Model: SGD7W-A20A000F70 -7W SERVOPACK with FT/EX Specification for Gantry Applications -7-Series AC Servo Drive Product Manual MANUAL NO. SIEP S800002 29C SERVOPACK Ratings and Specifications Position Correction Ta bl e Maintenance Parameter Lists Synchronized Stopping Position Deviation between Axes Overflow Detection 1 2 3 4 5 6 7 Basic Information on SERVOPACKs Copyright © 2017 YASKAWA ELECTRIC CORPORATION All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, elec- tronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the informa- tion contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is sub- ject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication. iii About this Manual This manual provides information on the Σ-7-Series AC Servo Drive Σ-7W SERVOPACK for Gantry Applications. Read and understand this manual to ensure correct usage of the Σ-7-Series AC Servo Drives. Keep this manual in a safe place so that it can be referred to whenever necessary. Outline of Manual The contents of the chapters of this manual are described in the following table. When using the Σ -7-Series for Gantry Applications, read and understand this manual and the manuals given in the following table. Item This Manual Σ-7-Series AC Servo Drive Σ-7W SERVOPACK Product Manual MECHATROLINK-III Communications Reference (Manual No.: SIEP S800001 29) Basic Informa- tion on SERVO- PACKs The Σ-7 Series – 1.1 Product Introduction 1.1 – Interpreting the Nameplate – 1.2 Part Names – 1.3 Model Designations 1.2 – Combinations of SERVOPACKs and Servomotors –1.5 Functions 1.4 – SigmaWin+ 1.5 – Selecting a SERVOPACK Ratings 2.1 – SERVOPACK Overload Protection Characteristics 2.2 – Specifications 2.3 – Block Diagrams – 2.2 External Dimensions – 2.3 Examples of Standard Connections between SERVOPACKs and Peripheral Devices –2.4 SERVOPACK Installation – Chapter 3 Wiring and Connecting SERVOPACKs – Chapter 4 Basic Functions That Require Setting before Operation – Chapter 5 Application Functions – Chapter 6 Trial Operation and Actual Operation – Chapter 7 Tuning – Chapter 8 Monitoring – Chapter 9 Position Correction Table Chapter 3 – Synchronized Stopping Chapter 4 – Position Deviation between Axes Overflow Detection Chapter 5 – Continued on next page. iv Maintenance Inspections and Part Replacement – 10.1 Alarm Displays 6.1 – Warning Displays 6.2 – Troubleshooting Based on the Operation and Conditions of the Servomotor 6.3 – Parameter Lists Interpreting the Parameter Lists 7.1 – List of Servo Parameters 7.2 – List of MECHATROLINK-III Common Parameters 7.3 – Appendices Interpreting Panel Displays – 12.1 Corresponding SERVOPACK and SigmaWin+ Function Names – 12.2 Continued from previous page. Item This Manual Σ-7-Series AC Servo Drive Σ-7W SERVOPACK Product Manual MECHATROLINK-III Communications Reference (Manual No.: SIEP S800001 29) v Related Documents The relationships between the documents that are related to the Servo Drives are shown in the following figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer to these documents as required. Manuals Catalogs Σ-7-Series Operation Interface Operating Manuals System Components Machine Controller and Servo Drive General Catalog MP3300 Catalog Machine Controllers Σ-7-Series Catalog Servo Drives Machine Controllers SERVOPACKs: Σ-7S and Σ-7W SERVOPACKs with Built-in Controllers: Σ-7C Servomotors Other Documents Built-in Function Manuals Σ-7-Series Σ-7S/Σ-7W SERVOPACK Product Manuals Σ-7-Series Σ-7S/Σ-7W SERVOPACK Hardware Option Product Manuals Option Module User’s Manuals Σ-7-Series Σ-7S/Σ-7W SERVOPACK FT/EX Product Manuals (such as this manual) Option Module User’s Manual Σ-7-Series Servomotor Product Manuals Σ-7-Series Σ-7C SERVOPACK Product Manual Σ-7-Series Σ-7C SERVOPACK Troubleshooting Manual Enclosed Documents Enclosed Documents Built-in Function Manuals Enclosed Documents Σ-7-Series Peripheral Device Selection Manual Σ-7-Series MECHATROLINK Communications Command Manuals Programming Manuals Distributed I/O Module User’s Manual vi Classification Document Name Document No. Description Machine Controller and Servo Drive General Catalog Machine Controller and AC Servo Drive Solutions Catalog KAEP S800001 22 Describes the features and applica- tion examples for combinations of MP3000-Series Machine Control- lers and Σ-7-Series AC Servo Drives. MP3300 Catalog Machine Controller MP3300 KAEP C880725 03 Provides detailed information on MP3300 Machine Controllers, including features and specifica- tions. Σ-7-Series Catalog AC Servo Drives Σ-7 Series KAEP S800001 23 Provides detailed information on Σ- 7-Series AC Servo Drives, including features and specifications. Built-in Function Manuals Σ-7-Series AC Servo Drive Σ-7C SERVOPACK Motion Control User’s Manual SIEP S800002 03 Provides detailed information on the specifications, system configu- ration, and application methods of the Motion Control Function Mod- ules (SVD, SVC4, and SVR4) for Σ- 7-Series Σ-7C SERVOPACKs. Machine Controller MP3000 Series Communications User’s Manual SIEP C880725 12 Provides detailed information on the specifications, system configu- ration, and communications con- nection methods for the Ethernet communications that are used with MP3000-Series Machine Control- lers and Σ-7-Series Σ-7C SERVO- PACKs. Option Module User’s Manuals Machine Controller MP2000 Series Communication Module User’s Manual SIEP C880700 04 Provide detailed information on the specifications and communica- tions methods for the Communica- tions Modules that can be mounted to MP3000-Series Machine Con- trollers and Σ-7-Series Σ-7C SERVOPACKs. Machine Controller MP2000 Series 262IF-01 FL-net Communication Module User’s Manual SIEP C880700 36 Machine Controller MP2000 Series 263IF-01 EtherNet/IP Communication Module User’s Manual SIEP C880700 39 Machine Controller MP2000 Series I/O Module User’s Manual SIEP C880700 34 Provide detailed information on the specifications and communica- tions methods for the I/O Modules that can be mounted to MP3000- Series Machine Controllers and Σ- 7-Series Σ-7C SERVOPACKs. Machine Controller MP2000 Series Analog Input/Analog Output Module AI-01/AO-01 User’s Manual SIEP C880700 26 Machine Controller MP2000 Series Counter Module CNTR-01 User’s Manual SIEP C880700 27 Continued on next page. vii Enclosed Documents Σ-7-Series AC Servo Drive Σ-7S and Σ-7W SERVOPACK Safety Precautions TOMP C710828 00 Provides detailed information for the safe usage of Σ-7-Series SERVOPACKs. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Safety Precautions Option Module TOBP C720829 00 Provides detailed information for the safe usage of Option Modules. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Installation Guide Command Option Module TOBP C720829 01 Provides detailed procedures for installing the Command Option Module in a SERVOPACK. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Installation Guide Fully-closed Module TOBP C720829 03 Provides detailed procedures for installing the Fully-closed Module in a SERVOPACK. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Installation Guide Safety Module TOBP C720829 06 Provides detailed procedures for installing the Safety Module in a SERVOPACK. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Installation Guide INDEXER Module TOBP C720829 02 Provides detailed procedures for installing the INDEXER Module in a SERVOPACK. Σ-V-Series/Σ-V-Series for Large-Capacity Models/ Σ-7-Series Installation Guide DeviceNet Module TOBP C720829 07 Provides detailed procedures for installing the DeviceNet Module in a SERVOPACK. Σ-7-Series Σ-7C SERVOPACK Product Manual Σ-7-Series AC Servo Drive Σ-7C SERVOPACK Product Manual SIEP S800002 04 Provides detailed information on selecting Σ-7-Series Σ-7C SERVO- PACKs; installing, connecting, set- ting, testing in trial operation, and tuning Servo Drives; writing, moni- toring, and maintaining programs; and other information. Σ-7-Series Σ-7C SERVOPACK Troubleshooting Manual Σ-7-Series AC Servo Drive Σ-7C SERVOPACK Troubleshooting Manual SIEP S800002 07 Provides detailed troubleshooting information for Σ-7-Series Σ-7C SERVOPACKs. Continued on next page. Continued from previous page. Classification Document Name Document No. Description viii Σ-7-Series Σ-7S/Σ-7W SERVOPACK Product Manuals Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with MECHATROLINK-III Communications References Product Manual SIEP S800001 28 Provide detailed information on selecting Σ-7-Series Σ-7S and Σ-7W SERVOPACKs; installing, connecting, setting, testing in trial operation, tuning, monitoring, and maintaining Server Drives; and other information. Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with MECHATROLINK-II Communications References Product Manual SIEP S800001 27 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual SIEP S800001 26 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK Command Option Attachable Type with INDEXER Module Product Manual SIEP S800001 64 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK Command Option Attachable Type with DeviceNet Module Product Manual SIEP S800001 70 Σ-7-Series AC Servo Drive Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual SIEP S800001 29 Σ-7-Series Σ-7S/Σ-7W SERVOPACK with Hardware Option Specifications Product Manuals Σ-7-Series AC Servo Drive Σ-7S/Σ-7W SERVOPACK with Hardware Option Specifications Dynamic Brake Product Manual SIEP S800001 73 Provide detailed information on Hardware Options for Σ-7-Series SERVOPACKs. Σ-7-Series AC Servo Drive Σ-7W/Σ-7C SERVOPACK with Hardware Option Specifications HWBB Function Product Manual SIEP S800001 72 Continued on next page. Continued from previous page. Classification Document Name Document No. Description ix Σ-7-Series Σ-7S/Σ-7W SERVOPACK FT/EX Product Manuals Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Indexing Application Product Manual SIEP S800001 84 Provide detailed information on the FT/EX Option for Σ-7-Series SERVOPACKs. Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Tracking Application Product Manual SIEP S800001 89 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Application with Special Motor, SGM7D Motor Product Manual SIEP S800001 91 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Press and Injection Molding Application Product Manual SIEP S800001 94 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Transfer and Alignment Application Product Manual SIEP S800001 95 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Torque/Force Assistance for Conveyance Application Product Manual SIEP S800002 09 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Cutting Application Feed Shaft Motor Product Manual SIEP S800002 10 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Three-Point Latching for Conveyance Application Product Manual SIEP S800002 17 Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with FT/EX Specification for Semi-/Fully-Closed Loop Control Online Switching for Conveyance Application Product Manual SIEP S800002 27 Σ-7-Series AC Servo Drive Σ-7W SERVOPACK with FT/EX Specification for Gantry Applications Product Manual This manual (SIEP S800002 29) Continued on next page. Continued from previous page. Classification Document Name Document No. Description x Option Module User’s Manual AC Servo Drives Σ-V Series/Σ-V Series for Large-Capacity Models/ Σ-7 Series User’s Manual Safety Module SIEP C720829 06 Provides detailed information required for the design and mainte- nance of a Safety Module. Enclosed Documents AC Servo Drive Rotary Servomotor Safety Precautions TOBP C230260 00 Provides detailed information for the safe usage of Rotary Servomo- tors and Direct Drive Servomotors. AC Servomotor Linear Σ Series Safety Precautions TOBP C230800 00 Provides detailed information for the safe usage of Linear Servomo- tors. Σ-7-Series Servomotor Product Manuals Σ-7-Series AC Servo Drive Rotary Servomotor Product Manual SIEP S800001 36 Provide detailed information on selecting, installing, and connecting the Σ-7-Series Servomotors. Σ-7-Series AC Servo Drive Linear Servomotor Product Manual SIEP S800001 37 Σ-7-Series AC Servo Drive Direct Drive Servomotor Product Manual SIEP S800001 38 Σ-7-Series Peripheral Device Selection Manual Σ-7-Series AC Servo Drive Peripheral Device Selection Manual SIEP S800001 32 Provides the following information in detail for Σ-7-Series Servo Sys- tems. • Cables: Models, dimensions, wir- ing materials, connector models, and connection specifications • Peripheral devices: Models, specifications, diagrams, and selection (calculation) methods Σ-7-Series MECHATROLINK Communications Command Manuals Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual SIEP S800001 30 Provides detailed information on the MECHATROLINK-II communi- cations commands that are used for a Σ-7-Series Servo System. Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual SIEP S800001 31 Provides detailed information on the MECHATROLINK-III communi- cations standard servo profile com- mands that are used for a Σ-7- Series S ervo System. Continued on next page. Continued from previous page. Classification Document Name Document No. Description xi Programming Manuals Machine Controller MP3000 Series Ladder Programming Manual SIEP C880725 13 Provides detailed information on the ladder programming specifica- tions and instructions for MP3000- Series Machine Controllers and Σ- 7-Series Σ-7C SERVOPACKs. Machine Controller MP3000 Series Motion Programming Manual SIEP C880725 14 Provides detailed information on the motion programming and sequence programming specifica- tions and instructions for MP3000- Series Machine Controllers and Σ- 7-Series Σ-7C SERVOPACKs. Σ-7-Series Operation Interface Operating Manuals Machine Controller MP2000/MP3000 Series Engineering Tool MPE720 Version 7 User’s Manual SIEP C880761 03 Describes in detail how to operate MPE720 version 7. Σ-7-Series AC Servo Drive Digital Operator Operating Manual SIEP S800001 33 Describes the operating proce- dures for a Digital Operator for a Σ-7-Series Servo System. AC Servo Drive Engineering Tool SigmaWin+ Operation Manual SIET S800001 34 Provides detailed operating proce- dures for the SigmaWin+ Engineer- ing Tool for a Σ-7-Series Servo System. Distributed I/O Module User’s Manual MECHATROLINK-III Compatible I/O Module User’s Manual SIEP C880781 04 Describes the functions, specifica- tions, operating methods, and MECHATROLINK-III communica- tions for the Remote I/O Modules for MP2000/MP3000-Series Machine Controllers. Continued from previous page. Classification Document Name Document No. Description xii Using This Manual Technical Terms Used in This Manual The following terms are used in this manual. Differences in Terms for Rotary Servomotors and Linear Servomotors There are differences in the terms that are used for Rotary Servomotors and Linear Servomotors. This manual primarily describes Rotary Servomotors. If you are using a Linear Servomotor, you need to interpret the terms as given in the following table. Ter m Meaning Servomotor A Σ-7-Series Rotary Servomotor or Linear Servomotor. Rotary Servomotor A generic term used for a Σ-7-Series Rotary Servomotor (SGM7M, SGM7J, SGM7A, SGM7P, SGM7G, or SGMMV). Linear Servomotor A generic term used for a Σ-7-Series Linear Servomotor (SGLG, SGLF, or SGLT). SERVOPACK A Σ-7-Series Σ-7W Servo Amplifier with MECHATROLINK-III Communications References. Servo Drive The combination of a Servomotor and SERVOPACK. Servo System A servo control system that includes the combination of a Servo Drive with a host controller and peripheral devices. servo ON Supplying power to the motor. servo OFF Not supplying power to the motor. base block (BB) Shutting OFF the power supply to the motor by shutting OFF the base current to the power transistor in the SERVOPACK. servo lock A state in which the motor is stopped and is in a position loop with a position reference of 0. Main Circuit Cable One of the cables that connect to the main circuit terminals, including the Main Circuit Power Supply Cable, Control Power Supply Cable, and Servomotor Main Circuit Cable. SigmaWin+ The Engineering Tool for setting up and tuning Servo Drives or a computer in which the Engi- neering Tool is installed. active alarm axis The axis on which the alarm is active. synchronized stopping axis The axis that is synchronized to and stopped with the axis on which the alarm is active when Synchronized Stopping is enabled. Absolute Encoder The general term used for absolute encoders with batteries and batteryless absolute encod- ers. In cases where the general term causes confusion, the term “batteryless absolute encoder” may also be used. Rotary Servomotors Linear Servomotors torque force moment of inertia mass rotation movement forward rotation and reverse rotation forward movement and reverse movement CW and CCW pulse trains forward and reverse pulse trains rotary encoder linear encoder absolute rotary encoder absolute linear encoder incremental rotary encoder incremental linear encoder unit: min -1 unit: mm/s unit: N·m unit: N xiii Notation Used in this Manual Notation for Reverse Signals The names of reverse signals (i.e., ones that are valid when low) are written with a forward slash (/) before the signal abbreviation. Notation Example BK is written as /BK. Notation for Parameters The notation depends on whether the parameter requires a numeric setting (parameter for numeric setting) or requires the selection of a function (parameter for selecting functions). • Parameters for Numeric Settings Notation Example n.0 (default setting) Do not detect preventative maintenance warnings. n.1 Detect preventative maintenance warnings. Parameter Meaning When Enabled Classication After restart Setup This is the setting range for the parameter. Pn00F Parameter number The notation “n.” indicates a parameter for selecting functions. Each indicates the setting for one digit. The notation shown here means that the first digit from the right is set to 1. If All Axes is given here, the parameter applies to both axes A and B. If you change the setting, the new setting will be applied to both axes. Pn100 Speed Loop Gain Position Speed Setting Range 10 to 20,000 0.1 Hz 400 Immediately Setting Unit Default Setting When Enabled Classication Tuning Parameter number If All Axes is given here, the parameter applies to both axes A and B. If you change the setting, the new setting will be applied to both axes. All Axes Position Torque The control methods for which the parameters apply are given. Speed : Speed control : Position control : Torque control This is the parameter setting before shipment. This is when any change made to the parameter will become effective. This is the parameter classication. This is the minimum unit (setting increment) that you can set for the parameter. This column explains the selections for the function. • Parameters for Selecting Functions Notation Examples for Pn002 Pn002 = n. X Indicates the rst digit from the right in Pn002. Pn002 = n. 1 Indicates that the rst digit from the right in Pn002 is set to 1. Pn002 = n. X Indicates the second digit from the right in Pn002. Pn002 = n. 1 Indicates that the second digit from the right in Pn002 is set to 1. Pn002 = n. X Indicates the third digit from the right in Pn002. Pn002 = n. 1 Indicates that the third digit from the right in Pn002 is set to 1. Pn002 = n.X Indicates the fourth digit from the right in Pn002. Pn002 = n.1 Indicates that the fourth digit from the right in Pn002 is set to 1. n.0 0 0 0 Notation Digit Notation Numeric Value Notation Meaning Notation Meaning xiv Engineering Tools Used in This Manual This manual uses the interfaces of the SigmaWin+ for descriptions. Trademarks • QR code is a trademark of Denso Wave Inc. • MECHATROLINK is a trademark of the MECHATROLINK Members Association. • Other product names and company names are the trademarks or registered trademarks of the respective company. “TM” and the ® mark do not appear with product or company names in this manual. Visual Aids The following aids are used to indicate certain types of information for easier reference. Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage. Indicates definitions of difficult terms or terms that have not been previously explained in this manual. Indicates operating or setting examples. Indicates supplemental information to deepen understanding or useful information. Important Term Example Information xv Safety Precautions Safety Information To prevent personal injury and equipment damage in advance, the following signal words are used to indicate safety precautions in this document. The signal words are used to classify the hazards and the degree of damage or injury that may occur if a product is used incorrectly. Information marked as shown below is important for safety. Always read this information and heed the precau- tions that are provided. DANGER Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire. WARNING Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire. CAUTION Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in fire. NOTICE Indicates precautions that, if not heeded, could result in property damage. xvi Safety Precautions That Must Always Be Observed General Precautions DANGER Read and understand this manual to ensure the safe usage of the product. Keep this manual in a safe, convenient place so that it can be referred to whenever necessary. Make sure that it is delivered to the final user of the product. Do not remove covers, cables, connectors, or optional devices while power is being supplied to the SERVOPACK. There is a risk of electric shock, operational failure of the product, or burning. WARNING Use a power supply with specifications (number of phases, voltage, frequency, and AC/DC type) that are appropriate for the product. There is a risk of burning, electric shock, or fire. Connect the ground terminals on the SERVOPACK and Servomotor to ground poles according to local electrical codes (100 Ω or less for a SERVOPACK with a 100-VAC or 200-VAC power supply, and 10 Ω or less for a SERVOPACK with a 400-VAC power supply). There is a risk of electric shock or fire. Do not attempt to disassemble, repair, or modify the product. There is a risk of fire or failure. The warranty is void for the product if you disassemble, repair, or modify it. CAUTION The SERVOPACK heat sinks, regenerative resistors, External Dynamic Brake Resistors, Servo- motors, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components. There is a risk of burn injury. For a 24-VDC power supply, use a power supply device with double insulation or reinforced insulation. There is a risk of electric shock. Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of failure, damage, or electric shock. Do not use the product in an environment that is subject to water, corrosive gases, or flamma- ble gases, or near flammable materials. There is a risk of electric shock or fire. NOTICE Do not attempt to use a SERVOPACK or Servomotor that is damaged or that has missing parts. Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs. In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range. There is a risk of damage to the SERVOPACK. Use a Noise Filter to minimize the effects of electromagnetic interference. Electronic devices used near the SERVOPACK may be affected by electromagnetic interference. Always use a Servomotor and SERVOPACK in one of the specified combinations. Do not touch a SERVOPACK or Servomotor with wet hands. There is a risk of product failure. xvii Storage Precautions Transportation Precautions CAUTION Do not place an excessive load on the product during storage. (Follow all instructions on the packages.) There is a risk of injury or damage. NOTICE Do not install or store the product in any of the following locations. • Locations that are subject to direct sunlight • Locations that are subject to ambient temperatures that exceed product specifications • Locations that are subject to relative humidities that exceed product specifications • Locations that are subject to condensation as the result of extreme changes in temperature • Locations that are subject to corrosive or flammable gases • Locations that are near flammable materials • Locations that are subject to dust, salts, or iron powder • Locations that are subject to water, oil, or chemicals • Locations that are subject to vibration or shock that exceeds product specifications • Locations that are subject to radiation If you store or install the product in any of the above locations, the product may fail or be damaged. CAUTION Transport the product in a way that is suitable to the mass of the product. Do not use the eyebolts on a SERVOPACK or Servomotor to move the machine. There is a risk of damage or injury. When you handle a SERVOPACK or Servomotor, be careful of sharp parts, such as the corners. There is a risk of injury. Do not place an excessive load on the product during transportation. (Follow all instructions on the packages.) There is a risk of injury or damage. NOTICE Do not hold onto the front cover or connectors when you move a SERVOPACK. There is a risk of the SERVOPACK falling. A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock. There is a risk of failure or damage. Do not subject connectors to shock. There is a risk of faulty connections or damage. If disinfectants or insecticides must be used to treat packing materials such as wooden frames, plywood, or pallets, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used. Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more. If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors. Do not overtighten the eyebolts on a SERVOPACK or Servomotor. If you use a tool to overtighten the eyebolts, the tapped holes may be damaged. xviii Installation Precautions Wiring Precautions CAUTION Install the Servomotor or SERVOPACK in a way that will support the mass given in technical documents. Install SERVOPACKs, Servomotors, regenerative resistors, and External Dynamic Brake Resis- tors on nonflammable materials. Installation directly onto or near flammable materials may result in fire. Provide the specified clearances between the SERVOPACK and the control panel as well as with other devices. There is a risk of fire or failure. Install the SERVOPACK in the specified orientation. There is a risk of fire or failure. Do not step on or place a heavy object on the product. There is a risk of failure, damage, or injury. Do not allow any foreign matter to enter the SERVOPACK or Servomotor. There is a risk of failure or fire. NOTICE Do not install or store the product in any of the following locations. • Locations that are subject to direct sunlight • Locations that are subject to ambient temperatures that exceed product specifications • Locations that are subject to relative humidities that exceed product specifications • Locations that are subject to condensation as the result of extreme changes in temperature • Locations that are subject to corrosive or flammable gases • Locations that are near flammable materials • Locations that are subject to dust, salts, or iron powder • Locations that are subject to water, oil, or chemicals • Locations that are subject to vibration or shock that exceeds product specifications • Locations that are subject to radiation If you store or install the product in any of the above locations, the product may fail or be damaged. Use the product in an environment that is appropriate for the product specifications. If you use the product in an environment that exceeds product specifications, the product may fail or be damaged. A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock. There is a risk of failure or damage. Always install a SERVOPACK in a control panel. Do not allow any foreign matter to enter a SERVOPACK or a Servomotor with a Cooling Fan and do not cover the outlet from the Servomotor’s cooling fan. There is a risk of failure. DANGER Do not change any wiring while power is being supplied. There is a risk of electric shock or injury. xix WARNING Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure. Check all wiring and power supplies carefully. Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit fail- ures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury. Connect the AC and DC power supplies to the specified SERVOPACK terminals. • Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK. • Connect a DC power supply to the B1/ and 2 terminals and the L1C and L2C terminals on the SERVOPACK. There is a risk of failure or fire. If you use a SERVOPACK with the Dynamic Brake Hardware Option, connect an External Dynamic Brake Resistor that is suitable for the machine and equipment specifications to the specified terminals. There is a risk of unexpected operation, machine damage, burning, or injury when an emergency stop is performed. CAUTION Wait for at least six minutes after turning OFF the power supply (with a SERVOPACK for a 100- VAC power supply input, wait for at least nine minutes) and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply ter- minals while the CHARGE lamp is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power supply. There is a risk of electric shock. Observe the precautions and instructions for wiring and trial operation precisely as described in this document. Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SERVOPACK to fail, damage the equipment, or cause an accident resulting in death or injury. Check the wiring to be sure it has been performed correctly. Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation. There is a risk of failure or malfunction. Connect wires to power supply terminals and motor connection terminals securely with the specified methods and tightening torque. Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, possibly resulting in fire. Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Sig- nal Cables and Encoder Cables. The maximum wiring length is 3 m for I/O Signal Cables, and 50 m for Encoder Cables or Servo- motor Main Circuit Cables. Observe the following precautions when wiring the SERVOPACK’s main circuit terminals. • Turn ON the power supply to the SERVOPACK only after all wiring, including the main circuit termi- nals, has been completed. • If a connector is used for the main circuit terminals, remove the main circuit connector from the SERVOPACK before you wire it. • Insert only one wire per insertion hole in the main circuit terminals. • When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into con- tact with adjacent wires and cause a short-circuit. Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring. There is a risk of fire or failure. xx Operation Precautions NOTICE Whenever possible, use the Cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials. Securely tighten cable connector screws and lock mechanisms. Insufficient tightening may result in cable connectors falling off during operation. Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Sig- nal Cables or Encoder Cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm. If the cables are too close to each other, malfunctions may occur due to noise affecting the low-cur- rent lines. Install a battery at either the host controller or on the Encoder Cable. If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning. When connecting a battery, connect the polarity correctly. There is a risk of battery rupture or encoder failure. WARNING Before starting operation with a machine connected, change the settings of the switches and parameters to match the machine. Unexpected machine operation, failure, or personal injury may occur if operation is started before appropriate settings are made. Do not radically change the settings of the parameters. There is a risk of unstable operation, machine damage, or injury. Install limit switches or stoppers at the ends of the moving parts of the machine to prevent unexpected accidents. There is a risk of machine damage or injury. For trial operation, securely mount the Servomotor and disconnect it from the machine. There is a risk of injury. Forcing the motor to stop for overtravel is disabled when the Jog, Origin Search, or Easy FFT utility function is executed. Take necessary precautions. There is a risk of machine damage or injury. When an alarm occurs, the Servomotor will coast to a stop or stop with the dynamic brake according to the SERVOPACK Option and settings. The coasting distance will change with the moment of inertia of the load and the resistance of the External Dynamic Brake Resistor. Check the coasting distance during trial operation and implement suitable safety measures on the machine. Do not enter the machine’s range of motion during operation. There is a risk of injury. Do not touch the moving parts of the Servomotor or machine during operation. There is a risk of injury. xxi Maintenance and Inspection Precautions CAUTION Design the system to ensure safety even when problems, such as broken signal lines, occur. For example, the P-OT and N-OT signals are set in the default settings to operate on the safe side if a signal line breaks. Do not change the polarity of this type of signal. When overtravel occurs, the power supply to the motor is turned OFF and the brake is released. If you use the Servomotor to drive a vertical load, set the Servomotor to enter a zero-clamped state after the Servomotor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling. Always turn OFF the servo before you turn OFF the power supply. If you turn OFF the main cir- cuit power supply or control power supply during operation before you turn OFF the servo, the Servomotor will stop as follows: • If you turn OFF the main circuit power supply during operation without turning OFF the servo, the Servomotor will stop abruptly with the dynamic brake. • If you turn OFF the control power supply without turning OFF the servo, the stopping method that is used by the Servomotor depends on the model of the SERVOPACK. For details, refer to the manual for the SERVOPACK. • If you use a SERVOPACK with the Dynamic Brake Hardware Option, the Servomotor stopping meth- ods will be different from the stopping methods used without the Option or with other Hardware Options. For details, refer to the following manual. Σ-7-Series Σ-7S/Σ-7W SERVOPACK with Dynamic Brake Hardware Option Specifications Product Manual (Manual No.: SIEP S800001 73) Do not use the dynamic brake for any application other than an emergency stop. There is a risk of failure due to rapid deterioration of elements in the SERVOPACK and the risk of unexpected operation, machine damage, burning, or injury. NOTICE When you adjust the gain during system commissioning, use a measuring instrument to monitor the torque waveform and speed waveform and confirm that there is no vibration. If a high gain causes vibration, the Servomotor will be damaged quickly. Do not frequently turn the power supply ON and OFF. After you have started actual operation, allow at least one hour between turning the power supply ON and OFF (as a guideline). Do not use the product in applications that require the power supply to be turned ON and OFF frequently. The elements in the SERVOPACK will deteriorate quickly. An alarm or warning may occur if communications are performed with the host controller while the SigmaWin+ or Digital Operator is operating. If an alarm or warning occurs, it may interrupt the current process and stop the system. With this product, set the same Servomotor stopping method for both axis A and axis B. If the Servomotor stopping methods are different, the machine may be damaged. Set appropriate values for the correction amounts in the Position Correction Table. The machine may be damaged if the correction amounts are too large. DANGER Do not change any wiring while power is being supplied. There is a risk of electric shock or injury. WARNING Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure. xxii Troubleshooting Precautions CAUTION Wait for at least six minutes after turning OFF the power supply (with a SERVOPACK for a 100- VAC power supply input, wait for at least nine minutes) and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply ter- minals while the CHARGE lamp is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power supply. There is a risk of electric shock. Before you replace a SERVOPACK, back up the settings of the SERVOPACK parameters. Copy the backed up parameter settings to the new SERVOPACK and confirm that they were copied correctly. If you do not copy backed up parameter settings or if the copy operation is not completed correctly, normal operation may not be possible, possibly resulting in machine or equipment damage. NOTICE Discharge all static electricity from your body before you operate any of the buttons or switches inside the front cover of the SERVOPACK. There is a risk of equipment damage. DANGER If the safety device (molded-case circuit breaker or fuse) installed in the power supply line oper- ates, remove the cause before you supply power to the SERVOPACK again. If necessary, repair or replace the SERVOPACK, check the wiring, and remove the factor that caused the safety device to operate. There is a risk of fire, electric shock, or injury. WARNING The product may suddenly start to operate when the power supply is recovered after a momen- tary power interruption. Design the machine to ensure human safety when operation restarts. There is a risk of injury. xxiii Disposal Precautions General Precautions CAUTION When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm or turn the power supply OFF and ON again to restart operation. There is a risk of injury or machine damage. If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the Servomotor may suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an alarm. There is a risk of injury or machine damage. Always insert a magnetic contactor in the line between the main circuit power supply and the main circuit power supply terminals on the SERVOPACK so that the power supply can be shut OFF at the main circuit power supply. If a magnetic contactor is not connected when the SERVOPACK fails, a large current may flow con- tinuously, possibly resulting in fire. If an alarm occurs, shut OFF the main circuit power supply. There is a risk of fire due to a regenerative resistor overheating as the result of regenerative transis- tor failure. Install a ground fault detector against overloads and short-circuiting or install a molded-case circuit breaker combined with a ground fault detector. There is a risk of SERVOPACK failure or fire if a ground fault occurs. The holding brake on a Servomotor will not ensure safety if there is the possibility that an exter- nal force (including gravity) may move the current position and create a hazardous situation when power is interrupted or an error occurs. If an external force may cause movement, install an external braking mechanism that ensures safety. Correctly discard the product as stipulated by regional, local, and municipal laws and regulations. Be sure to include these contents in all labelling and warning notifications on the final product as necessary. Figures provided in this manual are typical examples or conceptual representations. There may be differences between them and actual wiring, circuits, and products. The products shown in illustrations in this manual are sometimes shown with their covers or protective guards removed to illustrate detail. Always replace all covers and protective guards before you use the product. If you need a new copy of this manual because it has been lost or damaged, contact your near- est Yaskawa representative or one of the offices listed on the back of this manual. This manual is subject to change without notice for product improvements, specifications changes, and improvements to the manual itself. We will update the manual number of the manual and issue revisions when changes are made. Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies the product in any way. Yaskawa disavows any responsibility for damages or losses that are caused by modified products. xxiv Warranty Details of Warranty Warranty Period The warranty period for a product that was purchased (hereinafter called the “delivered product”) is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner. Warranty Scope Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period. This warranty does not cover defects caused by the delivered product reaching the end of its ser- vice life and replacement of parts that require replacement or that have a limited service life. This warranty does not cover failures that result from any of the following causes. • Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications • Causes not attributable to the delivered product itself • Modifications or repairs not performed by Yaskawa • Use of the delivered product in a manner in which it was not originally intended • Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa • Events for which Yaskawa is not responsible, such as natural or human-made disasters Limitations of Liability • Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product. • Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with program- mable Yaskawa products. • The information described in product catalogs or manuals is provided for the purpose of the cus- tomer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license. • Yaskawa shall not be responsible for any damage arising from infringements of intellectual prop- erty rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals. xxv Suitability for Use • It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products. • The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer. • Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifica- tions, and provide safety measures to minimize hazards in the event of failure. • Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals • Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to sep- arate industry or government regulations • Systems, machines, and equipment that may present a risk to life or property • Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day • Other systems that require a similar high degree of safety • Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed. • The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product. • Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties. Specifications Change The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next edi- tions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product. xxvi Compliance with UL Standards and EU Directives Certification marks for the standards for which the product has been certified by certification bodies are shown on nameplate. Products that do not have the marks are not certified for the standards. North American Safety Standards (UL) * Only products with derating specifications are in compliance with the UL Standards. Estimates are available for those prod- ucts. Contact your Yaskawa representative for details. Product Model North American Safety Standards (UL File No.) SERVOPACKs SGD7W UL 61800-5-1 (E147823) CSA C22.2 No.274 Rotary Servomotors • SGM7M • SGM7A • SGM7J • SGM7P • SGM7G • SGMMV UL 1004-1 UL 1004-6 (E165827) Linear Servomotors • SGLGW* • SGLFW* • SGLFW2 • SGLTW* UL 1004-1 UL 1004-6 (E165827) xxvii EU Directives * For Moving Coils, only models with “-E” at the end of model numbers are certified. Note: 1. We declared the CE Marking based on the harmonized standards in the above table. 2. These products are for industrial use. In home environments, these products may cause electromagnetic interfer- ence and additional noise reduction measures may be necessary. Product Model EU Directives Harmonized Standards SERVOPACKs SGD7W EMC Directive 2014/30/EU EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3 (Category C2, Second environment) Low Voltage Directive 2014/35/EU EN 50178 EN 61800-5-1 RoHS Directive 2011/65/EU EN 50581 Rotary Servomotors SGMMV EMC Directive 2004/108/EC EN 55011 group 1, class A EN 61000-6-2 EN 61800-3 (Category C2, Second environment) Low Voltage Directive 2006/95/EC EN 60034-1 EN 60034-5 RoHS Directive 2011/65/EU EN 50581 • SGM7M • SGM7J • SGM7A • SGM7P • SGM7G EMC Directive 2014/30/EU EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3 (Category C2, Second environment) Low Voltage Directive 2014/35/EU EN 60034-1 EN 60034-5 RoHS Directive 2011/65/EU EN 50581 Linear Servomotors • SGLG* • SGLF* • SGLF 2 • SGLT* EMC Directive 2014/30/EU EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3 (Category C2, Second environment) Low Voltage Directive 2014/35/EU EN 60034-1 RoHS Directive 2011/65/EU EN 50581 xxviii Contents About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Outline of Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v Using This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Safety Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv Compliance with UL Standards and EU Directives . . . . . . . . . . . . . . . . . . . . . xxvi Basic Information on SERVOPACKs 1 1.1 Product Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.2 Model Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 1.2.1 Interpreting SERVOPACK Model Numbers . . . . . . . . . . . . . . . . . . . . . . . . . .1-3 1.2.2 Interpreting Servomotor Model Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4 1.3 Combinations of SERVOPACKs and Servomotors . . . . . . . . . . . 1-5 1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.4.1 SERVOPACK Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-6 1.4.2 Function Application Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-9 1.5 SigmaWin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 SERVOPACK Ratings and Specifications 2 2.1 Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 SERVOPACK Overload Protection Characteristics . . . . . . . . . . 2-4 2.3 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Position Correction Table 3 3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.1.1 Position Correction Table Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .3-3 3.2 Parameter Settings Related to the Position Correction Table . . 3-4 3.2.1 Position Correction Table Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4 3.2.2 Position Correction Axis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-4 3.2.3 Position Correction Table-Related Monitor Selection . . . . . . . . . . . . . . . . . .3-4 3.3 Alarm Related to the Position Correction Table. . . . . . . . . . . . . 3-5 xxix 3.4 Position Correction Table Settings. . . . . . . . . . . . . . . . . . . . . . . 3-6 3.4.1 Measure the Positions Required for the Position Correction Table. . . . . . . . 3-6 3.4.2 Position Correction Table Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 3.4.3 Setting Method with the SigmaWin+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 3.4.4 Setting Method with the MEM_WR Command. . . . . . . . . . . . . . . . . . . . . . 3-20 3.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 3.5.1 Monitoring with the SigmaWin+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 3.5.2 Monitoring with the Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 3.5.3 MECHATROLINK-III Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 Synchronized Stopping 4 4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.1.1 Synchronized Stopping Timing Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 4.2 Parameter Settings Related to Synchronized Stopping . . . . . . 4-4 4.2.1 Synchronized Stopping Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.2.2 Synchronized Stopping End Speed Setting . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4.2.3 Adjusting Synchronized Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.3 Alarms Related to Synchronized Stopping . . . . . . . . . . . . . . . . 4-6 4.4 Warning Related to Synchronized Stopping . . . . . . . . . . . . . . . 4-7 4.5 CSTP_S in the I/O Signal Status Monitor . . . . . . . . . . . . . . . . . . 4-8 4.5.1 SVCMD_IO (I/O Signal Status) Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.5.2 Details of I/O Signal Status Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 4.6 Servomotor Stopping Method for Alarms . . . . . . . . . . . . . . . . . 4-9 Position Deviation between Axes Overflow Detection 5 5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.2 Parameter Settings Related to Position Deviation between Axes Overflow Detection . . 5-3 5.3 Alarm Related to Position Deviation between Axes Overflow Detection . . 5-4 5.4 Warning Related to Position Deviation between Axes Overflow Detection . . 5-5 5.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.5.1 Monitoring with the SigmaWin+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.5.2 Monitoring with the Digital Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 xxx Maintenance 6 6.1 Alarm Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.1.1 List of Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-2 6.1.2 Troubleshooting Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-7 6.2 Warning Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 6.2.1 List of Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-36 6.2.2 Troubleshooting Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-39 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor . . 6-46 Parameter Lists 7 7.1 Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.1.1 Interpreting the Servo Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-2 7.1.2 Interpreting the MECHATROLINK-III Common Parameter Lists . . . . . . . . . .7-3 7.2 List of Servo Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.3 List of MECHATROLINK-III Common Parameters . . . . . . . . . . 7-56 Index Revision History This chapter provides information required to select SERVOPACKs, such as SERVOPACK models. 1.1 Product Introduction . . . . . . . . . . . . . . . . . . 1-2 1.2 Model Designations . . . . . . . . . . . . . . . . . . 1-3 1.2.1 Interpreting SERVOPACK Model Numbers . . . . . 1-3 1.2.2 Interpreting Servomotor Model Numbers . . . . . . 1-4 1.3 Combinations of SERVOPACKs and Servomotors . .1-5 1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 1.4.1 SERVOPACK Functions . . . . . . . . . . . . . . . . . . . . 1-6 1.4.2 Function Application Restrictions . . . . . . . . . . . . 1-9 1.5 SigmaWin+ . . . . . . . . . . . . . . . . . . . . . . . . 1-10 Basic Information on SERVOPACKs 1 1.1 Product Introduction 1-2 1.1 Product Introduction The FT70 features three built-in functions optimized for driving a gantry to provide an optimal solution for problems with gantry mechanisms. • Position Correction Table (minimizes wasted torque produced by mechanical differences to improve cycle times) • Synchronized Stopping (prevents mechanical damage if alarms occur) • Position Deviation between Axes Overflow Detection (detects twisting of the machine frame to prevent mechanical damage and provide a useful function for preventative maintenance) 1.2 Model Designations 1.2.1 Interpreting SERVOPACK Model Numbers 1-3 1 Basic Information on SERVOPACKs 1.2 Model Designations 1.2.1 Interpreting SERVOPACK Model Numbers *1. You can use these models with either a single-phase or three-phase input. *2. If you use the Servomotor with a single-phase 200-VAC power supply input, derate the load ratio to 65%. An example is given below. If the load ratio of the first axis is 90%, use a load ratio of 40% for the second axis so that average load ratio for both axes is 65%. ((90% + 40%)/2 = 65%) *3. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors. *4. The BTO specification indicates if the SEVOPACK is customized by using the MechatroCloud BTO service. You need a BTO number to order SERVOPACKs with customized specifications. Refer to the following catalog for details on the BTO specification. AC Servo Drives Σ-7 Series (Catalog No.: KAEP S800001 23) SGD7W - 1R6 A 20 A 000 Σ-7-Series Σ-7W SERVOPACKs 4th digit 1st+2nd+3rd digits 5th+6th digits 8th+9th+10th digits 7th digit F70 B 11th+12th+13th digits 14th digit Without options 000 Maximum Applicable Motor Capacity per Axis A 200 VAC Voltage Code Specication 1R6 *1 2R8 *1 5R5 *1*2 7R6 0.2 kW 0.4 kW 0.75 kW 1.0 kW Voltage Code Specication Three- Phase, 200 VAC 1st+2nd+3rd digits 4th digit Code Specication Hardware Options Specication 8th+9th+10th digits 20 A Interface *3 Code Specication MECHATROLINK-III communications reference Design Revision Order 5th+6th digits 7th digit Specification Code FT/EX Specification Specification Code BTO Specification *4 None B None BTO specification F70 For gantry applications 11th+12th+13th digits 14th digit 1.2 Model Designations 1.2.2 Interpreting Servomotor Model Numbers 1-4 1.2.2 Interpreting Servomotor Model Numbers Refer to the following manuals for information on interpreting Σ-7-Series Servomotor model numbers. Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36) Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37) 1.3 Combinations of SERVOPACKs and Servomotors 1-5 1 Basic Information on SERVOPACKs 1.3 Combinations of SERVOPACKs and Servomotors Refer to the following manuals for details on combinations with Σ-7-Series Servomotors. Σ-7-Series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36) Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37) 1.4 Functions 1.4.1 SERVOPACK Functions 1-6 1.4 Functions This section lists the functions provided by SERVOPACKs. Refer to the following manual for details on the functions. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) Refer to the following section for details on restrictions to these functions. 1.4.2 Function Application Restrictions on page 1-9 1.4.1 SERVOPACK Functions • Functions Related to the Machine * Functions unique to this product. Function Power Supply Type Settings for the Main Circuit and Control Circuit Automatic Detection of Connected Motor Motor Direction Setting Linear Encoder Pitch Setting Writing Linear Servomotor Parameters Selecting the Phase Sequence for a Linear Servomotor Polarity Sensor Setting Polarity Detection Overtravel Function and Settings Holding Brake Motor Stopping Methods for Servo OFF and Alarms Resetting the Absolute Encoder Setting the Origin of the Absolute Encoder Setting the Regenerative Resistor Capacity Operation for Momentary Power Interruptions SEMI F47 Function Setting the Motor Maximum Speed Software Limits and Settings Multiturn Limit Setting Adjustment of Motor Current Detection Signal Offset Forcing the Motor to Stop Overheat Protection Speed Ripple Compensation Current Gain Level Setting Speed Detection Method Selection External Latches Synchronized Stopping* Position Deviation between Axes Overflow Detection* Position Correction Table* 1.4 Functions 1.4.1 SERVOPACK Functions 1 Basic Information on SERVOPACKs 1-7 • Functions Related to the Host Controller • Functions to Achieve Optimum Motions • Functions for Trial Operation during Setup Function Extended Address Setting Electronic Gear Settings I/O Signal Allocations ALM (Servo Alarm) Signal /WARN (Warning) Signal /TGON (Rotation Detection) Signal /S-RDY (Servo Ready) Signal /V-CMP (Speed Coincidence Detection) Signal /COIN (Positioning Completion) Signal /NEAR (Near) Signal Speed Limit during Torque Control /VLT (Speed Limit Detection) Signal Selecting Torque Limits Vibration Detection Level Initialization Alarm Reset Replacing the Battery Setting the Position Deviation Overflow Alarm Level Function Tuning-less Function Autotuning without a Host Reference Autotuning with a Host Reference Custom Tuning Anti-Resonance Control Adjustment Vibration Suppression Gain Selection Friction Compensation Gravity Compensation Backlash Compensation Model Following Control Compatible Adjustment Functions Mechanical Analysis Easy FFT Function Software Reset Trial Operation for the Servomotor without a Load Program Jogging Origin Search Test without a Motor Monitoring Machine Operation Status and Signal Waveforms 1.4 Functions 1.4.1 SERVOPACK Functions 1-8 • Functions for Inspection and Maintenance Function Write Prohibition Setting for Parameters Initializing Parameter Settings Automatic Detection of Connected Motor Monitoring Product Information Monitoring Product Life Alarm History Display Alarm Tracing 1.4 Functions 1.4.2 Function Application Restrictions 1 Basic Information on SERVOPACKs 1-9 1.4.2 Function Application Restrictions The following functional restrictions apply when the SERVOPACKs described in this manual are used. Function Restriction Motor Stopping Method for Group 2 Alarms (Pn00A = n.0, Pn00B = n.2) In this SERVOPACK, the default setting of the Servomotor stopping method for the group 2 alarms is stopping by applying the dynamic brake. The Ser- vomotor stopping method can be changed by changing the parameter set- tings, but stopping by applying the dynamic brake is recommended. Set both axis A and axis B to the same stopping method for alarms. Moment of Inertia Estimation This function cannot be used. Advanced Autotuning without Reference (Fn201) This function cannot be used. Advanced Autotuning with Reference (Fn202) This function cannot be used. Mechanical Analysis This function cannot be used. IO_STS8 in SVCMD_IO (I/O Signal Monitor) This function cannot be used. 1.5 SigmaWin+ 1-10 1.5 SigmaWin+ To use the SigmaWin+, a model information file for the SERVOPACK must be added to Sig- maWin+ version 7. Contact your Yaskawa representative for the model information file. This chapter provides the specifications required to select SERVOPACKs. 2.1 Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 2.2 SERVOPACK Overload Protection Characteristics . . 2-4 2.3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 SERVOPACK Ratings and Specifications 2 2.1 Ratings 2-2 2.1 Ratings This section gives the ratings of SERVOPACKs. Three-Phase, 200 VAC * This is the net value at the rated load. Model SGD7W- 1R6A 2R8A 5R5A 7R6A Maximum Applicable Motor Capacity per Axis [kW] 0.2 0.4 0.75 1.0 Continuous Output Current per Axis [Arms] 1.6 2.8 5.5 7.6 Instantaneous Maximum Output Current per Axis [Arms] 5.9 9.3 16.9 17.0 Main Circuit Power Supply 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz Input Current [Arms]* 2.5 4.7 7.8 11 Control Power Supply 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz Input Current [Arms]* 0.25 0.25 0.25 0.25 Power Supply Capacity [kVA]* 1.0 1.9 3.2 4.5 Power Loss* Main Circuit Power Loss [W] 24.0 43.3 78.9 94.2 Control Circuit Power Loss [W] 17 17 17 17 Built-in Regenerative Resistor Power Loss [W] 8 8 16 16 Total Power Loss [W] 49.0 68.3 111.9 127.2 Regenerative Resistor Built-In Regenerative Resistor Resistance [Ω] 40 40 12 12 Capacity [W] 40 40 60 60 Minimum Allowable External Resistance [Ω] 40 40 12 12 Overvoltage Category III 2.1 Ratings 2 SERVOPACK Ratings and Specications 2-3 Single-Phase, 200 VAC *1. If you use the SGD7W-5R5A with a single-phase 200-VAC power supply input, derate the load ratio to 65%. An example is given below. If the load ratio of the first axis is 90%, use a load ratio of 40% for the second axis so that average load ratio for both axes is 65%. ((90% + 40%)/2 = 65%) *2. This is the net value at the rated load. However, a load ratio of 65% was used for the SGD7W-5R5A. 270 VDC * This is the net value at the rated load. Model SGD7W- 1R6A 2R8A 5R5A *1 Maximum Applicable Motor Capacity per Axis [kW] 0.2 0.4 0.75 Continuous Output Current per Axis [Arms] 1.6 2.8 5.5 Instantaneous Maximum Output Current per Axis [Arms] 5.9 9.3 16.9 Main Circuit Power Supply 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz Input Current [Arms] *2 5.5 11 12 Control Power Supply 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz Input Current [Arms] *2 0.25 0.25 0.25 Power Supply Capacity [kVA] *2 1.3 2.4 2.7 Power Loss *2 Main Circuit Power Loss [W] 24.1 43.6 54.1 Control Circuit Power Loss [W] 17 17 17 Built-in Regenerative Resistor Power Loss [W] 8816 Total Power Loss [W] 49.1 68.6 87.1 Regenerative Resistor Built-In Regenerative Resistor Resistance [Ω] 40 40 12 Capacity [W] 40 40 60 Minimum Allowable External Resistance [Ω] 40 40 12 Overvoltage Category III Model SGD7W- 1R6A 2R8A 5R5A 7R6A Maximum Applicable Motor Capacity per Axis [kW] 0.2 0.4 0.75 1.0 Continuous Output Current per Axis [Arms] 1.6 2.8 5.5 7.6 Instantaneous Maximum Output Current per Axis [Arms] 5.9 9.3 16.9 17.0 Main Circuit Power Supply 270 VDC to 324 VDC, -15% to +10% Input Current [Arms]* 3.0 5.8 9.7 14 Control Power Supply 270 VDC to 324 VDC, -15% to +10% Input Current [Arms]* 0.25 0.25 0.25 0.25 Power Supply Capacity [kVA]* 1.2 2 3.2 4.6 Power Loss* Main Circuit Power Loss [W] 18.7 33.3 58.4 73.7 Control Circuit Power Loss [W] 17 17 17 17 Total Power Loss [W] 35.7 50.3 75.4 90.7 Overvoltage Category III 2.2 SERVOPACK Overload Protection Characteristics 2-4 2.2 SERVOPACK Overload Protection Characteristics The overload detection level is set for hot start conditions with a SERVOPACK surrounding air tem- perature of 55°C. An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload pro- tection characteristics shown in the following diagram (i.e., operation on the right side of the appli- cable line) is performed. The actual overload detection level will be the detection level of the connected SERVOPACK or Ser- vomotor that has the lower overload protection characteristics. In most cases, that will be the overload protection characteristics of the Servomotor. • SGD7W-1R6, -2R8 Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor. • SGD7W-5R5, -7R6 Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor. 100 10000 1000 100 10 1 Detection time (s) SERVOPACK output current (continuous output current ratio) (%) Instantaneous maximum output current (Instantaneous maximum output current) Continuous output current (Continuous output current) × 100% 230 100 200 10000 1000 100 10 1 Detection time (s) SERVOPACK output current (continuous output current ratio) (%) Instantaneous maximum output current (Instantaneous maximum output current) Continuous output current (Continuous output current) × 100% 2.3 Specifications 2-5 2 SERVOPACK Ratings and Specications 2.3 Specifications This section gives the specifications of SERVOPACKs. Item Specification Control Method IGBT-based PWM control, sine wave current drive Feedback With Rotary Servomotor Serial encoder: 17 bits (absolute encoder) 20 bits or 24 bits (incremental encoder/absolute encoder) 22 bits (absolute encoder) With Linear Servomotor • Absolute linear encoder (The signal resolution depends on the abso- lute linear encoder.) • Incremental linear encoder (The signal resolution depends on the incremental linear encoder or Serial Converter Unit.) Environ- mental Conditions Surrounding Air Temperature -5°C to 55°C (With derating, usage is possible between 55°C and 60°C.) Refer to the following manual for derating specifications. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communica- tions References Product Manual (Manual No.: SIEP S800001 29) Storage Temperature -20°C to 85°C Surrounding Air Humidity 95% relative humidity max. (with no freezing or condensation) Storage Humidity 95% relative humidity max. (with no freezing or condensation) Vibration Resistance 4.9 m/s 2 Shock Resistance 19.6 m/s 2 Degree of Protection IP20 Pollution Degree 2 • Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no dust, salts, or iron dust. Altitude 1,000 m max. (With derating, usage is possible between 1,000 m and 2,000 m.) Refer to the following manual for derating specifications. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communica- tions References Product Manual (Manual No.: SIEP S800001 29) Others Do not use the SERVOPACK in the following locations: Locations sub- ject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards Refer to the following section for details. Compliance with UL Standards and EU Directives on page xxvi Mounting Base-mounted or rack-mounted Perfor- mance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Coefficient of Speed Fluctuation * ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) Torq ue Co n trol Precision (Repeatability) ±1% Soft Start Time Setting 0 s to 10 s (Can be set separately for acceleration and deceleration.) Continued on next page. 2.3 Specifications 2-6 I/O Signals Overheat Protection Input Number of input points: 2 Input voltage range: 0 V to +5 V Sequence Input Signals Input Signals That Can Be Allo- cated Allowable voltage range: 24 VDC ±20% Number of input points: 12 (Input method: Sink inputs or source inputs) Input Signals • P-OT (Forward Drive Prohibit) and N-OT (Reverse Drive Prohibit) sig- nals • /P-CL (Forward External Torque Limit) and /N-CL (Reverse External Torq ue Li mit) s ign als • /DEC (Origin Return Deceleration Switch) signal • /EXT1 to /EXT3 (External Latch Input 1 to 3) signals • FSTP (Forced Stop Input) signal A signal can be allocated and the positive and negative logic can be changed. Sequence Output Signals Fixed Output Allowable voltage range: 5 VDC to 30 VDC Number of output points: 2 (A photocoupler output (isolated) is used.) Output signal: ALM (Servo Alarm) signal Output Signals That Can Be Allo- cated Allowable voltage range: 5 VDC to 30 VDC Number of output points: 5 (A photocoupler output (isolated) is used.) Output Signals • /COIN (Positioning Completion) signal • /V-CMP (Speed Coincidence Detection) signal • /TGON (Rotation Detection) signal • /S-RDY (Servo Ready) signal • /CLT (Torque Limit Detection) signal • /VLT (Speed Limit Detection) signal • /BK (Brake) signal • /WARN (Warning) signal • /NEAR (Near) signal A signal can be allocated and the positive and negative logic can be changed. Communi- cations RS-422A Communi- cations (CN3) Inter- faces Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig- maWin+) 1:N Commu- nications Up to N = 15 stations possible for RS-422A port Axis Address Settings 03h to EFh (maximum number of slaves: 62) The rotary switches (S1 and S2) are used to set the station address. USB Communi- cations (CN7) Interface Personal computer (with SigmaWin+) Commu- nica- tions Standard Conforms to USB2.0 standard (12 Mbps). Displays/Indicators CHARGE, PWR, CN, L1, and L2 indicators, and two, one-digit seven- segment displays Continued o n next page. Continued from previous page. Item Specification 2.3 Specifications 2 SERVOPACK Ratings and Specications 2-7 * The coefficient of speed fluctuation for load fluctuation is defined as follows: MECHA- TROLINK-III Communi- cations Communications Pro- tocol MECHATROLINK-III Station Address Settings 03h to EFh (maximum number of slaves: 62) The rotary switches (S1 and S2) are used to set the station address. Extended Address Setting Axis A: 00h, Axis B: 01h Transmission Speed 100 Mbps Transmission Cycle 250 μs, 500 μs, 750 μs, 1.0 ms to 4.0 ms (multiples of 0.5 ms) Number of Transmis- sion Bytes 32 or 48 bytes/station A DIP switch (S3) is used to select the transmission speed. Reference Method Performance Position, speed, or torque control with MECHATROLINK-III communi- cations Reference Input MECHATROLINK-III commands (sequence, motion, data setting, data access, monitoring, adjustment, etc.) Profile MECHATROLINK-III standard servo profile MECHATROLINK-III Communica- tions Setting Switches Rotary switch (S1 and S2) positions: 16 Number of DIP switch (S3) pins: 4 Analog Monitor (CN5) Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ) Dynamic Brake (DB) Activated when a servo alarm or overtravel (OT) occurs, or when the power supply to the main circuit or servo is OFF. Regenerative Processing Built-in Overtravel (OT) Prevention Stopping with dynamic brake, deceleration to a stop, or coasting to a stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Pro- hibit) signal Protective Functions Overcurrent, overvoltage, low voltage, overload, regeneration error, etc. Utility Functions Gain adjustment, alarm history, jogging, origin search, etc. Applicable Option Modules None Continued from previous page. Item Specification × 100% Coefcient of speed uctuation = No-load motor speed - Total-load motor speed Rated motor speed This chapter provides information on the Position Correc- tion Table. 3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 3.1.1 Position Correction Table Block Diagram . . . . . . 3-3 3.2 Parameter Settings Related to the Position Correction Table . . 3-4 3.2.1 Position Correction Table Enable/Disable . . . . . . 3-4 3.2.2 Position Correction Axis Selection . . . . . . . . . . . 3-4 3.2.3 Position Correction Table-Related Monitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 3.3 Alarm Related to the Position Correction Table . . 3-5 3.4 Position Correction Table Settings . . . . . . . 3-6 3.4.1 Measure the Positions Required for the Position Correction Table . . . . . . . . . . . . . . . . . . 3-6 3.4.2 Position Correction Table Details . . . . . . . . . . . . 3-7 3.4.3 Setting Method with the SigmaWin+ . . . . . . . . . . 3-8 3.4.4 Setting Method with the MEM_WR Command . . . 3-20 3.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 3.5.1 Monitoring with the SigmaWin+ . . . . . . . . . . . . 3-25 3.5.2 Monitoring with the Digital Operator . . . . . . . . . 3-25 3.5.3 MECHATROLINK-III Monitoring . . . . . . . . . . . . . 3-25 Position Correction Table 3 3.1 Outline 3-2 3.1 Outline The Position Correction Table is used to drive the Servomotors while correcting the position based on the correction amounts set in the table in order to minimize wasted torque produced by mechanical differences in the machine. Using this function can reduce cycle time because it can drive the Servomotors without pro- ducing wasted torque between two axes. The SERVOPACK adds the correction amount to the reference position from the host control- ler, and then it moves the slave axis. For this reason, the coordinate position of the slave axis is offset from the reference position from the host controller by only the added correction amount. Master axis Slave axis Pm1 Pm2 Pm3 Pm4 Pm5 Ps1 Ps2 Ps3 Ps4 Ps5 Master axisSlave axis Torque Torque Speed Time Master axis 0 0 Slave axis Time Torque Time Torque Speed Time Tension is produced between the axes when the Servomotors are driven due to mechanical differences, and this produces wasted torque. Wasted torque produced due to mechanical differences can be minimized by driving the Servomotors while correcting the position of the slave axis based on the correction amounts set in the table. Wasted torque is not produced between the master and slave axes. This much wasted torque is produced. Information Master axisSlave axis Reference position from host controller Correction amount 3.1 Outline 3.1.1 Position Correction Table Block Diagram 3 Position Correction Table 3-3 This function is enabled after either of the following operations is performed during position control. • When using an absolute encoder The SENS_ON (Turn Sensor ON: 23h) command is sent from the host controller. • When using an incremental encoder • The ZRET (Zero Point Return: 3Ah) command is sent from the host controller. • The reference point is set (REFE = 1) using the POS_SET (Set Coordinate System: 20h) command from the host controller. 3.1.1 Position Correction Table Block Diagram With each control cycle in the Servo (less than or equal to the communications cycle), the posi- tion of IPOS (Internal Reference Position) is corrected by the Position Correction Table. • The PSET and NEAR signals are output based on the corrected position. • The software limit function uses the uncorrected position. • This product assumes a system that issues commands for the same target position to the master axis and slave axis. To use this product for any other application, contact your Yaskawa representative. If there is a deviation in the position of the origin, a deviation will occur in the values set in the Position Correction Table, and the function may not work effectively. Configure the system so that the position of the origin does not deviate. Information Important SERVOPACK (master) INTERPOLATE /POSING Servo- motor TPOS APOS Servo control IPOS SERVOPACK (slave) TPOS APOS IPOS’ Servo control + + IPOS Δd INTERPOLATE /POSING IPOS IPOS Position Correction Table + + Host controller Δd Servo- motor Position Correction Table 3.2 Parameter Settings Related to the Position Correction Table 3.2.1 Position Correction Table Enable/Disable 3-4 3.2 Parameter Settings Related to the Position Correction Table This section describes the parameters necessary to use the Position Correction Table. 3.2.1 Position Correction Table Enable/Disable Enable and disable the Position Correction Table with Pn847 = n. X (Position Correction Table Function Selections). 3.2.2 Position Correction Axis Selection Select the axis for which the position will be corrected with Pn847 = n.X (Position Correc- tion Axis Selection for Position Correction Table). 