SigmaWin+ for descriptions.
 Trademarks
• QR code is a trademark of Denso Wave Inc.
• MECHATROLINK is a trademark of the MECHATROLINK Members Association.
• Other product names and company names are the trademarks or registered trademarks of the 
respective company. “TM” and the 
® mark do not appear with product or company names in this 
manual.
 Visual Aids
The following aids are used to indicate certain types of information for easier reference.
Indicates precautions or restrictions that must be observed.
Also indicates alarm displays and other precautions that will not result in machine damage.
Indicates definitions of difficult terms or terms that have not been previously explained in this 
manual.
Indicates operating or setting examples.
Indicates supplemental information to deepen understanding or useful information.
Important
Term
Example
Information
xv
Safety Precautions
 Safety Information
To prevent personal injury and equipment damage in advance, the following signal words are used 
to indicate safety precautions in this document. The signal words are used to classify the hazards 
and the degree of damage or injury that may occur if a product is used incorrectly. Information 
marked as shown below is important for safety. Always read this information and heed the precau-
tions that are provided.
DANGER
 Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.
WARNING
 Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.
CAUTION
 
 Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in 
fire.
NOTICE
 Indicates precautions that, if not heeded, could result in property damage.
xvi
 Safety Precautions That Must Always Be Observed
 General Precautions
DANGER
 Read and understand this manual to ensure the safe usage of the product.
 Keep this manual in a safe, convenient place so that it can be referred to whenever necessary. 
Make sure that it is delivered to the final user of the product.
 Do not remove covers, cables, connectors, or optional devices while power is being supplied to 
the SERVOPACK.
There is a risk of electric shock, operational failure of the product, or burning.
WARNING
 Use a power supply with specifications (number of phases, voltage, frequency, and AC/DC 
type) that are appropriate for the product.
There is a risk of burning, electric shock, or fire.
 Connect the ground terminals on the SERVOPACK and Servomotor to ground poles according 
to local electrical codes (100 Ω or less for a SERVOPACK with a 100-VAC or 200-VAC power 
supply, and 10 Ω or less for a SERVOPACK with a 400-VAC power supply).
There is a risk of electric shock or fire.
 Do not attempt to disassemble, repair, or modify the product.
There is a risk of fire or failure.
The warranty is void for the product if you disassemble, repair, or modify it.
CAUTION
 The SERVOPACK heat sinks, regenerative resistors, External Dynamic Brake Resistors, Servo-
motors, and other components can be very hot while power is ON or soon after the power is 
turned OFF. Implement safety measures, such as installing covers, so that hands and parts 
such as cables do not come into contact with hot components.
There is a risk of burn injury.
 For a 24-VDC power supply, use a power supply device with double insulation or reinforced 
insulation.
There is a risk of electric shock.
 Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables.
There is a risk of failure, damage, or electric shock.
 Do not use the product in an environment that is subject to water, corrosive gases, or flamma-
ble gases, or near flammable materials.
There is a risk of electric shock or fire.
NOTICE
 Do not attempt to use a SERVOPACK or Servomotor that is damaged or that has missing parts.
 Install external emergency stop circuits that shut OFF the power supply and stops operation 
immediately when an error occurs.
 In locations with poor power supply conditions, install the necessary protective devices (such as 
AC reactors) to ensure that the input power is supplied within the specified voltage range.
There is a risk of damage to the SERVOPACK.
 Use a Noise Filter to minimize the effects of electromagnetic interference.
Electronic devices used near the SERVOPACK may be affected by electromagnetic interference.
 Always use a Servomotor and SERVOPACK in one of the specified combinations.
 Do not touch a SERVOPACK or Servomotor with wet hands.
There is a risk of product failure.
xvii
 Storage Precautions
 Transportation Precautions
CAUTION
 Do not place an excessive load on the product during storage. (Follow all instructions on the 
packages.)
There is a risk of injury or damage.
NOTICE
 Do not install or store the product in any of the following locations.
• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed product specifications
• Locations that are subject to relative humidities that exceed product specifications
• Locations that are subject to condensation as the result of extreme changes in temperature
• Locations that are subject to corrosive or flammable gases
• Locations that are near flammable materials
• Locations that are subject to dust, salts, or iron powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock that exceeds product specifications
• Locations that are subject to radiation
If you store or install the product in any of the above locations, the product may fail or be damaged.
CAUTION
 Transport the product in a way that is suitable to the mass of the product.
 Do not use the eyebolts on a SERVOPACK or Servomotor to move the machine.
There is a risk of damage or injury.
 When you handle a SERVOPACK or Servomotor, be careful of sharp parts, such as the corners.
There is a risk of injury.
 Do not place an excessive load on the product during transportation. (Follow all instructions on 
the packages.)
There is a risk of injury or damage.
NOTICE
 Do not hold onto the front cover or connectors when you move a SERVOPACK.
There is a risk of the SERVOPACK falling.
 A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock.
There is a risk of failure or damage.
 Do not subject connectors to shock.
There is a risk of faulty connections or damage.
 If disinfectants or insecticides must be used to treat packing materials such as wooden frames, 
plywood, or pallets, the packing materials must be treated before the product is packaged, and 
methods other than fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 
minutes or more.
If the electronic products, which include stand-alone products and products installed in machines, 
are packed with fumigated wooden materials, the electrical components may be greatly damaged 
by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing 
halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the 
capacitors.
 Do not overtighten the eyebolts on a SERVOPACK or Servomotor.
If you use a tool to overtighten the eyebolts, the tapped holes may be damaged.
xviii
 Installation Precautions
 Wiring Precautions
CAUTION
 Install the Servomotor or SERVOPACK in a way that will support the mass given in technical 
documents.
 Install SERVOPACKs, Servomotors, regenerative resistors, and External Dynamic Brake Resis-
tors on nonflammable materials.
Installation directly onto or near flammable materials may result in fire.
 Provide the specified clearances between the SERVOPACK and the control panel as well as 
with other devices.
There is a risk of fire or failure.
 Install the SERVOPACK in the specified orientation.
There is a risk of fire or failure.
 Do not step on or place a heavy object on the product.
There is a risk of failure, damage, or injury.
 Do not allow any foreign matter to enter the SERVOPACK or Servomotor.
There is a risk of failure or fire.
NOTICE
 Do not install or store the product in any of the following locations.
• Locations that are subject to direct sunlight
• Locations that are subject to ambient temperatures that exceed product specifications
• Locations that are subject to relative humidities that exceed product specifications
• Locations that are subject to condensation as the result of extreme changes in temperature
• Locations that are subject to corrosive or flammable gases
• Locations that are near flammable materials
• Locations that are subject to dust, salts, or iron powder
• Locations that are subject to water, oil, or chemicals
• Locations that are subject to vibration or shock that exceeds product specifications
• Locations that are subject to radiation
If you store or install the product in any of the above locations, the product may fail or be damaged.
 Use the product in an environment that is appropriate for the product specifications.
If you use the product in an environment that exceeds product specifications, the product may fail 
or be damaged.
 A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock.
There is a risk of failure or damage.
 Always install a SERVOPACK in a control panel.
 Do not allow any foreign matter to enter a SERVOPACK or a Servomotor with a Cooling Fan and 
do not cover the outlet from the Servomotor’s cooling fan.
There is a risk of failure.
DANGER
 Do not change any wiring while power is being supplied.
There is a risk of electric shock or injury.
xix
WARNING
 Wiring and inspections must be performed only by qualified engineers.
There is a risk of electric shock or product failure.
 Check all wiring and power supplies carefully.
Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit fail-
ures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not 
work. This could damage the machine or cause an accident that may result in death or injury.
 Connect the AC and DC power supplies to the specified SERVOPACK terminals.
• Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the 
SERVOPACK.
• Connect a DC power supply to the B1/  and  2 terminals and the L1C and L2C terminals on the 
SERVOPACK.
There is a risk of failure or fire.
 If you use a SERVOPACK with the Dynamic Brake Hardware Option, connect an External 
Dynamic Brake Resistor that is suitable for the machine and equipment specifications to the 
specified terminals.
There is a risk of unexpected operation, machine damage, burning, or injury when an emergency 
stop is performed.
CAUTION
 Wait for at least six minutes after turning OFF the power supply (with a SERVOPACK for a 100-
VAC power supply input, wait for at least nine minutes) and then make sure that the CHARGE 
indicator is not lit before starting wiring or inspection work. Do not touch the power supply ter-
minals while the CHARGE lamp is lit because high voltage may still remain in the SERVOPACK 
even after turning OFF the power supply.
There is a risk of electric shock.
 Observe the precautions and instructions for wiring and trial operation precisely as described in 
this document.
Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause 
the SERVOPACK to fail, damage the equipment, or cause an accident resulting in death or injury.
 Check the wiring to be sure it has been performed correctly.
Connectors and pin layouts are sometimes different for different models. Always confirm the pin 
layouts in technical documents for your model before operation.
There is a risk of failure or malfunction.
 Connect wires to power supply terminals and motor connection terminals securely with the 
specified methods and tightening torque.
Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, 
possibly resulting in fire.
 Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Sig-
nal Cables and Encoder Cables.
 The maximum wiring length is 3 m for I/O Signal Cables, and 50 m for Encoder Cables or Servo-
motor Main Circuit Cables.
 Observe the following precautions when wiring the SERVOPACK’s main circuit terminals.
• Turn ON the power supply to the SERVOPACK only after all wiring, including the main circuit termi-
nals, has been completed.
• If a connector is used for the main circuit terminals, remove the main circuit connector from the 
SERVOPACK before you wire it.
• Insert only one wire per insertion hole in the main circuit terminals.
• When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into con-
tact with adjacent wires and cause a short-circuit.
 Install molded-case circuit breakers and other safety measures to provide protection against 
short circuits in external wiring.
There is a risk of fire or failure.
xx
 Operation Precautions
NOTICE
 Whenever possible, use the Cables specified by Yaskawa.
If you use any other cables, confirm the rated current and application environment of your model 
and use the wiring materials specified by Yaskawa or equivalent materials.
 Securely tighten cable connector screws and lock mechanisms.
Insufficient tightening may result in cable connectors falling off during operation.
 Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Sig-
nal Cables or Encoder Cables) together or run them through the same duct. If you do not place 
power lines and low-current lines in separate ducts, separate them by at least 30 cm.
If the cables are too close to each other, malfunctions may occur due to noise affecting the low-cur-
rent lines.
 Install a battery at either the host controller or on the Encoder Cable.
If you install batteries both at the host controller and on the Encoder Cable at the same time, you 
will create a loop circuit between the batteries, resulting in a risk of damage or burning.
 When connecting a battery, connect the polarity correctly.
There is a risk of battery rupture or encoder failure.
WARNING
 Before starting operation with a machine connected, change the settings of the switches and 
parameters to match the machine.
Unexpected machine operation, failure, or personal injury may occur if operation is started before 
appropriate settings are made.
 Do not radically change the settings of the parameters.
There is a risk of unstable operation, machine damage, or injury.
 Install limit switches or stoppers at the ends of the moving parts of the machine to prevent 
unexpected accidents.
There is a risk of machine damage or injury.
 For trial operation, securely mount the Servomotor and disconnect it from the machine.
There is a risk of injury.
 Forcing the motor to stop for overtravel is disabled when the Jog, Origin Search, or Easy FFT 
utility function is executed. Take necessary precautions.
There is a risk of machine damage or injury.
 When an alarm occurs, the Servomotor will coast to a stop or stop with the dynamic brake 
according to the SERVOPACK Option and settings. The coasting distance will change with the 
moment of inertia of the load and the resistance of the External Dynamic Brake Resistor. Check 
the coasting distance during trial operation and implement suitable safety measures on the 
machine.
 Do not enter the machine’s range of motion during operation.
There is a risk of injury.
 Do not touch the moving parts of the Servomotor or machine during operation.
There is a risk of injury.
xxi
 Maintenance and Inspection Precautions
CAUTION
 Design the system to ensure safety even when problems, such as broken signal lines, occur.
For example, the P-OT and N-OT signals are set in the default settings to operate on the safe 
side if a signal line breaks. Do not change the polarity of this type of signal.
 When overtravel occurs, the power supply to the motor is turned OFF and the brake is released. 
If you use the Servomotor to drive a vertical load, set the Servomotor to enter a zero-clamped 
state after the Servomotor stops. Also, install safety devices (such as an external brake or 
counterweight) to prevent the moving parts of the machine from falling.
 Always turn OFF the servo before you turn OFF the power supply. If you turn OFF the main cir-
cuit power supply or control power supply during operation before you turn OFF the servo, the 
Servomotor will stop as follows:
• If you turn OFF the main circuit power supply during operation without turning OFF the servo, the 
Servomotor will stop abruptly with the dynamic brake.
• If you turn OFF the control power supply without turning OFF the servo, the stopping method that is 
used by the Servomotor depends on the model of the SERVOPACK. For details, refer to the manual 
for the SERVOPACK.
• If you use a SERVOPACK with the Dynamic Brake Hardware Option, the Servomotor stopping meth-
ods will be different from the stopping methods used without the Option or with other Hardware 
Options. For details, refer to the following manual.
Σ-7-Series Σ-7S/Σ-7W SERVOPACK with Dynamic Brake Hardware Option Specifications Product Manual 
(Manual No.: SIEP S800001 73)
 Do not use the dynamic brake for any application other than an emergency stop.
There is a risk of failure due to rapid deterioration of elements in the SERVOPACK and the risk of 
unexpected operation, machine damage, burning, or injury.
NOTICE
 When you adjust the gain during system commissioning, use a measuring instrument to monitor 
the torque waveform and speed waveform and confirm that there is no vibration.
If a high gain causes vibration, the Servomotor will be damaged quickly.
 Do not frequently turn the power supply ON and OFF. After you have started actual operation, 
allow at least one hour between turning the power supply ON and OFF (as a guideline).
Do not use the product in applications that require the power supply to be turned ON and OFF 
frequently.
The elements in the SERVOPACK will deteriorate quickly.
 An alarm or warning may occur if communications are performed with the host controller while 
the SigmaWin+ or Digital Operator is operating.
If an alarm or warning occurs, it may interrupt the current process and stop the system.
 With this product, set the same Servomotor stopping method for both axis A and axis B.
If the Servomotor stopping methods are different, the machine may be damaged.
 Set appropriate values for the correction amounts in the Position Correction Table.
The machine may be damaged if the correction amounts are too large.
DANGER
 Do not change any wiring while power is being supplied.
There is a risk of electric shock or injury.
WARNING
 Wiring and inspections must be performed only by qualified engineers.
There is a risk of electric shock or product failure.
xxii
 Troubleshooting Precautions
CAUTION
 Wait for at least six minutes after turning OFF the power supply (with a SERVOPACK for a 100-
VAC power supply input, wait for at least nine minutes) and then make sure that the CHARGE 
indicator is not lit before starting wiring or inspection work. Do not touch the power supply ter-
minals while the CHARGE lamp is lit because high voltage may still remain in the SERVOPACK 
even after turning OFF the power supply.
There is a risk of electric shock.
 Before you replace a SERVOPACK, back up the settings of the SERVOPACK parameters. Copy 
the backed up parameter settings to the new SERVOPACK and confirm that they were copied 
correctly.
If you do not copy backed up parameter settings or if the copy operation is not completed correctly, 
normal operation may not be possible, possibly resulting in machine or equipment damage.
NOTICE
 Discharge all static electricity from your body before you operate any of the buttons or switches 
inside the front cover of the SERVOPACK.
There is a risk of equipment damage.
DANGER
 If the safety device (molded-case circuit breaker or fuse) installed in the power supply line oper-
ates, remove the cause before you supply power to the SERVOPACK again. If necessary, repair 
or replace the SERVOPACK, check the wiring, and remove the factor that caused the safety 
device to operate.
There is a risk of fire, electric shock, or injury.
WARNING
 The product may suddenly start to operate when the power supply is recovered after a momen-
tary power interruption. Design the machine to ensure human safety when operation restarts.
There is a risk of injury.
xxiii
 Disposal Precautions
 General Precautions
CAUTION
 When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm 
or turn the power supply OFF and ON again to restart operation.
There is a risk of injury or machine damage.
 If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the Servomotor may 
suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an 
alarm.
There is a risk of injury or machine damage.
 Always insert a magnetic contactor in the line between the main circuit power supply and the 
main circuit power supply terminals on the SERVOPACK so that the power supply can be shut 
OFF at the main circuit power supply.
If a magnetic contactor is not connected when the SERVOPACK fails, a large current may flow con-
tinuously, possibly resulting in fire.
 If an alarm occurs, shut OFF the main circuit power supply.
There is a risk of fire due to a regenerative resistor overheating as the result of regenerative transis-
tor failure.
 Install a ground fault detector against overloads and short-circuiting or install a molded-case 
circuit breaker combined with a ground fault detector.
There is a risk of SERVOPACK failure or fire if a ground fault occurs.
 The holding brake on a Servomotor will not ensure safety if there is the possibility that an exter-
nal force (including gravity) may move the current position and create a hazardous situation 
when power is interrupted or an error occurs. If an external force may cause movement, install 
an external braking mechanism that ensures safety.
 Correctly discard the product as stipulated by regional, local, and municipal laws and 
regulations. Be sure to include these contents in all labelling and warning notifications 
on the final product as necessary.
 Figures provided in this manual are typical examples or conceptual representations. There may 
be differences between them and actual wiring, circuits, and products.
 The products shown in illustrations in this manual are sometimes shown with their covers or 
protective guards removed to illustrate detail. Always replace all covers and protective guards 
before you use the product.
 If you need a new copy of this manual because it has been lost or damaged, contact your near-
est Yaskawa representative or one of the offices listed on the back of this manual.
 This manual is subject to change without notice for product improvements, specifications 
changes, and improvements to the manual itself.
We will update the manual number of the manual and issue revisions when changes are made.
 Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies 
the product in any way. Yaskawa disavows any responsibility for damages or losses that are 
caused by modified products.
xxiv
Warranty
 Details of Warranty
 Warranty Period
The warranty period for a product that was purchased (hereinafter called the “delivered product”) is 
one year from the time of delivery to the location specified by the customer or 18 months from the 
time of shipment from the Yaskawa factory, whichever is sooner.
 Warranty Scope
Yaskawa shall replace or repair a defective product free of charge if a defect attributable to 
Yaskawa occurs during the above warranty period.
This warranty does not cover defects caused by the delivered product reaching the end of its ser-
vice life and replacement of parts that require replacement or that have a limited service life.
This warranty does not cover failures that result from any of the following causes.
• Improper handling, abuse, or use in unsuitable conditions or in environments not described in 
product catalogs or manuals, or in any separately agreed-upon specifications 
• Causes not attributable to the delivered product itself 
• Modifications or repairs not performed by Yaskawa
• Use of the delivered product in a manner in which it was not originally intended
• Causes that were not foreseeable with the scientific and technological understanding at the time 
of shipment from Yaskawa
• Events for which Yaskawa is not responsible, such as natural or human-made disasters
 Limitations of Liability
• Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer 
that arises due to failure of the delivered product.
• Yaskawa shall not be responsible for any programs (including parameter settings) or the results of 
program execution of the programs provided by the user or by a third party for use with program-
mable Yaskawa products.
• The information described in product catalogs or manuals is provided for the purpose of the cus-
tomer purchasing the appropriate product for the intended application. The use thereof does not 
guarantee that there are no infringements of intellectual property rights or other proprietary rights 
of Yaskawa or third parties, nor does it construe a license. 
• Yaskawa shall not be responsible for any damage arising from infringements of intellectual prop-
erty rights or other proprietary rights of third parties as a result of using the information described 
in catalogs or manuals.
xxv
 Suitability for Use
• It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations 
that apply if the Yaskawa product is used in combination with any other products.
• The customer must confirm that the Yaskawa product is suitable for the systems, machines, and 
equipment used by the customer.
• Consult with Yaskawa to determine whether use in the following applications is acceptable. If use 
in the application is acceptable, use the product with extra allowance in ratings and specifica-
tions, and provide safety measures to minimize hazards in the event of failure.
• Outdoor use, use involving potential chemical contamination or electrical interference, or use 
in conditions or environments not described in product catalogs or manuals
• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, 
vehicle systems, medical equipment, amusement machines, and installations subject to sep-
arate industry or government regulations
• Systems, machines, and equipment that may present a risk to life or property
• Systems that require a high degree of reliability, such as systems that supply gas, water, or 
electricity, or systems that operate continuously 24 hours a day
• Other systems that require a similar high degree of safety
• Never use the product for an application involving serious risk to life or property without first 
ensuring that the system is designed to secure the required level of safety with risk warnings and 
redundancy, and that the Yaskawa product is properly rated and installed.
• The circuit examples and other application examples described in product catalogs and manuals 
are for reference. Check the functionality and safety of the actual devices and equipment to be 
used before using the product.
• Read and understand all use prohibitions and precautions, and operate the Yaskawa product 
correctly to prevent accidental harm to third parties.
 Specifications Change
The names, specifications, appearance, and accessories of products in product catalogs and 
manuals may be changed at any time based on improvements and other reasons. The next edi-
tions of the revised catalogs or manuals will be published with updated code numbers. Consult 
with your Yaskawa representative to confirm the actual specifications before purchasing a product.
xxvi
Compliance with UL Standards and EU Directives
Certification marks for the standards for which the product has been certified by certification bodies 
are shown on nameplate. Products that do not have the marks are not certified for the standards.
 North American Safety Standards (UL)
* Only products with derating specifications are in compliance with the UL Standards. Estimates are available for those prod-
ucts. Contact your Yaskawa representative for details.
Product Model North American Safety Standards (UL File No.)
SERVOPACKs SGD7W
UL 61800-5-1 (E147823)
CSA C22.2 No.274
Rotary 
Servomotors
• SGM7M
• SGM7A
• SGM7J
• SGM7P
• SGM7G
• SGMMV
UL 1004-1
UL 1004-6
(E165827)
Linear 
Servomotors
• SGLGW*
• SGLFW*
• SGLFW2
• SGLTW*
UL 1004-1
UL 1004-6
(E165827)
xxvii
 EU Directives
* For Moving Coils, only models with “-E” at the end of model numbers are certified.
Note: 1. We declared the CE Marking based on the harmonized standards in the above table.
2. These products are for industrial use. In home environments, these products may cause electromagnetic interfer-
ence and additional noise reduction measures may be necessary.
Product Model EU Directives Harmonized Standards
SERVOPACKs
SGD7W
EMC Directive
2014/30/EU
EN 55011 group 1, class A
EN 61000-6-2
EN 61000-6-4
EN 61800-3 (Category C2, Second 
environment)
Low Voltage Directive
2014/35/EU
EN 50178
EN 61800-5-1
RoHS Directive
2011/65/EU
EN 50581
Rotary 
Servomotors
SGMMV
EMC Directive
2004/108/EC
EN 55011 group 1, class A
EN 61000-6-2
EN 61800-3 (Category C2, Second 
environment)
Low Voltage Directive
2006/95/EC
EN 60034-1
EN 60034-5
RoHS Directive
2011/65/EU
EN 50581
• SGM7M
• SGM7J
• SGM7A
• SGM7P
• SGM7G
EMC Directive
2014/30/EU
EN 55011 group 1, class A
EN 61000-6-2
EN 61000-6-4
EN 61800-3 (Category C2, Second 
environment)
Low Voltage Directive
2014/35/EU
EN 60034-1
EN 60034-5
RoHS Directive
2011/65/EU
EN 50581
Linear 
Servomotors
• SGLG*
• SGLF*
• SGLF

2
• SGLT*
EMC Directive
2014/30/EU
EN 55011 group 1, class A
EN 61000-6-2
EN 61000-6-4
EN 61800-3 (Category C2, Second 
environment)
Low Voltage Directive
2014/35/EU
EN 60034-1
RoHS Directive
2011/65/EU
EN 50581
xxviii
Contents
About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii
Outline of Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Using This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Safety Precautions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Warranty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxiv
Compliance with UL Standards and EU Directives  . . . . . . . . . . . . . . . . . . . . .  xxvi
Basic Information on SERVOPACKs
1
1.1
Product Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
1.2
Model Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
1.2.1 Interpreting SERVOPACK Model Numbers . . . . . . . . . . . . . . . . . . . . . . . . . .1-3
1.2.2 Interpreting Servomotor Model Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4
1.3
Combinations of SERVOPACKs and Servomotors . . . . . . . . . . .  1-5
1.4
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6
1.4.1 SERVOPACK Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6
1.4.2 Function Application Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9
1.5
SigmaWin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-10
SERVOPACK Ratings and Specifications
2
2.1
Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
2.2
SERVOPACK Overload Protection Characteristics  . . . . . . . . . .  2-4
2.3
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
Position Correction Table
3
3.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2
3.1.1 Position Correction Table Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3
3.2
Parameter Settings Related to the Position Correction Table . .  3-4
3.2.1 Position Correction Table Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
3.2.2 Position Correction Axis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4
3.2.3 Position Correction Table-Related Monitor Selection . . . . . . . . . . . . . . . . . .3-4
3.3
Alarm Related to the Position Correction Table. . . . . . . . . . . . .  3-5
xxix
3.4
Position Correction Table Settings. . . . . . . . . . . . . . . . . . . . . . .  3-6
3.4.1 Measure the Positions Required for the Position Correction Table. . . . . . . . 3-6
3.4.2 Position Correction Table Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.4.3 Setting Method with the SigmaWin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.4.4 Setting Method with the MEM_WR Command. . . . . . . . . . . . . . . . . . . . . . 3-20
3.5
Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-25
3.5.1 Monitoring with the SigmaWin+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
3.5.2 Monitoring with the Digital Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
3.5.3 MECHATROLINK-III Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
Synchronized Stopping
4
4.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
4.1.1 Synchronized Stopping Timing Chart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.2
Parameter Settings Related to Synchronized Stopping  . . . . . .  4-4
4.2.1 Synchronized Stopping Mode Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.2.2 Synchronized Stopping End Speed Setting . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.2.3 Adjusting Synchronized Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.3
Alarms Related to Synchronized Stopping  . . . . . . . . . . . . . . . .  4-6
4.4
Warning Related to Synchronized Stopping  . . . . . . . . . . . . . . .  4-7
4.5
CSTP_S in the I/O Signal Status Monitor . . . . . . . . . . . . . . . . . .  4-8
4.5.1 SVCMD_IO (I/O Signal Status) Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.5.2 Details of I/O Signal Status Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.6
Servomotor Stopping Method for Alarms  . . . . . . . . . . . . . . . . .  4-9
Position Deviation between Axes Overflow Detection
5
5.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2
5.2
Parameter Settings Related to Position Deviation between Axes Overflow Detection
. .  5-3
5.3
Alarm Related to Position Deviation between Axes Overflow Detection
. .  5-4
5.4
Warning Related to Position Deviation between Axes Overflow Detection
. .  5-5
5.5
Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6
5.5.1 Monitoring with the SigmaWin+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.5.2 Monitoring with the Digital Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
xxx
Maintenance
6
6.1
Alarm Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
6.1.1 List of Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2
6.1.2 Troubleshooting Alarms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7
6.2
Warning Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-36
6.2.1 List of Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-36
6.2.2 Troubleshooting Warnings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-39
6.3
Troubleshooting Based on the Operation and Conditions of the Servomotor
. .  6-46
Parameter Lists
7
7.1
Parameter Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-2
7.1.1 Interpreting the Servo Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2
7.1.2 Interpreting the MECHATROLINK-III Common Parameter Lists  . . . . . . . . . .7-3
7.2
List of Servo Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-4
7.3
List of MECHATROLINK-III Common Parameters  . . . . . . . . . .  7-56
Index
Revision History
This chapter provides information required to select 
SERVOPACKs, such as SERVOPACK models.
1.1
Product Introduction  . . . . . . . . . . . . . . . . . . 1-2
1.2
Model Designations   . . . . . . . . . . . . . . . . . . 1-3
1.2.1 Interpreting SERVOPACK Model Numbers   . . . . . 1-3
1.2.2 Interpreting Servomotor Model Numbers   . . . . . . 1-4
1.3
Combinations of SERVOPACKs and Servomotors  . .1-5
1.4
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.4.1 SERVOPACK Functions . . . . . . . . . . . . . . . . . . . . 1-6
1.4.2 Function Application Restrictions  . . . . . . . . . . . . 1-9
1.5
SigmaWin+   . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Basic Information on 
SERVOPACKs
1
1.1  Product Introduction
1-2
1.1
Product Introduction
The FT70 features three built-in functions optimized for driving a gantry to provide an optimal 
solution for problems with gantry mechanisms.
• Position Correction Table (minimizes wasted torque produced by mechanical differences to 
improve cycle times)
• Synchronized Stopping (prevents mechanical damage if alarms occur)
• Position Deviation between Axes Overflow Detection (detects twisting of the machine frame 
to prevent mechanical damage and provide a useful function for preventative maintenance)
1.2  Model Designations
1.2.1  Interpreting SERVOPACK Model Numbers
1-3
1
Basic Information on SERVOPACKs
1.2
Model Designations
1.2.1
Interpreting SERVOPACK Model Numbers
*1. You can use these models with either a single-phase or three-phase input.
*2. If you use the Servomotor with a single-phase 200-VAC power supply input, derate the load ratio to 65%. An 
example is given below. If the load ratio of the first axis is 90%, use a load ratio of 40% for the second axis so 
that average load ratio for both axes is 65%.
((90% + 40%)/2 = 65%)
*3. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.
*4. The BTO specification indicates if the SEVOPACK is customized by using the MechatroCloud BTO service. You 
need a BTO number to order SERVOPACKs with customized specifications.
Refer to the following catalog for details on the BTO specification.
AC Servo Drives Σ-7 Series (Catalog No.: KAEP S800001 23)
SGD7W
-
1R6
A 20 A 
000
Σ-7-Series 
Σ-7W 
SERVOPACKs
4th 
digit
1st+2nd+3rd 
digits
5th+6th 
digits
8th+9th+10th 
digits
7th 
digit
F70
B
11th+12th+13th 
digits
14th 
digit
Without options
000
Maximum Applicable 
Motor Capacity per Axis
A 200 VAC
Voltage
Code Specication
1R6
*1
2R8
*1
5R5
*1*2
7R6
0.2 kW
0.4 kW
0.75 kW
1.0 kW
Voltage Code Specication
Three-
Phase,
200 VAC
1st+2nd+3rd digits
4th digit
Code Specication
Hardware Options 
Specication
8th+9th+10th digits
20
A
Interface
*3
Code Specication
MECHATROLINK-III 
communications reference
Design Revision Order
5th+6th digits
7th digit
Specification
Code
FT/EX Specification
Specification
Code
BTO Specification
*4
None
B
None
BTO 
specification
F70
For gantry applications
11th+12th+13th digits
14th digit
1.2  Model Designations
1.2.2  Interpreting Servomotor Model Numbers
1-4
1.2.2
Interpreting Servomotor Model Numbers
Refer to the following manuals for information on interpreting Σ-7-Series Servomotor model 
numbers.
Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)
Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
1.3  Combinations of SERVOPACKs and Servomotors
1-5
1
Basic Information on SERVOPACKs
1.3
Combinations of SERVOPACKs and Servomotors
Refer to the following manuals for details on combinations with Σ-7-Series Servomotors.
Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)
Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
1.4  Functions
1.4.1  SERVOPACK Functions
1-6
1.4
Functions
This section lists the functions provided by SERVOPACKs. Refer to the following manual for 
details on the functions.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
Refer to the following section for details on restrictions to these functions.
1.4.2 Function Application Restrictions on page 1-9
1.4.1
SERVOPACK Functions
•
Functions Related to the Machine
* Functions unique to this product.
Function
Power Supply Type Settings for the Main Circuit and Control Circuit
Automatic Detection of Connected Motor
Motor Direction Setting
Linear Encoder Pitch Setting
Writing Linear Servomotor Parameters
Selecting the Phase Sequence for a Linear Servomotor
Polarity Sensor Setting
Polarity Detection
Overtravel Function and Settings
Holding Brake
Motor Stopping Methods for Servo OFF and Alarms
Resetting the Absolute Encoder
Setting the Origin of the Absolute Encoder
Setting the Regenerative Resistor Capacity
Operation for Momentary Power Interruptions
SEMI F47 Function
Setting the Motor Maximum Speed
Software Limits and Settings
Multiturn Limit Setting
Adjustment of Motor Current Detection Signal Offset
Forcing the Motor to Stop
Overheat Protection
Speed Ripple Compensation
Current Gain Level Setting
Speed Detection Method Selection
External Latches
Synchronized Stopping*
Position Deviation between Axes Overflow Detection*
Position Correction Table*
1.4  Functions
1.4.1  SERVOPACK Functions
1
Basic Information on SERVOPACKs
1-7
•
Functions Related to the Host Controller
•
Functions to Achieve Optimum Motions
•
Functions for Trial Operation during Setup
Function
Extended Address Setting
Electronic Gear Settings
I/O Signal Allocations
ALM (Servo Alarm) Signal
/WARN (Warning) Signal
/TGON (Rotation Detection) Signal
/S-RDY (Servo Ready) Signal
/V-CMP (Speed Coincidence Detection) Signal
/COIN (Positioning Completion) Signal
/NEAR (Near) Signal
Speed Limit during Torque Control
/VLT (Speed Limit Detection) Signal
Selecting Torque Limits
Vibration Detection Level Initialization
Alarm Reset
Replacing the Battery
Setting the Position Deviation Overflow Alarm Level
Function
Tuning-less Function
Autotuning without a Host Reference
Autotuning with a Host Reference
Custom Tuning
Anti-Resonance Control Adjustment
Vibration Suppression
Gain Selection
Friction Compensation
Gravity Compensation
Backlash Compensation
Model Following Control
Compatible Adjustment Functions
Mechanical Analysis
Easy FFT
Function
Software Reset
Trial Operation for the Servomotor without a Load
Program Jogging
Origin Search
Test without a Motor
Monitoring Machine Operation Status and Signal Waveforms
1.4  Functions
1.4.1  SERVOPACK Functions
1-8
•
Functions for Inspection and Maintenance
Function
Write Prohibition Setting for Parameters
Initializing Parameter Settings
Automatic Detection of Connected Motor
Monitoring Product Information
Monitoring Product Life
Alarm History Display
Alarm Tracing
1.4  Functions
1.4.2  Function Application Restrictions
1
Basic Information on SERVOPACKs
1-9
1.4.2
Function Application Restrictions
The following functional restrictions apply when the SERVOPACKs described in this manual are 
used.
Function Restriction
Motor Stopping Method for 
Group 2 Alarms
(Pn00A = n.0, 
Pn00B = n.2)
In this SERVOPACK, the default setting of the Servomotor stopping method 
for the group 2 alarms is stopping by applying the dynamic brake. The Ser-
vomotor stopping method can be changed by changing the parameter set-
tings, but stopping by applying the dynamic brake is recommended.
Set both axis A and axis B to the same stopping method for alarms.
Moment of Inertia Estimation This function cannot be used.
Advanced Autotuning without 
Reference (Fn201)
This function cannot be used.
Advanced Autotuning with 
Reference (Fn202)
This function cannot be used.
Mechanical Analysis This function cannot be used.
IO_STS8 in SVCMD_IO 
(I/O Signal Monitor)
This function cannot be used.
1.5  SigmaWin+
1-10
1.5
SigmaWin+
To use the SigmaWin+, a model information file for the SERVOPACK must be added to Sig-
maWin+ version 7. Contact your Yaskawa representative for the model information file.
This chapter provides the specifications required to select 
SERVOPACKs.
2.1
Ratings   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.2
SERVOPACK Overload Protection Characteristics  . . 2-4
2.3
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
SERVOPACK 
Ratings and 
Specifications
2
2.1  Ratings
2-2
2.1
Ratings
This section gives the ratings of SERVOPACKs.
Three-Phase, 200 VAC
* This is the net value at the rated load. 
Model SGD7W- 1R6A 2R8A 5R5A 7R6A
Maximum Applicable Motor Capacity per Axis [kW] 0.2 0.4 0.75 1.0 
Continuous Output Current per Axis [Arms] 1.6 2.8 5.5 7.6
Instantaneous Maximum Output Current per Axis 
[Arms]
5.9 9.3 16.9 17.0
Main Circuit 
Power Supply  200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
Input Current [Arms]* 2.5 4.7 7.8 11
Control
Power Supply  200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
Input Current [Arms]* 0.25 0.25 0.25 0.25
Power Supply Capacity [kVA]* 1.0 1.9 3.2 4.5
Power Loss*
Main Circuit Power Loss [W]  24.0 43.3 78.9 94.2
Control Circuit Power Loss [W]  17 17 17 17
Built-in Regenerative Resistor 
Power Loss [W]
8 8 16 16
Total Power Loss [W]  49.0 68.3 111.9 127.2
Regenerative 
Resistor 
Built-In 
Regenerative 
Resistor 
Resistance 
[Ω] 
40 40 12 12
Capacity 
[W] 
40 40 60 60
Minimum Allowable External 
Resistance [Ω] 
40 40 12 12
Overvoltage Category  III
2.1  Ratings
2
SERVOPACK Ratings and Specications
2-3
Single-Phase, 200 VAC
*1. If you use the SGD7W-5R5A with a single-phase 200-VAC power supply input, derate the load ratio to 65%. An 
example is given below. If the load ratio of the first axis is 90%, use a load ratio of 40% for the second axis so 
that average load ratio for both axes is 65%.
((90% + 40%)/2 = 65%)
*2. This is the net value at the rated load. However, a load ratio of 65% was used for the SGD7W-5R5A.
270 VDC
* This is the net value at the rated load.
Model SGD7W-  1R6A 2R8A 5R5A
*1
Maximum Applicable Motor Capacity per Axis [kW]  0.2 0.4 0.75
Continuous Output Current per Axis [Arms]  1.6 2.8 5.5
Instantaneous Maximum Output Current per Axis 
[Arms] 
5.9 9.3 16.9
Main Circuit 
Power Supply  200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
Input Current [Arms]
*2 
5.5 11 12
Control
Power Supply  200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz
Input Current [Arms]
*2 
0.25 0.25 0.25
Power Supply Capacity [kVA]
*2 
1.3 2.4 2.7
Power Loss
*2
Main Circuit Power Loss [W]  24.1 43.6 54.1
Control Circuit Power Loss [W]  17 17 17
Built-in Regenerative Resistor 
Power Loss [W]
8816
Total Power Loss [W]  49.1 68.6 87.1
Regenerative 
Resistor 
Built-In 
Regenerative 
Resistor 
Resistance 
[Ω] 
40 40 12
Capacity 
[W] 
40 40 60
Minimum Allowable External 
Resistance [Ω] 
40 40 12
Overvoltage Category  III
Model SGD7W- 
1R6A 2R8A 5R5A 7R6A
Maximum Applicable Motor Capacity per Axis [kW] 
0.2 0.4 0.75 1.0 
Continuous Output Current per Axis [Arms] 
1.6 2.8 5.5 7.6 
Instantaneous Maximum Output Current per Axis 
[Arms] 
5.9 9.3 16.9 17.0 
Main Circuit 
Power Supply 
270 VDC to 324 VDC, -15% to +10%
Input Current [Arms]*
3.0 5.8 9.7 14
Control
Power Supply 
270 VDC to 324 VDC, -15% to +10%
Input Current [Arms]*
0.25 0.25 0.25 0.25
Power Supply Capacity [kVA]*
1.2 2 3.2 4.6 
Power Loss*
Main Circuit Power Loss [W] 
18.7 33.3 58.4 73.7
Control Circuit Power Loss [W] 
17 17 17 17
Total Power Loss [W] 
35.7 50.3 75.4 90.7
Overvoltage Category 
III
2.2  SERVOPACK Overload Protection Characteristics
2-4
2.2 SERVOPACK Overload Protection Characteristics
The overload detection level is set for hot start conditions with a SERVOPACK surrounding air tem-
perature of 55°C.
An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload pro-
tection characteristics shown in the following diagram (i.e., operation on the right side of the appli-
cable line) is performed.
The actual overload detection level will be the detection level of the connected SERVOPACK or Ser-
vomotor that has the lower overload protection characteristics.
In most cases, that will be the overload protection characteristics of the Servomotor.
• SGD7W-1R6, -2R8
Note: The above overload protection characteristics do not mean that you can perform continuous duty operation 
with an output of 100% or higher.
For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within 
the continuous duty zone of the torque-motor speed characteristic of the Servomotor.
• SGD7W-5R5, -7R6
Note: The above overload protection characteristics do not mean that you can perform continuous duty operation 
with an output of 100% or higher.
For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within 
the continuous duty zone of the torque-motor speed characteristic of the Servomotor.
100
10000
1000
100
10
1
Detection time (s)
SERVOPACK output current 
(continuous output current ratio) (%)
Instantaneous maximum output current
(Instantaneous maximum output current)
Continuous output current
(Continuous output current)
× 100%
230
100 200
10000
1000
100
10
1
Detection time (s)
SERVOPACK output current 
(continuous output current ratio) (%)
Instantaneous maximum output current
(Instantaneous maximum output current)
Continuous output current
(Continuous output current)
× 100%
2.3  Specifications
2-5
2
SERVOPACK Ratings and Specications
2.3
Specifications
This section gives the specifications of SERVOPACKs.
Item  Specification 
Control Method  IGBT-based PWM control, sine wave current drive
Feedback 
With Rotary 
Servomotor 
Serial encoder: 17 bits (absolute encoder)
20 bits or 24 bits (incremental encoder/absolute 
encoder)
22 bits (absolute encoder)
With Linear 
Servomotor 
• Absolute linear encoder (The signal resolution depends on the abso-
lute linear encoder.)
• Incremental linear encoder (The signal resolution depends on the 
incremental linear encoder or Serial Converter Unit.)
Environ-
mental 
Conditions
Surrounding Air 
Temperature
-5°C to 55°C 
(With derating, usage is possible between 55°C and 60°C.) 
Refer to the following manual for derating specifications.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communica-
tions References Product Manual (Manual No.: SIEP S800001 29)
Storage Temperature  -20°C to 85°C 
Surrounding Air 
Humidity
95% relative humidity max. (with no freezing or condensation) 
Storage Humidity 95% relative humidity max. (with no freezing or condensation) 
Vibration Resistance 
4.9 m/s
2
Shock Resistance 
19.6 m/s
2
Degree of Protection IP20
Pollution Degree
2
• Must be no corrosive or flammable gases.
• Must be no exposure to water, oil, or chemicals. 
• Must be no dust, salts, or iron dust.
Altitude
1,000 m max. (With derating, usage is possible between 1,000 m and 
2,000 m.)
Refer to the following manual for derating specifications.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communica-
tions References Product Manual (Manual No.: SIEP S800001 29)
Others 
Do not use the SERVOPACK in the following locations: Locations sub-
ject to static electricity noise, strong electromagnetic/magnetic fields, or 
radioactivity 
Applicable Standards 
Refer to the following section for details.
Compliance with UL Standards and EU Directives on page xxvi
Mounting  Base-mounted or rack-mounted 
Perfor-
mance 
Speed Control Range 
1:5000 (At the rated torque, the lower limit of the speed control range 
must not cause the Servomotor to stop.) 
Coefficient of Speed 
Fluctuation
*
±0.01% of rated speed max. (for a load fluctuation of 0% to 100%)
0% of rated speed max. (for a voltage fluctuation of ±10%)
±0.1% of rated speed max. (for a temperature fluctuation of 25°C 
±25°C)
Torq ue Co n trol 
Precision 
(Repeatability) 
±1%
Soft Start Time 
Setting 
0 s to 10 s (Can be set separately for acceleration and deceleration.) 
Continued on next page.
2.3  Specifications
2-6
I/O Signals
Overheat Protection 
Input
Number of input points: 2
Input voltage range: 0 V to +5 V 
Sequence 
Input 
Signals 
Input 
Signals 
That Can 
Be Allo-
cated
Allowable voltage range: 24 VDC ±20% 
Number of input points: 12
(Input method: Sink inputs or source inputs)
Input Signals
• P-OT (Forward Drive Prohibit) and N-OT (Reverse Drive Prohibit) sig-
nals
• /P-CL (Forward External Torque Limit) and /N-CL (Reverse External 
Torq ue Li mit)  s ign als
• /DEC (Origin Return Deceleration Switch) signal
• /EXT1 to /EXT3 (External Latch Input 1 to 3) signals
• FSTP (Forced Stop Input) signal
A signal can be allocated and the positive and negative logic can be 
changed.
Sequence 
Output 
Signals 
Fixed 
Output
Allowable voltage range: 5 VDC to 30 VDC 
Number of output points: 2
(A photocoupler output (isolated) is used.)
Output signal: ALM (Servo Alarm) signal
Output 
Signals 
That Can 
Be Allo-
cated
Allowable voltage range: 5 VDC to 30 VDC
Number of output points: 5
(A photocoupler output (isolated) is used.)
Output Signals
• /COIN (Positioning Completion) signal
• /V-CMP (Speed Coincidence Detection) signal
• /TGON (Rotation Detection) signal
• /S-RDY (Servo Ready) signal
• /CLT (Torque Limit Detection) signal
• /VLT (Speed Limit Detection) signal
• /BK (Brake) signal
• /WARN (Warning) signal
• /NEAR (Near) signal
A signal can be allocated and the positive and negative logic can be 
changed.
Communi-
cations 
RS-422A 
Communi-
cations 
(CN3) 
Inter-
faces
Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig-
maWin+)
1:N 
Commu-
nications
Up to N = 15 stations possible for RS-422A port 
Axis 
Address 
Settings
03h to EFh (maximum number of slaves: 62)
The rotary switches (S1 and S2) are used to set the station address.
USB 
Communi-
cations
(CN7)
Interface Personal computer (with SigmaWin+) 
Commu-
nica-
tions 
Standard
Conforms to USB2.0 standard (12 Mbps). 
Displays/Indicators
CHARGE, PWR, CN, L1, and L2 indicators, and two, one-digit seven-
segment displays
Continued o
n next page.
Continued from previous page.
Item  Specification 
2.3  Specifications
2
SERVOPACK Ratings and Specications
2-7
* The coefficient of speed fluctuation for load fluctuation is defined as follows:
MECHA-
TROLINK-III 
Communi-
cations 
Communications Pro-
tocol 
MECHATROLINK-III
Station Address 
Settings 
03h to EFh (maximum number of slaves: 62) 
The rotary switches (S1 and S2) are used to set the station address. 
Extended Address 
Setting 
Axis A: 00h, Axis B: 01h
Transmission Speed 100 Mbps
Transmission Cycle 
250 μs, 500 μs, 750 μs, 
1.0 ms to 4.0 ms (multiples of 0.5 ms)
Number of Transmis-
sion Bytes 
32 or 48 bytes/station
A DIP switch (S3) is used to select the transmission speed. 
Reference 
Method 
Performance 
Position, speed, or torque control with MECHATROLINK-III communi-
cations 
Reference Input 
MECHATROLINK-III commands (sequence, motion, data setting, data 
access, monitoring, adjustment, etc.) 
Profile 
MECHATROLINK-III standard servo profile 
MECHATROLINK-III Communica-
tions Setting Switches 
Rotary switch (S1 and S2) positions: 16 
Number of DIP switch (S3) pins: 4 
Analog Monitor (CN5) 
Number of points: 2
Output voltage range: ±10 VDC (effective linearity range: ±8 V)
Resolution: 16 bits 
Accuracy: ±20 mV (Typ)
Maximum output current: ±10 mA
Settling time (±1%): 1.2 ms (Typ)
Dynamic Brake (DB) 
Activated when a servo alarm or overtravel (OT) occurs, or when the 
power supply to the main circuit or servo is OFF. 
Regenerative Processing Built-in 
Overtravel (OT) Prevention 
Stopping with dynamic brake, deceleration to a stop, or coasting to a 
stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Pro-
hibit) signal
Protective Functions  Overcurrent, overvoltage, low voltage, overload, regeneration error, etc. 
Utility Functions Gain adjustment, alarm history, jogging, origin search, etc. 
Applicable Option Modules None
Continued from previous page.
Item  Specification 
× 100%
Coefcient of speed uctuation =
No-load motor speed - Total-load motor speed
Rated motor speed
This chapter provides information on the Position Correc-
tion Table.
3.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.1 Position Correction Table Block Diagram   . . . . . . 3-3
3.2
Parameter Settings Related to the Position Correction Table  . . 3-4
3.2.1 Position Correction Table Enable/Disable  . . . . . . 3-4
3.2.2 Position Correction Axis Selection   . . . . . . . . . . . 3-4
3.2.3 Position Correction Table-Related Monitor 
Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.3
Alarm Related to the Position Correction Table  . .  3-5
3.4
Position Correction Table Settings  . . . . . . . 3-6
3.4.1 Measure the Positions Required for the 
Position Correction Table   . . . . . . . . . . . . . . . . . . 3-6
3.4.2 Position Correction Table Details   . . . . . . . . . . . . 3-7
3.4.3 Setting Method with the SigmaWin+  . . . . . . . . . . 3-8
3.4.4 Setting Method with the MEM_WR Command  . . .  3-20
3.5
Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
3.5.1 Monitoring with the SigmaWin+   . . . . . . . . . . . . 3-25
3.5.2 Monitoring with the Digital Operator  . . . . . . . . . 3-25
3.5.3 MECHATROLINK-III Monitoring . . . . . . . . . . . . . 3-25
Position Correction 
Table
3
3.1  Outline
3-2
3.1
Outline
The Position Correction Table is used to drive the Servomotors while correcting the position 
based on the correction amounts set in the table in order to minimize wasted torque produced 
by mechanical differences in the machine.
Using this function can reduce cycle time because it can drive the Servomotors without pro-
ducing wasted torque between two axes.
The SERVOPACK adds the correction amount to the reference position from the host control-
ler, and then it moves the slave axis.
For this reason, the coordinate position of the slave axis is offset from the reference position 
from the host controller by only the added correction amount.
Master axis
Slave axis
Pm1
Pm2
Pm3
Pm4
Pm5
Ps1
Ps2
Ps3
Ps4
Ps5
Master axisSlave axis
Torque
Torque
Speed
Time
Master axis
0
0
Slave axis
Time
Torque
Time
Torque
Speed
Time
Tension is produced between the axes when the 
Servomotors are driven due to mechanical 
differences, and this produces wasted torque.
Wasted torque produced due to mechanical differences 
can be minimized by driving the Servomotors while 
correcting the position of the slave axis based on the 
correction amounts set in the table.
Wasted torque is 
not produced 
between the 
master and slave 
axes.
This much 
wasted 
torque is 
produced.
Information
Master axisSlave axis
Reference position 
from host controller
Correction amount
3.1  Outline
3.1.1  Position Correction Table Block Diagram
3
Position Correction Table
3-3
This function is enabled after either of the following operations is performed during position 
control.
• When using an absolute encoder
The SENS_ON (Turn Sensor ON: 23h) command is sent from the host controller.
• When using an incremental encoder
• The ZRET (Zero Point Return: 3Ah) command is sent from the host controller.
• The reference point is set (REFE = 1) using the POS_SET (Set Coordinate System: 20h) 
command from the host controller.
3.1.1
Position Correction Table Block Diagram
With each control cycle in the Servo (less than or equal to the communications cycle), the posi-
tion of IPOS (Internal Reference Position) is corrected by the Position Correction Table.
• The PSET and NEAR signals are output based on the corrected position.
• The software limit function uses the uncorrected position.
• This product assumes a system that issues commands for the same target position to the 
master axis and slave axis.
To use this product for any other application, contact your Yaskawa representative.
If there is a deviation in the position of the origin, a deviation will occur in the values set in the 
Position Correction Table, and the function may not work effectively. Configure the system so that 
the position of the origin does not deviate.
Information
Important
SERVOPACK (master)
INTERPOLATE
/POSING
Servo-
motor
TPOS
APOS
Servo 
control
IPOS
SERVOPACK (slave)
TPOS
APOS
IPOS’
Servo 
control
+
+
IPOS
Δd
INTERPOLATE
/POSING
IPOS
IPOS
Position 
Correction 
Table
+
+
Host controller
Δd
Servo-
motor
Position 
Correction 
Table
3.2  Parameter Settings Related to the Position Correction Table
3.2.1  Position Correction Table Enable/Disable
3-4
3.2
Parameter Settings Related to the Position Correction Table
This section describes the parameters necessary to use the Position Correction Table.
3.2.1
Position Correction Table Enable/Disable
Enable and disable the Position Correction Table with Pn847 = n.