3.2.3 Position Correction Table-Related Monitor Selection Select the value to monitor in the Position Correction Table with Pn847 = n. X (Position Correction Table-Related Monitor Selection). Refer to the following section for details on the item that can select whether to monitor position information before correction or after correction. 3.5.3 MECHATROLINK-III Monitoring on page 3-25 Parameter Description When Enabled Classification Pn847 n. 0 (default setting) Do not use Position Correction Table. After restart Setup n. 1 Use Position Correction Table. All Axes Parameter Description When Enabled Classification Pn847 n.0 (default setting) Correct the position of axis A. After restart Setup n.1 Correct the position of axis B. All Axes Parameter Description When Enabled Classification Pn847 n. 0 (default setting) Monitor the position information before posi- tion correction. After restart Setup n. 1 Monitor the position information after position correction. All Axes 3.3 Alarm Related to the Position Correction Table 3-5 3 Position Correction Table 3.3 Alarm Related to the Position Correction Table The alarm related to the Position Correction Table is given in the following table. Refer to the following section for details on the causes of and corrections for the alarm. 6.1.2 Troubleshooting Alarms on page 6-7 Alarm Number Alarm Name Alarm Meaning A.E94 Position Correction Table Setting Error There are errors in setting values in the Position Correction Tab le. All Axes 3.4 Position Correction Table Settings 3.4.1 Measure the Positions Required for the Position Correction Table 3-6 3.4 Position Correction Table Settings The Position Correction Table settings are configured with the following steps. 1. Measure positions required for the Position Correction Table. 2. Create the Position Correction Table. *1 3. Write the Position Correction Table to the SERVOPACK. *1, *2 4. Select Pn847 = n. 1 (Position Correction Table Selection) to enable the Position Correction Table. 5. Turn the power supply to the SERVOPACK OFF and ON again. *3 *1. The SigmaWin+ or MEM_WR command can be used to create the Position Correction Table and write it to the SERVOPACK. Refer to the following sections for details. 3.4.3 Setting Method with the SigmaWin+ on page 3-8 3.4.4 Setting Method with the MEM_WR Command on page 3-20 *2. The Position Correction Table (table entries, pre-correction positions, and correction amounts) cannot be written to the SERVOPACK when the servo is ON. Write the Position Correction Table when the servo is OFF. *3. The Position Correction Table can also be enabled with the CONFIG command (CONFIG_MOD = 0). In this case, ensure that both axes are in the servo OFF state before sending the command. 3.4.1 Measure the Positions Required for the Position Correc- tion Table Measure positions in order to learn the size of the correction amount necessary for the slave axis in regard to measured positions along the master axis. The measurement method of positions is given below. 1. Turn ON the servo. 2. When using an incremental encoder, move the gantry to the machine origin. When using an absolute encoder, proceed to the next step. 3. Use a movement command and move the gantry to the measurement position. 4. Turn OFF the servo. 5. Monitor the value of APOS (Feedback Position) of each axis. 6. Write down the monitored values. 7. Repeat steps 1 to 6 for the number of measurements that will be registered to the Posi- tion Correction Table. Master axis Slave axis Operating Range Ps1 Ps2 Ps3 Ps4 Ps5 Pm1 Pm2 Pm3 Pm4 Pm5 Ps6 Ps7 Pm6 Pm7 3.4 Position Correction Table Settings 3.4.2 Position Correction Table Details 3 Position Correction Table 3-7 3.4.2 Position Correction Table Details This section provides the following details on the Position Correction Table. Example: Table entries is 7. No. Up to 128 table entries can be set. Pre-correction Position Enter the value of APOS (Feedback Position) of the master axis. Note: For consecutive table numbers, the difference between the pre-correction positions and the difference between the correction amounts cannot exceed 1,073,741,823 [reference unit]. Correction Value Enter the numeric value which is the result of subtracting the feedback position value of the master axis from the feedback position value of the slave axis. Start and End Table Numbers Enter a pre-correction position and adjustment amount for a position that exceeds the oper- ating range. If the operating range set in the Position Correction Table is exceeded, the correction cannot be applied to the position and unstable operation may occur at the coordinate positions set at both ends of the table. Set the Position Correction Table as given below. If the Position Correction Table is not set as given below, A.E94 (Position Correction Table Setting Error) will occur, and the Position Correction Table cannot be written to the SERVOPACK. • Ensure that the values for consecutive pre-correction positions in the Position Correction Table satisfy the following condition: value of pre-correction position < value of next pre-correction position. • Ensure that the values for consecutive correction positions calculated by the Position Correc- tion Table satisfy the following condition: value of correction position < value of next correction position. The correction position is the reference position of the slave axis after correction (pre- correction position + correction amount in Position Correction Table). • Set the correction positions and correction amounts between -2,147,483,648 and 2,147,483,647. No. Pre-correction Positions [Reference unit] Correction Value [Reference unit] 1 -500,000 100 2 -400,000 100 3 -300,000 150 4 -200,000 250 5 -100,000 100 60-50 7 100,000 -50 • If the gantry cannot be moved to a position that exceeds the operating range due to the mechanism, enter a value that exceeds the end of the operating range for the pre-correc- tion position. In the above example, set the same correction amount as table numbers 2 and 6. • Positions are corrected by performing linear interpolation on the correction amounts of the positions between consecutive table numbers. Important Operating Range Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-8 3.4.3 Setting Method with the SigmaWin+ Use the following procedure to configure the Position Correction Table. 1. Click the [ ] Servo Drive Button in the workspace of the Main Window of the Sig- maWin+. 2. Click Position Correction Table Setting in the Menu Dialog Box. The Position Correction Table Setting Dialog Box will be displayed. Refer to the following section to initialize the Position Correction Table. Initializing the Position Correction Table on page 3-13 NOTICE Set appropriate values for the correction amounts in the Position Correction Table. The machine may be damaged if the correction amounts are too large. 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-9 3. On the Table Number Setting Tab, enter the number of table entries. 4. On the Position Correction Table Setting Tab, enter the pre-correction positions and cor- rection amounts. You can also copy data in Excel and paste it on the Position Correction Table. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-10 5. To write only the parts of the Position Correction Table that were edited to the SERVO- PACK, click Edited Parameters in the Write to Servo Group. To write the entire Position Correction Table to the SERVOPACK, click All Parameters in the Write to Servo Group. 6. Click the OK Button. The created Position Correction Table was written to the volatile memory in the SERVOPACK. The background of the edited parameter cell will change to orange. Parameter will be used in the dialog box, but parameters are not written to the SERVO- PACK. The Position Correction Table is written to the SERVOPACK. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-11 7. Click Save to Flash Memory in the Write to Servo Group. 8. Click the Yes Button. 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-12 9. Click the OK Button. Saving to flash memory is completed. The background of the edited parameter cell will change to white. 10. Turn the power supply to the SERVOPACK OFF and ON again. This concludes the procedure to configure the Position Correction Table. 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-13 Initializing the Position Correction Table Use the following procedure to initialize the Position Correction Table. 1. Click Initialize in the Function Group. 2. Click the OK Button. 3. Click the OK Button. When the cursor is positioned on Initialize in the window, the “The SERVOPACK parame- ters are returned to the default settings” message will be displayed, but the parameters will not be initialized. The Position Correction Table will be initialized. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-14 4. Click Save to Flash Memory in the Write to Servo Group. 5. Click the Yes Button. 6. Click the OK Button. 7. Turn the power supply to the SERVOPACK OFF and ON again. This concludes the procedure to initialize the Position Correction Table. 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-15 Reading the Position Correction Table from the SERVO- PACK Use the following procedure to read the Position Correction Table from the SERVOPACK. 1. Click All Parameters in the Read from Servo Group. 2. Click the Yes Button. This concludes the procedure to read the Position Correction Table from the SERVOPACK. Parameter will be used in the dialog box, but parameters are not read from the SERVO- PACK. The Position Correction Table is read from the SERVOPACK. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-16 Writing the Position Correction Table Use the following procedure to write the Position Correction Table to a file. 1. Click Export in the File Group. 2. Enter the file name and click the Save Button. This concludes the procedure to write the Position Correction Table to a file. When the cursor is positioned on Export in the window, the “The displayed parameters are written to a file” message will be displayed, but the parameters will not be written to the file. The Position Correction Table will be written to the file. Information You can also copy Position Correction Table data and paste it to a spreadsheet in Excel. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-17 Reading a Position Correction Table File Use the following procedure to read a Position Correction Table file. 1. Click Import in the File Group. 2. Select the file to read and click the Open Button. This concludes the procedure to read the Position Correction Table from a file. When the cursor is positioned on Import in the window, the “The parameters file is read to the display” message will be displayed, but the parameters will not be read. The Position Correction Table is read from the file. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3-18 Saving the Position Correction Table to a Project File Use the following procedure to save the Position Correction Table to a project file. 1. Click Save to Project in the Project Group. 2. Click the OK Button. When the cursor is positioned on Save to Project in the window, the “The parameter set- tings on the display are saved to a project file” message will be displayed, but the param- eter setting values will not be saved to the project file. The Position Correction Table will be saved to the project file. Information 3.4 Position Correction Table Settings 3.4.3 Setting Method with the SigmaWin+ 3 Position Correction Table 3-19 3. Click the Save Button in the main window. This concludes the procedure to save the Position Correction Table to the project file. 3.4 Position Correction Table Settings 3.4.4 Setting Method with the MEM_WR Command 3-20 3.4.4 Setting Method with the MEM_WR Command Use the MEM_WR (Write Memory) command to set the Position Correction Table from the host controller. Setting the Position Correction Table Writing the Position Correction Table to Volatile Memory Set the Position Correction Table based on the following table. Register Description Size [No. of Registers] Setting Range Unit 0xF0040000 Table entries 2 0 to 128 No. of entries 0xF0040004 Pre-correction posi- tion [1] 2 -2,147,483,648 to 2,147,483,647 Reference unit 0xF0040008 Correction amount [1] 2 0xF004000C Pre-correction posi- tion [2] 2 0xF0040010 Correction amount [2] 2 0xF0040014 Pre-correction posi- tion [3] 2 0xF0040018 Correction amount [3] 2 0xF004001C Pre-correction posi- tion [4] 2 0xF0040020 Correction amount [4] 2 0xF00403E4 Pre-correction posi- tion [125] 2 0xF00403E8 Correction amount [125] 2 0xF00403EC Pre-correction posi- tion [126] 2 0xF00403F0 Correction amount [126] 2 0xF00403F4 Pre-correction posi- tion [127] 2 0xF00403F8 Correction amount [127] 2 0xF00403FC Pre-correction posi- tion [128] 2 0xF0040400 Correction amount [128] 2 3.4 Position Correction Table Settings 3.4.4 Setting Method with the MEM_WR Command 3 Position Correction Table 3-21 Example of Setting Pre-Correction Position [1] in the Position Correction Table to -500,000 The follow examples writes a pre-correction position in the Position Correction Table to volatile memory. ADDRESS = 0xF0040004 MODE/DATA_TYPE = 0x13 SIZE = 0x01 DATA = -500000 Saving the Position Correction Table to Non-Volatile Memory How to Save Position Correction Table Data Save the current values in volatile memory to non-volatile memory. Send the commands in the following order. This concludes the procedure to save the Position Correction Table to non-volatile memory. Step Description Setting Example 1 Sets the request code for writing to non- volatile memory. ADDRESS = 0x80004000 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x2025 2 Executes preparation processing 1 for writing to non-volatile memory. ADDRESS = 0x800041E0 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0000 3 Executes preparation processing 2 for writing to non-volatile memory. ADDRESS = 0x800041E4 MODE/DATA_TYPE = 0x13 SIZE = 0x0001 DATA = 0xF0040000 4 Executes preparation processing 3 for writing to non-volatile memory. ADDRESS = 0x80004002 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0002 5 Executes writing to non-volatile memory. ADDRESS = 0x80004002 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0001 6 Terminates writing to non-volatile memory. ADDRESS = 0x80004000 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0000 3.4 Position Correction Table Settings 3.4.4 Setting Method with the MEM_WR Command 3-22 Initializing the Position Correction Table Example of Initializing the Position Correction Table Initialize the setting values in non-volatile memory to the default setting values of the settings table. Refer to the following section for details on the settings table. 3.4.2 Position Correction Table Details on page 3-7 Send the commands in the following order. This concludes the procedure to initialize the Position Correction Table data. Step Description Setting Example 1 Sets the request code for initializing non-volatile memory. ADDRESS = 0x80004000 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x2025 2 Executes preparation processing 1 for initializing non-volatile memory. ADDRESS = 0x800041E0 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0003 3 Executes preparation processing 2 for initializing non-volatile memory. ADDRESS = 0x800041E4 MODE/DATA_TYPE = 0x13 SIZE = 0x0001 DATA = 0xF0040000 4 Executes preparation processing 3 for initializing non-volatile memory. ADDRESS = 0x80004002 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0002 5 Executes initialization of non-volatile memory. ADDRESS = 0x80004002 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0001 6 Terminates initialization of non-volatile memory. ADDRESS = 0x80004000 MODE/DATA_TYPE = 0x12 SIZE = 0x0001 DATA = 0x0000 3.4 Position Correction Table Settings 3.4.4 Setting Method with the MEM_WR Command 3 Position Correction Table 3-23 Reference: Details of Settings with MEM_WR (Write Memory: 1EH) Command Data Format Phases in which the Com- mand can be Executed 2, 3 Command Clas- sification Common com- mand Asynchronous command Processing Time Σ-7-Series MECHATROLINK- III Communica- tions Standard Servo Profile Command Man- ual (Manual No.: SIEP S800001 31) Subcommand Cannot be used Byte MEM_WR Description Command Response 01EH 1EH• The MEM_WR command writes the data in virtual mem- ory by specifying the initial address, the data size and the data for writing. • This command provides an adjustment function equiva- lent to that of the ADJ command of the MECHA- TROLINK-II compatible profile. • Confirm the completion of the command execution by checking that RCMD = MEM_WR (= 1EH) and CMD_STAT.CMDRDY = 1, and also checking the setting for ADDRESS, SIZE, MODE/DATA_TYPE and DATA. In the following cases, an alarm will occur and the com- mand will not be executed. • When the ADDRESS data is invalid: CMD_ALM = 9H (A.94A) • When the MODE/DATA_TYPE data is invalid: CMD_ALM = 9H (A.94B) • When the SIZE data is invalid: CMD_ALM = 9H (A.94D) • When the DATA data is invalid: CMD_ALM = 9H (A.94B) • When the conditions for executing the adjustment oper- ation are not satisfied: CMD_ALM=AH (A.95A) • While editing using the SigmaWin or Digital Operator: CMD_ALM = AH (A.95A) For details, refer to the following manual. Σ-7-Series MECHATROLINK-III Communications Stan- dard Servo Profile Command Manual (Manual No.: SIEP S800001 31) 1 WDT RWDT 2 CMD_CTRL CMD_STAT 3 4 Reserved. Reserved. 5 MODE/ DATA_TYPE MODE/ DATA_TYPE 6 SIZE SIZE 7 8 ADDRESS ADDRESS 9 10 11 12 DATA DATA 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3.4 Position Correction Table Settings 3.4.4 Setting Method with the MEM_WR Command 3-24 Command Parameters The details of MODE/DATA_TYPE are described below. MODE = 1: Volatile memory, 2: Non-volatile memory* DATA_TYPE = 1: Byte, 2: Short, 3: Long, 4: Not supported * MECHATROLINK-III common parameters can directly write to non-volatile memory. Other parameters first write to volatile memory, and then write to non-volatile memory. SIZE: Data size for writing (type specified by DATA_TYPE) ADDRESS: Initial address for writing DATA: Data to be written Command Warnings The details of CMD_ALM of the MEM_RD/MEM_WR command are described below. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 MODE DATA_TYPE CMD_ALM Displayed Code Error Details 9H A.94A When an initial address outside the defined areas is specified When an address within the reserved ranges of common parameter or vendor- specific areas is specified When a value other than a multiple of the data size specified in DATA_TYPE is set for ADDRESS A.94B When the MODE or DATA_TYPE data is invalid A.94D When the initial address is within the defined areas but the specified size goes beyond those areas When a data size beyond the specification of the command format is set for SIZE 3.5 Monitoring 3.5.1 Monitoring with the SigmaWin+ 3-25 3 Position Correction Table 3.5 Monitoring 3.5.1 Monitoring with the SigmaWin+ The current correction amount in the Position Correction Table can be monitored with the Motion Monitor Window. Refer to the following manual for detailed operating procedures for the SigmaWin+. Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34) 3.5.2 Monitoring with the Digital Operator Un04D can be used to monitor the current correction amount in the Position Correction Table with the Digital Operator. * The correction amount of only the symmetrical axis (slave axis) for position correction is output. 0 is always output for the master axis. Refer to the following manual for monitor data other than that listed above. Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) 3.5.3 MECHATROLINK-III Monitoring Monitor Information The following MECHATROLINK-III monitor data is selected with common parameters PnB0E (Monitor Select 1) and PnB10 (Monitor Select 2). The correction amount added in the SERVOPACK is checked with 004Dh of Pn824 (Option Monitor 1 Selection) and Pn825 (Option Monitor 2 Selection). The code that can select whether to monitor position information before position correction or after position correction with Pn847 = n.X (Position Correction Table-Related Monitor Selection) is given next. The other selection codes are the same as the Σ-7W SERVOPACK with MECHATROLINK-III Communications References (SGD7W- A20), and the position infor- mation does not change before position correction and after correction. Button in Menu Dialog Box Name [Unit] Motion Monitor Current Correction Amount in Position Correction Table [reference unit] Un No. Sign Unit Name Description Un04D* Yes 1 reference unit Current Correction Amount in Position Correction Table Current correction amount calculated from the Position Correction Table Selection Code Monitor Name Monitor Name When CMN or OMN Is Selected Description Information 0 APOS - Feedback Position - 1CPOS - Command Position (after filtering) - 2 PERR - Position Error - 3 LPOS1 - Latched Position 1 - 4 LPOS2 - Latched Position 2 - 9MPOS - Command Position (including control delay) - Continued on next page. 3.5 Monitoring 3.5.3 MECHATROLINK-III Monitoring 3-26 SVCMD_IO (Servo Command Input Signal) Monitoring The output specification of servo command input signal monitoring is given in the following table. CCMN1 TPOS Target Position PnB12 (PnB14) = 0000H IPOS Command Position (before filtering) PnB12 (PnB14) = 0001H DCMN2 TPOS Target Position PnB12 (PnB14) = 0000H IPOS Command Position (before filtering) PnB12 (PnB14) = 0001H EOMN1 LstLpos1 Last Latched Position 1 Pn824 (Pn825) = 0080H LstLpos2 Last Latched Position 2 Pn824 (Pn825) = 0081H FOMN2 LstLpos1 Last Latched Position 1 Pn824 (Pn825) = 0080H LstLpos2 Last Latched Position 2 Pn824 (Pn825) = 0081H Servo command input signal monitoring not listed in the following table has the same output specification as the Σ-7W SERVOPACK with MECHATROLINK-III Communications Refer- ences (SGD7W- A20). Signal Name Description DEN DEN = 1 when distribution of TPOS + correction amount has completed. PSET PSET = 1 when DEN = 1 (Distribution Completed) and position deviation is | (TPOS + correc- tion amount) - (APOS + correction amount) | ≤ Pn522 (Positioning Completed Width). NEAR NEAR = 1 when position deviation is | (TPOS + correction amount) - (APOS + correction amount) | ≤ Pn524 (Near Signal Width). Continued from previous page. Selection Code Monitor Name Monitor Name When CMN or OMN Is Selected Description Information Information This chapter provides information on Synchronized Stop- ping. 4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4.1.1 Synchronized Stopping Timing Chart . . . . . . . . . 4-3 4.2 Parameter Settings Related to Synchronized Stopping . .4-4 4.2.1 Synchronized Stopping Mode Selection . . . . . . . 4-4 4.2.2 Synchronized Stopping End Speed Setting . . . . . 4-4 4.2.3 Adjusting Synchronized Stopping . . . . . . . . . . . . 4-5 4.3 Alarms Related to Synchronized Stopping . . .4-6 4.4 Warning Related to Synchronized Stopping . .4-7 4.5 CSTP_S in the I/O Signal Status Monitor . . 4-8 4.5.1 SVCMD_IO (I/O Signal Status) Field . . . . . . . . . . 4-8 4.5.2 Details of I/O Signal Status Bits . . . . . . . . . . . . . 4-8 4.6 Servomotor Stopping Method for Alarms . . 4-9 Synchronized Stopping 4 4.1 Outline 4-2 4.1 Outline Synchronized Stopping is a function that synchronizes the axes and stops the Servomotors when an alarm occurs. Specifically, when an alarm occurs on either axis A or axis B, the syn- chronized stopping axis is synchronized to the active alarm axis, and both Servomotors are stopped together. This function can prevent damage to the machine by synchronizing and stopping axis A and axis B. Not Using Synchronized Stopping Using Synchronized Stopping Axis A Axis B Axis A Axis B Synchronized stopping prevents twisting! Axis A stopped by alarm Stopped by alarm Mechanical damage 4.1 Outline 4.1.1 Synchronized Stopping Timing Chart 4 Synchronized Stopping 4-3 4.1.1 Synchronized Stopping Timing Chart The following timing chart shows when Synchronized Stopping mode 1 or 2 is selected. * During synchronized stopping, only emergency commands will be received. Refer to the following section for details on CSTP_S (Synchronized Stopping Status). Details of I/O Signal Status Bits on page 4-8 In Synchronized Stopping mode 3, both axes are almost simultaneously set to the servo OFF state immediately after an alarm occurs. Therefore, CSTP_S which represents the synchro- nized stopping status will not change, but it will instead remaining as the during normal oper- ation status. Ending Synchronized Stopping When any of the following states occur, CSTP_S (Synchronized Stopping Status) in the SVC- MD_IO field will become “0: During normal operation”, and synchronized stopping will end with the servo OFF state. • When feedback speed is less than Pn666 (Synchronized Stopping End Speed) (normal end) • When the SV_OFF or DISCONNECT command was received • When the synchronized stopping axis changes to the servo OFF state due to an alarm or for other reasons After synchronized stopping ends, commands can be received from the host controller. Information Speed Time Feedback speed 0 Pn666 (Synchronized Stopping End Speed) 0 Alarm status Speed Feedback speed Servo ON/OFF status Time OFFON Normal status Alarm status Normal status Warning status Synchronized stopping axis A ctive alarm axis CSTP_S in SVCMD_IO eld A.97C (Synchronized Stopping Occurred) During synchronized stopping* During normal operation Tracks the active alarm axis and stops. An alarm occurs. Information 4.2 Parameter Settings Related to Synchronized Stopping 4.2.1 Synchronized Stopping Mode Selection 4-4 4.2 Parameter Settings Related to Synchronized Stopping 4.2.1 Synchronized Stopping Mode Selection Synchronized Stopping has three modes, and these modes are set with Pn665 = n. X (Synchronized Stopping Selection). Synchronized Stopping Mode 1 If an alarm occurs on either axis A or axis B, position control will be performed on the synchro- nized stopping axis using the feedback position of the active alarm axis as the target position. Synchronized Stopping Mode 2 If an alarm occurs on either axis A or axis B, speed control will be performed on the synchro- nized stopping axis using the feedback speed of the active alarm axis as the target speed. Synchronized Stopping Mode 3 If an alarm occurs on either axis A or axis B, the synchronized stopping axis is also set to the servo OFF state. Both axes are changed to the servo OFF state almost simultaneously, and both axes are stopped according to the Servomotor stopping method when the servo is turned OFF. 4.2.2 Synchronized Stopping End Speed Setting Synchronized stopping will be ended when the feedback speed of the active alarm axis is less than Pn666 (Synchronized Stopping End Speed). Use Pn666 (Synchronized Stopping End Speed) to set the speed for judging that the Servomo- tor has stopped and ending synchronized stopping. This parameter is valid for synchronized stopping mode 1 and 2. Parameter Description When Enabled Classification Pn665 n.0 (default set- ting) Disable synchronized stopping. After restart Setup n. 1 Enable synchronized stopping mode 1. n.2 Enable synchronized stopping mode 2. n.3 Enable synchronized stopping mode 3. With synchronized stopping mode 1 and 2, the Servomotor may vibrate and the deviation between axes may increase when synchronized stopping is performed due to the mechanical characteristics or gain setting. Use this function by first operating the machine or product at low speed and confirming that the deviation between axes causes no problems. All Axes Important Pn666 Synchronized Stopping End Speed Setting Range Setting Unit Default Setting When Enabled Classification 1 to 65,535 1000 reference units/s 256 Immediately Setup All Axes Position 4.2 Parameter Settings Related to Synchronized Stopping 4.2.3 Adjusting Synchronized Stopping 4 Synchronized Stopping 4-5 4.2.3 Adjusting Synchronized Stopping Set Pn668 (Synchronized Stopping Speed Feedforward) to apply feedforward compensation which can reduce the deviation between the feedback position of the active alarm axis and the position of the synchronized stopping axis. This parameter is valid for synchronized stopping mode 1. For details on the setting of this parameter, contact your Yaskawa representative. Note: During model following control, select Pn140 = n.1 (Use model following control and speed/torque feedforward together). This parameter is not valid if Pn140 = n.0 (Do not use model following control and speed/torque feedforward together) is selected. Pn668 Synchronized Stopping Speed Feedforward Setting Range Setting Unit Default Setting When Enabled Classification 0 to 100 % 80 Immediately Tuning All Axes Position 4.3 Alarms Related to Synchronized Stopping 4-6 4.3 Alarms Related to Synchronized Stopping If an alarm without valid position data occurs, the servo will be turned OFF for the synchronized stopping axis and synchronized stopping will not be performed. The alarms without valid position data are given in the following table. Alarm Number Alarm Name Alarm Meaning A.810 Encoder Backup Alarm The power supplies to the encoder all failed and the position data was lost. A.820 Encoder Checksum Alarm There is an error in the checksum results for encoder mem- ory. A.840 Encoder Data Alarm There is an internal data error in the encoder. A.850 Encoder Overspeed The encoder was operating at high speed when the power was turned ON. A.890 Encoder Scale Error A failure occurred in the linear encoder. A.891 Encoder Module Error An error occurred in the linear encoder. A.C90 Encoder Communications Error Communications between the encoder and SERVOPACK is not possible. A.C91 Encoder Communications Posi- tion Data Acceleration Rate Error An error occurred in calculating the position data of the encoder. A.C92 Encoder Communications Timer Error An error occurred in the communications timer between the encoder and SERVOPACK. 4.4 Warning Related to Synchronized Stopping 4-7 4 Synchronized Stopping 4.4 Warning Related to Synchronized Stopping The warning related to Synchronized Stopping is given in the following table. Note: The warning can be hidden by setting Pn800 = n.X (Warning Check Masks) to 8 to F. Warning Number Warning Name Warning Meaning A.97C Synchronized Stopping Occurred Synchronized stopping occurred. 4.5 CSTP_S in the I/O Signal Status Monitor 4.5.1 SVCMD_IO (I/O Signal Status) Field 4-8 4.5 CSTP_S in the I/O Signal Status Monitor CSTP_S (Synchronized Stopping Status) can be checked with bit 31 of the servo command I/O signal (SVCMD_IO) command through MECHATROLINK-III communications. 4.5.1 SVCMD_IO (I/O Signal Status) Field 4.5.2 Details of I/O Signal Status Bits The following table shows the details of CSTP_S. Note: IO_STS8 is allocated to bit 31 in the Σ-7W SERVOPACK with MECHATROLINK-III Communications Refer- ences (SGD7W-A20), but CSTP_S is allocated to bit 31 in this product. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ESTP EXT3 EXT2 EXT1 N-OT P-OT DEC Reserved (0) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ZPOINT PSET NEAR DEN N-SOT P-SOT BRK_ON Reserved (0) Bit 23 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16 Reserved (0) ZSPD V_CMP V_LIM T_LIM Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 CSTP_S IO_STS7 IO_STS6 IO_STS5 IO_STS4 IO_STS3 IO_STS2 IO_STS1 Bit Name Description Value Setting 31 CSTP_S Synchronized Stopping Status 0 During normal operation 1 During synchronized stopping The status used to judge the state of synchronized stopping. In synchronized stopping mode 3, both axes are almost simultaneously set to the servo OFF state immediately after an alarm occurs. Therefore, CSTP_S which represents the synchro- nized stopping status will not change, but it will instead remaining as the during normal oper- ation status. Information 4.6 Servomotor Stopping Method for Alarms 4-9 4 Synchronized Stopping 4.6 Servomotor Stopping Method for Alarms • If an alarm occurs during synchronized stopping on the synchronized stopping axis, synchro- nized stopping is canceled and the Servomotor is stopped according to the Servomotor stopping method. • The status after synchronized stopping conforms to the settings of Pn001 = n.X (Motor Stopping Method for Servo OFF and Group 1 Alarms), Pn00A = n.X, and Pn00B = n.X (Motor Stopping Method for Group 2 Alarms). • Set both axis A and axis B to the same stopping method for alarms. • In this product, the default setting of the Servomotor stopping method for group 1 and group 2 alarms is stopping by applying the dynamic brake. The Servomotor stopping method can be changed by setting the parameter, but stopping by applying the dynamic brake is recom- mended. Important This chapter provides information on Position Deviation between Axes Overflow Detection. 5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.2 Parameter Settings Related to Position Deviation between Axes Overflow Detection . . 5-3 5.3 Alarm Related to Position Deviation between Axes Overflow Detection . . 5-4 5.4 Warning Related to Position Deviation between Axes Overflow Detection . .5-5 5.5 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.5.1 Monitoring with the SigmaWin+ . . . . . . . . . . . . . 5-6 5.5.2 Monitoring with the Digital Operator . . . . . . . . . . 5-6 Position Deviation between Axes Overflow Detection 5 5.1 Outline 5-2 5.1 Outline When the operation of axis A and axis B is not synchronized, the frame of the machine may twist as shown in the below figure, which can damage the machine or impact the quality of products. Position Deviation between Axes Overflow Detection detects twisting of the frame of the machine. To do this, the allowable position deviation between both axes is set in advance, and an alarm or warning is generated when the allowable position deviation is exceeded. The position deviation between axes is the difference between the feedback position (APOS) of axis A and the feedback position (APOS) of axis B. Axis A Axis B Maximum allowable deviation Issues an alarm if the threshold is exceeded to prevent problems before they happen! 5.2 Parameter Settings Related to Position Deviation between Axes Overflow Detection 5-3 5 Position Deviation between Axes Overow Detection 5.2 Parameter Settings Related to Position Deviation between Axes Overflow Detection These parameters set the position deviation between axes allowed for the machine or product. * If the setting value of Pn66A is 0, the position deviation between axes overflow alarm and warning are disabled. Note: Adjust the settings of Pn669 and Pn66A after setting the origin of the machine. If the values of Pn669 and Pn66A are decreased before the origin of the machine is set, a warning or alarm may occur when the origin is set. Pn669 Position Deviation between Axes Overflow Warning Level Setting Range Setting Unit Default Setting When Enabled Classification 10 to 100 % 100 Immediately Setup Pn66A Position Deviation between Axes Overflow Alarm Level Setting Range Setting Unit Default Setting When Enabled Classification 0 to 1,073,741,823* Reference unit 5,242,880 Immediately Setup All Axes Position All Axes Position 5.3 Alarm Related to Position Deviation between Axes Overflow Detection 5-4 5.3 Alarm Related to Position Deviation between Axes Overflow Detection The alarm related to Position Deviation between Axes Overflow Detection is given in the follow- ing table. Alarm Number Alarm Name Alarm Meaning A.50D Position Deviation between Axes Overflow Alarm The position deviation between axes A and B during the servo ON state exceeded the setting value of Pn66A (Posi- tion Deviation Between Axes Overflow Alarm Level). All Axes 5.4 Warning Related to Position Deviation between Axes Overflow Detection 5-5 5 Position Deviation between Axes Overow Detection 5.4 Warning Related to Position Deviation between Axes Overflow Detection The warning related to Position Deviation between Axes Overflow Detection is given in the fol- lowing table. A.90D (Position Deviation Between Axes Overflow Warning) occurs when the value obtained with Pn66A × Pn669/100 is exceeded. Warning Number Warning Name Warning Meaning A.90D Position Deviation Between Axes Overflow Warning The position deviation between axes A and B has exceeded the percentage set with the following equa- tion during the servo ON state. (Pn66A × Pn669/100) All Axes 5.5 Monitoring 5.5.1 Monitoring with the SigmaWin+ 5-6 5.5 Monitoring Monitoring the position deviation between axes can be useful for preventative maintenance. Position deviation between axes is an all axes monitor. Axis A and axis B both show the devia- tion based on axis A. 5.5.1 Monitoring with the SigmaWin+ Position deviation between axes can be monitored with the Motion Monitor Window. Refer to the following manual for detailed operating procedures for the SigmaWin+. Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34) 5.5.2 Monitoring with the Digital Operator Un04E can be used to monitor position deviation between axes with the Digital Operator. Refer to the following manual for monitor data other than that listed above. Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) Button in Menu Dialog Box Name [Unit] Motion Monitor Position Deviation between Axes [reference unit] Un No. Sign Unit Name Description Un04E Yes 1 reference unit Position Deviation between Axes Position deviation between axis A and axis B All Axes This chapter provides information on the meaning of, causes of, and corrections for alarms and warnings. 6.1 Alarm Displays . . . . . . . . . . . . . . . . . . . . . . 6-2 6.1.1 List of Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.1.2 Troubleshooting Alarms . . . . . . . . . . . . . . . . . . . . 6-7 6.2 Warning Displays . . . . . . . . . . . . . . . . . . . . 6-36 6.2.1 List of Warnings . . . . . . . . . . . . . . . . . . . . . . . . 6-36 6.2.2 Troubleshooting Warnings . . . . . . . . . . . . . . . . . 6-39 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor . .6-46 Maintenance 6 6.1 Alarm Displays 6.1.1 List of Alarms 6-2 6.1 Alarm Displays If an error occurs in the SERVOPACK, an alarm number will be displayed on the panel display. However, if no alarm number appears on the panel display, this indicates a SERVOPACK sys- tem error. Replace the SERVOPACK. If there is an alarm, the display will change in the following order. Example: Alarm A.E60 6.1.1 List of Alarms The list of alarms gives the alarm name, alarm meaning, alarm stopping method, and alarm reset possibility in order of the alarm numbers. Alarm Reset Possibility Yes: You can use an alarm reset to clear the alarm. However, this assumes that the cause of the alarm has been removed. No: You cannot clear the alarm. Alarms for Both Axes If “All Axes” is given below the alarm number, the alarm applies to both axes. If an alarm occurs for one axis, the same alarm status will occur for the other axis. List of Alarms Status Indications Not lit. Not lit. Not lit. Not lit. Not lit. Alarm Number Alarm Name Alarm Meaning Servo- motor Stop- ping Method Alarm Reset Possi- ble? A.020 Parameter Checksum Error There is an error in the parameter data in the SERVOPACK. Gr.1 No A.021 Parameter Format Error There is an error in the parameter data format in the SERVOPACK. Gr.1 No A.022 System Checksum Error There is an error in the parameter data in the SERVOPACK. Gr.1 No A.024 System Alarm An internal program error occurred in the SERVOPACK. Gr.1 No A.025 System Alarm An internal program error occurred in the SERVOPACK. Gr.1 No A.030 Main Circuit Detector Error There is an error in the detection data for the main circuit. Gr.1 Yes A.040 Parameter Setting Error A parameter setting is outside of the setting range. Gr.1 No A.042 Parameter Combination Error The combination of some parameters exceeds the setting range. Gr.1 No A.04A Parameter Setting Error 2 There is an error in the bank members or bank data settings. Gr.1 No Continued on next page. All Axes All Axes All Axes 6.1 Alarm Displays 6.1.1 List of Alarms 6 Maintenance 6-3 A.050 Combination Error The capacities of the SERVOPACK and Servomo- tor do not match. Gr.1 Yes A.051 Unsupported Device Alarm An unsupported device was connected. Gr.1 No A.070 Motor Type Change Detected The connected motor is a different type of motor from the previously connected motor. Gr.1 No A.080 Linear Encoder Pitch Setting Error The setting of Pn282 (Linear Encoder Scale Pitch) has not been changed from the default setting. Gr.1 No A.0b0 Invalid Servo ON Command Alarm The SV_ON (Servo ON) command was sent from the host controller after a utility function that turns ON the Servomotor was executed. Gr.1 Yes A.100 Overcurrent Detected An overcurrent flowed through the power transis- tor or the heat sink overheated. Gr.1 No A.101 Motor Overcurrent Detected The current to the motor exceeded the allowable current. Gr.1 No A.300 Regeneration Error There is an error related to regeneration. Gr.1 Yes A.320 Regenerative Overload A regenerative overload occurred. Gr.2 Yes A.330 Main Circuit Power Supply Wiring Error • The AC power supply input setting or DC power supply input setting is not correct. • The power supply wiring is not correct. Gr.1 Yes A.400 Overvoltage The main circuit DC voltage is too high. Gr.1 Yes A.410 Undervoltage The main circuit DC voltage is too low. Gr.2 Yes A.50D Position Deviation between Axes Overflow Alarm The position deviation between axes A and B during the servo ON state exceeded the setting value of Pn66A (Position Deviation Between Axes Overflow Alarm Level). Gr.1 Yes A.510 Overspeed The motor exceeded the maximum speed. Gr.1 Yes A.51A Synchronized Stopping Overspeed Alarm The feedback speed of the axis undergoing syn- chronized stopping has more than doubled from the starting speed of synchronized stopping. Gr.1 Yes A.520 Vibration Alarm Abnormal oscillation was detected in the motor speed. Gr.1 Yes A.521 Autotuning Alarm Vibration was detected during autotuning for the tuning-less function. Gr.1 Yes A.550 Maximum Speed Setting Error The setting of Pn385 (Maximum Motor Speed) is greater than the maximum motor speed. Gr.1 Yes A.710 Instantaneous Overload The Servomotor was operating for several sec- onds to several tens of seconds under a torque that largely exceeded the rating. Gr.2 Yes A.720 Continuous Overload The Servomotor was operating continuously under a torque that exceeded the rating. Gr.1 Yes A.730 Dynamic Brake Overload When the dynamic brake was applied, the rota- tional or linear kinetic energy exceeded the capacity of the dynamic brake resistor. Gr.1 Yes A.731 A.740 Inrush Current Limiting Resistor Overload The main circuit power supply was frequently turned ON and OFF. Gr.1 Yes A.7A1 Internal Temperature Error 1 (Control Board Tempera- ture Error) The surrounding temperature of the control PCB is abnormal. Gr.2 Yes Continued on next page. Continued from previous page. Alarm Number Alarm Name Alarm Meaning Servo- motor Stop- ping Method Alarm Reset Possi- ble? All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes 6.1 Alarm Displays 6.1.1 List of Alarms 6-4 A.7A2 Internal Temperature Error 2 (Power Board Tempera- ture Error) The surrounding temperature of the power PCB is abnormal. Gr.2 Yes A.7A3 Internal Temperature Sensor Error An error occurred in the temperature sensor cir- cuit. Gr.2 No A.7Ab SERVOPACK Built-in Fan Stopped The fan inside the SERVOPACK stopped. Gr.1 Yes A.810 Encoder Backup Alarm The power supplies to the encoder all failed and the position data was lost. Gr.1 No A.820 Encoder Checksum Alarm There is an error in the checksum results for encoder memory. Gr.1 No A.830 Encoder Battery Alarm The battery voltage was lower than the specified level after the control power supply was turned ON. Gr.1 Yes A.840 Encoder Data Alarm There is an internal data error in the encoder. Gr.1 No A.850 Encoder Overspeed The encoder was operating at high speed when the power was turned ON. Gr.1 No A.860 Encoder Overheated The internal temperature of encoder is too high. Gr.1 No A.861 Motor Overheated The internal temperature of motor is too high. Gr.1 No A.862 Overheat Alarm The input voltage (temperature) for the overheat protection input (TH) signal exceeded the setting of Pn61B (Overheat Alarm Level). Gr.1 Yes A.890 Encoder Scale Error A failure occurred in the linear encoder. Gr.1 No A.891 Encoder Module Error An error occurred in the linear encoder. Gr.1 No A.b33 Current Detection Error 3 An error occurred in the current detection circuit. Gr.1 No A.b6A MECHATROLINK Commu- nications ASIC Error 1 ASIC error 1 occurred in MECHATROLINK com- munications. Gr.1 No A.b6b MECHATROLINK Commu- nications ASIC Error 2 ASIC error 2 occurred in MECHATROLINK com- munications. Gr.2 No A.bF0 System Alarm 0 Internal program error 0 occurred in the SERVO- PACK. Gr.1 No A.bF1 System Alarm 1 Internal program error 1 occurred in the SERVO- PACK. Gr.1 No A.bF2 System Alarm 2 Internal program error 2 occurred in the SERVO- PACK. Gr.1 No A.bF3 System Alarm 3 Internal program error 3 occurred in the SERVO- PACK. Gr.1 No A.bF4 System Alarm 4 Internal program error 4 occurred in the SERVO- PACK. Gr.1 No A.bF5 System Alarm 5 Internal program error 5 occurred in the SERVO- PACK. Gr.1 No A.bF6 System Alarm 6 Internal program error 6 occurred in the SERVO- PACK. Gr.1 No A.bF7 System Alarm 7 Internal program error 7 occurred in the SERVO- PACK. Gr.1 No A.bF8 System Alarm 8 Internal program error 8 occurred in the SERVO- PACK. Gr.1 No A.C10 Servomotor Out of Control The Servomotor ran out of control. Gr.1 Yes A.C20 Phase Detection Error The detection of the phase is not correct. Gr.1 No A.C21 Polarity Sensor Error An error occurred in the polarity sensor. Gr.1 No Continued on next page. Continued from previous page. Alarm Number Alarm Name Alarm Meaning Servo- motor Stop- ping Method Alarm Reset Possi- ble? All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes 6.1 Alarm Displays 6.1.1 List of Alarms 6 Maintenance 6-5 A.C22 Phase Information Disagreement The phase information does not match. Gr.1 No A.C50 Polarity Detection Failure The polarity detection failed. Gr.1 No A.C51 Overtravel Detected during Polarity Detection The overtravel signal was detected during polarity detection. Gr.1 Yes A.C52 Polarity Detection Not Completed The servo was turned ON before the polarity was detected. Gr.1 Yes A.C53 Out of Range of Motion for Polarity Detection The travel distance exceeded the setting of Pn48E (Polarity Detection Range). Gr.1 No A.C54 Polarity Detection Failure 2 The polarity detection failed. Gr.1 No A.C80 Encoder Clear Error or Multiturn Limit Setting Error The multiturn data for the absolute encoder was not correctly cleared or set. Gr.1 No A.C90 Encoder Communications Error Communications between the encoder and SERVOPACK is not possible. Gr.1 No A.C91 Encoder Communications Position Data Acceleration Rate Error An error occurred in calculating the position data of the encoder. Gr.1 No A.C92 Encoder Communications Timer Error An error occurred in the communications timer between the encoder and SERVOPACK. Gr.1 No A.CA0 Encoder Parameter Error The parameters in the encoder are corrupted. Gr.1 No A.Cb0 Encoder Echoback Error The contents of communications with the encoder are incorrect. Gr.1 No A.CC0 Multiturn Limit Disagree- ment Different multiturn limits have been set in the encoder and the SERVOPACK. Gr.1 No A.d00 Position Deviation Over- flow The setting of Pn520 (Position Deviation Overflow Alarm Level) was exceeded by the position devia- tion while the servo was ON. Gr.1 Yes A.d01 Position Deviation Over- flow Alarm at Servo ON The servo was turned ON after the position devi- ation exceeded the setting of Pn526 (Position Deviation Overflow Alarm Level at Servo ON) while the servo was OFF. Gr.1 Yes A.d02 Position Deviation Over- flow Alarm for Speed Limit at Servo ON If position deviation remains in the deviation counter, the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON. This alarm occurs if a position reference is input and the setting of Pn520 (Position Deviation Overflow Alarm Level) is exceeded before the limit is cleared. Gr.2 Yes A.d30 Position Data Overflow The position feedback data exceeded ±1,879,048,192. Gr.1 No A.E02 MECHATROLINK Internal Synchronization Error 1 A synchronization error occurred during MECHA- TROLINK communications with the SERVO- PACK. Gr.1 Yes A.E40 MECHATROLINK Trans- mission Cycle Setting Error The setting of the MECHATROLINK communica- tions transmission cycle is not correct. Gr.2 Yes A.E41 MECHATROLINK Commu- nications Data Size Set- ting Error The setting of the MECHATROLINK communica- tions data size is not correct. Gr.2 Yes A.E42 MECHATROLINK Station Address Setting Error The setting of the MECHATROLINK station address is not correct. Gr.2 No Continued on next page. Continued from previous page. Alarm Number Alarm Name Alarm Meaning Servo- motor Stop- ping Method Alarm Reset Possi- ble? All Axes All Axes All Axes All Axes 6.1 Alarm Displays 6.1.1 List of Alarms 6-6 * These alarms are not stored in the alarm history. They are only displayed on the panel display. A.E50* MECHATROLINK Synchronization Error A synchronization error occurred during MECHA- TROLINK communications. Gr.2 Yes A.E51 MECHATROLINK Synchronization Failed Synchronization failed during MECHATROLINK communications. Gr.2 Yes A.E60* Reception Error in MECHATROLINK Communications Communications errors occurred continuously during MECHATROLINK communications. Gr.2 Yes A.E61 Synchronization Interval Error in MECHATROLINK Transmission Cycle An error occurred in the transmission cycle during MECHATROLINK communications. Gr.2 Yes A.E63 MECHATROLINK Synchronization Frame Not Received Synchronization frames were continuously not received during MECHATROLINK communica- tions. Gr.2 Yes A.E94 Position Correction Table Setting Error There are errors in setting values in the Position Correction Table. Gr.1 Yes A.Ed1 Command Execution Timeout A timeout error occurred for a MECHATROLINK command. Gr.2 Yes A.F10 Power Supply Line Open Phase The voltage was low for more than one second for phase R, S, or T when the main power supply was ON. Gr.2 Yes FL-1* System Alarm An internal program error occurred in the SERVOPACK. –No FL-2* FL-3* FL-4* FL-5* FL-6* CPF00 Digital Operator Commu- nications Error 1 Communications were not possible between the Digital Operator (model: JUSP-OP05A-1-E) and the SERVOPACK (e.g., a CPU error occurred). –No CPF01 Digital Operator Commu- nications Error 2 Continued from previous page. Alarm Number Alarm Name Alarm Meaning Servo- motor Stop- ping Method Alarm Reset Possi- ble? All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes All Axes 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-7 6.1.2 Troubleshooting Alarms The causes of and corrections for the alarms are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference A.020: Parameter Checksum Error (There is an error in the parameter data in the SERVOPACK.) The power supply voltage suddenly dropped. Measure the power supply voltage. Set the power supply volt- age within the specified range, and initialize the parameter settings. *1 The power supply was shut OFF while writing parameter set- tings. Check the timing of shutting OFF the power supply. Initialize the parameter settings and then set the parameters again. The number of times that parameters were written exceeded the limit. Check to see if the parameters were fre- quently changed from the host controller. The SERVOPACK may be faulty. Replace the SERVOPACK. Reconsider the method for writing the parame- ters. – A malfunction was caused by noise from the AC power supply, ground, static elec- tricity, or other source. Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, noise may be the cause. Implement countermea- sures against noise. *1 Gas, water drops, or cutting oil entered the SERVOPACK and caused failure of the internal components. Check the installation conditions. The SERVOPACK may be faulty. Replace the SERVOPACK. – A failure occurred in the SERVOPACK. Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may have failed. The SERVOPACK may be faulty. Replace the SERVOPACK. – A.021: Parameter For- mat Error (There is an error in the parameter data format in the SERVOPACK.) The software version of the SERVOPACK that caused the alarm is older than the soft- ware version of the parameters specified to write. Read the product infor- mation to see if the soft- ware versions are the same. If they are differ- ent, it could be the cause of the alarm. Write the parameters from another SERVOPACK with the same model and the same software version, and then turn the power OFF and ON again. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.022: System Check- sum Error (There is an error in the parameter data in the SERVOPACK.) The power supply voltage suddenly dropped. Measure the power supply voltage. The SERVOPACK may be faulty. Replace the SERVOPACK. – The power supply was shut OFF while setting a utility func- tion. Check the timing of shutting OFF the power supply. The SERVOPACK may be faulty. Replace the SERVOPACK. – A failure occurred in the SERVOPACK. Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may have failed. The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-8 A.024: System Alarm (An internal pro- gram error occurred in the SERVOPACK.) A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.025: System Alarm (An internal pro- gram error occurred in the SERVOPACK.) A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.030: Main Circuit Detector Error A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.040: Parameter Set- ting Error (A parameter set- ting is outside of the setting range.) The SERVOPACK and Servomotor capaci- ties do not match each other. Check the combination of the SERVOPACK and Servomotor capacities. Select a proper combina- tion of SERVOPACK and Servomotor capacities. *1 The motor parameter file was not written to the linear encoder. (This applies only when not using a Serial Converter Unit.) Check to see if the motor parameter file was written to the lin- ear encoder. Write the motor parame- ter file to the linear encoder. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A parameter setting is outside of the setting range. Check the setting ranges of the parame- ters that have been changed. Set the parameters to val- ues within the setting ranges. – The electronic gear ratio is outside of the setting range. Check the electronic gear ratio. The ratio must be within the fol- lowing range: 0.001 < (Pn20E/Pn210) < 64,000. Set the electronic gear ratio in the following range: 0.001 < (Pn20E/ Pn210) < 64,000. *1 A pin number that does not exist on the SERVOPACK was allocated in Pn590 to Pn5BC. (An alarm will not occur, however, if the signal is disabled.) For input signals (Pn590 to Pn599), make sure that the allocated pin numbers are between 003 and 014. For output signals (Pn5B0 to Pn5BC), make sure that the allo- cated pin numbers are between 023 and 031. Allocate pins that actually exist in Pn590 to Pn5BC. *1 Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-9 A.042: Parameter Combination Error The speed of program jogging went below the setting range when the electronic gear ratio (Pn20E/ Pn210) or the Servo- motor was changed. Check to see if the detection conditions *1 are satisfied. Decrease the setting of the electronic gear ratio (Pn20E/Pn210). *1 The speed of program jogging went below the setting range when Pn533 or Pn585 (Program Jogging Movement Speed) was changed. Check to see if the detection conditions *1 are satisfied. Increase the setting of Pn533 or Pn585. *1 The movement speed of advanced autotun- ing went below the setting range when the electronic gear ratio (Pn20E/ Pn210) or the Servomotor was changed. Check to see if the detection conditions *2 are satisfied. Decrease the setting of the electronic gear ratio (Pn20E/Pn210). *1 A.04A: Parameter Setting Error 2 For 4-byte parameter bank members, there are two consecutive members with nothing registered. – Change the number of bytes for bank members to an appropriate value. – The total amount of bank data exceeds 64 (Pn900 × Pn901 > 64). – Reduce the total amount of bank data to 64 or less. – A.050: Combination Error (The capacities of the SERVOPACK and Servomotor do not match.) The SERVOPACK and Servomotor capaci- ties do not match each other. Confirm that the follow- ing condition is met: 1/4 ≤ (Servomotor capacity/SERVOPACK capacity) ≤ 4 However, the above for- mula does not apply to the following products. • SGD7W-2R8A SERVOPACK and SGM7J-A5A Servomotor • SGD7W-2R8A SERVOPACK and SGM7A-A5A Servomotor Select a proper combina- tion of the SERVOPACK and Servomotor capaci- ties. *1 A failure occurred in the encoder. Replace the encoder and check to see if the alarm still occurs. Replace the Servomotor or encoder. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.051: Unsupported Device Alarm The motor parameter file was not written to the linear encoder. (This applies only when not using a Serial Converter Unit.) Check to see if the motor parameter file was written to the lin- ear encoder. Write the motor parame- ter file to the linear encoder. *1 An unsupported Serial Converter Unit or encoder is connected to the SERVOPACK. Check the product combination specifica- tions. Change to a correct com- bination of models. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-10 A.070: Motor Type Change Detected (The connected motor is a differ- ent type of motor from the previ- ously connected motor.) A Rotary Servomotor was removed and a Linear Servomotor was connected. – Set the parameters for a Linear Servomotor and reset the motor type alarm. Then, turn the power supply to the SER- VOPACK OFF and ON again. *1 A Linear Servomotor was removed and a Rotary Servomotor was connected. – Set the parameters for a Rotary Servomotor and reset the motor type alarm. Then, turn the power supply to the SER- VOPACK OFF and ON again. *1 A.080: Linear Encoder Pitch Setting Error The setting of Pn282 (Linear Encoder Scale Pitch) has not been changed from the default setting. Check the setting of Pn282. Correct the setting of Pn282. *1 A.0b0: Invalid Servo ON Command Alarm The SV_ON (Servo ON) command was sent from the host controller after a util- ity function that turns ON the Servomotor was executed. – Turn the power supply to the SERVOPACK OFF and ON again. Or, execute a software reset. *1 A.100: Overcurrent Detected (An overcurrent flowed through the power tran- sistor or the heat sink overheated.) The Main Circuit Cable is not wired correctly or there is faulty contact. Check the wiring. Correct the wiring. *1 There is a short-circuit or ground fault in a Main Circuit Cable. Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, and W. The cable may be short- circuited. Replace the cable. There is a short-circuit or ground fault inside the Servomotor. Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, or W. The Servomotor may be faulty. Replace the Servo- motor. There is a short-circuit or ground fault inside the SERVOPACK. Check for short-circuits across the Servomotor connection terminals U, V, a n d W o n t h e SE R - VOPACK, or between the ground and termi- nals U, V, or W. The SERVOPACK may be faulty. Replace the SER- VOPACK. The regenerative resistor is not wired correctly or there is faulty contact. Check the wiring. Correct the wiring. *1 The dynamic brake (DB, emergency stop executed from the SERVOPACK) was frequently activated, or a DB overload alarm occurred. Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used. Or, check the alarm display to see if a DB overload alarm (A.730 or A.731) has occurred. Change the SERVOPACK model, operating meth- ods, or the mechanisms so that the dynamic brake does not need to be used so frequently. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-11 A.100: Overcurrent Detected (An overcurrent flowed through the power tran- sistor or the heat sink overheated.) The regenerative pro- cessing capacity was exceeded. Check the regenerative load ratio in the Sig- maWin+ Motion Monitor Tab Pa g e t o s ee how frequently the regenera- tive resistor is being used. Recheck the operating conditions and load. *4 The SERVOPACK regenerative resis- tance is too small. Check the regenerative load ratio in the Sig- maWin+ Motion Monitor Tab Pa g e t o s ee how frequently the regenera- tive resistor is being used. Change the regenerative resistance to a value larger than the SERVO- PACK minimum allowable resistance. A heavy load was applied while the Ser- vomotor was stopped or running at a low speed. Check to see if the operating conditions exceed Servo Drive specifications. Reduce the load applied to the Servomotor. Or, increase the operating speed. – A malfunction was caused by noise. Improve the noise envi- ronment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs. Implement countermea- sures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVO- PACK’s main circuit wire size. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-12 A.101: Motor Overcur- rent Detected (The current to the motor exceeded the allowable cur- rent.) The Main Circuit Cable is not wired correctly or there is faulty contact. Check the wiring. Correct the wiring. *1 There is a short-circuit or ground fault in a Main Circuit Cable. Check for short-circuits across cable phases U, V, and W, or between the ground and cable phases U, V, and W. The cable may be short- circuited. Replace the cable. There is a short-circuit or ground fault inside the Servomotor. Check for short-circuits across Servomotor phases U, V, and W, or between the ground and Servomotor phases U, V, or W. The Servomotor may be faulty. Replace the Servo- motor. There is a short-circuit or ground fault inside the SERVOPACK. Check for short-circuits across the Servomotor connection terminals U, V, a n d W o n t h e SERVOPACK, or between the ground and terminals U, V, or W. The SERVOPACK may be faulty. Replace the SERVOPACK. A heavy load was applied while the Ser- vomotor was stopped or running at a low speed. Check to see if the operating conditions exceed Servo Drive specifications. Reduce the load applied to the Servomotor. Or, increase the operating speed. – A malfunction was caused by noise. Improve the noise envi- ronment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs. Implement countermea- sures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVO- PACK’s main circuit wire size. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.300: Regeneration Error When using the built- in regenerative resis- tor, the jumper between the regener- ative resistor terminals (B2 and B3) was removed. Check to see if the jumper is connected between power supply terminals B2 and B3. *4 Correctly connect a jumper. *1 The External Regener- ative Resistor is not wired correctly, or was removed or discon- nected. Check the wiring of the External Regenerative Resistor. *4 Correct the wiring of the External Regenerative Resistor. A failure occurred in the SERVOPACK. – While the main circuit power supply is OFF, turn the control power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVO- PACK may be faulty. Replace the SERVO- PACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-13 A.320: Regenerative Overload The power supply voltage exceeded the specified range. Measure the power supply voltage. Set the power supply volt- age within the specified range. – The external regener- ative resistance value or regenerative resis- tor capacity is too small, or there has been a continuous regeneration state. Check the operating conditions or the capacity using the Sig- maJunmaSize+ Capac- ity Selection Software or other means. Change the regenerative resistance value or capac- ity. Reconsider the operating conditions using the Sig- maJunmaSize+ Capacity Selection Software or other means. *4 There was a continu- ous regeneration state because a negative load was continu- ously applied. Check the load applied to the Servomotor during operation. Reconsider the system including the servo, machine, and operating conditions. – The setting of Pn600 (Regenerative Resis- tor Capacity) is smaller than the capacity of the Exter- nal Regenerative Resistor. Check to see if a Regenerative Resistor is connected and check the setting of Pn600. Correct the setting of Pn600. *1 The setting of Pn603 (Regenerative Resis- tance) is smaller than the capacity of the External Regenerative Resistor. Check to see if a Regenerative Resistor is connected and check the setting of Pn603. Correct the setting of Pn603. *1 The external regener- ative resistance is too high. Check the regenerative resistance. Change the regenerative resistance to a correct value or use an External Regenerative Resistor of an appropriate capacity. *4 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.330: Main Circuit Power Supply Wiring Error (Detected when the main circuit power supply is turned ON.) The regenerative resistor was discon- nected when the SERVOPACK power supply voltage was high. Measure the resistance of the regenerative resistor using a measur- ing instrument. If you are using the regen- erative resistor built into the SERVOPACK, replace the SERVOPACK. If you are using an Exter- nal Regenerative Resis- tor, replace the External Regenerative Resistor. – DC power was sup- plied when an AC power supply input was specified in the settings. Check the power sup- ply to see if it is a DC power supply. Correct the power supply setting to match the actual power supply. *1 AC power was sup- plied when a DC power supply input was specified in the settings. Check the power sup- ply to see if it is an AC power supply. Correct the power supply setting to match the actual power supply. A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-14 A.400: Overvoltage (Detected in the main circuit power supply section of the SERVOPACK.) The power supply voltage exceeded the specified range. Measure the power supply voltage. Set the AC/DC power supply voltage within the specified range. – The power supply is not stable or was influenced by a light- ning surge. Measure the power supply voltage. Improve the power sup- ply conditions, install a surge absorber, and then turn the power supply OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SER- VOPACK. – The voltage for AC power supply was too high during accelera- tion or deceleration. Check the power sup- ply voltage and the speed and torque during operation. Set the AC power supply voltage within the speci- fied range. – The external regener- ative resistance is too high for the operating conditions. Check the operating conditions and the regenerative resistance. Select a regenerative resistance value that is appropriate for the oper- ating conditions and load. *4 The moment of inertia ratio or mass ratio exceeded the allow- able value. Check to see if the moment of inertia ratio or mass ratio is within the allowable range. Increase the deceleration time, or reduce the load. – A failure occurred in the SERVOPACK. – While the main circuit power supply is OFF, turn the control power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVO- PACK may be faulty. Replace the SERVO- PACK. – A.410: Undervoltage (Detected in the main circuit power supply section of the SERVOPACK.) The power supply voltage went below the specified range. Measure the power supply voltage. Set the power supply volt- age within the specified range. – The power supply voltage dropped during operation. Measure the power supply voltage. Increase the power supply capacity. – A momentary power interruption occurred. Measure the power supply voltage. If you have changed the setting of Pn509 (Momen- tary Power Interruption Hold Time), decrease the setting. *1 The SERVOPACK fuse is blown out. – Replace the SERVO- PACK and connect a reactor to the DC reactor terminals ( 1 and 2) on the SERVOPACK. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-15 A.50D: Position Devia- tion Between Axes Overflow Alarm Twisting of mechani- cal parts has occurred between axes A and B. Check the position deviation between the axes. Resolve the twisting of mechanical parts between the axes. – Set the Position Correc- tion Table to appropriate values. page 3-7 Axis A and axis B are not synchronized with the reference. Check the reference position for axis A and axis B. The host controller should command the system to synchronize operation of axis A and axis B. – Pn66A (Position Devi- ation Between Axes Overflow Alarm Level) is low for the operat- ing conditions. Check if Pn66A (Posi- tion Deviation Between Axes Overflow Alarm Level) is appropriate. Set Pn66A to an appropri- ate value. page 5-3 A.510: Overspeed (The motor exceeded the maximum speed.) The order of phases U, V, and W in the motor wiring is not correct. Check the wiring of the Servomotor. Make sure that the Servo- motor is correctly wired. – A reference value that exceeded the over- speed detection level was input. Check the input refer- ence. Reduce the reference value. Or, adjust the gain. − The motor exceeded the maximum speed. Check the waveform of the motor speed. Reduce the speed refer- ence input gain and adjust the servo gain. Or, reconsider the operating conditions. A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.51A: Synchronized Stopping Over- speed Alarm The axis undergoing synchronized stop- ping was accelerating. Check the feedback speed of the axis under- going synchronized stopping. Remove the cause of acceleration for the axis undergoing synchronized stopping. – A.520: Vibration Alarm Abnormal oscillation was detected in the motor speed. Check for abnormal motor noise, and check the speed and torque waveforms during oper- ation. Reduce the motor speed. Or, reduce the setting of Pn100 (Speed Loop Gain). *1 The setting of Pn103 (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed. Check the moment of inertia ratio or mass ratio. Set Pn103 (Moment of Inertia Ratio) to an appro- priate value. *1 The vibration detec- tion level (Pn312 or Pn384) is not suitable. Check that the vibra- tion detection level (Pn312 or Pn384) is suitable. Set a suitable vibration detection level (Pn312 or Pn384). *1 Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-16 A.521: Autotuning Alarm (Vibration was detected while executing the custom tuning, Easy FFT, or the tuning-less func- tion.) The Servomotor vibrated considerably while performing the tuning-less function. Check the waveform of the motor speed. Reduce the load so that the moment of inertia ratio is within the allowable value. Or increase the load level or reduce the rigidity level in the tuning- less level settings. *1 The Servomotor vibrated considerably while performing cus- tom tuning or Easy FFT. Check the waveform of the motor speed. Check the operating pro- cedure of corresponding function and implement corrections. *1 A.550: Maximum Speed Setting Error The setting of Pn385 (Maximum Motor Speed) is greater than the maximum speed. Check the setting of Pn385, and the upper limits of the maximum motor speed setting and the encoder output resolution setting. Set Pn385 to a value that does not exceed the max- imum motor speed. *1 A.710: Instantaneous Overload A.720: Continuous Overload The wiring is not cor- rect or there is a faulty contact in the motor or encoder wiring. Check the wiring. Make sure that the Servo- motor and encoder are correctly wired. *1 Operation was per- formed that exceeded the overload protec- tion characteristics. Check the motor over- load characteristics and Run command. Reconsider the load and operating conditions. Or, increase the motor capacity. – An excessive load was applied during operation because the Servomotor was not driven due to mechanical problems. Check the operation reference and motor speed. Correct the mechanical problem. – There is an error in the setting of Pn282 (Lin- ear Encoder Scale Pitch). Check the setting of Pn282. Correct the setting of Pn282. *1 There is an error in the setting of Pn080 = n.X (Motor Phase Sequence Selection). Check the setting of Pn080 = n.X. Set Pn080 = n.X to an appropriate value. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.730 and A.731: Dynamic Brake Overload (An excessive power consump- tion by the dynamic brake was detected.) The Servomotor was rotated by an external force. Check the operation status. Implement measures to ensure that the motor will not be rotated by an external force. – When the Servomo- tor was stopped with the dynamic brake, the rotational or linear kinetic energy exceeded the capac- ity of the dynamic brake resistor. Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used. Reconsider the following: • Reduce the Servomotor command speed. • Decrease the moment of inertia ratio or mass ratio. • Reduce the frequency of stopping with the dynamic brake. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-17 A.740: Inrush Current Limiting Resistor Overload (The main circuit power supply was frequently turned ON and OFF.) The allowable fre- quency of the inrush current limiting resis- tor was exceeded when the main circuit power supply was turned ON and OFF. – Reduce the frequency of turning the main circuit power supply ON and OFF. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.7A1: Internal Tempera- ture Error 1 (Control Board Temperature Error) The surrounding air temperature is too high. Check the surrounding air temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environment monitor. Decrease the surround- ing temperature by improving the SERVO- PACK installation condi- tions. *1 An overload alarm was reset by turning OFF the power sup- ply too many times. Check the alarm display to see if there is an overload alarm. Change the method for resetting the alarm. – There was an exces- sive load or operation was performed that exceeded the regen- erative processing capacity. Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity. Reconsider the load and operating conditions. – The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVO- PACK. Check the SERVOPACK installation conditions. Install the SERVOPACK according to specifica- tions. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-18 A.7A2: Internal Tempera- ture Error 2 (Power Board Temperature Error) The surrounding air temperature is too high. Check the surrounding air temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environment monitor. Decrease the surround- ing temperature by improving the SERVO- PACK installation condi- tions. *1 An overload alarm was reset by turning OFF the power sup- ply too many times. Check the alarm display to see if there is an overload alarm. Change the method for resetting the alarm. – There was an exces- sive load or operation was performed that exceeded the regen- erative processing capacity. Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity. Reconsider the load and operating conditions. – The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVO- PACK. Check the SERVOPACK installation conditions. Install the SERVOPACK according to specifica- tions. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.7A3: Internal Tempera- ture Sensor Error (An error occurred in the temperature sen- sor circuit.) A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.7Ab: SERVOPACK Built-in Fan Stopped The fan inside the SERVOPACK stopped. Check for foreign matter inside the SERVOPACK. Remove foreign matter from the SERVOPACK. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.810: Encoder Backup Alarm (Detected at the encoder, but only when an abso- lute encoder is used.) The power to the absolute encoder was turned ON for the first time. Check to see if the power supply was turned ON for the first time. Set up the encoder. *1 The Encoder Cable was disconnected and then connected again. Check to see if the power supply was turned ON for the first time. Check the encoder con- nection and set up the encoder. Power is not being supplied both from the control power supply (+5 V) from the SERVOPACK and from the battery power supply. Check the encoder connector battery and the connector status. Replace the battery or implement similar mea- sures to supply power to the encoder, and set up the encoder. A failure occurred in the absolute encoder. – If the alarm still occurs after setting up the encoder again, replace the Servomotor. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-19 A.820: Encoder Check- sum Alarm (Detected at the encoder.) A failure occurred in the encoder. – When Using an Abso- lute Encoder Set up the encoder again. If the alarm still occurs, the Servomotor may be faulty. Replace the Servo- motor. When Using a Single- turn Absolute Encoder or Incremental Encoder • The Servomotor may be faulty. Replace the Ser- vomotor. • The linear encoder may be faulty. Replace the linear encoder. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.830: Encoder Battery Alarm (The absolute encoder battery voltage was lower than the speci- fied level.) The battery connec- tion is faulty or a bat- tery is not connected. Check the battery con- nection. Correct the battery con- nection. *1 The battery voltage is lower than the speci- fied value (2.7 V). Measure the battery voltage. Replace the battery. *1 A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – A.840: Encoder Data Alarm (Detected at the encoder.) The encoder malfunc- tioned. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – An error occurred in reading data from the linear encoder. – The linear encoder is not mounted within an appro- priate tolerance. Correct the mounting of the linear encoder. – Excessive speed occurred in the linear encoder. – Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power supply. – The encoder malfunc- tioned due to noise. – Correct the wiring around the encoder by separating the Encoder Cable from the Servomotor Main Cir- cuit Cable or by ground- ing the encoder. – The polarity sensor is not wired correctly. Check the wiring of the polarity sensor. Correct the wiring of the polarity sensor. – The polarity sensor failed. – Replace the polarity sen- sor. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-20 A.850: Encoder Over- speed (Detected at the encoder when the control power supply is turned ON.) Rotary Servomotor: The Servomotor speed was 200 min -1 or higher when the control power supply was turned ON. Check the motor speed when the power supply is turned ON. Reduce the Servomotor speed to a value less than 200 min -1 , and turn ON the control power supply. – Linear Servomotor: The Servomotor exceeded the speci- fied speed when the control power supply was turned ON. Check the motor speed when the power supply is turned ON. Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power supply. – A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.860: Encoder Over- heated (Detected when a Rotary Servomo- tor or Absolute Linear Encoder is connected. (Detected at the encoder.) The surrounding air temperature around the Servomotor is too high. Measure the surround- ing air temperature around the Servomotor. Reduce the surrounding air temperature of the Servomotor to 40°C or less. – The Servomotor load is greater than the rated load. Use the accumulated load ratio to check the load. Operate the Servo Drive so that the motor load remains within the speci- fied range. *1 A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or absolute linear encoder may be faulty. Replace the Servomotor or absolute linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-21 A.861: Motor Over- heated The surrounding tem- perature around the Servomotor is too high. Measure the surround- ing temperature around the Servomotor. Reduce the surrounding air temperature of the Servomotor to 40°C or less. – The motor load is greater than the rated load. Check the load with the accumulated load ratio on the Motion Monitor Tab Page on the Sig- maWin+. Operate the Servo Drive so that the motor load remains within the speci- fied range. *1 A failure occurred in the Serial Converter Unit. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Serial Con- verter Unit may be faulty. Replace the Serial Con- verter Unit. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.862: Overheat Alarm The surrounding tem- perature is too high. Check the surrounding temperature using a thermometer. Lower the surrounding temperature by improving the installation conditions of the Linear Servomotor or the machine. – The overheat protec- tion input signal line is disconnected or short-circuited. Check the input voltage with the overheat pro- tection input information on the Motion Monitor Tab Page on the Sig- maWin+. Repair the line for the overheat protection input signal. – An overload alarm was reset by turning OFF the power sup- ply too many times. Check the alarm display to see if there is an overload alarm. Change the method for resetting the alarm. – Operation was per- formed under an excessive load. Use the accumulated load ratio to check the load during operation. Reconsider the load and operating conditions. – A failure occurred in the SERVOPACK. – The SERVOPACK may be faulty. Replace the SERVOPACK. – The temperature detection circuit in the Linear Servomotor is faulty or the sensor attached to the machine is faulty. – The temperature detec- tion circuit in the Linear Servomotor may be faulty or the sensor attached to the machine may be faulty. Replace the Linear Servomotor or repair the sensor attached to the machine. – A.890: Encoder Scale Error A failure occurred in the linear encoder. – The linear encoder may be faulty. Replace the lin- ear encoder. – A.891: Encoder Module Error A failure occurred in the linear encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the linear encoder may be faulty. Replace the linear encoder. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-22 A.b33: Current Detec- tion Error 3 A failure occurred in the current detection circuit. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.b6A: MECHATROLINK Communications ASIC Error 1 There is a fault in the SERVOPACK MECHATROLINK communications sec- tion. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.b6b: MECHATROLINK Communications ASIC Error 2 A malfunction occurred in the MECHATROLINK communications sec- tion due to noise. – Implement the following countermeasures against noise. • Check the MECHA- TROLINK Communica- tions Cable and FG wiring. • Attach a ferrite core to the MECHATROLINK Communications Cable. – There is a fault in the SERVOPACK MECHATROLINK communications sec- tion. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF0: System Alarm 0 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF1: System Alarm 1 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF2: System Alarm 2 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF3: System Alarm 3 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF4: System Alarm 4 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-23 A.bF5: System Alarm 5 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF6: System Alarm 6 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF7: System Alarm 7 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.bF8: System Alarm 8 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.C10: Servomotor Out of Control (Detected when the servo is turned ON.) The order of phases U, V, and W in the motor wiring is not correct. Check the Servomotor wiring. Make sure that the Servo- motor is correctly wired. – There is an error in the setting of Pn080 = n.X (Motor Phase Sequence Selection). Check the setting of Pn080 = n.X. Set Pn080 = n.X to an appropriate value. *1 A failure occurred in the encoder. – If the motor wiring is cor- rect and the alarm still occurs after turning the power supply OFF and ON again, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-24 A.C20: Phase Detection Error The linear encoder signal level is too low. Check the voltage of the linear encoder sig- nal. Fine-tune the mounting of the scale head. Or, replace the linear encoder. – The count-up direc- tion of the linear encoder does not match the forward direction of the Mov- ing Coil in the motor. Check the setting of Pn080 = n.X (Motor Phase Sequence Selection). Check the installation orientation for the linear encoder and Moving Coil. Change the setting of Pn080 = n.X. Correctly reinstall the lin- ear encoder or Moving Coil. *1 The polarity sensor signal is being affected by noise. – Correct the FG wiring. Implement countermea- sures against noise for the polarity sensor wiring. – The setting of Pn282 (Linear Encoder Scale Pitch) is not correct. Check the setting of Pn282 (Linear Encoder Scale Pitch). Check the specifications of the linear encoder and set a correct value. *1 A.C21: Polarity Sensor Error The polarity sensor is protruding from the Magnetic Way of the motor. Check the polarity sen- sor. Correctly reinstall the Moving Coil or Magnetic Way of the motor. – The polarity sensor is not wired correctly. Check the wiring of the polarity sensor. Correct the wiring of the polarity sensor. – The polarity sensor failed. – Replace the polarity sen- sor. – A.C22: Phase Informa- tion Disagree- ment The SERVOPACK phase information is different from the lin- ear encoder phase information. – Perform polarity detec- tion. *1 Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-25 A.C50: Polarity Detec- tion Failure The parameter set- tings are not correct. Check the linear encoder specifications and feedback signal status. The settings of Pn282 (Linear Encoder Scale Pitch) and Pn080 = n.X (Motor Phase Sequence Selection) may not match the installa- tion. Set the parameters to correct values. *1 There is noise on the scale signal. Check to make sure that the frame grounds of the Serial Converter Unit and Servomotor are connected to the FG terminal on the SER- VOPACK and that the FG terminal on the SER- VOPACK is connected to the frame ground on the power supply. And, confirm that the shield is properly pro- cessed on the Linear Encoder Cable. Check to see if the detection reference is repeatedly output in one direction. Implement appropriate countermeasures against noise for the Linear Encoder Cable. – An external force was applied to the Moving Coil of the motor. – The polarity cannot be properly detected if the detection reference is 0 and the speed feedback is not 0 because of an external force, such as cable tension, applied to the Moving Coil. Imple- ment measures to reduce the external force so that the speed feedback goes to 0. If the external force cannot be reduced, increase the setting of Pn481 (Polarity Detection Speed Loop Gain). – The linear encoder resolution is too low. Check the linear encoder scale pitch to see if it is within 100 μm. If the linear encoder scale pitch is 100 μm or higher, the SERVOPACK cannot detect the correct speed feedback. Use a linear encoder scale pitch with higher resolution. (We rec- ommend a pitch of 40 μm or less.) Or, increase the setting of Pn485 (Polarity Detection Reference Speed). However, increasing the setting of Pn485 will increase the Servomotor movement range that is required for polarity detection. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-26 A.C51: Overtravel Detected during Polarity Detection The overtravel signal was detected during polarity detection. Check the overtravel position. Wire the overtravel sig- nals. Execute polarity detection at a position where an overtravel sig- nal would not be detected. *1 A.C52: Polarity Detec- tion Not Com- pleted The servo was turned ON when using an absolute linear encoder, Pn587 was set to n.0 (Do not detect polarity), and the polarity had not been detected. – When using an absolute linear encoder, set Pn587 to n.1 (Detect polar- ity). – A.C53: Out of Range of Motion for Polar- ity Detection The travel distance exceeded the setting of Pn48E (Polarity Detection Range) in the middle of detec- tion. – Increase the setting of Pn48E (Polarity Detection Range). Or, increase the setting of Pn481 (Polarity Detection Speed Loop Gain). – A.C54: Polarity Detec- tion Failure 2 An external force was applied to the Servo- motor. – Increase the setting of Pn495 (Polarity Detection Confirmation Force Refer- ence). Increase the setting of Pn498 (Polarity Detec- tion Allowable Error Range). Increasing the allowable error will also increase the motor tem- perature. – A.C80: Encoder Clear Error or Multiturn Limit Setting Error A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-27 A.C90: Encoder Commu- nications Error There is a faulty con- tact in the connector or the connector is not wired correctly for the encoder. Check the condition of the encoder connector. Reconnect the encoder connector and check the encoder wiring. *1 There is a cable dis- connection or short- circuit in the encoder. Or, the cable imped- ance is outside the specified values. Check the condition of the Encoder Cable. Use the Encoder Cable within the specified speci- fications. – One of the following has occurred: corro- sion caused by improper tempera- ture, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in con- nector caused by vibration. Check the operating environment. Improve the operating environment, and replace the cable. If the alarm still occurs, replace the SER- VOPACK. *1 A malfunction was caused by noise. – Correct the wiring around the encoder by separating the Encoder Cable from the Servomotor Main Cir- cuit Cable or by ground- ing the encoder. *1 A failure occurred in the SERVOPACK. – Connect the Servomotor to another SERVOPACK, and turn ON the control power supply. If no alarm occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.C91: Encoder Commu- nications Posi- tion Data Acceleration Rate Error Noise entered on the signal lines because the Encoder Cable is bent or the sheath is damaged. Check the condition of the Encoder Cable and connectors. Check the Encoder Cable to see if it is installed cor- rectly. *1 The Encoder Cable is bundled with a high- current line or installed near a high- current line. Check the installation condition of the Encoder Cable. Confirm that there is no surge voltage on the Encoder Cable. – There is variation in the FG potential because of the influ- ence of machines on the Servomotor side, such as a welder. Check the installation condition of the Encoder Cable. Properly ground the machine to separate it from the FG of the encoder. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-28 A.C92: Encoder Commu- nications Timer Error Noise entered on the signal line from the encoder. – Implement countermea- sures against noise for the encoder wiring. *1 Excessive vibration or shock was applied to the encoder. Check the operating conditions. Reduce machine vibra- tion. Correctly install the Ser- vomotor or linear encoder. – A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.CA0: Encoder Parame- ter Error A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-29 A.Cb0: Encoder Echo- back Error The encoder is wired incorrectly or there is faulty contact. Check the wiring of the encoder. Make sure that the encoder is correctly wired. *1 The specifications of the Encoder Cable are not correct and noise entered on it. – Use a shielded twisted- pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm 2 . – The Encoder Cable is too long and noise entered on it. – • Rotary Servomotors: The Encoder Cable wir- ing distance must be 50 m max. • Linear Servomotors: The Encoder Cable wir- ing distance must be 20 m max. – There is variation in the FG potential because of the influ- ence of machines on the Servomotor side, such as a welder. Check the condition of the Encoder Cable and connectors. Properly ground the machine to separate it from the FG of the encoder. – Excessive vibration or shock was applied to the encoder. Check the operating conditions. Reduce machine vibra- tion. Correctly install the Ser- vomotor or linear encoder. – A failure occurred in the encoder. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the Servomotor or linear encoder may be faulty. Replace the Servo- motor or linear encoder. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.CC0: Multiturn Limit Disagreement The multiturn limit of the encoder is differ- ent from that of the SERVOPACK. Or, the multiturn limit of the SERVOPACK has been changed. Check the setting of Pn205 in the SERVO- PACK. Change the setting if the alarm occurs. *1 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-30 A.d00: Position Devia- tion Overflow (The setting of Pn520 (Position Deviation Over- flow Alarm Level) was exceeded by the position devi- ation while the servo was ON.) The Servomotor U, V, and W wiring is not correct. Check the wiring of the Servomotor’s Main Cir- cuit Cables. Make sure that there are no faulty contacts in the wiring for the Servomotor and encoder. – The position com- mand speed is too fast. Reduce the position command speed and try operating the SERVOPACK. Reduce the position refer- ence speed or the refer- ence acceleration rate, or reconsider the electronic gear ratio. *1 The acceleration of the position reference is too high. Reduce the reference acceleration and try operating the SERVO- PACK. Reduce the acceleration of the position reference using a MECHATROLINK command. Or, smooth the position reference accel- eration by selecting the position reference filter (ACCFIL) using a MECHA- TROLINK command. − The setting of Pn520 (Position Deviation Overflow Alarm Level) is too low for the operating conditions. Check Pn520 (Position Deviation Overflow Alarm Level) to see if it is set to an appropriate value. Optimize the setting of Pn520. *1 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.d01: Position Devia- tion Overflow Alarm at Servo ON The servo was turned ON after the position deviation exceeded the setting of Pn526 (Position Deviation Overflow Alarm Level at Servo ON) while the servo was OFF. Check the position deviation while the servo is OFF. Optimize the setting of Pn526 (Position Deviation Overflow Alarm Level at Servo ON). *1 A.d02: Position Devia- tion Overflow Alarm for Speed Limit at Servo ON If position deviation remains in the devia- tion counter, the set- ting of Pn529 or Pn584 (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON. This alarm occurs if a position reference is input and the set- ting of Pn520 (Posi- tion Deviation Overflow Alarm Level) is exceeded. – Optimize the setting of Pn520 (Position Deviation Overflow Alarm Level). Or, adjust the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON). A.d30: Position Data Overflow The position data exceeded ±1,879,048,192. Check the input refer- ence pulse counter. Reconsider the operating specifications. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-31 A.E02: MECHATROLINK Internal Synchro- nization Error 1 The MECHATROLINK transmission cycle fluctuated. – Remove the cause of transmission cycle fluctu- ation at the host control- ler. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.E40: MECHATROLINK Transmission Cycle Setting Error The setting of MECHATROLINK transmission cycle is outside of the speci- fied range. Check the setting of the MECHATROLINK trans- mission cycle. Set the MECHATROLINK transmission cycle to an appropriate value. – A.E41: MECHATROLINK Communications Data Size Setting Error The number of trans- mission bytes set on DIP switch S3 is not correct. Check the MECHA- TROLINK communica- tions data size of the host controller. Reset DIP switch S3 to change the number of transmission bytes to an appropriate value. *1 A.E42: MECHATROLINK Station Address Setting Error The station address is outside of the setting range. Check rotary switches S1 and S2 to see if the station address is between 03 and EF. Check the setting of the station address of the host controller, and reset rotary switches S1 and S2 to change the address to an appropriate value between 03 and EF. *1 Two or more stations on the communica- tions network have the same address. Check to see if two or more stations on the communications net- work have the same address. Check the setting of the station address of the host controller, and reset rotary switches S1 and S2 to change the address to an appropriate value between 03 and EF. A.E50 *5 : MECHATROLINK Synchronization Error The WDT data in the host controller was not updated normally. Check to see if the WDT data is being updated at the host controller. Correctly update the WDT data at the host controller. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.E51: MECHATROLINK Synchronization Failed The WDT data at the host controller was not updated correctly at the start of syn- chronous communi- cations, so synchronous commu- nications could not be started. Check to see if the WDT data is being updated in the host controller. Correctly update the WDT data at the host controller. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-32 A.E60 *5 : Reception Error in MECHATROLINK Communications MECHATROLINK wir- ing is not correct. Check the MECHA- TROLINK wiring. Correct the MECHATROLINK Com- munications Cable wiring. – A MECHATROLINK data reception error occurred due to noise. – Implement countermea- sures against noise. (Check the MECHA- TROLINK Communica- tions Cable and FG wiring, and implement measures such as attach- ing a ferrite core to the MECHATROLINK Com- munications Cable.) – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.E61: Synchronization Interval Error in MECHATROLINK Transmission Cycle The MECHATROLINK transmission cycle fluctuated. Check the setting of the MECHATROLINK trans- mission cycle. Remove the cause of transmission cycle fluctu- ation at the host control- ler. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.E63: MECHATROLINK Synchronization Frame Not Received MECHATROLINK wir- ing is not correct. Check the Servomotor wiring. Correct the MECHA- TROLINK Communica- tions Cable wiring. – A MECHATROLINK data reception error occurred due to noise. – Implement countermea- sures against noise. (Check the MECHA- TROLINK Communica- tions Cable and FG wiring, and implement measures such as attach- ing a ferrite core to the MECHATROLINK Com- munications Cable.) – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-33 A.E94: Position Correc- tion Table Setting Error The data set in the Position Correction Tab le ( p re -co rrect ion positions and correc- tion amounts) is cor- rupted. Check the pre-correc- tion positions and cor- rection amounts in the Position Correction Table. Initialize the Position Cor- rection Table. Restart the SERVOPACK after initialization. If it starts normally, set the Position Correction Table again. If the SERVOPACK does not start normally after ini- tialization, it may be faulty. Replace the SERVO- PACK. page 3-8 page 3-20 The Position Correc- tion Table was set with values outside the setting range. Check if the table entries, pre-correction positions, correction amounts, correction positions (pre-correc- tion positions+correc- tion amounts) have exceeded the setting ranges. Set the number of Posi- tion Correction Table entries between 2 and 128. page 3-7 Set pre-correction posi- tions, correction amounts, and correction positions between -2,147,483,648 and 2,147,483,647. Set the difference between one pre-correc- tion position and the fol- lowing pre-correction position between -1,073,741,824 and 1,073,741,823. Set the difference between one correction amount and the following correction amount between -1,073,741,824 and 1,073,741,823. The pre-correction positions in the Posi- tion Correction Table are not set in ascend- ing order. Check if the pre-correc- tion positions are set in ascending order. Set the Position Correc- tion Table so that the pre- correction positions are in ascending order. page 3-7 The correction posi- tions calculated from the pre-correction positions and correc- tion amounts in the Position Correction Table are not in ascending order. Check if the correction positions (pre-correc- tion positions+correc- tion amounts) are set in ascending order. Set the Position Correc- tion Table so that the cor- rection positions are in ascending order. page 3-7 A.Ed1: Command Exe- cution Timeout A timeout error occurred for a MECHATROLINK command. Check the motor status when the command is executed. Execute the SV_ON or SENS_ON command only when the motor is not operating. – Check the encoder sta- tus when the command is executed. Execute the SENS_ON command only when an encoder is connected. – Continued on next page. Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6-34 *1. For details, refer to the following manual. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) A.F10: Power Supply Line Open Phase (The voltage was low for more than one second for phase R, S, or T when the main power supply was ON.) The three-phase power supply wiring is not correct. Check the power sup- ply wiring. Make sure that the power supply is correctly wired. *1 The three-phase power supply is unbalanced. Measure the voltage for each phase of the three-phase power sup- ply. Balance the power sup- ply by changing phases. – A single-phase power supply was input with- out specifying a sin- gle-phase AC power supply input (Pn00B = n.1). Check the power sup- ply and the parameter setting. Match the parameter set- ting to the power supply. *1 A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – FL-1 *5 : System Alarm A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – FL-2 *5 : System Alarm FL-3 *5 : System Alarm FL-4 *5 : System Alarm FL-5 *5 : System Alarm FL-6 *5 : System Alarm CPF00: Digital Operator Communications Error 1 There is a faulty con- nection between the Digital Operator and the SERVOPACK. Check the connector contact. Disconnect the connec- tor and insert it again. Or, replace the cable. – A malfunction was caused by noise. – Keep the Digital Operator or the cable away from sources of noise. – CPF01: Digital Operator Communications Error 2 A failure occurred in the Digital Operator. – Disconnect the Digital Operator and then con- nect it again. If the alarm still occurs, the Digital Operator may be faulty. Replace the Digital Oper- ator. – A failure occurred in the SERVOPACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – Continued from previous page. Alarm Number: Alarm Name Possible Cause Confirmation Correction Reference 6.1 Alarm Displays 6.1.2 Troubleshooting Alarms 6 Maintenance 6-35 *2. Detection Conditions • Rotary Servomotor If either of the following conditions is detected, an alarm will occur. • Linear Servomotor If either of the following conditions is detected, an alarm will occur. *3. Detection Conditions • Rotary Servomotor If either of the following conditions is detected, an alarm will occur. • Linear Servomotor If either of the following conditions is detected, an alarm will occur. *4. Refer to the following manual for details. Σ-7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32) *5. If an External Regenerative Resistor is connected while the jumper remains connected between B2 and B3, the SERVOPACK may be damaged. *6. These alarms are not stored in the alarm history. They are only displayed on the panel display. Pn533 [min -1 ] 6 10 5 Pn20E Pn210 Encoder resolution Pn20E Pn210 Maximum motor speed [min -1 ] Encoder resolution Approx. 3.66 10 12 Pn585 [mm/s] 10 Pn20E Pn210 Pn385 [100 mm/s] Pn20E Pn210 Linear encoder pitch [m] Linear encoder pitch [m] Resolution of Serial Converter Unit Approx. 6.10 10 5 Resolution of Serial Converter Unit 1/3 610 5 Pn20E Pn210 Rated motor speed [min -1 ] Encoder resolution Pn20E Pn210 ࣭ Maximum motor speed [min -1 ] Encoder resolution Approx. 3.66 10 12 1/3 10 Pn20E Pn210 Pn385 [100 mm/s] Pn20E Pn210 Rated motor speed [mm/s]Resolution of Serial Converter Unit Linear encoder pitch [m] Linear encoder pitch [m] Resolution of Serial Converter Unit Approx. 6.10 10 5 6.2 Warning Displays 6.2.1 List of Warnings 6-36 6.2 Warning Displays If a warning occurs in the SERVOPACK, a warning number will be displayed on the panel dis- play. Warnings are displayed to warn you before an alarm occurs. 6.2.1 List of Warnings The list of warnings gives the warning name and warning meaning in order of the warning num- bers. If “All Axes” is given below the warning number, the warning applies to both axes. If a warning occurs for one axis, the same warning status will occur for the other axis. Warning Number Warning Name Meaning Resetting A.900 Position Deviation Overflow The position deviation exceeded the percentage set with the following formula: (Pn520 × Pn51E/100) Required. A.901 Position Deviation Overflow Alarm at Servo ON The position deviation when the servo was turned ON exceeded the percentage set with the following formula: (Pn526 × Pn528/100) Required. A.910 Overload This warning occurs before an overload alarm (A.710 or A.720) occurs. If the warning is ignored and operation is continued, an alarm may occur. Required. A.90D Position Deviation Between Axes Over- flow Warning The position deviation between axes A and B has exceeded the percentage set with the following equa- tion during the servo ON state. (Pn66A × Pn669/100) Required. A.911 Vibration Abnormal vibration was detected during motor opera- tion. The detection level is the same as A.520. Set whether to output an alarm or a warning by setting Pn310 (Vibration Detection Selection). Required. A.912 Internal Temperature Warning 1 (Control Board Temperature Error) The surrounding temperature of the control PCB is abnormal. Required. A.913 Internal Temperature Warning 2 (Power Board Temperature Error) The surrounding temperature of the power PCB is abnormal. Required. A.920 Regenerative Overload This warning occurs before an A.320 alarm (Regenera- tive Overload) occurs. If the warning is ignored and operation is continued, an alarm may occur. Required. A.921 Dynamic Brake Over- load This warning occurs before an A.731 alarm (Dynamic Brake Overload) occurs. If the warning is ignored and operation is continued, an alarm may occur. Required. A.923 SERVOPACK Built-in Fan Stopped The fan inside the SERVOPACK stopped. Required. A.930 Absolute Encoder Bat- tery Error This warning occurs when the voltage of absolute encoder’s battery is low. Required. A.93B Overheat Warning The input voltage (temperature) for the overheat protec- tion input (TH) signal exceeded the setting of Pn61C (Overheat Warning Level). Required. A.942 Speed Ripple Com- pensation Information Disagreement The speed ripple compensation information stored in the encoder does not agree with the speed ripple com- pensation information stored in the SERVOPACK. Required. A.94A Data Setting Warning 1 (Parameter Number Error) There is an error in the parameter number for a Data Setting Warning 1 (Parameter Number) command. Automatically reset.* Continued on next page. All Axes All Axes All Axes All Axes All Axes 6.2 Warning Displays 6.2.1 List of Warnings 6 Maintenance 6-37 * If using the commands for the MECHATROLINK-III standard servo profile, the warning will automatically be cleared after the correct command is received. If you use MECHATROLINK-II-compatible profile commands, send an ALM_CLR (Clear Warning or Alarm) command to clear the warning. A.94b Data Setting Warning 2 (Out of Range) The command data is out of range. Automatically reset.* A.94C Data Setting Warning 3 (Calculation Error) A calculation error was detected. Automatically reset.* A.94d Data Setting Warning 4 (Parameter Size) The data sizes do not match. Automatically reset.* A.94E Data Setting Warning 5 (Latch Mode Error) A latch mode error was detected. Required. A.95A Command Warning 1 (Unsatisfied Com- mand Conditions) A command was sent when the conditions for sending a command were not satisfied. Automatically reset.* A.95b Command Warning 2 (Unsupported Com- mand) An unsupported command was sent. Automatically reset.* A.95d Command Warning 4 (Command Interfer- ence) There was command interference, particularly latch command interference. Automatically reset.* A.95E Command Warning 5 (Subcommand Not Possible) The subcommand and main command interfere with each other. Automatically reset.* A.95F Command Warning 6 (Undefined Command) An undefined command was sent. Automatically reset.* A.960 MECHATROLINK Communications Warning A communications error occurred during MECHA- TROLINK communications. Required. A.971 Undervoltage This warning occurs before an A.410 alarm (Undervolt- age) occurs. If the warning is ignored and operation is continued, an alarm may occur. Required. A.97A Command Warning 7 (Phase Error) A command that cannot be executed in the current phase was sent. Automatically reset.* A.97b Data Clamp Out of Range The set command data was clamped to the minimum or maximum value of the allowable setting range. Automatically reset.* A.97C Synchronized Stopping Occurred Synchronized stopping occurred. Required. A.9A0 Overtravel Overtravel was detected while the servo was ON. Required. A.9b0 Preventative Maintenance Warning One of the consumable parts has reached the end of its service life. Required. Continued from previous page. Warning Number Warning Name Meaning Resetting All Axes All Axes 6.2 Warning Displays 6.2.1 List of Warnings 6-38 Note: Use Pn008 = n.X (Warning Detection Selection) to control warning detection. However, the following warnings are not affected by the setting of Pn008 = n.X and other parameter settings are required in addition to Pn008 = n.X For details, refer to the following manual. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) Warning Parameters That Must Be Set to Select Warning Detection A.911 Pn310 = n.X (Vibration Detection Selection) A.923 – (Not affected by the setting of Pn008 = n.X.) A.930 Pn008 = n.X (Low Battery Voltage Alarm/Warning Selection) A.942 Pn423 = n.X (Speed Ripple Compensation Information Disagreement Warning Detection Selection) A.94A to A.960 and A.97A to A.97b Pn800=n.X (Warning Check Masks) A.971 Pn008 = n.X (Function Selection for Undervoltage) (Not affected by the setting of Pn008 = n.X.) A.9A0 Pn00D = n.X (Overtravel Warning Detection Selection) (Not affected by the setting of Pn008 = n.X.) A.9b0 Pn00F = n.X (Preventative Maintenance Warning Selection) 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6 Maintenance 6-39 6.2.2 Troubleshooting Warnings The causes of and corrections for the warnings are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table. Warning Number: Warning Name Possible Cause Confirmation Correction Reference A.900: Position Deviation Overflow The Servomotor U, V, and W wiring is not correct. Check the wiring of the Servomotor’s Main Cir- cuit Cables. Make sure that there are no faulty connections in the wiring for the Servomotor and encoder. – A SERVOPACK gain is too low. Check the SERVO- PACK gains. Increase the servo gain, e.g., by using autotuning without a host reference. * The acceleration of the position ref- erence is too high. Reduce the reference acceleration and try operating the SERVO- PACK. Reduce the acceleration of the position reference using a MECHATROLINK com- mand. Or, smooth the posi- tion reference acceleration by selecting the position reference filter (ACCFIL) using a MECHATROLINK command. – The excessive position deviation alarm level (Pn520 × Pn51E/100) is too low for the operating condi- tions. Check excessive posi- tion deviation alarm level (Pn520 × Pn51E/ 100) to see if it is set to an appropriate value. Optimize the settings of Pn520 and Pn51E. * A failure occurred in the SERVO- PACK. – Turn the power supply to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.901: Position Deviation Overflow Alarm at Servo ON The position devi- ation when the servo was turned ON exceeded the percentage set with the following formula: (Pn526 × Pn528/ 100) – Optimize the setting of Pn528 (Position Deviation Overflow Warning Level at Servo ON). – A.90D: Position Deviation Between Axes Over- flow Warning Twi sti n g of mechanical parts has occurred between axes A and B. Check the position deviation between the axes. Resolve the twisting of mechanical parts between the axes. – Set the Position Correction Table to appropriate values. page 3-7 Axis A and axis B are not synchro- nized with the ref- erence. Check the reference position for Axis A and Axis B. The host controller should command the system to synchronize operation of axis A and axis B. – The value of (Pn66A × Pn669/ 100) is low for the operating condi- tions. Check if the value of (Pn66A × Pn669/100) is appropriate. Set Pn66A and Pn669 to appropriate values. page 5-3 Continued on next page. 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6-40 A.910: Overload (warning before an A.710 or A.720 alarm occurs) The wiring is not correct or there is a faulty contact in the motor or encoder wiring. Check the wiring. Make sure that the Servo- motor and encoder are cor- rectly wired. – Operation was performed that exceeded the overload protec- tion characteris- tics. Check the motor over- load characteristics and Run command. Reconsider the load and operating conditions. Or, increase the motor capacity. – An excessive load was applied during operation because the Ser- vomotor was not driven because of mechanical prob- lems. Check the operation reference and motor speed. Remove the mechanical problem. – The overload warning level (Pn52B) is not suitable. Check that the overload warning level (Pn52B) is suitable. Set a suitable overload warning level (Pn52B). * A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – A.911: Vibration Abnormal vibra- tion was detected during motor operation. Check for abnormal motor noise, and check the speed and torque waveforms during oper- ation. Reduce the motor speed. Or, reduce the servo gain with custom tuning. * The setting of Pn103 (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed. Check the moment of inertia ratio or mass ratio. Set Pn103 (Moment of Iner- tia Ratio) to an appropriate value. * The vibration detection level (Pn312 or Pn384) is not suitable. Check that the vibration detection level (Pn312 or Pn384) is suitable. Set a suitable vibration detection level (Pn312 or Pn384). * Continued on next page. Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6 Maintenance 6-41 A.912: Internal Tempera- ture Warning 1 (Control Board Tem- perature Error) The surrounding temperature is too high. Check the surrounding temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environ- ment monitor. Decrease the surrounding temperature by improving the SERVOPACK installa- tion conditions. * An overload alarm was reset by turn- ing OFF the power supply too many times. Check the alarm display to see if there is an overload alarm. Change the method for resetting the alarm. – There was an excessive load or operation was performed that exceeded the regenerative pro- cessing capacity. Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity. Reconsider the load and operating conditions. – The SERVOPACK installation orien- tation is not cor- rect or there is insufficient space around the SER- VOPACK. Check the SERVO- PACK installation con- ditions. Install the SERVOPACK according to specifications. * A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – A.913: Internal Tempera- ture Warning 2 (Power Board Tem- perature Error) The surrounding temperature is too high. Check the surrounding temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environ- ment monitor. Decrease the surrounding temperature by improving the SERVOPACK installa- tion conditions. * An overload alarm was reset by turn- ing OFF the power supply too many times. Check the alarm display to see if there is an overload alarm. Change the method for resetting the alarm. – There was an excessive load or operation was performed that exceeded the regenerative pro- cessing capacity. Use the accumulated load ratio to check the load during operation, and use the regenera- tive load ratio to check the regenerative pro- cessing capacity. Reconsider the load and operating conditions. – The SERVOPACK installation orien- tation is not cor- rect or there is insufficient space around the SERVOPACK. Check the SERVO- PACK installation con- ditions. Install the SERVOPACK according to specifications. * A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – Continued on next page. Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6-42 A.920: Regenerative Over- load (warning before an A.320 alarm occurs) The power supply voltage exceeded the specified range. Measure the power supply voltage. Set the power supply volt- age within the specified range. – There is insuffi- cient external regenerative resis- tance, regenera- tive resistor capacity, or SERVOPACK capacity, or there has been a con- tinuous regenera- tion state. Check the operating conditions or the capacity using the Sig- maJunmaSize+ Capac- ity Selection Software or another means. Change the regenerative resistance value, regenera- tive resistance capacity, or SERVOPACK capacity. Reconsider the operating conditions using the Sigma- JunmaSize+ Capacity Selection Software or other means. – There was a con- tinuous regenera- tion state because a negative load was continuously applied. Check the load applied to the Servomotor during operation. Reconsider the system including the servo, machine, and operating conditions. – A.921: Dynamic Brake Overload (warning before an A.731 alarm occurs) The Servomotor was rotated by an external force. Check the operation status. Implement measures to ensure that the motor will not be rotated by an exter- nal force. – When the Servo- motor was stopped with the dynamic brake, the rotational or linear kinetic energy exceeded the capacity of the dynamic brake resistor. Check the power con- sumed by the DB resis- tor to see how frequently the DB is being used. Reconsider the following: • Reduce the Servomotor command speed. • Decrease the moment of inertia or mass. • Reduce the frequency of stopping with the dynamic brake. – A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – A.923: SERVOPACK Built- in Fan Stopped The fan inside the SERVOPACK stopped. Check for foreign mat- ter inside the SERVO- PACK. Remove foreign matter from the SERVOPACK. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. – A.930: Absolute Encoder Battery Error (The absolute encoder battery voltage was lower than the spec- ified level.) (Detected only when an abso- lute encoder is con- nected.) The battery con- nection is faulty or a battery is not connected. Check the battery con- nection. Correct the battery connec- tion. * The battery volt- age is lower than the specified value (2.7 V). Measure the battery voltage. Replace the battery. * A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – Continued on next page. Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6 Maintenance 6-43 A.93B: Overheat Warning The surrounding temperature is too high. Check the surrounding temperature using a thermometer. Lower the surrounding tem- perature by improving the installation conditions of the Linear Servomotor or the machine. – Operation was performed under an excessive load. Use the accumulated load ratio to check the load during operation. Reconsider the load and operating conditions. – A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – The temperature detection circuit in the Linear Servo- motor is faulty or the sensor attached to the machine is faulty. – The temperature detection circuit in the Linear Servo- motor may be faulty or the sensor attached to the machine may be faulty. Replace the Linear Servo- motor or repair the sensor attached to the machine. – A.942: Speed Ripple Com- pensation Informa- tion Disagreement The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensa- tion information stored in the SERVOPACK. – Reset the speed ripple compensation value on the SigmaWin+. * – Set Pn423 to n.1 (Do not detect A.942 alarms). However, changing the set- ting may increase the speed ripple. * – Set Pn423 to n.0 (Disable speed ripple com- pensation). However, changing the setting may increase the speed ripple. * A.94A: Data Setting Warn- ing 1 (Parameter Number Error) An invalid param- eter number was used. Check the command that caused the warn- ing. Use the correct parameter number. * A.94b: Data Setting Warn- ing 2 (Out of Range) The set com- mand data was clamped to the minimum or maxi- mum value of the setting range. Check the command that caused the warn- ing. Set the parameter within the setting range. * A.94C: Data Setting Warn- ing 3 (Calculation Error) The calculation result of the set- ting is not correct. Check the command that caused the warn- ing. Set the parameter within the setting range. * A.94d: Data Setting Warn- ing 4 (Parameter Size) The parameter size set in the command is not correct. Check the command that caused the warn- ing. Set the correct parameter size. * A.94E: Data Setting Warn- ing 5 (Latch Mode Error) A latch mode error was detected. Check the command that caused the warn- ing. Change the setting of Pn850 or the LT_MOD data for the LTMOD_ON com- mand sent by the host con- troller to an appropriate value. (This applies when using the MECHATROLINK-II- compatible profile.) * Continued on next page. Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6-44 A.95A: Command Warning 1 (Unsatisfied Com- mand Conditions) The command conditions are not satisfied. Check the command that caused the warn- ing. Send the command after the command conditions are satisfied. * A.95b: Command Warning 2 (Unsupported Command) An unsupported command was received. Check the command that caused the warn- ing. Do not send unsupported commands. * A.95d: Command Warning 4 (Command Inter- ference) The command sending condi- tions for latch- related com- mands was not satisfied. Check the command that caused the warn- ing. Send the command after the command conditions are satisfied. * A.95E: Command Warning 5 (Subcommand Not Possible) The command sending condi- tions for subcom- mands was not satisfied. Check the command that caused the warn- ing. Send the command after the conditions are satisfied. * A.95F: Command Warning 6 (Undefined Com- mand) An undefined command was sent. Check the command that caused the warn- ing. Do not send undefined commands. * A.960: MECHATROLINK Communications Warning The MECHA- TROLINK Com- munications Cable is not wired cor- rectly. Check the wiring condi- tions. Correct the MECHA- TROLINK communications cable wiring. * A MECHA- TROLINK data reception error occurred due to noise. Confirm the installation conditions. Implement the following countermeasures against noise. • Check the MECHA- TROLINK Communica- tions Cable and FG wiring and implement counter- measures to prevent noise from entering. • Attach a ferrite core to the MECHATROLINK Com- munications Cable. – A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – A.971: Undervoltage For a 200-V SERVOPACK, the AC power supply voltage dropped below 140 V. Measure the power supply voltage. Set the power supply volt- age within the specified range. – The power supply voltage dropped during operation. Measure the power supply voltage. Increase the power supply capacity. – A momentary power interrup- tion occurred. Measure the power supply voltage. If you have changed the setting of Pn509 (Momen- tary Power Interruption Hold Time), decrease the setting. * The SERVOPACK fuse is blown out. – Replace the SERVOPACK and connect a reactor. * A failure occurred in the SERVO- PACK. – The SERVOPACK may be faulty. Replace the SERVO- PACK. – Continued on next page. Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.2 Warning Displays 6.2.2 Troubleshooting Warnings 6 Maintenance 6-45 * For details, refer to the following manual. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) A.97A: Command Warning 7 (Phase Error) A command that cannot be exe- cuted in the cur- rent phase was sent. – Send the command after the command conditions are satisfied. – A.97b: Data Clamp Out of Range The set com- mand data was clamped to the minimum or maxi- mum value of the setting range. – Set the command data within the setting ranges. – A.97C: Synchronized Stop- ping Occurred An alarm occurred on a single axis. Check the alarm that occurred on the single axis. Troubleshoot the problem according to the correction methods for the alarm that occurred on the single axis. – A.9A0: Overtravel (Over- travel status was detected.) Overtravel was detected while the servo was ON. Check the status of the overtravel signals on the input signal monitor. Even if an overtravel signal is not shown by the input signal monitor, momentary overtravel may have been detected. Take the following precautions. • Do not specify move- ments that would cause overtravel from the host controller. • Check the wiring of the overtravel signals. • Implement countermea- sures against noise. * A.9b0: Preventative Mainte- nance Warning One of the con- sumable parts has reached the end of its service life. – Replace the part. Contact your Yaskawa representa- tive for replacement. * Continued from previous page. Warning Number: Warning Name Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-46 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor This section provides troubleshooting based on the operation and conditions of the Servomo- tor, including causes and corrections. Problem Possible Cause Confirmation Correction Reference Servomotor Does Not Start The control power supply is not turned ON. Measure the voltage between control power supply terminals. Turn OFF the power supply to the servo system. Correct the wiring so that the control power supply is turned ON. – The main circuit power sup- ply is not turned ON. Measure the voltage across the main circuit power input terminals. Turn OFF the power supply to the servo system. Correct the wiring so that the main circuit power supply is turned ON. – The I/O signal connector (CN1) pins are not wired cor- rectly or are disconnected. Turn OFF the power sup- ply to the servo system. Check the wiring condi- tion of the I/O signal con- nector (CN1) pins. Correct the wiring of the I/O signal connec- tor (CN1) pins. * The wiring for the Servomo- tor Main Circuit Cables or Encoder Cable is discon- nected. Check the wiring condi- tions. Turn OFF the power supply to the servo system. Wire the cable cor- rectly. – There is an overload on the Servomotor. Operate the Servomotor with no load and check the load status. Turn OFF the power supply to the servo system. Reduce the load or replace the Servomo- tor with a Servomotor with a larger capacity. – The type of encoder that is being used does not agree with the setting of Pn002 = n.X (Encoder Usage). Check the type of the encoder that is being used and the setting of Pn002 = n.X. Set Pn002 = n.X according to the type of the encoder that is being used. * There is a mistake in the input signal allocations (Pn50A, Pn50B, Pn511, Pn516, or Pn590 to Pn599). Check the input signal allocations (Pn50A, Pn50B, Pn511, Pn516, and Pn590 to Pn599). Correctly allocate the input signals (Pn50A, Pn50B, Pn511, Pn516, and Pn590 to Pn599). * The SV_ON command was not sent. Check the commands sent from the host con- troller. Send the SV_ON com- mand from the host controller. – The SENS_ON (Turn ON Sensor) command was not sent. Check the commands sent from the host con- troller. Send the commands to the SERVOPACK in the correct sequence. – The P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal is still OFF. Check the P-OT and N- OT signals. Turn ON the P-OT and N-OT signals. * The FSTP (Forced Stop Input) signal is still OFF. Check the FSTP signal. • Turn ON the FSTP signal. • If you will not use the function to force the motor to stop, set Pn516 = n.X (FSTP (Forced Stop Input) Signal Alloca- tion) to disable the signal. * Continued on next page. 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-47 6 Maintenance Servomotor Does Not Start A failure occurred in the SERVOPACK. – Turn OFF the power supply to the servo system. Replace the SERVO- PACK. – The polarity detection was not executed. Check the setting of Pn080 =n.X (Polar- ity Sensor Selection). Correct the parameter setting. * Check the inputs to the SV_ON (Servo ON) com- mand. • If you are using an incremental linear encoder, send the SV_ON command from the host control- ler. • If you are using an absolute linear encoder, execute polarity detection. * Servomotor Moves Instanta- neously, and Then Stops There is a mistake in the Ser- vomotor wiring. Turn OFF the power sup- ply to the servo system. Check the wiring. Wire the Servomotor correctly. – There is a mistake in the wir- ing of the encoder or Serial Converter Unit. Turn OFF the power sup- ply to the servo system. Check the wiring. Wire the Serial Con- verter Unit correctly. – There is a mistake in the lin- ear encoder wiring. Turn OFF the power sup- ply to the servo system. Check the wiring. Wire the cable cor- rectly. – The setting of Pn282 (Linear Encoder Scale Pitch) is not correct. Check the setting of Pn282. Correct the setting of Pn282. * The count-up direction of the linear encoder does not match the forward direction of the Moving Coil in the motor. Check the directions. Change the setting of Pn080 = n.X (Motor Phase Sequence Selection). Place the linear encoder and motor in the same direction. * Polarity detection was not performed correctly. Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°. Correct the settings for the polarity detection- related parameters. – Servomotor Speed Is Unstable There is a faulty connection in the Servomotor wiring. The connector connec- tions for the power line (U, V, and W phases) and the encoder or Serial Converter Unit may be unstable. Turn OFF the power sup- ply to the servo system. Check the wiring. Tighten any loose ter- minals or connectors and correct the wiring. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-48 Servomotor Moves with- out a Refer- ence Input A failure occurred in the SERVOPACK. – Turn OFF the power supply to the servo system. Replace the SERVO- PACK. – The count-up direction of the linear encoder does not match the forward direction of the Moving Coil in the motor. Check the directions. Change the setting of Pn080 = n.X (Motor Phase Sequence Selection). Match the linear encoder direction and Servomotor direction. * Polarity detection was not performed correctly. Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°. Correct the settings for the polarity detection- related parameters. – Dynamic Brake Does Not Operate The setting of Pn001 = n.X (Motor Stopping Method for Servo OFF and Group 1 Alarms) is not suit- able. Check the setting of Pn001 = n.X. Set Pn001 = n.X correctly. – The dynamic brake resistor is disconnected. Check the moment of inertia, motor speed, and dynamic brake frequency of use. If the moment of inertia, motor speed, or dynamic brake frequency of use is excessive, the dynamic brake resis- tance may be discon- nected. Turn OFF the power supply to the servo system. Replace the SERVO- PACK. To prevent dis- connection, reduce the load. – There was a failure in the dynamic brake drive circuit. – There is a defective component in the dynamic brake circuit. Turn OFF the power supply to the servo system. Replace the SERVO- PACK. – Abnormal Noise from Servomotor The Servomotor vibrated considerably while perform- ing the tuning-less function with the default settings. Check the waveform of the motor speed. Reduce the load so that the moment of inertia ratio or mass ratio is within the allow- able value, or increase the load level or reduce the rigidity level in the tuning-less level set- tings. If the situation is not improved, disable the tuning-less function (i.e., set Pn170 to n.0) and execute autotuning either with or without a host refer- ence. * The machine mounting is not secure. Turn OFF the power sup- ply to the servo system. Check to see if there are any loose mounting screws. Tighten the mounting screws. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-49 6 Maintenance Abnormal Noise from Servomotor The machine mounting is not secure. Turn OFF the power sup- ply to the servo system. Check to see if there is misalignment in the cou- pling. Align the coupling. – Turn OFF the power sup- ply to the servo system. Check to see if the cou- pling is balanced. Balance the coupling. – The bearings are defective. Turn OFF the power sup- ply to the servo system. Check for noise and vibration around the bear- ings. Replace the Servomo- tor. – There is a vibration source at the driven machine. Turn OFF the power sup- ply to the servo system. Check for any foreign matter, damage, or defor- mation in the machine’s moving parts. Consult with the machine manufacturer. – Noise interference occurred because of incorrect I/O sig- nal cable specifications. Turn OFF the power sup- ply to the servo system. Check the I/O signal cables to see if they sat- isfy specifications. Use shielded twisted-pair cables or screened twisted-pair cables with conductors of at least 0.12 mm 2 (stranded wire). Use cables that satisfy the specifications. – Noise interference occurred because an I/O signal cable is too long. Turn OFF the power sup- ply to the servo system. Check the lengths of the I/O signal cables. The I/O signal cables must be no longer than 3 m. – Noise interference occurred because of incorrect Encoder Cable specifications. Turn OFF the power sup- ply to the servo system. Check the Encoder Cable to see if it satisfies speci- fications. Use shielded twisted-pair cables or screened twisted-pair cables with conductors of at least 0.12 mm 2 (stranded wire). Use cables that satisfy the specifications. – Noise interference occurred because the Encoder Cable is too long. Turn OFF the power sup- ply to the servo system. Check the length of the Encoder Cable. • Rotary Servomotors: The Encoder Cable length must be 50 m max. • Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. – Noise interference occurred because the Encoder Cable is damaged. Turn OFF the power sup- ply to the servo system. Check the Encoder Cable to see if it is pinched or the sheath is damaged. Replace the Encoder Cable and correct the cable installation envi- ronment. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-50 Abnormal Noise from Servomotor The Encoder Cable was sub- jected to excessive noise interference. Turn OFF the power sup- ply to the servo system. Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line. Correct the cable lay- out so that no surge is applied by high-current lines. – There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder. Turn OFF the power sup- ply to the servo system. Check to see if the machines are correctly grounded. Properly ground the machines to separate them from the FG of the encoder. – There is a SERVOPACK pulse counting error due to noise. Check to see if there is noise interference on the signal line from the encoder. Turn OFF the power supply to the servo system. Implement counter- measures against noise for the encoder wiring. – The encoder was subjected to excessive vibration or shock. Turn OFF the power sup- ply to the servo system. Check to see if vibration from the machine occurred. Check the Ser- vomotor installation (mounting surface preci- sion, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method). Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder. – A failure occurred in the encoder. – Turn OFF the power supply to the servo system. Replace the Servomo- tor. – A failure occurred in the Serial Converter Unit. – Turn OFF the power supply to the servo system. Replace the Serial Con- verter Unit. – A failure occurred in the linear encoder. – Turn OFF the power supply to the servo system. Replace the linear encoder. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-51 6 Maintenance Servomotor Vibrates at Frequency of Approx. 200 to 400 Hz. The servo gains are not bal- anced. Check to see if the servo gains have been cor- rectly tuned. Perform autotuning without a host refer- ence. * The setting of Pn100 (Speed Loop Gain) is too high. Check the setting of Pn100. The default setting is Kv = 40.0 Hz. Set Pn100 to an appro- priate value. – The setting of Pn102 (Posi- tion Loop Gain) is too high. Check the setting of Pn102. The default setting is Kp = 40.0/s. Set Pn102 to an appro- priate value. – The setting of Pn101 (Speed Loop Integral Time Con- stant) is not appropriate. Check the setting of Pn101. The default setting is Ti = 20.0 ms. Set Pn101 to an appro- priate value. – The setting of Pn103 (Moment of Inertia Ratio or Mass Ratio) is not appropri- ate. Check the setting of Pn103. Set Pn103 to an appro- priate value. – Large Motor Speed Overshoot on Starting and Stop- ping The servo gains are not bal- anced. Check to see if the servo gains have been cor- rectly tuned. Perform autotuning without a host refer- ence. * The setting of Pn100 (Speed Loop Gain) is too high. Check the setting of Pn100. The default setting is Kv = 40.0 Hz. Set Pn100 to an appro- priate value. – The setting of Pn102 (Posi- tion Loop Gain) is too high. Check the setting of Pn102. The default setting is Kp = 40.0/s. Set Pn102 to an appro- priate value. – The setting of Pn101 (Speed Loop Integral Time Con- stant) is not appropriate. Check the setting of Pn101. The default setting is Ti = 20.0 ms. Set Pn101 to an appro- priate value. – The setting of Pn103 (Moment of Inertia Ratio or Mass Ratio) is not appropri- ate. Check the setting of Pn103. Set Pn103 to an appro- priate value. – The torque reference is satu- rated. Check the waveform of the torque reference. Use the mode switch. – The force limits (Pn483 and Pn484) are set to the default values. The default values of the force limits are Pn483 = 30% and Pn484 = 30%. Set Pn483 and Pn484 to appropriate values. * Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-52 Absolute Encoder Position Deviation Error (The position that was saved in the host con- troller when the power was turned OFF is dif- ferent from the posi- tion when the power was next turned ON.) Noise interference occurred because of incorrect Encoder Cable specifications. Turn OFF the power sup- ply to the servo system. Check the Encoder Cable to see if it satisfies speci- fications. Use shielded twisted-pair cables or screened twisted-pair cables with conductors of at least 0.12 mm 2 (stranded wire). Use cables that satisfy the specifications. – Noise interference occurred because the Encoder Cable is too long. Turn OFF the power sup- ply to the servo system. Check the length of the Encoder Cable. • Rotary Servomotors: The Encoder Cable length must be 50 m max. • Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. – Noise interference occurred because the Encoder Cable is damaged. Turn OFF the power sup- ply to the servo system. Check the Encoder Cable to see if it is pinched or the sheath is damaged. Replace the Encoder Cable and correct the cable installation envi- ronment. – The Encoder Cable was sub- ject to excessive noise inter- ference. Turn OFF the power sup- ply to the servo system. Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line. Correct the cable lay- out so that no surge is applied by high-current lines. – There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder. Turn OFF the power sup- ply to the servo system. Check to see if the machines are correctly grounded. Properly ground the machines to separate them from the FG of the encoder. – There is a SERVOPACK pulse counting error due to noise. Turn OFF the power sup- ply to the servo system. Check to see if there is noise interference on the I/O signal line from the encoder or Serial Con- verter Unit. Implement counter- measures against noise for the encoder or Serial Converter Unit wiring. – The encoder was subjected to excessive vibration or shock. Turn OFF the power sup- ply to the servo system. Check to see if vibration from the machine occurred. Check the Servomotor installation (mounting sur- face precision, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method). Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-53 6 Maintenance Absolute Encoder Position Deviation Error (The position that was saved in the host con- troller when the power was turned OFF is dif- ferent from the posi- tion when the power was next turned ON.) A failure occurred in the encoder. – Turn OFF the power supply to the servo system. Replace the Servomo- tor or linear encoder. – A failure occurred in the SERVOPACK. – Turn OFF the power supply to the servo system. Replace the SERVO- PACK. – Host Controller Multiturn Data or Absolute Encoder Position Data Reading Error Check the error detec- tion section of the host controller. Correct the error detec- tion section of the host controller. – Check to see if the host controller is executing data parity checks. Perform parity checks for the multiturn data or absolute encoder posi- tion data. – Check for noise interfer- ence in the cable between the SERVO- PACK and the host con- troller. Implement counter- measures against noise and then perform parity checks again for the multiturn data or abso- lute encoder position data. – Overtravel Occurred The P-OT/N-OT (Forward Drive Prohibit or Reverse Drive Prohibit) signal was input. Check the external power supply (+24 V) voltage for the input signals. Correct the external power supply (+24 V) voltage for the input signals. – Check the operating con- dition of the overtravel limit switches. Make sure that the overtravel limit switches operate correctly. – Check the wiring of the overtravel limit switches. Correct the wiring of the overtravel limit switches. * Check the settings of the overtravel input signal allocations (Pn50A/ Pn50B or Pn590/Pn591). Set the parameters to correct values. * The P-OT/N-OT (Forward Drive Prohibit or Reverse Drive Prohibit) signal mal- functioned. Check for fluctuation in the external power supply (+24 V) voltage for the input signals. Eliminate fluctuation from the external power supply (+24 V) voltage for the input signals. – Check to see if the opera- tion of the overtravel limit switches is unstable. Stabilize the operating condition of the over- travel limit switches. – Check the wiring of the overtravel limit switches (e.g., check for cable damage and loose screws). Correct the wiring of the overtravel limit switches. – There is a mistake in the allo- cation of the P-OT or N-OT (Forward Drive Prohibit or Reverse Drive Prohibit) sig- nal in Pn50A = n.X or Pn50B = n.X. Check to see if the P-OT signal is allocated in Pn50A = n.X. If another signal is allo- cated in Pn50A = n.X, allocate the P-OT signal instead. * Check to see if the N-OT signal is allocated in Pn50B = n.X. If another signal is allo- cated in Pn50B = n.X, allocate the N-OT signal instead. Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-54 Overtravel Occurred The selection of the Servo- motor stopping method is not correct. Check the servo OFF stopping method set in Pn001 = n.X or Pn001 = n.X. Select a Servomotor stopping method other than coasting to a stop. * Check the torque control stopping method set in Pn001 = n.X or Pn001 = n.X. Select a Servomotor stopping method other than coasting to a stop. Improper Stop Posi- tion for Overtravel (OT) Signal The limit switch position and dog length are not appropri- ate. – Install the limit switch at the appropriate posi- tion. – The overtravel limit switch position is too close for the coasting distance. – Install the overtravel limit switch at the appropriate position. – Position Deviation (without Alarm) Noise interference occurred because of incorrect Encoder Cable specifications. Check the Encoder Cable to see if it satisfies speci- fications. Use shielded twisted-pair cables or screened twisted-pair cables with conductors of at least 0.12 mm 2 (stranded wire). Use cables that satisfy the specifications. – Noise interference occurred because the Encoder Cable is too long. Turn OFF the power sup- ply to the servo system. Check the length of the Encoder Cable. • Rotary Servomotors: The Encoder Cable length must be 50 m max. • Linear Servomotors: Make sure that the Serial Converter Unit cable is no longer than 20 m and that the Linear Encoder Cable and the Sensor Cable are no longer than 15 m each. – Noise interference occurred because the Encoder Cable is damaged. Turn OFF the power sup- ply to the servo system. Check the Encoder Cable to see if it is pinched or the sheath is damaged. Replace the Encoder Cable and correct the cable installation envi- ronment. – The Encoder Cable was sub- jected to excessive noise interference. Turn OFF the power sup- ply to the servo system. Check to see if the Encoder Cable is bundled with a high-current line or installed near a high-cur- rent line. Correct the cable lay- out so that no surge is applied by high-current lines. – There is variation in the FG potential because of the influence of machines on the Servomotor side, such as a welder. Turn OFF the power sup- ply to the servo system. Check to see if the machines are correctly grounded. Properly ground the machines to separate them from the FG of the encoder. – There is a SERVOPACK pulse counting error due to noise. Turn OFF the power sup- ply to the servo system. Check to see if there is noise interference on the I/O signal line from the encoder or Serial Con- verter Unit. Implement counter- measures against noise for the encoder wiring or Serial Converter Unit wiring. – Continued on next page. Continued from previous page. Problem Possible Cause Confirmation Correction Reference 6.3 Troubleshooting Based on the Operation and Conditions of the Servomotor 6-55 6 Maintenance * For details, refer to the following manual. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) Position Deviation (without Alarm) The encoder was subjected to excessive vibration or shock. Turn OFF the power sup- ply to the servo system. Check to see if vibration from the machine occurred. Check the Servomotor installation (mounting sur- face precision, securing state, and alignment). Check the linear encoder installation (mounting sur- face precision and secur- ing method). Reduce machine vibra- tion. Improve the mounting state of the Servomotor or linear encoder. – The coupling between the machine and Servomotor is not suitable. Turn OFF the power sup- ply to the servo system. Check to see if position offset occurs at the cou- pling between machine and Servomotor. Correctly secure the coupling between the machine and Servomo- tor. – Noise interference occurred because of incorrect I/O sig- nal cable specifications. Turn OFF the power sup- ply to the servo system. Check the I/O signal cables to see if they sat- isfy specifications. Use shielded twisted-pair cables or screened twisted-pair cables with conductors of at least 0.12 mm 2 (stranded wire). Use cables that satisfy the specifications. – Noise interference occurred because an I/O signal cable is too long. Turn OFF the power sup- ply to the servo system. Check the lengths of the I/O signal cables. The I/O signal cables must be no longer than 3 m. – An encoder fault occurred. (The pulse count does not change.) – Turn OFF the power supply to the servo system. Replace the Servomo- tor or linear encoder. – A failure occurred in the SERVOPACK. – Turn OFF the power supply to the servo system. Replace the SERVO- PACK. – Servomotor Overheated The surrounding air tempera- ture is too high. Measure the surrounding air temperature around the Servomotor. Reduce the surround- ing air temperature to 40°C or less. – The surface of the Servomo- tor is dirty. Turn OFF the power sup- ply to the servo system. Visually check the surface for dirt. Clean dirt, dust, and oil from the surface. – There is an overload on the Servomotor. Check the load status with a monitor. If the Servomotor is overloaded, reduce the load or replace the Servo Drive with a SERVOPACK and Ser- vomotor with larger capacities. – Polarity detection was not performed correctly. Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between ±10°. Correct the settings for the polarity detection- related parameters. – Continued from previous page. Problem Possible Cause Confirmation Correction Reference This chapter provides information on the parameters. 7.1 Parameter Lists . . . . . . . . . . . . . . . . . . . . . . 7-2 7.1.1 Interpreting the Servo Parameter Lists . . . . . . . . 7-2 7.1.2 Interpreting the MECHATROLINK-III Common Parameter Lists . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 7.2 List of Servo Parameters . . . . . . . . . . . . . . . 7-4 7.3 List of MECHATROLINK-III Common Parameters . . . 7-56 Parameter Lists 7 7.1 Parameter Lists 7.1.1 Interpreting the Servo Parameter Lists 7-2 7.1 Parameter Lists 7.1.1 Interpreting the Servo Parameter Lists Parameter No. Size Name Setting Range Setting Unit Default Setting Applica- ble Motors When Enabled Classi- fication Refer- ence Pn000 2 Basic Function Selections 0 0000h to 10B1h – 0000h All After restart Setup – Rotary Servomotor terms are used for parameters that are applicable to all Servomotors. If you are using a Linear Servomotor, you need to interpret the terms accordingly. Refer to the following section for details. Rotary: The parameter is used for only Rotary Servomotors. Linear: The parameter is used for only Linear Servomotors. All: The parameter is used for both Rotary Servomotors and Linear Servomotors. The types of Servomotors to which the parameter applies. Differences in Terms for Rotary Servomotors and Linear Servomotors on page xii Indicates when a change to the parameter will be effective. “After restart” indicates parameters that will be effective after one of the following is executed. • The power supply is turned OFF and ON again. • The CONFIG command is sent. • A software reset is executed. M3 All Axes n.X Rotation Direction Selection Reference Movement Direction Selection 0 Use CCW as the forward direction. – Use the direction in which the linear encoder counts up as the for- ward direction. 1 Use CW as the forward direction. (Reverse Rotation Mode) Use the direction in which the linear encoder counts down as the forward direction. (Reverse Movement Mode) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected Reference 0 When an encoder is not connected, start as SERVOPACK for Rotary Servomotor. – 1 When an encoder is not connected, start as SERVOPACK for Lin- ear Servomotor. If there are differences in the parameters for Rotary Servomotor and Linear Servomotor, information is provided for both. Bottom row: For Linear Servomotors Top row: For Rotary Servomotors Tuning Setup There are the following two classications. For details, refer to the following manual. Σ - 7-Series Σ -7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) Symbols are provided when a parameter is valid only for a specic prole. • : Parameters that are valid only for a MECHATROLINK-II-compatible prole. • : Parameters that are valid only for a MECHATROLINK-III standard servo prole. M2 M3 This parameter applies to both axis A and axis B. If you change the setting, the new setting will be applied to both axes. 7.1 Parameter Lists 7.1.2 Interpreting the MECHATROLINK-III Common Parameter Lists 7 Parameter Lists 7-3 7.1.2 Interpreting the MECHATROLINK-III Common Parameter Lists Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 61 PnAC2 4 Speed Loop Gain 1,000 to 2,000,000 0.001 Hz [0.1 Hz] 40000 All Immedi- ately Tuning All: The parameter is used for both Rotary Servomotors and Linear Servomotors. Rotary: The parameter is used for only Rotary Servomotors. Linear: The parameter is used for only Linear Servomotors. The types of Servomotors to which the parameter applies. Rotary Servomotor terms are used for parameters that are applicable to all Servomotors. If you are using a Linear Servomotor, you need to interpret the terms accordingly. Refer to the following section for details. Differences in Terms for Rotary Servomotors and Linear Servomotors on page xii Indicates when a change to the parameter will be effective. “After restart” indicates parameters that will be effective after one of the following is executed. • The power supply is turned OFF and ON again. • The CONFIG command is sent. • A software reset is executed. You can set the parameter in increments of the setting unit. However, if a unit is given in square brackets, the setting is automatically converted to the resolution given in the square brackets. 7.2 List of Servo Parameters 7-4 7.2 List of Servo Parameters The following table lists the parameters. Note: Do not change the following parameters from their default settings. • Reserved parameters • Parameters not given in this manual • Parameters that are not valid for the Servomotor that you are using, as given in the parameter table Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence Pn000 2 Basic Function Selec- tions 0 0000h to 10B1h – 0000h All After restart Setup – Pn001 2 Application Function Selections 1 0000h to 1142h – 0000h All After restart Setup – Continued on next page. n.X Rotation Direction Selection Reference Movement Direction Selection 0 Use CCW as the forward direction. *1 Use the direction in which the linear encoder counts up as the for- ward direction. 1 Use CW as the forward direction. (Reverse Rotation Mode) Use the direction in which the linear encoder counts down as the forward direction. (Reverse Movement Mode) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Rotary/Linear Servomotor Startup Selection When Encoder Is Not Con- nected Reference 0 When an encoder is not connected, start as SERVOPACK for Rotary Servomotor. *1 1 When an encoder is not connected, start as SERVOPACK for Lin- ear Servomotor. n.X Motor Stopping Method for Servo OFF and Group 1 Alarms Reference 0 Stop the motor by applying the dynamic brake. *1 1 Stop the motor by the applying dynamic brake and then release the dynamic brake. 2 Coast the motor to a stop without the dynamic brake. n.X Overtravel Stopping Method Reference 0 Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 = n.X). *1 1 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then servo-lock the motor. 2 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then let the motor coast. 3 Decelerate the motor to a stop using the deceleration time set in Pn30A and then servo-lock the motor. 4 Decelerate the motor to a stop using the deceleration time set in Pn30A and then let the motor coast. n.X Main Circuit Power Supply AC/DC Input Selection Reference 0 Input AC power as the main circuit power supply using the L1, L2, and L3 terminals (do not use shared converter). *1 1 Input DC power as the main circuit power supply using the B1/ and 2 terminals or the B1 and 2 terminals (use an external converter or the shared converter). n.X Reserved parameter (Do not change.) All Axes 7.2 List of Servo Parameters 7-5 7 Parameter Lists Pn002 2 Application Function Selections 2 0000h to 4213h – 0011h – After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X MECHATROLINK Command Position and Speed Control Option Applicable Motors Reference 0 Reserved setting (Do not use.) All *2 1 Use TLIM as the torque limit. 2 Reserved setting (Do not use.) 3 Reserved setting (Do not use.) n.X To rq ue Co n t r o l O pt io n Applicable Motors Reference 0 Reserved setting (Do not use.) All *2 1 Use the speed limit for torque control (VLIM) as the speed limit. n.X Encoder Usage Applicable Motors Reference 0 Use the encoder according to encoder specifica- tions. All *1 1 Use the encoder as an incremental encoder. 2 Use the encoder as a single-turn absolute encoder. Rotary n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-6 Pn006 2 Application Function Selections 6 0000h to 105Fh – 0002h All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence All Axes n.XX Analog Monitor 1 Signal Selection 00 Motor speed (1 V/1,000 min -1 ) Motor speed (1 V/1,000 mm/s) 01 Speed reference (1 V/1,000 min -1 ) Speed reference (1 V/1,000 mm/s) 02 Torque reference (1 V/100% rated torque) Force reference (1 V/100% rated force) 03 Position deviation (0.05 V/reference unit) 04 Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit) Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) 05 Position reference speed (1 V/1,000 min -1 ) Position reference speed (1 V/1,000 mm/s) 06 Reserved setting (Do not use.) 07 Reserved setting (Do not use.) 08 Positioning completion (positioning completed: 5 V, positioning not com- pleted: 0 V) 09 Speed feedforward (1 V/1,000 min -1 ) Speed feedforward (1 V/1,000 mm/s) 0A Torque feedforward (1 V/100% rated torque) Force feedforward (1 V/100% rated force) 0B Active gain (1st gain: 1 V, 2nd gain: 2 V) 0C Completion of position reference distribution (completed: 5 V, not com- pleted: 0 V) 0D Reserved setting (Do not use.) 0E Reserved setting (Do not use.) 0F Reserved setting (Do not use.) 10 Main circuit DC voltage 11 to 5F Reserved settings (Do not use.) n.X Reserved parameter (Do not change.) n.X Output Axis Selection 0 Output axis A data. 1 Output axis B data. 7.2 List of Servo Parameters 7-7 7 Parameter Lists Pn007 2 Application Function Selections 7 0000h to 105Fh – 0000h All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence All Axes n.XX Analog Monitor 2 Signal Selection 00 Motor speed (1 V/1,000 min -1 ) Motor speed (1 V/1,000 mm/s) 01 Speed reference (1 V/1,000 min -1 ) Speed reference (1 V/1,000 mm/s) 02 Torque reference (1 V/100% rated torque) Force reference (1 V/100% rated force) 03 Position deviation (0.05 V/reference unit) 04 Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit) Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) 05 Position reference speed (1 V/1,000 min -1 ) Position reference speed (1 V/1,000 mm/s) 06 Reserved setting (Do not use.) 07 Reserved setting (Do not use.) 08 Positioning completion (positioning completed: 5 V, positioning not com- pleted: 0 V) 09 Speed feedforward (1 V/1,000 min -1 ) Speed feedforward (1 V/1,000 mm/s) 0A Torque feedforward (1 V/100% rated torque) Force feedforward (1 V/100% rated force) 0B Active gain (1st gain: 1 V, 2nd gain: 2 V) 0C Completion of position reference distribution (completed: 5 V, not com- pleted: 0 V) 0D Reserved setting (Do not use.) 0E Reserved setting (Do not use.) 0F Reserved setting (Do not use.) 10 Main circuit DC voltage 11 to 5F Reserved settings (Do not use.) n.X Reserved parameter (Do not change.) n.X Output Axis Selection 0 Output axis A data. 1 Output axis B data. 7.2 List of Servo Parameters 7-8 Pn008 2 Application Function Selections 8 0000h to 7121h – 4000h Rotary After restart Setup – Pn009 2 Application Function Selections 9 0000h to 0121h – 0010h All After restart Tuning – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Low Battery Voltage Alarm/Warning Selection Reference 0 Output alarm (A.830) for low battery voltage. *1 1 Output warning (A.930) for low battery voltage. n.X Function Selection for Undervoltage Reference 0 Do not detect undervoltage. *1 1 Detect undervoltage warning and limit torque at host controller. 2 Detect undervoltage warning and limit torque with Pn424 and Pn425 (i.e., only in SERVOPACK). n.X Warning Detection Selection Reference 0 Detect warnings. *1 1 Do not detect warnings except for A.971. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Current Control Mode Selection 0 Use current control mode 1. *1 1 2 Use current control mode 2. n.X Speed Detection Method Selection Reference 0 Use speed detection 1. *1 1 Use speed detection 2. n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-9 7 Parameter Lists Pn00A 2 Application Function Selections A 0000h to 1044h – 0001h All After restart Setup – Pn00B 2 Application Function Selections B 0000h to 1121h – 0000h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Motor Stopping Method for Group 2 Alarms Reference 0 Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 = n.X). *1 1 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque. Use the setting of Pn001 = n.X for the status after stopping. 2 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then let the motor coast. 3 Decelerate the motor to a stop using the deceleration time set in Pn30A. Use the setting of Pn001 = n.X for the status after stopping. 4 Decelerate the motor to a stop using the deceleration time set in Pn30A and then let the motor coast. n.X Stopping Method for Forced Stops Reference 0 Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 = n.X). *1 1 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque. Use the setting of Pn001 = n.X for the status after stopping. 2 Decelerate the motor to a stop using the torque set in Pn406 as the maximum torque and then let the motor coast. 3 Decelerate the motor to a stop using the deceleration time set in Pn30A. Use the setting of Pn001 = n.X for the status after stopping. 4 Decelerate the motor to a stop using the deceleration time set in Pn30A and then let the motor coast. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Operator Parameter Display Selection Reference 0 Display only setup parameters. *1 1 Display all parameters. n.X Motor Stopping Method for Group 2 Alarms Reference 0 Stop the motor by setting the speed reference to 0. *1 1 Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 = n.X). 2 Set the stopping method with Pn00A = n.X. n.X Power Input Selection for Three-phase SERVOPACK Reference 0 Use a three-phase power supply input. *1 1 Use a three-phase power supply input as a single-phase power supply input. n.X Reserved parameter (Do not change.) All Axes 7.2 List of Servo Parameters 7-10 Pn00C 2 Application Function Selections C 0000h to 0131h – 0000h – After restart Setup *1 Pn00D 2 Application Function Selections D 0000h to 1001h – 0000h All After restart Setup *1 Pn00F 2 Application Function Selections F 0000h to 2011h – 0000 h All After restart Setup – Pn021 2 Reserved parameter (Do not change.) –– 0000h All ––– Pn022 2 Reserved parameter (Do not change.) –– 0000h All – – – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Function Selection for Test without a Motor Applicable Motors 0 Disable tests without a motor. All 1 Enable tests without a motor. n. X Encoder Resolution for Tests without a Motor Applicable Motors 0Use 13 bits. Rotary 1Use 20 bits. 2Use 22 bits. 3Use 24 bits. n.X Encoder Type Selection for Tests without a Motor Applicable Motors 0 Use an incremental encoder. All 1 Use an absolute encoder. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Overtravel Warning Detection Selection 0 Do not detect overtravel warnings. 1 Detect overtravel warnings. All Axes n.X Preventative Maintenance Warning Selection Reference 0 Do not detect preventative maintenance warnings. *1 1 Detect preventative maintenance warnings. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-11 7 Parameter Lists Pn080 2 Application Function Selections 80 0000h to 1111h – 0000h Linear After restart Setup – Pn100 2 Speed Loop Gain 10 to 20,000 0.1 Hz 400 All Immedi- ately Tuning *1 Pn101 2 Speed Loop Integral Time Constant 15 to 51,200 0.01 ms 2000 All Immedi- ately Tuning *1 Pn102 2 Position Loop Gain 10 to 20,000 0.1/s 400 All Immedi- ately Tuning *1 Pn103 2 Moment of Inertia Ratio 0 to 20,000 1% 100 All Immedi- ately Tuning *1 Pn104 2 Second Speed Loop Gain 10 to 20,000 0.1 Hz 400 All Immedi- ately Tuning *1 Pn105 2 Second Speed Loop Integral Time Constant 15 to 51,200 0.01 ms 2000 All Immedi- ately Tuning *1 Pn106 2 Second Position Loop Gain 10 to 20,000 0.1/s 400 All Immedi- ately Tuning *1 Pn109 2 Feedforward 0 to 100 1% 0 All Immedi- ately Tuning *1 Pn10A 2 Feedforward Filter Time Constant 0 to 6,400 0.01 ms 0 All Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Polarity Sensor Selection Reference 0 Use polarity sensor. *1 1 Do not use polarity sensor. n.X Motor Phase Sequence Selection Reference 0 Set a phase-A lead as a phase sequence of U, V, and W. *1 1 Set a phase-B lead as a phase sequence of U, V, and W. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-12 Pn10B 2 Gain Application Selec- tions 0000h to 5334h – 0000h All – Setup – Pn10C 2 Mode Switching Level for Torque Reference 0 to 800 1% 200 All Immedi- ately Tuning *1 Pn10D 2 Mode Switching Level for Speed Reference 0 to 10,000 1 min -1 0Rotary Immedi- ately Tuning *1 Pn10E 2 Mode Switching Level for Acceleration 0 to 30,000 1 min -1 /s 0Rotary Immedi- ately Tuning *1 Pn10F 2 Mode Switching Level for Position Deviation 0 to 10,000 1 refer- ence unit 0All Immedi- ately Tuning *1 Pn11F 2 Position Integral Time Constant 0 to 50,000 0.1 ms 0 All Immedi- ately Tuning *1 Pn121 2 Friction Compensation Gain 10 to 1,000 1% 100 All Immedi- ately Tuning *1 Pn122 2 Second Friction Com- pensation Gain 10 to 1,000 1% 100 All Immedi- ately Tuning *1 Pn123 2 Friction Compensation Coefficient 0 to 100 1% 0 All Immedi- ately Tuning *1 Pn124 2 Friction Compensation Frequency Correction -10,000 to 10,000 0.1 Hz 0 All Immedi- ately Tuning *1 Pn125 2 Friction Compensation Gain Correction 1 to 1,000 1% 100 All Immedi- ately Tuning *1 Pn131 2 Gain Switching Time 1 0 to 65,535 1 ms 0 All Immedi- ately Tuning *1 Pn132 2 Gain Switching Time 2 0 to 65,535 1 ms 0 All Immedi- ately Tuning *1 Pn135 2 Gain Switching Waiting Time 1 0 to 65,535 1 ms 0 All Immedi- ately Tuning *1 Pn136 2 Gain Switching Waiting Time 2 0 to 65,535 1 ms 0 All Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Mode Switching Selection When Enabled Reference 0 Use the internal torque reference as the condition (level setting: Pn10C). Immedi- ately *1 1 Use the speed reference as the condition (level set- ting: Pn10D). Use the speed reference as the condition (level set- ting: Pn181). 2 Use the acceleration reference as the condition (level setting: Pn10E). Use the acceleration reference as the condition (level setting: Pn182). 3 Use the position deviation as the condition (level set- ting: Pn10F). 4 Do not use mode switching. n.X Speed Loop Control Method When Enabled Reference 0PI control After restart *1 1I-P control 2 and 3 Reserved settings (Do not use.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-13 7 Parameter Lists Pn139 2 Automatic Gain Switch- ing Selections 1 0000h to 0052h – 0000h All Immedi- ately Tuning *1 Pn13D 2 Current Gain Level 100 to 2,000 1% 2000 All Immedi- ately Tuning *1 Pn140 2 Model Following Con- trol-Related Selections 0000h to 1121h – 0100h All Immedi- ately Tuning – Pn141 2 Model Following Con- trol Gain 10 to 20,000 0.1/s 500 All Immedi- ately Tuning *1 Pn142 2 Model Following Con- trol Gain Correction 500 to 2,000 0.1% 1000 All Immedi- ately Tuning *1 Pn143 2 Model Following Con- trol Bias in the Forward Direction 0 to 10,000 0.1% 1000 All Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Gain Switching Selection 0 Use manual gain switching. The gain is switched manually with G-SEL in the servo command output sig- nals (SVCMD_IO). 1 Reserved setting (Do not use.) 2 Use automatic gain switching pattern 1. The gain is switched automatically from the first gain to the second gain when switching condition A is satisfied. The gain is switched automatically from the second gain to the first gain when switching condition A is not satisfied. n.X Gain Switching Condition A 0 /COIN (Positioning Completion Output) signal turns ON. 1 /COIN (Positioning Completion Output) signal turns OFF. 2 /NEAR (Near Output) signal turns ON. 3 /NEAR (Near Output) signal turns OFF. 4 Position reference filter output is 0 and position reference input is OFF. 5 Position reference input is ON. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Model Following Control Selection Reference 0 Do not use model following control. *1 1 Use model following control. n.X Vibration Suppression Selection Reference 0 Do not perform vibration suppression. *1 1 Perform vibration suppression for a specific frequency. 2 Perform vibration suppression for two specific frequencies. n.X Vibration Suppression Adjustment Selection Reference 0 Do not adjust vibration suppression automatically during execu- tion of autotuning without a host reference, autotuning with a host reference, and custom tuning. *1 1 Adjust vibration suppression automatically during execution of autotuning without a host reference, autotuning with a host ref- erence, and custom tuning. n.X Speed Feedforward (VFF)/Torque Feedforward (TFF) Selection Reference 0 Do not use model following control and speed/torque feedfor- ward together. *1 1 Use model following control and speed/torque feedforward together. 7.2 List of Servo Parameters 7-14 Pn144 2 Model Following Con- trol Bias in the Reverse Direction 0 to 10,000 0.1% 1000 All Immedi- ately Tuning *1 Pn145 2 Vibration Suppression 1 Frequency A 10 to 2,500 0.1 Hz 500 All Immedi- ately Tuning *1 Pn146 2 Vibration Suppression 1 Frequency B 10 to 2,500 0.1 Hz 700 All Immedi- ately Tuning *1 Pn147 2 Model Following Con- trol Speed Feedforward Compensation 0 to 10,000 0.1% 1000 All Immedi- ately Tuning *1 Pn148 2 Second Model Follow- ing Control Gain 10 to 20,000 0.1/s 500 All Immedi- ately Tuning *1 Pn149 2 Second Model Follow- ing Control Gain Correc- tion 500 to 2,000 0.1% 1000 All Immedi- ately Tuning *1 Pn14A 2 Vibration Suppression 2 Frequency 10 to 2,000 0.1 Hz 800 All Immedi- ately Tuning *1 Pn14B 2 Vibration Suppression 2 Correction 10 to 1,000 1% 100 All Immedi- ately Tuning *1 Pn14F 2 Control-Related Selec- tions 0000h to 0021h – 0021h All After restart Tuning – Pn160 2 Anti-Resonance Con- trol-Related Selections 0000h to 0011h – 0010h All Immedi- ately Tuning – Pn161 2 Anti-Resonance Fre- quency 10 to 20,000 0.1 Hz 1000 All Immedi- ately Tuning *1 Pn162 2 Anti-Resonance Gain Correction 1 to 1,000 1% 100 All Immedi- ately Tuning *1 Pn163 2 Anti-Resonance Damp- ing Gain 0 to 300 1% 0 All Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Model Following Control Type Selection Reference 0 Use model following control type 1. *1 1 Use model following control type 2. n.X Tuning-less Type Selection Reference 0 Use tuning-less type 1. *1 1 Use tuning-less type 2. 2 Use tuning-less type 3. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Anti-Resonance Control Selection Reference 0 Do not use anti-resonance control. *1 1 Use anti-resonance control. n.X Anti-Resonance Control Adjustment Selection Reference 0 Do not adjust anti-resonance control automatically during execu- tion of autotuning without a host reference, autotuning with a host reference, and custom tuning. *1 1 Adjust anti-resonance control automatically during execution of autotuning without a host reference, autotuning with a host refer- ence, and custom tuning. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-15 7 Parameter Lists Pn164 2 Anti-Resonance Filter Time Constant 1 Cor- rection -1,000 to 1,000 0.01 ms 0 All Immedi- ately Tuning *1 Pn165 2 Anti-Resonance Filter Time Constant 2 Cor- rection -1,000 to 1,000 0.01 ms 0 All Immedi- ately Tuning *1 Pn166 2 Anti-Resonance Damp- ing Gain 2 0 to 1,000 1% 0 All Immedi- ately Tuning *1 Pn170 2 Tuning-less Function- Related Selections 0000h to 2711h – 1401h All – Setup *1 Pn181 2 Mode Switching Level for Speed Reference 0 to 10,000 1 mm/s 0 Linear Immedi- ately Tuning *1 Pn182 2 Mode Switching Level for Acceleration 0 to 30,000 1 mm/s 2 0 Linear Immedi- ately Tuning *1 Pn205 2 Multiturn Limit 0 to 65,535 1 rev 65535 Rotary After restart Setup *1 Pn207 2 Position Control Func- tion Selections 0000h to 2210h – 0010h All After restart Setup – Pn20E 4 Electronic Gear Ratio (Numerator) 1 to 1,073,741,824 116 All After restart Setup *1 Pn210 4 Electronic Gear Ratio (Denominator) 1 to 1,073,741,824 11 All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Tuning-less Selection When Enabled 0 Disable tuning-less function. After restart 1 Enable tuning-less function. n.X Speed Control Method When Enabled 0 Use for speed control. After restart 1 Use for speed control and use host controller for position control. n.X Rigidity Level When Enabled 0 to 7 Set the rigidity level. Immedi- ately n.X Tuning-less Load Level When Enabled 0 to 2 Set the load level for the tuning-less function. Immedi- ately n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X /COIN (Positioning Completion Output) Signal Output Timing Refer- ence 0 Output when the absolute value of the position deviation is the same or less than the setting of Pn522 (Positioning Completed Width). *1 1 Output when the absolute value of the position error is the same or less than the setting of Pn522 (Positioning Completed Width) and the reference after the position reference filter is 0. 2 Output when the absolute value of the position error is the same or less than the setting of Pn522 (Positioning Completed Width) and the reference input is 0. 7.2 List of Servo Parameters 7-16 Pn230 2 Position Control Expan- sion Function Selections 0000h to 0001h – 0000h All After restart Setup *1 Pn231 4 Backlash Compensation -500,000 to 500,000 0.1 ref- erence units 0All Immedi- ately Setup *1 Pn233 2 Backlash Compensa- tion Time Constant 0 to 65,535 0.01 ms 0 All Immedi- ately Setup *1 Pn282 4 Linear Encoder Scale Pitch 0 to 6,553,600 0.01 μm 0Linear After restart Setup *1 Pn304 2 Jogging Speed 0 to 10,000 Rotary: 1 min -1 Direct Drive: 0.1 min -1 500 Rotary Immedi- ately Setup *1 Pn305 2 Soft Start Acceleration Time 0 to 10,000 1 ms 0 All Immedi- ately Setup *2 Pn306 2 Soft Start Deceleration Time 0 to 10,000 1 ms 0 All Immedi- ately Setup *2 Pn308 2 Speed Feedback Filter Time Constant 0 to 65,535 0.01 ms 0 All Immedi- ately Setup *1 Pn30A 2 Deceleration Time for Servo OFF and Forced Stops 0 to 10,000 1 ms 0 All Immedi- ately Setup *1 Pn30C 2 Speed Feedforward Average Movement Time 0 to 5,100 0.1 ms 0 All Immedi- ately Setup – Pn310 2 Vibration Detection Selections 0000h to 0002h – 0000h All Immedi- ately Setup *1 Pn311 2 Vibration Detection Sen- sitivity 50 to 500 1% 100 All Immedi- ately Tuning *1 Pn312 2 Vibration Detection Level 0 to 5,000 1 min -1 50 Rotary Immedi- ately Tuning *1 Pn316 2 Maximum Motor Speed 0 to 65,535 1 min -1 10000 Rotary After restart Setup *1 Pn324 2 Moment of Inertia Cal- culation Starting Level 0 to 20,000 1% 300 All Immedi- ately Setup *1 Pn383 2 Jogging Speed 0 to 10,000 1 mm/s 50 Linear Immedi- ately Setup *1 Pn384 2 Vibration Detection Level 0 to 5,000 1 mm/s 10 Linear Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Backlash Compensation Direction 0 Compensate forward references. 1 Compensate reverse references. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Vibration Detection Selection 0 Do not detect vibration. 1 Output a warning (A.911) if vibration is detected. 2 Output an alarm (A.520) if vibration is detected. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-17 7 Parameter Lists Pn385 2Maximum Motor Speed 1 to 100 100 mm/s 50 Linear After restart Setup *1 Pn401 2 First Stage First Torque Reference Filter Time Constant 0 to 65,535 0.01 ms 100 All Immedi- ately Tuning *1 Pn402 2 Forward Torque Limit 0 to 800 1% *2 800 Rotary Immedi- ately Setup *1 Pn403 2 Reverse Torque Limit 0 to 800 1% *2 800 Rotary Immedi- ately Setup *1 Pn404 2 Forward External Torque Limit 0 to 800 1% *2 100 All Immedi- ately Setup *1 Pn405 2 Reverse External Torque Limit 0 to 800 1% *2 100 All Immedi- ately Setup *1 Pn406 2 Emergency Stop Torque 0 to 800 1% *2 800 All Immedi- ately Setup *1 Pn407 2 Speed Limit during Torque Control 0 to 10,000 1 min -1 10000 Rotary Immedi- ately Setup *1 Pn408 2 Torque-Related Func- tion Selections 0000h to 1111h – 0000h All – Setup – Pn409 2 First Stage Notch Filter Frequency 50 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn40A 2 First Stage Notch Filter Q Value 50 to 1,000 0.01 70 All Immedi- ately Tuning *1 Pn40B 2 First Stage Notch Filter Depth 0 to 1,000 0.001 0 All Immedi- ately Tuning *1 Pn40C 2 Second Stage Notch Fil- ter Frequency 50 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn40D 2 Second Stage Notch Fil- ter Q Value 50 to 1,000 0.01 70 All Immedi- ately Tuning *1 Pn40E 2 Second Stage Notch Fil- ter Depth 0 to 1,000 0.001 0 All Immedi- ately Tuning *1 Pn40F 2 Second Stage Second Torque Reference Filter Frequency 100 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn410 2 Second Stage Second Torque Reference Filter Q Value 50 to 100 0.01 50 All Immedi- ately Tuning *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Notch Filter Selection 1 When Enabled Reference 0 Disable first stage notch filter. Immedi- ately *1 1 Enable first stage notch filter. n.X Speed Limit Selection When Enabled Reference 0 Use the smaller of the maximum motor speed and the setting of Pn407 as the speed limit. After restart *1 Use the smaller of the maximum motor speed and the setting of Pn480 as the speed limit. 1 Use the smaller of the overspeed alarm detection speed and the setting of Pn407 as the speed limit. Use the smaller of the overspeed alarm detection speed and the setting of Pn480 as the speed limit. n.X Notch Filter Selection 2 When Enabled Reference 0 Disable second stage notch filter. Immedi- ately *1 1 Enable second stage notch filter. n.X Friction Compensation Function Selection When Enabled Reference 0 Disable friction compensation. Immedi- ately *1 1 Enable friction compensation. 7.2 List of Servo Parameters 7-18 Pn412 2 First Stage Second Torque Reference Filter Time Constant 0 to 65,535 0.01 ms 100 All Immedi- ately Tuning *1 Pn416 2 Torque-Related Func- tion Selections 2 0000h to 1111h – 0000h All Immedi- ately Setup *1 Pn417 2 Third Stage Notch Filter Frequency 50 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn418 2 Third Stage Notch Filter Q Value 50 to 1,000 0.01 70 All Immedi- ately Tuning *1 Pn419 2 Third Stage Notch Filter Depth 0 to 1,000 0.001 0 All Immedi- ately Tuning *1 Pn41A 2 Fourth Stage Notch Fil- ter Frequency 50 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn41B 2 Fourth Stage Notch Fil- ter Q Value 50 to 1,000 0.01 70 All Immedi- ately Tuning *1 Pn41C 2 Fourth Stage Notch Fil- ter Depth 0 to 1,000 0.001 0 All Immedi- ately Tuning *1 Pn41D 2 Fifth Stage Notch Filter Frequency 50 to 5,000 1 Hz 5000 All Immedi- ately Tuning *1 Pn41E 2 Fifth Stage Notch Filter Q Value 50 to 1,000 0.01 70 All Immedi- ately Tuning *1 Pn41F 2 Fifth Stage Notch Filter Depth 0 to 1,000 0.001 0 All Immedi- ately Tuning *1 Pn423 2 Speed Ripple Compen- sation Selections 0000h to 1111h – 0000h Rotary – Setup *1 Pn424 2 Torque Limit at Main Cir- cuit Voltage Drop 0 to 100 1% *2 50 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Notch Filter Selection 3 0 Disable third stage notch filter. 1 Enable third stage notch filter. n.X Notch Filter Selection 4 0 Disable fourth stage notch filter. 1 Enable fourth stage notch filter. n.X Notch Filter Selection 5 0 Disable fifth stage notch filter. 1 Enable fifth stage notch filter. n.X Reserved parameter (Do not change.) n.X Speed Ripple Compensation Function Selection When Enabled 0 Disable speed ripple compensation. Immedi- ately 1 Enable speed ripple compensation. n.X Speed Ripple Compensation Information Disagreement Warning Detec- tion Selection When Enabled 0 Detect A.942 alarms. After restart 1 Do not detect A.942 alarms. n.X Speed Ripple Compensation Enable Condition Selection When Enabled 0 Speed reference After restart 1 Motor speed n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-19 7 Parameter Lists Pn425 2 Release Time for Torque Limit at Main Circuit Voltage Drop 0 to 1,000 1 ms 100 All Immedi- ately Setup *1 Pn426 2 Torque Feedforward Average Movement Time 0 to 5,100 0.1 ms 0 All Immedi- ately Setup – Pn427 2 Speed Ripple Compen- sation Enable Speed 0 to 10,000 1 min -1 0Rotary Immedi- ately Tuning *1 Pn456 2 Sweep Torque Refer- ence Amplitude 1 to 800 1% 15 All Immedi- ately Tuning *1 Pn460 2 Notch Filter Adjustment Selections 1 0000h to 0101h – 0101h All Immedi- ately Tuning *1 Pn475 2 Gravity Compensation- Related Selections 0000h to 0001h – 0000h All After restart Setup *1 Pn476 2 Gravity Compensation Torqu e -1,000 to 1,000 0.1% 0 All Immedi- ately Tuning *1 Pn480 2 Speed Limit during Force Control 0 to 10,000 1 mm/s 10000 Linear Immedi- ately Setup *1 Pn481 2 Polarity Detection Speed Loop Gain 10 to 20,000 0.1 Hz 400 Linear Immedi- ately Tuning – Pn482 2 Polarity Detection Speed Loop Integral Time Constant 15 to 51,200 0.01 ms 3000 Linear Immedi- ately Tuning – Pn483 2 Forward Force Limit 0 to 800 1% *2 30 Linear Immedi- ately Setup *1 Pn484 2 Reverse Force Limit 0 to 800 1% *2 30 Linear Immedi- ately Setup *1 Pn485 2 Polarity Detection Refer- ence Speed 0 to 100 1 mm/s 20 Linear Immedi- ately Tuning – Pn486 2 Polarity Detection Refer- ence Acceleration/ Deceleration Time 0 to 100 1 ms 25 Linear Immedi- ately Tuning – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Notch Filter Adjustment Selection 1 0 Do not adjust the first stage notch filter automatically during execution of auto- tuning without a host reference, autotuning with a host reference, and custom tuning. 1 Adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. n.X Reserved parameter (Do not change.) n.X Notch Filter Adjustment Selection 2 0 Do not adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. 1 Adjust the second stage notch filter automatically when the tuning-less func- tion is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. n.X Reserved parameter (Do not change.) n. X Gravity Compensation Selection 0 Disable gravity compensation. 1 Enable gravity compensation. n. X Reserved parameter (Do not change.) n. X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-20 Pn487 2 Polarity Detection Con- stant Speed Time 0 to 300 1 ms 0 Linear Immedi- ately Tuning – Pn488 2 Polarity Detection Refer- ence Waiting Time 50 to 500 1 ms 100 Linear Immedi- ately Tuning − Pn48E 2 Polarity Detection Range 1 to 65,535 1 mm 10 Linear Immedi- ately Tuning − Pn490 2 Polarity Detection Load Level 0 to 20,000 1% 100 Linear Immedi- ately Tuning − Pn495 2 Polarity Detection Con- firmation Force Refer- ence 0 to 200 1% 100 Linear Immedi- ately Tuning − Pn498 2 Polarity Detection Allow- able Error Range 0 to 30 1 deg 10 Linear Immedi- ately Tuning − Pn49F 2 Speed Ripple Compen- sation Enable Speed 0 to 10,000 1 mm/s 0 Linear Immedi- ately Tuning *1 Pn502 2 Rotation Detection Level 1 to 10,000 1 min -1 20 Rotary Immedi- ately Setup *1 Pn503 2 Speed Coincidence Detection Signal Output Width 0 to 100 1 min -1 10 Rotary Immedi- ately Setup *1 Pn506 2 Brake Reference-Servo OFF Delay Time 0 to 50 10 ms 0 All Immedi- ately Setup *1 Pn507 2 Brake Reference Out- put Speed Level 0 to 10,000 1 min -1 100 Rotary Immedi- ately Setup *1 Pn508 2 Servo OFF-Brake Com- mand Waiting Time 10 to 100 10 ms 50 All Immedi- ately Setup *1 Pn509 2 Momentary Power Inter- ruption Hold Time 20 to 50,000 1 ms 20 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence All Axes 7.2 List of Servo Parameters 7-21 7 Parameter Lists Pn50A 2 Input Signal Selections 1 0000h to FFF2h – 0881h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X I/O Signal Allocation Mode Reference 0 Reserved setting (Do not use.) *1 1Use Σ-7S-compatible I/O signal allocations (Pn50A to Pn517). 