X (Position Correction 
Table Function Selections).
3.2.2
Position Correction Axis Selection
Select the axis for which the position will be corrected with Pn847 = n.X

(Position Correc-
tion Axis Selection for Position Correction Table).
3.2.3
Position Correction Table-Related Monitor Selection
Select the value to monitor in the Position Correction Table with Pn847 = n.

X

(Position 
Correction Table-Related Monitor Selection).
Refer to the following section for details on the item that can select whether to monitor position 
information before correction or after correction.
3.5.3 MECHATROLINK-III Monitoring on page 3-25
Parameter Description When Enabled Classification
Pn847
n.
0
(default 
setting)
Do not use Position Correction Table.
After restart Setup
n.
1 Use Position Correction Table.
All Axes
Parameter Description When Enabled Classification
Pn847
n.0
(default 
setting)
Correct the position of axis A.
After restart Setup
n.1 Correct the position of axis B.
All Axes
Parameter Description When Enabled Classification
Pn847
n.
0
(default 
setting)
Monitor the position information before posi-
tion correction.
After restart Setup
n.
1
Monitor the position information after position 
correction.
All Axes
3.3  Alarm Related to the Position Correction Table
3-5
3
Position Correction Table
3.3
Alarm Related to the Position Correction Table
The alarm related to the Position Correction Table is given in the following table.
Refer to the following section for details on the causes of and corrections for the alarm.
6.1.2 Troubleshooting Alarms on page 6-7
Alarm 
Number
Alarm Name Alarm Meaning
A.E94 Position Correction Table Setting 
Error
There are errors in setting values in the Position Correction 
Tab le.
All Axes
3.4  Position Correction Table Settings
3.4.1  Measure the Positions Required for the Position Correction Table
3-6
3.4
Position Correction Table Settings
The Position Correction Table settings are configured with the following steps.
1.
Measure positions required for the Position Correction Table.
2.
Create the Position Correction Table.
*1
3.
Write the Position Correction Table to the SERVOPACK.
*1, *2
4.
Select Pn847 = n.

1 (Position Correction Table Selection) to enable the Position 
Correction Table.
5.
Turn the power supply to the SERVOPACK OFF and ON again.
*3
*1. The SigmaWin+ or MEM_WR command can be used to create the Position Correction Table and write it to the 
SERVOPACK.
Refer to the following sections for details.
3.4.3 Setting Method with the SigmaWin+ on page 3-8
3.4.4 Setting Method with the MEM_WR Command on page 3-20
*2. The Position Correction Table (table entries, pre-correction positions, and correction amounts) cannot be written 
to the SERVOPACK when the servo is ON. Write the Position Correction Table when the servo is OFF.
*3. The Position Correction Table can also be enabled with the CONFIG command (CONFIG_MOD = 0).
In this case, ensure that both axes are in the servo OFF state before sending the command.
3.4.1
Measure the Positions Required for the Position Correc-
tion Table
Measure positions in order to learn the size of the correction amount necessary for the slave 
axis in regard to measured positions along the master axis.
The measurement method of positions is given below.
1.
Turn ON the servo.
2.
When using an incremental encoder, move the gantry to the machine origin.
When using an absolute encoder, proceed to the next step.
3.
Use a movement command and move the gantry to the measurement position.
4.
Turn OFF the servo.
5.
Monitor the value of APOS (Feedback Position) of each axis.
6.
Write down the monitored values.
7.
Repeat steps 1 to 6 for the number of measurements that will be registered to the Posi-
tion Correction Table.
Master axis
Slave axis
Operating Range
Ps1
Ps2
Ps3
Ps4
Ps5
Pm1
Pm2
Pm3
Pm4
Pm5
Ps6
Ps7
Pm6
Pm7
3.4  Position Correction Table Settings
3.4.2  Position Correction Table Details
3
Position Correction Table
3-7
3.4.2
Position Correction Table Details
This section provides the following details on the Position Correction Table.
Example: Table entries is 7.

No.
Up to 128 table entries can be set.

Pre-correction Position
Enter the value of APOS (Feedback Position) of the master axis.
Note: For consecutive table numbers, the difference between the pre-correction positions and the difference 
between the correction amounts cannot exceed 1,073,741,823 [reference unit].

Correction Value
Enter the numeric value which is the result of subtracting the feedback position value of the 
master axis from the feedback position value of the slave axis.

Start and End Table Numbers
Enter a pre-correction position and adjustment amount for a position that exceeds the oper-
ating range.
If the operating range set in the Position Correction Table is exceeded, the correction cannot 
be applied to the position and unstable operation may occur at the coordinate positions set 
at both ends of the table.
Set the Position Correction Table as given below.
If the Position Correction Table is not set as given below, A.E94 (Position Correction Table Setting 
Error) will occur, and the Position Correction Table cannot be written to the SERVOPACK.
• Ensure that the values for consecutive pre-correction positions in the Position Correction Table 
satisfy the following condition: value of pre-correction position < value of next pre-correction 
position.
• Ensure that the values for consecutive correction positions calculated by the Position Correc-
tion Table satisfy the following condition: value of correction position < value of next correction 
position. The correction position is the reference position of the slave axis after correction (pre-
correction position + correction amount in Position Correction Table).
• Set the correction positions and correction amounts between -2,147,483,648 and 
2,147,483,647.
No.
Pre-correction 
Positions
[Reference unit]
Correction Value
[Reference unit]
1 -500,000 100
2 -400,000 100
3 -300,000 150
4 -200,000 250
5 -100,000 100
60-50
7 100,000 -50
• If the gantry cannot be moved to a position that exceeds the operating range due to the 
mechanism, enter a value that exceeds the end of the operating range for the pre-correc-
tion position. In the above example, set the same correction amount as table numbers 2 
and 6.
• Positions are corrected by performing linear interpolation on the correction amounts of the 
positions between consecutive table numbers.
Important




Operating 
Range

Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-8
3.4.3
Setting Method with the SigmaWin+
Use the following procedure to configure the Position Correction Table.
1.
Click the [ ] Servo Drive Button in the workspace of the Main Window of the Sig-
maWin+.
2.
Click Position Correction Table Setting in the Menu Dialog Box.
The Position Correction Table Setting Dialog Box will be displayed.
Refer to the following section to initialize the Position Correction Table.
Initializing the Position Correction Table on page 3-13
NOTICE
 Set appropriate values for the correction amounts in the Position Correction Table.
The machine may be damaged if the correction amounts are too large.
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-9
3.
On the Table Number Setting Tab, enter the number of table entries.
4.
On the Position Correction Table Setting Tab, enter the pre-correction positions and cor-
rection amounts.
You can also copy data in Excel and paste it on the Position Correction Table.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-10
5.
To write only the parts of the Position Correction Table that were edited to the SERVO-
PACK, click Edited Parameters in the Write to Servo Group.
To write the entire Position Correction Table to the SERVOPACK, click All Parameters in 
the Write to Servo Group.
6.
Click the OK Button.
The created Position Correction Table was written to the volatile memory in the SERVOPACK.
The background of the edited parameter cell will change to orange.
Parameter will be used in the dialog box, but parameters are not written to the SERVO-
PACK.
The Position Correction Table is written to the SERVOPACK.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-11
7.
Click Save to Flash Memory in the Write to Servo Group.
8.
Click the Yes Button.
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-12
9.
Click the OK Button.
Saving to flash memory is completed. The background of the edited parameter cell will change to 
white.
10.
Turn the power supply to the SERVOPACK OFF and ON again.
This concludes the procedure to configure the Position Correction Table.
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-13
Initializing the Position Correction Table
Use the following procedure to initialize the Position Correction Table.
1.
Click Initialize in the Function Group.
2.
Click the OK Button.
3.
Click the OK Button.
When the cursor is positioned on Initialize in the window, the “The SERVOPACK parame-
ters are returned to the default settings” message will be displayed, but the parameters 
will not be initialized.
The Position Correction Table will be initialized.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-14
4.
Click Save to Flash Memory in the Write to Servo Group.
5.
Click the Yes Button.
6.
Click the OK Button.
7.
Turn the power supply to the SERVOPACK OFF and ON again.
This concludes the procedure to initialize the Position Correction Table.
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-15
Reading the Position Correction Table from the SERVO-
PACK
Use the following procedure to read the Position Correction Table from the SERVOPACK.
1.
Click All Parameters in the Read from Servo Group.
2.
Click the Yes Button.
This concludes the procedure to read the Position Correction Table from the SERVOPACK.
Parameter will be used in the dialog box, but parameters are not read from the SERVO-
PACK.
The Position Correction Table is read from the SERVOPACK.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-16
Writing the Position Correction Table
Use the following procedure to write the Position Correction Table to a file.
1.
Click Export in the File Group.
2.
Enter the file name and click the Save Button.
This concludes the procedure to write the Position Correction Table to a file.
When the cursor is positioned on Export in the window, the “The displayed parameters 
are written to a file” message will be displayed, but the parameters will not be written to 
the file.
The Position Correction Table will be written to the file.
Information
You can also copy Position Correction Table data and paste it to a spreadsheet in Excel.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-17
Reading a Position Correction Table File
Use the following procedure to read a Position Correction Table file.
1.
Click Import in the File Group.
2.
Select the file to read and click the Open Button.
This concludes the procedure to read the Position Correction Table from a file.
When the cursor is positioned on Import in the window, the “The parameters file is read 
to the display” message will be displayed, but the parameters will not be read.
The Position Correction Table is read from the file.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3-18
Saving the Position Correction Table to a Project File
Use the following procedure to save the Position Correction Table to a project file.
1.
Click Save to Project in the Project Group.
2.
Click the OK Button.
When the cursor is positioned on Save to Project in the window, the “The parameter set-
tings on the display are saved to a project file” message will be displayed, but the param-
eter setting values will not be saved to the project file.
The Position Correction Table will be saved to the project file.
Information
3.4  Position Correction Table Settings
3.4.3  Setting Method with the SigmaWin+
3
Position Correction Table
3-19
3.
Click the Save Button in the main window.
This concludes the procedure to save the Position Correction Table to the project file.
3.4  Position Correction Table Settings
3.4.4  Setting Method with the MEM_WR Command
3-20
3.4.4
Setting Method with the MEM_WR Command
Use the MEM_WR (Write Memory) command to set the Position Correction Table from the host 
controller.
Setting the Position Correction Table
 Writing the Position Correction Table to Volatile Memory
Set the Position Correction Table based on the following table.
Register Description
Size
[No. of Registers]
Setting Range Unit
0xF0040000 Table entries 2 0 to 128 No. of entries
0xF0040004
Pre-correction posi-
tion [1]
2
-2,147,483,648 to 
2,147,483,647
Reference unit
0xF0040008
Correction amount 
[1]
2
0xF004000C
Pre-correction posi-
tion [2]
2
0xF0040010
Correction amount 
[2]
2
0xF0040014
Pre-correction posi-
tion [3]
2
0xF0040018
Correction amount 
[3]
2
0xF004001C
Pre-correction posi-
tion [4]
2
0xF0040020
Correction amount 
[4]
2












0xF00403E4
Pre-correction posi-
tion [125]
2
0xF00403E8
Correction amount 
[125]
2
0xF00403EC
Pre-correction posi-
tion [126]
2
0xF00403F0
Correction amount 
[126]
2
0xF00403F4
Pre-correction posi-
tion [127]
2
0xF00403F8
Correction amount 
[127]
2
0xF00403FC
Pre-correction posi-
tion [128]
2
0xF0040400
Correction amount 
[128]
2
3.4  Position Correction Table Settings
3.4.4  Setting Method with the MEM_WR Command
3
Position Correction Table
3-21
 Example of Setting Pre-Correction Position [1] in the Position Correction Table to 
-500,000
The follow examples writes a pre-correction position in the Position Correction Table to volatile 
memory.
ADDRESS = 0xF0040004
MODE/DATA_TYPE = 0x13
SIZE = 0x01
DATA = -500000
 Saving the Position Correction Table to Non-Volatile Memory
 How to Save Position Correction Table Data
Save the current values in volatile memory to non-volatile memory. Send the commands in the 
following order.
This concludes the procedure to save the Position Correction Table to non-volatile memory.
Step Description Setting Example
1
Sets the request code for writing to non-
volatile memory.
ADDRESS = 0x80004000
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x2025
2
Executes preparation processing 1 for 
writing to non-volatile memory.
ADDRESS = 0x800041E0
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0000
3
Executes preparation processing 2 for 
writing to non-volatile memory.
ADDRESS = 0x800041E4
MODE/DATA_TYPE = 0x13
SIZE = 0x0001
DATA = 0xF0040000
4
Executes preparation processing 3 for 
writing to non-volatile memory.
ADDRESS = 0x80004002
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0002
5 Executes writing to non-volatile memory.
ADDRESS = 0x80004002
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0001
6 Terminates writing to non-volatile memory.
ADDRESS = 0x80004000
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0000
3.4  Position Correction Table Settings
3.4.4  Setting Method with the MEM_WR Command
3-22
Initializing the Position Correction Table
 Example of Initializing the Position Correction Table
Initialize the setting values in non-volatile memory to the default setting values of the settings 
table. Refer to the following section for details on the settings table.
3.4.2 Position Correction Table Details on page 3-7
Send the commands in the following order.
This concludes the procedure to initialize the Position Correction Table data.
Step Description Setting Example
1
Sets the request code for initializing 
non-volatile memory.
ADDRESS = 0x80004000
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x2025
2
Executes preparation processing 1 for 
initializing non-volatile memory.
ADDRESS = 0x800041E0
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0003
3
Executes preparation processing 2 for 
initializing non-volatile memory.
ADDRESS = 0x800041E4
MODE/DATA_TYPE = 0x13
SIZE = 0x0001
DATA = 0xF0040000
4
Executes preparation processing 3 for 
initializing non-volatile memory.
ADDRESS = 0x80004002
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0002
5
Executes initialization of non-volatile 
memory.
ADDRESS = 0x80004002
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0001
6
Terminates initialization of non-volatile 
memory.
ADDRESS = 0x80004000
MODE/DATA_TYPE = 0x12
SIZE = 0x0001
DATA = 0x0000
3.4  Position Correction Table Settings
3.4.4  Setting Method with the MEM_WR Command
3
Position Correction Table
3-23
Reference: Details of Settings with MEM_WR 
(Write Memory: 1EH) Command
 Data Format
Phases in which the Com-
mand can be Executed
2, 3
Command Clas-
sification
Common com-
mand
Asynchronous 
command
Processing Time
Σ-7-Series 
MECHATROLINK-
III Communica-
tions Standard 
Servo Profile 
Command Man-
ual (Manual No.: 
SIEP S800001 
31)
Subcommand Cannot be used
Byte
MEM_WR
Description
Command Response
01EH 1EH• The MEM_WR command writes the data in virtual mem-
ory by specifying the initial address, the data size and 
the data for writing.
• This command provides an adjustment function equiva-
lent to that of the ADJ command of the MECHA-
TROLINK-II compatible profile.
• Confirm the completion of the command execution by 
checking that RCMD = MEM_WR (= 1EH) and 
CMD_STAT.CMDRDY = 1, and also checking the setting 
for ADDRESS, SIZE, MODE/DATA_TYPE and DATA.
In the following cases, an alarm will occur and the com-
mand will not be executed.
• When the ADDRESS data is invalid: CMD_ALM = 9H 
(A.94A)
• When the MODE/DATA_TYPE data is invalid: CMD_ALM 
= 9H (A.94B)
• When the SIZE data is invalid: CMD_ALM = 9H (A.94D)
• When the DATA data is invalid: CMD_ALM = 9H (A.94B)
• When the conditions for executing the adjustment oper-
ation are not satisfied: CMD_ALM=AH (A.95A)
• While editing using the SigmaWin or Digital Operator: 
CMD_ALM = AH (A.95A)
For details, refer to the following manual.
Σ-7-Series MECHATROLINK-III Communications Stan-
dard Servo Profile Command Manual 
(Manual No.: SIEP S800001 31)
1 WDT RWDT
2
CMD_CTRL CMD_STAT
3
4 Reserved. Reserved.
5
MODE/
DATA_TYPE
MODE/
DATA_TYPE
6
SIZE SIZE
7
8
ADDRESS ADDRESS
9
10
11
12
DATA DATA
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3.4  Position Correction Table Settings
3.4.4  Setting Method with the MEM_WR Command
3-24
 Command Parameters
The details of MODE/DATA_TYPE are described below.
MODE = 1: Volatile memory, 2: Non-volatile memory*
DATA_TYPE = 1: Byte, 2: Short, 3: Long, 4: Not supported
* MECHATROLINK-III common parameters can directly write to non-volatile memory.
Other parameters first write to volatile memory, and then write to non-volatile memory.
SIZE: Data size for writing (type specified by DATA_TYPE)
ADDRESS: Initial address for writing
DATA: Data to be written
 Command Warnings
The details of CMD_ALM of the MEM_RD/MEM_WR command are described below.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MODE DATA_TYPE
CMD_ALM
Displayed 
Code
Error Details
9H
A.94A
When an initial address outside the defined areas is specified
When an address within the reserved ranges of common parameter or vendor-
specific areas is specified
When a value other than a multiple of the data size specified in DATA_TYPE is set 
for ADDRESS
A.94B When the MODE or DATA_TYPE data is invalid
A.94D
When the initial address is within the defined areas but the specified size goes 
beyond those areas
When a data size beyond the specification of the command format is set for SIZE
3.5  Monitoring
3.5.1  Monitoring with the SigmaWin+
3-25
3
Position Correction Table
3.5
Monitoring
3.5.1
Monitoring with the SigmaWin+
The current correction amount in the Position Correction Table can be monitored with the 
Motion Monitor Window.
Refer to the following manual for detailed operating procedures for the SigmaWin+.
Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)
3.5.2
Monitoring with the Digital Operator
Un04D can be used to monitor the current correction amount in the Position Correction Table 
with the Digital Operator.
* The correction amount of only the symmetrical axis (slave axis) for position correction is output. 0 is always output 
for the master axis.
Refer to the following manual for monitor data other than that listed above.
Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
3.5.3
MECHATROLINK-III Monitoring
Monitor Information
The following MECHATROLINK-III monitor data is selected with common parameters PnB0E 
(Monitor Select 1) and PnB10 (Monitor Select 2).
The correction amount added in the SERVOPACK is checked with 004Dh of Pn824 (Option 
Monitor 1 Selection) and Pn825 (Option Monitor 2 Selection).
The code that can select whether to monitor position information before position correction or 
after position correction with Pn847 = n.X (Position Correction Table-Related Monitor 
Selection) is given next. The other selection codes are the same as the Σ-7W SERVOPACK with 
MECHATROLINK-III Communications References (SGD7W-

A20), and the position infor-
mation does not change before position correction and after correction.
Button in Menu Dialog Box Name [Unit]
Motion Monitor
Current Correction Amount in Position 
Correction Table [reference unit]
Un No. Sign Unit Name Description
Un04D* Yes 1 reference unit
Current Correction 
Amount in Position 
Correction Table
Current correction amount calculated 
from the Position Correction Table
Selection 
Code
Monitor Name
Monitor Name 
When CMN or OMN 
Is Selected
Description Information
0 APOS - Feedback Position -
1CPOS -
Command Position 
(after filtering)
-
2 PERR - Position Error -
3 LPOS1 - Latched Position 1 -
4 LPOS2 - Latched Position 2 -
9MPOS -
Command Position 
(including control delay)
-
Continued on next page.
3.5  Monitoring
3.5.3  MECHATROLINK-III Monitoring
3-26
SVCMD_IO (Servo Command Input Signal) Monitoring
The output specification of servo command input signal monitoring is given in the following 
table.
CCMN1
TPOS Target Position PnB12 (PnB14) = 0000H
IPOS
Command Position 
(before filtering)
PnB12 (PnB14) = 0001H
DCMN2
TPOS Target Position PnB12 (PnB14) = 0000H
IPOS
Command Position 
(before filtering)
PnB12 (PnB14) = 0001H
EOMN1
LstLpos1 Last Latched Position 1 Pn824 (Pn825) = 0080H
LstLpos2 Last Latched Position 2 Pn824 (Pn825) = 0081H
FOMN2
LstLpos1 Last Latched Position 1 Pn824 (Pn825) = 0080H
LstLpos2 Last Latched Position 2 Pn824 (Pn825) = 0081H
Servo command input signal monitoring not listed in the following table has the same output 
specification as the 
Σ-7W SERVOPACK with MECHATROLINK-III Communications Refer-
ences (SGD7W-
A20).
Signal Name Description
DEN DEN = 1 when distribution of TPOS + correction amount has completed.
PSET
PSET = 1 when DEN = 1 (Distribution Completed) and position deviation is | (TPOS + correc-
tion amount) - (APOS + correction amount) | ≤ Pn522 (Positioning Completed Width).
NEAR
NEAR = 1 when position deviation is | (TPOS + correction amount) - (APOS + correction 
amount) | ≤ Pn524 (Near Signal Width).
Continued from previous page.
Selection 
Code
Monitor Name
Monitor Name 
When CMN or OMN 
Is Selected
Description Information
Information
This chapter provides information on Synchronized Stop-
ping.
4.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.1.1 Synchronized Stopping Timing Chart  . . . . . . . . . 4-3
4.2
Parameter Settings Related to Synchronized Stopping  . .4-4
4.2.1 Synchronized Stopping Mode Selection  . . . . . . . 4-4
4.2.2 Synchronized Stopping End Speed Setting . . . . . 4-4
4.2.3 Adjusting Synchronized Stopping  . . . . . . . . . . . . 4-5
4.3
Alarms Related to Synchronized Stopping  . . .4-6
4.4
Warning Related to Synchronized Stopping  . .4-7
4.5
CSTP_S in the I/O Signal Status Monitor  . . 4-8
4.5.1 SVCMD_IO (I/O Signal Status) Field   . . . . . . . . . . 4-8
4.5.2 Details of I/O Signal Status Bits   . . . . . . . . . . . . . 4-8
4.6
Servomotor Stopping Method for Alarms  . . 4-9
Synchronized 
Stopping
4
4.1  Outline
4-2
4.1
Outline
Synchronized Stopping is a function that synchronizes the axes and stops the Servomotors 
when an alarm occurs. Specifically, when an alarm occurs on either axis A or axis B, the syn-
chronized stopping axis is synchronized to the active alarm axis, and both Servomotors are 
stopped together.
This function can prevent damage to the machine by synchronizing and stopping axis A and 
axis B.
Not Using Synchronized Stopping Using Synchronized Stopping
Axis A Axis B Axis A Axis B
Synchronized 
stopping prevents 
twisting!
Axis A stopped 
by alarm
Stopped by 
alarm
Mechanical 
damage
4.1  Outline
4.1.1  Synchronized Stopping Timing Chart
4
Synchronized Stopping
4-3
4.1.1
Synchronized Stopping Timing Chart
The following timing chart shows when Synchronized Stopping mode 1 or 2 is selected.
*  During synchronized stopping, only emergency commands will be received.
Refer to the following section for details on CSTP_S (Synchronized Stopping Status).
Details of I/O Signal Status Bits on page 4-8
In Synchronized Stopping mode 3, both axes are almost simultaneously set to the servo OFF 
state immediately after an alarm occurs. Therefore, CSTP_S which represents the synchro-
nized stopping status will not change, but it will instead remaining as the during normal oper-
ation status.
Ending Synchronized Stopping
When any of the following states occur, CSTP_S (Synchronized Stopping Status) in the SVC-
MD_IO field will become “0: During normal operation”, and synchronized stopping will end 
with the servo OFF state.
• When feedback speed is less than Pn666 (Synchronized Stopping End Speed) (normal 
end)
• When the SV_OFF or DISCONNECT command was received
• When the synchronized stopping axis changes to the servo OFF state due to an alarm or 
for other reasons
After synchronized stopping ends, commands can be received from the host controller.
Information
Speed
Time
Feedback speed
0
Pn666 
(Synchronized Stopping 
End Speed)
0
Alarm status
Speed
Feedback speed
Servo ON/OFF status
Time
OFFON
Normal status Alarm status
Normal status Warning status
Synchronized 
stopping axis
A
ctive alarm axis
CSTP_S in 
SVCMD_IO eld
A.97C 
(Synchronized Stopping 
Occurred)
During 
synchronized 
stopping*
During normal operation
Tracks the active 
alarm axis and stops.
An alarm occurs.
Information
4.2  Parameter Settings Related to Synchronized Stopping
4.2.1  Synchronized Stopping Mode Selection
4-4
4.2
Parameter Settings Related to Synchronized Stopping
4.2.1
Synchronized Stopping Mode Selection
Synchronized Stopping has three modes, and these modes are set with Pn665 = n.

X 
(Synchronized Stopping Selection).
Synchronized Stopping Mode 1
If an alarm occurs on either axis A or axis B, position control will be performed on the synchro-
nized stopping axis using the feedback position of the active alarm axis as the target position.
Synchronized Stopping Mode 2
If an alarm occurs on either axis A or axis B, speed control will be performed on the synchro-
nized stopping axis using the feedback speed of the active alarm axis as the target speed.
Synchronized Stopping Mode 3
If an alarm occurs on either axis A or axis B, the synchronized stopping axis is also set to the 
servo OFF state.
Both axes are changed to the servo OFF state almost simultaneously, and both axes are 
stopped according to the Servomotor stopping method when the servo is turned OFF.
4.2.2
Synchronized Stopping End Speed Setting
Synchronized stopping will be ended when the feedback speed of the active alarm axis is less 
than Pn666 (Synchronized Stopping End Speed).
Use Pn666 (Synchronized Stopping End Speed) to set the speed for judging that the Servomo-
tor has stopped and ending synchronized stopping. This parameter is valid for synchronized 
stopping mode 1 and 2.
Parameter Description When Enabled Classification
Pn665
n.0
(default set-
ting)
Disable synchronized stopping.
After restart Setup
n.
1 Enable synchronized stopping mode 1.
n.2 Enable synchronized stopping mode 2.
n.3 Enable synchronized stopping mode 3.
With synchronized stopping mode 1 and 2, the Servomotor may vibrate and the deviation 
between axes may increase when synchronized stopping is performed due to the mechanical 
characteristics or gain setting.
Use this function by first operating the machine or product at low speed and confirming that the 
deviation between axes causes no problems.
All Axes
Important
Pn666
Synchronized Stopping End Speed    
Setting Range Setting Unit Default Setting When Enabled Classification
1 to 65,535
1000 reference 
units/s
256 Immediately Setup
All Axes
Position
4.2  Parameter Settings Related to Synchronized Stopping
4.2.3  Adjusting Synchronized Stopping
4
Synchronized Stopping
4-5
4.2.3
Adjusting Synchronized Stopping
Set Pn668 (Synchronized Stopping Speed Feedforward) to apply feedforward compensation 
which can reduce the deviation between the feedback position of the active alarm axis and the 
position of the synchronized stopping axis. This parameter is valid for synchronized stopping 
mode 1.
For details on the setting of this parameter, contact your Yaskawa representative.
Note: During model following control, select Pn140 = n.1 (Use model following control and speed/torque 
feedforward together). This parameter is not valid if Pn140 = n.0 (Do not use model following control 
and speed/torque feedforward together) is selected.
Pn668
Synchronized Stopping Speed Feedforward
   
Setting Range Setting Unit Default Setting When Enabled Classification
0 to 100 % 80 Immediately Tuning
All Axes
Position
4.3  Alarms Related to Synchronized Stopping
4-6
4.3
Alarms Related to Synchronized Stopping
If an alarm without valid position data occurs, the servo will be turned OFF for the synchronized 
stopping axis and synchronized stopping will not be performed.
The alarms without valid position data are given in the following table.
Alarm 
Number
Alarm Name Alarm Meaning
A.810 Encoder Backup Alarm
The power supplies to the encoder all failed and the position 
data was lost.
A.820 Encoder Checksum Alarm
There is an error in the checksum results for encoder mem-
ory.
A.840 Encoder Data Alarm There is an internal data error in the encoder.
A.850 Encoder Overspeed
The encoder was operating at high speed when the power 
was turned ON.
A.890 Encoder Scale Error A failure occurred in the linear encoder.
A.891 Encoder Module Error An error occurred in the linear encoder.
A.C90 Encoder Communications Error
Communications between the encoder and SERVOPACK is 
not possible.
A.C91
Encoder Communications Posi-
tion Data Acceleration Rate Error
An error occurred in calculating the position data of the 
encoder.
A.C92
Encoder Communications Timer 
Error
An error occurred in the communications timer between the 
encoder and SERVOPACK.
4.4  Warning Related to Synchronized Stopping
4-7
4
Synchronized Stopping
4.4
Warning Related to Synchronized Stopping
The warning related to Synchronized Stopping is given in the following table.
Note: The warning can be hidden by setting Pn800 = n.X (Warning Check Masks) to 8 to F.
Warning 
Number
Warning Name Warning Meaning
A.97C Synchronized Stopping Occurred Synchronized stopping occurred.
4.5  CSTP_S in the I/O Signal Status Monitor
4.5.1  SVCMD_IO (I/O Signal Status) Field
4-8
4.5
CSTP_S in the I/O Signal Status Monitor
CSTP_S (Synchronized Stopping Status) can be checked with bit 31 of the servo command I/O 
signal (SVCMD_IO) command through MECHATROLINK-III communications.
4.5.1
SVCMD_IO (I/O Signal Status) Field
4.5.2
Details of I/O Signal Status Bits
The following table shows the details of CSTP_S.
Note: IO_STS8 is allocated to bit 31 in the Σ-7W SERVOPACK with MECHATROLINK-III Communications Refer-
ences (SGD7W-A20), but CSTP_S is allocated to bit 31 in this product.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ESTP EXT3 EXT2 EXT1 N-OT P-OT DEC
Reserved 
(0)
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ZPOINT PSET NEAR DEN N-SOT P-SOT BRK_ON
Reserved 
(0)
Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16
Reserved (0) ZSPD V_CMP V_LIM T_LIM
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
CSTP_S IO_STS7 IO_STS6 IO_STS5 IO_STS4 IO_STS3 IO_STS2 IO_STS1
Bit Name Description Value Setting
31
CSTP_S
Synchronized Stopping 
Status
0 During normal operation
1 During synchronized stopping
The status used to judge the state of synchronized stopping.
In synchronized stopping mode 3, both axes are almost simultaneously set to the servo OFF 
state immediately after an alarm occurs. Therefore, CSTP_S which represents the synchro-
nized stopping status will not change, but it will instead remaining as the during normal oper-
ation status.
Information
4.6  Servomotor Stopping Method for Alarms
4-9
4
Synchronized Stopping
4.6
Servomotor Stopping Method for Alarms
• If an alarm occurs during synchronized stopping on the synchronized stopping axis, synchro-
nized stopping is canceled and the Servomotor is stopped according to the Servomotor 
stopping method.
• The status after synchronized stopping conforms to the settings of Pn001 = n.X (Motor 
Stopping Method for Servo OFF and Group 1 Alarms), Pn00A = n.X, and Pn00B = 
n.X (Motor Stopping Method for Group 2 Alarms).
• Set both axis A and axis B to the same stopping method for alarms.
• In this product, the default setting of the Servomotor stopping method for group 1 and group 2 
alarms is stopping by applying the dynamic brake. The Servomotor stopping method can be 
changed by setting the parameter, but stopping by applying the dynamic brake is recom-
mended.
Important
This chapter provides information on Position Deviation 
between Axes Overflow Detection.
5.1
Outline  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.2
Parameter Settings Related to Position Deviation between Axes Overflow Detection   . . 5-3
5.3
Alarm Related to Position Deviation between Axes Overflow Detection  . . 5-4
5.4
Warning Related to Position Deviation between Axes Overflow Detection   . .5-5
5.5
Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.5.1 Monitoring with the SigmaWin+   . . . . . . . . . . . . . 5-6
5.5.2 Monitoring with the Digital Operator  . . . . . . . . . . 5-6
Position Deviation 
between Axes 
Overflow Detection
5
5.1  Outline
5-2
5.1
Outline
When the operation of axis A and axis B is not synchronized, the frame of the machine may 
twist as shown in the below figure, which can damage the machine or impact the quality of 
products.
Position Deviation between Axes Overflow Detection detects twisting of the frame of the 
machine. To do this, the allowable position deviation between both axes is set in advance, and 
an alarm or warning is generated when the allowable position deviation is exceeded.
The position deviation between axes is the difference between the feedback position (APOS) of 
axis A and the feedback position (APOS) of axis B.
Axis A Axis B
Maximum 
allowable deviation
Issues  an alarm if the threshold is exceeded to 
prevent problems before they happen!
5.2  Parameter Settings Related to Position Deviation between Axes Overflow Detection
5-3
5
Position Deviation between Axes Overow Detection
5.2
Parameter Settings Related to Position Deviation between Axes Overflow Detection
These parameters set the position deviation between axes allowed for the machine or product.
* If the setting value of Pn66A is 0, the position deviation between axes overflow alarm and warning are disabled.
Note: Adjust the settings of Pn669 and Pn66A after setting the origin of the machine. If the values of Pn669 and 
Pn66A are decreased before the origin of the machine is set, a warning or alarm may occur when the origin is 
set.
Pn669
Position Deviation between Axes Overflow Warning Level
  
Setting Range Setting Unit Default Setting When Enabled Classification
10 to 100 % 100 Immediately Setup
Pn66A
Position Deviation between Axes Overflow Alarm Level   
Setting Range Setting Unit Default Setting When Enabled Classification
0 to 
1,073,741,823*
Reference unit 5,242,880 Immediately Setup
All Axes
Position
All Axes
Position
5.3  Alarm Related to Position Deviation between Axes Overflow Detection
5-4
5.3
Alarm Related to Position Deviation between Axes Overflow Detection
The alarm related to Position Deviation between Axes Overflow Detection is given in the follow-
ing table.
Alarm 
Number
Alarm Name Alarm Meaning
A.50D Position Deviation between Axes 
Overflow Alarm
The position deviation between axes A and B during the 
servo ON state exceeded the setting value of Pn66A (Posi-
tion Deviation Between Axes Overflow Alarm Level).
All Axes
5.4  Warning Related to Position Deviation between Axes Overflow Detection
5-5
5
Position Deviation between Axes Overow Detection
5.4
Warning Related to Position Deviation between Axes Overflow Detection
The warning related to Position Deviation between Axes Overflow Detection is given in the fol-
lowing table.
A.90D (Position Deviation Between Axes Overflow Warning) occurs when the value obtained 
with Pn66A × Pn669/100 is exceeded.
Warning 
Number
Warning Name Warning Meaning
A.90D Position Deviation Between Axes 
Overflow Warning
The position deviation between axes A and B has 
exceeded the percentage set with the following equa-
tion during the servo ON state.
(Pn66A × Pn669/100)
All Axes
5.5  Monitoring
5.5.1  Monitoring with the SigmaWin+
5-6
5.5
Monitoring
Monitoring the position deviation between axes can be useful for preventative maintenance.
Position deviation between axes is an all axes monitor. Axis A and axis B both show the devia-
tion based on axis A.
5.5.1
Monitoring with the SigmaWin+
Position deviation between axes can be monitored with the Motion Monitor Window.
Refer to the following manual for detailed operating procedures for the SigmaWin+.
Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)
5.5.2
Monitoring with the Digital Operator
Un04E can be used to monitor position deviation between axes with the Digital Operator.
Refer to the following manual for monitor data other than that listed above.
Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)
Button in Menu Dialog Box Name [Unit]
Motion Monitor
Position Deviation between Axes 
[reference unit]
Un No. Sign Unit Name Description
Un04E
Yes 1 reference unit
Position Deviation 
between Axes
Position deviation between axis A and 
axis B
All Axes
This chapter provides information on the meaning of, 
causes of, and corrections for alarms and warnings.
6.1
Alarm Displays   . . . . . . . . . . . . . . . . . . . . . . 6-2
6.1.1 List of Alarms   . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.1.2 Troubleshooting Alarms . . . . . . . . . . . . . . . . . . . . 6-7
6.2
Warning Displays . . . . . . . . . . . . . . . . . . . . 6-36
6.2.1 List of Warnings   . . . . . . . . . . . . . . . . . . . . . . . . 6-36
6.2.2 Troubleshooting Warnings . . . . . . . . . . . . . . . . . 6-39
6.3
Troubleshooting Based on the Operation and Conditions of the Servomotor  . .6-46
Maintenance
6
6.1  Alarm Displays
6.1.1  List of Alarms
6-2
6.1
Alarm Displays
If an error occurs in the SERVOPACK, an alarm number will be displayed on the panel display. 
However, if no alarm number appears on the panel display, this indicates a SERVOPACK sys-
tem error. Replace the SERVOPACK.
If there is an alarm, the display will change in the following order.
Example: Alarm A.E60
6.1.1
List of Alarms
The list of alarms gives the alarm name, alarm meaning, alarm stopping method, and alarm 
reset possibility in order of the alarm numbers.
Alarm Reset Possibility
Yes: You can use an alarm reset to clear the alarm. However, this assumes that the cause of 
the alarm has been removed.
No: You cannot clear the alarm.
Alarms for Both Axes
If “All Axes” is given below the alarm number, the alarm applies to both axes. If an alarm occurs 
for one axis, the same alarm status will occur for the other axis.
List of Alarms
Status 
Indications
Not lit. Not lit. Not lit. Not lit. Not lit.
Alarm 
Number
Alarm Name Alarm Meaning
Servo-
motor 
Stop-
ping 
Method
Alarm 
Reset 
Possi-
ble?
A.020
Parameter Checksum 
Error
There is an error in the parameter data in the 
SERVOPACK.
Gr.1 No
A.021
Parameter Format Error
There is an error in the parameter data format in 
the SERVOPACK.
Gr.1 No
A.022
System Checksum Error
There is an error in the parameter data in the 
SERVOPACK.
Gr.1 No
A.024 System Alarm
An internal program error occurred in the 
SERVOPACK.
Gr.1 No
A.025 System Alarm
An internal program error occurred in the 
SERVOPACK.
Gr.1 No
A.030 Main Circuit Detector 
Error
There is an error in the detection data for the 
main circuit.
Gr.1 Yes
A.040 Parameter Setting Error
A parameter setting is outside of the setting 
range.
Gr.1 No
A.042
Parameter Combination 
Error
The combination of some parameters exceeds 
the setting range.
Gr.1 No
A.04A Parameter Setting Error 2
There is an error in the bank members or bank 
data settings.
Gr.1 No
Continued on next page.
All Axes
All Axes
All Axes
6.1  Alarm Displays
6.1.1  List of Alarms
6
Maintenance
6-3
A.050 Combination Error
The capacities of the SERVOPACK and Servomo-
tor do not match.
Gr.1 Yes
A.051
Unsupported Device 
Alarm
An unsupported device was connected. Gr.1 No
A.070
Motor Type Change 
Detected
The connected motor is a different type of motor 
from the previously connected motor.
Gr.1 No
A.080
Linear Encoder Pitch 
Setting Error
The setting of Pn282 (Linear Encoder Scale Pitch) 
has not been changed from the default setting.
Gr.1 No
A.0b0
Invalid Servo ON 
Command Alarm
The SV_ON (Servo ON) command was sent from 
the host controller after a utility function that turns 
ON the Servomotor was executed.
Gr.1 Yes
A.100 Overcurrent Detected
An overcurrent flowed through the power transis-
tor or the heat sink overheated.
Gr.1 No
A.101
Motor Overcurrent 
Detected
The current to the motor exceeded the allowable 
current.
Gr.1 No
A.300
Regeneration Error There is an error related to regeneration. Gr.1 Yes
A.320
Regenerative Overload A regenerative overload occurred. Gr.2 Yes
A.330 Main Circuit Power Supply 
Wiring Error
• The AC power supply input setting or DC power 
supply input setting is not correct.
• The power supply wiring is not correct.
Gr.1 Yes
A.400
Overvoltage The main circuit DC voltage is too high. Gr.1 Yes
A.410
Undervoltage The main circuit DC voltage is too low. Gr.2 Yes
A.50D
Position Deviation 
between Axes Overflow 
Alarm
The position deviation between axes A and B 
during the servo ON state exceeded the setting 
value of Pn66A (Position Deviation Between Axes 
Overflow Alarm Level).
Gr.1 Yes
A.510 Overspeed The motor exceeded the maximum speed. Gr.1 Yes
A.51A Synchronized Stopping 
Overspeed Alarm
The feedback speed of the axis undergoing syn-
chronized stopping has more than doubled from 
the starting speed of synchronized stopping.
Gr.1 Yes
A.520 Vibration Alarm
Abnormal oscillation was detected in the motor 
speed.
Gr.1 Yes
A.521 Autotuning Alarm
Vibration was detected during autotuning for the 
tuning-less function.
Gr.1 Yes
A.550
Maximum Speed Setting 
Error
The setting of Pn385 (Maximum Motor Speed) is 
greater than the maximum motor speed.
Gr.1 Yes
A.710 Instantaneous Overload
The Servomotor was operating for several sec-
onds to several tens of seconds under a torque 
that largely exceeded the rating.
Gr.2 Yes
A.720 Continuous Overload
The Servomotor was operating continuously 
under a torque that exceeded the rating.
Gr.1 Yes
A.730
Dynamic Brake Overload
When the dynamic brake was applied, the rota-
tional or linear kinetic energy exceeded the 
capacity of the dynamic brake resistor.
Gr.1 Yes
A.731
A.740 Inrush Current Limiting 
Resistor Overload
The main circuit power supply was frequently 
turned ON and OFF.
Gr.1 Yes
A.7A1
Internal Temperature Error 
1 (Control Board Tempera-
ture Error)
The surrounding temperature of the control PCB 
is abnormal.
Gr.2 Yes
Continued on next page.
Continued from previous page.
Alarm 
Number
Alarm Name Alarm Meaning
Servo-
motor 
Stop-
ping 
Method
Alarm 
Reset 
Possi-
ble?
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
6.1  Alarm Displays
6.1.1  List of Alarms
6-4
A.7A2
Internal Temperature Error 
2 (Power Board Tempera-
ture Error)
The surrounding temperature of the power PCB 
is abnormal.
Gr.2 Yes
A.7A3
Internal Temperature 
Sensor Error
An error occurred in the temperature sensor cir-
cuit.
Gr.2 No
A.7Ab SERVOPACK Built-in Fan 
Stopped
The fan inside the SERVOPACK stopped. Gr.1 Yes
A.810 Encoder Backup Alarm
The power supplies to the encoder all failed and 
the position data was lost.
Gr.1 No
A.820 Encoder Checksum Alarm
There is an error in the checksum results for 
encoder memory.
Gr.1 No
A.830 Encoder Battery Alarm
The battery voltage was lower than the specified 
level after the control power supply was turned 
ON.
Gr.1 Yes
A.840 Encoder Data Alarm There is an internal data error in the encoder. Gr.1 No
A.850 Encoder Overspeed
The encoder was operating at high speed when 
the power was turned ON.
Gr.1 No
A.860 Encoder Overheated The internal temperature of encoder is too high. Gr.1 No
A.861 Motor Overheated The internal temperature of motor is too high. Gr.1 No
A.862 Overheat Alarm
The input voltage (temperature) for the overheat 
protection input (TH) signal exceeded the setting 
of Pn61B (Overheat Alarm Level).
Gr.1 Yes
A.890 Encoder Scale Error A failure occurred in the linear encoder. Gr.1 No
A.891 Encoder Module Error An error occurred in the linear encoder. Gr.1 No
A.b33 Current Detection Error 3 An error occurred in the current detection circuit. Gr.1 No
A.b6A
MECHATROLINK Commu-
nications ASIC Error 1
ASIC error 1 occurred in MECHATROLINK com-
munications.
Gr.1 No
A.b6b
MECHATROLINK Commu-
nications ASIC Error 2
ASIC error 2 occurred in MECHATROLINK com-
munications.
Gr.2 No
A.bF0
System Alarm 0
Internal program error 0 occurred in the SERVO-
PACK.
Gr.1 No
A.bF1
System Alarm 1
Internal program error 1 occurred in the SERVO-
PACK.
Gr.1 No
A.bF2
System Alarm 2
Internal program error 2 occurred in the SERVO-
PACK.
Gr.1 No
A.bF3
System Alarm 3
Internal program error 3 occurred in the SERVO-
PACK.
Gr.1 No
A.bF4
System Alarm 4
Internal program error 4 occurred in the SERVO-
PACK.
Gr.1 No
A.bF5
System Alarm 5
Internal program error 5 occurred in the SERVO-
PACK.
Gr.1 No
A.bF6
System Alarm 6
Internal program error 6 occurred in the SERVO-
PACK.
Gr.1 No
A.bF7
System Alarm 7
Internal program error 7 occurred in the SERVO-
PACK.
Gr.1 No
A.bF8
System Alarm 8
Internal program error 8 occurred in the SERVO-
PACK.
Gr.1 No
A.C10 Servomotor Out of Control The Servomotor ran out of control. Gr.1 Yes
A.C20 Phase Detection Error The detection of the phase is not correct. Gr.1 No
A.C21 Polarity Sensor Error An error occurred in the polarity sensor. Gr.1 No
Continued on next page.
Continued from previous page.
Alarm 
Number
Alarm Name Alarm Meaning
Servo-
motor 
Stop-
ping 
Method
Alarm 
Reset 
Possi-
ble?
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
6.1  Alarm Displays
6.1.1  List of Alarms
6
Maintenance
6-5
A.C22
Phase Information 
Disagreement
The phase information does not match. Gr.1 No
A.C50 Polarity Detection Failure The polarity detection failed. Gr.1 No
A.C51
Overtravel Detected 
during Polarity Detection
The overtravel signal was detected during polarity 
detection.
Gr.1 Yes
A.C52
Polarity Detection Not 
Completed
The servo was turned ON before the polarity was 
detected.
Gr.1 Yes
A.C53
Out of Range of Motion for 
Polarity Detection
The travel distance exceeded the setting of 
Pn48E (Polarity Detection Range).
Gr.1 No
A.C54
Polarity Detection Failure 
2
The polarity detection failed. Gr.1 No
A.C80
Encoder Clear Error or 
Multiturn Limit Setting 
Error
The multiturn data for the absolute encoder was 
not correctly cleared or set.
Gr.1 No
A.C90
Encoder Communications 
Error
Communications between the encoder and 
SERVOPACK is not possible.
Gr.1 No
A.C91
Encoder Communications 
Position Data Acceleration 
Rate Error
An error occurred in calculating the position data 
of the encoder.
Gr.1 No
A.C92
Encoder Communications 
Timer Error
An error occurred in the communications timer 
between the encoder and SERVOPACK.
Gr.1 No
A.CA0 Encoder Parameter Error The parameters in the encoder are corrupted. Gr.1 No
A.Cb0 Encoder Echoback Error
The contents of communications with the 
encoder are incorrect.
Gr.1 No
A.CC0
Multiturn Limit Disagree-
ment
Different multiturn limits have been set in the 
encoder and the SERVOPACK.
Gr.1 No
A.d00
Position Deviation Over-
flow
The setting of Pn520 (Position Deviation Overflow 
Alarm Level) was exceeded by the position devia-
tion while the servo was ON.
Gr.1 Yes
A.d01
Position Deviation Over-
flow Alarm at Servo ON
The servo was turned ON after the position devi-
ation exceeded the setting of Pn526 (Position 
Deviation Overflow Alarm Level at Servo ON) 
while the servo was OFF.
Gr.1 Yes
A.d02
Position Deviation Over-
flow Alarm for Speed Limit 
at Servo ON
If position deviation remains in the deviation 
counter, the setting of Pn529 or Pn584 (Speed 
Limit Level at Servo ON) limits the speed when 
the servo is turned ON. This alarm occurs if a 
position reference is input and the setting of 
Pn520 (Position Deviation Overflow Alarm Level) 
is exceeded before the limit is cleared.
Gr.2 Yes
A.d30 Position Data Overflow
The position feedback data exceeded 
±1,879,048,192.
Gr.1 No
A.E02 MECHATROLINK Internal 
Synchronization Error 1
A synchronization error occurred during MECHA-
TROLINK communications with the SERVO-
PACK.
Gr.1 Yes
A.E40
MECHATROLINK Trans-
mission Cycle Setting 
Error
The setting of the MECHATROLINK communica-
tions transmission cycle is not correct.
Gr.2 Yes
A.E41
MECHATROLINK Commu-
nications Data Size Set-
ting Error
The setting of the MECHATROLINK communica-
tions data size is not correct.
Gr.2 Yes
A.E42 MECHATROLINK Station 
Address Setting Error
The setting of the MECHATROLINK station 
address is not correct.
Gr.2 No
Continued on next page.
Continued from previous page.
Alarm 
Number
Alarm Name Alarm Meaning
Servo-
motor 
Stop-
ping 
Method
Alarm 
Reset 
Possi-
ble?
All Axes
All Axes
All Axes
All Axes
6.1  Alarm Displays
6.1.1  List of Alarms
6-6
* These alarms are not stored in the alarm history. They are only displayed on the panel display.
A.E50*
MECHATROLINK 
Synchronization Error
A synchronization error occurred during MECHA-
TROLINK communications.
Gr.2 Yes
A.E51 MECHATROLINK 
Synchronization Failed
Synchronization failed during MECHATROLINK 
communications.
Gr.2 Yes
A.E60*
Reception Error in 
MECHATROLINK 
Communications
Communications errors occurred continuously 
during MECHATROLINK communications.
Gr.2 Yes
A.E61
Synchronization Interval 
Error in MECHATROLINK 
Transmission Cycle
An error occurred in the transmission cycle 
during MECHATROLINK communications.
Gr.2 Yes
A.E63
MECHATROLINK 
Synchronization Frame 
Not Received
Synchronization frames were continuously not 
received during MECHATROLINK communica-
tions.
Gr.2 Yes
A.E94 Position Correction Table 
Setting Error
There are errors in setting values in the Position 
Correction Table.
Gr.1 Yes
A.Ed1
Command Execution 
Timeout
A timeout error occurred for a MECHATROLINK 
command.
Gr.2 Yes
A.F10 Power Supply Line Open 
Phase
The voltage was low for more than one second 
for phase R, S, or T when the main power supply 
was ON.
Gr.2 Yes
FL-1*
System Alarm
An internal program error occurred in the 
SERVOPACK.
–No
FL-2*
FL-3*
FL-4*
FL-5*
FL-6*
CPF00 Digital Operator Commu-
nications Error 1
Communications were not possible between the 
Digital Operator (model: JUSP-OP05A-1-E) and 
the SERVOPACK (e.g., a CPU error occurred).
–No
CPF01 Digital Operator Commu-
nications Error 2
Continued from previous page.
Alarm 
Number
Alarm Name Alarm Meaning
Servo-
motor 
Stop-
ping 
Method
Alarm 
Reset 
Possi-
ble?
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
All Axes
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-7
6.1.2
Troubleshooting Alarms
The causes of and corrections for the alarms are given in the following table. Contact your 
Yaskawa representative if you cannot solve a problem with the correction given in the table.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
A.020: 
Parameter 
Checksum Error 
(There is an error 
in the parameter 
data in the 
SERVOPACK.)
The power supply 
voltage suddenly 
dropped.
Measure the power 
supply voltage.
Set the power supply volt-
age within the specified 
range, and initialize the 
parameter settings.
*1
The power supply 
was shut OFF while 
writing parameter set-
tings.
Check the timing of 
shutting OFF the power 
supply.
Initialize the parameter 
settings and then set the 
parameters again.
The number of times 
that parameters were 
written exceeded the 
limit.
Check to see if the 
parameters were fre-
quently changed from 
the host controller.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
Reconsider the method 
for writing the parame-
ters.
–
A malfunction was 
caused by noise from 
the AC power supply, 
ground, static elec-
tricity, or other source.
Turn the power supply 
to the SERVOPACK 
OFF and ON again. If 
the alarm still occurs, 
noise may be the 
cause.
Implement countermea-
sures against noise.
*1
Gas, water drops, or 
cutting oil entered the 
SERVOPACK and 
caused failure of the 
internal components.
Check the installation 
conditions.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A failure occurred in 
the SERVOPACK.
Turn the power supply 
to the SERVOPACK 
OFF and ON again. If 
the alarm still occurs, 
the SERVOPACK may 
have failed.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.021: 
Parameter For-
mat Error 
(There is an error 
in the parameter 
data format in the 
SERVOPACK.)
The software version 
of the SERVOPACK 
that caused the alarm 
is older than the soft-
ware version of the 
parameters specified 
to write.
Read the product infor-
mation to see if the soft-
ware versions are the 
same. If they are differ-
ent, it could be the 
cause of the alarm.
Write the parameters from 
another SERVOPACK with 
the same model and the 
same software version, 
and then turn the power 
OFF and ON again.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.022: 
System Check-
sum Error 
(There is an error 
in the parameter 
data in the 
SERVOPACK.)
The power supply 
voltage suddenly 
dropped.
Measure the power 
supply voltage.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
The power supply 
was shut OFF while 
setting a utility func-
tion.
Check the timing of 
shutting OFF the power 
supply.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A failure occurred in 
the SERVOPACK.
Turn the power supply 
to the SERVOPACK 
OFF and ON again. If 
the alarm still occurs, 
the SERVOPACK may 
have failed.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-8
A.024: 
System Alarm 
(An internal pro-
gram error 
occurred in the 
SERVOPACK.)
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.025: 
System Alarm 
(An internal pro-
gram error 
occurred in the 
SERVOPACK.)
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.030: 
Main Circuit 
Detector Error
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.040: 
Parameter Set-
ting Error 
(A parameter set-
ting is outside of 
the setting 
range.)
The SERVOPACK and 
Servomotor capaci-
ties do not match 
each other.
Check the combination 
of the SERVOPACK and 
Servomotor capacities.
Select a proper combina-
tion of SERVOPACK and 
Servomotor capacities.
*1
The motor parameter 
file was not written to 
the linear encoder. 
(This applies only 
when not using a 
Serial Converter Unit.)
Check to see if the 
motor parameter file 
was written to the lin-
ear encoder.
Write the motor parame-
ter file to the linear 
encoder.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A parameter setting is 
outside of the setting 
range.
Check the setting 
ranges of the parame-
ters that have been 
changed.
Set the parameters to val-
ues within the setting 
ranges.
–
The electronic gear 
ratio is outside of the 
setting range.
Check the electronic 
gear ratio. The ratio 
must be within the fol-
lowing range: 0.001 < 
(Pn20E/Pn210) < 
64,000.
Set the electronic gear 
ratio in the following 
range: 0.001 < (Pn20E/
Pn210) < 64,000.
*1
A pin number that 
does not exist on the 
SERVOPACK was 
allocated in Pn590 to 
Pn5BC. (An alarm will 
not occur, however, if 
the signal is disabled.)
For input signals (Pn590 
to Pn599), make sure 
that the allocated pin 
numbers are between 
003 and 014.
For output signals 
(Pn5B0 to Pn5BC), 
make sure that the allo-
cated pin numbers are 
between 023 and 031.
Allocate pins that actually 
exist in Pn590 to Pn5BC.
*1
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-9
A.042: 
Parameter 
Combination 
Error
The speed of program 
jogging went below 
the setting range 
when the electronic 
gear ratio (Pn20E/
Pn210) or the Servo-
motor was changed.
Check to see if the 
detection conditions
*1
are satisfied.
Decrease the setting of 
the electronic gear ratio 
(Pn20E/Pn210).
*1
The speed of program 
jogging went below 
the setting range 
when Pn533 or Pn585 
(Program Jogging 
Movement Speed) 
was changed.
Check to see if the 
detection conditions
*1
are satisfied.
Increase the setting of 
Pn533 or Pn585.
*1
The movement speed 
of advanced autotun-
ing went below the 
setting range when 
the electronic gear 
ratio (Pn20E/ Pn210) 
or the Servomotor 
was changed.
Check to see if the 
detection conditions
*2
are satisfied.
Decrease the setting of 
the electronic gear ratio 
(Pn20E/Pn210).
*1
A.04A: 
Parameter 
Setting 
Error 2
For 4-byte parameter 
bank members, there 
are two consecutive 
members with nothing 
registered.
–
Change the number of 
bytes for bank members 
to an appropriate value.
–
The total amount of 
bank data exceeds 64 
(Pn900 × Pn901 > 
64).
–
Reduce the total amount 
of bank data to 64 or less.
–
A.050: 
Combination 
Error 
(The capacities of 
the SERVOPACK 
and Servomotor 
do not match.)
The SERVOPACK and 
Servomotor capaci-
ties do not match 
each other.
Confirm that the follow-
ing condition is met:
1/4 ≤ (Servomotor 
capacity/SERVOPACK 
capacity) ≤ 4
However, the above for-
mula does not apply to 
the following products.
• SGD7W-2R8A 
SERVOPACK and 
SGM7J-A5A 
Servomotor
• SGD7W-2R8A 
SERVOPACK and 
SGM7A-A5A 
Servomotor
Select a proper combina-
tion of the SERVOPACK 
and Servomotor capaci-
ties.
*1
A failure occurred in 
the encoder.
Replace the encoder 
and check to see if the 
alarm still occurs.
Replace the Servomotor 
or encoder.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.051: 
Unsupported 
Device Alarm
The motor parameter 
file was not written to 
the linear encoder. 
(This applies only 
when not using a 
Serial Converter Unit.)
Check to see if the 
motor parameter file 
was written to the lin-
ear encoder.
Write the motor parame-
ter file to the linear 
encoder.
*1
An unsupported Serial 
Converter Unit or 
encoder is connected 
to the SERVOPACK.
Check the product 
combination specifica-
tions.
Change to a correct com-
bination of models.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-10
A.070: 
Motor Type 
Change Detected 
(The connected 
motor is a differ-
ent type of motor 
from the previ-
ously connected 
motor.)
A Rotary Servomotor 
was removed and a 
Linear Servomotor 
was connected.
–
Set the parameters for a 
Linear Servomotor and 
reset the motor type 
alarm. Then, turn the 
power supply to the SER-
VOPACK OFF and ON 
again.
*1
A Linear Servomotor 
was removed and a 
Rotary Servomotor 
was connected.
–
Set the parameters for a 
Rotary Servomotor and 
reset the motor type 
alarm. Then, turn the 
power supply to the SER-
VOPACK OFF and ON 
again.
*1
A.080: 
Linear Encoder 
Pitch Setting 
Error
The setting of Pn282 
(Linear Encoder Scale 
Pitch) has not been 
changed from the 
default setting.
Check the setting of 
Pn282.
Correct the setting of 
Pn282.
*1
A.0b0: 
Invalid Servo ON 
Command Alarm
The SV_ON (Servo 
ON) command was 
sent from the host 
controller after a util-
ity function that turns 
ON the Servomotor 
was executed.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. Or, execute a 
software reset.
*1
A.100: 
Overcurrent 
Detected 
(An overcurrent 
flowed through 
the power tran-
sistor or the heat 
sink overheated.)
The Main Circuit 
Cable is not wired 
correctly or there is 
faulty contact.
Check the wiring. Correct the wiring.
*1
There is a short-circuit 
or ground fault in a 
Main Circuit Cable.
Check for short-circuits 
across Servomotor 
phases U, V, and W, or 
between the ground 
and Servomotor phases 
U, V, and W.
The cable may be short-
circuited. Replace the 
cable.
There is a short-circuit 
or ground fault inside 
the Servomotor.
Check for short-circuits 
across Servomotor 
phases U, V, and W, or 
between the ground 
and Servomotor phases 
U, V, or W.
The Servomotor may be 
faulty. Replace the Servo-
motor.
There is a short-circuit 
or ground fault inside 
the SERVOPACK.
Check for short-circuits 
across the Servomotor 
connection terminals U, 
V, a n d  W o n  t h e SE R -
VOPACK, or between 
the ground and termi-
nals U, V, or W.
The SERVOPACK may be 
faulty. Replace the SER-
VOPACK.
The regenerative 
resistor is not wired 
correctly or there is 
faulty contact.
Check the wiring. Correct the wiring.
*1
The dynamic brake 
(DB, emergency stop 
executed from the 
SERVOPACK) was 
frequently activated, 
or a DB overload 
alarm occurred.
Check the power con-
sumed by the DB resis-
tor to see how 
frequently the DB is 
being used. Or, check 
the alarm display to see 
if a DB overload alarm 
(A.730 or A.731) has 
occurred.
Change the SERVOPACK 
model, operating meth-
ods, or the mechanisms 
so that the dynamic brake 
does not need to be used 
so frequently.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-11
A.100: 
Overcurrent 
Detected 
(An overcurrent 
flowed through 
the power tran-
sistor or the heat 
sink overheated.)
The regenerative pro-
cessing capacity was 
exceeded.
Check the regenerative 
load ratio in the Sig-
maWin+ Motion Monitor 
Tab Pa g e  t o  s ee how 
frequently the regenera-
tive resistor is being 
used.
Recheck the operating 
conditions and load.
*4
The SERVOPACK 
regenerative resis-
tance is too small.
Check the regenerative 
load ratio in the Sig-
maWin+ Motion Monitor 
Tab Pa g e  t o  s ee how 
frequently the regenera-
tive resistor is being 
used.
Change the regenerative 
resistance to a value 
larger than the SERVO-
PACK minimum allowable 
resistance.
A heavy load was 
applied while the Ser-
vomotor was stopped 
or running at a low 
speed.
Check to see if the 
operating conditions 
exceed Servo Drive 
specifications.
Reduce the load applied 
to the Servomotor. Or, 
increase the operating 
speed.
–
A malfunction was 
caused by noise.
Improve the noise envi-
ronment, e.g. by 
improving the wiring or 
installation conditions, 
and check to see if the 
alarm still occurs.
Implement countermea-
sures against noise, such 
as correct wiring of the 
FG. Use an FG wire size 
equivalent to the SERVO-
PACK’s main circuit wire 
size.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-12
A.101: 
Motor Overcur-
rent Detected 
(The current to 
the motor 
exceeded the 
allowable cur-
rent.)
The Main Circuit 
Cable is not wired 
correctly or there is 
faulty contact.
Check the wiring. Correct the wiring.
*1
There is a short-circuit 
or ground fault in a 
Main Circuit Cable.
Check for short-circuits 
across cable phases U, 
V, and W, or between 
the ground and cable 
phases U, V, and W.
The cable may be short-
circuited. Replace the 
cable.
There is a short-circuit 
or ground fault inside 
the Servomotor.
Check for short-circuits 
across Servomotor 
phases U, V, and W, or 
between the ground 
and Servomotor phases 
U, V, or W.
The Servomotor may be 
faulty. Replace the Servo-
motor.
There is a short-circuit 
or ground fault inside 
the SERVOPACK.
Check for short-circuits 
across the Servomotor 
connection terminals U, 
V, a n d  W o n  t h e 
SERVOPACK, or 
between the ground 
and terminals U, V, or 
W.
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
A heavy load was 
applied while the Ser-
vomotor was stopped 
or running at a low 
speed.
Check to see if the 
operating conditions 
exceed Servo Drive 
specifications.
Reduce the load applied 
to the Servomotor. Or, 
increase the operating 
speed.
–
A malfunction was 
caused by noise.
Improve the noise envi-
ronment, e.g. by 
improving the wiring or 
installation conditions, 
and check to see if the 
alarm still occurs.
Implement countermea-
sures against noise, such 
as correct wiring of the 
FG. Use an FG wire size 
equivalent to the SERVO-
PACK’s main circuit wire 
size.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.300: 
Regeneration 
Error
When using the built-
in regenerative resis-
tor, the jumper 
between the regener-
ative resistor terminals 
(B2 and B3) was 
removed.
Check to see if the 
jumper is connected 
between power supply 
terminals B2 and B3.
*4
Correctly connect a 
jumper.
*1
The External Regener-
ative Resistor is not 
wired correctly, or was 
removed or discon-
nected.
Check the wiring of the 
External Regenerative 
Resistor.
*4
Correct the wiring of the 
External Regenerative 
Resistor.
A failure occurred in 
the SERVOPACK.
–
While the main circuit 
power supply is OFF, turn 
the control power supply 
to the SERVOPACK OFF 
and ON again. If the alarm 
still occurs, the SERVO-
PACK may be faulty. 
Replace the SERVO-
PACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-13
A.320: 
Regenerative 
Overload
The power supply 
voltage exceeded the 
specified range.
Measure the power 
supply voltage.
Set the power supply volt-
age within the specified 
range.
–
The external regener-
ative resistance value 
or regenerative resis-
tor capacity is too 
small, or there has 
been a continuous 
regeneration state.
Check the operating 
conditions or the 
capacity using the Sig-
maJunmaSize+ Capac-
ity Selection Software or 
other means.
Change the regenerative 
resistance value or capac-
ity.
Reconsider the operating 
conditions using the Sig-
maJunmaSize+ Capacity 
Selection Software or 
other means.
*4
There was a continu-
ous regeneration state 
because a negative 
load was continu-
ously applied.
Check the load applied 
to the Servomotor 
during operation.
Reconsider the system 
including the servo, 
machine, and operating 
conditions.
–
The setting of Pn600 
(Regenerative Resis-
tor Capacity) is 
smaller than the 
capacity of the Exter-
nal Regenerative 
Resistor.
Check to see if a 
Regenerative Resistor is 
connected and check 
the setting of Pn600.
Correct the setting of 
Pn600.
*1
The setting of Pn603 
(Regenerative Resis-
tance) is smaller than 
the capacity of the 
External Regenerative 
Resistor.
Check to see if a 
Regenerative Resistor is 
connected and check 
the setting of Pn603.
Correct the setting of 
Pn603.
*1
The external regener-
ative resistance is too 
high.
Check the regenerative 
resistance.
Change the regenerative 
resistance to a correct 
value or use an External 
Regenerative Resistor of 
an appropriate capacity.
*4
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.330: 
Main Circuit 
Power Supply 
Wiring Error 
(Detected when 
the main circuit 
power supply is 
turned ON.)
The regenerative 
resistor was discon-
nected when the 
SERVOPACK power 
supply voltage was 
high.
Measure the resistance 
of the regenerative 
resistor using a measur-
ing instrument.
If you are using the regen-
erative resistor built into 
the SERVOPACK, replace 
the SERVOPACK.
If you are using an Exter-
nal Regenerative Resis-
tor, replace the External 
Regenerative Resistor.
–
DC power was sup-
plied when an AC 
power supply input 
was specified in the 
settings.
Check the power sup-
ply to see if it is a DC 
power supply.
Correct the power supply 
setting to match the 
actual power supply.
*1
AC power was sup-
plied when a DC 
power supply input 
was specified in the 
settings.
Check the power sup-
ply to see if it is an AC 
power supply.
Correct the power supply 
setting to match the 
actual power supply.
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-14
A.400: 
Overvoltage 
(Detected in the 
main circuit 
power supply 
section of the 
SERVOPACK.)
The power supply 
voltage exceeded the 
specified range.
Measure the power 
supply voltage.
Set the AC/DC power 
supply voltage within the 
specified range.
–
The power supply is 
not stable or was 
influenced by a light-
ning surge.
Measure the power 
supply voltage.
Improve the power sup-
ply conditions, install a 
surge absorber, and then 
turn the power supply 
OFF and ON again. If the 
alarm still occurs, the 
SERVOPACK may be 
faulty. Replace the SER-
VOPACK.
–
The voltage for AC 
power supply was too 
high during accelera-
tion or deceleration.
Check the power sup-
ply voltage and the 
speed and torque 
during operation.
Set the AC power supply 
voltage within the speci-
fied range.
–
The external regener-
ative resistance is too 
high for the operating 
conditions.
Check the operating 
conditions and the 
regenerative resistance.
Select a regenerative 
resistance value that is 
appropriate for the oper-
ating conditions and load.
*4
The moment of inertia 
ratio or mass ratio 
exceeded the allow-
able value.
Check to see if the 
moment of inertia ratio 
or mass ratio is within 
the allowable range.
Increase the deceleration 
time, or reduce the load.
–
A failure occurred in 
the SERVOPACK.
–
While the main circuit 
power supply is OFF, turn 
the control power supply 
to the SERVOPACK OFF 
and ON again. If the alarm 
still occurs, the SERVO-
PACK may be faulty. 
Replace the SERVO-
PACK.
–
A.410: 
Undervoltage 
(Detected in the 
main circuit 
power supply 
section of the 
SERVOPACK.)
The power supply 
voltage went below 
the specified range.
Measure the power 
supply voltage.
Set the power supply volt-
age within the specified 
range.
–
The power supply 
voltage dropped 
during operation.
Measure the power 
supply voltage.
Increase the power supply 
capacity.
–
A momentary power 
interruption occurred.
Measure the power 
supply voltage.
If you have changed the 
setting of Pn509 (Momen-
tary Power Interruption 
Hold Time), decrease the 
setting.
*1
The SERVOPACK 
fuse is blown out.
–
Replace the SERVO-
PACK and connect a 
reactor to the DC reactor 
terminals ( 1 and  2) on 
the SERVOPACK.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-15
A.50D:
Position Devia-
tion Between 
Axes Overflow
Alarm
Twisting of mechani-
cal parts has occurred 
between axes A and 
B.
Check the position 
deviation between the 
axes. 
Resolve the twisting of 
mechanical parts between 
the axes.
–
Set the Position Correc-
tion Table to appropriate 
values.
page 3-7
Axis A and axis B are 
not synchronized with 
the reference.
Check the reference 
position for axis A and 
axis B.
The host controller should 
command the system to 
synchronize operation of 
axis A and axis B.
–
Pn66A (Position Devi-
ation Between Axes 
Overflow Alarm Level) 
is low for the operat-
ing conditions.
Check if Pn66A (Posi-
tion Deviation Between 
Axes Overflow Alarm 
Level) is appropriate.
Set Pn66A to an appropri-
ate value.
page 5-3
A.510:
Overspeed 
(The motor 
exceeded the 
maximum speed.)
The order of phases 
U, V, and W in the 
motor wiring is not 
correct.
Check the wiring of the 
Servomotor.
Make sure that the Servo-
motor is correctly wired.
–
A reference value that 
exceeded the over-
speed detection level 
was input.
Check the input refer-
ence.
Reduce the reference 
value. Or, adjust the gain.
−
The motor exceeded 
the maximum speed.
Check the waveform of 
the motor speed.
Reduce the speed refer-
ence input gain and 
adjust the servo gain. Or, 
reconsider the operating 
conditions.
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.51A:
Synchronized 
Stopping Over-
speed Alarm
The axis undergoing 
synchronized stop-
ping was accelerating.
Check the feedback 
speed of the axis under-
going synchronized 
stopping.
Remove the cause of 
acceleration for the axis 
undergoing synchronized 
stopping.
–
A.520:
Vibration Alarm
Abnormal oscillation 
was detected in the 
motor speed.
Check for abnormal 
motor noise, and check 
the speed and torque 
waveforms during oper-
ation.
Reduce the motor speed. 
Or, reduce the setting of 
Pn100 (Speed Loop 
Gain).
*1
The setting of Pn103 
(Moment of Inertia 
Ratio) is greater than 
the actual moment of 
inertia or was greatly 
changed.
Check the moment of 
inertia ratio or mass 
ratio.
Set Pn103 (Moment of 
Inertia Ratio) to an appro-
priate value.
*1
The vibration detec-
tion level (Pn312 or 
Pn384) is not suitable.
Check that the vibra-
tion detection level 
(Pn312 or Pn384) is 
suitable.
Set a suitable vibration 
detection level (Pn312 or 
Pn384).
*1
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-16
A.521:
Autotuning Alarm 
(Vibration was 
detected while 
executing the 
custom tuning, 
Easy FFT, or the 
tuning-less func-
tion.)
The Servomotor 
vibrated considerably 
while performing the 
tuning-less function.
Check the waveform of 
the motor speed.
Reduce the load so that 
the moment of inertia ratio 
is within the allowable 
value. Or increase the 
load level or reduce the 
rigidity level in the tuning-
less level settings.
*1
The Servomotor 
vibrated considerably 
while performing cus-
tom tuning or Easy 
FFT.
Check the waveform of 
the motor speed.
Check the operating pro-
cedure of corresponding 
function and implement 
corrections.
*1
A.550:
Maximum Speed 
Setting Error
The setting of Pn385 
(Maximum Motor 
Speed) is greater than 
the maximum speed.
Check the setting of 
Pn385, and the upper 
limits of the maximum 
motor speed setting 
and the encoder output 
resolution setting.
Set Pn385 to a value that 
does not exceed the max-
imum motor speed.
*1
A.710:
Instantaneous 
Overload
A.720:
Continuous 
Overload
The wiring is not cor-
rect or there is a faulty 
contact in the motor 
or encoder wiring.
Check the wiring.
Make sure that the Servo-
motor and encoder are 
correctly wired.
*1
Operation was per-
formed that exceeded 
the overload protec-
tion characteristics.
Check the motor over-
load characteristics and 
Run command.
Reconsider the load and 
operating conditions. Or, 
increase the motor 
capacity.
–
An excessive load 
was applied during 
operation because the 
Servomotor was not 
driven due to 
mechanical problems.
Check the operation 
reference and motor 
speed.
Correct the mechanical 
problem.
–
There is an error in the 
setting of Pn282 (Lin-
ear Encoder Scale 
Pitch).
Check the setting of 
Pn282.
Correct the setting of 
Pn282.
*1
There is an error in the 
setting of Pn080 = 
n.X (Motor 
Phase Sequence 
Selection).
Check the setting of 
Pn080 = n.X.
Set Pn080 = n.X to 
an appropriate value.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.730 and A.731:
Dynamic Brake 
Overload 
(An excessive 
power consump-
tion by the 
dynamic brake 
was detected.)
The Servomotor was 
rotated by an external 
force.
Check the operation 
status.
Implement measures to 
ensure that the motor will 
not be rotated by an 
external force.
–
When the Servomo-
tor was stopped with 
the dynamic brake, 
the rotational or linear 
kinetic energy 
exceeded the capac-
ity of the dynamic 
brake resistor.
Check the power con-
sumed by the DB resis-
tor to see how 
frequently the DB is 
being used.
Reconsider the following:
• Reduce the Servomotor 
command speed.
• Decrease the moment 
of inertia ratio or mass 
ratio.
• Reduce the frequency of 
stopping with the 
dynamic brake.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-17
A.740: 
Inrush Current 
Limiting Resistor 
Overload 
(The main circuit 
power supply 
was frequently 
turned ON and 
OFF.)
The allowable fre-
quency of the inrush 
current limiting resis-
tor was exceeded 
when the main circuit 
power supply was 
turned ON and OFF.
–
Reduce the frequency of 
turning the main circuit 
power supply ON and 
OFF.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.7A1: 
Internal Tempera-
ture Error 1 
(Control Board 
Temperature 
Error)
The surrounding air 
temperature is too 
high.
Check the surrounding 
air temperature using a 
thermometer. Or, check 
the operating status 
with the SERVOPACK 
installation environment 
monitor.
Decrease the surround-
ing temperature by 
improving the SERVO-
PACK installation condi-
tions.
*1
An overload alarm 
was reset by turning 
OFF the power sup-
ply too many times.
Check the alarm display 
to see if there is an 
overload alarm.
Change the method for 
resetting the alarm.
–
There was an exces-
sive load or operation 
was performed that 
exceeded the regen-
erative processing 
capacity.
Use the accumulated 
load ratio to check the 
load during operation, 
and use the regenera-
tive load ratio to check 
the regenerative pro-
cessing capacity.
Reconsider the load and 
operating conditions.
–
The SERVOPACK 
installation orientation 
is not correct or there 
is insufficient space 
around the SERVO-
PACK.
Check the SERVOPACK 
installation conditions.
Install the SERVOPACK 
according to specifica-
tions.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-18
A.7A2: 
Internal Tempera-
ture Error 2 
(Power Board 
Temperature 
Error)
The surrounding air 
temperature is too 
high.
Check the surrounding 
air temperature using a 
thermometer. Or, check 
the operating status 
with the SERVOPACK 
installation environment 
monitor.
Decrease the surround-
ing temperature by 
improving the SERVO-
PACK installation condi-
tions.
*1
An overload alarm 
was reset by turning 
OFF the power sup-
ply too many times.
Check the alarm display 
to see if there is an 
overload alarm.
Change the method for 
resetting the alarm.
–
There was an exces-
sive load or operation 
was performed that 
exceeded the regen-
erative processing 
capacity.
Use the accumulated 
load ratio to check the 
load during operation, 
and use the regenera-
tive load ratio to check 
the regenerative pro-
cessing capacity.
Reconsider the load and 
operating conditions.
–
The SERVOPACK 
installation orientation 
is not correct or there 
is insufficient space 
around the SERVO-
PACK.
Check the SERVOPACK 
installation conditions.
Install the SERVOPACK 
according to specifica-
tions.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.7A3:
Internal Tempera-
ture Sensor Error 
(An error 
occurred in the 
temperature sen-
sor circuit.)
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.7Ab: 
SERVOPACK 
Built-in Fan 
Stopped
The fan inside the 
SERVOPACK 
stopped.
Check for foreign matter 
inside the SERVOPACK.
Remove foreign matter 
from the SERVOPACK. If 
the alarm still occurs, the 
SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.810: 
Encoder Backup 
Alarm 
(Detected at the 
encoder, but only 
when an abso-
lute encoder is 
used.)
The power to the 
absolute encoder was 
turned ON for the first 
time.
Check to see if the 
power supply was 
turned ON for the first 
time.
Set up the encoder.
*1
The Encoder Cable 
was disconnected 
and then connected 
again.
Check to see if the 
power supply was 
turned ON for the first 
time.
Check the encoder con-
nection and set up the 
encoder.
Power is not being 
supplied both from 
the control power 
supply (+5 V) from the 
SERVOPACK and 
from the battery 
power supply.
Check the encoder 
connector battery and 
the connector status.
Replace the battery or 
implement similar mea-
sures to supply power to 
the encoder, and set up 
the encoder.
A failure occurred in 
the absolute encoder.
–
If the alarm still occurs 
after setting up the 
encoder again, replace 
the Servomotor.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-19
A.820: 
Encoder Check-
sum Alarm 
(Detected at the 
encoder.)
A failure occurred in 
the encoder.
–
 When Using an Abso-
lute Encoder
Set up the encoder again. 
If the alarm still occurs, 
the Servomotor may be 
faulty. Replace the Servo-
motor.
 When Using a Single-
turn Absolute Encoder 
or Incremental Encoder
• The Servomotor may be 
faulty. Replace the Ser-
vomotor.
• The linear encoder may 
be faulty. Replace the 
linear encoder.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.830: 
Encoder Battery 
Alarm 
(The absolute 
encoder battery 
voltage was lower 
than the speci-
fied level.)
The battery connec-
tion is faulty or a bat-
tery is not connected.
Check the battery con-
nection.
Correct the battery con-
nection.
*1
The battery voltage is 
lower than the speci-
fied value (2.7 V).
Measure the battery 
voltage.
Replace the battery.
*1
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
A.840: 
Encoder Data 
Alarm 
(Detected at the 
encoder.)
The encoder malfunc-
tioned.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
An error occurred in 
reading data from the 
linear encoder.
–
The linear encoder is not 
mounted within an appro-
priate tolerance. Correct 
the mounting of the linear 
encoder.
–
Excessive speed 
occurred in the linear 
encoder.
–
Control the motor speed 
within the range specified 
by the linear encoder 
manufacturer and then 
turn ON the control power 
supply.
–
The encoder malfunc-
tioned due to noise.
–
Correct the wiring around 
the encoder by separating 
the Encoder Cable from 
the Servomotor Main Cir-
cuit Cable or by ground-
ing the encoder.
–
The polarity sensor is 
not wired correctly.
Check the wiring of the 
polarity sensor.
Correct the wiring of the 
polarity sensor.
–
The polarity sensor 
failed.
–
Replace the polarity sen-
sor.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-20
A.850: 
Encoder Over-
speed 
(Detected at the 
encoder when 
the control power 
supply is turned 
ON.)
Rotary Servomotor: 
The Servomotor 
speed was 200 min
-1
or higher when the 
control power supply 
was turned ON.
Check the motor speed 
when the power supply 
is turned ON.
Reduce the Servomotor 
speed to a value less than 
200 min
-1
, and turn ON 
the control power supply.
–
Linear Servomotor: 
The Servomotor 
exceeded the speci-
fied speed when the 
control power supply 
was turned ON.
Check the motor speed 
when the power supply 
is turned ON.
Control the motor speed 
within the range specified 
by the linear encoder 
manufacturer and then 
turn ON the control power 
supply.
–
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.860: 
Encoder Over-
heated 
(Detected when a 
Rotary Servomo-
tor or Absolute 
Linear Encoder is 
connected.
(Detected at the 
encoder.)
The surrounding air 
temperature around 
the Servomotor is too 
high.
Measure the surround-
ing air temperature 
around the Servomotor.
Reduce the surrounding 
air temperature of the 
Servomotor to 40°C or 
less.
–
The Servomotor load 
is greater than the 
rated load.
Use the accumulated 
load ratio to check the 
load.
Operate the Servo Drive 
so that the motor load 
remains within the speci-
fied range.
*1
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
absolute linear encoder 
may be faulty. Replace the 
Servomotor or absolute 
linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-21
A.861: 
Motor Over-
heated
The surrounding tem-
perature around the 
Servomotor is too 
high.
Measure the surround-
ing temperature around 
the Servomotor.
Reduce the surrounding 
air temperature of the 
Servomotor to 40°C or 
less.
–
The motor load is 
greater than the rated 
load.
Check the load with the 
accumulated load ratio 
on the Motion Monitor 
Tab Page on the Sig-
maWin+.
Operate the Servo Drive 
so that the motor load 
remains within the speci-
fied range.
*1
A failure occurred in 
the Serial Converter 
Unit.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Serial Con-
verter Unit may be faulty. 
Replace the Serial Con-
verter Unit.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.862: 
Overheat Alarm
The surrounding tem-
perature is too high.
Check the surrounding 
temperature using a 
thermometer.
Lower the surrounding 
temperature by improving 
the installation conditions 
of the Linear Servomotor 
or the machine.
–
The overheat protec-
tion input signal line is 
disconnected or 
short-circuited.
Check the input voltage 
with the overheat pro-
tection input information 
on the Motion Monitor 
Tab Page on the Sig-
maWin+.
Repair the line for the 
overheat protection input 
signal.
–
An overload alarm 
was reset by turning 
OFF the power sup-
ply too many times.
Check the alarm display 
to see if there is an 
overload alarm.
Change the method for 
resetting the alarm.
–
Operation was per-
formed under an 
excessive load.
Use the accumulated 
load ratio to check the 
load during operation.
Reconsider the load and 
operating conditions.
–
A failure occurred in 
the SERVOPACK.
–
The SERVOPACK may be 
faulty. Replace the 
SERVOPACK.
–
The temperature 
detection circuit in the 
Linear Servomotor is 
faulty or the sensor 
attached to the 
machine is faulty.
–
The temperature detec-
tion circuit in the Linear 
Servomotor may be faulty 
or the sensor attached to 
the machine may be 
faulty. Replace the Linear 
Servomotor or repair the 
sensor attached to the 
machine.
–
A.890: 
Encoder Scale 
Error
A failure occurred in 
the linear encoder.
–
The linear encoder may 
be faulty. Replace the lin-
ear encoder.
–
A.891: 
Encoder Module 
Error
A failure occurred in 
the linear encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the linear encoder 
may be faulty. Replace the 
linear encoder.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-22
A.b33: 
Current Detec-
tion Error 3
A failure occurred in 
the current detection 
circuit.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.b6A: 
MECHATROLINK 
Communications 
ASIC Error 1
There is a fault in the 
SERVOPACK 
MECHATROLINK 
communications sec-
tion.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.b6b: 
MECHATROLINK 
Communications 
ASIC Error 2
A malfunction 
occurred in the 
MECHATROLINK 
communications sec-
tion due to noise.
–
Implement the following 
countermeasures against 
noise.
• Check the MECHA-
TROLINK Communica-
tions Cable and FG 
wiring.
• Attach a ferrite core to 
the MECHATROLINK 
Communications Cable.
–
There is a fault in the 
SERVOPACK 
MECHATROLINK 
communications sec-
tion.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF0: 
System Alarm 0
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF1: 
System Alarm 1
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF2: 
System Alarm 2
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF3: 
System Alarm 3
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF4: 
System Alarm 4
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-23
A.bF5: 
System Alarm 5
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF6: 
System Alarm 6
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF7: 
System Alarm 7
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.bF8: 
System Alarm 8
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.C10: 
Servomotor Out 
of Control 
(Detected when 
the servo is 
turned ON.)
The order of phases 
U, V, and W in the 
motor wiring is not 
correct.
Check the Servomotor 
wiring.
Make sure that the Servo-
motor is correctly wired.
–
There is an error in the 
setting of Pn080 = 
n.X (Motor 
Phase Sequence 
Selection).
Check the setting of 
Pn080 = n.X.
Set Pn080 = n.X to 
an appropriate value.
*1
A failure occurred in 
the encoder.
–
If the motor wiring is cor-
rect and the alarm still 
occurs after turning the 
power supply OFF and 
ON again, the Servomotor 
or linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-24
A.C20: 
Phase Detection 
Error
The linear encoder 
signal level is too low.
Check the voltage of 
the linear encoder sig-
nal.
Fine-tune the mounting of 
the scale head. Or, 
replace the linear 
encoder.
–
The count-up direc-
tion of the linear 
encoder does not 
match the forward 
direction of the Mov-
ing Coil in the motor.
Check the setting of 
Pn080 = n.X 
(Motor Phase Sequence 
Selection). Check the 
installation orientation 
for the linear encoder 
and Moving Coil.
Change the setting of 
Pn080 = n.X.
Correctly reinstall the lin-
ear encoder or Moving 
Coil.
*1
The polarity sensor 
signal is being 
affected by noise.
–
Correct the FG wiring. 
Implement countermea-
sures against noise for the 
polarity sensor wiring.
–
The setting of Pn282 
(Linear Encoder Scale 
Pitch) is not correct.
Check the setting of 
Pn282 (Linear Encoder 
Scale Pitch).
Check the specifications 
of the linear encoder and 
set a correct value.
*1
A.C21: 
Polarity Sensor 
Error
The polarity sensor is 
protruding from the 
Magnetic Way of the 
motor.
Check the polarity sen-
sor.
Correctly reinstall the 
Moving Coil or Magnetic 
Way of the motor.
–
The polarity sensor is 
not wired correctly.
Check the wiring of the 
polarity sensor.
Correct the wiring of the 
polarity sensor.
–
The polarity sensor 
failed.
–
Replace the polarity sen-
sor.
–
A.C22: 
Phase Informa-
tion Disagree-
ment
The SERVOPACK 
phase information is 
different from the lin-
ear encoder phase 
information.
–
Perform polarity detec-
tion.
*1
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-25
A.C50: 
Polarity Detec-
tion Failure
The parameter set-
tings are not correct.
Check the linear 
encoder specifications 
and feedback signal 
status.
The settings of Pn282 
(Linear Encoder Scale 
Pitch) and Pn080 = 
n.X (Motor Phase 
Sequence Selection) may 
not match the installa-
tion. Set the parameters 
to correct values.
*1
There is noise on the 
scale signal.
Check to make sure 
that the frame grounds 
of the Serial Converter 
Unit and Servomotor 
are connected to the 
FG terminal on the SER-
VOPACK and that the 
FG terminal on the SER-
VOPACK is connected 
to the frame ground on 
the power supply. 
And, confirm that the 
shield is properly pro-
cessed on the Linear 
Encoder Cable. Check 
to see if the detection 
reference is repeatedly 
output in one direction.
Implement appropriate 
countermeasures against 
noise for the Linear 
Encoder Cable.
–
An external force was 
applied to the Moving 
Coil of the motor.
–
The polarity cannot be 
properly detected if the 
detection reference is 0 
and the speed feedback 
is not 0 because of an 
external force, such as 
cable tension, applied to 
the Moving Coil. Imple-
ment measures to reduce 
the external force so that 
the speed feedback goes 
to 0. If the external force 
cannot be reduced, 
increase the setting of 
Pn481 (Polarity Detection 
Speed Loop Gain).
–
The linear encoder 
resolution is too low.
Check the linear 
encoder scale pitch to 
see if it is within 100 
μm.
If the linear encoder scale 
pitch is 100 μm or higher, 
the SERVOPACK cannot 
detect the correct speed 
feedback. Use a linear 
encoder scale pitch with 
higher resolution. (We rec-
ommend a pitch of 40 μm 
or less.) Or, increase the 
setting of Pn485 (Polarity 
Detection Reference 
Speed). However, 
increasing the setting of 
Pn485 will increase the 
Servomotor movement 
range that is required for 
polarity detection.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-26
A.C51:
Overtravel 
Detected during 
Polarity Detection
The overtravel signal 
was detected during 
polarity detection.
Check the overtravel 
position.
Wire the overtravel sig-
nals. Execute polarity 
detection at a position 
where an overtravel sig-
nal would not be 
detected.
*1
A.C52: 
Polarity Detec-
tion Not Com-
pleted
The servo was turned 
ON when using an 
absolute linear 
encoder, Pn587 was 
set to n.0 (Do 
not detect polarity), 
and the polarity had 
not been detected.
–
When using an absolute 
linear encoder, set Pn587 
to n.1 (Detect polar-
ity).
–
A.C53:
Out of Range of 
Motion for Polar-
ity Detection
The travel distance 
exceeded the setting 
of Pn48E (Polarity 
Detection Range) in 
the middle of detec-
tion.
–
Increase the setting of 
Pn48E (Polarity Detection 
Range). Or, increase the 
setting of Pn481 (Polarity 
Detection Speed Loop 
Gain).
–
A.C54: 
Polarity Detec-
tion Failure 2
An external force was 
applied to the Servo-
motor.
–
Increase the setting of 
Pn495 (Polarity Detection 
Confirmation Force Refer-
ence). Increase the setting 
of Pn498 (Polarity Detec-
tion Allowable Error 
Range). Increasing the 
allowable error will also 
increase the motor tem-
perature.
–
A.C80: 
Encoder Clear 
Error or Multiturn 
Limit Setting Error
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-27
A.C90: 
Encoder Commu-
nications Error
There is a faulty con-
tact in the connector 
or the connector is 
not wired correctly for 
the encoder.
Check the condition of 
the encoder connector.
Reconnect the encoder 
connector and check the 
encoder wiring.
*1
There is a cable dis-
connection or short-
circuit in the encoder. 
Or, the cable imped-
ance is outside the 
specified values.
Check the condition of 
the Encoder Cable.
Use the Encoder Cable 
within the specified speci-
fications.
–
One of the following 
has occurred: corro-
sion caused by 
improper tempera-
ture, humidity, or gas, 
a short-circuit caused 
by entry of water 
drops or cutting oil, or 
faulty contact in con-
nector caused by 
vibration.
Check the operating 
environment.
Improve the operating 
environment, and replace 
the cable. If the alarm still 
occurs, replace the SER-
VOPACK.
*1
A malfunction was 
caused by noise.
–
Correct the wiring around 
the encoder by separating 
the Encoder Cable from 
the Servomotor Main Cir-
cuit Cable or by ground-
ing the encoder.
*1
A failure occurred in 
the SERVOPACK.
–
Connect the Servomotor 
to another SERVOPACK, 
and turn ON the control 
power supply. If no alarm 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.C91: 
Encoder Commu-
nications Posi-
tion Data 
Acceleration Rate 
Error
Noise entered on the 
signal lines because 
the Encoder Cable is 
bent or the sheath is 
damaged.
Check the condition of 
the Encoder Cable and 
connectors.
Check the Encoder Cable 
to see if it is installed cor-
rectly.
*1
The Encoder Cable is 
bundled with a high-
current line or 
installed near a high-
current line.
Check the installation 
condition of the 
Encoder Cable.
Confirm that there is no 
surge voltage on the 
Encoder Cable.
–
There is variation in 
the FG potential 
because of the influ-
ence of machines on 
the Servomotor side, 
such as a welder.
Check the installation 
condition of the 
Encoder Cable.
Properly ground the 
machine to separate it 
from the FG of the 
encoder.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-28
A.C92: 
Encoder Commu-
nications Timer 
Error
Noise entered on the 
signal line from the 
encoder.
–
Implement countermea-
sures against noise for the 
encoder wiring.
*1
Excessive vibration or 
shock was applied to 
the encoder.
Check the operating 
conditions.
Reduce machine vibra-
tion.
Correctly install the Ser-
vomotor or linear encoder.
–
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.CA0: 
Encoder Parame-
ter Error
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-29
A.Cb0: 
Encoder Echo-
back Error
The encoder is wired 
incorrectly or there is 
faulty contact.
Check the wiring of the 
encoder.
Make sure that the 
encoder is correctly 
wired.
*1
The specifications of 
the Encoder Cable are 
not correct and noise 
entered on it.
–
Use a shielded twisted-
pair wire cable or a 
screened twisted-pair 
cable with conductors of 
at least 0.12 mm
2
.
–
The Encoder Cable is 
too long and noise 
entered on it.
–
• Rotary Servomotors: 
The Encoder Cable wir-
ing distance must be 50 
m max.
• Linear Servomotors: 
The Encoder Cable wir-
ing distance must be 20 
m max.
–
There is variation in 
the FG potential 
because of the influ-
ence of machines on 
the Servomotor side, 
such as a welder.
Check the condition of 
the Encoder Cable and 
connectors.
Properly ground the 
machine to separate it 
from the FG of the 
encoder.
–
Excessive vibration or 
shock was applied to 
the encoder.
Check the operating 
conditions.
Reduce machine vibra-
tion.
Correctly install the Ser-
vomotor or linear encoder.
–
A failure occurred in 
the encoder.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the Servomotor or 
linear encoder may be 
faulty. Replace the Servo-
motor or linear encoder.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.CC0: 
Multiturn Limit 
Disagreement
The multiturn limit of 
the encoder is differ-
ent from that of the 
SERVOPACK. Or, the 
multiturn limit of the 
SERVOPACK has 
been changed.
Check the setting of 
Pn205 in the SERVO-
PACK.
Change the setting if the 
alarm occurs.
*1
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-30
A.d00: 
Position Devia-
tion Overflow 
(The setting of 
Pn520 (Position 
Deviation Over-
flow Alarm Level) 
was exceeded by 
the position devi-
ation while the 
servo was ON.)
The Servomotor U, V, 
and W wiring is not 
correct.
Check the wiring of the 
Servomotor’s Main Cir-
cuit Cables.
Make sure that there are 
no faulty contacts in the 
wiring for the Servomotor 
and encoder.
–
The position com-
mand speed is too 
fast.
Reduce the position 
command speed and 
try operating the 
SERVOPACK.
Reduce the position refer-
ence speed or the refer-
ence acceleration rate, or 
reconsider the electronic 
gear ratio.
*1
The acceleration of 
the position reference 
is too high.
Reduce the reference 
acceleration and try 
operating the SERVO-
PACK.
Reduce the acceleration 
of the position reference 
using a MECHATROLINK 
command. Or, smooth the 
position reference accel-
eration by selecting the 
position reference filter 
(ACCFIL) using a MECHA-
TROLINK command.
−
The setting of Pn520 
(Position Deviation 
Overflow Alarm Level) 
is too low for the 
operating conditions.
Check Pn520 (Position 
Deviation Overflow 
Alarm Level) to see if it 
is set to an appropriate 
value.
Optimize the setting of 
Pn520.
*1
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.d01: 
Position Devia-
tion Overflow 
Alarm at Servo 
ON
The servo was turned 
ON after the position 
deviation exceeded 
the setting of Pn526 
(Position Deviation 
Overflow Alarm Level 
at Servo ON) while the 
servo was OFF.
Check the position 
deviation while the 
servo is OFF.
Optimize the setting of 
Pn526 (Position Deviation 
Overflow Alarm Level at 
Servo ON).
*1
A.d02: 
Position Devia-
tion Overflow 
Alarm for Speed 
Limit at Servo ON
If position deviation 
remains in the devia-
tion counter, the set-
ting of Pn529 or 
Pn584 (Speed Limit 
Level at Servo ON) 
limits the speed when 
the servo is turned 
ON. This alarm occurs 
if a position reference 
is input and the set-
ting of Pn520 (Posi-
tion Deviation 
Overflow Alarm Level) 
is exceeded.
–
Optimize the setting of 
Pn520 (Position Deviation 
Overflow Alarm Level). Or, 
adjust the setting of 
Pn529 or Pn584 (Speed 
Limit Level at Servo ON).
A.d30: 
Position Data 
Overflow
The position data 
exceeded 
±1,879,048,192.
Check the input refer-
ence pulse counter.
Reconsider the operating 
specifications.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-31
A.E02: 
MECHATROLINK 
Internal Synchro-
nization Error 1
The MECHATROLINK 
transmission cycle 
fluctuated.
–
Remove the cause of 
transmission cycle fluctu-
ation at the host control-
ler.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.E40: 
MECHATROLINK 
Transmission 
Cycle Setting 
Error
The setting of 
MECHATROLINK 
transmission cycle is 
outside of the speci-
fied range.
Check the setting of the 
MECHATROLINK trans-
mission cycle.
Set the MECHATROLINK 
transmission cycle to an 
appropriate value.
–
A.E41: 
MECHATROLINK 
Communications 
Data Size Setting 
Error
The number of trans-
mission bytes set on 
DIP switch S3 is not 
correct.
Check the MECHA-
TROLINK communica-
tions data size of the 
host controller.
Reset DIP switch S3 to 
change the number of 
transmission bytes to an 
appropriate value.
*1
A.E42: 
MECHATROLINK 
Station Address 
Setting Error
The station address is 
outside of the setting 
range.
Check rotary switches 
S1 and S2 to see if the 
station address is 
between 03 and EF.
Check the setting of the 
station address of the 
host controller, and reset 
rotary switches S1 and S2 
to change the address to 
an appropriate value 
between 03 and EF.
*1
Two or more stations 
on the communica-
tions network have 
the same address.
Check to see if two or 
more stations on the 
communications net-
work have the same 
address.
Check the setting of the 
station address of the 
host controller, and reset 
rotary switches S1 and S2 
to change the address to 
an appropriate value 
between 03 and EF.
A.E50
*5
: 
MECHATROLINK 
Synchronization 
Error
The WDT data in the 
host controller was 
not updated normally.
Check to see if the WDT 
data is being updated at 
the host controller.
Correctly update the WDT 
data at the host controller.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.E51: 
MECHATROLINK 
Synchronization 
Failed
The WDT data at the 
host controller was 
not updated correctly 
at the start of syn-
chronous communi-
cations, so 
synchronous commu-
nications could not be 
started.
Check to see if the WDT 
data is being updated in 
the host controller.
Correctly update the WDT 
data at the host controller.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-32
A.E60
*5
: 
Reception Error in 
MECHATROLINK 
Communications
MECHATROLINK wir-
ing is not correct.
Check the MECHA-
TROLINK wiring.
Correct the 
MECHATROLINK Com-
munications Cable wiring.
–
A MECHATROLINK 
data reception error 
occurred due to 
noise.
–
Implement countermea-
sures against noise. 
(Check the MECHA-
TROLINK Communica-
tions Cable and FG 
wiring, and implement 
measures such as attach-
ing a ferrite core to the 
MECHATROLINK Com-
munications Cable.)
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.E61: 
Synchronization 
Interval Error in 
MECHATROLINK 
Transmission 
Cycle
The MECHATROLINK 
transmission cycle 
fluctuated.
Check the setting of the 
MECHATROLINK trans-
mission cycle.
Remove the cause of 
transmission cycle fluctu-
ation at the host control-
ler.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.E63: 
MECHATROLINK 
Synchronization 
Frame Not 
Received
MECHATROLINK wir-
ing is not correct.
Check the Servomotor 
wiring.
Correct the MECHA-
TROLINK Communica-
tions Cable wiring.
–
A MECHATROLINK 
data reception error 
occurred due to 
noise.
–
Implement countermea-
sures against noise. 
(Check the MECHA-
TROLINK Communica-
tions Cable and FG 
wiring, and implement 
measures such as attach-
ing a ferrite core to the 
MECHATROLINK Com-
munications Cable.)
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-33
A.E94:
Position Correc-
tion Table
Setting Error
The data set in the 
Position Correction 
Tab le ( p re -co rrect ion 
positions and correc-
tion amounts) is cor-
rupted.
Check the pre-correc-
tion positions and cor-
rection amounts in the 
Position Correction 
Table.
Initialize the Position Cor-
rection Table.
Restart the SERVOPACK 
after initialization. If it  
starts normally, set the 
Position Correction Table 
again.
If the SERVOPACK does 
not start normally after ini-
tialization, it may be faulty. 
Replace the SERVO-
PACK.
page 3-8
page 3-20
The Position Correc-
tion Table was set 
with values outside 
the setting range.
Check if the table 
entries, pre-correction 
positions, correction 
amounts, correction 
positions (pre-correc-
tion positions+correc-
tion amounts) have 
exceeded the setting 
ranges.
Set the number of Posi-
tion Correction Table 
entries between 2 and 
128.
page 3-7
Set pre-correction posi-
tions, correction amounts, 
and correction positions 
between -2,147,483,648 
and 2,147,483,647.
Set the difference 
between one pre-correc-
tion position and the fol-
lowing pre-correction 
position between 
-1,073,741,824 and 
1,073,741,823.
Set the difference 
between one correction 
amount and the following 
correction amount 
between -1,073,741,824 
and 1,073,741,823.
The pre-correction 
positions in the Posi-
tion Correction Table 
are not set in ascend-
ing order.
Check if the pre-correc-
tion positions are set in 
ascending order.
Set the Position Correc-
tion Table so that the pre-
correction positions are in 
ascending order.
page 3-7
The correction posi-
tions calculated from 
the pre-correction 
positions and correc-
tion amounts in the 
Position Correction 
Table are not in 
ascending order.
Check if the correction 
positions (pre-correc-
tion positions+correc-
tion amounts) are set in 
ascending order.
Set the Position Correc-
tion Table so that the cor-
rection positions are in 
ascending order.
page 3-7
A.Ed1: 
Command Exe-
cution Timeout
A timeout error 
occurred for a 
MECHATROLINK 
command.
Check the motor status 
when the command is 
executed.
Execute the SV_ON or 
SENS_ON command only 
when the motor is not 
operating.
–
Check the encoder sta-
tus when the command 
is executed.
Execute the SENS_ON 
command only when an 
encoder is connected.
–
Continued on next page.
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6-34
*1. For details, refer to the following manual.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
A.F10: 
Power Supply 
Line Open Phase 
(The voltage was 
low for more than 
one second for 
phase R, S, or T 
when the main 
power supply 
was ON.)
The three-phase 
power supply wiring is 
not correct.
Check the power sup-
ply wiring.
Make sure that the power 
supply is correctly wired.
*1
The three-phase 
power supply is 
unbalanced.
Measure the voltage for 
each phase of the 
three-phase power sup-
ply.
Balance the power sup-
ply by changing phases.
–
A single-phase power 
supply was input with-
out specifying a sin-
gle-phase AC power 
supply input (Pn00B = 
n.1).
Check the power sup-
ply and the parameter 
setting.
Match the parameter set-
ting to the power supply.
*1
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
FL-1
*5
: 
System Alarm
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
FL-2
*5
: 
System Alarm
FL-3
*5
: 
System Alarm
FL-4
*5
: 
System Alarm
FL-5
*5
: 
System Alarm
FL-6
*5
: 
System Alarm
CPF00: 
Digital Operator 
Communications 
Error 1
There is a faulty con-
nection between the 
Digital Operator and 
the SERVOPACK.
Check the connector 
contact.
Disconnect the connec-
tor and insert it again. Or, 
replace the cable.
–
A malfunction was 
caused by noise.
–
Keep the Digital Operator 
or the cable away from 
sources of noise.
–
CPF01: 
Digital Operator 
Communications 
Error 2
A failure occurred in 
the Digital Operator.
–
Disconnect the Digital 
Operator and then con-
nect it again. If the alarm 
still occurs, the Digital 
Operator may be faulty. 
Replace the Digital Oper-
ator.
–
A failure occurred in 
the SERVOPACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
Continued from previous page.
Alarm Number: 
Alarm Name
Possible Cause Confirmation Correction Reference
6.1  Alarm Displays
6.1.2  Troubleshooting Alarms
6
Maintenance
6-35
*2. Detection Conditions
• Rotary Servomotor
If either of the following conditions is detected, an alarm will occur.
• Linear Servomotor
If either of the following conditions is detected, an alarm will occur.
*3. Detection Conditions
• Rotary Servomotor
If either of the following conditions is detected, an alarm will occur.
• Linear Servomotor
If either of the following conditions is detected, an alarm will occur.
*4. Refer to the following manual for details.
Σ-7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)
*5. If an External Regenerative Resistor is connected while the jumper remains connected between B2 and B3, the 
SERVOPACK may be damaged.
*6. These alarms are not stored in the alarm history. They are only displayed on the panel display.
Pn533 [min
-1
] 
6 10
5
Pn20E
Pn210

Encoder resolution
Pn20E
Pn210

Maximum motor speed [min
-1
]

Encoder resolution
Approx. 3.66  10
12
Pn585 [mm/s]
10
Pn20E
Pn210



Pn385 [100 mm/s] Pn20E
Pn210

Linear encoder pitch [m]
Linear encoder pitch [m]
Resolution of Serial Converter Unit
Approx. 6.10 10
5
Resolution of Serial Converter Unit
 1/3 
610
5
Pn20E
Pn210

Rated motor speed [min
-1
]
Encoder resolution

Pn20E
Pn210
࣭

Maximum motor speed [min
-1
]
Encoder resolution
Approx. 3.66  10
12
 1/3
10
Pn20E
Pn210



Pn385 [100 mm/s]
Pn20E
Pn210

Rated motor speed [mm/s]Resolution of Serial Converter Unit
Linear encoder pitch [m]
Linear encoder pitch [m]
Resolution of Serial Converter Unit
Approx. 6.10 10
5
6.2  Warning Displays
6.2.1  List of Warnings
6-36
6.2
Warning Displays
If a warning occurs in the SERVOPACK, a warning number will be displayed on the panel dis-
play. Warnings are displayed to warn you before an alarm occurs.
6.2.1
List of Warnings
The list of warnings gives the warning name and warning meaning in order of the warning num-
bers.
If “All Axes” is given below the warning number, the warning applies to both axes. If a warning 
occurs for one axis, the same warning status will occur for the other axis.
Warning 
Number
Warning Name Meaning Resetting
A.900
Position Deviation 
Overflow
The position deviation exceeded the percentage set 
with the following formula: 
(Pn520 × Pn51E/100)
Required.
A.901
Position Deviation 
Overflow Alarm at 
Servo ON
The position deviation when the servo was turned ON 
exceeded the percentage set with the following formula: 
(Pn526 × Pn528/100)
Required.
A.910 Overload
This warning occurs before an overload alarm (A.710 or 
A.720) occurs. If the warning is ignored and operation is 
continued, an alarm may occur.
Required.
A.90D
Position Deviation 
Between Axes Over-
flow Warning
The position deviation between axes A and B has 
exceeded the percentage set with the following equa-
tion during the servo ON state.
(Pn66A 
× Pn669/100)
Required.
A.911 Vibration
Abnormal vibration was detected during motor opera-
tion. The detection level is the same as A.520. Set 
whether to output an alarm or a warning by setting 
Pn310 (Vibration Detection Selection).
Required.
A.912
Internal Temperature 
Warning 1 (Control 
Board Temperature 
Error)
The surrounding temperature of the control PCB is 
abnormal.
Required.
A.913
Internal Temperature 
Warning 2 (Power 
Board Temperature 
Error)
The surrounding temperature of the power PCB is 
abnormal.
Required.
A.920
Regenerative Overload
This warning occurs before an A.320 alarm (Regenera-
tive Overload) occurs. If the warning is ignored and 
operation is continued, an alarm may occur.
Required.
A.921
Dynamic Brake Over-
load
This warning occurs before an A.731 alarm (Dynamic 
Brake Overload) occurs. If the warning is ignored and 
operation is continued, an alarm may occur.
Required.
A.923 SERVOPACK Built-in 
Fan Stopped
The fan inside the SERVOPACK stopped. Required.
A.930
Absolute Encoder Bat-
tery Error
This warning occurs when the voltage of absolute 
encoder’s battery is low.
Required.
A.93B Overheat Warning
The input voltage (temperature) for the overheat protec-
tion input (TH) signal exceeded the setting of Pn61C 
(Overheat Warning Level).
Required.
A.942
Speed Ripple Com-
pensation Information 
Disagreement
The speed ripple compensation information stored in 
the encoder does not agree with the speed ripple com-
pensation information stored in the SERVOPACK.
Required.
A.94A
Data Setting Warning 1 
(Parameter Number 
Error)
There is an error in the parameter number for a Data 
Setting Warning 1 (Parameter Number) command.
Automatically 
reset.*
Continued on next page.
All Axes
All Axes
All Axes
All Axes
All Axes
6.2  Warning Displays
6.2.1  List of Warnings
6
Maintenance
6-37
* If using the commands for the MECHATROLINK-III standard servo profile, the warning will automatically be 
cleared after the correct command is received. If you use MECHATROLINK-II-compatible profile commands, send 
an ALM_CLR (Clear Warning or Alarm) command to clear the warning.
A.94b
Data Setting Warning 2 
(Out of Range)
The command data is out of range.
Automatically 
reset.*
A.94C
Data Setting Warning 3 
(Calculation Error)
A calculation error was detected.
Automatically 
reset.*
A.94d
Data Setting Warning 4 
(Parameter Size)
The data sizes do not match.
Automatically 
reset.*
A.94E
Data Setting Warning 5 
(Latch Mode Error)
A latch mode error was detected. Required.
A.95A
Command Warning 1 
(Unsatisfied Com-
mand Conditions)
A command was sent when the conditions for sending 
a command were not satisfied.
Automatically 
reset.*
A.95b
Command Warning 2 
(Unsupported Com-
mand)
An unsupported command was sent.
Automatically 
reset.*
A.95d
Command Warning 4 
(Command Interfer-
ence)
There was command interference, particularly latch 
command interference.
Automatically 
reset.*
A.95E
Command Warning 5 
(Subcommand Not 
Possible)
The subcommand and main command interfere with 
each other.
Automatically 
reset.*
A.95F
Command Warning 6 
(Undefined Command)
An undefined command was sent.
Automatically 
reset.*
A.960
MECHATROLINK 
Communications 
Warning
A communications error occurred during MECHA-
TROLINK communications.
Required.
A.971
Undervoltage
This warning occurs before an A.410 alarm (Undervolt-
age) occurs. If the warning is ignored and operation is 
continued, an alarm may occur.
Required.
A.97A
Command Warning 7 
(Phase Error)
A command that cannot be executed in the current 
phase was sent.
Automatically 
reset.*
A.97b
Data Clamp Out of 
Range
The set command data was clamped to the minimum or 
maximum value of the allowable setting range.
Automatically 
reset.*
A.97C
Synchronized 
Stopping Occurred
Synchronized stopping occurred. Required.
A.9A0 Overtravel Overtravel was detected while the servo was ON. Required.
A.9b0 Preventative 
Maintenance Warning
One of the consumable parts has reached the end of its 
service life.
Required.
Continued from previous page.
Warning 
Number
Warning Name Meaning Resetting
All Axes
All Axes
6.2  Warning Displays
6.2.1  List of Warnings
6-38
Note: Use Pn008 = n.X (Warning Detection Selection) to control warning detection.
However, the following warnings are not affected by the setting of Pn008 = n.X and other parameter 
settings are required in addition to Pn008 = n.X
For details, refer to the following manual.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
Warning Parameters That Must Be Set to Select Warning Detection
A.911 Pn310 = n.X (Vibration Detection Selection)
A.923
–
(Not affected by the setting of Pn008 = n.X.)
A.930 Pn008 = n.X (Low Battery Voltage Alarm/Warning Selection)
A.942
Pn423 = n.X (Speed Ripple Compensation Information Disagreement Warning 
Detection Selection)
A.94A to A.960 and 
A.97A to A.97b
Pn800=n.X (Warning Check Masks)
A.971
Pn008 = n.X (Function Selection for Undervoltage)
(Not affected by the setting of Pn008 = n.X.)
A.9A0
Pn00D = n.X (Overtravel Warning Detection Selection)
(Not affected by the setting of Pn008 = n.X.)
A.9b0 Pn00F = n.X (Preventative Maintenance Warning Selection)
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6
Maintenance
6-39
6.2.2
Troubleshooting Warnings
The causes of and corrections for the warnings are given in the following table. Contact your 
Yaskawa representative if you cannot solve a problem with the correction given in the table.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
A.900: 
Position Deviation 
Overflow
The Servomotor 
U, V, and W wiring 
is not correct.
Check the wiring of the 
Servomotor’s Main Cir-
cuit Cables.
Make sure that there are no 
faulty connections in the 
wiring for the Servomotor 
and encoder.
–
A SERVOPACK 
gain is too low.
Check the SERVO-
PACK gains.
Increase the servo gain, 
e.g., by using autotuning 
without a host reference.
*
The acceleration 
of the position ref-
erence is too high.
Reduce the reference 
acceleration and try 
operating the SERVO-
PACK.
Reduce the acceleration of 
the position reference using 
a MECHATROLINK com-
mand. Or, smooth the posi-
tion reference acceleration 
by selecting the position 
reference filter (ACCFIL) 
using a MECHATROLINK 
command.
–
The excessive 
position deviation 
alarm level (Pn520 
× Pn51E/100) is 
too low for the 
operating condi-
tions.
Check excessive posi-
tion deviation alarm 
level (Pn520 × Pn51E/
100) to see if it is set to 
an appropriate value.
Optimize the settings of 
Pn520 and Pn51E.
*
A failure occurred 
in the SERVO-
PACK.
–
Turn the power supply to 
the SERVOPACK OFF and 
ON again. If the alarm still 
occurs, the SERVOPACK 
may be faulty. Replace the 
SERVOPACK.
–
A.901: 
Position Deviation 
Overflow Alarm at 
Servo ON
The position devi-
ation when the 
servo was turned 
ON exceeded the 
percentage set 
with the following 
formula:
(Pn526 × Pn528/
100)
–
Optimize the setting of 
Pn528 (Position Deviation 
Overflow Warning Level at 
Servo ON).
–
A.90D:
Position Deviation 
Between Axes Over-
flow Warning
Twi sti n g of  
mechanical parts 
has occurred 
between axes A 
and B.
Check the position 
deviation between the 
axes.
Resolve the twisting of 
mechanical parts between 
the axes.
–
Set the Position Correction 
Table to appropriate values.
page 3-7
Axis A and axis B 
are not synchro-
nized with the ref-
erence.
Check the reference 
position for Axis A and 
Axis B.
The host controller should 
command the system to 
synchronize operation of 
axis A and axis B.
–
The value of 
(Pn66A 
× Pn669/
100) is low for the 
operating condi-
tions.
Check if the value of 
(Pn66A 
× Pn669/100) is 
appropriate.
Set Pn66A and Pn669 to 
appropriate values.
page 5-3
Continued on next page.
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6-40
A.910: 
Overload (warning 
before an A.710 or 
A.720 alarm occurs)
The wiring is not 
correct or there is 
a faulty contact in 
the motor or 
encoder wiring.
Check the wiring.
Make sure that the Servo-
motor and encoder are cor-
rectly wired.
–
Operation was 
performed that 
exceeded the 
overload protec-
tion characteris-
tics.
Check the motor over-
load characteristics and 
Run command.
Reconsider the load and 
operating conditions. Or, 
increase the motor capacity.
–
An excessive load 
was applied 
during operation 
because the Ser-
vomotor was not 
driven because of 
mechanical prob-
lems.
Check the operation 
reference and motor 
speed.
Remove the mechanical 
problem.
–
The overload 
warning level 
(Pn52B) is not 
suitable.
Check that the overload 
warning level (Pn52B) is 
suitable.
Set a suitable overload 
warning level (Pn52B).
*
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
A.911: 
Vibration
Abnormal vibra-
tion was detected 
during motor 
operation.
Check for abnormal 
motor noise, and check 
the speed and torque 
waveforms during oper-
ation.
Reduce the motor speed. 
Or, reduce the servo gain 
with custom tuning.
*
The setting of 
Pn103 (Moment of 
Inertia Ratio) is 
greater than the 
actual moment of 
inertia or was 
greatly changed.
Check the moment of 
inertia ratio or mass 
ratio.
Set Pn103 (Moment of Iner-
tia Ratio) to an appropriate 
value.
*
The vibration 
detection level 
(Pn312 or Pn384) 
is not suitable.
Check that the vibration 
detection level (Pn312 
or Pn384) is suitable.
Set a suitable vibration 
detection level (Pn312 or 
Pn384).
*
Continued on next page.
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6
Maintenance
6-41
A.912: 
Internal Tempera-
ture Warning 1 
(Control Board Tem-
perature Error)
The surrounding 
temperature is too 
high.
Check the surrounding 
temperature using a 
thermometer. Or, check 
the operating status 
with the SERVOPACK 
installation environ-
ment monitor.
Decrease the surrounding 
temperature by improving 
the SERVOPACK installa-
tion conditions.
*
An overload alarm 
was reset by turn-
ing OFF the power 
supply too many 
times.
Check the alarm display 
to see if there is an 
overload alarm.
Change the method for 
resetting the alarm.
–
There was an 
excessive load or 
operation was 
performed that 
exceeded the 
regenerative pro-
cessing capacity.
Use the accumulated 
load ratio to check the 
load during operation, 
and use the regenera-
tive load ratio to check 
the regenerative pro-
cessing capacity.
Reconsider the load and 
operating conditions.
–
The SERVOPACK 
installation orien-
tation is not cor-
rect or there is 
insufficient space 
around the SER-
VOPACK.
Check the SERVO-
PACK installation con-
ditions.
Install the SERVOPACK 
according to specifications.
*
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
A.913: 
Internal Tempera-
ture Warning 2 
(Power Board Tem-
perature Error)
The surrounding 
temperature is too 
high.
Check the surrounding 
temperature using a 
thermometer. Or, check 
the operating status 
with the SERVOPACK 
installation environ-
ment monitor.
Decrease the surrounding 
temperature by improving 
the SERVOPACK installa-
tion conditions.
*
An overload alarm 
was reset by turn-
ing OFF the power 
supply too many 
times.
Check the alarm display 
to see if there is an 
overload alarm.
Change the method for 
resetting the alarm.
–
There was an 
excessive load or 
operation was 
performed that 
exceeded the 
regenerative pro-
cessing capacity.
Use the accumulated 
load ratio to check the 
load during operation, 
and use the regenera-
tive load ratio to check 
the regenerative pro-
cessing capacity.
Reconsider the load and 
operating conditions.
–
The SERVOPACK 
installation orien-
tation is not cor-
rect or there is 
insufficient space 
around the 
SERVOPACK.
Check the SERVO-
PACK installation con-
ditions.
Install the SERVOPACK 
according to specifications.
*
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
Continued on next page.
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6-42
A.920: 
Regenerative Over-
load (warning before 
an A.320 alarm 
occurs)
The power supply 
voltage exceeded 
the specified 
range.
Measure the power 
supply voltage.
Set the power supply volt-
age within the specified 
range.
–
There is insuffi-
cient external 
regenerative resis-
tance, regenera-
tive resistor 
capacity, or 
SERVOPACK 
capacity, or there 
has been a con-
tinuous regenera-
tion state.
Check the operating 
conditions or the 
capacity using the Sig-
maJunmaSize+ Capac-
ity Selection Software 
or another means.
Change the regenerative 
resistance value, regenera-
tive resistance capacity, or 
SERVOPACK capacity. 
Reconsider the operating 
conditions using the Sigma-
JunmaSize+ Capacity 
Selection Software or other 
means.
–
There was a con-
tinuous regenera-
tion state because 
a negative load 
was continuously 
applied.
Check the load applied 
to the Servomotor 
during operation.
Reconsider the system 
including the servo, 
machine, and operating 
conditions.
–
A.921: 
Dynamic Brake 
Overload (warning 
before an A.731 
alarm occurs)
The Servomotor 
was rotated by an 
external force.
Check the operation 
status.
Implement measures to 
ensure that the motor will 
not be rotated by an exter-
nal force.
–
When the Servo-
motor was 
stopped with the 
dynamic brake, 
the rotational or 
linear kinetic 
energy exceeded 
the capacity of the 
dynamic brake 
resistor.
Check the power con-
sumed by the DB resis-
tor to see how 
frequently the DB is 
being used.
Reconsider the following:
• Reduce the Servomotor 
command speed.
• Decrease the moment of 
inertia or mass.
• Reduce the frequency of 
stopping with the dynamic 
brake.
–
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
A.923: 
SERVOPACK Built-
in Fan Stopped
The fan inside the 
SERVOPACK 
stopped.
Check for foreign mat-
ter inside the SERVO-
PACK.
Remove foreign matter from 
the SERVOPACK. If the 
alarm still occurs, the 
SERVOPACK may be faulty. 
Replace the SERVOPACK.
–
A.930: 
Absolute Encoder 
Battery Error (The 
absolute encoder 
battery voltage was 
lower than the spec-
ified level.) (Detected 
only when an abso-
lute encoder is con-
nected.)
The battery con-
nection is faulty or 
a battery is not 
connected.
Check the battery con-
nection.
Correct the battery connec-
tion.
*
The battery volt-
age is lower than 
the specified value 
(2.7 V).
Measure the battery 
voltage.
Replace the battery.
*
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
Continued on next page.
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6
Maintenance
6-43
A.93B: 
Overheat Warning
The surrounding 
temperature is too 
high.
Check the surrounding 
temperature using a 
thermometer.
Lower the surrounding tem-
perature by improving the 
installation conditions of the 
Linear Servomotor or the 
machine.
–
Operation was 
performed under 
an excessive load.
Use the accumulated 
load ratio to check the 
load during operation.
Reconsider the load and 
operating conditions.
–
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
The temperature 
detection circuit in 
the Linear Servo-
motor is faulty or 
the sensor 
attached to the 
machine is faulty.
–
The temperature detection 
circuit in the Linear Servo-
motor may be faulty or the 
sensor attached to the 
machine may be faulty. 
Replace the Linear Servo-
motor or repair the sensor 
attached to the machine.
–
A.942: 
Speed Ripple Com-
pensation Informa-
tion Disagreement
The speed ripple 
compensation 
information stored 
in the encoder 
does not agree 
with the speed 
ripple compensa-
tion information 
stored in the 
SERVOPACK.
–
Reset the speed ripple 
compensation value on the 
SigmaWin+.
*
–
Set Pn423 to n.1 (Do 
not detect A.942 alarms). 
However, changing the set-
ting may increase the speed 
ripple.
*
–
Set Pn423 to n.0 
(Disable speed ripple com-
pensation). However, 
changing the setting may 
increase the speed ripple.
*
A.94A: 
Data Setting Warn-
ing 1 (Parameter 
Number Error)
An invalid param-
eter number was 
used.
Check the command 
that caused the warn-
ing.
Use the correct parameter 
number.
*
A.94b: 
Data Setting Warn-
ing 2 (Out of Range)
The set com-
mand data was 
clamped to the 
minimum or maxi-
mum value of the 
setting range.
Check the command 
that caused the warn-
ing.
Set the parameter within 
the setting range.
*
A.94C: 
Data Setting Warn-
ing 3 (Calculation 
Error)
The calculation 
result of the set-
ting is not correct.
Check the command 
that caused the warn-
ing.
Set the parameter within 
the setting range.
*
A.94d: 
Data Setting Warn-
ing 4 (Parameter 
Size)
The parameter 
size set in the 
command is not 
correct.
Check the command 
that caused the warn-
ing.
Set the correct parameter 
size.
*
A.94E: 
Data Setting Warn-
ing 5 (Latch Mode 
Error)
A latch mode error 
was detected.
Check the command 
that caused the warn-
ing.
Change the setting of 
Pn850 or the LT_MOD data 
for the LTMOD_ON com-
mand sent by the host con-
troller to an appropriate 
value.
(This applies when using 
the MECHATROLINK-II-
compatible profile.)
*
Continued on next page.
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6-44
A.95A: 
Command Warning 
1 (Unsatisfied Com-
mand Conditions)
The command 
conditions are not 
satisfied.
Check the command 
that caused the warn-
ing.
Send the command after 
the command conditions 
are satisfied.
*
A.95b: 
Command Warning 
2 (Unsupported 
Command)
An unsupported 
command was 
received.
Check the command 
that caused the warn-
ing.
Do not send unsupported 
commands.
*
A.95d: 
Command Warning 
4 (Command Inter-
ference)
The command 
sending condi-
tions for latch-
related com-
mands was not 
satisfied.
Check the command 
that caused the warn-
ing.
Send the command after 
the command conditions 
are satisfied.
*
A.95E: 
Command Warning 
5 (Subcommand 
Not Possible)
The command 
sending condi-
tions for subcom-
mands was not 
satisfied.
Check the command 
that caused the warn-
ing.
Send the command after 
the conditions are satisfied.
*
A.95F: 
Command Warning 
6 (Undefined Com-
mand)
An undefined 
command was 
sent.
Check the command 
that caused the warn-
ing.
Do not send undefined 
commands.
*
A.960: 
MECHATROLINK 
Communications 
Warning
The MECHA-
TROLINK Com-
munications Cable 
is not wired cor-
rectly.
Check the wiring condi-
tions.
Correct the MECHA-
TROLINK communications 
cable wiring.
*
A MECHA-
TROLINK data 
reception error 
occurred due to 
noise.
Confirm the installation 
conditions.
Implement the following 
countermeasures against 
noise.
• Check the MECHA-
TROLINK Communica-
tions Cable and FG wiring 
and implement counter-
measures to prevent noise 
from entering.
• Attach a ferrite core to the 
MECHATROLINK Com-
munications Cable.
–
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
A.971: 
Undervoltage
For a 200-V 
SERVOPACK, the 
AC power supply 
voltage dropped 
below 140 V.
Measure the power 
supply voltage.
Set the power supply volt-
age within the specified 
range.
–
The power supply 
voltage dropped 
during operation.
Measure the power 
supply voltage.
Increase the power supply 
capacity.
–
A momentary 
power interrup-
tion occurred.
Measure the power 
supply voltage.
If you have changed the 
setting of Pn509 (Momen-
tary Power Interruption Hold 
Time), decrease the setting.
*
The SERVOPACK 
fuse is blown out.
–
Replace the SERVOPACK 
and connect a reactor.
*
A failure occurred 
in the SERVO-
PACK.
–
The SERVOPACK may be 
faulty. Replace the SERVO-
PACK.
–
Continued on next page.
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.2  Warning Displays
6.2.2  Troubleshooting Warnings
6
Maintenance
6-45
* For details, refer to the following manual.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
A.97A: 
Command Warning 
7 (Phase Error)
A command that 
cannot be exe-
cuted in the cur-
rent phase was 
sent.
–
Send the command after 
the command conditions 
are satisfied.
–
A.97b: 
Data Clamp Out of 
Range
The set com-
mand data was 
clamped to the 
minimum or maxi-
mum value of the 
setting range.
–
Set the command data 
within the setting ranges.
–
A.97C:
Synchronized Stop-
ping Occurred
An alarm occurred 
on a single axis.
Check the alarm that 
occurred on the single 
axis.
Troubleshoot the problem 
according to the correction 
methods for the alarm that 
occurred on the single axis.
–
A.9A0: 
Overtravel (Over-
travel status was 
detected.)
Overtravel was 
detected while the 
servo was ON.
Check the status of the 
overtravel signals on 
the input signal monitor.
Even if an overtravel signal 
is not shown by the input 
signal monitor, momentary 
overtravel may have been 
detected. Take the following 
precautions.
• Do not specify move-
ments that would cause 
overtravel from the host 
controller.
• Check the wiring of the 
overtravel signals.
• Implement countermea-
sures against noise.
*
A.9b0: 
Preventative Mainte-
nance Warning
One of the con-
sumable parts has 
reached the end 
of its service life.
–
Replace the part. Contact 
your Yaskawa representa-
tive for replacement.
*
Continued from previous page.
Warning Number: 
Warning Name
Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-46
6.3
Troubleshooting Based on the Operation and Conditions of the Servomotor
This section provides troubleshooting based on the operation and conditions of the Servomo-
tor, including causes and corrections.
Problem Possible Cause Confirmation Correction Reference
Servomotor 
Does Not 
Start
The control power supply is 
not turned ON.
Measure the voltage 
between control power 
supply terminals.
Turn OFF the power 
supply to the servo 
system.
Correct the wiring so 
that the control power 
supply is turned ON.
–
The main circuit power sup-
ply is not turned ON.
Measure the voltage 
across the main circuit 
power input terminals.
Turn OFF the power 
supply to the servo 
system.
Correct the wiring so 
that the main circuit 
power supply is turned 
ON.
–
The I/O signal connector 
(CN1) pins are not wired cor-
rectly or are disconnected.
Turn OFF the power sup-
ply to the servo system.
Check the wiring condi-
tion of the I/O signal con-
nector (CN1) pins.
Correct the wiring of 
the I/O signal connec-
tor (CN1) pins.
*
The wiring for the Servomo-
tor Main Circuit Cables or 
Encoder Cable is discon-
nected.
Check the wiring condi-
tions.
Turn OFF the power 
supply to the servo 
system.
Wire the cable cor-
rectly.
–
There is an overload on the 
Servomotor.
Operate the Servomotor  
with no load and check 
the load status.
Turn OFF the power 
supply to the servo 
system.
Reduce the load or 
replace the Servomo-
tor with a Servomotor 
with a larger capacity.
–
The type of encoder that is 
being used does not agree 
with the setting of Pn002 = 
n.X (Encoder Usage).
Check the type of the 
encoder that is being 
used and the setting of 
Pn002 = n.X.
Set Pn002 = n.X 
according to the type of 
the encoder that is 
being used.
*
There is a mistake in the 
input signal allocations 
(Pn50A, Pn50B, Pn511, 
Pn516, or Pn590 to Pn599).
Check the input signal 
allocations (Pn50A, 
Pn50B, Pn511, Pn516, 
and Pn590 to Pn599).
Correctly allocate the 
input signals (Pn50A, 
Pn50B, Pn511, Pn516, 
and Pn590 to Pn599).
*
The SV_ON command was 
not sent.
Check the commands 
sent from the host con-
troller.
Send the SV_ON com-
mand from the host 
controller.
–
The SENS_ON (Turn ON 
Sensor) command was not 
sent.
Check the commands 
sent from the host con-
troller.
Send the commands to 
the SERVOPACK in the 
correct sequence.
–
The P-OT (Forward Drive 
Prohibit) or N-OT (Reverse 
Drive Prohibit) signal is still 
OFF.
Check the P-OT and N-
OT signals.
Turn ON the P-OT and 
N-OT signals.
*
The FSTP (Forced Stop 
Input) signal is still OFF.
Check the FSTP signal.
• Turn ON the FSTP 
signal.
• If you will not use the 
function to force the 
motor to stop, set 
Pn516 = n.X 
(FSTP (Forced Stop 
Input) Signal Alloca-
tion) to disable the 
signal.
*
Continued on next page.
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-47
6
Maintenance
Servomotor 
Does Not 
Start
A failure occurred in the 
SERVOPACK.
–
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK.
–
The polarity detection was 
not executed.
Check the setting of 
Pn080 =n.X (Polar-
ity Sensor Selection).
Correct the parameter 
setting.
*
Check the inputs to the 
SV_ON (Servo ON) com-
mand.
• If you are using an 
incremental linear 
encoder, send the 
SV_ON command 
from the host control-
ler.
• If you are using an 
absolute linear 
encoder, execute 
polarity detection.
*
Servomotor 
Moves 
Instanta-
neously, 
and Then 
Stops
There is a mistake in the Ser-
vomotor wiring.
Turn OFF the power sup-
ply to the servo system.
Check the wiring.
Wire the Servomotor 
correctly.
–
There is a mistake in the wir-
ing of the encoder or Serial 
Converter Unit.
Turn OFF the power sup-
ply to the servo system.
Check the wiring.
Wire the Serial Con-
verter Unit correctly.
–
There is a mistake in the lin-
ear encoder wiring.
Turn OFF the power sup-
ply to the servo system.
Check the wiring.
Wire the cable cor-
rectly.
–
The setting of Pn282 (Linear 
Encoder Scale Pitch) is not 
correct.
Check the setting of 
Pn282.
Correct the setting of 
Pn282.
*
The count-up direction of the 
linear encoder does not 
match the forward direction 
of the Moving Coil in the 
motor.
Check the directions.
Change the setting of 
Pn080 = n.X 
(Motor Phase 
Sequence Selection). 
Place the linear 
encoder and motor in 
the same direction.
*
Polarity detection was not 
performed correctly.
Check to see if electrical 
angle 2 (electrical angle 
from polarity origin) at any 
position is between ±10°.
Correct the settings for 
the polarity detection-
related parameters.
–
Servomotor 
Speed Is 
Unstable
There is a faulty connection 
in the Servomotor wiring.
The connector connec-
tions for the power line 
(U, V, and W phases) and 
the encoder or Serial 
Converter Unit may be 
unstable. 
Turn OFF the power sup-
ply to the servo system.
Check the wiring.
Tighten any loose ter-
minals or connectors 
and correct the wiring.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor 
6-48
Servomotor 
Moves with-
out a Refer-
ence Input
A failure occurred in the 
SERVOPACK.
–
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK.
–
The count-up direction of the 
linear encoder does not 
match the forward direction 
of the Moving Coil in the 
motor.
Check the directions.
Change the setting of 
Pn080 = n.X 
(Motor Phase 
Sequence Selection). 
Match the linear 
encoder direction and 
Servomotor direction.
*
Polarity detection was not 
performed correctly.
Check to see if electrical 
angle 2 (electrical angle 
from polarity origin) at any 
position is between ±10°.
Correct the settings for 
the polarity detection-
related parameters.
–
Dynamic 
Brake Does 
Not Operate
The setting of Pn001 = 
n.X (Motor Stopping 
Method for Servo OFF and 
Group 1 Alarms) is not suit-
able.
Check the setting of 
Pn001 = n.X.
Set Pn001 = n.X 
correctly.
–
The dynamic brake resistor is 
disconnected.
Check the moment of 
inertia, motor speed, and 
dynamic brake frequency 
of use. If the moment of 
inertia, motor speed, or 
dynamic brake frequency 
of use is excessive, the 
dynamic brake resis-
tance may be discon-
nected.
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK. To prevent dis-
connection, reduce the 
load.
–
There was a failure in the 
dynamic brake drive circuit.
–
There is a defective 
component in the 
dynamic brake circuit. 
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK.
–
Abnormal 
Noise from 
Servomotor
The Servomotor vibrated 
considerably while perform-
ing the tuning-less function 
with the default settings.
Check the waveform of 
the motor speed.
Reduce the load so 
that the moment of 
inertia ratio or mass 
ratio is within the allow-
able value, or increase 
the load level or reduce 
the rigidity level in the 
tuning-less level set-
tings.
If the situation is not 
improved, disable the 
tuning-less function 
(i.e., set Pn170 to 
n.0) and execute 
autotuning either with 
or without a host refer-
ence.
*
The machine mounting is not 
secure.
Turn OFF the power sup-
ply to the servo system.
Check to see if there are 
any loose mounting 
screws.
Tighten the mounting 
screws.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-49
6
Maintenance
Abnormal 
Noise from 
Servomotor
The machine mounting is not 
secure.
Turn OFF the power sup-
ply to the servo system.
Check to see if there is 
misalignment in the cou-
pling.
Align the coupling.
–
Turn OFF the power sup-
ply to the servo system.
Check to see if the cou-
pling is balanced.
Balance the coupling.
–
The bearings are defective.
Turn OFF the power sup-
ply to the servo system.
Check for noise and 
vibration around the bear-
ings.
Replace the Servomo-
tor.
–
There is a vibration source at 
the driven machine.
Turn OFF the power sup-
ply to the servo system.
Check for any foreign 
matter, damage, or defor-
mation in the machine’s 
moving parts.
Consult with the 
machine manufacturer.
–
Noise interference occurred 
because of incorrect I/O sig-
nal cable specifications.
Turn OFF the power sup-
ply to the servo system.
Check the I/O signal 
cables to see if they sat-
isfy specifications. Use 
shielded twisted-pair 
cables or screened 
twisted-pair cables with 
conductors of at least 
0.12 mm
2
(stranded wire).
Use cables that satisfy 
the specifications.
–
Noise interference occurred 
because an I/O signal cable 
is too long.
Turn OFF the power sup-
ply to the servo system.
Check the lengths of the 
I/O signal cables.
The I/O signal cables 
must be no longer than 
3 m.
–
Noise interference occurred 
because of incorrect Encoder 
Cable specifications.
Turn OFF the power sup-
ply to the servo system.
Check the Encoder Cable 
to see if it satisfies speci-
fications. Use shielded 
twisted-pair cables or 
screened twisted-pair 
cables with conductors of 
at least 0.12 mm
2
(stranded wire).
Use cables that satisfy 
the specifications.
–
Noise interference occurred 
because the Encoder Cable 
is too long.
Turn OFF the power sup-
ply to the servo system.
Check the length of the 
Encoder Cable.
• Rotary Servomotors: 
The Encoder Cable 
length must be 50 m 
max.
• Linear Servomotors: 
Make sure that the 
Serial Converter Unit 
cable is no longer 
than 20 m and that 
the Linear Encoder 
Cable and the Sensor 
Cable are no longer 
than 15 m each.
–
Noise interference occurred 
because the Encoder Cable 
is damaged.
Turn OFF the power sup-
ply to the servo system.
Check the Encoder Cable 
to see if it is pinched or 
the sheath is damaged.
Replace the Encoder 
Cable and correct the 
cable installation envi-
ronment.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor 
6-50
Abnormal 
Noise from 
Servomotor
The Encoder Cable was sub-
jected to excessive noise 
interference.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
Encoder Cable is bundled 
with a high-current line or 
installed near a high-cur-
rent line.
Correct the cable lay-
out so that no surge is 
applied by high-current 
lines.
–
There is variation in the FG 
potential because of the 
influence of machines on the 
Servomotor side, such as a 
welder.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
machines are correctly 
grounded.
Properly ground the 
machines to separate 
them from the FG of 
the encoder.
–
There is a SERVOPACK 
pulse counting error due to 
noise.
Check to see if there is 
noise interference on the 
signal line from the 
encoder.
Turn OFF the power 
supply to the servo 
system.
Implement counter-
measures against noise 
for the encoder wiring.
–
The encoder was subjected 
to excessive vibration or 
shock.
Turn OFF the power sup-
ply to the servo system.
Check to see if vibration 
from the machine 
occurred. Check the Ser-
vomotor installation 
(mounting surface preci-
sion, securing state, and 
alignment).
Check the linear encoder 
installation (mounting sur-
face precision and secur-
ing method).
Reduce machine vibra-
tion. Improve the 
mounting state of the 
Servomotor or linear 
encoder.
–
A failure occurred in the 
encoder.
–
Turn OFF the power 
supply to the servo 
system.
Replace the Servomo-
tor.
–
A failure occurred in the 
Serial Converter Unit.
–
Turn OFF the power 
supply to the servo 
system.
Replace the Serial Con-
verter Unit.
–
A failure occurred in the linear 
encoder.
–
Turn OFF the power 
supply to the servo 
system.
Replace the linear 
encoder.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-51
6
Maintenance
Servomotor 
Vibrates at 
Frequency 
of Approx. 
200 to 400 
Hz.
The servo gains are not bal-
anced.
Check to see if the servo 
gains have been cor-
rectly tuned.
Perform autotuning 
without a host refer-
ence.
*
The setting of Pn100 (Speed 
Loop Gain) is too high.
Check the setting of 
Pn100.
The default setting is Kv = 
40.0 Hz.
Set Pn100 to an appro-
priate value.
–
The setting of Pn102 (Posi-
tion Loop Gain) is too high.
Check the setting of 
Pn102.
The default setting is Kp 
= 40.0/s.
Set Pn102 to an appro-
priate value.
–
The setting of Pn101 (Speed 
Loop Integral Time Con-
stant) is not appropriate.
Check the setting of 
Pn101.
The default setting is Ti = 
20.0 ms.
Set Pn101 to an appro-
priate value.
–
The setting of Pn103 
(Moment of Inertia Ratio or 
Mass Ratio) is not appropri-
ate.
Check the setting of 
Pn103.
Set Pn103 to an appro-
priate value.
–
Large Motor 
Speed 
Overshoot 
on Starting 
and Stop-
ping
The servo gains are not bal-
anced.
Check to see if the servo 
gains have been cor-
rectly tuned.
Perform autotuning 
without a host refer-
ence.
*
The setting of Pn100 (Speed 
Loop Gain) is too high.
Check the setting of 
Pn100.
The default setting is Kv = 
40.0 Hz.
Set Pn100 to an appro-
priate value.
–
The setting of Pn102 (Posi-
tion Loop Gain) is too high.
Check the setting of 
Pn102.
The default setting is Kp 
= 40.0/s.
Set Pn102 to an appro-
priate value.
–
The setting of Pn101 (Speed 
Loop Integral Time Con-
stant) is not appropriate.
Check the setting of 
Pn101.
The default setting is Ti = 
20.0 ms.
Set Pn101 to an appro-
priate value.
–
The setting of Pn103 
(Moment of Inertia Ratio or 
Mass Ratio) is not appropri-
ate.
Check the setting of 
Pn103.
Set Pn103 to an appro-
priate value.
–
The torque reference is satu-
rated.
Check the waveform of 
the torque reference.
Use the mode switch.
–
The force limits (Pn483 and 
Pn484) are set to the default 
values.
The default values of the 
force limits are Pn483 = 
30% and Pn484 = 30%.
Set Pn483 and Pn484 
to appropriate values.
*
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor 
6-52
Absolute 
Encoder 
Position 
Deviation 
Error (The 
position 
that was 
saved in the 
host con-
troller when 
the power 
was turned 
OFF is dif-
ferent from 
the posi-
tion when 
the power 
was next 
turned ON.)
Noise interference occurred 
because of incorrect Encoder 
Cable specifications.
Turn OFF the power sup-
ply to the servo system.
Check the Encoder Cable 
to see if it satisfies speci-
fications. Use shielded 
twisted-pair cables or 
screened twisted-pair 
cables with conductors of 
at least 0.12 mm
2
(stranded wire).
Use cables that satisfy 
the specifications.
–
Noise interference occurred 
because the Encoder Cable 
is too long.
Turn OFF the power sup-
ply to the servo system.
Check the length of the 
Encoder Cable.
• Rotary Servomotors: 
The Encoder Cable 
length must be 50 m 
max.
• Linear Servomotors: 
Make sure that the 
Serial Converter Unit 
cable is no longer 
than 20 m and that 
the Linear Encoder 
Cable and the Sensor 
Cable are no longer 
than 15 m each.
–
Noise interference occurred 
because the Encoder Cable 
is damaged.
Turn OFF the power sup-
ply to the servo system.
Check the Encoder Cable 
to see if it is pinched or 
the sheath is damaged.
Replace the Encoder 
Cable and correct the 
cable installation envi-
ronment.
–
The Encoder Cable was sub-
ject to excessive noise inter-
ference.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
Encoder Cable is bundled 
with a high-current line or 
installed near a high-cur-
rent line.
Correct the cable lay-
out so that no surge is 
applied by high-current 
lines.
–
There is variation in the FG 
potential because of the 
influence of machines on the 
Servomotor side, such as a 
welder.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
machines are correctly 
grounded.
Properly ground the 
machines to separate 
them from the FG of 
the encoder.
–
There is a SERVOPACK 
pulse counting error due to 
noise.
Turn OFF the power sup-
ply to the servo system.
Check to see if there is 
noise interference on the 
I/O signal line from the 
encoder or Serial Con-
verter Unit.
Implement counter-
measures against noise 
for the encoder or 
Serial Converter Unit 
wiring.
–
The encoder was subjected 
to excessive vibration or 
shock.
Turn OFF the power sup-
ply to the servo system.
Check to see if vibration 
from the machine 
occurred.
Check the Servomotor 
installation (mounting sur-
face precision, securing 
state, and alignment).
Check the linear encoder 
installation (mounting sur-
face precision and secur-
ing method).
Reduce machine vibra-
tion. Improve the 
mounting state of the 
Servomotor or linear 
encoder.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-53
6
Maintenance
Absolute 
Encoder 
Position 
Deviation 
Error (The 
position 
that was 
saved in the 
host con-
troller when 
the power 
was turned 
OFF is dif-
ferent from 
the posi-
tion when 
the power 
was next 
turned ON.)
A failure occurred in the 
encoder.
–
Turn OFF the power 
supply to the servo 
system.
Replace the Servomo-
tor or linear encoder.
–
A failure occurred in the 
SERVOPACK.
–
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK.
–
Host Controller Multiturn 
Data or Absolute Encoder 
Position Data Reading Error
Check the error detec-
tion section of the host 
controller.
Correct the error detec-
tion section of the host 
controller.
–
Check to see if the host 
controller is executing 
data parity checks.
Perform parity checks 
for the multiturn data or 
absolute encoder posi-
tion data.
–
Check for noise interfer-
ence in the cable 
between the SERVO-
PACK and the host con-
troller.
Implement counter-
measures against noise 
and then perform parity 
checks again for the 
multiturn data or abso-
lute encoder position 
data.
–
Overtravel 
Occurred
The P-OT/N-OT (Forward 
Drive Prohibit or Reverse 
Drive Prohibit) signal was 
input.
Check the external power 
supply (+24 V) voltage for 
the input signals.
Correct the external 
power supply (+24 V) 
voltage for the input 
signals.
–
Check the operating con-
dition of the overtravel 
limit switches.
Make sure that the 
overtravel limit switches 
operate correctly.
–
Check the wiring of the 
overtravel limit switches.
Correct the wiring of 
the overtravel limit 
switches.
*
Check the settings of the 
overtravel input signal 
allocations (Pn50A/
Pn50B or Pn590/Pn591).
Set the parameters to 
correct values.
*
The P-OT/N-OT (Forward 
Drive Prohibit or Reverse 
Drive Prohibit) signal mal-
functioned.
Check for fluctuation in 
the external power supply 
(+24 V) voltage for the 
input signals.
Eliminate fluctuation 
from the external power 
supply (+24 V) voltage 
for the input signals.
–
Check to see if the opera-
tion of the overtravel limit 
switches is unstable.
Stabilize the operating 
condition of the over-
travel limit switches.
–
Check the wiring of the 
overtravel limit switches 
(e.g., check for cable 
damage and loose 
screws).
Correct the wiring of 
the overtravel limit 
switches.
–
There is a mistake in the allo-
cation of the P-OT or N-OT 
(Forward Drive Prohibit or 
Reverse Drive Prohibit) sig-
nal in Pn50A = n.X or 
Pn50B = n.X.
Check to see if the P-OT 
signal is allocated in 
Pn50A = n.X.
If another signal is allo-
cated in Pn50A 
= n.X, allocate 
the P-OT signal 
instead.
*
Check to see if the N-OT 
signal is allocated in 
Pn50B = n.X.
If another signal is allo-
cated in Pn50B 
= n.X, allocate 
the N-OT signal 
instead.
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor 
6-54
Overtravel 
Occurred
The selection of the Servo-
motor stopping method is 
not correct.
Check the servo OFF 
stopping method set in 
Pn001 = n.X or 
Pn001 = n.X.
Select a Servomotor 
stopping method other 
than coasting to a stop.
*
Check the torque control 
stopping method set in 
Pn001 = n.X or 
Pn001 = n.X.
Select a Servomotor 
stopping method other 
than coasting to a stop.
Improper 
Stop Posi-
tion for 
Overtravel 
(OT) Signal
The limit switch position and 
dog length are not appropri-
ate.
–
Install the limit switch at 
the appropriate posi-
tion.
–
The overtravel limit switch 
position is too close for the 
coasting distance.
–
Install the overtravel 
limit switch at the 
appropriate position.
–
Position 
Deviation 
(without 
Alarm)
Noise interference occurred 
because of incorrect Encoder 
Cable specifications.
Check the Encoder Cable 
to see if it satisfies speci-
fications. Use shielded 
twisted-pair cables or 
screened twisted-pair 
cables with conductors of 
at least 0.12 mm
2 
(stranded wire).
Use cables that satisfy 
the specifications.
–
Noise interference occurred 
because the Encoder Cable 
is too long.
Turn OFF the power sup-
ply to the servo system.
Check the length of the 
Encoder Cable.
• Rotary Servomotors: 
The Encoder Cable 
length must be 50 m 
max.
• Linear Servomotors: 
Make sure that the 
Serial Converter Unit 
cable is no longer 
than 20 m and that 
the Linear Encoder 
Cable and the Sensor 
Cable are no longer 
than 15 m each.
–
Noise interference occurred 
because the Encoder Cable 
is damaged.
Turn OFF the power sup-
ply to the servo system.
Check the Encoder Cable 
to see if it is pinched or 
the sheath is damaged.
Replace the Encoder 
Cable and correct the 
cable installation envi-
ronment.
–
The Encoder Cable was sub-
jected to excessive noise 
interference.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
Encoder Cable is bundled 
with a high-current line or 
installed near a high-cur-
rent line.
Correct the cable lay-
out so that no surge is 
applied by high-current 
lines.
–
There is variation in the FG 
potential because of the 
influence of machines on the 
Servomotor side, such as a 
welder.
Turn OFF the power sup-
ply to the servo system.
Check to see if the 
machines are correctly 
grounded.
Properly ground the 
machines to separate 
them from the FG of 
the encoder.
–
There is a SERVOPACK 
pulse counting error due to 
noise.
Turn OFF the power sup-
ply to the servo system.
Check to see if there is 
noise interference on the 
I/O signal line from the 
encoder or Serial Con-
verter Unit.
Implement counter-
measures against noise 
for the encoder wiring 
or Serial Converter Unit 
wiring.
–
Continued on next page.
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
6.3  Troubleshooting Based on the Operation and Conditions of the Servomotor
6-55
6
Maintenance
* For details, refer to the following manual.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
Position 
Deviation 
(without 
Alarm)
The encoder was subjected 
to excessive vibration or 
shock.
Turn OFF the power sup-
ply to the servo system.
Check to see if vibration 
from the machine 
occurred.
Check the Servomotor 
installation (mounting sur-
face precision, securing 
state, and alignment).
Check the linear encoder 
installation (mounting sur-
face precision and secur-
ing method).
Reduce machine vibra-
tion. Improve the 
mounting state of the 
Servomotor or linear 
encoder.
–
The coupling between the 
machine and Servomotor is 
not suitable.
Turn OFF the power sup-
ply to the servo system.
Check to see if position 
offset occurs at the cou-
pling between machine 
and Servomotor.
Correctly secure the 
coupling between the 
machine and Servomo-
tor.
–
Noise interference occurred 
because of incorrect I/O sig-
nal cable specifications.
Turn OFF the power sup-
ply to the servo system.
Check the I/O signal 
cables to see if they sat-
isfy specifications. Use 
shielded twisted-pair 
cables or screened 
twisted-pair cables with 
conductors of at least 
0.12 mm
2
(stranded wire).
Use cables that satisfy 
the specifications.
–
Noise interference occurred 
because an I/O signal cable 
is too long.
Turn OFF the power sup-
ply to the servo system.
Check the lengths of the 
I/O signal cables.
The I/O signal cables 
must be no longer than 
3 m.
–
An encoder fault occurred. 
(The pulse count does not 
change.)
–
Turn OFF the power 
supply to the servo 
system.
Replace the Servomo-
tor or linear encoder.
–
A failure occurred in the 
SERVOPACK.
–
Turn OFF the power 
supply to the servo 
system.
Replace the SERVO-
PACK.
–
Servomotor 
Overheated
The surrounding air tempera-
ture is too high.
Measure the surrounding 
air temperature around 
the Servomotor.
Reduce the surround-
ing air temperature to 
40°C or less.
–
The surface of the Servomo-
tor is dirty.
Turn OFF the power sup-
ply to the servo system.
Visually check the surface 
for dirt.
Clean dirt, dust, and oil 
from the surface.
–
There is an overload on the 
Servomotor.
Check the load status 
with a monitor.
If the Servomotor is 
overloaded, reduce the 
load or replace the 
Servo Drive with a 
SERVOPACK and Ser-
vomotor with larger 
capacities.
–
Polarity detection was not 
performed correctly.
Check to see if electrical 
angle 2 (electrical angle 
from polarity origin) at any 
position is between ±10°.
Correct the settings for 
the polarity detection-
related parameters.
–
Continued from previous page.
Problem Possible Cause Confirmation Correction Reference
This chapter provides information on the parameters.
7.1
Parameter Lists  . . . . . . . . . . . . . . . . . . . . . . 7-2
7.1.1 Interpreting the Servo Parameter Lists   . . . . . . . . 7-2
7.1.2 Interpreting the MECHATROLINK-III Common 
Parameter Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
7.2
List of Servo Parameters . . . . . . . . . . . . . . . 7-4
7.3
List of MECHATROLINK-III Common Parameters . . . 7-56
Parameter Lists
7
7.1  Parameter Lists
7.1.1  Interpreting the Servo Parameter Lists
7-2
7.1
Parameter Lists
7.1.1
Interpreting the Servo Parameter Lists
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applica-
ble Motors
When 
Enabled
Classi-
fication
Refer-
ence
Pn000
2 Basic Function Selections 0
0000h to 
10B1h
–
0000h All After restart Setup
–
Rotary Servomotor terms are used for parameters that are applicable 
to all Servomotors. If you are using a Linear Servomotor, you need to 
interpret the terms accordingly. Refer to the following section for 
details.
Rotary: The parameter is used for only Rotary Servomotors.
Linear: The parameter is used for only Linear Servomotors.
All: The parameter is used for both Rotary Servomotors and Linear Servomotors.
The types of Servomotors to which the parameter applies.

Differences in Terms for Rotary Servomotors and 
Linear Servomotors on page xii
Indicates when a change to the
parameter will be effective. 
“After restart” indicates parameters 
that will be effective after one of the 
following is executed.
• The power supply is turned OFF 
and ON again.
• The CONFIG command is sent.
• A software reset is executed.
M3
All Axes
n.X
Rotation Direction Selection
Reference
Movement Direction Selection
0
Use CCW as the forward direction.
–
Use the direction in which the linear encoder counts up as the for-
ward direction.
1
Use CW as the forward direction. (Reverse Rotation Mode)
Use the direction in which the linear encoder counts down as the 
forward direction. (Reverse Movement Mode)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected
Reference
0
When an encoder is not connected, start as SERVOPACK for 
Rotary Servomotor.
–
1
When an encoder is not connected, start as SERVOPACK for Lin-
ear Servomotor.
If there are differences in the parameters for Rotary 
Servomotor and Linear Servomotor, information is 
provided for both.
Bottom row: For Linear Servomotors
Top row: For Rotary Servomotors
Tuning
Setup
There are the following two classications.
For details, refer to the following manual.
Σ
-
7-Series 
Σ
-7W SERVOPACK with 
MECHATROLINK-III Communications References 
Product Manual (Manual No.: SIEP S800001 29)
Symbols are provided when a parameter is valid only for a specic 
prole.
•          
: 
Parameters that are valid only for a MECHATROLINK-II-compatible prole.
•          
: 
Parameters that are valid only for a MECHATROLINK-III standard servo prole.
M2
M3
This parameter applies to both axis A and 
axis B. If you change the setting, the new 
setting will be applied to both axes.
7.1  Parameter Lists
7.1.2  Interpreting the MECHATROLINK-III Common Parameter Lists
7
Parameter Lists
7-3
7.1.2
Interpreting the MECHATROLINK-III Common Parameter 
Lists
Parameter 
No.
Size Name
Setting 
Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
61
PnAC2
4 Speed Loop Gain
1,000 to 
2,000,000
0.001 Hz
[0.1 Hz]
40000 All
Immedi-
ately
Tuning
All: The parameter is used for both Rotary Servomotors and Linear Servomotors.
Rotary: The parameter is used for only Rotary Servomotors.
Linear: The parameter is used for only Linear Servomotors.
The types of Servomotors to which the parameter applies.
Rotary Servomotor terms are used for parameters that are 
applicable to all Servomotors. If you are using a Linear Servomotor, 
you need to interpret the terms accordingly. Refer to the following 
section for details.

Differences in Terms for Rotary Servomotors and 
Linear Servomotors on page xii
Indicates when a change to the 
parameter will be effective.
“After restart” indicates parameters 
that will be effective after one of the 
following is executed.
• The power supply is turned OFF 
and ON again.
• The CONFIG command is sent.
• A software reset is executed.
You can set the parameter in increments of 
the setting unit.
However, if a unit is given in square brackets, 
the setting is automatically converted to the 
resolution given in the square brackets.
7.2  List of Servo Parameters
7-4
7.2
List of Servo Parameters
The following table lists the parameters.
Note: Do not change the following parameters from their default settings.
• Reserved parameters
• Parameters not given in this manual
• Parameters that are not valid for the Servomotor that you are using, as given in the parameter table
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
Pn000
2
Basic Function Selec-
tions 0
0000h 
to 
10B1h
– 0000h All
After 
restart
Setup –
Pn001
2
Application Function 
Selections 1
0000h 
to 
1142h
– 0000h All
After 
restart
Setup –
Continued on next page.
n.X
Rotation Direction Selection
Reference
Movement Direction Selection
0
Use CCW as the forward direction.
*1
Use the direction in which the linear encoder counts up as the for-
ward direction.
1
Use CW as the forward direction. (Reverse Rotation Mode)
Use the direction in which the linear encoder counts down as the 
forward direction. (Reverse Movement Mode)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Rotary/Linear Servomotor Startup Selection When Encoder Is Not Con-
nected
Reference
0
When an encoder is not connected, start as SERVOPACK for 
Rotary Servomotor.
*1
1
When an encoder is not connected, start as SERVOPACK for Lin-
ear Servomotor.
n.X
Motor Stopping Method for Servo OFF and Group 1 Alarms Reference
0 Stop the motor by applying the dynamic brake.
*1
1
Stop the motor by the applying dynamic brake and then release 
the dynamic brake.
2 Coast the motor to a stop without the dynamic brake.
n.X
Overtravel Stopping Method Reference
0
Apply the dynamic brake or coast the motor to a stop (use the 
stopping method set in Pn001 = n.X).
*1
1
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque and then servo-lock the motor.
2
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque and then let the motor coast.
3
Decelerate the motor to a stop using the deceleration time set in 
Pn30A and then servo-lock the motor.
4
Decelerate the motor to a stop using the deceleration time set in 
Pn30A and then let the motor coast.
n.X
Main Circuit Power Supply AC/DC Input Selection Reference
0
Input AC power as the main circuit power supply using the L1, L2, 
and L3 terminals (do not use shared converter).
*1
1
Input DC power as the main circuit power supply using the B1/  
and   2 terminals or the B1 and   2 terminals (use an external 
converter or the shared converter).
n.X Reserved parameter (Do not change.)
All Axes
7.2  List of Servo Parameters
7-5
7
Parameter Lists
Pn002
2
Application Function 
Selections 2
0000h 
to 
4213h
– 0011h –
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
MECHATROLINK Command Position and Speed Control 
Option
Applicable 
Motors
Reference
0 Reserved setting (Do not use.)
All
*2
1 Use TLIM as the torque limit.
2 Reserved setting (Do not use.)
3 Reserved setting (Do not use.)
n.X
To rq ue  Co n t r o l O pt io n
Applicable 
Motors
Reference
0 Reserved setting (Do not use.)
All
*2
1
Use the speed limit for torque control (VLIM) as the 
speed limit.
n.X
Encoder Usage
Applicable 
Motors
Reference
0
Use the encoder according to encoder specifica-
tions.
All
*1
1 Use the encoder as an incremental encoder.
2
Use the encoder as a single-turn absolute 
encoder.
Rotary
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-6
Pn006
2
Application Function 
Selections 6
0000h 
to 
105Fh
– 0002h All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
All Axes
n.XX
Analog Monitor 1 Signal Selection
00
Motor speed (1 V/1,000 min
-1
)
Motor speed (1 V/1,000 mm/s)
01
Speed reference (1 V/1,000 min
-1
)
Speed reference (1 V/1,000 mm/s)
02
Torque reference (1 V/100% rated torque)
Force reference (1 V/100% rated force)
03 Position deviation (0.05 V/reference unit)
04
Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit)
Position amplifier deviation (after electronic gear) (0.05 V/linear encoder 
pulse unit)
05
Position reference speed (1 V/1,000 min
-1
)
Position reference speed (1 V/1,000 mm/s)
06 Reserved setting (Do not use.)
07 Reserved setting (Do not use.)
08
Positioning completion (positioning completed: 5 V, positioning not com-
pleted: 0 V)
09
Speed feedforward (1 V/1,000 min
-1
)
Speed feedforward (1 V/1,000 mm/s)
0A
Torque feedforward (1 V/100% rated torque)
Force feedforward (1 V/100% rated force)
0B Active gain (1st gain: 1 V, 2nd gain: 2 V)
0C
Completion of position reference distribution (completed: 5 V, not com-
pleted: 0 V)
0D Reserved setting (Do not use.)
0E Reserved setting (Do not use.)
0F Reserved setting (Do not use.)
10 Main circuit DC voltage
11 to 5F Reserved settings (Do not use.)
n.X Reserved parameter (Do not change.)
n.X
Output Axis Selection
0 Output axis A data.
1 Output axis B data.
7.2  List of Servo Parameters
7-7
7
Parameter Lists
Pn007
2
Application Function 
Selections 7
0000h 
to 
105Fh
– 0000h All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
All Axes
n.XX
Analog Monitor 2 Signal Selection
00
Motor speed (1 V/1,000 min
-1
)
Motor speed (1 V/1,000 mm/s)
01
Speed reference (1 V/1,000 min
-1
)
Speed reference (1 V/1,000 mm/s)
02
Torque reference (1 V/100% rated torque)
Force reference (1 V/100% rated force)
03 Position deviation (0.05 V/reference unit)
04
Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit)
Position amplifier deviation (after electronic gear) (0.05 V/linear encoder 
pulse unit)
05
Position reference speed (1 V/1,000 min
-1
)
Position reference speed (1 V/1,000 mm/s)
06 Reserved setting (Do not use.)
07 Reserved setting (Do not use.)
08
Positioning completion (positioning completed: 5 V, positioning not com-
pleted: 0 V)
09
Speed feedforward (1 V/1,000 min
-1
)
Speed feedforward (1 V/1,000 mm/s)
0A
Torque feedforward (1 V/100% rated torque)
Force feedforward (1 V/100% rated force)
0B Active gain (1st gain: 1 V, 2nd gain: 2 V)
0C
Completion of position reference distribution (completed: 5 V, not com-
pleted: 0 V)
0D Reserved setting (Do not use.)
0E Reserved setting (Do not use.)
0F Reserved setting (Do not use.)
10 Main circuit DC voltage
11 to 5F Reserved settings (Do not use.)
n.X Reserved parameter (Do not change.)
n.X
Output Axis Selection
0 Output axis A data.
1 Output axis B data.
7.2  List of Servo Parameters 
7-8
Pn008
2
Application Function 
Selections 8
0000h 
to 
7121h
– 4000h Rotary
After 
restart
Setup –
Pn009
2
Application Function 
Selections 9
0000h 
to 
0121h
– 0010h All
After 
restart
Tuning –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Low Battery Voltage Alarm/Warning Selection Reference
0 Output alarm (A.830) for low battery voltage.
*1
1 Output warning (A.930) for low battery voltage.
n.X
Function Selection for Undervoltage Reference
0 Do not detect undervoltage.
*1
1 Detect undervoltage warning and limit torque at host controller.
2
Detect undervoltage warning and limit torque with Pn424 and 
Pn425 (i.e., only in SERVOPACK).
n.X
Warning Detection Selection Reference
0 Detect warnings.
*1
1 Do not detect warnings except for A.971.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Current Control Mode Selection
0
Use current control mode 1.
*1
1
2 Use current control mode 2.
n.X
Speed Detection Method Selection Reference
0 Use speed detection 1.
*1
1 Use speed detection 2.
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-9
7
Parameter Lists
Pn00A
2
Application Function 
Selections A
0000h 
to 
1044h
– 0001h All
After 
restart
Setup –
Pn00B
2
Application Function 
Selections B
0000h 
to 
1121h
– 0000h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Motor Stopping Method for Group 2 Alarms Reference
0
Apply the dynamic brake or coast the motor to a stop (use the 
stopping method set in Pn001 = n.X).
*1
1
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque. Use the setting of Pn001 = n.X for the 
status after stopping.
2
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque and then let the motor coast.
3
Decelerate the motor to a stop using the deceleration time set in 
Pn30A. Use the setting of Pn001 = n.X for the status after 
stopping.
4
Decelerate the motor to a stop using the deceleration time set in 
Pn30A and then let the motor coast.
n.X
Stopping Method for Forced Stops Reference
0
Apply the dynamic brake or coast the motor to a stop (use the 
stopping method set in Pn001 = n.X).
*1
1
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque. Use the setting of Pn001 = n.X for the 
status after stopping.
2
Decelerate the motor to a stop using the torque set in Pn406 as 
the maximum torque and then let the motor coast.
3
Decelerate the motor to a stop using the deceleration time set in 
Pn30A. Use the setting of Pn001 = n.X for the status after 
stopping.
4
Decelerate the motor to a stop using the deceleration time set in 
Pn30A and then let the motor coast.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Operator Parameter Display Selection Reference
0 Display only setup parameters.
*1
1 Display all parameters.
n.X
Motor Stopping Method for Group 2 Alarms Reference
0 Stop the motor by setting the speed reference to 0.
*1
1
Apply the dynamic brake or coast the motor to a stop (use the 
stopping method set in Pn001 = n.X).
2 Set the stopping method with Pn00A = n.X.
n.X
Power Input Selection for Three-phase SERVOPACK Reference
0 Use a three-phase power supply input.
*1
1
Use a three-phase power supply input as a single-phase power 
supply input.
n.X Reserved parameter (Do not change.)
All Axes
7.2  List of Servo Parameters 
7-10
Pn00C
2
Application Function 
Selections C
0000h 
to 
0131h
– 0000h –
After 
restart
Setup
*1
Pn00D
2
Application Function 
Selections D
0000h 
to 
1001h
– 0000h All
After 
restart
Setup
*1
Pn00F
2
Application Function 
Selections F
0000h 
to 
2011h
–
0000
h All
After 
restart
Setup
–
Pn021 2
Reserved parameter (Do 
not change.)
––
0000h All
–––
Pn022 2
Reserved parameter (Do 
not change.)
––
0000h All
–
–
–
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Function Selection for Test without a Motor
Applicable 
Motors
0 Disable tests without a motor.
All
1 Enable tests without a motor.
n.
X
Encoder Resolution for Tests without a Motor
Applicable 
Motors
0Use 13 bits.
Rotary
1Use 20 bits.
2Use 22 bits.
3Use 24 bits.
n.X
Encoder Type Selection for Tests without a Motor
Applicable 
Motors
0 Use an incremental encoder.
All
1 Use an absolute encoder.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Overtravel Warning Detection Selection
0 Do not detect overtravel warnings.
1 Detect overtravel warnings.
All Axes
n.X
Preventative Maintenance Warning Selection Reference
0 Do not detect preventative maintenance warnings.
*1
1 Detect preventative maintenance warnings.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-11
7
Parameter Lists
Pn080
2
Application Function 
Selections 80
0000h 
to 
1111h
– 0000h Linear
After 
restart
Setup –
Pn100 2 Speed Loop Gain 10 to 20,000 0.1 Hz 400 All
Immedi-
ately
Tuning
*1
Pn101 2
Speed Loop Integral 
Time Constant
15 to 51,200 0.01 ms 2000 All
Immedi-
ately
Tuning
*1
Pn102 2 Position Loop Gain 10 to 20,000 0.1/s 400 All
Immedi-
ately
Tuning
*1
Pn103 2 Moment of Inertia Ratio 0 to 20,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn104 2
Second Speed Loop 
Gain
10 to 20,000 0.1 Hz 400 All
Immedi-
ately
Tuning
*1
Pn105 2
Second Speed Loop 
Integral Time Constant
15 to 51,200 0.01 ms 2000 All
Immedi-
ately
Tuning
*1
Pn106 2
Second Position Loop 
Gain
10 to 20,000 0.1/s 400 All
Immedi-
ately
Tuning
*1
Pn109 2 Feedforward 0 to 100 1% 0 All
Immedi-
ately
Tuning
*1
Pn10A 2
Feedforward Filter Time 
Constant
0 to 6,400 0.01 ms 0 All
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Polarity Sensor Selection Reference
0 Use polarity sensor.
*1
1 Do not use polarity sensor.
n.X
Motor Phase Sequence Selection Reference
0 Set a phase-A lead as a phase sequence of U, V, and W.
*1
1 Set a phase-B lead as a phase sequence of U, V, and W.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-12
Pn10B
2
Gain Application Selec-
tions
0000h 
to 
5334h
– 0000h All – Setup –
Pn10C 2
Mode Switching Level 
for Torque Reference
0 to 800 1% 200 All
Immedi-
ately
Tuning
*1
Pn10D 2
Mode Switching Level 
for Speed Reference
0 to 10,000
1 min
-1
0Rotary
Immedi-
ately
Tuning
*1
Pn10E 2
Mode Switching Level 
for Acceleration
0 to 30,000
1 min
-1
/s
0Rotary
Immedi-
ately
Tuning
*1
Pn10F 2
Mode Switching Level 
for Position Deviation
0 to 10,000
1 refer-
ence 
unit
0All
Immedi-
ately
Tuning
*1
Pn11F 2
Position Integral Time 
Constant
0 to 50,000 0.1 ms 0 All
Immedi-
ately
Tuning
*1
Pn121 2
Friction Compensation 
Gain
10 to 1,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn122 2
Second Friction Com-
pensation Gain
10 to 1,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn123 2
Friction Compensation 
Coefficient
0 to 100 1% 0 All
Immedi-
ately
Tuning
*1
Pn124 2
Friction Compensation 
Frequency Correction
-10,000 to 
10,000
0.1 Hz 0 All
Immedi-
ately
Tuning
*1
Pn125 2
Friction Compensation 
Gain Correction
1 to 1,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn131 2 Gain Switching Time 1 0 to 65,535 1 ms 0 All
Immedi-
ately
Tuning
*1
Pn132 2 Gain Switching Time 2 0 to 65,535 1 ms 0 All
Immedi-
ately
Tuning
*1
Pn135 2
Gain Switching Waiting 
Time 1
0 to 65,535 1 ms 0 All
Immedi-
ately
Tuning
*1
Pn136 2
Gain Switching Waiting 
Time 2
0 to 65,535 1 ms 0 All
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Mode Switching Selection
When 
Enabled
Reference
0
Use the internal torque reference as the condition 
(level setting: Pn10C).
Immedi-
ately
*1
1
Use the speed reference as the condition (level set-
ting: Pn10D).
Use the speed reference as the condition (level set-
ting: Pn181).
2
Use the acceleration reference as the condition (level 
setting: Pn10E).
Use the acceleration reference as the condition (level 
setting: Pn182).
3
Use the position deviation as the condition (level set-
ting: Pn10F).
4 Do not use mode switching.
n.X
Speed Loop Control Method
When 
Enabled
Reference
0PI control
After 
restart
*1
1I-P control
2 and 3 Reserved settings (Do not use.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-13
7
Parameter Lists
Pn139
2
Automatic Gain Switch-
ing Selections 1
0000h 
to 
0052h
– 0000h All
Immedi-
ately
Tuning
*1
Pn13D 2 Current Gain Level 100 to 2,000 1% 2000 All
Immedi-
ately
Tuning
*1
Pn140
2
Model Following Con-
trol-Related Selections
0000h 
to 
1121h
– 0100h All
Immedi-
ately
Tuning –
Pn141 2
Model Following Con-
trol Gain
10 to 20,000 0.1/s 500 All
Immedi-
ately
Tuning
*1
Pn142 2
Model Following Con-
trol Gain Correction
500 to 2,000 0.1% 1000 All
Immedi-
ately
Tuning
*1
Pn143 2
Model Following Con-
trol Bias in the Forward 
Direction
0 to 10,000 0.1% 1000 All
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Gain Switching Selection
0
Use manual gain switching.
The gain is switched manually with G-SEL in the servo command output sig-
nals (SVCMD_IO).
1 Reserved setting (Do not use.)
2
Use automatic gain switching pattern 1.
The gain is switched automatically from the first gain to the second gain when 
switching condition A is satisfied. The gain is switched automatically from the 
second gain to the first gain when switching condition A is not satisfied.
n.X
Gain Switching Condition A
0 /COIN (Positioning Completion Output) signal turns ON.
1 /COIN (Positioning Completion Output) signal turns OFF.
2 /NEAR (Near Output) signal turns ON.
3 /NEAR (Near Output) signal turns OFF.
4 Position reference filter output is 0 and position reference input is OFF.
5 Position reference input is ON.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Model Following Control Selection Reference
0 Do not use model following control.
*1
1 Use model following control.
n.X
Vibration Suppression Selection Reference
0 Do not perform vibration suppression.
*1
1 Perform vibration suppression for a specific frequency.
2 Perform vibration suppression for two specific frequencies.
n.X
Vibration Suppression Adjustment Selection Reference
0
Do not adjust vibration suppression automatically during execu-
tion of autotuning without a host reference, autotuning with a 
host reference, and custom tuning.
*1
1
Adjust vibration suppression automatically during execution of 
autotuning without a host reference, autotuning with a host ref-
erence, and custom tuning.
n.X
Speed Feedforward (VFF)/Torque Feedforward (TFF) Selection Reference
0
Do not use model following control and speed/torque feedfor-
ward together.
*1
1
Use model following control and speed/torque feedforward 
together.
7.2  List of Servo Parameters 
7-14
Pn144 2
Model Following Con-
trol Bias in the Reverse 
Direction
0 to 10,000 0.1% 1000 All
Immedi-
ately
Tuning
*1
Pn145 2
Vibration Suppression 1 
Frequency A
10 to 2,500 0.1 Hz 500 All
Immedi-
ately
Tuning
*1
Pn146 2
Vibration Suppression 1 
Frequency B
10 to 2,500 0.1 Hz 700 All
Immedi-
ately
Tuning
*1
Pn147 2
Model Following Con-
trol Speed Feedforward 
Compensation
0 to 10,000 0.1% 1000 All
Immedi-
ately
Tuning
*1
Pn148 2
Second Model Follow-
ing Control Gain
10 to 20,000 0.1/s 500 All
Immedi-
ately
Tuning
*1
Pn149 2
Second Model Follow-
ing Control Gain Correc-
tion
500 to 2,000 0.1% 1000 All
Immedi-
ately
Tuning
*1
Pn14A 2
Vibration Suppression 2 
Frequency
10 to 2,000 0.1 Hz 800 All
Immedi-
ately
Tuning
*1
Pn14B 2
Vibration Suppression 2 
Correction
10 to 1,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn14F
2
Control-Related Selec-
tions
0000h 
to 
0021h
– 0021h All
After 
restart
Tuning –
Pn160
2
Anti-Resonance Con-
trol-Related Selections
0000h 
to 
0011h
– 0010h All
Immedi-
ately
Tuning –
Pn161 2
Anti-Resonance Fre-
quency
10 to 20,000 0.1 Hz 1000 All
Immedi-
ately
Tuning
*1
Pn162 2
Anti-Resonance Gain 
Correction
1 to 1,000 1% 100 All
Immedi-
ately
Tuning
*1
Pn163 2
Anti-Resonance Damp-
ing Gain
0 to 300 1% 0 All
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Model Following Control Type Selection Reference
0 Use model following control type 1.
*1
1 Use model following control type 2.
n.X
Tuning-less Type Selection Reference
0 Use tuning-less type 1.
*1
1 Use tuning-less type 2.
2 Use tuning-less type 3.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Anti-Resonance Control Selection Reference
0 Do not use anti-resonance control.
*1
1 Use anti-resonance control.
n.X
Anti-Resonance Control Adjustment Selection Reference
0
Do not adjust anti-resonance control automatically during execu-
tion of autotuning without a host reference, autotuning with a host 
reference, and custom tuning.
*1
1
Adjust anti-resonance control automatically during execution of 
autotuning without a host reference, autotuning with a host refer-
ence, and custom tuning.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-15
7
Parameter Lists
Pn164 2
Anti-Resonance Filter 
Time Constant 1 Cor-
rection
-1,000 to 
1,000
0.01 ms 0 All
Immedi-
ately
Tuning
*1
Pn165 2
Anti-Resonance Filter 
Time Constant 2 Cor-
rection
-1,000 to 
1,000
0.01 ms 0 All
Immedi-
ately
Tuning
*1
Pn166 2
Anti-Resonance Damp-
ing Gain 2
0 to 1,000 1% 0 All
Immedi-
ately
Tuning
*1
Pn170
2
Tuning-less Function-
Related Selections
0000h 
to 
2711h
– 1401h All – Setup
*1
Pn181 2
Mode Switching Level 
for Speed Reference
0 to 10,000 1 mm/s 0 Linear
Immedi-
ately
Tuning
*1
Pn182 2
Mode Switching Level 
for Acceleration
0 to 30,000
1 mm/s
2
0 Linear
Immedi-
ately
Tuning
*1
Pn205 2 Multiturn Limit 0 to 65,535 1 rev 65535 Rotary
After 
restart
Setup
*1
Pn207
2
Position Control Func-
tion Selections
0000h 
to 
2210h
– 0010h All
After 
restart
Setup –
Pn20E 4
Electronic Gear Ratio 
(Numerator)
1 to 
1,073,741,824
116 All
After 
restart
Setup
*1
Pn210 4
Electronic Gear Ratio 
(Denominator)
1 to 
1,073,741,824
11 All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Tuning-less Selection
When 
Enabled
0 Disable tuning-less function.
After 
restart
1 Enable tuning-less function.
n.X
Speed Control Method
When 
Enabled
0 Use for speed control.
After 
restart
1 Use for speed control and use host controller for position control.
n.X
Rigidity Level
When 
Enabled
0 to 7 Set the rigidity level.
Immedi-
ately
n.X
Tuning-less Load Level
When 
Enabled
0 to 2 Set the load level for the tuning-less function.
Immedi-
ately
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
/COIN (Positioning Completion Output) Signal Output Timing
Refer-
ence
0
Output when the absolute value of the position deviation is the 
same or less than the setting of Pn522 (Positioning Completed 
Width).
*1
1
Output when the absolute value of the position error is the same 
or less than the setting of Pn522 (Positioning Completed Width) 
and the reference after the position reference filter is 0.
2
Output when the absolute value of the position error is the same 
or less than the setting of Pn522 (Positioning Completed Width) 
and the reference input is 0.
7.2  List of Servo Parameters 
7-16
Pn230
2
Position Control Expan-
sion Function Selections
0000h 
to 
0001h
– 0000h All
After 
restart
Setup
*1
Pn231 4 Backlash Compensation
-500,000 to 
500,000
0.1 ref-
erence 
units
0All
Immedi-
ately
Setup
*1
Pn233 2
Backlash Compensa-
tion Time Constant
0 to 65,535 0.01 ms 0 All
Immedi-
ately
Setup
*1
Pn282 4
Linear Encoder Scale 
Pitch
0 to 
6,553,600
0.01 
μm
0Linear
After 
restart
Setup
*1
Pn304 2 Jogging Speed 0 to 10,000
Rotary: 1 
min
-1
Direct 
Drive: 
0.1 min
-1
500 Rotary
Immedi-
ately
Setup
*1
Pn305 2
Soft Start Acceleration 
Time
0 to 10,000 1 ms 0 All
Immedi-
ately
Setup
*2
Pn306 2
Soft Start Deceleration 
Time
0 to 10,000 1 ms 0 All
Immedi-
ately
Setup
*2
Pn308 2
Speed Feedback Filter 
Time Constant
0 to 65,535 0.01 ms 0 All
Immedi-
ately
Setup
*1
Pn30A 2
Deceleration Time for 
Servo OFF and Forced 
Stops
0 to 10,000 1 ms 0 All
Immedi-
ately
Setup
*1
Pn30C 2
Speed Feedforward 
Average Movement 
Time
0 to 5,100 0.1 ms 0 All
Immedi-
ately
Setup –
Pn310
2
Vibration Detection 
Selections
0000h 
to 
0002h
– 0000h All
Immedi-
ately
Setup
*1
Pn311 2
Vibration Detection Sen-
sitivity
50 to 500 1% 100 All
Immedi-
ately
Tuning
*1
Pn312 2
Vibration Detection 
Level
0 to 5,000
1 min
-1
50 Rotary
Immedi-
ately
Tuning
*1
Pn316 2 Maximum Motor Speed 0 to 65,535
1 min
-1
10000 Rotary
After 
restart
Setup
*1
Pn324 2
Moment of Inertia Cal-
culation Starting Level
0 to 20,000 1% 300 All
Immedi-
ately
Setup
*1
Pn383 2 Jogging Speed 0 to 10,000 1 mm/s 50 Linear
Immedi-
ately
Setup
*1
Pn384 2
Vibration Detection 
Level
0 to 5,000 1 mm/s 10 Linear
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Backlash Compensation Direction
0 Compensate forward references.
1 Compensate reverse references.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
Vibration Detection Selection
0 Do not detect vibration.
1 Output a warning (A.911) if vibration is detected.
2 Output an alarm (A.520) if vibration is detected.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-17
7
Parameter Lists
Pn385 2Maximum Motor Speed 1 to 100
100 
mm/s
50 Linear
After 
restart
Setup
*1
Pn401 2
First Stage First Torque 
Reference Filter Time 
Constant
0 to 65,535 0.01 ms 100 All
Immedi-
ately
Tuning
*1
Pn402 2 Forward Torque Limit 0 to 800
1%
*2
800 Rotary
Immedi-
ately
Setup
*1
Pn403 2 Reverse Torque Limit 0 to 800
1%
*2
800 Rotary
Immedi-
ately
Setup
*1
Pn404 2
Forward External Torque 
Limit
0 to 800
1%
*2
100 All
Immedi-
ately
Setup
*1
Pn405 2
Reverse External Torque 
Limit
0 to 800
1%
*2
100 All
Immedi-
ately
Setup
*1
Pn406 2 Emergency Stop Torque 0 to 800
1%
*2
800 All
Immedi-
ately
Setup
*1
Pn407 2
Speed Limit during 
Torque Control
0 to 10,000
1 min
-1
10000 Rotary
Immedi-
ately
Setup
*1
Pn408
2
Torque-Related Func-
tion Selections
0000h 
to 
1111h
– 0000h All – Setup –
Pn409 2
First Stage Notch Filter 
Frequency
50 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn40A 2
First Stage Notch Filter 
Q Value
50 to 1,000 0.01 70 All
Immedi-
ately
Tuning
*1
Pn40B 2
First Stage Notch Filter 
Depth
0 to 1,000 0.001 0 All
Immedi-
ately
Tuning
*1
Pn40C 2
Second Stage Notch Fil-
ter Frequency
50 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn40D 2
Second Stage Notch Fil-
ter Q Value
50 to 1,000 0.01 70 All
Immedi-
ately
Tuning
*1
Pn40E 2
Second Stage Notch Fil-
ter Depth
0 to 1,000 0.001 0 All
Immedi-
ately
Tuning
*1
Pn40F 2
Second Stage Second 
Torque Reference Filter 
Frequency
100 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn410 2
Second Stage Second 
Torque Reference Filter 
Q Value
50 to 100 0.01 50 All
Immedi-
ately
Tuning
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Notch Filter Selection 1
When 
Enabled
Reference
0 Disable first stage notch filter.
Immedi-
ately
*1
1 Enable first stage notch filter.
n.X
Speed Limit Selection
When 
Enabled
Reference
0
Use the smaller of the maximum motor speed and the 
setting of Pn407 as the speed limit.
After 
restart
*1
Use the smaller of the maximum motor speed and the 
setting of Pn480 as the speed limit.
1
Use the smaller of the overspeed alarm detection 
speed and the setting of Pn407 as the speed limit.
Use the smaller of the overspeed alarm detection 
speed and the setting of Pn480 as the speed limit.
n.X
Notch Filter Selection 2
When 
Enabled
Reference
0 Disable second stage notch filter.
Immedi-
ately
*1
1 Enable second stage notch filter.
n.X
Friction Compensation Function Selection
When 
Enabled
Reference
0 Disable friction compensation.
Immedi-
ately
*1
1 Enable friction compensation.
7.2  List of Servo Parameters 
7-18
Pn412 2
First Stage Second 
Torque Reference Filter 
Time Constant
0 to 65,535 0.01 ms 100 All
Immedi-
ately
Tuning
*1
Pn416
2
Torque-Related Func-
tion Selections 2
0000h 
to 
1111h
– 0000h All
Immedi-
ately
Setup
*1
Pn417 2
Third Stage Notch Filter 
Frequency
50 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn418 2
Third Stage Notch Filter 
Q Value
50 to 1,000 0.01 70 All
Immedi-
ately
Tuning
*1
Pn419 2
Third Stage Notch Filter 
Depth
0 to 1,000 0.001 0 All
Immedi-
ately
Tuning
*1
Pn41A 2
Fourth Stage Notch Fil-
ter Frequency
50 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn41B 2
Fourth Stage Notch Fil-
ter Q Value
50 to 1,000 0.01 70 All
Immedi-
ately
Tuning
*1
Pn41C 2
Fourth Stage Notch Fil-
ter Depth
0 to 1,000 0.001 0 All
Immedi-
ately
Tuning
*1
Pn41D 2
Fifth Stage Notch Filter 
Frequency
50 to 5,000 1 Hz 5000 All
Immedi-
ately
Tuning
*1
Pn41E 2
Fifth Stage Notch Filter 
Q Value
50 to 1,000 0.01 70 All
Immedi-
ately
Tuning
*1
Pn41F 2
Fifth Stage Notch Filter 
Depth
0 to 1,000 0.001 0 All
Immedi-
ately
Tuning
*1
Pn423
2
Speed Ripple Compen-
sation Selections
0000h 
to 
1111h
– 0000h Rotary – Setup
*1
Pn424 2
Torque Limit at Main Cir-
cuit Voltage Drop
0 to 100
1%
*2
50 All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Notch Filter Selection 3
0 Disable third stage notch filter.
1 Enable third stage notch filter.
n.X
Notch Filter Selection 4
0 Disable fourth stage notch filter.
1 Enable fourth stage notch filter.
n.X
Notch Filter Selection 5
0 Disable fifth stage notch filter.
1 Enable fifth stage notch filter.
n.X Reserved parameter (Do not change.)
n.X
Speed Ripple Compensation Function Selection
When 
Enabled
0 Disable speed ripple compensation.
Immedi-
ately
1 Enable speed ripple compensation.
n.X
Speed Ripple Compensation Information Disagreement Warning Detec-
tion Selection
When 
Enabled
0 Detect A.942 alarms.
After 
restart
1 Do not detect A.942 alarms.
n.X
Speed Ripple Compensation Enable Condition Selection
When 
Enabled
0 Speed reference
After 
restart
1 Motor speed
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-19
7
Parameter Lists
Pn425 2
Release Time for Torque 
Limit at Main Circuit 
Voltage Drop
0 to 1,000 1 ms 100 All
Immedi-
ately
Setup
*1
Pn426 2
Torque Feedforward 
Average Movement 
Time
0 to 5,100 0.1 ms 0 All
Immedi-
ately
Setup –
Pn427 2
Speed Ripple Compen-
sation Enable Speed
0 to 10,000
1 min
-1
0Rotary
Immedi-
ately
Tuning
*1
Pn456 2
Sweep Torque Refer-
ence Amplitude
1 to 800 1% 15 All
Immedi-
ately
Tuning
*1
Pn460
2
Notch Filter Adjustment 
Selections 1
0000h 
to 
0101h
– 0101h All
Immedi-
ately
Tuning
*1
Pn475
2
Gravity Compensation-
Related Selections
0000h to 
0001h
– 0000h All
After 
restart
Setup
*1
Pn476 2
Gravity Compensation 
Torqu e
-1,000 to 
1,000
0.1% 0 All
Immedi-
ately
Tuning
*1
Pn480 2
Speed Limit during 
Force Control
0 to 10,000 1 mm/s 10000 Linear
Immedi-
ately
Setup
*1
Pn481 2
Polarity Detection 
Speed Loop Gain
10 to 20,000 0.1 Hz 400 Linear
Immedi-
ately
Tuning –
Pn482 2
Polarity Detection 
Speed Loop Integral 
Time Constant
15 to 51,200 0.01 ms 3000 Linear
Immedi-
ately
Tuning –
Pn483 2 Forward Force Limit 0 to 800
1%
*2
30 Linear
Immedi-
ately
Setup
*1
Pn484 2 Reverse Force Limit 0 to 800
1%
*2
30 Linear
Immedi-
ately
Setup
*1
Pn485 2
Polarity Detection Refer-
ence Speed
0 to 100 1 mm/s 20 Linear
Immedi-
ately
Tuning –
Pn486 2
Polarity Detection Refer-
ence Acceleration/
Deceleration Time
0 to 100 1 ms 25 Linear
Immedi-
ately
Tuning –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Notch Filter Adjustment Selection 1
0
Do not adjust the first stage notch filter automatically during execution of auto-
tuning without a host reference, autotuning with a host reference, and custom 
tuning.
1
Adjust the first stage notch filter automatically during execution of autotuning 
without a host reference, autotuning with a host reference, and custom tuning.
n.X Reserved parameter (Do not change.)
n.X
Notch Filter Adjustment Selection 2
0
Do not adjust the second stage notch filter automatically when the tuning-less 
function is enabled or during execution of autotuning without a host reference, 
autotuning with a host reference, and custom tuning.
1
Adjust the second stage notch filter automatically when the tuning-less func-
tion is enabled or during execution of autotuning without a host reference, 
autotuning with a host reference, and custom tuning.
n.X Reserved parameter (Do not change.)
n.

X Gravity Compensation Selection
0 Disable gravity compensation.
1 Enable gravity compensation.
n.

X

Reserved parameter (Do not change.)
n.

X

Reserved parameter (Do not change.)
n.X

Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-20
Pn487 2
Polarity Detection Con-
stant Speed Time
0 to 300 1 ms 0 Linear
Immedi-
ately
Tuning –
Pn488 2
Polarity Detection Refer-
ence Waiting Time
50 to 500 1 ms 100 Linear
Immedi-
ately
Tuning
−
Pn48E 2
Polarity Detection 
Range
1 to 65,535 1 mm 10 Linear
Immedi-
ately
Tuning
−
Pn490 2
Polarity Detection Load 
Level
0 to 20,000 1% 100 Linear
Immedi-
ately
Tuning
−
Pn495 2
Polarity Detection Con-
firmation Force Refer-
ence
0 to 200 1% 100 Linear
Immedi-
ately
Tuning
−
Pn498 2
Polarity Detection Allow-
able Error Range
0 to 30 1 deg 10 Linear
Immedi-
ately
Tuning
−
Pn49F 2
Speed Ripple Compen-
sation Enable Speed
0 to 10,000 1 mm/s 0 Linear
Immedi-
ately
Tuning
*1
Pn502 2 Rotation Detection Level 1 to 10,000
1 min
-1
20 Rotary
Immedi-
ately
Setup
*1
Pn503 2
Speed Coincidence 
Detection Signal Output 
Width
0 to 100
1 min
-1
10 Rotary
Immedi-
ately
Setup
*1
Pn506 2
Brake Reference-Servo 
OFF Delay Time
0 to 50 10 ms 0 All
Immedi-
ately
Setup
*1
Pn507 2
Brake Reference Out-
put Speed Level
0 to 10,000
1 min
-1
100 Rotary
Immedi-
ately
Setup
*1
Pn508 2
Servo OFF-Brake Com-
mand Waiting Time
10 to 100 10 ms 50 All
Immedi-
ately
Setup
*1
Pn509
2
Momentary Power Inter-
ruption Hold Time
20 to 50,000 1 ms 20 All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
All Axes
7.2  List of Servo Parameters
7-21
7
Parameter Lists
Pn50A
2
Input Signal Selections 
1
0000h to 
FFF2h
– 0881h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
I/O Signal Allocation Mode Reference
0 Reserved setting (Do not use.)
*1
1Use Σ-7S-compatible I/O signal allocations (Pn50A to Pn517).
2 Use multi-axis I/O signal allocations (Pn590 to Pn5BC).
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
P-OT (Forward Drive Prohibit) Signal Allocation Reference
0
Axis A: Enable forward drive when CN1-3 input signal is ON (closed).
Axis B: Enable forward drive when CN1-9 input signal is ON (closed).
*1
1
Axis A: Enable forward drive when CN1-4 input signal is ON (closed).
Axis B: Enable forward drive when CN1-10 input signal is ON 
(closed).
2
Axis A: Enable forward drive when CN1-5 input signal is ON (closed).
Axis B: Enable forward drive when CN1-11 input signal is ON 
(closed).
3
Axis A: Enable forward drive when CN1-6 input signal is ON (closed).
Axis B: Enable forward drive when CN1-12 input signal is ON 
(closed).
4
Axis A: Enable forward drive when CN1-7 input signal is ON (closed).
Axis B: Enable forward drive when CN1-13 input signal is ON 
(closed).
5
Axis A: Enable forward drive when CN1-8 input signal is ON (closed).
Axis B: Enable forward drive when CN1-14 input signal is ON 
(closed).
6 Reserved setting (Do not use.)
7 Set the signal to always prohibit forward drive.
8 Set the signal to always enable forward drive.
9
Axis A: Enable forward drive when CN1-3 input signal is OFF (open).
Axis B: Enable forward drive when CN1-9 input signal is OFF (open).
A
Axis A: Enable forward drive when CN1-4 input signal is OFF (open).
Axis B: Enable forward drive when CN1-10 input signal is OFF (open).
B
Axis A: Enable forward drive when CN1-5 input signal is OFF (open).
Axis B: Enable forward drive when CN1-11 input signal is OFF (open).
C
Axis A: Enable forward drive when CN1-6 input signal is OFF (open).
Axis B: Enable forward drive when CN1-12 input signal is OFF (open).
D
Axis A: Enable forward drive when CN1-7 input signal is OFF (open).
Axis B: Enable forward drive when CN1-13 input signal is OFF (open).
E
Axis A: Enable forward drive when CN1-8 input signal is OFF (open).
Axis B: Enable forward drive when CN1-14 input signal is OFF (open).
F Reserved setting (Do not use.)
7.2  List of Servo Parameters 
7-22
Pn50B
2
Input Signal Selections 
2
0000h to 
FFFFh
– 8881h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
N-OT (Reverse Drive Prohibit) Signal Allocation Reference
0
Axis A: Enable reverse drive when CN1-3 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-9 input signal is ON 
(closed).
*1
1
Axis A: Enable reverse drive when CN1-4 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-10 input signal is ON 
(closed).
2
Axis A: Enable reverse drive when CN1-5 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-11 input signal is ON 
(closed).
3
Axis A: Enable reverse drive when CN1-6 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-12 input signal is ON 
(closed).
4
Axis A: Enable reverse drive when CN1-7 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-13 input signal is ON 
(closed).
5
Axis A: Enable reverse drive when CN1-8 input signal is ON 
(closed).
Axis B: Enable reverse drive when CN1-14 input signal is ON 
(closed).
6 Reserved setting (Do not use.)
7 Set the signal to always prohibit reverse drive.
8 Set the signal to always enable reverse drive.
9
Axis A: Enable reverse drive when CN1-3 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-9 input signal is OFF 
(open).
A
Axis A: Enable reverse drive when CN1-4 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-10 input signal is OFF 
(open).
B
Axis A: Enable reverse drive when CN1-5 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-11 input signal is OFF 
(open).
C
Axis A: Enable reverse drive when CN1-6 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-12 input signal is OFF 
(open).
D
Axis A: Enable reverse drive when CN1-7 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-13 input signal is OFF 
(open).
E
Axis A: Enable reverse drive when CN1-8 input signal is OFF 
(open).
Axis B: Enable reverse drive when CN1-14 input signal is OFF 
(open).
F Reserved setting (Do not use.)
n.X Reserved parameter (Do not change.)
Continued on next page.
7.2  List of Servo Parameters
7-23
7
Parameter Lists
Pn50B
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
Continued from previous page.
n.X
/P-CL (Forward External Torque Limit Input) Signal Allocation Reference
0
Axis A: Active when CN1-3 input signal is ON (closed).
Axis B: Active when CN1-9 input signal is ON (closed).
*1
1
Axis A: Active when CN1-4 input signal is ON (closed).
Axis B: Active when CN1-10 input signal is ON (closed).
2
Axis A: Active when CN1-5 input signal is ON (closed).
Axis B: Active when CN1-11 input signal is ON (closed).
3
Axis A: Active when CN1-6 input signal is ON (closed).
Axis B: Active when CN1-12 input signal is ON (closed).
4
Axis A: Active when CN1-7 input signal is ON (closed).
Axis B: Active when CN1-13 input signal is ON (closed).
5
Axis A: Active when CN1-8 input signal is ON (closed).
Axis B: Active when CN1-14 input signal is ON (closed).
6 Reserved setting (Do not use.)
7 The signal is always active.
8 The signal is always inactive.
9
Axis A: Active when CN1-3 input signal is OFF (open).
Axis B: Active when CN1-9 input signal is OFF (open).
A
Axis A: Active when CN1-4 input signal is OFF (open).
Axis B: Active when CN1-10 input signal is OFF (open).
B
Axis A: Active when CN1-5 input signal is OFF (open).
Axis B: Active when CN1-11 input signal is OFF (open).
C
Axis A: Active when CN1-6 input signal is OFF (open).
Axis B: Active when CN1-12 input signal is OFF (open).
D
Axis A: Active when CN1-7 input signal is OFF (open).
Axis B: Active when CN1-13 input signal is OFF (open).
E
Axis A: Active when CN1-8 input signal is OFF (open).
Axis B: Active when CN1-14 input signal is OFF (open).
F Reserved setting (Do not use.)
n.X
/N-CL (Reverse External Torque Limit Input) Signal Allocation Reference
0 to F
The allocations are the same as the /P-CL (Forward External 
Torque Limit Input) signal allocations.
*1
7.2  List of Servo Parameters 
7-24
Pn50E
2
Output Signal Selec-
tions 1
0000h to 
6666h
– 0000h All
After 
restart
Setup –
Pn50F
2
Output Signal Selec-
tions 2
0000h to 
6666h
– 0100h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
/COIN (Positioning Completion Output) Signal Allocation Reference
0 Disabled (the above signal output is not used).
*1
1
Axis A: Output the signal from the CN1-23 or CN1-24 output ter-
minal.
Axis B: Output the signal from the CN1-25 or CN1-26 output ter-
minal.
2
Axis A: Output the signal from the CN1-27 or CN1-28 output ter-
minal.
Axis B: Output the signal from the CN1-29 or CN1-30 output ter-
minal.
3 to 6 Reserved settings (Do not use.)
n.X
/V-CMP (Speed Coincidence Detection Output) Signal Allocation Reference
0 to 6
The allocations are the same as the /COIN (Positioning Comple-
tion) signal allocations.
*1
n.X
/TGON (Rotation Detection Output) Signal Allocation Reference
0 to 6
The allocations are the same as the /COIN (Positioning Comple-
tion) signal allocations.
*1
n.X
/S-RDY (Servo Ready) Signal Allocation Reference
0 to 6
The allocations are the same as the /COIN (Positioning Comple-
tion) signal allocations.
*1
n.X
/CLT (Torque Limit Detection Output) Signal Allocation Reference
0 Disabled (the above signal output is not used).
*1
1
Axis A: Output the signal from the CN1-23 or CN1-24 output ter-
minal.
Axis B: Output the signal from the CN1-25 or CN1-26 output ter-
minal.
2
Axis A: Output the signal from the CN1-27 or CN1-28 output ter-
minal.
Axis B: Output the signal from the CN1-29 or CN1-30 output ter-
minal.
3 to 6 Reserved settings (Do not use.)
n.X
/VLT (Speed Limit Detection) Signal Allocation Reference
0 to 6
The allocations are the same as the /CLT (Torque Limit Detection 
Output) signal allocations.
*1
n.X
/BK (Brake Output) Signal Allocation Reference
0 to 6
The allocations are the same as the /CLT (Torque Limit Detection 
Output) signal allocations.
*1
n.X
/WARN (Warning Output) Signal Allocation Reference
0 to 6
The allocations are the same as the /CLT (Torque Limit Detection 
Output) signal allocations.
*1
7.2  List of Servo Parameters
7-25
7
Parameter Lists
Pn510
2
Output Signal Selec-
tions 3
0000h to 
0666h
– 0000h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
/NEAR (Near Output) Signal Allocation Reference
0 Disabled (the above signal output is not used).
*1
1
Axis A: Output the signal from the CN1-23 or CN1-24 output ter-
minal.
Axis B: Output the signal from the CN1-25 or CN1-26 output ter-
minal.
2
Axis A: Output the signal from the CN1-27 or CN1-28 output ter-
minal.
Axis B: Output the signal from the CN1-29 or CN1-30 output ter-
minal.
3 to 6 Reserved settings (Do not use.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-26
Pn511
2
Input Signal Selections 
5
0000h to 
FFFFh
– 5432h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
/DEC (Origin Return Deceleration Switch Input) Signal Allocation
0
Axis A: Active when CN1-3 input signal is ON (closed).
Axis B: Active when CN1-9 input signal is ON (closed).
1
Axis A: Active when CN1-4 input signal is ON (closed).
Axis B: Active when CN1-10 input signal is ON (closed).
2
Axis A: Active when CN1-5 input signal is ON (closed).
Axis B: Active when CN1-11 input signal is ON (closed).
3
Axis A: Active when CN1-6 input signal is ON (closed).
Axis B: Active when CN1-12 input signal is ON (closed).
4
Axis A: Active when CN1-7 input signal is ON (closed).
Axis B: Active when CN1-13 input signal is ON (closed).
5
Axis A: Active when CN1-8 input signal is ON (closed).
Axis B: Active when CN1-14 input signal is ON (closed).
6 Reserved setting (Do not use.)
7 The signal is always active.
8 The signal is always inactive.
9
Axis A: Active when CN1-3 input signal is OFF (open).
Axis B: Active when CN1-9 input signal is OFF (open).
A
Axis A: Active when CN1-4 input signal is OFF (open).
Axis B: Active when CN1-10 input signal is OFF (open).
B
Axis A: Active when CN1-5 input signal is OFF (open).
Axis B: Active when CN1-11 input signal is OFF (open).
C
Axis A: Active when CN1-6 input signal is OFF (open).
Axis B: Active when CN1-12 input signal is OFF (open).
D
Axis A: Active when CN1-7 input signal is OFF (open).
Axis B: Active when CN1-13 input signal is OFF (open).
E
Axis A: Active when CN1-8 input signal is OFF (open).
Axis B: Active when CN1-14 input signal is OFF (open).
F Reserved setting (Do not use.)
n.X
/EXT1 (External Latch Input 1) Signal Allocation
0 to 2 The signal is always inactive.
3
Axis A: Active when CN1-6 input signal is ON (closed).
Axis B: Active when CN1-12 input signal is ON (closed).
4
Axis A: Active when CN1-7 input signal is ON (closed).
Axis B: Active when CN1-13 input signal is ON (closed).
5
Axis A: Active when CN1-8 input signal is ON (closed).
Axis B: Active when CN1-14 input signal is ON (closed).
6 to B The signal is always inactive.
C
Axis A: Active when CN1-6 input signal is OFF (open).
Axis B: Active when CN1-12 input signal is OFF (open).
D
Axis A: Active when CN1-7 input signal is OFF (open).
Axis B: Active when CN1-13 input signal is OFF (open).
E
Axis A: Active when CN1-8 input signal is OFF (open).
Axis B: Active when CN1-14 input signal is OFF (open).
F The signal is always inactive.
n.X
/EXT2 (External Latch Input 2) Signal Allocation
0 to F
The allocations are the same as the /EXT1 (External Latch Input 1) signal allo-
cations.
n.X
/EXT3 (External Latch Input 3) Signal Allocation
0 to F
The allocations are the same as the /EXT1 (External Latch Input 1) signal allo-
cations.
7.2  List of Servo Parameters
7-27
7
Parameter Lists
Pn512
2
Output Signal Inverse 
Settings
0000h to 
1111h
– 0000h All
After 
restart
Setup
*1
Pn514
2
Output Signal Selec-
tions 4
0000h to 
0666h
– 0000h All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Output Inversion for CN1-23, CN1-24, CN1-25, 
and CN1-26 Terminals (Axis A: CN1-23 and CN1-24, Axis B: CN1-25 and CN1-26)
0 The signal is not inverted.
1 The signal is inverted.
n.X
Output Inversion for CN1-27, CN1-28, CN1-29, and 
CN1-30 Terminals (Axis A: CN1-27 and CN1-28, Axis B: CN1-29 and CN1-30)
0 The signal is not inverted.
1 The signal is inverted.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
/PM (Preventative Maintenance Output) Signal Allocation Reference
0 Disabled (the above signal output is not used).
*1
1
Axis A: Output the signal from the CN1-23 or CN1-24 output ter-
minal.
Axis B: Output the signal from the CN1-25 or CN1-26 output ter-
minal.
2
Axis A: Output the signal from the CN1-27 or CN1-28 output ter-
minal.
Axis B: Output the signal from the CN1-29 or CN1-30 output ter-
minal.
3 to 6 Reserved settings (Do not use.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-28
Pn516
2
Input Signal Selections 
7
0000h to 
FFFFh
– 8888h All
After 
restart
Setup –
Pn51E 2
Position Deviation Over-
flow Warning Level
10 to 100 1% 100 All
Immedi-
ately
Setup
*1
Pn520 4
Position Deviation Over-
flow Alarm Level
1 to 
1,073,741,823
1 refer-
ence 
unit
524288
0
All
Immedi-
ately
Setup
*1
Pn522 4
Positioning Completed 
Width
0 to 
1,073,741,824
1 refer-
ence 
unit
7All
Immedi-
ately
Setup
*1
Pn524 4 Near Signal Width
1 to 
1,073,741,824
1 refer-
ence 
unit
107374
1824
All
Immedi-
ately
Setup
*1
Pn526 4
Position Deviation Over-
flow Alarm Level at 
Servo ON
1 to 
1,073,741,823
1 refer-
ence 
unit
524288
0
All
Immedi-
ately
Setup
*1
Pn528 2
Position Deviation Over-
flow Warning Level at 
Servo ON
10 to 100 1% 100 All
Immedi-
ately
Setup
*1
Pn529 2
Speed Limit Level at 
Servo ON
0 to 10,000
1 min
-1
10000 Rotary
Immedi-
ately
Setup
*1
Pn52B 2 Overload Warning Level 1 to 100 1% 20 All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
FSTP (Forced Stop Input) Signal Allocation Reference
0
Axis A: Enable drive when CN1-3 input signal is ON (closed).
Axis B: Enable drive when CN1-9 input signal is ON (closed).
*1
1
Axis A: Enable drive when CN1-4 input signal is ON (closed).
Axis B: Enable drive when CN1-10 input signal is ON (closed).
2
Axis A: Enable drive when CN1-5 input signal is ON (closed).
Axis B: Enable drive when CN1-11 input signal is ON (closed).
3
Axis A: Enable drive when CN1-6 input signal is ON (closed).
Axis B: Enable drive when CN1-12 input signal is ON (closed).
4
Axis A: Enable drive when CN1-7 input signal is ON (closed).
Axis B: Enable drive when CN1-13 input signal is ON (closed).
5
Axis A: Enable drive when CN1-8 input signal is ON (closed).
Axis B: Enable drive when CN1-14 input signal is ON (closed).
6 Reserved setting (Do not use.)
7
Set the signal to always prohibit drive (always force the motor to 
stop).
8
Set the signal to always enable drive (always disable forcing the 
motor to stop).
9
Axis A: Enable drive when CN1-3 input signal is OFF (open).
Axis B: Enable drive when CN1-9 input signal is OFF (open).
A
Axis A: Enable drive when CN1-4 input signal is OFF (open).
Axis B: Enable drive when CN1-10 input signal is OFF (open).
B
Axis A: Enable drive when CN1-5 input signal is OFF (open).
Axis B: Enable drive when CN1-11 input signal is OFF (open).
C
Axis A: Enable drive when CN1-6 input signal is OFF (open).
Axis B: Enable drive when CN1-12 input signal is OFF (open).
D
Axis A: Enable drive when CN1-7 input signal is OFF (open).
Axis B: Enable drive when CN1-13 input signal is OFF (open).
E
Axis A: Enable drive when CN1-8 input signal is OFF (open).
Axis B: Enable drive when CN1-14 input signal is OFF (open).
F Reserved setting (Do not use.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-29
7
Parameter Lists
Pn52C 2
Base Current Derating 
at Motor Overload 
Detection
10 to 100 1% 100 All
After 
restart
Setup
*1
Pn530
2
Program Jogging-
Related Selections
0000h to 
0005h
– 0000h All
Immedi-
ately
Setup
*1
Pn531 4
Program Jogging Travel 
Distance
1 to 
1,073,741,824
1 refer-
ence 
unit
32768 All
Immedi-
ately
Setup
*1
Pn533 2
Program Jogging Move-
ment Speed
1 to 10,000
1 min
-
1
500 Rotary
Immedi-
ately
Setup
*1
Pn534 2
Program Jogging Accel-
eration/Deceleration 
Time
2 to 10,000 1 ms 100 All
Immedi-
ately
Setup
*1
Pn535 2
Program Jogging Wait-
ing Time
0 to 10,000 1 ms 100 All
Immedi-
ately
Setup
*1
Pn536 2
Program Jogging Num-
ber of Movements
0 to 1,000 1 time 1 All
Immedi-
ately
Setup
*1
Pn550
2
Analog Monitor 1 Offset 
Voltage
-10,000 to 
10,000
0.1 V 0 All
Immedi-
ately
Setup
*1
Pn551
2
Analog Monitor 2 Offset 
Voltage
-10,000 to 
10,000
0.1 V 0 All
Immedi-
ately
Setup
*1
Pn552
2
Analog Monitor 1 Mag-
nification
-10,000 to 
10,000
× 0.01 100 All
Immedi-
ately
Setup
*1
Pn553
2
Analog Monitor 2 Mag-
nification
-10,000 to 
10,000
× 0.01 100 All
Immedi-
ately
Setup
*1
Pn55A
2
Power Consumption 
Monitor Unit Time
1 to 1,440 1 min 1 All
Immedi-
ately
Setup –
Pn560 2
Residual Vibration 
Detection Width
1 to 3,000 0.1% 400 All
Immedi-
ately
Setup
*1
Pn561 2
Overshoot Detection 
Level
0 to 100 1% 100 All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Program Jogging Operation Pattern
0
(Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of 
movements in Pn536
1
(Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of 
movements in Pn536
2
(Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of 
movements in Pn536
(Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of 
movements in Pn536
3
(Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of 
movements in Pn536
(Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of 
movements in Pn536
4
(Waiting time in Pn535 → Forward by travel distance in Pn531 → Waiting time 
in Pn535 → Reverse by travel distance in Pn531) × Number of movements in 
Pn536
5
(Waiting time in Pn535 → Reverse by travel distance in Pn531 → Waiting time 
in Pn535 → Forward by travel distance in Pn531) × Number of movements in 
Pn536
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
All Axes
All Axes
All Axes
All Axes
All Axes
7.2  List of Servo Parameters 
7-30
Pn56A
2
Output Signal Reference 
Method Selections 1
0000h to 
1111h
– 0000h All
After 
restart
Setup
*1
Pn56B
2
Output Signal Reference 
Method Selections 2
0000h to 
00001h
– 0000h All
After 
restart
Setup
*1
Pn581 2 Zero Speed Level 1 to 10,000 1 mm/s 20 Linear
Immedi-
ately
Setup
*1
Pn582 2
Speed Coincidence 
Detection Signal Output 
Width
0 to 100 1 mm/s 10 Linear
Immedi-
ately
Setup
*1
Pn583 2
Brake Reference Out-
put Speed Level
0 to 10,000 1 mm/s 10 Linear
Immedi-
ately
Setup
*1
Pn584 2
Speed Limit Level at 
Servo ON
0 to 10,000 1 mm/s 10000 Linear
Immedi-
ately
Setup
*1
Pn585 2
Program Jogging Move-
ment Speed
1 to 10,000 1 mm/s 50 Linear
Immedi-
ately
Setup
*1
Pn586 2
Motor Running Cooling 
Ratio
0 to 100
1%/
Max. 
speed
0Linear
Immedi-
ately
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
SO1 Output Signal Reference Method Selection
0 Output parameter-assigned SO1 signal.
1 Output OR of parameter-assigned SO1 signal and signal set by SVCMD_IO.
n.X
SO2 Output Signal Reference Method Selection
0 Output parameter-assigned SO2 signal.
1 Output OR of parameter-assigned SO2 signal and signal set by SVCMD_IO.
n.X
SO3 Output Signal Reference Method Selection
0 Output parameter-assigned SO3 signal.
1 Output OR of parameter-assigned SO3 signal and signal set by SVCMD_IO.
n.X
SO4 Output Signal Reference Method Selection
0 Output parameter-assigned SO4 signal.
1 Output OR of parameter-assigned SO4 signal and signal set by SVCMD_IO.
n.X
SO5 Output Signal Reference Method Selection
0 Output parameter-assigned SO5 signal.
1 Output OR of parameter-assigned SO5 signal and signal set by SVCMD_IO.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-31
7
Parameter Lists
Pn587
2
Polarity Detection 
Execution Selection for 
Absolute Linear Encoder
0000h to 
0001h
– 0000h Linear
Immedi-
ately
Setup –
Pn590
2
P-OT (Forward Drive 
Prohibit) Signal Alloca-
tion
0000h to 
3019h
–
Axis A: 
1003h, 
Axis B: 
1009h
All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Polarity Detection Selection for Absolute Linear Encoder Reference
0 Do not detect polarity.
*1
1 Detect polarity.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 Set the signal to always enable forward drive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
3 Set the signal to always prohibit forward drive.
7.2  List of Servo Parameters 
7-32
Pn591
2
N-OT (Reverse Drive 
Prohibit) Signal Alloca-
tion
0000h to 
3019h
–
Axis A: 
1004h, 
Axis B: 
1010h
All
After 
restart
Setup
*1
Pn592
2
/DEC (Origin Return 
Deceleration Switch 
Input) Signal Allocation
0000h to 
3019h
–
Axis A: 
1005h, 
Axis B: 
1011h
All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 Set the signal to always enable reverse drive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
3 Set the signal to always prohibit reverse drive.
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
3 The signal is always active.
7.2  List of Servo Parameters
7-33
7
Parameter Lists
Pn593
2
/EXT1 (External Latch 
Input 1) Signal Alloca-
tion
0000h to 
2019h
–
Axis A: 
1006h, 
Axis B: 
1012h
All
After 
restart
Setup –
Pn594
2
/EXT2 (External Latch 
Input 2) Signal Alloca-
tion
0000h to 
2019h
–
Axis A: 
1007h, 
Axis B: 
1013h
All
After 
restart
Setup –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
000 to 005 The signal is always inactive.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 to 011 The signal is always inactive.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
n.XXX
Allocated Pin Number
000 to 005 The signal is always inactive.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 to 011 The signal is always inactive.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
7.2  List of Servo Parameters 
7-34
Pn595
2
/EXT3 (External Latch 
Input 3) Signal Alloca-
tion
0000h to 
2019h
–
Axis A: 
1008h, 
Axis B: 
1014h
All
After 
restart
Setup –
Pn597
2
FSTP (Forced Stop 
Input) Signal Allocation
0000h to 
3019h
– 0000h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
000 to 005 The signal is always inactive.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 to 011 The signal is always inactive.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0
Set the signal to always enable drive (always disable forcing the motor to 
stop).
1 Enable drive when the input signal is ON (closed).
2 Enable drive when the input signal is OFF (open).
3 Set the signal to always prohibit drive (always force the motor to stop).
7.2  List of Servo Parameters
7-35
7
Parameter Lists
Pn598
2
/P-CL (Forward Exter-
nal Torque Limit Input) 
Signal Allocation
0000h to 
3019h
– 0000h All
After 
restart
Setup
*1
Pn599
2
/N-CL (Reverse Exter-
nal Torque Limit Input) 
Signal Allocation
0000h to 
3019h
– 0000h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
3 The signal is always active.
n.XXX
Allocated Pin Number
003 Allocate the signal to CN1-3.
004 Allocate the signal to CN1-4.
005 Allocate the signal to CN1-5.
006 Allocate the signal to CN1-6.
007 Allocate the signal to CN1-7.
008 Allocate the signal to CN1-8.
009 Allocate the signal to CN1-9.
010 Allocate the signal to CN1-10.
011 Allocate the signal to CN1-11.
012 Allocate the signal to CN1-12.
013 Allocate the signal to CN1-13.
014 Allocate the signal to CN1-14.
n.X
Polarity Selection
0 The signal is always inactive.
1 Active when input signal is ON (closed).
2 Active when input signal is OFF (open).
3 The signal is always active.
7.2  List of Servo Parameters 
7-36
Pn5B0
2
/COIN (Positioning 
Completion Output) Sig-
nal Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn5B1
2
/V-CMP (Speed Coinci-
dence Detection Output) 
Signal Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn5B2
2
/TGON (Rotation Detec-
tion Output) Signal Allo-
cation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
7.2  List of Servo Parameters
7-37
7
Parameter Lists
Pn5B3
2
/S-RDY (Servo Ready) 
Signal Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn5B4
2
/CLT (Torque Limit 
Detection Output) Signal 
Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn5B5
2
/VLT (Speed Limit 
Detection) Signal Alloca-
tion
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
7.2  List of Servo Parameters 
7-38
Pn5B6
2
/BK (Brake Output) Sig-
nal Allocation
0000h to 
2039h
–
Axis A: 
1023h, 
Axis B: 
1025h
All
After 
restart
Setup
*1
Pn5B7
2
/WARN (Warning Out-
put) Signal Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn5B8
2
/NEAR (Near Output) 
Signal Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
7.2  List of Servo Parameters
7-39
7
Parameter Lists
Pn5BC
2
/PM (Preventative Main-
tenance Output) Signal 
Allocation
0000h to 
2039h
– 0000h All
After 
restart
Setup
*1
Pn600
2
Regenerative Resistor 
Capacity
*3
Depends on 
model.
*3
10 W 0 All
Immedi-
ately
Setup
*1
Pn601 2
Dynamic Brake Resis-
tor Allowable Energy 
Consumption
0 to 65,535 10 J 0 All
After 
restart
Setup
*6
Pn603
2
Regenerative Resis-
tance
0 to 65,535 10 mΩ 0All
Immedi-
ately
Setup
*1
Pn604 2
Dynamic Brake Resis-
tance
0 to 65,535 10 mΩ 0All
After 
restart
Setup
*6
Pn61A
2
Overheat Protection 
Selections
0000h to 
0003h
– 0000h All
After 
restart
Setup
*1
Pn61B
*7
2 Overheat Alarm Level 0 to 500 0.01 V 250 All
Immedi-
ately
Setup
*1
Pn61C
*7
2 Overheat Warning Level 0 to 100 1% 100 All
Immedi-
ately
Setup
*1
Pn61D
*7
2
Overheat Alarm Filter 
Time
0 to 65,535 1 s 0 All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.XXX
Allocated Pin Number
023 Allocate the signal to CN1-23.
025 Allocate the signal to CN1-25.
027 Allocate the signal to CN1-27.
029 Allocate the signal to CN1-29.
031 Allocate the signal to CN1-31.
n.X
Polarity Selection
0 Disabled (the above signal output is not used).
1 Output the above signal.
2 Invert the above signal and output it.
All Axes
All Axes
n.

X Overheat Protection Selection
0 Disable overheat protection.
1
Use overheat protection in the Yaskawa Linear Servomotor.
*6
2
Monitor a negative voltage input from a sensor attached to the machine and 
use overheat protection.
3
Monitor a positive voltage input from a sensor attached to the machine and 
use overheat protection.
n.

X

Reserved parameter (Do not change.)
n.

X

Reserved parameter (Do not change.)
n.X

Reserved parameter (Do not change.)
All Axes
All Axes
All Axes
7.2  List of Servo Parameters 
7-40
Pn665
2
Synchronized Stopping 
Function Selections
0000h to 
0003h
– 0000h All
After
restart
Setup
page 
4-4
Pn666
2
Synchronized Stopping 
End Speed
1 to 65,535
1000 
refer-
ence 
units/s
256 All
Immedi-
ately
Setup
page 
4-4
Pn667
2
Reserved parameter
(Do not change.)
––0All–––
Pn668
2
Synchronized Stopping 
Speed Feedforward
0 to 100 % 80 All
Immedi-
ately
Tuning
page 
4-5
Pn669
2
Position Deviation 
between Axes Overflow 
Warning Level
10 to 100 % 100 All
Immedi-
ately
Setup
page 
5-3
Pn66A
4
Position Deviation 
between Axes Overflow 
Alarm Level
0 to 
1073741823
Refer-
ence 
unit
5,242,880
All
Immedi-
ately
Setup
page 
5-3
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
All Axes
n.X
Synchronized Stopping Selection
0 Disable synchronized stopping.
1 Enable synchronized stopping mode 1.
2 Enable synchronized stopping mode 2.
3 Enable synchronized stopping mode 3.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
All Axes
All Axes
All Axes
All Axes
All Axes
7.2  List of Servo Parameters
7-41
7
Parameter Lists
Pn800
2
Communications Con-
trols
0000h to 
1FF3h
– 1040h All
Immedi-
ately
Setup –
Pn801
2
Application Function 
Selections 6 (Software 
Limits)
0000h to 
0103h
– 0003h All
Immedi-
ately
Setup
*1
Pn803 2 Origin Range 0 to 250
1 refer-
ence 
unit
10 All
Immedi-
ately
Setup
*2
Pn804 4 Forward Software Limit
-1,073,741,823
to 
1,073,741,823
1 refer-
ence 
unit
107374
1823
All
Immedi-
ately
Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
MECHATROLINK Communications Check Mask for Debugging
0Do not mask.
1 Ignore MECHATROLINK communications errors (A.E60).
2 Ignore WDT errors (A.E50).
3
Ignore both MECHATROLINK communications errors (A.E60) and WDT 
errors (A.E50).
n.X
Warning Check Masks
0Do not mask.
1 Ignore data setting warnings (A.94).
2 Ignore command warnings (A.95).
3 Ignore both A.94 and A.95 warnings.
4 Ignore communications warnings (A.96).
5 Ignore both A.94 and A.96 warnings.
6 Ignore both A.95 and A.96 warnings.
7 Ignore A.94, A.95, and A.96 warnings.
8 Ignore data setting warnings (A.97A, A.97b, and A.97C).
9 Ignore A.94, A.97A, A.97b, and A.97C warnings.
A Ignore A.95, A.97A, A.97b, and A.97C warnings.
B Ignore A.94, A95, A.97A, A.97b, and A.97C warnings.
C Ignore A.96, A.97A, A.97b, and A.97C warnings.
D Ignore A.94, A96, A.97A, A.97b, and A.97C warnings.
E Ignore A.95, A96, A.97A, A.97b, and A.97C warnings.
F Ignore A.94, A95, A96, A.97A, A.97b, and A.97C warnings.
n.X Reserved parameter (Do not change.)
n.X
Automatic Warning Clear Selection for Debugging
*8
0 Retain warnings for debugging.
1 Automatically clear warnings (MECHATROLINK-III specification).
M3
*8
n.X
Software Limit Selection
0 Enable both forward and reverse software limits.
1 Disable forward software limit.
2 Disable reverse software limit.
3 Disable both forward and reverse software limits.
n.X Reserved parameter (Do not change.)
n.X
Software Limit Check for References
0 Do not perform software limit checks for references.
1 Perform software limit checks for references.
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-42
Pn806 4Reverse Software Limit
-1,073,741,823
to 
1,073,741,823
1 refer-
ence 
unit
-10737
41823
All
Immedi-
ately
Setup
*1
Pn808 4
Absolute Encoder Origin 
Offset
-1,073,741,823
to 
1,073,741,823
1 refer-
ence 
unit
0All
Immedi-
ately 
*9
Setup
*1
Pn80A 2
First Stage Linear Accel-
eration Constant
1 to 65,535
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn80B 2
Second Stage Linear 
Acceleration Constant
1 to 65,535
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn80C 2
Acceleration Constant 
Switching Speed
0 to 65,535
100 ref-
erence 
units/s
0All
Immedi-
ately 
*10
Setup
*2
Pn80D 2
First Stage Linear 
Deceleration Constant
1 to 65,535
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn80E 2
Second Stage Linear 
Deceleration Constant
1 to 65,535
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn80F 2
Deceleration Constant 
Switching Speed
0 to 65,535
100 ref-
erence 
units/s
0All
Immedi-
ately 
*10
Setup
*2
Pn810 2
Exponential Accelera-
tion/Deceleration Bias
0 to 65,535
100 ref-
erence 
units/s
0All
Immedi-
ately 
*11
Setup
*2
Pn811 2
Exponential Accelera-
tion/Deceleration Time 
Constant
0 to 5,100 0.1 ms 0 All
Immedi-
ately 
*11
Setup
*2
Pn812 2
Movement Average 
Time
0 to 5,100 0.1 ms 0 All
Immedi-
ately 
*11
Setup
*2
Pn814 4
External Positioning 
Final Travel Distance
-1,073,741,823
to 
1,073,741,823
1 refer-
ence 
unit
100 All
Immedi-
ately
Setup
*2
Pn816
2
Origin Return Mode Set-
tings
0000h to 
0001h
– 0000h All
Immedi-
ately
Setup
*13
Pn817
*14
2
Origin Approach Speed 
1
0 to 65,535
100 ref-
erence 
units/s
50 All
Immedi-
ately 
*10
Setup
*2
Pn818
*15
2
Origin Approach Speed 
2
0 to 65,535
100 ref-
erence 
units/s
5All
Immedi-
ately 
*10
Setup
*2
Pn819 4
Final Travel Distance for 
Origin Return
-1,073,741,823
to 
1,073,741,823
1 refer-
ence 
unit
100 All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M2 
*13
n.X
Origin Return Direction
0 Return in forward direction.
1 Return in reverse direction.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-43
7
Parameter Lists
Pn81E
2
Input Signal Monitor 
Selections
0000h to 
AAAAh
– 0000h All
Immedi-
ately
Setup
*13
Pn81F
2
Command Data Alloca-
tions
0000h to 
1111h
– 0010h All
After 
restart
Setup
*13
Pn820 4 Forward Latching Area
-2,147,483,648
to 
2,147,483,647
1 refer-
ence 
unit
0All
Immedi-
ately
Setup
*2
Pn822 4 Reverse Latching Area
-2,147,483,648
to 
2,147,483,647
1 refer-
ence 
unit
0All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M2 
*13
n.X
IO12 Signal Mapping
0Do not map.
1 Monitor CN1-1 input terminal.
2 Monitor CN1-2 input terminal.
3 Monitor CN1-3 input terminal.
4 Monitor CN1-4 input terminal.
5 Monitor CN1-5 input terminal.
6 Monitor CN1-6 input terminal.
7 Monitor CN1-11 input terminal.
8 Monitor CN1-12 input terminal.
9 Monitor CN1-13 input terminal.
A Monitor CN1-14 input terminal.
B Monitor CN1-15 input terminal.
C Monitor CN1-16 input terminal.
n.X
IO13 Signal Mapping
0 to C The mappings are the same as the IO12 signal mappings.
n.X
IO14 Signal Mapping
0 to C The mappings are the same as the IO12 signal mappings.
n.X
IO15 Signal Mapping
0 to C The mappings are the same as the IO12 signal mappings.
M2 
*13
n.X
Option Field Allocation
0 Disable option field allocation.
1 Enable option field allocation.
n.X
Position Control Command TFF/TLIM Allocation
0 Disable allocation.
1 Enable allocation.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters 
7-44
Pn824
2
Option Monitor 1 Selec-
tion
0000h to 
FFFFh
– 0000h –
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
Setting Monitor Applicable Motors
High-Speed Monitor Region
0000h
Motor speed [overspeed detection speed
*17
/1000000h]
All
0001h
Speed reference [overspeed detection speed
*17
/1000000h]
All
0002h Torque [maximum torque/1000000h] All
0003h Position deviation (lower 32 bits) [reference units] All
0004h Position deviation (upper 32 bits) [reference units] All
000Ah Encoder count (lower 32 bits) [reference units] All
000Bh Encoder count (upper 32 bits) [reference units] All
004Dh
Current Correction Amount in Position Correction Table 
[reference unit]
All
008Dh Position Deviation between Axes [reference unit] All
Low-Speed Monitor Region
0010h
Un000: Motor speed [min
-1
]
All
0011h
Un001: Speed Reference [min
-1
]
All
0012h Un002: Torque Reference [%] All
0013h
Un003: Rotational Angle 1 [encoder pulses]
Number of encoder pulses from origin within one encoder rotation 
displayed in decimal
All
Un003: Electrical Angle 1 [linear encoder pulses]
Linear encoder pulses from the polarity origin displayed in decimal
0014h
Un004: Rotational Angle 2 [deg]
Electrical angle from polarity origin
All
Un004: Electrical Angle 2 [deg]
Electrical angle from polarity origin
0015h Un005: Input Signal Monitor All
0016h Un006: Output Signal Monitor All
0017h
Un007: Input Reference Speed [min
-1
]
All
0018h Un008: Position Deviation [reference units] All
0019h Un009: Accumulated Load Ratio [%] All
001Ah Un00A: Regenerative Load Ratio [%] All
001Bh Un00B: Dynamic Brake Resistor Power Consumption [%] All
001Ch Un00C: Input Reference Pulse Counter [reference units] All
001Dh Un00D: Feedback Pulse Counter [encoder pulses] All
0023h Initial multiturn data [Rev]
Rotary
0024h Initial incremental data [pulses]
Rotary
0025h Initial absolute position data (lower 32 bits) [pulses] Linear
0026h Initial absolute position data (upper 32 bits) [pulses] Linear
0040h Un025: SERVOPACK Installation Environment Monitor All
0041h Un026: Servomotor Installation Environment Monitor All
0042h Un027: Built-in Fan Remaining Life Ratio All
0043h Un028: Capacitor Remaining Life Ratio All
0044h Un029: Surge Prevention Circuit Remaining Life Ratio All
0045h Un02A: Dynamic Brake Circuit Remaining Life Ratio All
0046h Un032: Instantaneous Power All
0047h Un033: Power Consumption All
0048h Un034: Cumulative Power Consumption All
7.2  List of Servo Parameters
7-45
7
Parameter Lists
Pn824
Pn825
2
Option Monitor 2 Selec-
tion
0000h to 
FFFFh
– 0000h All
Immedi-
ately
Setup
*2
Pn827 2
Linear Deceleration 
Constant 1 for Stopping
1 to 65,535
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn829 2
SVOFF Waiting Time (for 
SVOFF at Deceleration 
to Stop)
0 to 65,535 10 ms 0 All
Immedi-
ately 
*10
Setup
*2
Pn82A
2
Option Field Allocations 
1
0000h to 
1E1Eh
– 1813h All
After 
restart
Setup
*13
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
Setting Monitor Applicable Motors
Low-Speed Monitor Region (Communications Module only)
0080h
Previous value of latched feedback position (LPOS1) [reference 
units]
All
0081h
Previous value of latched feedback position (LPOS2) [reference 
units]
All
0084h Continuous Latch Status (EX STATUS) All
All Areas
Other 
values
Reserved settings (Do not use.) All
0000h to 
008Dh
The settings are the same as those for the Option Monitor 1 Selection.
M2 
*13
n.X
ACCFIL Allocation (Option)
0 Allocate bits 0 and 1 to ACCFIL.
1 Allocate bits 1 and 2 to ACCFIL.
2 Allocate bits 2 and 3 to ACCFIL.
3 Allocate bits 3 and 4 to ACCFIL.
4 Allocate bits 4 and 5 to ACCFIL.
5 Allocate bits 5 and 6 to ACCFIL.
6 Allocate bits 6 and 7 to ACCFIL.
7 Allocate bits 7 and 8 to ACCFIL.
8 Allocate bits 8 and 9 to ACCFIL.
9 Allocate bits 9 and 10 to ACCFIL.
A Allocate bits 10 and 11 to ACCFIL.
B Allocate bits 11 and 12 to ACCFIL.
C Allocate bits 12 and 13 to ACCFIL.
D Allocate bits 13 and 14 to ACCFIL.
E Allocate bits 14 and 15 to ACCFIL.
n.X
ACCFIL Allocation Enable/Disable Selection
0 Disable ACCFIL allocation.
1 Enable ACCFIL allocation.
n.X
G_SEL Allocation (Option)
0 to E The settings are the same as for the ACCFIL allocations.
n. X
G_SEL Allocation Enable/Disable Selection
0 Disable G_SEL allocation.
1 Enable G_SEL allocation.
7.2  List of Servo Parameters 
7-46
Pn82B
2
Option Field Allocations 
2
0000h to 
1F1Fh
–1D1Ch All
After 
restart
Setup
*13
Pn82C
2
Option Field Allocations 
3
0000h to 
1F1Fh
–1F1Eh All
After 
restart
Setup
*13
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M2 
*13
n.X
V_PPI Allocation (Option)
0 Allocate bit 0 to V_PPI.
1 Allocate bit 1 to V_PPI.
2 Allocate bit 2 to V_PPI.
3 Allocate bit 3 to V_PPI.
4 Allocate bit 4 to V_PPI.
5 Allocate bit 5 to V_PPI.
6 Allocate bit 6 to V_PPI.
7 Allocate bit 7 to V_PPI.
8 Allocate bit 8 to V_PPI.
9 Allocate bit 9 to V_PPI.
A Allocate bit 10 to V_PPI.
B Allocate bit 11 to V_PPI.
C Allocate bit 12 to V_PPI.
D Allocate bit 13 to V_PPI.
E Allocate bit 14 to V_PPI.
F Allocate bit 15 to V_PPI.
n.X
V_PPI Allocation Enable/Disable Selection
0 Disable V_PPI allocation.
1 Enable V_PPI allocation.
n.X
P_PI_CLR Allocation (Option)
0 to F The settings are the same as for the V_PPI allocations.
n.X
P_PI_CLR Allocation Enable/Disable Selection
0 Disable P_PI_CLR allocation.
1 Enable P_PI_CLR allocation.
M2 
*13
n.X
P_CL Allocation (Option)
0 to F The settings are the same as for the V_PPI allocations.
n.X
P_CL Allocation Enable/Disable Selection
0 Disable P_CL allocation.
1 Enable P_CL allocation.
n.X
N_CL Allocation (Option)
0 to F The settings are the same as for the V_PPI allocations.
n.X
N_CL Allocation Enable/Disable Selection
0 Disable N_CL allocation.
1 Enable N_CL allocation.
7.2  List of Servo Parameters
7-47
7
Parameter Lists
Pn82D
2
Option Field Allocations 
4
0000h to 
1F1Ch
– 0000h All
After 
restart
Setup
*13
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M2 
*13
n.X
BANK_SEL1 Allocation (Option)
0 Allocate bits 0 to 3 to BANK_SEL1.
1 Allocate bits 1 to 4 to BANK_SEL1.
2 Allocate bits 2 to 5 to BANK_SEL1.
3 Allocate bits 3 to 6 to BANK_SEL1.
4 Allocate bits 4 to 7 to BANK_SEL1.
5 Allocate bits 5 to 8 to BANK_SEL1.
6 Allocate bits 6 to 9 to BANK_SEL1.
7 Allocate bits 7 to 10 to BANK_SEL1.
8 Allocate bits 8 to 11 to BANK_SEL1.
9 Allocate bits 9 to 12 to BANK_SEL1.
A Allocate bits 10 to 13 to BANK_SEL1.
B Allocate bits 11 to 14 to BANK_SEL1.
C Allocate bits 12 to 15 to BANK_SEL1.
n.X
BANK_SEL1 Allocation Enable/Disable Selection
0 Disable BANK_SEL1 allocation.
1 Enable BANK_SEL1 allocation.
n.X
LT_DISABLE Allocation (Option)
0 to F The settings are the same as for the V_PPI allocations.
n.X
LT_DISABLE Allocation Enable/Disable Selection
0 Disable LT_DISABLE allocation.
1 Enable LT_DISABLE allocation.
7.2  List of Servo Parameters 
7-48
Pn82E
2
Option Field Allocations 
5
0000h to 
1D1Fh
– 0000h All
After 
restart
Setup
*13
Pn833
2 Motion Settings
0000h to 
0001h
– 0000h All
After 
restart
Setup
*2
Pn834 4
First Stage Linear Accel-
eration Constant 2
1 to 
20,971,520
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn836 4
Second Stage Linear 
Acceleration Constant 2
1 to 
20,971,520
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn838 4
Acceleration Constant 
Switching Speed 2
0 to 
2,097,152,000
1 refer-
ence 
unit/s
0All
Immedi-
ately 
*10
Setup
*2
Pn83A 4
First Stage Linear 
Deceleration Constant 2
1 to 
20,971,520
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M2 
*13
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X
OUT_SIGNAL Allocation (Option)
0 Allocate bits 0 to 2 to OUT_SIGNAL.
1 Allocate bits 1 to 3 to OUT_SIGNAL.
2 Allocate bits 2 to 4 to OUT_SIGNAL.
3 Allocate bits 3 to 5 to OUT_SIGNAL.
4 Allocate bits 4 to 6 to OUT_SIGNAL.
5 Allocate bits 5 to 7 to OUT_SIGNAL.
6 Allocate bits 6 to 8 to OUT_SIGNAL.
7 Allocate bits 7 to 9 to OUT_SIGNAL.
8 Allocate bits 8 to 10 to OUT_SIGNAL.
9 Allocate bits 9 to 11 to OUT_SIGNAL.
A Allocate bits 10 to 12 to OUT_SIGNAL.
B Allocate bits 11 to 13 to OUT_SIGNAL.
C Allocate bits 12 to 14 to OUT_SIGNAL.
D Allocate bits 13 to 15 to OUT_SIGNAL.
n.X
OUT_SIGNAL Allocation Enable/Disable Selection
0 Disable OUT_SIGNAL allocation.
1 Enable OUT_SIGNAL allocation.
n.X
Linear Acceleration/Deceleration Constant Selection
0
Use Pn80A to Pn80F and Pn827. (The settings of Pn834 to Pn840 are 
ignored.)
1
Use Pn834 to Pn840. (The settings of Pn80A to Pn80F and Pn827 are 
ignored.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-49
7
Parameter Lists
Pn83C 4
Second Stage Linear 
Deceleration Constant 2
1 to 
20,971,520
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn83E 4
Deceleration Constant 
Switching Speed 2
0 to 
2,097,152,000
1 refer-
ence 
unit/s
0All
Immedi-
ately 
*10
Setup
*2
Pn840 4
Linear Deceleration 
Constant 2 for Stopping
1 to 
20,971,520
10,000 
refer-
ence 
units/s
2
100 All
Immedi-
ately 
*10
Setup
*2
Pn842
*14
4
Second Origin 
Approach Speed 1
0 to 
20,971,520
100 ref-
erence 
units/s
0All
Immedi-
ately 
*10
Setup
*2
Pn844
*15
4
Second Origin 
Approach Speed 2
0 to 
20,971,520
100 ref-
erence 
units/s
0All
Immedi-
ately 
*10
Setup
*2
Pn846 2
POSING Command 
Scurve Acceleration/
Deceleration Rate
0 to 50 1% 0 All
Immedi-
ately
*10
Setup
–
Pn847
2
Position Correction 
Table Function Selec-
tions
0000h to 
1111h
– 0000h All
After
restart
Setup
Pn850 2
Number of Latch 
Sequences
0 to 8 – 0 All
Immedi-
ately
Setup
*2
Pn851 2
Continuous Latch 
Sequence Count
0 to 255 – 0 All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
All Axes
n.X
Position Correction Table Selection
0 Do not use Position Correction Table.
1 Use Position Correction Table.
n.X Reserved parameter (Do not change.)
n.X
Position Correction Table-Related Monitor Selection
0 Monitor the position information before position correction.
1 Monitor the position information after position correction.
n.X
Position Correction Axis Selection for Position Correction Table
0 Correct the position of axis A.
1 Correct the position of axis B.
7.2  List of Servo Parameters 
7-50
Pn852
2
Latch Sequence 1 to 4 
Settings
0000h to 
3333h
– 0000h All
Immedi-
ately
Setup
*2
Pn853
2
Latch Sequence 5 to 8 
Settings
0000h to 
3333h
– 0000h All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
n.X
Latch Sequence 1 Signal Selection
0Phase C
1 EXT1 signal
2 EXT2 signal
3 EXT3 signal
n.X
Latch Sequence 2 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 1 Signal Selec-
tion.
n.X
Latch Sequence 3 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 1 Signal Selec-
tion.
n.X
Latch Sequence 4 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 1 Signal Selec-
tion.
n.X
Latch Sequence 5 Signal Selection
0Phase C
1 EXT1 signal
2 EXT2 signal
3 EXT3 signal
n.X
Latch Sequence 6 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 5 Signal Selec-
tion.
n.X
Latch Sequence 7 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 5 Signal Selec-
tion.
n.X
Latch Sequence 8 Signal Selection
0 to 3
The settings are the same as those for the Latch Sequence 5 Signal Selec-
tion.
7.2  List of Servo Parameters
7-51
7
Parameter Lists
Pn860
2
SVCMD_IO Input Signal 
Monitor Allocations 1
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn861
2
SVCMD_IO Input Signal 
Monitor Allocations 2
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-3 (SVCMD_IO)
0 Allocate bit 24 (IO_STS1) to CN1-3 input signal monitor.
1 Allocate bit 25 (IO_STS2) to CN1-3 input signal monitor.
2 Allocate bit 26 (IO_STS3) to CN1-3 input signal monitor.
3 Allocate bit 27 (IO_STS4) to CN1-3 input signal monitor.
4 Allocate bit 28 (IO_STS5) to CN1-3 input signal monitor.
5 Allocate bit 29 (IO_STS6) to CN1-3 input signal monitor.
6 Allocate bit 30 (IO_STS7) to CN1-3 input signal monitor.
n.X
CN1-3 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-3 input signal monitor.
1 Enable allocation for CN1-3 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-4 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-4 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-4 input signal monitor.
1 Enable allocation for CN1-4 input signal monitor.
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-5 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-5 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-5 input signal monitor.
1 Enable allocation for CN1-5 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-6 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-6 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-6 input signal monitor.
1 Enable allocation for CN1-6 input signal monitor.
7.2  List of Servo Parameters 
7-52
Pn862
2
SVCMD_IO Input Signal 
Monitor Allocations 3
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn863
2
SVCMD_IO Input Signal 
Monitor Allocations 4
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn864
2
SVCMD_IO Input Signal 
Monitor Allocations 5
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-7 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-7 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-7 input signal monitor.
1 Enable allocation for CN1-7 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-8 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-8 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-8 input signal monitor.
1 Enable allocation for CN1-8 input signal monitor.
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-9 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-9 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-9 input signal monitor.
1 Enable allocation for CN1-9 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-10 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-10 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-10 input signal monitor.
1 Enable allocation for CN1-10 input signal monitor.
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-11 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-11 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-11 input signal monitor.
1 Enable allocation for CN1-11 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-12 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-12 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-12 input signal monitor.
1 Enable allocation for CN1-12 input signal monitor.
7.2  List of Servo Parameters
7-53
7
Parameter Lists
Pn865
2
SVCMD_IO Input Signal 
Monitor Allocations 6
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn868
2
SVCMD_IO Output Sig-
nal Monitor Allocations 
1
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
n.X
Input Signal Monitor Allocation for CN1-13 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-13 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-13 input signal monitor.
1 Enable allocation for CN1-13 input signal monitor.
n.X
Input Signal Monitor Allocation for CN1-14 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-3 allocations.
n.X
CN1-14 Input Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-14 input signal monitor.
1 Enable allocation for CN1-14 input signal monitor.
M3 
*8
n.X
Output Signal Monitor Allocation for CN1-23 and CN1-24 (SVCMD_IO)
0 Allocate bit 24 (IO_STS1) to CN1-23/CN1-24 output signal monitor.
1 Allocate bit 25 (IO_STS2) to CN1-23/CN1-24 output signal monitor.
2 Allocate bit 26 (IO_STS3) to CN1-23/CN1-24 output signal monitor.
3 Allocate bit 27 (IO_STS4) to CN1-23/CN1-24 output signal monitor.
4 Allocate bit 28 (IO_STS5) to CN1-23/CN1-24 output signal monitor.
5 Allocate bit 29 (IO_STS6) to CN1-23/CN1-24 output signal monitor.
6 Allocate bit 30 (IO_STS7) to CN1-23/CN1-24 output signal monitor.
n.X
CN1-23/CN1-24 Output Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-23/CN1-24 output signal monitor.
1 Enable allocation for CN1-23/CN1-24 output signal monitor.
n.X
Output Signal Monitor Allocation for CN1-25 and CN1-26 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-23/CN1-24 allocations.
n.X
CN1-25/CN1-26 Output Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-25/CN1-26 output signal monitor.
1 Enable allocation for CN1-25/CN1-26 output signal monitor.
7.2  List of Servo Parameters 
7-54
Pn869
2
SVCMD_IO Output Sig-
nal Monitor Allocations 
2
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn86A
2
SVCMD_IO Output Sig-
nal Monitor Allocations 
3
0000h to 
1616h
– 0000h All
Immedi-
ately
Setup
*2
Pn880 2
Station Address Moni-
tor (for maintenance, 
read only)
03h to EFh – – All – Setup
*1
Pn881 2
Set Transmission Byte 
Count Monitor [bytes] 
(for maintenance, read 
only)
17, 32, 48 – – All – Setup
*1
Pn882 2
Transmission Cycle Set-
ting Monitor [× 0.25 μs] 
(for maintenance, read 
only)
0h to FFFFh – – All – Setup
*1
Pn883 2
Communications Cycle 
Setting Monitor [trans-
mission cycles] (for 
maintenance, read only)
0 to 32 – – All – Setup
*1
Continued on next page.
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
n.X
Output Signal Monitor Allocation for CN1-27 and CN1-28 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-23/CN1-24 allocations.
n.X
CN1-27/CN1-28 Output Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-27/CN1-28 output signal monitor.
1 Enable allocation for CN1-27/CN1-28 output signal monitor.
n.X
Output Signal Monitor Allocation for CN1-29 and CN1-30 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-23/CN1-24 allocations.
n.X
CN1-29/CN1-30 Output Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-29/CN1-30 output signal monitor.
1 Enable allocation for CN1-29/CN1-30 output signal monitor.
M3 
*8
n.X
Output Signal Monitor Allocation for CN1-31 and CN1-32 (SVCMD_IO)
0 to 6 The settings are the same as the CN1-23/CN1-24 allocations.
n.X
CN1-31/CN1-32 Output Signal Monitor Enable/Disable Selection
0 Disable allocation for CN1-31/CN1-32 output signal monitor.
1 Enable allocation for CN1-31/CN1-32 output signal monitor.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.2  List of Servo Parameters
7-55
7
Parameter Lists
*1. Refer to the following manual for details.
Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual 
(Manual No.: SIEP S800001 29)
*2. Refer to the following manual for details.
Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual 
(Manual No.: SIEP S800001 31)
*3. Set a percentage of the motor rated torque.
*4. Normally set this parameter to 0. If you use an External Regenerative Resistor, set the capacity (W) of the Exter-
nal Regenerative Resistor.
*5. The upper limit is two times the maximum output capacity (W) of the SERVOPACK.
*6. These parameters are for SERVOPACKs with the dynamic brake option. Refer to the following manual for 
details.
Σ-7-Series AC Servo Drive Σ-7S/Σ-7W SERVOPACK with Dynamic Brake Hardware Option Specifications Prod-
uct Manual (Manual No.: SIEP S800001 73)
*7. The SGLFW2 is the only Yaskawa Linear Servomotor that supports this function.
*8. Enabled only when Pn61A is set to n.2 or n.3.
*9. This parameter is valid only when the MECHATROLINK-III standard servo profile is used.
*10.The parameter setting is enabled after SENS_ON command execution is completed.
*11.Change the setting when the reference is stopped (i.e., while DEN is set to 1). If you change the setting during 
operation, the reference output will be affected.
*12.The settings are updated only if the reference is stopped (i.e., only if DEN is set to 1).
*13.Refer to the following manual for details.
Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual (Manual No.: SIEP S800001 
30)
*14.This parameter is valid only when the MECHATROLINK-II-compatible profile is used.
*15.The setting of Pn842 is valid while Pn817 is set to 0.
*16.The setting of Pn844 is valid while Pn818 is set to 0.
*17.You can check overspeed detection speed with MECHATROLINK-III Common Parameter 05 PnA0A (Maximum 
Output Speed).
Pn884
2
Communications Con-
trols 2
0000h to 
0001h
– 0000h All
Immedi-
ately
Setup
*2
Pn88A 2
MECHATROLINK 
Receive Error Counter 
Monitor 
(for maintenance, read 
only)
0 to 65,535 – 0 All – Setup –
Pn890 to
Pn8A6
4
Command Data Moni-
tor during Alarm/Warn-
ing 
(for maintenance, read 
only)
0h to 
FFFFFFFFh
–0h All –Setup
*1
Pn8A8 to
Pn8BE
4
Response Data Monitor 
during Alarm/Warning 
(for maintenance, read 
only)
0h to 
FFFFFFFFh
–0h All –Setup
*1
Pn900 2
Number of Parameter 
Banks
0 to 16 – 0 All
After 
restart
Setup
*2
Pn901 2
Number of Parameter 
Bank Members
0 to 15 – 0 All
After 
restart
Setup
*2
Pn902 to
Pn910
2
Parameter Bank Mem-
ber Definition
0000h to 
08FFh
– 0000h All
After 
restart
Setup
*2
Pn920 to
Pn95F
2
Parameter Bank Data 
(Not saved in nonvolatile 
memory.)
0000h to 
FFFFh
– 0000h All
Immedi-
ately
Setup
*2
Continued from previous page.
Parameter 
No.
Size
Name
Setting 
Range
Setting 
Unit
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Refer-
ence
M3 
*8
n.X
MECHATROLINK Communications Error Holding Brake Signal Setting
0
Maintain the status set by the BRK_ON or BRK_OFF command when a MECHA-
TROLINK communications error occurs.
1 Apply the holding brake when a MECHATROLINK communications error occurs.
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
n.X Reserved parameter (Do not change.)
7.3  List of MECHATROLINK-III Common Parameters
7-56
7.3 List of MECHATROLINK-III Common Parameters
The following table lists the common MECHATROLINK-III parameters. These common parame-
ters are used to make settings from the host controller via MECHATROLINK communications. 
Do not change the settings with the Digital Operator or any other device.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
01
PnA02
4
Encoder Type (read 
only)
0h or 1h – – All –
Device information
02
PnA04
4
Motor Type (read 
only)
0h or 1h – – All –
04
PnA08
4
Rated Speed 
(read only)
0h to 
FFFFFFFFh
1 min
-1
–All–
05
PnA0A
4
Maximum Output 
Speed (read only)
0h to 
FFFFFFFFh
1 min
-1
–All–
06
PnA0C
4
Speed Multiplier 
(read only)
-1,073,741,823 
to 
1,073,741,823
––All–
Device information
07
PnA0E
4
Rated Torque 
(read only)
0h to 
FFFFFFFFh
1 Nm– All –
08
PnA10
4
Maximum Output 
Torque (read only)
0h to 
FFFFFFFFh
1 Nm– All –
09
PnA12
4
Torque Multiplier 
(read only)
-1,073,741,823 
to 
1,073,741,823
––All–
0A
PnA14
4
Resolution 
(read only)
0h to 
FFFFFFFFh
1 pulse/rev – Rotary –
0B
PnA16
4 Linear Scale Pitch 0 to 65,536,000
1 nm 
[0.01 μm]
0Linear
After 
restart
0C
PnA18
4
Pulses per Scale 
Pitch (read only)
0h to 
FFFFFFFFh
1 pulse/
pitch
–Linear–
Continued on next page.
0000h Absolute encoder
0001h Incremental encoder
0000h Rotary Servomotor
0001h Linear Servomotor
7.3  List of MECHATROLINK-III Common Parameters
7-57
7
Parameter Lists
21
PnA42
4
Electronic Gear Ratio 
(Numerator)
1 to 
1,073,741,824
–16All
After 
restart
Machine specifications
22
PnA44
4
Electronic Gear Ratio 
(Denominator)
1 to 
1,073,741,824
–1All
After 
restart
23
PnA46
4
Absolute Encoder 
Origin Offset
-1,073,741,823 
to 
1,073,741,823
1 reference 
unit
0All
Immedi-
ately
*1
24
PnA48
4 Multiturn Limit 0 to 65,535 1 Rev 65535 Rotary
After 
restart
25
PnA4A
4 Limit Setting 0h to 33h – 0000h All
After 
restart
26
PnA4C
4
Forward Software 
Limit
-1,073,741,823 
to 
1,073,741,823
1 reference 
unit
10737418
23
All
Immedi-
ately
27
PnA4E
4
Reserved parameter 
(Do not change.)
––0All
Immedi-
ately
28
PnA50
4
Reverse Software 
Limit
-1,073,741,823 
to 
1,073,741,823
1 reference 
unit
-1073741
823
All
Immedi-
ately
29
PnA52
4
Reserved parameter 
(Do not change.)
––0All
Immedi-
ately
41
PnA82
4
Speed Unit 
0h to 4h – 0h All
After 
restart
Unit settings
42
PnA84
4
Speed Base Unit 
*2, *3
(Set the value of n 
from the following 
formula: Speed unit 
(41 PnA82) × 10
n
)
-3 to 3 – 0 All
After 
restart
43
PnA86
4 Position Unit 0h – 0h All
After 
restart
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Bit 0 P-OT (0: Enabled, 1: Disabled)
Bit 1 N-OT (0: Enabled, 1: Disabled)
Bit 2 Reserved.
Bit 3 Reserved.
Bit 4 P-SOT (0: Disabled, 1: Enabled)
Bit 5 N-SOT (0: Disabled, 1: Enabled)
Bits 6 to 31 Reserved.
0000h Reference units/s
0001h Reference units/min
0002h
Percentage (%) of rated speed
*2
0003h
min
-1
*2
0004h
Maximum motor speed/40000000h
*3
0000h Reference units
7.3  List of MECHATROLINK-III Common Parameters 
7-58
44
PnA88
4
Position Base Unit
(Set the value of n 
from the following 
formula: Position unit 
(43 PnA86) × 10
n
)
0–0All
After 
restart
Unit settings
45
PnA8A
4 Acceleration Unit 0h – 0h All
After 
restart
46
PnA8C
4
Acceleration Base 
Unit
(Set the value of n 
from the following 
formula: Acceleration 
unit (45 PnA8A) × 
10
n
)
4 to 6 – 4 All
After 
restart
47
PnA8E
4 Torque Unit 1h or 2h – 1h All
After 
restart
48
PnA90
4
Torque Base Unit
*4
(Set the value of n 
from the following 
formula: Torque unit 
(47 PnA8E) × 10
n
)
-5 to 0 – 0 All
After 
restart
49
PnA92
4
Supported Unit (read 
only)
––
0601011F
h
All –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
0000h
Reference units/s
2
0001h Percentage (%) of rated torque
0002h
Maximum torque/40000000h
*4
Speed Units
Bit 0 Reference units/s (1: Enabled)
Bit 1 Reference units/min (1: Enabled)
Bit 2 Percentage (%) of rated speed (1: Enabled)
Bit 3
min
-1
(rpm) (1: Enabled)
Bit 4 Maximum motor speed/4000000h (1: Enabled)
Bits 5 to 7 Reserved (0: Disabled).
Position Units
Bit 8 Reference units (1: Enabled)
Bits 9 to 15 Reserved (0: Disabled).
Acceleration Units
Bit 16
Reference units/s
2
(1: Enabled)
Bit 17 ms (acceleration time required to reach rated speed) (0: Disabled)
Bits 18 to 23 Reserved (0: Disabled).
Torqu e  Un its
Bit 24 Nm (0: Disabled)
Bit 25 Percentage (%) of rated torque (1: Enabled)
Bit 26 Maximum torque/40000000h (1: Enabled)
Bits 27 to 31 Reserved (0: Disabled).
7.3  List of MECHATROLINK-III Common Parameters
7-59
7
Parameter Lists
61
PnAC2
4 Speed Loop Gain
1,000 to 
2,000,000
0.001 Hz
[0.1 Hz]
40000 All
Immedi-
ately
Tuning
62
PnAC4
4
Speed Loop Integral 
Time Constant
150 to 512,000
1 μs 
[0.01 ms]
20000 All
Immedi-
ately
63
PnAC6
4 Position Loop Gain
1,000 to 
2,000,000
0.001/s 
[0.1/s]
40000 All
Immedi-
ately
64
PnAC8
4
Feed Forward Com-
pensation
0 to 100 1% 0 All
Immedi-
ately
65
PnACA
4
Position Loop Inte-
gral Time Constant
0 to 5,000,000
1 μs 
[0.1 ms]
0All
Immedi-
ately
66
PnACC
4 In-position Range
0 to 
1,073,741,824
1 reference 
unit
7All
Immedi-
ately
67
PnACE
4 Near-position Range
1 to 
1,073,741,824
1 reference 
unit
10737418
24
All
Immedi-
ately
81
PnB02
4
Exponential Func-
tion Acceleration/
Deceleration Time 
Constant
0 to 510,000
1 μs
[0.1 ms]
0All
Immedi-
ately
*5
82
PnB04
4
Movement Average 
Time
0 to 510,000
1 μs 
[0.1 ms]
0All
Immedi-
ately
*5
83
PnB06
4
Final Travel for Exter-
nal Input Positioning
-1,073,741,823 
to 
1,073,741,823
1 reference 
unit
100 All
Immedi-
ately
84
PnB08
4
Zero Point Return 
Approach Speed
0h to 
3FFFFFFFh
10
-3
min
-1
× 5,000h 
reference 
units/s 
con-
verted to 
10
-3
min
-1
All
Immedi-
ately
85
PnB0A
4
Zero Point Return 
Creep Speed
0h to 
3FFFFFFFh
10
-3
min
-1
× 500h 
reference 
units/s 
con-
verted to 
10
-3
min
-1
All
Immedi-
ately
86
PnB0C
4
Final Travel for Zero 
Point Return
-1,073,741,823 
to 
1,073,741,823
1 reference 
unit
100 All
Immedi-
ately
87
PnB0E
4 Monitor Select 1 0h to Fh – 1h All
Immedi-
ately
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
0000h APOS
0001h CPOS
0002h PERR
0003h LPOS1
0004h LPOS2
0005h FSPD
0006h CSPD
0007h TRQ
0008h ALARM
0009h MPOS
000Ah Reserved (undefined value).
000Bh Reserved (undefined value).
000Ch CMN1 (common monitor 1)
000Dh CMN2 (common monitor 2)
000Eh OMN1 (optional monitor 1)
000Fh OMN2 (optional monitor 2)
7.3  List of MECHATROLINK-III Common Parameters 
7-60
88
PnB10
4 Monitor Select 2 0h to Fh – 0h All
Immedi-
ately
Command-related parameters
89
PnB12
4
Monitor Select for 
SEL_MON1
0h to 9h – 0h All
Immedi-
ately
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
0000h to 
000Fh
The settings are the same as those for Fixed Monitor Selection 1.
0000h TPOS (target position in reference coordinate system)
0001h IPOS (reference position in reference coordinate system)
0002h POS_OFFSET (offset set in POS_SET (Set Coordinate System) command)
0003h TSPD (target speed)
0004h SPD_LIM (speed limit)
0005h TRQ_LIM (torque limit)
0006h
SV_STAT (servo actual operating status)
Monitor Description
Byte 1: Current communications phase
00h: Phase 0
01h: Phase 1
02h: Phase 2
03h: Phase 3
Byte 2: Current control mode
00h: Position control mode
01h: Speed control mode
02h: Torque control mode
Byte 3: Reserved
Byte 4: Expansion signal monitor
0007h Reserved.
0008h INIT_PGPOS (Low)
Lower 32 bits of initial encoder position con-
verted to 64-bit position reference data
0009h INIT_PGPOS (High)
Upper 32 bits of initial encoder position con-
verted to 64-bit position reference data
Bit Name Description Value Setting
Bit 0 LT_RDY1
Processing status for 
latch detection for 
LT_REQ1 in SVCM-
D_CTRL region
0
Latch detection 
not yet pro-
cessed.
1
Processing latch 
detection in 
progress.
Bit 1 LT_RDY1
Processing status for 
latch detection for 
LT_REQ2 in SVCM-
D_CTRL region
0
Latch detection 
not yet pro-
cessed.
1
Processing latch 
detection in 
progress.
Bits 2 
and 3
LT_SEL1R Latch signal
0Phase C
1
External input 
signal 1
2
External input 
signal 2
3
External input 
signal 3
Bits 4 
and 5
LT_SEL2R Latch signal
0Phase C
1
External input 
signal 1
2
External input 
signal 2
3
External input 
signal 3
Bit 6 Reserved (0).
7.3  List of MECHATROLINK-III Common Parameters
7-61
7
Parameter Lists
8A
PnB14
4
Monitor Select for 
SEL_MON2
0h to 9h – 0h All
Immedi-
ately
Command-related parameters
8B
PnB16
4
Zero Point Detection 
Range
0 to 250
1 reference 
unit
10 All
Immedi-
ately
8C
PnB18
4 Forward Torque Limit 0 to 800 1% 100 All
Immedi-
ately
8D
PnB1A
4 Reverse Torque Limit 0 to 800 1% 100 All
Immedi-
ately
8E
PnB1C
4
Zero Speed Detec-
tion Range
1,000 to 
10,000,000
10
-3
min
-1
20000 All
Immedi-
ately
8F
PnB1E
4
Speed Match Signal 
Detection Range
0 to 100,000
10
-3
min
-1
10000 All
Immedi-
ately
90
PnB20
4
SVCMD_CTRL bit 
Enabled/Disabled 
(read only)
––
0FFF3F3F
h
All –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
0000h to 
0009h
The settings are the same as those for SEL_MON Monitor Selection 1.
Bit 0 CMD_PAUSE (1: Enabled)
Bit 1 CMD_CANCEL (1: Enabled)
Bits 2 and 3 STOP_MODE (1: Enabled)
Bits 4 and 5 ACCFIL (1: Enabled)
Bits 6 and 7 Reserved (0: Disabled).
Bit 8 LT_REQ1 (1: Enabled)
Bit 9 LT_REQ2 (1: Enabled)
Bits 10 and 11 LT_SEL1 (1: Enabled)
Bits 12 and 13 LT_SEL2 (1: Enabled)
Bits 14 and 15 Reserved (0: Disabled).
Bits 16 to 19 SEL_MON1 (1: Enabled)
Bits 20 to 23 SEL_MON2 (1: Enabled)
Bits 24 to 27 SEL_MON3 (1: Enabled)
Bits 28 to 31 Reserved (0: Disabled).
7.3  List of MECHATROLINK-III Common Parameters 
7-62
91
PnB22
4
SVCMD_STAT bit 
Enabled/Disabled 
(read only)
––
0FFF3F33
h
All –
Command-related parameters
92
PnB24
4
I/O Bit Enabled/Dis-
abled (Output) (read 
only)
––
01FF01F0
h
All –
Continued on next page.
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Bit 0 CMD_PAUSE_CMP (1: Enabled)
Bit 1 CMD_CANCEL_CMP (1: Enabled)
Bit 2 and 3 Reserved (0: Disabled).
Bits 4 and 5 ACCFIL (1: Enabled)
Bits 6 and 7 Reserved (0: Disabled).
Bit 8 L_CMP1 (1: Enabled)
Bit 9 L_CMP2 (1: Enabled)
Bit 10 POS_RDY (1: Enabled)
Bit 11 PON (1: Enabled)
Bit 12 M_RDY (1: Enabled)
Bit 13 SV_ON (1: Enabled)
Bits 14 and 15 Reserved (0: Disabled).
Bits 16 to 19 SEL_MON1 (1: Enabled)
Bits 20 to 23 SEL_MON2 (1: Enabled)
Bits 24 to 27 SEL_MON3 (1: Enabled)
Bits 28 to 31 Reserved (0: Disabled).
Bits 0 to 3 Reserved (0: Disabled).
Bit 4 V_PPI (1: Enabled)
Bit 5 P_PPI (1: Enabled)
Bit 6 P_CL (1: Enabled)
Bit 7 N_CL (1: Enabled)
Bit 8 G_SEL (1: Enabled)
Bits 9 to 11 G_SEL (0: Disabled)
Bits 12 to 15 Reserved (0: Disabled).
Bits 16 to 19 BANK_SEL (1: Enabled)
Bits 20 to 24 SO1 to SO5 (1: Enabled)
Bits 25 to 31 Reserved (0: Disabled).
7.3  List of MECHATROLINK-III Common Parameters
7-63
7
Parameter Lists
*1. The parameter setting is enabled after SENS_ON command execution is completed.
*2. If you set the Speed Unit Selection (parameter 41) to either 0002h or 0003h, set the Speed Base Unit Selection 
(parameter 42) to a number between -3 and 0.
*3. If you set the Speed Unit Selection (parameter 41) to 0004h, set the Speed Base Unit Selection (parameter 42) 
to 0.
*4. If you set the Torque Unit Selection (parameter 47) to 0002h, set the Torque Base Unit Selection (parameter 48) 
to 0.
*5. Change the setting when the reference is stopped (i.e., while DEN is set to 1). If you change the setting during 
operation, the reference output will be affected.
93
PnB26
4
I/O Bit Enabled/Dis-
abled (Input) (read 
only)
––
FF0FFEFE
h
All –
Command-related parameters
Continued from previous page.
Parameter 
No.
Size Name Setting Range
Setting Unit 
[Resolution]
Default 
Setting
Applicable 
Motors
When 
Enabled
Classi-
fication
Bit 0 Reserved (0: Disabled).
Bit 1 DEC (1: Enabled)
Bit 2 P-OT (1: Enabled)
Bit 3 N-OT (1: Enabled)
Bit 4 EXT1 (1: Enabled)
Bit 5 EXT2 (1: Enabled)
Bit 6 EXT3 (1: Enabled)
Bit 7 ESTP (1: Enabled)
Bit 8 Reserved (0: Disabled).
Bit 9 BRK_ON (1: Enabled)
Bit 10 P-SOT (1: Enabled)
Bit 11 N-SOT (1: Enabled)
Bit 12 DEN (1: Enabled)
Bit 13 NEAR (1: Enabled)
Bit 14 PSET (1: Enabled)
Bit 15 ZPOINT (1: Enabled)
Bit 16 T_LIM (1: Enabled)
Bit 17 V_LIM (1: Enabled)
Bit 18 V_CMP (1: Enabled)
Bit 19 ZSPD (1: Enabled)
Bits 20 to 23 Reserved (0: Disabled).
Bits 24 to 31 IO_STS1 to IO_STS8 (1: Enabled)
Index 
Index-1
Index
A
active alarm axis
- - - - - - - - - - - - - - - - - - - - - - - -  xii
alarm reset possibility
- - - - - - - - - - - - - - - - - - - -  6-2
B
base block (BB)
- - - - - - - - - - - - - - - - - - - - - - - - - xii
C
coefficient of speed fluctuation
- - - - - - - - - - - - - - -  2-7
L
Linear Servomotor
- - - - - - - - - - - - - - - - - - - - - - -  xii
list of alarms
- - - - - - - - - - - - - - - - - - - - - - - - - -  6-2
list of warnings
- - - - - - - - - - - - - - - - - - - - - - -  6-36
M
Main Circuit Cable
- - - - - - - - - - - - - - - - - - - - - - -  xii
Monitoring
Digital Operator
- - - - - - - - - - - - - - - - - -  3-25
, 
5-6
MECHATROLINK-III
- - - - - - - - - - - - - - - - - -  3-25
SigmaWin+
- - - - - - - - - - - - - - - - - - - -  3-25
, 
5-6
P
Parameter Lists
- - - - - - - - - - - - - - - - - - - - - - - -  7-2
parameters
notation (numeric settings)
- - - - - - - - - - - - - - - - xiii
notation (selecting functions)
- - - - - - - - - - - - - - - xiii
Position Correction Axis Selection for 
Position Correction Table
- - - - - - - - - - - - - - - - - -  3-4
Position Correction Table
- - - - - - - - - - - - - - - - - -  3-2
Alarm
- - - - - - - - - - - - - - - - - - - - - - - - - - -  3-5
Block Diagram
- - - - - - - - - - - - - - - - - - - - - -  3-3
Correction Amount
- - - - - - - - - - - - - - - - - - - -  3-7
Correction Position
- - - - - - - - - - - - - - - - - - - -  3-7
Details
- - - - - - - - - - - - - - - - - - - - - - - - - - -  3-7
Enable/Disable
- - - - - - - - - - - - - - - - - - - - - -  3-4
Parameter Settings
- - - - - - - - - - - - - - - - - - - -  3-4
Position Measurements
- - - - - - - - - - - - - - - - -  3-6
Pre-Correction Position
- - - - - - - - - - - - - - - - -  3-7
Settings
- - - - - - - - - - - - - - - - - - - - - - - - - -  3-6
Settings with the MEM_WR Command
- - - - - - -  3-20
Settings with the SigmaWin+
- - - - - - - - - - - - - -  3-8
Tab le No .
- - - - - - - - - - - - - - - - - - - - - - - - -  3-7
Position Correction Table-Related Monitor Selection
- - -  3-4
Position Deviation between Axes Overflow 
Alarm Level
- - - - - - - - - - - - - - - - - - - - - - - - - -  5-3
Position Deviation between Axes Overflow 
Detection
- - - - - - - - - - - - - - - - - - - - - - - -  5-2
, 
5-3
Alarm
- - - - - - - - - - - - - - - - - - - - - - - - - - - -5-4
Parameter Settings
- - - - - - - - - - - - - - - - - - - -5-3
Warning
- - - - - - - - - - - - - - - - - - - - - - - - - - -5-5
Position Deviation between Axes Overflow 
Warning Level
- - - - - - - - - - - - - - - - - - - - - - - - - -5-3
R
Rotary Servomotor
- - - - - - - - - - - - - - - - - - - - - - -  xii
S
Servo Drive
- - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
servo lock
- - - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
servo OFF
- - - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
servo ON
- - - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
Servo System
- - - - - - - - - - - - - - - - - - - - - - - - - -  xii
Servomotor
- - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
SERVOPACK
- - - - - - - - - - - - - - - - - - - - - - - - - -  xii
specifications
- - - - - - - - - - - - - - - - - - - - - - - -2-5
SigmaWin+
- - - - - - - - - - - - - - - - - - - - - - - - - - -  xii
storage humidity
- - - - - - - - - - - - - - - - - - - - - - - -2-5
storage temperature
- - - - - - - - - - - - - - - - - - - - - -2-5
surrounding air humidity
- - - - - - - - - - - - - - - - - - - -2-5
surrounding air temperature
- - - - - - - - - - - - - - - - -2-5
Synchronized Stopping
- - - - - - - - - - - - - - - - - - - -4-2
Alarms
- - - - - - - - - - - - - - - - - - - - - - - - - - - -4-6
Mode Selection
- - - - - - - - - - - - - - - - - - - - - -4-4
Parameter Settings
- - - - - - - - - - - - - - - - - - - -4-4
Timing Chart
- - - - - - - - - - - - - - - - - - - - - - - -4-3
Warning
- - - - - - - - - - - - - - - - - - - - - - - - - - -4-7
synchronized stopping axis
- - - - - - - - - - - - - - - - - -  xii
Synchronized Stopping End Speed
- - - - - - - - - - - - -4-4
Synchronized Stopping Selection
- - - - - - - - - - - - - -4-4
Synchronized Stopping Speed Feedforward
- - - - - - - -4-5
T
troubleshooting alarms
- - - - - - - - - - - - - - - - - - - -6-7
troubleshooting warnings
- - - - - - - - - - - - - - - - - -6-39
Revision History-1
Revision History
The date of publication, revision number, and web revision number are given at the bottom right of the 
back cover. Refer to the following example.
Date of 
Publication
Rev. 
No.
Web 
Rev. 
No.
Section Revised Contents
October 2019 <2> 0 Preface, 
Chapter 6, 7
Revision: Partly revised
February 2019 <1> 0 All chapters Partly revised.
Back cover Revision: Address
November 2017
–––
First edition
MANUAL NO.  SIEP S800002 29A <0>-1
Published in Japan   November 2017
Date of publication
Revision number
Web revision number
IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151   Fax: +81-4-2962-6138
http://www.yaskawa.co.jp 
YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000   Fax: +1-847-887-7310
http://www.yaskawa.com
YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil    
Phone: +55-11-3585-1100   Fax: +55-11-3585-1187
HOME
YASKAWA EUROPE GmbH Hauptstraβe 185, 65760 Eschborn, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 http://www.yaskawa.eu.com E-mail: [email protected] YASKAWA ELECTRIC KOREA CORPORATION 35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea Phone: +82-2-784-7844 Fax: +82-2-784-8495 http://www.yaskawa.co.kr YASKAWA ASIA PACIFIC PTE. LTD. 30A, Kallang Place, #06-01, 339213, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 http://www.yaskawa.com.sg YASKAWA ELECTRIC (THAILAND) CO., LTD. 59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 http://www.yaskawa.co.th YASKAWA ELECTRIC (CHINA) CO., LTD. 22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 http://www.yaskawa.com.cn YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082 YASKAWA ELECTRIC TAIWAN CORPORATION 12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 http://www.yaskawa.com.tw In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements. © 2017 YASKAWA ELECTRIC CORPORATION Published in Japan October 2019 MANUAL NO. SIEP S800002 29C <2>-0 18-10-15 Original instructions -7W SERVOPACK with FT/EX Specification for Gantry Applications -7-Series AC Servo Drive Product Manual
Display Name Cause Investigative Actions Corrective Actions A.020 Parameter Checksum Error 1
(The parameter data in the SERVOPACK is incorrect.) The power supply voltage suddenly dropped.  Measure the power supply voltage. Set the power supply voltage within the specified range, and set Fn005 to initialize the parameter. The power supply went OFF while changing a parameter setting. Check the circumstances when the power supply went OFF. Set Fn005 to initialize the parameter and then set the parameter again. The number of times that parameters were written exceeded the limit. Check to see if the parameters were frequently changed through the host controller. The SERVOPACK may be faulty. Repair or replace the SERVOPACK. Reconsider the method of writing parameters. Malfunction caused by noise from the AC power supply or grounding line, static electricity noise, etc. Turn the power supply ON and OFF several times. If the alarm still occurs, there may be noise interference. Take countermeasures against noise. Gas, water drops, or cutting oil entered the SERVOPACK and caused failure of the internal components. Check the installation conditions. The SERVOPACK may be faulty. Replace the SERVOPACK. A SERVOPACK fault occurred. Turn the power supply ON and OFF several times. If the alarm still occurs, the SERVOPACK may be faulty. The SERVOPACK may be faulty. Replace the SERVOPACK. A.021 Parameter Format Error 1
(The parameter data in the SERVOPACK is incorrect.) The software version of SERVOPACK that caused the alarm is older than that of the written parameter. Check Fn012 to see if the set software version agrees with that of the SERVOPACK. If not, an alarm may occur. Write the parameter of another SERVOPACK of the same model with the same software version. Then turn the power OFF and then ON again. A SERVOPACK fault occurred. — The SERVOPACK may be faulty. Replace the SERVOPACK. A.022 System Checksum Error 1 (The parameter data in the SERVOPACK is incorrect.) The power supply voltage suddenly dropped. Measure the power supply voltage. The SERVOPACK may be faulty. Replace the SERVOPACK. The power supply went OFF while setting an utility function. Check the circumstances when the power supply went OFF. The SERVOPACK may be faulty. Replace the SERVOPACK. A SERVOPACK fault occurred. Turn the power supply ON and OFF several times. If the alarm still occurs, the SERVOPACK may be faulty. The SERVOPACK may be faulty. Replace the SERVOPACK. A.030 Main Circuit Detector Error A SERVOPACK fault occurred. — The SERVOPACK may be faulty. Replace the SERVOPACK. A.040 Parameter Setting Error 1
(The parameter setting was out of the setting range.) The SERVOPACK and servomotor capacities do not match each other. Check the combination of SERVOPACK and servomotor capacities. Select the proper combination of SERVOPACK and servomotor capacities. A SERVOPACK fault occurred. — The SERVOPACK may be faulty. Replace the SERVOPACK. The parameter setting is out of the setting range. Check the setting ranges of the parameters that have been changed. Set the parameter to a value within the setting range. The electronic gear ratio is out of the setting range. Check the electronic gear ratio. The ratio must satisfy: 0.001< (Pn20E/Pn210) < 4000. Set the electronic gear ratio in the range: 0.001< (Pn20E/Pn210) < 4000. A.041 Encoder Output Pulse Setting Error The encoder output pulse (Pn212) is out of the setting range and does not satisfy the setting conditions. Check the parameter Pn212. Set Pn212 to a correct value. A.042 Parameter Combination Error The speed of program JOG operation (Fn004) is lower than the setting range after having changed the electronic gear ratio (Pn20E/Pn210) or the servomotor. Check that the detection conditions are satisfied. Decrease the setting of the electronic gear ratio (Pn20E/Pn210). The speed of program JOG operation (Fn004) is lower than the setting range after having changed the setting of the program JOG movement speed (Pn533). Check that the detection conditions are satisfied. Increase the setting of the program JOG movement speed (Pn533). The moving speed of advanced autotuning is lower than the setting range after having changed the electronic gear ratio (Pn20E/Pn210) or the servomotor. Check that the detection conditions are satisfied. Decrease the setting of the electronic gear ratio (Pn20E/Pn210). A.044 Semi-closed/Fullyclosed Loop Control Parameter Setting Error The setting of the fully-closed module does not match with that of Pn002.3. Check the settings of Pn002.3. The setting of fully-closed module must be compatible with the setting of Pn002.3.
A.330 Main Circuit Power Supply Wiring Error
(Detected when the power to the main circuit is turned ON.) The regenerative resistor disconnected when the SERVOPACK power supply voltage was high. Measure the resistance of the regenerative resistor using a measuring instrument. When using a regenerative resistor built in the SERVOPACK: Replace the SERVOPACK. When using an external regenerative resistor: Replace the external regenerative resistor. In the AC power input mode, DC power was supplied. Check the power supply to see if it is a DC power supply. Correct the settings to match the actual power supply specifications. In the DC power input mode, AC power was supplied. Check the power supply to see if it is an AC power supply. Correct the settings to match the actual power supply specifications. Regenerative resistor capacity (Pn600) is not set to 0 even though the regenerative resistor is disconnected. Check if regenerative resistor is connected and check the regenerative resistor capacity. Set Pn600 to 0. A SERVOPACK fault occurred. — The SERVOPACK may be faulty. Replace the SERVOPACK. A.400 Overvoltage
(Detected in the SERVOPACK main circuit power supply section.) . For 100-VAC SERVOPACKs: The AC power supply voltage exceeded 145 V. . For 200-VAC SERVOPACKs: The AC power supply voltage exceeded 290 V. . For 400-VAC SERVOPACKs: The AC power supply voltage exceeded 580 V. . For 200-VAC SERVOPACKs: with DC power supply input: The DC power supply voltage exceeded 410 V. . For 400-VAC SERVOPACKs: The DC power supply voltage exceeded 820 V. Measure the power supply voltage. Set AC/DC power supply voltage within the specified range. The power supply is unstable, or was influenced by a lightning surge. Measure the power supply voltage. Improve the power supply conditions by installing a surge absorber, etc. Then, turn the power supply OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.
A.450 Main-Circuit Capacitor Overvoltage A SERVOPACK fault occurred. — Replace the SERVOPACK. A.510 Overspeed
 (The servomotor rotational speed exceeds the maximum.) The order of phases U, V, and W in the servomotor wiring is incorrect. Check the servomotor wiring. Confirm that the servomotor is correctly wired. A reference value exceeding the overspeed detection level was input. Check the input value. Reduce the reference value or adjust the gain. The motor speed exceeded the maximum. Check the servomotor speed waveform. Reduce the speed reference input gain, adjust the servo gain, or reconsider the operating conditions. A SERVOPACK fault occurred. — The SERVOPACK may be faulty. Replace the SERVOPACK. A.511 Overspeed of Encoder Output Pulse Rate The encoder output pulse frequency exceeded the limit. Check the encoder output pulse setting. Decrease the setting of the encoder output pulse (Pn212). The encoder output pulse output frequency exceeded the limit because the servomotor speed was too high. Check the encoder output pulse output setting and servomotor speed. Decrease the servomotor speed. A.520 Vibration Alarm Abnormal vibration was detected at the servomotor speed. Check for abnormal noise from the servomotor, and check the speed and torque waveforms during operation. Reduce the servomotor speed or reduce the speed loop gain (Pn100). The moment of inertia ratio (Pn103) value is greater than the actual value or is greatly changed. Check the moment of inertia ratio. Set the moment of inertia ratio (Pn103) to an appropriate value. A.521 Autotuning Alarm
(Vibration was detected while executing the advanced autotuning, one-parameter tuning, EasyFFT, or tuning-less function.) The servomotor vibrated considerably while performing tuningless function (factory setting). Check the servomotor speed waveform. Reduce the load so that the moment of inertia ratio falls within the allowable value, or raise the tuning level using the tuning-less levels setting (Fn200) or reduce the load level. The servomotor vibrated considerably during advanced autotuning, one-parameter tuning, or EasyFFT. Check the servomotor speed waveform. Check the operation procedure of corresponding function and take a corrective action.
A.8A0 External Encoder Error Setting the zero point position of external absolute encoder failed because the servomotor rotated. Before setting the zero point position, use the fully-closed feedback pulse counter (Un00E) to confirm that the servomotor is not rotating. The servomotor must be stopped while setting the zero point position. An external encoder fault occurred. — Replace the external encoder. A.8A1 External Encoder Error of Module An external encoder fault occurred. — Replace the external encoder. A serial converter unit fault occurred. — Replace the serial converter unit. A.8A External Encoder Error of Sensor
(Incremental) An external encoder fault occurred. — Replace the external encoder. A.8A3 External Encoder Error of Position
(Absolute) An external absolute encoder fault occurred. — The external absolute encoder may be faulty. Refer to the encoder manufacturer’s instruction manual for corrective actions. A.8A5 External Encoder Overspeed The overspeed from the external encoder occurred. Check the maximum speed of the external encoder. Keep the external encoder below its maximum speed. A.8A6 External Encoder Overheated The overheat from the external encoder occurred. — Repair or replace the external encoder. A.b10 Speed Reference A/D Error
(Detected when the servo is ON.) A malfunction occurred in the speed reference input section. — Clear and reset the alarm and restart the operation. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.b11 Speed Reference A/D Data Error A malfunction occurred in the speed reference input section. — Clear and reset the alarm and restart the operation. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.b20 Reference Torque Input Read Error
(Detected when the servo is ON.) A malfunction occurred in the reading section of the torque reference input. — Clear and reset the alarm and restart the operation. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.b31 Current Detection Error 1 The current detection circuit for phase U is faulty. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.b32 Current Detection Error 2 The current detection circuit for phase V is faulty. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.b33 Current Detection Error 3 The detection circuit for the current is faulty. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. The servomotor main circuit cable is disconnected. Check for disconnection of the servomotor main circuit cable. Correct the servomotor wiring. A.bF0 System Alarm 0 A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.bF1 System Alarm 1 A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.bF2 System Alarm 2 A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.bF3 System Alarm 3 A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.bF4 System Alarm 4 A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.C10 Servo Overrun Detected
(Detected when the servomotor power is ON.) The order of phases U, V, and W in the servomotor wiring is incorrect. Check the servomotor wiring. Confirm that the servomotor is correctly wired. An encoder fault occurred. — If the alarm still occurs after turning the power OFF and then ON again, even though the servomotor is correctly wired, the servomotor may be faulty. Replace the servomotor. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.C80 Absolute Encoder Clear Error and Multiturn Limit Setting Error An encoder fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the servomotor may be faulty. Replace the servomotor. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.C90 Encoder Communications Error Contact fault of encoder connector or incorrect encoder wiring.  Check the encoder connector contact status. Re-insert the encoder connector and confirm that the encoder is correctly wired. Encoder cable disconnection or short-circuit. Or, incorrect cable impedance. Check the encoder cable. Use the encoder cable with the specified rating. Corrosion caused by improper temperature, humidity, or gas, short-circuit caused by intrusion of water drops or cutting oil, or connector contact fault caused by vibration. Check the operating environment. Improve the operating environmental conditions, and replace the cable. If the alarm still occurs, replace the SERVOPACK. Malfunction caused by noise interference. — Correct the wiring around the encoder to avoid noise interference (Separate the encoder cable from the servomotor main circuit cable, improve grounding, etc.) A SERVOPACK fault occurred. — Connect the servomotor to another SERVOPACK, and turn ON the control power. If no alarm occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.C91 Encoder Communications Position Data Error The noise interference occurred on the I/O signal line because the encoder cable is bent and the sheath is damaged. Check the encoder cable and connector. Confirm that there is no problem with the encoder cable layout. The encoder cable is bundled with a high-current line or near a high-current line. Check the encoder cable layout. Confirm that there is no surge voltage on the encoder cable. The FG potential varies because of influence from machines on the servomotor side, such as the welder. Check the encoder cable layout. Properly ground the machines to separate from the encoder FG. A.C92 Encoder Communications Timer Error Noise interference occurred on the I/O signal line from the encoder. — Take countermeasures against noise for the encoder wiring. Excessive vibration and shocks were applied to the encoder.  Check the operating environment. Reduce the machine vibration or correctly install the servomotor. An encoder fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the servomotor may be faulty. Replace the servomotor. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.CA0 Encoder Parameter Error An encoder fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the servomotor may be faulty. Replace the servomotor. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.Cb0 Encoder Echoback Error The encoder wiring and contact are incorrect. Check the encoder wiring. Correct the encoder wiring. Noise interference occurred due to incorrect encoder cable specifications. — Use tinned annealed copper shielded twisted-pair or screened unshielded twisted-pair cable with a core of at least 0.12 mm2. Noise interference occurred because the wiring distance for the encoder cable is too long. — The wiring distance must be 50 m max. The FG potential varies because of influence from machines on the servomotor side, such as the welder. Check the encoder cable layout. Properly ground the machines to separate from encoder FG. Excessive vibration and shocks were applied to the encoder. Check the operating environment. Reduce the machine vibration or correctly install the servomotor. An encoder fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the servomotor may be faulty. Replace the servomotor. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.CC0 Multiturn Limit Disagreement When using a direct drive (DD) servo motor, the multiturn limit value (Pn205) is different from that of the encoder. Check the value of the Pn205. Correct the setting of Pn205 (0 to 65535). The multiturn limit value of the encoder is different from that of the SERVOPACK. Or, the multiturn limit value of the SERVOPACK has been changed. Check the value of the Pn205 of the SERVOPACK. Execute Fn013 at the occurrence of alarm. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.CF1 Feedback Option Module Communications Error
(Reception error) Wiring of cable between serial converter unit and SERVOPACK is incorrect or contact is faulty. Check the external encoder wiring. Correct the cable wiring. The specified cable is not used between serial converter unit and SERVOPACK. Confirm the external encoder wiring specifications. Use the specified cable. Cable between serial converter unit and SERVOPACK is too long. Measure the length of this cable. Use 20-m cable max. Sheath of cable between serial converter unit and SERVOPACK is broken. Check the cable for damage. Replace the cable. A.CF2 Feedback Option Module Communications Error
(Timer stop) Noise interferes with the cable between serial converter unit and SERVOPACK. — Correct the wiring around serial converter unit, e.g., separating I/O signal line from main circuit cable or grounding. A serial converter unit fault occurred. — Replace the serial converter unit. A SERVOPACK fault occurred. — Replace the SERVOPACK. A.d00 Position Error Overflow
(Position error exceeded the value set in the excessive position error alarm level (Pn520).) The servomotor U, V, and W wirings is faulty. Check the servomotor main circuit cable connection. Confirm that there is no contact fault in the motor wiring or encoder wiring. The frequency of the position reference pulse is too high. Reduce the reference pulse frequency, and operate the SERVOPACK. Reduce the position reference pulse frequency or acceleration of position reference. Or, reconsider the electronic gear ratio. The position reference acceleration is too fast. Reduce the reference acceleration, and operate the SERVOPACK. Apply the smoothing function, such as using position reference acceleration/deceleration time constant (Pn216). Setting of the excessive position error alarm level (Pn520) is low against the operating condition. Check the alarm level (Pn520) to see if it is set to an appropriate value. Set the Pn520 to proper value. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. A.d01 Position Error Overflow Alarm at Servo ON This alarm occurs if the servo ON signal (/S-ON) is turned ON when the position error is greater than the set value of Pn526. Check the position error amount (Un008) while the /S-ON signal is OFF. Set position error to be cleared while the /S-ON signal is OFF. Or, correct the excessive position error alarm level at servo ON (Pn526). A.d02 Position Error Overflow Alarm by Speed Limit at Servo ON When pulses remain in the error counter, Pn529 limits the speed if the /S-ON signal is turned ON. If Pn529 limits the speed in such a state, this alarm occurs when reference pulses are input and the number of position errors exceeds the value set for the excessive position error alarm level (Pn520). — Set position error to be cleared while the /S-ON signal is OFF. Or, correct the excessive position error alarm level (Pn520). Or, adjust the speed limit level at servo ON (Pn529). A.d10 Motor-load Position Error Overflow Motor rotation direction and external encoder installation direction are opposite. Check the servomotor rotation direction and the external encoder installation direction. Install the external encoder in the opposite direction, or change the setting of the external encoder usage method (Pn002.3) to reverse the direction. Mounting of the load (e.g., stage) and external encoder joint installation are incorrect. Check the external encoder mechanical connection. Check the mechanical joints. A.E72 Feedback Option Module Detection Failure The connection between the SERVOPACK and the Feedback Option Module is Faulty. Check the connection between the SERVOPACK and the Feedback Option Module. Correctly connect the Feedback Option Module. The Feedback Option Module was disconnected. — Execute resetting configuration error in option modules (Fn014) and turn the power supply OFF and then ON again. A Feedback Option Module fault occurred. — Replace the Feedback Option Module. A SERVOPACK fault occurred. — Replace the SERVOPACK. A.Eb1 Safety Function Signal Input Timing Error The lag between activations of the input signals /HWBB1 and /HWBB2 for the HWBB function is ten second or more. Measure the time lag between the /HWBB1 and /HWBB2 signals. The output signal circuits or devices for /HWBB1 and /HWBB2 or the SERVOPACK input signal circuits may be faulty. Alternatively, the input signal cables may be disconnected. Check if any of these items are faulty or have been disconnected. A.F10 Main Circuit Cable Open Phase
(With the main power supply ON, voltage was low for more than 1 second in an R, S, or T phase.)
(Detected when the main power supply was turned ON.) The three-phase power supply wiring is incorrect. Check the power supply wiring. Confirm that the power supply is correctly wired. The three-phase power supply is unbalanced. Measure the voltage at each phase of the three-phase power supply. Balance the power supply by changing phases. A single-phase power is input without setting Pn00B.2 (power supply method for three-phase SERVOPACK) to 1 (single-phase power supply). Check the power supply and the parameter setting. Match the parameter setting to the power supply. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. CPF00 Digital Operator Transmission Error 1 The contact between the digital operator and the SERVOPACK is faulty. Check the connector contact. Insert securely the connector or replace the cable. Malfunction caused by noise interference. — Keep the digital operator or the cable away from noise sources. CPF01 Digital Operator Transmission Error 2 A digital operator fault occurred. — Disconnect the digital operator and then re-connect it. If the alarm still occurs, the digital operator may be faulty. Replace the digital operator. A SERVOPACK fault occurred. — Turn the power supply OFF and then ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.
  • Ремонт сервопривода Yaskawa
  • Особенности ремонта сервопривода Yaskawa
  • Коды предупреждений и ошибок сервопривода Yaskawa
  • Схемы подключения сервоприводов Yaskawa
  • Преимущество ремонта сервоприводов Yaskawa в нашем сервисном центре
  • Оставить заявку на ремонт сервопривода Yaskawa

Ремонт сервопривода Yaskawa SGDV-R70A25AСервисный центр «Кернел» предлагает выполнить качественный ремонт сервопривода Yaskawa в на компонентном уровне в максимально сжатые сроки. Сервопривод относятся к сложной промышленной электронике именно поэтому ремонтом сервоприводов Yaskawa, впрочем, как и других производителей должны заниматься специалисты, имеющие не только высшее техническое образование, но и солидный опыт в ремонте подобной промышленной электроники.

Также для восстановления подобного промышленного оборудования понадобится хорошая материально-техническая база. При выполнении всех выше перечисленных условий, шансы на успешный ремонт сервопривода Yaskawa возрастают в геометрической прогрессии.

Именно поэтому за ремонтом сервоприводов, независимо от производителя лучше всего обращаться в специализированный сервисный центр, который отвечает всем техническим требованиям, такой как Кернел. Наш цент имеет отличную материально-техническую базу, а за время существования с 2002 года специалисты компании накопили бесценный опыт в том числе опыт в ремонте сервоприводов Yaskawa.

Особенности ремонта сервопривода Yaskawa

Ремонт сервопривода Yaskawa SGDV-120A01AРемонт сервоприводов имеет ряд индивидуальных особенностей, это связано с конструктивными особенностями данного промышленного оборудования. По аналогии с частотными преобразователями они состоят из двух взаимосвязанных частей, это:

  • Аппаратная часть;
  • Программная часть.

В первую очередь ремонтируется аппаратная часть промышленного сервопривода. После глубокой диагностики неисправного блока выявляются все неисправные компоненты, которые в последствии заменяются на оригинальные запасные части (по возможности), в случае если сервопривод уже давно снят с производства и найти оригинальные запчасти просто невозможно они заменяются на аналоги.

Данный вид ремонта называется компонентным. От других видов его отличает две немаловажные детали.

  • Значительное удешевление ремонта;
  • Существенное сокращение времени ремонта.

По завершении ремонта аппаратной части сервопривода наступает очередь программной. В зависимости от серии выбирается программный продукт и зашивается в блок.

Заключительный этап ремонта сервопривода Yaskawa это проверка на специализированном стенде. Все блоки проверяются без нагрузки и с нагрузкой не менее двух часов.

Коды предупреждений и ошибок сервопривода Yaskawa

Ошибки, связанные с идентификацией модуля обратной связи

Номер аварийного сигнала: Имя аварийного сигнала (Описание аварийного сигнала)

Причина

Расследование причин

Устранение причины

A.044:

Ошибка задания параме- тра полузамкнутого/пол- ностью замкнутого цикла управления

Подключенный дополнительный модуль и значение настройки параме- тра Pn00B.3 и/или Pn002.3 не совпа- дают.

Проверьте настройки

PN00B.3 и/или Pn002.3

Настройка дополнитель- ного модуля должна совпа- дать с настройками Pn00B.3 и/или Pn002.3.

A.051:

Предупреждение о непод- держиваемом устройстве

1)  Неподдерживаемое устройство не было подключено.

2)Неподдерживаемая комбинация: а) СЕРВОУЗЕЛ (вращательный

двигатель) с модулем обратной связи для линейного двигателя

б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя

3)  Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3.

Проверьте xарактеристики продукта

Настройте Pn00B.3. Выберите правильную ком- бинацию устройств

A.E72:

Ошибка обнаружения модуля обратной связи

Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Правильно подключите модуль обратной связи.

Модуль обратной связи был отключен.

Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание.

Произошла ошибка модуля обратной связи.

Замените модуль обратной связи.

Произошла ошибка СЕРВОУЗЛА.

Замените СЕРВОУЗЕЛ.

A.E75:

Неподдерживаемый модуль обратной связи

Был подключен неподдерживаемый модуль обратной связи.

См. каталог подключенного модуля обратной связи или руководство СЕРВОУЗЛА

Подключите совместимый модуль обратной связи.

Была использована неподходящая версия прошивки Sigma-5.

Замените СЕРВОУЗЕЛ.

Ошибки в полностью замкнутом цикле управления

Номер аварийного сигнала: Имя аварийного сигнала (Описание аварийного сигнала)

Причина

Расследование причин

Устранение причины

A.041:

Ошибка настройки импульсов на выходе дат- чика положения

Импульс на выходе датчика положения (Pn212) выходит за пределы допусти- мого диапазона и не отвечает условиям настройки.

Проверьте параметр Pn212.

Установите верное значе- ние для параметра Pn212.

A.042:

Ошибка комбинации параметра

Скорость программирования работы JOG (Fn004) ниже, чем диапазон уста- вок после изменения скорости движе- ния при программировании работы JOG (Pn533).

Убедитесь, что условия обнаружения соблюдаются.

Увеличьте значение скоро- сти движения при програм- мировании работы JOG (Pn533).

A.511:

Превышение скорости импульсов на выходе дат- чика положения

Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212).

Проверьте настройку вывода импульсов на выходе датчика положения

Уменьшите значение импульса на выходе дат- чика положения (Pn212).

A.8A0:

Ошибка внешнего дат- чика положения

Произошла ошибка внешнего датчика положения.

Замените внешний датчик положения.

A.8A1:

Ошибка в модуле внеш- него датчика положения

Произошел сбой при использовании серийного конвертера.

Замените серийный конвер- тер.

A.8A2

Ошибка в сенсоре внеш- него датчика положения

Произошла ошибка внешнего датчика положения.

Замените внешний датчик положения.

A.8A3

Ошибка в позиции внеш- него датчика положения

Произошла ошибка абсолютного внеш- него датчика положения

Есть вероятность неисправ- ности во внешнем абсолют- ном датчике положения.

Подробную информацию об исправлении неисправ- ностей см. в руководстве по эксплуатации датчика положения от производи- теля.

A.8A5

Разгон внешнего датчика положения

Произошло превышение скорости на внешнем датчике положения.

Замените внешний датчик положения.

A.8A6

Перегрев внешнего дат- чика положения

Произошел перегрев внешнего датчика положения.

Замените внешний датчик положения.

A.CF1:

Ошибка в системе связи внешнего датчика поло- жения

Неправильное подключение кабеля между серийным конвертером и СЕР- ВОУЗЛОМ, либо неисправный контакт.

Проверьте проводку внеш- него датчика положения.

Исправьте проводку кабеля.

Указанный кабель не используется, либо слишком длинный.

Подтвердите характери- стики проводки внешнего датчика положения.

Используйте указанный кабель макс. длиной 20 м.

A.CF2:

Ошибка таймера в системе связи внешнего датчика положения

Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗ- ЛОМ.

Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода.

A.D10:

Ошибка переполнения при позиционировании нагрузки электродвига- теля

Направление вращения двигателя и направление установки внешнего дат- чика положения противоположны.

Проверьте направление вращения серводвигателя и направление установки внешнего датчика положе- ния.

Установите внешний дат- чик положения в противо- положном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление.

Неверно выполнен монтаж нагрузки и соединений внешнего датчика положе- ния.

Проверьте механические соединения внешнего дат- чика положения

Проверьте механические соединения.

Смотреть все коды ошибок сервопривода Yaskawa Sigma-5

Схемы подключения сервоприводов Yaskawa

В некоторых случает может понадобится схема подключения сервоприводов, ниже мы показаны схемы сервопривода Yaskawa.

Схема конфигурации системы Yaskawa
Подключение к СЕРВОУЗЛУ SGDV-XXXE1A

Схема подключения сервопривода Yaskawa
Пример соединений сигналов ввода-вывода

Схема конфигурации системы Yaskawa Подключение к СЕРВОУЗЛУ SGDV-XXXE1A

Схема подключения сервопривода Yaskawa Пример соединений сигналов ввода-вывода

Преимущество ремонта сервоприводов Yaskawa в нашем сервисном центре

Во время эксплуатации электроприводов Yaskawa может возникнуть проблема, далеко не всегда возникшую проблему можно исправить на месте своими силами, наш сервисный центр готов вам в этом помочь, выполнив качественный ремонт сервоприводов Yaskawa в сжатые сроки с полугодовой гарантией.

Мы не только восстановим неисправный блок, но и подскажем как действовать в той или иной ситуации для максимально долгой и безаварийной работы сервопривода.

Работы, проводимые при ремонте сервопривода Yaskawa:

Логотип компании 'Кернел'

  • Предварительный осмотр на возможность восстановления бесплатный;
  • Мы производим ремонт сервопривода Yaskawa на компонентном уровне (экономия бюджета и времени)
  • При ремонте сервоприводов ни каких конструктивных изменений не вносим;
  • Ремонт блоков с применением оригинальных запасных частей (по возможности).
  • Вы платите исключительно за результат — работающий сервопривод;
  • Гарантия на ремонт сервоприводов Yaskawa и на запасные части замененные в процессе ремонта 6 месяцев;
  • Сроки ремонта варьируются от 5 до 15 рабочих дней;

За два десятилетия существования сервисного центра нашими специалистами были успешно проведены тысячи подобных ремонтов с каждым разом поднимая квалификацию наших инженеров. Ниже представлен далеко не полный список сервоприводов Yaskawa серии Sigma-5 ремонтируемые в нашем сервисном центре.

Буквенно-цифровое обозначение

Сервопривода Yaskawa Sigma-5

SGDV-1R9D01A

Ремонт сервопривода Yaskawa Sigma-5 0.45 кВт, питающая сеть только 3 фазы 400 В.

SGDV-3R5D01A

Ремонт сервопривода Yaskawa Sigma-5 1.0 кВт, питающая сеть только 3 фазы 400 В.

SGDV-5R4D01A

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-8R4D01A

Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-120D01A

Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-170D01A

Ремонт сервопривода Yaskawa Sigma-5 4.40 кВт, питающая сеть только 3 фазы 400 В.

SGDV-210D01A

Ремонт сервопривода Yaskawa Sigma-5 5.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-260D01A

Ремонт сервопривода Yaskawa Sigma-5 7.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-280D01A

Ремонт сервопривода Yaskawa Sigma-5 11.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-370D01A

Ремонт сервопривода Yaskawa Sigma-5 15.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-1R9D05A

Ремонт сервопривода Yaskawa Sigma-5 0.45 кВт, питающая сеть только 3 фазы 400 В.

SGDV-3R5D05A

Ремонт сервопривода Yaskawa Sigma-5 1.0 кВт, питающая сеть только 3 фазы 400 В.

SGDV-5R4D05A

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-8R4D05A

Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-120D05A

Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-170D05A

Ремонт сервопривода Yaskawa Sigma-5 4.40 кВт, питающая сеть только 3 фазы 400 В.

SGDV-210D05A

Ремонт сервопривода Yaskawa Sigma-5 5.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-260D05A

Ремонт сервопривода Yaskawa Sigma-5 7.50 кВт, питающая сеть только 3 фазы 400 В.

SGDV-280D05A

Ремонт сервопривода Yaskawa Sigma-5 11.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-370D05A

Ремонт сервопривода Yaskawa Sigma-5 15.00 кВт, питающая сеть только 3 фазы 400 В.

SGDV-R70A01A

Ремонт сервопривода Yaskawa Sigma-5 0.05 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-R90A01A

Ремонт сервопривода Yaskawa Sigma-5 0.10 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-1R6A01A

Ремонт сервопривода Yaskawa Sigma-5 0.20 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-2R8A01A

Ремонт сервопривода Yaskawa Sigma-5 0.40 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-5R5A01A

Ремонт сервопривода Yaskawa Sigma-5 0.75 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-120A01A008000

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть 1 фаза 230 В.

SGDV-120A01A

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 230 В.

SGDV-180A01A

Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 230 В.

SGDV-200A01A

Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 230 В.

SGDV-R90A05A

Ремонт сервопривода Yaskawa Sigma-5 0.10 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-1R6A05A

Ремонт сервопривода Yaskawa Sigma-5 0.20 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-2R8A05A

Ремонт сервопривода Yaskawa Sigma-5 0.40 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-5R5A05A

Ремонт сервопривода Yaskawa Sigma-5 0.75 кВт, питающая сеть 1/3 фазы 230 В.

SGDV-120A05A008000

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть 1 фаза 230 В.

SGDV-120A05A

Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 230 В.

SGDV-180A05A

Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 230 В.

SGDV-200A05A

Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 230 В.

В таблице представлены исключительно сервопривода Yaskawa Sigma-5 ремонт которых мы вам предлагаем, также специалисты нашей компании ремонтируют сервопривода не зависимо от того под каким брендом они были выпущены.

Оставить заявку на ремонт сервопривода Yaskawa

У вас остались вопросы, связанные с ремонтом или сбросом ошибок, а также программированием и настройкой сервоприводов Yaskawa? Оставьте заявку на ремонт сервопривода Yaskawa в нашим менеджерам. Связаться с ними можно несколькими способами:

Наши контакты

  • Заказав обратный звонок (кнопка в правом нижнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Позвонив по номеру телефона: +7(8482) 79-78-54; +7(917) 121-53-01
  • Написав на электронную почту: 89171215301@mail.ru

За время существования сервисного центра нашими специалистами были отремонтированы тысячи единиц промышленной электроники. Вот далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.

  • Ремонт сервоприводов yaskawa sigma в Тольятти
  • Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»
  • Настройка сервоусилителей Yaskawa sigma в Тольятти
  • Подключение сервопривода Yaskawa
  • Ошибки сервопривода Yaskawa sigma
  • Коды ошибок сервопривода Yaskawa sigma-5
  • Типы сервоприводов Yaskawa
  • Оставить заявку на ремонт сервопривода Yaskawa

Ремонт сервоприводов Yaskawa sigma в Тольятти

Ремонт серовприводов Yaskawa

Ремонт сервоприводов Yaskawa sigma в Тольятти, одна из многих услуг предлагаемых сервисным центром «РемПромЭл». Сервопривод относится к сложной промышленной электронике и состоит из двух взаимосвязанных составляющих- это электронная и силовая часть. Подобное конструктивное исполнение значительно усложняет ремонт сервоприводов Yaskawa.

Сервопривода достаточно распространенное промышленное оборудование, и как все подвержены износу. В зависимости от интенсивности использования, нагрузки, среды в которой работает оборудования сервопривода выходят из строя останавливая рабочий процесс.

В целях сомнительной «экономии» некоторые пытаются провести ремонт сервоусилителя Yaskawa sigma самостоятельно на территории производства. Зачастую данные действия приводят к значительному удорожанию ремонта а при самом неблагоприятном исходе могут привести к не ремонтопригодности серводрайвера.

В виду вышесказанного, настоятельно рекомендуем, не пытайтесь проводить ремонт сервоприводов Yaskawa sigma своими силами, обратитесь за помощью к специалистам. Современный специализированный сервисный центр имеет в наличии весь необходимый инструмент, включая специальное диагностическое оборудование, а компетентный персонал проведет качественный ремонт сервоприводов Yaskawa sigma в Тольятти, дополнительно сервисные центры дают гарантию на проведенные ремонтные работы.

Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»

Ремонт сервоприводов Yaskawa

Ремонт сервоприводов Yaskawa в сервисном центре самое разумное и экономически выгодное решение. Грамотные специалисты со знанием дела проведут глубокую диагностику неисправного блока и последующий ремонт сервопривода Yaskawa sigma в кратчайшие сроки. К написанному можно добавить то, что каждый без исключения ремонт сервопривода Yaskawa sigma в СЦ «РемПромЭл» проводится с применением оригинальных запасных частей.

В 2013-ом году специалистами компании был проведен первый ремонт сервопривода Yaskawa положивший начало дальнейшему развитию в данном направлении. За прошедшее время были отремонтированы сотни единиц промышленного оборудования и накоплен колоссальный, бесценный опыт в ремонте сервоприводов различных производителей.

Сервисный центр «РемПромЭл» оснащен самым современным диагностическим и ремонтным оборудованием, имеются в наличии расходные материалы, а так же на складе компании богатый выбор оригинальных запасных частей, что дает возможность провести качественный ремонт сервоприводов Yaskawa sigma.

Обратившись в СЦ за ремонтом сервоприводов вы получите:

  • Глубокую диагностику с выявлением неисправного компонента;
  • Чистку неисправного блока;
  • Ремонт сервопривода Yaskawa sigma в кратчайшие сроки;
  • Настройка сервоусилителя;
  • Проверку отремонтированного блока на специальном стенде в условиях максимально приближенных к реальным;
  • Видео проверки отремонтированного серводрайвера.

Отдельное внимание мы уделяем качеству проведения ремонта и даем гарантию на ремонт сервоприводов Yaskawa sigma, а так же на замененные в процессе ремонта запасные части и расходные материалы 6 месяцев.

Настройка сервоусилителей Yaskawa sigma в Тольятти

Настройка сервоприводов Yaskawa

Настройка сервоприводов (сервоусилителей) — это заключительный этап ремонта и в тоже время очень важный. Для правильной работы восстановленного блока просто необходимо провести грамотное программирование сервоусилителя. Ремонт и дальнейшую настройку сервоприводов выполняют разные специалисты, так как подобная работа довольно сложная и имеет свою специфику.

Настройка сервоусилителей или как еще называют программирование сервоприводов Yaskawa sigma, неотъемлемая часть процесса реанимирования, ввиду того, что ремонт силовой части это только половина мероприятий направленных на восстановление работоспособности сервоприводов.

В некоторых случаях возникает необходимость провести программирование сервоусилителя без его ремонта. Причин по которым может возникнуть подобная необходимость масса.

Настройка сервоуслилтелей Yaskawa sigma в Тольятти может быть и отдельной услугой предоставляемой сервисным центром «РемПромЭл». Инженеры компании проведут необходимую настройку сервоприводов не только на территории сервисного центра, при необходимости можно заказать услугу выезда специалиста на территорию заказчика (по предварительной договоренности).

От качественной настройки сервоусилителя зависит правильная и безаварийная работа связки сервопривода и серводвигателя, а для этого требуется не много, просто программирование сервопривода Yaskawa sigma должен проводить компетентный персонал с богатым опытом по настройке сервоуслилтелей.

Подключение сервопривода Yaskawa

Подключение сервопривода Yaskawa

Подключение сервопривода Yaskawa к оборудованию заказчика это еще одна услуга предоставляемая нашей компанией.

При необходимости специалист центра выполнит подключение сервопривода Yaskawa sigma с выездом на территорию заказчика.

В некоторых случаях на производстве может быть дефицит квалифицированны кадров которые могли бы произвести качественное подключение сервопривода, именно по этому мы предлагаем услуги нашего сервисного центра.

Свяжитесь с нашими менеджерами, закажите выезд специалиста, и подключением сервопривода Yaskawa sigma займется инженер сервисного центра. В случае заказа на подключение сервопривода Yaskawa sigma силами наших специалистов вы получаете гарантию качества и работоспособности вашего оборудования.

Доверяя работу по подключению сервопривода Yaskawa sigma профессионалам, вы избавляетесь от головной боли и гарантированно получаете работающее оборудование в кратчайшие сроки за разумную цену.

Ошибки сервопривода Yaskawa sigma

Ремонт сервопривода Yaskawa

Многие сервопривода данного производителя, за редким исключением оснащен информационной панелью с помощью которой проходит процесс программирования сервоприводов, а так же на ней в случае нештатной ситуации отображается код ошибки которая привела к остановке оборудования.

У каждого производителя разные коды ошибок у кого то это могут быть цифровые обозначения у кого то буквенные, но вся прелесть заключается в том, что открыв документацию и расшифровав код ошибки сервопривода мы с большой долей вероятности можем исправить эту ошибку на месте, сбросить ее на сервоприводе и запустить оборудование заново.

К сожалению не все ошибки сервоприводов можно исправить и сбросить самостоятельно, в некоторых случаях придется обращаться к специалистам сервисного центра.

Самые распространенные ошибки сервоприводов:

  • Превышение тока;
  • Перенапряжение или недостаточное напряжение;
  • Перегрузка;
  • Ошибка сигнала энкодера;
  • Превышение температуры IGBT-модуля ;
  • Ошибка связи;
  • Обрыв фазы питания;
  • Короткое замыкание.

Это не полный список распространенных ошибок сервоприводов которые можно сбросить самостоятельно без обращения к специалистам.

Коды ошибок сервопривода Yaskawa sigma-5

Ошибки, связанные с идентификацией модуля обратной связи

Код и описание ошибки

Причина Устранение

A.044

Ошибка задания параметра полузамкнутого / полностью замкнутого цикла управления

Подключенный дополнительный модуль и значение настройки параметра Pn00B.3 и/или Pn002.3 не совпадают.

Проверьте настройки PN00B.3 и/или Pn002.3.

Настройка дополнительного модуля должна совпадать с настройками Pn00B.3 и/или Pn002.3.

A.051

Предупреждение о неподдерживаемом устройстве

1) Неподдерживаемое устройство не было подключено.
2) Неподдерживаемая комбинация:
а) СЕРВОУЗЕЛ (вращательный двигатель) с модулем обратной связи для линейного двигателя
б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя
3) Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3.

Проверьте характеристики продукта.

Настройте Pn00B.3.
Выберите правильную комбинацию устройств.

A.E72

Ошибка обнаружения модуля обратной связи

Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Правильно подключите модуль обратной связи.

Модуль обратной связи был отключен. Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание.
 Произошла ошибка модуля обратной связи. Замените модуль обратной связи.
 Произошла ошибка СЕРВОУЗЛА. Замените СЕРВОУЗЕЛ.

A.E75

Неподдерживаемый модуль обратной связи

Был подключен неподдерживаемый модуль обратной связи. Подключите совместимый модуль обратной связи.
Была использована неподходящая версия прошивки Sigma-5. Замените СЕРВОУЗЕЛ.

Ошибки в полностью замкнутом цикле управления

Код и описание ошибки

Причина Устранение

A.041

Ошибка настройки импульсов на выходе дат чика положения

Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. Установите верное значение для параметра Pn212.

A.042

Ошибка комбинации параметра

Скорость программирования работы JOG (Fn004) ниже, чем диапазон уставок после изменения скорости движения при программировании работы JOG (Pn533). Увеличьте значение скорости движения при программировании работы JOG (Pn533).

A.511

Превышение скорости импульсов на выходе датчика положения

Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). Уменьшите значение импульса на выходе датчика положения (Pn212).

A.8A0

Ошибка внешнего датчика положения

Произошла ошибка внешнего датчика положения. Замените внешний датчик положения.

A.8A1

Ошибка в модуле внешнего датчика положения

Произошел сбой при использовании серийного конвертера. Замените серийный конвертер.

A.8A2

Ошибка в сенсоре внешнего датчика положения

Произошла ошибка внешнего датчика положения. Замените внешний датчик положения.

A.8A3

Ошибка в позиции внешнего датчика положения

Произошла ошибка абсолютного внешнего датчика положения. Есть вероятность неисправности во внешнем абсолютном датчике положения.  Подробную информацию
об исправлении неисправностей см. в руководстве по эксплуатации датчика положения от производителя.

A.8A5

Разгон внешнего датчика положения

Произошло превышение скорости на внешнем датчике положения. Замените внешний датчик положения.

A.8A6

Перегрев внешнего датчика положения

Произошел перегрев внешнего датчика положения. Замените внешний датчик положения.

A.CF1

Ошибка в системе связи внешнего датчика положения

Неправильное подключение кабеля между серийным конвертером и СЕРВОУЗЛОМ, либо неисправный контакт.

Проверьте проводку внешнего датчика положения.

Исправьте проводку кабеля.

Указанный кабель не используется, либо слишком длинный.

Подтвердите характеристики проводки внешнего датчика положения.

Используйте указанный кабель макс. длиной 20 м.

A.CF2

Ошибка таймера в системе связи внешнего датчика положения

Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗЛОМ. Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода.

A.D10

Ошибка переполнения при позиционировании нагрузки электродвигателя

Направление вращения двигателя и направление установки внешнего датчика положения противоположны. Установите внешний датчик положения в противоположном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление.
Неверно выполнен монтаж нагрузки и соединений внешнего датчика положения. Проверьте механические соединения.

Ошибки в полузамкнутом цикле управления с вращательными двигателями

Код и описание ошибки

Причина Устранение

A.041

Ошибка настройки импульсов на выходе датчика положения

Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. Установите верное значение для параметра Pn212.

A.511

Превышение скорости импульсов на выходе датчика положения

Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). Уменьшите значение импульса на выходе датчика положения (Pn212).

A.810

Ошибка резервирования датчика положения

Сбой всех источников питания абсолютного датчика положения и позиционные данные были потеряны. Замените аккумулятор или примите аналогичные меры для обеспечения питания датчика положения и настройте датчик положения (Fn008).

A.820

Ошибка контрольной суммы датчика положения

Произошла ошибка датчика положения. Снова настройте датчик положения с помощью Fn008. Если аварийный сигнал по-прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.
Произошла ошибка СЕРВОУЗЛА. Этот СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ.

A.830

Ошибка батареи абсолютного датчика положения

Напряжение аккумулятора ниже, чем указанное значение после включения источника питания системы управления.

Измерьте напряжение батареи.

Замените батарею.

A.840

Ошибка данных датчика положения

Произошла ошибка датчика положения. Если аварийный сигнал попрежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.
Неисправность датчика положения из-за шумовых помех и т.д. Проверьте проводку вокруг датчика положения, отделив кабель датчика положения от кабеля главной цепи серводвигателя, либо проверив заземляющий провод и другие элементы проводки.

Если файл шкалы настраивается для подключения датчика Холла, то необходимо подключить датчик Холла. Отключение датчика Холла (Pn080.0 = 1) и выполнение работы без датчика приведет к ошибке A.840.

A.850

Разгон датчика положения

Датчик положения работал с высокой скоростью, когда было включено питание.

Проверьте монитор скорости (Un000), чтобы подтвердить скорость серводвигателя, когда включено питание.

Сократите скорость серводвигателя до значения ниже 200 мин-1 и включите источник питания системы управления.

A.860

Перегрев датчика положения

Слишком высокая внутренняя температура датчика положения.

Измерьте температуру окружающей среды вокруг серводвигателя.

Рабочая температура серводвигателя должна быть 40 °C или меньше.

A.C80

Ошибка сброса абсолютного датчика положения и ошибка уставки многооборотного предела

Не был правильно сброшен или задан многооборотный предел абсолютного датчика положения.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.

Сброс абсолютного датчика положения не был завершен или не поддерживается.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ.

A.C90

Ошибка в системе связи датчика положения

Невозможно установить соединение между Sigma-5 и модулем обратной связи.

Проверьте состояние контакта разъема датчика
положения. Проверьте кабель датчика
положения.

Повторно вставьте разъем и убедитесь, что проводка датчика положения выполнена правильно. Используйте кабель датчика положения с заданными номинальными значениями.

A.C91

Ошибка позиционных данных в системе связи датчика положения

Шумовые помехи возникают на линии сигнала ввода/вывода, поскольку кабель датчика положения сгибается и повреждается его покрытие. Кабель датчика положения скручивается с линией высокого напряжения, либо располагается рядом с ней.

Проверьте кабель датчика положения, разъем и расположение кабеля.

Убедитесь, что нет никаких проблем с расположением кабеля датчика положения. Убедитесь, что в кабеле датчика положения нет скачков напряжения.

A.C92

Ошибка таймера в системе связи датчика положения

Шумовые помехи от датчика положения возникают на линии сигнала ввода/вывода. Примите соответствующие меры.
В датчике положения наблюдалась чрезмерная вибрация и рывки. Сократите вибрацию установки или правильно установите серводвигатель.

A.CA0

Ошибка параметра датчика положения

Произошла ошибка датчика положения.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.

A.CB0

Ошибка ответа на запрос датчика положения

Неверные контакты и монтаж проводки датчика положения.

Проверьте монтаж проводки датчика положения.

Исправьте контакты и монтаж проводки датчика положения.

Шумовые помехи произошли в связи с некорректными характеристиками кабеля датчика положения.

Проверьте монтаж проводки датчика положения.

Используйте «витую пару» из луженой отожженной меди или экранированную «витую пару» с жилой толщиной не менее 0,12 мм².

Шумовые помехи возникли, поскольку длина проводников кабеля датчика положения слишком велика.

Проверьте монтаж проводки датчика положения.

Длина проводки не должна превышать 20 м максимум.

A.CC0

Несогласованность многооборотного предела

При использовании серводвигателя с прямым приводом (DD), многооборотное предельное значение (Pn205) отличается от значения датчика положения. Исправьте настройки параметра Pn205 (от 0 до 65535).

A.D30

Переполнение координат

Данные многооборотной позиции превысили +/-32767. Исправьте настройки (от -32767 до +32767).

Все возможные ошибки сервопривода Yaskawa серии sigma-5 — Скачать в формате DDF

Типы сервоприводов Yaskawa

Сервопривод Тип сервопривода

Yaskawa SGD

SGDV-180A01A; SGDB-30ADG; SGDS-50A01A; SGDV-180A01A002000; SGDV-8R4D01A020000; SGDH-50DE; SGD7S-200A00A002; SGDV-3R5D01A; SGDV-3R5D11A020000; SGDM-10DN; SGD7S-120A00A002; SGDM-15ADA; SGD7S-1R6AM0A000F50; SGDB-15VD; SGDB-15VDY1; SGDB-30VDY1; SGD7S-5R5A00A002

Yaskawa sigma-5

 SGDV-R70F01A; SGDV-120D01A; SGDV-2R8A01A; SGDV-3R8A01A; SGDV-180A01A; SGDV-550A01A; SGDV-590A01A; SGDV-5R4D01A; SGDV-210D01A; SGDV-260D01A; SGDV-R90F01A; SGDV-R70A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-200A01A; SGDV-330A01A; SGDV-260D01A; SGDV-280D01A; SGDV-120D01A; SGDV-8R4D01A; SGDV-3R8A01A; SGDV-12001A; SGDV-2R8F01A; SGDV-2R8F01A

Yaskawa sigma-7

 SGD7W-1R6A20A700; SGD7W-1R6A30A700; SGD7W-2R8A20A700; SGD7W-2R8A30A700; SGD7W-5R4D30B; SGD7S-2R8F30A; SGD7S-R70A20A; SGD7S-1R6A20A; SGD7S-3R8A20A; SGD7S-3R8A30A; SGD7S-7R6A30A; SGD7S-180A30A; SGD7S-200A20A; SGD7S-470A20A; SGD7S-590A20A; SGD7S-780A20A; SGD7S-5R4D30B000F64; SGD7S-8R4D30B000F64; SGD7S-260D30B000F64; SGD7S-1R6AA0A; SGD7S-3R8AA0A; SGD7S-200AA0A

Указанные в таблице типы сервоприводов Yaskawa это далеко не все, мы предлагаем качественный ремонт сервоприводов в Тольятти абсолютно любых производителей и года выпуска.

Оставить заявку на ремонт сервопривода Yaskawa

Ремонт сервоприводов Yaskawa

Вы заинтересованы в качественном ремонте дорогостоящего промышленного оборудования силами специалистов нашего сервисного центра, Вы сделали правильный выбор, мы приложим максимум усилий для скорейшего восстановления вышедшего из строя серводрайвера, что позволит Вам максимально сократить простой оборудования и сэкономить значительную сумму.

У вас есть проблемы с сервоприводом? Вам нужен срочный ремонт сервопривода Yaskawa sigma-5, sigma-7 или других серий? Оставьте заявку на ремонт сервопривода Yaskawa в Тольятти воспользовавшись одноименной кнопкой на сайте либо обратитесь к нашим менеджерам. Связаться с ними можно несколькими способами:

contact

  • Заказав обратный звонок (кнопка в правом верхнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Позвонив по номеру телефона: +7(927)610-78-70; +7(848)255-80-30
  • Написав на электронную почту: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
  • Перейти в начало статьи

#1

OFFLINE
 

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 01 Ноябрь 2016 — 19:17

Подскажите кто сталкивался и что означает ошибка 410, моргает на драйвере.
На оси Y левый мотор едет а правый молчит, чувствуется как портал перекашивает, и при этом звук перемещения изменился, так как на одном серваке портал перемещается. 
Драйвер сервопривода SERVOPACK SGDV-7R6A002000.

  • 0

  • Наверх

#2

andrey-kalin

  • Пол:Мужчина
  • Из:СССР

Отправлено 01 Ноябрь 2016 — 19:19

  • 0

  • Наверх

#3

3D-BiG

  • Пол:Мужчина
  • Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
  • Интересы:Полежать на диване, пофлудить на форуме….
  • Из:СССР

Отправлено 01 Ноябрь 2016 — 20:12

В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..

Сообщение отредактировал 3D-BiG: 01 Ноябрь 2016 — 20:14

  • 0

Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion

  • Наверх

#4

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 01 Ноябрь 2016 — 20:25

провода смотри , обрыв

релюшка не могла какая нить на плате сдохнуть?

  • 0

  • Наверх

#5

T-Rex

  • Пол:Мужчина
  • Из:Йошкар-Ола

Отправлено 01 Ноябрь 2016 — 22:35

что означает ошибка 410

В серии Yaskawa Sigma-V ошибка А.410 — это «Undervoltage». Либо проблемы с питанием (на входные клеммы приходит слишком низкое напряжение, менее 120V для 200-вольтной версии), либо неисправность драйвера.

релюшка не могла какая нить на плате сдохнуть?

Ну уж точно не «релюшка». Входные силовые цепи, от клемм питания до DC-звена, надо проверять. Квалифицированный ремонтник в дальнейших пояснениях не нуждается, а неквалифицированному туда соваться не следует.

  • 0

  • Наверх

#6

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 01 Ноябрь 2016 — 23:33

В серии Yaskawa Sigma-V ошибка А.410 — это «Undervoltage». Либо проблемы с питанием (на входные клеммы приходит слишком низкое напряжение, менее 120V для 200-вольтной версии), либо неисправность драйвера.

 
Ну уж точно не «релюшка». Входные силовые цепи, от клемм питания до DC-звена, надо проверять. Квалифицированный ремонтник в дальнейших пояснениях не нуждается, а неквалифицированному туда соваться не следует.

Вот фото, точно ли это А410?
20161101_154013.jpg

Буквально вчера решил навести порядок в шкафу, открыл шкаф и воздухом с компрессора обдул все содержимое, пылищи много насосал вентиляторами, всё работало, сегодня с утра тоже всё пахало, пока не заметил что звук изменился при перемещении…

У меня на поворотную ось C стоит драйвер рядом, если предположить, что с оси Y один умер, я могу переставить с оси С, или его нужно будет перенастраивать?

  • 0

  • Наверх

#7

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 02 Ноябрь 2016 — 21:18

В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..

Проблема нашлась! Две жилы питающего двигатель провода спеклись, ноль с фазой, заменили провод, но драйвер не ожил. Скачал Сигма Вин+. Как скачать все параметры, чтобы залить на другой драйвер?

  • 0

  • Наверх

#8

3D-BiG

  • Пол:Мужчина
  • Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
  • Интересы:Полежать на диване, пофлудить на форуме….
  • Из:СССР

Отправлено 02 Ноябрь 2016 — 21:28

Прежде всего достучаться до драйвера, зайти в него, считать параметры и сохранить их в виде файла с расширением usr. Подключиться к новому драйверу, зайти в него, открыть окно с параметрами, считать ранее записанные параметры  и скопировать их в серводрайв…. далее тестить….

  • 0

Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion

  • Наверх

#9

courage

  • Пол:Мужчина
  • Город:Новосибирск, Россия
  • Из:Новосибирск

Отправлено 03 Ноябрь 2016 — 08:49

Устанавливаете SigmaWin+ у себя накомпьютере

Подключаете сервоусилитель через кабель

Устанавлваете драйвер на обнаруженное устройство из папки C:Program filesSigmaIDEDriversUSB

ну или Program files (x86)

Выполняете поиск сервоприводов, надо установить галочку USB

Заходите в верхнем меню в Parameters-Edit parameters

Выделяете все и жмете на иконку с дискетой для сохранения.

На новом надо будет в этом же окне сделать Import.

Только вот рекомендую чтобы вам это показал знающий человек, а вы запомнили и поняли как делать.

Теперь о проблеме которую вы хотите решить.

Не факт что с сервоусилителем проблема. Вполне возможно что хана двигателю пришла. Например к этому сервоусилителю подключите с другого двигатель и энкодер и проверьте что он будет выдавать и будет ли он этим двигателем управлять, а то вполне возможно что вы не ту проблему решаете.

Ну а если уж движок, там совсем другой подход к решению проблемы :) Отдельного вопроса заслуживает «спекание проводов». Это в каком же месте произошло и как это стало возможно.

Сервоприводы 750 Вт?

  • 0

Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.

  • Наверх

#10

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 03 Ноябрь 2016 — 11:03

Сервоприводы 1 Кв, на проводе в том месте гусеници, где она не сгибается вообще. И ещё, когда я подключался к драйверу Y2, выбирал Servopack online, и он его определял и подключался, а когда подключился к драйверу оси C, то он не захотел через servopack online, только через offline. Как это понимать, может китайцы поставили еле работающий драйвер на ось C, и все манипуляции с заменой и пере прошивкой параметров драйверов будет не удачная затея?

  • 0

  • Наверх

#11

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 03 Ноябрь 2016 — 11:44

На всех драйверах горит светодиод ярко, а на этом еле еле, очень тускло. А двигатель звонили, все обмотки целые…

  • 0

  • Наверх

#12

courage

  • Пол:Мужчина
  • Город:Новосибирск, Россия
  • Из:Новосибирск

Отправлено 05 Ноябрь 2016 — 10:20

Сервоприводы 1 Кв, на проводе в том месте гусеници, где она не сгибается вообще. И ещё, когда я подключался к драйверу Y2, выбирал Servopack online, и он его определял и подключался, а когда подключился к драйверу оси C, то он не захотел через servopack online, только через offline. Как это понимать, может китайцы поставили еле работающий драйвер на ось C, и все манипуляции с заменой и пере прошивкой параметров драйверов будет не удачная затея?

Через Offline это вы можете просто параметры посмотреть, это не подключение к драйверу.

По модели они одинаковые хоть? Сбоку наклейка с маркировкой.

Попробуйте от оси C отключить силовой и энкодерный кабели мотора и подключиться. Пусть даже с ошибкой но он должен дать зайти в настройки привода.

  • 0

Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.

  • Наверх

#13

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 06 Ноябрь 2016 — 11:44

Пробовал с начала 7-ой версией, но она както не понятно подключалась, установил 5.57, с ней более понятно и видно как и что… скинул настройки с X, Y1, Y2, и Z, все через Servopack online, а вот с осью C опять не получилось через онлайн…Что делать, в чем прикол?

  • 0

  • Наверх

#14

courage

  • Пол:Мужчина
  • Город:Новосибирск, Россия
  • Из:Новосибирск

Отправлено 07 Ноябрь 2016 — 01:46

Мотор пробовали отключить от серводрайвера и подключиться?

По маркировке на серводрайвере можете сравнить тот что на оси С и на оси Y например?

  • 0

Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.

  • Наверх

#15

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 09 Ноябрь 2016 — 23:02

В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..

Заменили сгоревшие детали в драйвере, также заменили провод. При включении мигает Pot not, при подключении через провод в компу Fwd. And Rev. run prohibited (PTNT) ? Что может быть. Очень нужна помошь!!! Сможете через Тимвивер подключиться… Мой мобильный +79628665205   

Кто может помочь!!! Очень нужна помощь, но не бесплатно конечно… 

Прикрепленные изображения

  • 123.jpg
  • 0

  • Наверх

#16

T-Rex

  • Пол:Мужчина
  • Из:Йошкар-Ола

Отправлено 09 Ноябрь 2016 — 23:58

При включении мигает Pot not, при подключении через провод в компу Fwd. And Rev. run prohibited (PTNT) ? Что может быть.

P-OT (Positive OverTravel) и N-OT (Negative OverTravel) — сигналы, запрещающие дальнейшее движение вперед или назад соответственно. Иными словами их смысл можно сформулировать, как «заехали за концевик». Все это растолковано в параграфе 4.2.2 мануала на Yaskawa Sigma-5.

Смотрите, не подключены ли в вашем станке какие-нибудь сигнальные цепи к контактам CN1-7 и CN1-8 (разъем CN1 на «сервопаке»). Если что-то туда подключено — разбирайтесь с источником сигнала, блокирующего движение оси (подключение через Тимвьюер при этом вам не поможет, тут надо глазами в электрошкаф станка смотреть).

Если к ним ничего не подключено — вероятно, слетели настройки сервопака, в которых назначается функционирование данных сигналов (вполне возможно, не только они). Чтобы не мучаться в этом случае, скопируйте «Сигмавином» в него настройки с исправного сервопака той же оси Y…

  • 0

  • Наверх

#17

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 10 Ноябрь 2016 — 00:46

когда я считывал параметры Y2 через сигма Вин, зашел в параметры, выбрал галочку все, и нажал на дискету, а на ютубе видел видео, что нужно нажимать кнопку Read, потом все галочки, а потом на дискету… Я просто думаю правильно ли я скинул параметры в файл, а то новый придет, и будет какая нить опять проблема?

но исправный сервопак двигает двигатель в обратную сторону от сломанного, какой параметр отвечает за направление движения?

  • 0

  • Наверх

#18

3D-BiG

  • Пол:Мужчина
  • Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
  • Интересы:Полежать на диване, пофлудить на форуме….
  • Из:СССР

Отправлено 10 Ноябрь 2016 — 11:22

Откройте документацию и посмотрите… Или вы предлагает это сделать за вас?

  • 0

Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion

  • Наверх

#19

Komandor

  • Пол:Мужчина
  • Город:Краснодар
  • Из:Краснодарский край

Отправлено 10 Ноябрь 2016 — 18:43

P-OT (Positive OverTravel) и N-OT (Negative OverTravel) — сигналы, запрещающие дальнейшее движение вперед или назад соответственно. Иными словами их смысл можно сформулировать, как «заехали за концевик». Все это растолковано в параграфе 4.2.2 мануала на Yaskawa Sigma-5.

Смотрите, не подключены ли в вашем станке какие-нибудь сигнальные цепи к контактам CN1-7 и CN1-8 (разъем CN1 на «сервопаке»). Если что-то туда подключено — разбирайтесь с источником сигнала, блокирующего движение оси (подключение через Тимвьюер при этом вам не поможет, тут надо глазами в электрошкаф станка смотреть).

Если к ним ничего не подключено — вероятно, слетели настройки сервопака, в которых назначается функционирование данных сигналов (вполне возможно, не только они). Чтобы не мучаться в этом случае, скопируйте «Сигмавином» в него настройки с исправного сервопака той же оси Y…

Записал настройки с Y1 на Y2, изменил только вращение мотора. Перекидывал все провода с Y1 на Y2, драйвер работает и двигатель вращает, только не в ту сторону, так как изменил вращение. Как только подключаю провод управления Y2 назад, на его место, то после перегрузки станка ны драйвере горит BB. 

Забыл написать, что провода с Y1 подключал на драйвер Y2, но если провода Y2 подключить на драйвер Y1, то на драйвере Y1 c проводами Y2 загорается BB. Могли ли слететь настройки 

н-кодера двигателя Y2 ? У меня на оси C стоит такой же мотор как и везде, можно ли его заменить, на другой, нужно ли его н-кодер настраивать с драйвером?   

  • 0

  • Наверх

#20

T-Rex

  • Пол:Мужчина
  • Из:Йошкар-Ола

Отправлено 10 Ноябрь 2016 — 19:06

после перегрузки станка ны драйвере горит BB

В общем, все печально — ни разу в мануал не заглядывали…

Сообщение «bb» («Base Blocked») даже и заглядывания в мануал обычно не требует. Относительно него самые разные фирмы, производящие сервоприводы, проявляют удивительное единодушие — «управление мотором сервопривода напрочь блокировано, так как на входах интерфейса отсутствует разрешающий (или присутствует запрещающий) сигнал». Обычно этот сигнал поступает от цепи E-Stop (аварийной остановки).

«Base» в данном контексте означает силовой модуль, управляющий обмотками мотора. То есть в состоянии «bb» напряжение на них не подается.

В общем, продолжайте разбираться с настройками интерфейсных входов в сервопаке. Где-то снова накосячили.

  • 0

  • Наверх

31 января 2023 г. 04:53

Фото ПЧ Yaskawa V1000

При работе промышленной электроники YASKAWA в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы YASKAWA: Yaskawa V1000, Yaskawa J1000, Yaskawa A1000, Yaskawa L1000. В свою очередь серия Yaskawa V1000 включает в себя следующие модели: CIMR-VUBA0001, CIMR-VUBA0002, CIMR-VUBA0003, CIMR-VUBA0006, CIMR-VUBA0010, CIMR-VUBA0012, CIMR-VUBA0018, CIMR-VU2A0001, CIMR-VU2A0002, CIMR-VU2A0004, CIMR-VU2A0006, CIMR-VU2A0010, CIMR-VU2A0012, CIMR-VU2A0020, CIMR-VU2A0030, CIMR-VU2A0040, CIMR-VU2A0056, CIMR-VU2A0069, CIMR-VU4A0001, CIMR-VU4A0002, CIMR-VU4A0004, CIMR-VU4A0005, CIMR-VU4A0007, CIMR-VU4A0009, CIMR-VU4A0011, CIMR-VU4A0018, CIMR-VU4A0023, CIMR-VU4A0031, CIMR-VU4A0038. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.

Частотные преобразователи YASKAWA имеют следующие распространенные ошибки:

Наиболее частые ошибки преобразователей YASKAWA V1000:

Ошибка bUS (error bUS) — ошибка коммуникационного модуля;
Ошибка CE (error CE) — ошибка связи MEMOBUSModbus;
Ошибка CF (error CF) — ошибка схемы управления;
Ошибка CoF (error CoF) — ошибка датчика тока;
Ошибка CPF02 (error CPF02) — ошибка АЦП;
Ошибка CPF03 (error CPF03) — ошибка ШИМ;
Ошибка CPF06 (error CPF06) — несоответствие параметров после замены платы управления или платы входных сигналов;
Ошибка CPF07 (error CPF07) — ошибка связи с платов входных сигналов;
Ошибка CPF08 (error CPF08) — ошибка памяти EEPROM;
Ошибка CPF11 (error CPF11) — ошибка памяти RAM;
Ошибка CPF12 (error CPF12) — ошибка FLASH памяти;
Ошибка CPF13 (error CPF13) — ошибка сторожевого таймера;
Ошибка CPF14 (error CPF14) — неиспраность схемы управления;
Ошибка CPF16 (error CPF16) — неисправность тактового генератора;
Ошибка CPF17 (error CPF17) — ошибка таймера;
Ошибка CPF18 (error CPF18) — неиспраность схемы управления;
Ошибка CPF19 (error CPF19) — неисправность схемы управления;
Ошибка CPF20 (error CPF20) — аппаратная неисправность RAM, FLASH, Watchdog, Clock;
Ошибка CPF21 (error CPF21) — аппаратная неисправность RAM, FLASH, Watchdog, Clock;
Ошибка CPF22 (error CPF22) — ошибка АЦП;
Ошибка CPF23 (error CPF23) — ошибка ШИМ;
Ошибка CPF24 (error CPF24) — ошибка Drive Capacity Signal;
Ошибка CPF25 (error CPF25) — плата входных сигналов повреждена или не установлена;
Ошибка dEv (error dEv)(отображается на дисплее, как «dEu») — нестабильная скорость;
Ошибка E5 (error E5)(отображается на дисплее, как «ES») — ошибка сторожевого таймера MECHATROLINK;
Ошибка EF0 (error EF0)(отображается на дисплее, как «EO») — неиспраность внешней опциональной платы;
Ошибка dWAL (error dWAL)(отображается на дисплее, как «dLJAL») — программная ошибка функции DriveWorksEZ;
Ошибка dWFL (error dWFL)(отображается на дисплее, как «dLJFL») — ошибка функции DriveWorksEZ;
Ошибка EF1 (error EF1) — внешняя неисправность по входу S1;
Ошибка EF2 (error EF2) — внешняя неисправность по входу S2;
Ошибка EF3 (error EF3) — внешняя неисправность по входу S3;
Ошибка EF4 (error EF4) — внешняя неисправность по входу S4;
Ошибка EF5 (error EF5) — внешняя неисправность по входу S5;
Ошибка EF6 (error EF6) — внешняя неисправность по входу S6;
Ошибка EF7 (error EF7) — внешняя неисправность по входу S7;
Ошибка Err (error Err) — ошибка запяси в память EEPROM;
Ошибка FbH (error FbH) — повышенное значение сигнала обратной связи PID регулятора;
Ошибка FbL (error FbL) — пониженное значение сигнала обратной связи PID регулятора, обрыв датчика;
Ошибка GF (error GF)(отображается на дисплее, как «6F», «CF») — короткое замыкание выхода ПЧ на землю;
Ошибка LF (error LF) — обрыв фазы на выходе инвертора;
Ошибка LF2 (error LF2) — небаланс тока на выходе ПЧ;
Ошибка nSE (error nSE)(отображается на дисплее, как «п5Е», «n5E») — ошибка функции Node Setup во время запуска;
Ошибка oC (error oC)(отображается на дисплее, как «0C») — перегрузка преобразователя;
Ошибка oFA00 (error oFA00) — ошибка связи с опциональной платой;
Ошибка oFA01 (error oFA01) — неисправность опционального модуля;
Ошибка oFA03 (error oFA03) — неисправность опциональной платы;
Ошибка oFA04 (error oFA04) — неисправность опциональной платы;
Ошибка oFA30 (error oFA30) — неисправность опциональной платы id30;
Ошибка oFA31 (error oFA31) — неисправность опциональной платы id31;
Ошибка oFA32 (error oFA32) — неисправность опциональной платы id32;
Ошибка oFA33 (error oFA33) — неисправность опциональной платы id33;
Ошибка oFA34 (error oFA34) — неисправность опциональной платы id34;
Ошибка oFA35 (error oFA35) — неисправность опциональной платы id35;
Ошибка oFA36 (error oFA36) — неисправность опциональной платы id36;
Ошибка oFA37 (error oFA37) — неисправность опциональной платы id37;
Ошибка oFA38 (error oFA38) — неисправность опциональной платы id38;
Ошибка oFA39 (error oFA39) — неисправность опциональной платы id39;
Ошибка oFA40 (error oFA40) — неисправность опциональной платы id40;
Ошибка oFA41 (error oFA41) — неисправность опциональной платы id41;
Ошибка oFA42 (error oFA42) — неисправность опциональной платы id42;
Ошибка oFA43 (error oFA43) — неисправность опциональной платы id43;
Ошибка oH (error oH)(отображается на дисплее, как «0H») — перегрев радиатора инвертора;
Ошибка oH1 (error oH1)(отображается на дисплее, как «0H1») — перегрев радиатора инвертора;
Ошибка oH3 (error oH3)(отображается на дисплее, как «0H3») — перегрев двигателя по датчику PTC1;
Ошибка oH4 (error oH4)(отображается на дисплее, как «0H4») — перегрев двигателя по датчику PTC2;
Ошибка oL1 (error oL1)(отображается на дисплее, как «0L1») — перегрузка двигателя;
Ошибка oL2 (error oL2)(отображается на дисплее, как «0L2») — перегрузка привода;
Ошибка oL3 (error oL3)(отображается на дисплее, как «0L3») — перегрузка по уставкам L6-02, L6-03;
Ошибка oL4 (error oL4)(отображается на дисплее, как «0L4») — перегрузка по уставкам L6-05, L6-06;
Ошибка oL5 (error oL5)(отображается на дисплее, как «0L5») — механическая неисправность по уставке L6-08;
Ошибка oL7 (error oL7)(отображается на дисплее, как «0L7») — ошибка торможения по уставке n3-04;
Ошибка oPr (error oPr)(отображается на дисплее, как «0Pr») — ошибка связи с внешней панелью оператора;
Ошибка oS (error oS)(отображается на дисплее, как «0S», «05», «o5») — превышение заданной скорости;
Ошибка ov (error ov)(отображается на дисплее, как «ou», «0u», «0v») — перенапряжение;
Ошибка PF (error PF) — обрыв фазы на входе ПЧ;
Ошибка PGo (error PGo)(отображается на дисплее, как «PG0») — импульсный вход не подключен;
Ошибка rH (error rH) — перегрев тормозного резистора;
Ошибка rr (error rr) — неисправность встроенного тормозного транзистора;
Ошибка SC (error SC)(отображается на дисплее, как «5C») — короткое замыкание IGBT-модуля;
Ошибка SEr (error SEr)(отображается на дисплее, как «5Er») — ошибка функции поиска скорости speed search;
Ошибка STo (error STo)(отображается на дисплее, как «5Го», «5Г0», «SГo») — неправильные параметры двигателя;
Ошибка UL3 (error UL3) — пониженный ток нагрузки по уставкам L6-02, L6-03;
Ошибка UL4 (error UL4) — пониженный ток нагрузки по уставкам L6-05, L6-06;
Ошибка UL5 (error UL5)(отображается на дисплее, как «ULS») — механическая неисправность по уставке L6-08;
Ошибка Uv1 (error Uv1)(отображается на дисплее, как «Uu1») — пониженное напряжение шины постоянного тока;
Ошибка Uv2 (error Uv1)(отображается на дисплее, как «Uu2») — пониженное напряжение источника питания схемы управления;
Ошибка Uv3 (error Uv3)(отображается на дисплее, как «Uu3») — неисправность схемы защиты от бросков тока;

Контакты

Время выполнения запроса: 0,00246596336365 секунды.

  • Ремонт сервоприводов yaskawa sigma в Тольятти
  • Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»
  • Настройка сервоусилителей Yaskawa sigma в Тольятти
  • Подключение сервопривода Yaskawa
  • Ошибки сервопривода Yaskawa sigma
  • Коды ошибок сервопривода Yaskawa sigma-5
  • Типы сервоприводов Yaskawa
  • Оставить заявку на ремонт сервопривода Yaskawa

Ремонт сервоприводов Yaskawa sigma в Тольятти

Ремонт серовприводов Yaskawa

Ремонт сервоприводов Yaskawa sigma в Тольятти, одна из многих услуг предлагаемых сервисным центром «РемПромЭл». Сервопривод относится к сложной промышленной электронике и состоит из двух взаимосвязанных составляющих- это электронная и силовая часть. Подобное конструктивное исполнение значительно усложняет ремонт сервоприводов Yaskawa.

Сервопривода достаточно распространенное промышленное оборудование, и как все подвержены износу. В зависимости от интенсивности использования, нагрузки, среды в которой работает оборудования сервопривода выходят из строя останавливая рабочий процесс.

В целях сомнительной «экономии» некоторые пытаются провести ремонт сервоусилителя Yaskawa sigma самостоятельно на территории производства. Зачастую данные действия приводят к значительному удорожанию ремонта а при самом неблагоприятном исходе могут привести к не ремонтопригодности серводрайвера.

В виду вышесказанного, настоятельно рекомендуем, не пытайтесь проводить ремонт сервоприводов Yaskawa sigma своими силами, обратитесь за помощью к специалистам. Современный специализированный сервисный центр имеет в наличии весь необходимый инструмент, включая специальное диагностическое оборудование, а компетентный персонал проведет качественный ремонт сервоприводов Yaskawa sigma в Тольятти, дополнительно сервисные центры дают гарантию на проведенные ремонтные работы.

Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»

Ремонт сервоприводов Yaskawa

Ремонт сервоприводов Yaskawa в сервисном центре самое разумное и экономически выгодное решение. Грамотные специалисты со знанием дела проведут глубокую диагностику неисправного блока и последующий ремонт сервопривода Yaskawa sigma в кратчайшие сроки. К написанному можно добавить то, что каждый без исключения ремонт сервопривода Yaskawa sigma в СЦ «РемПромЭл» проводится с применением оригинальных запасных частей.

В 2013-ом году специалистами компании был проведен первый ремонт сервопривода Yaskawa положивший начало дальнейшему развитию в данном направлении. За прошедшее время были отремонтированы сотни единиц промышленного оборудования и накоплен колоссальный, бесценный опыт в ремонте сервоприводов различных производителей.

Сервисный центр «РемПромЭл» оснащен самым современным диагностическим и ремонтным оборудованием, имеются в наличии расходные материалы, а так же на складе компании богатый выбор оригинальных запасных частей, что дает возможность провести качественный ремонт сервоприводов Yaskawa sigma.

Обратившись в СЦ за ремонтом сервоприводов вы получите:

  • Глубокую диагностику с выявлением неисправного компонента;
  • Чистку неисправного блока;
  • Ремонт сервопривода Yaskawa sigma в кратчайшие сроки;
  • Настройка сервоусилителя;
  • Проверку отремонтированного блока на специальном стенде в условиях максимально приближенных к реальным;
  • Видео проверки отремонтированного серводрайвера.

Отдельное внимание мы уделяем качеству проведения ремонта и даем гарантию на ремонт сервоприводов Yaskawa sigma, а так же на замененные в процессе ремонта запасные части и расходные материалы 6 месяцев.

Настройка сервоусилителей Yaskawa sigma в Тольятти

Настройка сервоприводов Yaskawa

Настройка сервоприводов (сервоусилителей) — это заключительный этап ремонта и в тоже время очень важный. Для правильной работы восстановленного блока просто необходимо провести грамотное программирование сервоусилителя. Ремонт и дальнейшую настройку сервоприводов выполняют разные специалисты, так как подобная работа довольно сложная и имеет свою специфику.

Настройка сервоусилителей или как еще называют программирование сервоприводов Yaskawa sigma, неотъемлемая часть процесса реанимирования, ввиду того, что ремонт силовой части это только половина мероприятий направленных на восстановление работоспособности сервоприводов.

В некоторых случаях возникает необходимость провести программирование сервоусилителя без его ремонта. Причин по которым может возникнуть подобная необходимость масса.

Настройка сервоуслилтелей Yaskawa sigma в Тольятти может быть и отдельной услугой предоставляемой сервисным центром «РемПромЭл». Инженеры компании проведут необходимую настройку сервоприводов не только на территории сервисного центра, при необходимости можно заказать услугу выезда специалиста на территорию заказчика (по предварительной договоренности).

От качественной настройки сервоусилителя зависит правильная и безаварийная работа связки сервопривода и серводвигателя, а для этого требуется не много, просто программирование сервопривода Yaskawa sigma должен проводить компетентный персонал с богатым опытом по настройке сервоуслилтелей.

Подключение сервопривода Yaskawa

Подключение сервопривода Yaskawa

Подключение сервопривода Yaskawa к оборудованию заказчика это еще одна услуга предоставляемая нашей компанией.

При необходимости специалист центра выполнит подключение сервопривода Yaskawa sigma с выездом на территорию заказчика.

В некоторых случаях на производстве может быть дефицит квалифицированны кадров которые могли бы произвести качественное подключение сервопривода, именно по этому мы предлагаем услуги нашего сервисного центра.

Свяжитесь с нашими менеджерами, закажите выезд специалиста, и подключением сервопривода Yaskawa sigma займется инженер сервисного центра. В случае заказа на подключение сервопривода Yaskawa sigma силами наших специалистов вы получаете гарантию качества и работоспособности вашего оборудования.

Доверяя работу по подключению сервопривода Yaskawa sigma профессионалам, вы избавляетесь от головной боли и гарантированно получаете работающее оборудование в кратчайшие сроки за разумную цену.

Ошибки сервопривода Yaskawa sigma

Ремонт сервопривода Yaskawa

Многие сервопривода данного производителя, за редким исключением оснащен информационной панелью с помощью которой проходит процесс программирования сервоприводов, а так же на ней в случае нештатной ситуации отображается код ошибки которая привела к остановке оборудования.

У каждого производителя разные коды ошибок у кого то это могут быть цифровые обозначения у кого то буквенные, но вся прелесть заключается в том, что открыв документацию и расшифровав код ошибки сервопривода мы с большой долей вероятности можем исправить эту ошибку на месте, сбросить ее на сервоприводе и запустить оборудование заново.

К сожалению не все ошибки сервоприводов можно исправить и сбросить самостоятельно, в некоторых случаях придется обращаться к специалистам сервисного центра.

Самые распространенные ошибки сервоприводов:

  • Превышение тока;
  • Перенапряжение или недостаточное напряжение;
  • Перегрузка;
  • Ошибка сигнала энкодера;
  • Превышение температуры IGBT-модуля ;
  • Ошибка связи;
  • Обрыв фазы питания;
  • Короткое замыкание.

Это не полный список распространенных ошибок сервоприводов которые можно сбросить самостоятельно без обращения к специалистам.

Коды ошибок сервопривода Yaskawa sigma-5

Ошибки, связанные с идентификацией модуля обратной связи

Код и описание ошибки

Причина Устранение

A.044

Ошибка задания параметра полузамкнутого / полностью замкнутого цикла управления

Подключенный дополнительный модуль и значение настройки параметра Pn00B.3 и/или Pn002.3 не совпадают.

Проверьте настройки PN00B.3 и/или Pn002.3.

Настройка дополнительного модуля должна совпадать с настройками Pn00B.3 и/или Pn002.3.

A.051

Предупреждение о неподдерживаемом устройстве

1) Неподдерживаемое устройство не было подключено.
2) Неподдерживаемая комбинация:
а) СЕРВОУЗЕЛ (вращательный двигатель) с модулем обратной связи для линейного двигателя
б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя
3) Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3.

Проверьте характеристики продукта.

Настройте Pn00B.3.
Выберите правильную комбинацию устройств.

A.E72

Ошибка обнаружения модуля обратной связи

Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи.

Правильно подключите модуль обратной связи.

Модуль обратной связи был отключен. Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание.
 Произошла ошибка модуля обратной связи. Замените модуль обратной связи.
 Произошла ошибка СЕРВОУЗЛА. Замените СЕРВОУЗЕЛ.

A.E75

Неподдерживаемый модуль обратной связи

Был подключен неподдерживаемый модуль обратной связи. Подключите совместимый модуль обратной связи.
Была использована неподходящая версия прошивки Sigma-5. Замените СЕРВОУЗЕЛ.

Ошибки в полностью замкнутом цикле управления

Код и описание ошибки

Причина Устранение

A.041

Ошибка настройки импульсов на выходе дат чика положения

Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. Установите верное значение для параметра Pn212.

A.042

Ошибка комбинации параметра

Скорость программирования работы JOG (Fn004) ниже, чем диапазон уставок после изменения скорости движения при программировании работы JOG (Pn533). Увеличьте значение скорости движения при программировании работы JOG (Pn533).

A.511

Превышение скорости импульсов на выходе датчика положения

Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). Уменьшите значение импульса на выходе датчика положения (Pn212).

A.8A0

Ошибка внешнего датчика положения

Произошла ошибка внешнего датчика положения. Замените внешний датчик положения.

A.8A1

Ошибка в модуле внешнего датчика положения

Произошел сбой при использовании серийного конвертера. Замените серийный конвертер.

A.8A2

Ошибка в сенсоре внешнего датчика положения

Произошла ошибка внешнего датчика положения. Замените внешний датчик положения.

A.8A3

Ошибка в позиции внешнего датчика положения

Произошла ошибка абсолютного внешнего датчика положения. Есть вероятность неисправности во внешнем абсолютном датчике положения.  Подробную информацию
об исправлении неисправностей см. в руководстве по эксплуатации датчика положения от производителя.

A.8A5

Разгон внешнего датчика положения

Произошло превышение скорости на внешнем датчике положения. Замените внешний датчик положения.

A.8A6

Перегрев внешнего датчика положения

Произошел перегрев внешнего датчика положения. Замените внешний датчик положения.

A.CF1

Ошибка в системе связи внешнего датчика положения

Неправильное подключение кабеля между серийным конвертером и СЕРВОУЗЛОМ, либо неисправный контакт.

Проверьте проводку внешнего датчика положения.

Исправьте проводку кабеля.

Указанный кабель не используется, либо слишком длинный.

Подтвердите характеристики проводки внешнего датчика положения.

Используйте указанный кабель макс. длиной 20 м.

A.CF2

Ошибка таймера в системе связи внешнего датчика положения

Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗЛОМ. Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода.

A.D10

Ошибка переполнения при позиционировании нагрузки электродвигателя

Направление вращения двигателя и направление установки внешнего датчика положения противоположны. Установите внешний датчик положения в противоположном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление.
Неверно выполнен монтаж нагрузки и соединений внешнего датчика положения. Проверьте механические соединения.

Ошибки в полузамкнутом цикле управления с вращательными двигателями

Код и описание ошибки

Причина Устранение

A.041

Ошибка настройки импульсов на выходе датчика положения

Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. Установите верное значение для параметра Pn212.

A.511

Превышение скорости импульсов на выходе датчика положения

Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). Уменьшите значение импульса на выходе датчика положения (Pn212).

A.810

Ошибка резервирования датчика положения

Сбой всех источников питания абсолютного датчика положения и позиционные данные были потеряны. Замените аккумулятор или примите аналогичные меры для обеспечения питания датчика положения и настройте датчик положения (Fn008).

A.820

Ошибка контрольной суммы датчика положения

Произошла ошибка датчика положения. Снова настройте датчик положения с помощью Fn008. Если аварийный сигнал по-прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.
Произошла ошибка СЕРВОУЗЛА. Этот СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ.

A.830

Ошибка батареи абсолютного датчика положения

Напряжение аккумулятора ниже, чем указанное значение после включения источника питания системы управления.

Измерьте напряжение батареи.

Замените батарею.

A.840

Ошибка данных датчика положения

Произошла ошибка датчика положения. Если аварийный сигнал попрежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.
Неисправность датчика положения из-за шумовых помех и т.д. Проверьте проводку вокруг датчика положения, отделив кабель датчика положения от кабеля главной цепи серводвигателя, либо проверив заземляющий провод и другие элементы проводки.

Если файл шкалы настраивается для подключения датчика Холла, то необходимо подключить датчик Холла. Отключение датчика Холла (Pn080.0 = 1) и выполнение работы без датчика приведет к ошибке A.840.

A.850

Разгон датчика положения

Датчик положения работал с высокой скоростью, когда было включено питание.

Проверьте монитор скорости (Un000), чтобы подтвердить скорость серводвигателя, когда включено питание.

Сократите скорость серводвигателя до значения ниже 200 мин-1 и включите источник питания системы управления.

A.860

Перегрев датчика положения

Слишком высокая внутренняя температура датчика положения.

Измерьте температуру окружающей среды вокруг серводвигателя.

Рабочая температура серводвигателя должна быть 40 °C или меньше.

A.C80

Ошибка сброса абсолютного датчика положения и ошибка уставки многооборотного предела

Не был правильно сброшен или задан многооборотный предел абсолютного датчика положения.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.

Сброс абсолютного датчика положения не был завершен или не поддерживается.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ.

A.C90

Ошибка в системе связи датчика положения

Невозможно установить соединение между Sigma-5 и модулем обратной связи.

Проверьте состояние контакта разъема датчика
положения. Проверьте кабель датчика
положения.

Повторно вставьте разъем и убедитесь, что проводка датчика положения выполнена правильно. Используйте кабель датчика положения с заданными номинальными значениями.

A.C91

Ошибка позиционных данных в системе связи датчика положения

Шумовые помехи возникают на линии сигнала ввода/вывода, поскольку кабель датчика положения сгибается и повреждается его покрытие. Кабель датчика положения скручивается с линией высокого напряжения, либо располагается рядом с ней.

Проверьте кабель датчика положения, разъем и расположение кабеля.

Убедитесь, что нет никаких проблем с расположением кабеля датчика положения. Убедитесь, что в кабеле датчика положения нет скачков напряжения.

A.C92

Ошибка таймера в системе связи датчика положения

Шумовые помехи от датчика положения возникают на линии сигнала ввода/вывода. Примите соответствующие меры.
В датчике положения наблюдалась чрезмерная вибрация и рывки. Сократите вибрацию установки или правильно установите серводвигатель.

A.CA0

Ошибка параметра датчика положения

Произошла ошибка датчика положения.

Выключите, затем снова включите питание.

Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель.

A.CB0

Ошибка ответа на запрос датчика положения

Неверные контакты и монтаж проводки датчика положения.

Проверьте монтаж проводки датчика положения.

Исправьте контакты и монтаж проводки датчика положения.

Шумовые помехи произошли в связи с некорректными характеристиками кабеля датчика положения.

Проверьте монтаж проводки датчика положения.

Используйте «витую пару» из луженой отожженной меди или экранированную «витую пару» с жилой толщиной не менее 0,12 мм².

Шумовые помехи возникли, поскольку длина проводников кабеля датчика положения слишком велика.

Проверьте монтаж проводки датчика положения.

Длина проводки не должна превышать 20 м максимум.

A.CC0

Несогласованность многооборотного предела

При использовании серводвигателя с прямым приводом (DD), многооборотное предельное значение (Pn205) отличается от значения датчика положения. Исправьте настройки параметра Pn205 (от 0 до 65535).

A.D30

Переполнение координат

Данные многооборотной позиции превысили +/-32767. Исправьте настройки (от -32767 до +32767).

Все возможные ошибки сервопривода Yaskawa серии sigma-5 — Скачать в формате DDF

Типы сервоприводов Yaskawa

Сервопривод Тип сервопривода

Yaskawa SGD

SGDV-180A01A; SGDB-30ADG; SGDS-50A01A; SGDV-180A01A002000; SGDV-8R4D01A020000; SGDH-50DE; SGD7S-200A00A002; SGDV-3R5D01A; SGDV-3R5D11A020000; SGDM-10DN; SGD7S-120A00A002; SGDM-15ADA; SGD7S-1R6AM0A000F50; SGDB-15VD; SGDB-15VDY1; SGDB-30VDY1; SGD7S-5R5A00A002

Yaskawa sigma-5

 SGDV-R70F01A; SGDV-120D01A; SGDV-2R8A01A; SGDV-3R8A01A; SGDV-180A01A; SGDV-550A01A; SGDV-590A01A; SGDV-5R4D01A; SGDV-210D01A; SGDV-260D01A; SGDV-R90F01A; SGDV-R70A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-200A01A; SGDV-330A01A; SGDV-260D01A; SGDV-280D01A; SGDV-120D01A; SGDV-8R4D01A; SGDV-3R8A01A; SGDV-12001A; SGDV-2R8F01A; SGDV-2R8F01A

Yaskawa sigma-7

 SGD7W-1R6A20A700; SGD7W-1R6A30A700; SGD7W-2R8A20A700; SGD7W-2R8A30A700; SGD7W-5R4D30B; SGD7S-2R8F30A; SGD7S-R70A20A; SGD7S-1R6A20A; SGD7S-3R8A20A; SGD7S-3R8A30A; SGD7S-7R6A30A; SGD7S-180A30A; SGD7S-200A20A; SGD7S-470A20A; SGD7S-590A20A; SGD7S-780A20A; SGD7S-5R4D30B000F64; SGD7S-8R4D30B000F64; SGD7S-260D30B000F64; SGD7S-1R6AA0A; SGD7S-3R8AA0A; SGD7S-200AA0A

Указанные в таблице типы сервоприводов Yaskawa это далеко не все, мы предлагаем качественный ремонт сервоприводов в Тольятти абсолютно любых производителей и года выпуска.

Оставить заявку на ремонт сервопривода Yaskawa

Ремонт сервоприводов Yaskawa

Вы заинтересованы в качественном ремонте дорогостоящего промышленного оборудования силами специалистов нашего сервисного центра, Вы сделали правильный выбор, мы приложим максимум усилий для скорейшего восстановления вышедшего из строя серводрайвера, что позволит Вам максимально сократить простой оборудования и сэкономить значительную сумму.

У вас есть проблемы с сервоприводом? Вам нужен срочный ремонт сервопривода Yaskawa sigma-5, sigma-7 или других серий? Оставьте заявку на ремонт сервопривода Yaskawa в Тольятти воспользовавшись одноименной кнопкой на сайте либо обратитесь к нашим менеджерам. Связаться с ними можно несколькими способами:

contact

  • Заказав обратный звонок (кнопка в правом верхнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Позвонив по номеру телефона: +7(927)610-78-70; +7(848)255-80-30
  • Написав на электронную почту: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
  • Перейти в начало статьи
  • Contents

  • Table of Contents

  • Troubleshooting

  • Bookmarks

Quick Links

-7-Series AC Servo Drive

-7S SERVOPACK with

FT/EX Specification for

Transfer and Alignment Application

with Special Motor, SGM7D Motor

Product Manual

Model: SGD7S-20AF84

SGD7S-30AF84

MANUAL NO. SIEP S800002 28C

Basic Information on SERVOPACKs

SERVOPACK Ratings and Specifications

Triggers at Preset Positions

Rotational Coordinate System

Maintenance

Parameter Lists

1

2

3

4

5

6

Troubleshooting

loading

Summary of Contents for YASKAWA Sigma-7-Series

Понравилась статья? Поделить с друзьями:
  • Yaskawa sgdv 170d01a коды ошибок
  • Yaskawa sgdm ошибки
  • Yaskawa servopack ошибка 7ab
  • Yaskawa servopack 400v ошибки
  • Yaskawa servopack 200v ошибка c90