2 Use multi-axis I/O signal allocations (Pn590 to Pn5BC). n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X P-OT (Forward Drive Prohibit) Signal Allocation Reference 0 Axis A: Enable forward drive when CN1-3 input signal is ON (closed). Axis B: Enable forward drive when CN1-9 input signal is ON (closed). *1 1 Axis A: Enable forward drive when CN1-4 input signal is ON (closed). Axis B: Enable forward drive when CN1-10 input signal is ON (closed). 2 Axis A: Enable forward drive when CN1-5 input signal is ON (closed). Axis B: Enable forward drive when CN1-11 input signal is ON (closed). 3 Axis A: Enable forward drive when CN1-6 input signal is ON (closed). Axis B: Enable forward drive when CN1-12 input signal is ON (closed). 4 Axis A: Enable forward drive when CN1-7 input signal is ON (closed). Axis B: Enable forward drive when CN1-13 input signal is ON (closed). 5 Axis A: Enable forward drive when CN1-8 input signal is ON (closed). Axis B: Enable forward drive when CN1-14 input signal is ON (closed). 6 Reserved setting (Do not use.) 7 Set the signal to always prohibit forward drive. 8 Set the signal to always enable forward drive. 9 Axis A: Enable forward drive when CN1-3 input signal is OFF (open). Axis B: Enable forward drive when CN1-9 input signal is OFF (open). A Axis A: Enable forward drive when CN1-4 input signal is OFF (open). Axis B: Enable forward drive when CN1-10 input signal is OFF (open). B Axis A: Enable forward drive when CN1-5 input signal is OFF (open). Axis B: Enable forward drive when CN1-11 input signal is OFF (open). C Axis A: Enable forward drive when CN1-6 input signal is OFF (open). Axis B: Enable forward drive when CN1-12 input signal is OFF (open). D Axis A: Enable forward drive when CN1-7 input signal is OFF (open). Axis B: Enable forward drive when CN1-13 input signal is OFF (open). E Axis A: Enable forward drive when CN1-8 input signal is OFF (open). Axis B: Enable forward drive when CN1-14 input signal is OFF (open). F Reserved setting (Do not use.) 7.2 List of Servo Parameters 7-22 Pn50B 2 Input Signal Selections 2 0000h to FFFFh – 8881h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X N-OT (Reverse Drive Prohibit) Signal Allocation Reference 0 Axis A: Enable reverse drive when CN1-3 input signal is ON (closed). Axis B: Enable reverse drive when CN1-9 input signal is ON (closed). *1 1 Axis A: Enable reverse drive when CN1-4 input signal is ON (closed). Axis B: Enable reverse drive when CN1-10 input signal is ON (closed). 2 Axis A: Enable reverse drive when CN1-5 input signal is ON (closed). Axis B: Enable reverse drive when CN1-11 input signal is ON (closed). 3 Axis A: Enable reverse drive when CN1-6 input signal is ON (closed). Axis B: Enable reverse drive when CN1-12 input signal is ON (closed). 4 Axis A: Enable reverse drive when CN1-7 input signal is ON (closed). Axis B: Enable reverse drive when CN1-13 input signal is ON (closed). 5 Axis A: Enable reverse drive when CN1-8 input signal is ON (closed). Axis B: Enable reverse drive when CN1-14 input signal is ON (closed). 6 Reserved setting (Do not use.) 7 Set the signal to always prohibit reverse drive. 8 Set the signal to always enable reverse drive. 9 Axis A: Enable reverse drive when CN1-3 input signal is OFF (open). Axis B: Enable reverse drive when CN1-9 input signal is OFF (open). A Axis A: Enable reverse drive when CN1-4 input signal is OFF (open). Axis B: Enable reverse drive when CN1-10 input signal is OFF (open). B Axis A: Enable reverse drive when CN1-5 input signal is OFF (open). Axis B: Enable reverse drive when CN1-11 input signal is OFF (open). C Axis A: Enable reverse drive when CN1-6 input signal is OFF (open). Axis B: Enable reverse drive when CN1-12 input signal is OFF (open). D Axis A: Enable reverse drive when CN1-7 input signal is OFF (open). Axis B: Enable reverse drive when CN1-13 input signal is OFF (open). E Axis A: Enable reverse drive when CN1-8 input signal is OFF (open). Axis B: Enable reverse drive when CN1-14 input signal is OFF (open). F Reserved setting (Do not use.) n.X Reserved parameter (Do not change.) Continued on next page. 7.2 List of Servo Parameters 7-23 7 Parameter Lists Pn50B Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence Continued from previous page. n.X /P-CL (Forward External Torque Limit Input) Signal Allocation Reference 0 Axis A: Active when CN1-3 input signal is ON (closed). Axis B: Active when CN1-9 input signal is ON (closed). *1 1 Axis A: Active when CN1-4 input signal is ON (closed). Axis B: Active when CN1-10 input signal is ON (closed). 2 Axis A: Active when CN1-5 input signal is ON (closed). Axis B: Active when CN1-11 input signal is ON (closed). 3 Axis A: Active when CN1-6 input signal is ON (closed). Axis B: Active when CN1-12 input signal is ON (closed). 4 Axis A: Active when CN1-7 input signal is ON (closed). Axis B: Active when CN1-13 input signal is ON (closed). 5 Axis A: Active when CN1-8 input signal is ON (closed). Axis B: Active when CN1-14 input signal is ON (closed). 6 Reserved setting (Do not use.) 7 The signal is always active. 8 The signal is always inactive. 9 Axis A: Active when CN1-3 input signal is OFF (open). Axis B: Active when CN1-9 input signal is OFF (open). A Axis A: Active when CN1-4 input signal is OFF (open). Axis B: Active when CN1-10 input signal is OFF (open). B Axis A: Active when CN1-5 input signal is OFF (open). Axis B: Active when CN1-11 input signal is OFF (open). C Axis A: Active when CN1-6 input signal is OFF (open). Axis B: Active when CN1-12 input signal is OFF (open). D Axis A: Active when CN1-7 input signal is OFF (open). Axis B: Active when CN1-13 input signal is OFF (open). E Axis A: Active when CN1-8 input signal is OFF (open). Axis B: Active when CN1-14 input signal is OFF (open). F Reserved setting (Do not use.) n.X /N-CL (Reverse External Torque Limit Input) Signal Allocation Reference 0 to F The allocations are the same as the /P-CL (Forward External Torque Limit Input) signal allocations. *1 7.2 List of Servo Parameters 7-24 Pn50E 2 Output Signal Selec- tions 1 0000h to 6666h – 0000h All After restart Setup – Pn50F 2 Output Signal Selec- tions 2 0000h to 6666h – 0100h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X /COIN (Positioning Completion Output) Signal Allocation Reference 0 Disabled (the above signal output is not used). *1 1 Axis A: Output the signal from the CN1-23 or CN1-24 output ter- minal. Axis B: Output the signal from the CN1-25 or CN1-26 output ter- minal. 2 Axis A: Output the signal from the CN1-27 or CN1-28 output ter- minal. Axis B: Output the signal from the CN1-29 or CN1-30 output ter- minal. 3 to 6 Reserved settings (Do not use.) n.X /V-CMP (Speed Coincidence Detection Output) Signal Allocation Reference 0 to 6 The allocations are the same as the /COIN (Positioning Comple- tion) signal allocations. *1 n.X /TGON (Rotation Detection Output) Signal Allocation Reference 0 to 6 The allocations are the same as the /COIN (Positioning Comple- tion) signal allocations. *1 n.X /S-RDY (Servo Ready) Signal Allocation Reference 0 to 6 The allocations are the same as the /COIN (Positioning Comple- tion) signal allocations. *1 n.X /CLT (Torque Limit Detection Output) Signal Allocation Reference 0 Disabled (the above signal output is not used). *1 1 Axis A: Output the signal from the CN1-23 or CN1-24 output ter- minal. Axis B: Output the signal from the CN1-25 or CN1-26 output ter- minal. 2 Axis A: Output the signal from the CN1-27 or CN1-28 output ter- minal. Axis B: Output the signal from the CN1-29 or CN1-30 output ter- minal. 3 to 6 Reserved settings (Do not use.) n.X /VLT (Speed Limit Detection) Signal Allocation Reference 0 to 6 The allocations are the same as the /CLT (Torque Limit Detection Output) signal allocations. *1 n.X /BK (Brake Output) Signal Allocation Reference 0 to 6 The allocations are the same as the /CLT (Torque Limit Detection Output) signal allocations. *1 n.X /WARN (Warning Output) Signal Allocation Reference 0 to 6 The allocations are the same as the /CLT (Torque Limit Detection Output) signal allocations. *1 7.2 List of Servo Parameters 7-25 7 Parameter Lists Pn510 2 Output Signal Selec- tions 3 0000h to 0666h – 0000h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X /NEAR (Near Output) Signal Allocation Reference 0 Disabled (the above signal output is not used). *1 1 Axis A: Output the signal from the CN1-23 or CN1-24 output ter- minal. Axis B: Output the signal from the CN1-25 or CN1-26 output ter- minal. 2 Axis A: Output the signal from the CN1-27 or CN1-28 output ter- minal. Axis B: Output the signal from the CN1-29 or CN1-30 output ter- minal. 3 to 6 Reserved settings (Do not use.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-26 Pn511 2 Input Signal Selections 5 0000h to FFFFh – 5432h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X /DEC (Origin Return Deceleration Switch Input) Signal Allocation 0 Axis A: Active when CN1-3 input signal is ON (closed). Axis B: Active when CN1-9 input signal is ON (closed). 1 Axis A: Active when CN1-4 input signal is ON (closed). Axis B: Active when CN1-10 input signal is ON (closed). 2 Axis A: Active when CN1-5 input signal is ON (closed). Axis B: Active when CN1-11 input signal is ON (closed). 3 Axis A: Active when CN1-6 input signal is ON (closed). Axis B: Active when CN1-12 input signal is ON (closed). 4 Axis A: Active when CN1-7 input signal is ON (closed). Axis B: Active when CN1-13 input signal is ON (closed). 5 Axis A: Active when CN1-8 input signal is ON (closed). Axis B: Active when CN1-14 input signal is ON (closed). 6 Reserved setting (Do not use.) 7 The signal is always active. 8 The signal is always inactive. 9 Axis A: Active when CN1-3 input signal is OFF (open). Axis B: Active when CN1-9 input signal is OFF (open). A Axis A: Active when CN1-4 input signal is OFF (open). Axis B: Active when CN1-10 input signal is OFF (open). B Axis A: Active when CN1-5 input signal is OFF (open). Axis B: Active when CN1-11 input signal is OFF (open). C Axis A: Active when CN1-6 input signal is OFF (open). Axis B: Active when CN1-12 input signal is OFF (open). D Axis A: Active when CN1-7 input signal is OFF (open). Axis B: Active when CN1-13 input signal is OFF (open). E Axis A: Active when CN1-8 input signal is OFF (open). Axis B: Active when CN1-14 input signal is OFF (open). F Reserved setting (Do not use.) n.X /EXT1 (External Latch Input 1) Signal Allocation 0 to 2 The signal is always inactive. 3 Axis A: Active when CN1-6 input signal is ON (closed). Axis B: Active when CN1-12 input signal is ON (closed). 4 Axis A: Active when CN1-7 input signal is ON (closed). Axis B: Active when CN1-13 input signal is ON (closed). 5 Axis A: Active when CN1-8 input signal is ON (closed). Axis B: Active when CN1-14 input signal is ON (closed). 6 to B The signal is always inactive. C Axis A: Active when CN1-6 input signal is OFF (open). Axis B: Active when CN1-12 input signal is OFF (open). D Axis A: Active when CN1-7 input signal is OFF (open). Axis B: Active when CN1-13 input signal is OFF (open). E Axis A: Active when CN1-8 input signal is OFF (open). Axis B: Active when CN1-14 input signal is OFF (open). F The signal is always inactive. n.X /EXT2 (External Latch Input 2) Signal Allocation 0 to F The allocations are the same as the /EXT1 (External Latch Input 1) signal allo- cations. n.X /EXT3 (External Latch Input 3) Signal Allocation 0 to F The allocations are the same as the /EXT1 (External Latch Input 1) signal allo- cations. 7.2 List of Servo Parameters 7-27 7 Parameter Lists Pn512 2 Output Signal Inverse Settings 0000h to 1111h – 0000h All After restart Setup *1 Pn514 2 Output Signal Selec- tions 4 0000h to 0666h – 0000h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Output Inversion for CN1-23, CN1-24, CN1-25, and CN1-26 Terminals (Axis A: CN1-23 and CN1-24, Axis B: CN1-25 and CN1-26) 0 The signal is not inverted. 1 The signal is inverted. n.X Output Inversion for CN1-27, CN1-28, CN1-29, and CN1-30 Terminals (Axis A: CN1-27 and CN1-28, Axis B: CN1-29 and CN1-30) 0 The signal is not inverted. 1 The signal is inverted. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X /PM (Preventative Maintenance Output) Signal Allocation Reference 0 Disabled (the above signal output is not used). *1 1 Axis A: Output the signal from the CN1-23 or CN1-24 output ter- minal. Axis B: Output the signal from the CN1-25 or CN1-26 output ter- minal. 2 Axis A: Output the signal from the CN1-27 or CN1-28 output ter- minal. Axis B: Output the signal from the CN1-29 or CN1-30 output ter- minal. 3 to 6 Reserved settings (Do not use.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-28 Pn516 2 Input Signal Selections 7 0000h to FFFFh – 8888h All After restart Setup – Pn51E 2 Position Deviation Over- flow Warning Level 10 to 100 1% 100 All Immedi- ately Setup *1 Pn520 4 Position Deviation Over- flow Alarm Level 1 to 1,073,741,823 1 refer- ence unit 524288 0 All Immedi- ately Setup *1 Pn522 4 Positioning Completed Width 0 to 1,073,741,824 1 refer- ence unit 7All Immedi- ately Setup *1 Pn524 4 Near Signal Width 1 to 1,073,741,824 1 refer- ence unit 107374 1824 All Immedi- ately Setup *1 Pn526 4 Position Deviation Over- flow Alarm Level at Servo ON 1 to 1,073,741,823 1 refer- ence unit 524288 0 All Immedi- ately Setup *1 Pn528 2 Position Deviation Over- flow Warning Level at Servo ON 10 to 100 1% 100 All Immedi- ately Setup *1 Pn529 2 Speed Limit Level at Servo ON 0 to 10,000 1 min -1 10000 Rotary Immedi- ately Setup *1 Pn52B 2 Overload Warning Level 1 to 100 1% 20 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X FSTP (Forced Stop Input) Signal Allocation Reference 0 Axis A: Enable drive when CN1-3 input signal is ON (closed). Axis B: Enable drive when CN1-9 input signal is ON (closed). *1 1 Axis A: Enable drive when CN1-4 input signal is ON (closed). Axis B: Enable drive when CN1-10 input signal is ON (closed). 2 Axis A: Enable drive when CN1-5 input signal is ON (closed). Axis B: Enable drive when CN1-11 input signal is ON (closed). 3 Axis A: Enable drive when CN1-6 input signal is ON (closed). Axis B: Enable drive when CN1-12 input signal is ON (closed). 4 Axis A: Enable drive when CN1-7 input signal is ON (closed). Axis B: Enable drive when CN1-13 input signal is ON (closed). 5 Axis A: Enable drive when CN1-8 input signal is ON (closed). Axis B: Enable drive when CN1-14 input signal is ON (closed). 6 Reserved setting (Do not use.) 7 Set the signal to always prohibit drive (always force the motor to stop). 8 Set the signal to always enable drive (always disable forcing the motor to stop). 9 Axis A: Enable drive when CN1-3 input signal is OFF (open). Axis B: Enable drive when CN1-9 input signal is OFF (open). A Axis A: Enable drive when CN1-4 input signal is OFF (open). Axis B: Enable drive when CN1-10 input signal is OFF (open). B Axis A: Enable drive when CN1-5 input signal is OFF (open). Axis B: Enable drive when CN1-11 input signal is OFF (open). C Axis A: Enable drive when CN1-6 input signal is OFF (open). Axis B: Enable drive when CN1-12 input signal is OFF (open). D Axis A: Enable drive when CN1-7 input signal is OFF (open). Axis B: Enable drive when CN1-13 input signal is OFF (open). E Axis A: Enable drive when CN1-8 input signal is OFF (open). Axis B: Enable drive when CN1-14 input signal is OFF (open). F Reserved setting (Do not use.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-29 7 Parameter Lists Pn52C 2 Base Current Derating at Motor Overload Detection 10 to 100 1% 100 All After restart Setup *1 Pn530 2 Program Jogging- Related Selections 0000h to 0005h – 0000h All Immedi- ately Setup *1 Pn531 4 Program Jogging Travel Distance 1 to 1,073,741,824 1 refer- ence unit 32768 All Immedi- ately Setup *1 Pn533 2 Program Jogging Move- ment Speed 1 to 10,000 1 min - 1 500 Rotary Immedi- ately Setup *1 Pn534 2 Program Jogging Accel- eration/Deceleration Time 2 to 10,000 1 ms 100 All Immedi- ately Setup *1 Pn535 2 Program Jogging Wait- ing Time 0 to 10,000 1 ms 100 All Immedi- ately Setup *1 Pn536 2 Program Jogging Num- ber of Movements 0 to 1,000 1 time 1 All Immedi- ately Setup *1 Pn550 2 Analog Monitor 1 Offset Voltage -10,000 to 10,000 0.1 V 0 All Immedi- ately Setup *1 Pn551 2 Analog Monitor 2 Offset Voltage -10,000 to 10,000 0.1 V 0 All Immedi- ately Setup *1 Pn552 2 Analog Monitor 1 Mag- nification -10,000 to 10,000 × 0.01 100 All Immedi- ately Setup *1 Pn553 2 Analog Monitor 2 Mag- nification -10,000 to 10,000 × 0.01 100 All Immedi- ately Setup *1 Pn55A 2 Power Consumption Monitor Unit Time 1 to 1,440 1 min 1 All Immedi- ately Setup – Pn560 2 Residual Vibration Detection Width 1 to 3,000 0.1% 400 All Immedi- ately Setup *1 Pn561 2 Overshoot Detection Level 0 to 100 1% 100 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Program Jogging Operation Pattern 0 (Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of movements in Pn536 1 (Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of movements in Pn536 2 (Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of movements in Pn536 (Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of movements in Pn536 3 (Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of movements in Pn536 (Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of movements in Pn536 4 (Waiting time in Pn535 → Forward by travel distance in Pn531 → Waiting time in Pn535 → Reverse by travel distance in Pn531) × Number of movements in Pn536 5 (Waiting time in Pn535 → Reverse by travel distance in Pn531 → Waiting time in Pn535 → Forward by travel distance in Pn531) × Number of movements in Pn536 n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) All Axes All Axes All Axes All Axes All Axes 7.2 List of Servo Parameters 7-30 Pn56A 2 Output Signal Reference Method Selections 1 0000h to 1111h – 0000h All After restart Setup *1 Pn56B 2 Output Signal Reference Method Selections 2 0000h to 00001h – 0000h All After restart Setup *1 Pn581 2 Zero Speed Level 1 to 10,000 1 mm/s 20 Linear Immedi- ately Setup *1 Pn582 2 Speed Coincidence Detection Signal Output Width 0 to 100 1 mm/s 10 Linear Immedi- ately Setup *1 Pn583 2 Brake Reference Out- put Speed Level 0 to 10,000 1 mm/s 10 Linear Immedi- ately Setup *1 Pn584 2 Speed Limit Level at Servo ON 0 to 10,000 1 mm/s 10000 Linear Immedi- ately Setup *1 Pn585 2 Program Jogging Move- ment Speed 1 to 10,000 1 mm/s 50 Linear Immedi- ately Setup *1 Pn586 2 Motor Running Cooling Ratio 0 to 100 1%/ Max. speed 0Linear Immedi- ately Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X SO1 Output Signal Reference Method Selection 0 Output parameter-assigned SO1 signal. 1 Output OR of parameter-assigned SO1 signal and signal set by SVCMD_IO. n.X SO2 Output Signal Reference Method Selection 0 Output parameter-assigned SO2 signal. 1 Output OR of parameter-assigned SO2 signal and signal set by SVCMD_IO. n.X SO3 Output Signal Reference Method Selection 0 Output parameter-assigned SO3 signal. 1 Output OR of parameter-assigned SO3 signal and signal set by SVCMD_IO. n.X SO4 Output Signal Reference Method Selection 0 Output parameter-assigned SO4 signal. 1 Output OR of parameter-assigned SO4 signal and signal set by SVCMD_IO. n.X SO5 Output Signal Reference Method Selection 0 Output parameter-assigned SO5 signal. 1 Output OR of parameter-assigned SO5 signal and signal set by SVCMD_IO. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-31 7 Parameter Lists Pn587 2 Polarity Detection Execution Selection for Absolute Linear Encoder 0000h to 0001h – 0000h Linear Immedi- ately Setup – Pn590 2 P-OT (Forward Drive Prohibit) Signal Alloca- tion 0000h to 3019h – Axis A: 1003h, Axis B: 1009h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Polarity Detection Selection for Absolute Linear Encoder Reference 0 Do not detect polarity. *1 1 Detect polarity. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 Set the signal to always enable forward drive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 3 Set the signal to always prohibit forward drive. 7.2 List of Servo Parameters 7-32 Pn591 2 N-OT (Reverse Drive Prohibit) Signal Alloca- tion 0000h to 3019h – Axis A: 1004h, Axis B: 1010h All After restart Setup *1 Pn592 2 /DEC (Origin Return Deceleration Switch Input) Signal Allocation 0000h to 3019h – Axis A: 1005h, Axis B: 1011h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 Set the signal to always enable reverse drive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 3 Set the signal to always prohibit reverse drive. n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 3 The signal is always active. 7.2 List of Servo Parameters 7-33 7 Parameter Lists Pn593 2 /EXT1 (External Latch Input 1) Signal Alloca- tion 0000h to 2019h – Axis A: 1006h, Axis B: 1012h All After restart Setup – Pn594 2 /EXT2 (External Latch Input 2) Signal Alloca- tion 0000h to 2019h – Axis A: 1007h, Axis B: 1013h All After restart Setup – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 000 to 005 The signal is always inactive. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 to 011 The signal is always inactive. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). n.XXX Allocated Pin Number 000 to 005 The signal is always inactive. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 to 011 The signal is always inactive. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 7.2 List of Servo Parameters 7-34 Pn595 2 /EXT3 (External Latch Input 3) Signal Alloca- tion 0000h to 2019h – Axis A: 1008h, Axis B: 1014h All After restart Setup – Pn597 2 FSTP (Forced Stop Input) Signal Allocation 0000h to 3019h – 0000h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 000 to 005 The signal is always inactive. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 to 011 The signal is always inactive. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 Set the signal to always enable drive (always disable forcing the motor to stop). 1 Enable drive when the input signal is ON (closed). 2 Enable drive when the input signal is OFF (open). 3 Set the signal to always prohibit drive (always force the motor to stop). 7.2 List of Servo Parameters 7-35 7 Parameter Lists Pn598 2 /P-CL (Forward Exter- nal Torque Limit Input) Signal Allocation 0000h to 3019h – 0000h All After restart Setup *1 Pn599 2 /N-CL (Reverse Exter- nal Torque Limit Input) Signal Allocation 0000h to 3019h – 0000h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 3 The signal is always active. n.XXX Allocated Pin Number 003 Allocate the signal to CN1-3. 004 Allocate the signal to CN1-4. 005 Allocate the signal to CN1-5. 006 Allocate the signal to CN1-6. 007 Allocate the signal to CN1-7. 008 Allocate the signal to CN1-8. 009 Allocate the signal to CN1-9. 010 Allocate the signal to CN1-10. 011 Allocate the signal to CN1-11. 012 Allocate the signal to CN1-12. 013 Allocate the signal to CN1-13. 014 Allocate the signal to CN1-14. n.X Polarity Selection 0 The signal is always inactive. 1 Active when input signal is ON (closed). 2 Active when input signal is OFF (open). 3 The signal is always active. 7.2 List of Servo Parameters 7-36 Pn5B0 2 /COIN (Positioning Completion Output) Sig- nal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn5B1 2 /V-CMP (Speed Coinci- dence Detection Output) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn5B2 2 /TGON (Rotation Detec- tion Output) Signal Allo- cation 0000h to 2039h – 0000h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. 7.2 List of Servo Parameters 7-37 7 Parameter Lists Pn5B3 2 /S-RDY (Servo Ready) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn5B4 2 /CLT (Torque Limit Detection Output) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn5B5 2 /VLT (Speed Limit Detection) Signal Alloca- tion 0000h to 2039h – 0000h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. 7.2 List of Servo Parameters 7-38 Pn5B6 2 /BK (Brake Output) Sig- nal Allocation 0000h to 2039h – Axis A: 1023h, Axis B: 1025h All After restart Setup *1 Pn5B7 2 /WARN (Warning Out- put) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn5B8 2 /NEAR (Near Output) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. 7.2 List of Servo Parameters 7-39 7 Parameter Lists Pn5BC 2 /PM (Preventative Main- tenance Output) Signal Allocation 0000h to 2039h – 0000h All After restart Setup *1 Pn600 2 Regenerative Resistor Capacity *3 Depends on model. *3 10 W 0 All Immedi- ately Setup *1 Pn601 2 Dynamic Brake Resis- tor Allowable Energy Consumption 0 to 65,535 10 J 0 All After restart Setup *6 Pn603 2 Regenerative Resis- tance 0 to 65,535 10 mΩ 0All Immedi- ately Setup *1 Pn604 2 Dynamic Brake Resis- tance 0 to 65,535 10 mΩ 0All After restart Setup *6 Pn61A 2 Overheat Protection Selections 0000h to 0003h – 0000h All After restart Setup *1 Pn61B *7 2 Overheat Alarm Level 0 to 500 0.01 V 250 All Immedi- ately Setup *1 Pn61C *7 2 Overheat Warning Level 0 to 100 1% 100 All Immedi- ately Setup *1 Pn61D *7 2 Overheat Alarm Filter Time 0 to 65,535 1 s 0 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.XXX Allocated Pin Number 023 Allocate the signal to CN1-23. 025 Allocate the signal to CN1-25. 027 Allocate the signal to CN1-27. 029 Allocate the signal to CN1-29. 031 Allocate the signal to CN1-31. n.X Polarity Selection 0 Disabled (the above signal output is not used). 1 Output the above signal. 2 Invert the above signal and output it. All Axes All Axes n. X Overheat Protection Selection 0 Disable overheat protection. 1 Use overheat protection in the Yaskawa Linear Servomotor. *6 2 Monitor a negative voltage input from a sensor attached to the machine and use overheat protection. 3 Monitor a positive voltage input from a sensor attached to the machine and use overheat protection. n. X Reserved parameter (Do not change.) n. X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) All Axes All Axes All Axes 7.2 List of Servo Parameters 7-40 Pn665 2 Synchronized Stopping Function Selections 0000h to 0003h – 0000h All After restart Setup page 4-4 Pn666 2 Synchronized Stopping End Speed 1 to 65,535 1000 refer- ence units/s 256 All Immedi- ately Setup page 4-4 Pn667 2 Reserved parameter (Do not change.) ––0All––– Pn668 2 Synchronized Stopping Speed Feedforward 0 to 100 % 80 All Immedi- ately Tuning page 4-5 Pn669 2 Position Deviation between Axes Overflow Warning Level 10 to 100 % 100 All Immedi- ately Setup page 5-3 Pn66A 4 Position Deviation between Axes Overflow Alarm Level 0 to 1073741823 Refer- ence unit 5,242,880 All Immedi- ately Setup page 5-3 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence All Axes n.X Synchronized Stopping Selection 0 Disable synchronized stopping. 1 Enable synchronized stopping mode 1. 2 Enable synchronized stopping mode 2. 3 Enable synchronized stopping mode 3. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) All Axes All Axes All Axes All Axes All Axes 7.2 List of Servo Parameters 7-41 7 Parameter Lists Pn800 2 Communications Con- trols 0000h to 1FF3h – 1040h All Immedi- ately Setup – Pn801 2 Application Function Selections 6 (Software Limits) 0000h to 0103h – 0003h All Immedi- ately Setup *1 Pn803 2 Origin Range 0 to 250 1 refer- ence unit 10 All Immedi- ately Setup *2 Pn804 4 Forward Software Limit -1,073,741,823 to 1,073,741,823 1 refer- ence unit 107374 1823 All Immedi- ately Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X MECHATROLINK Communications Check Mask for Debugging 0Do not mask. 1 Ignore MECHATROLINK communications errors (A.E60). 2 Ignore WDT errors (A.E50). 3 Ignore both MECHATROLINK communications errors (A.E60) and WDT errors (A.E50). n.X Warning Check Masks 0Do not mask. 1 Ignore data setting warnings (A.94). 2 Ignore command warnings (A.95). 3 Ignore both A.94 and A.95 warnings. 4 Ignore communications warnings (A.96). 5 Ignore both A.94 and A.96 warnings. 6 Ignore both A.95 and A.96 warnings. 7 Ignore A.94, A.95, and A.96 warnings. 8 Ignore data setting warnings (A.97A, A.97b, and A.97C). 9 Ignore A.94, A.97A, A.97b, and A.97C warnings. A Ignore A.95, A.97A, A.97b, and A.97C warnings. B Ignore A.94, A95, A.97A, A.97b, and A.97C warnings. C Ignore A.96, A.97A, A.97b, and A.97C warnings. D Ignore A.94, A96, A.97A, A.97b, and A.97C warnings. E Ignore A.95, A96, A.97A, A.97b, and A.97C warnings. F Ignore A.94, A95, A96, A.97A, A.97b, and A.97C warnings. n.X Reserved parameter (Do not change.) n.X Automatic Warning Clear Selection for Debugging *8 0 Retain warnings for debugging. 1 Automatically clear warnings (MECHATROLINK-III specification). M3 *8 n.X Software Limit Selection 0 Enable both forward and reverse software limits. 1 Disable forward software limit. 2 Disable reverse software limit. 3 Disable both forward and reverse software limits. n.X Reserved parameter (Do not change.) n.X Software Limit Check for References 0 Do not perform software limit checks for references. 1 Perform software limit checks for references. n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-42 Pn806 4Reverse Software Limit -1,073,741,823 to 1,073,741,823 1 refer- ence unit -10737 41823 All Immedi- ately Setup *1 Pn808 4 Absolute Encoder Origin Offset -1,073,741,823 to 1,073,741,823 1 refer- ence unit 0All Immedi- ately *9 Setup *1 Pn80A 2 First Stage Linear Accel- eration Constant 1 to 65,535 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn80B 2 Second Stage Linear Acceleration Constant 1 to 65,535 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn80C 2 Acceleration Constant Switching Speed 0 to 65,535 100 ref- erence units/s 0All Immedi- ately *10 Setup *2 Pn80D 2 First Stage Linear Deceleration Constant 1 to 65,535 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn80E 2 Second Stage Linear Deceleration Constant 1 to 65,535 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn80F 2 Deceleration Constant Switching Speed 0 to 65,535 100 ref- erence units/s 0All Immedi- ately *10 Setup *2 Pn810 2 Exponential Accelera- tion/Deceleration Bias 0 to 65,535 100 ref- erence units/s 0All Immedi- ately *11 Setup *2 Pn811 2 Exponential Accelera- tion/Deceleration Time Constant 0 to 5,100 0.1 ms 0 All Immedi- ately *11 Setup *2 Pn812 2 Movement Average Time 0 to 5,100 0.1 ms 0 All Immedi- ately *11 Setup *2 Pn814 4 External Positioning Final Travel Distance -1,073,741,823 to 1,073,741,823 1 refer- ence unit 100 All Immedi- ately Setup *2 Pn816 2 Origin Return Mode Set- tings 0000h to 0001h – 0000h All Immedi- ately Setup *13 Pn817 *14 2 Origin Approach Speed 1 0 to 65,535 100 ref- erence units/s 50 All Immedi- ately *10 Setup *2 Pn818 *15 2 Origin Approach Speed 2 0 to 65,535 100 ref- erence units/s 5All Immedi- ately *10 Setup *2 Pn819 4 Final Travel Distance for Origin Return -1,073,741,823 to 1,073,741,823 1 refer- ence unit 100 All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M2 *13 n.X Origin Return Direction 0 Return in forward direction. 1 Return in reverse direction. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-43 7 Parameter Lists Pn81E 2 Input Signal Monitor Selections 0000h to AAAAh – 0000h All Immedi- ately Setup *13 Pn81F 2 Command Data Alloca- tions 0000h to 1111h – 0010h All After restart Setup *13 Pn820 4 Forward Latching Area -2,147,483,648 to 2,147,483,647 1 refer- ence unit 0All Immedi- ately Setup *2 Pn822 4 Reverse Latching Area -2,147,483,648 to 2,147,483,647 1 refer- ence unit 0All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M2 *13 n.X IO12 Signal Mapping 0Do not map. 1 Monitor CN1-1 input terminal. 2 Monitor CN1-2 input terminal. 3 Monitor CN1-3 input terminal. 4 Monitor CN1-4 input terminal. 5 Monitor CN1-5 input terminal. 6 Monitor CN1-6 input terminal. 7 Monitor CN1-11 input terminal. 8 Monitor CN1-12 input terminal. 9 Monitor CN1-13 input terminal. A Monitor CN1-14 input terminal. B Monitor CN1-15 input terminal. C Monitor CN1-16 input terminal. n.X IO13 Signal Mapping 0 to C The mappings are the same as the IO12 signal mappings. n.X IO14 Signal Mapping 0 to C The mappings are the same as the IO12 signal mappings. n.X IO15 Signal Mapping 0 to C The mappings are the same as the IO12 signal mappings. M2 *13 n.X Option Field Allocation 0 Disable option field allocation. 1 Enable option field allocation. n.X Position Control Command TFF/TLIM Allocation 0 Disable allocation. 1 Enable allocation. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-44 Pn824 2 Option Monitor 1 Selec- tion 0000h to FFFFh – 0000h – Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 Setting Monitor Applicable Motors High-Speed Monitor Region 0000h Motor speed [overspeed detection speed *17 /1000000h] All 0001h Speed reference [overspeed detection speed *17 /1000000h] All 0002h Torque [maximum torque/1000000h] All 0003h Position deviation (lower 32 bits) [reference units] All 0004h Position deviation (upper 32 bits) [reference units] All 000Ah Encoder count (lower 32 bits) [reference units] All 000Bh Encoder count (upper 32 bits) [reference units] All 004Dh Current Correction Amount in Position Correction Table [reference unit] All 008Dh Position Deviation between Axes [reference unit] All Low-Speed Monitor Region 0010h Un000: Motor speed [min -1 ] All 0011h Un001: Speed Reference [min -1 ] All 0012h Un002: Torque Reference [%] All 0013h Un003: Rotational Angle 1 [encoder pulses] Number of encoder pulses from origin within one encoder rotation displayed in decimal All Un003: Electrical Angle 1 [linear encoder pulses] Linear encoder pulses from the polarity origin displayed in decimal 0014h Un004: Rotational Angle 2 [deg] Electrical angle from polarity origin All Un004: Electrical Angle 2 [deg] Electrical angle from polarity origin 0015h Un005: Input Signal Monitor All 0016h Un006: Output Signal Monitor All 0017h Un007: Input Reference Speed [min -1 ] All 0018h Un008: Position Deviation [reference units] All 0019h Un009: Accumulated Load Ratio [%] All 001Ah Un00A: Regenerative Load Ratio [%] All 001Bh Un00B: Dynamic Brake Resistor Power Consumption [%] All 001Ch Un00C: Input Reference Pulse Counter [reference units] All 001Dh Un00D: Feedback Pulse Counter [encoder pulses] All 0023h Initial multiturn data [Rev] Rotary 0024h Initial incremental data [pulses] Rotary 0025h Initial absolute position data (lower 32 bits) [pulses] Linear 0026h Initial absolute position data (upper 32 bits) [pulses] Linear 0040h Un025: SERVOPACK Installation Environment Monitor All 0041h Un026: Servomotor Installation Environment Monitor All 0042h Un027: Built-in Fan Remaining Life Ratio All 0043h Un028: Capacitor Remaining Life Ratio All 0044h Un029: Surge Prevention Circuit Remaining Life Ratio All 0045h Un02A: Dynamic Brake Circuit Remaining Life Ratio All 0046h Un032: Instantaneous Power All 0047h Un033: Power Consumption All 0048h Un034: Cumulative Power Consumption All 7.2 List of Servo Parameters 7-45 7 Parameter Lists Pn824 Pn825 2 Option Monitor 2 Selec- tion 0000h to FFFFh – 0000h All Immedi- ately Setup *2 Pn827 2 Linear Deceleration Constant 1 for Stopping 1 to 65,535 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn829 2 SVOFF Waiting Time (for SVOFF at Deceleration to Stop) 0 to 65,535 10 ms 0 All Immedi- ately *10 Setup *2 Pn82A 2 Option Field Allocations 1 0000h to 1E1Eh – 1813h All After restart Setup *13 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 Setting Monitor Applicable Motors Low-Speed Monitor Region (Communications Module only) 0080h Previous value of latched feedback position (LPOS1) [reference units] All 0081h Previous value of latched feedback position (LPOS2) [reference units] All 0084h Continuous Latch Status (EX STATUS) All All Areas Other values Reserved settings (Do not use.) All 0000h to 008Dh The settings are the same as those for the Option Monitor 1 Selection. M2 *13 n.X ACCFIL Allocation (Option) 0 Allocate bits 0 and 1 to ACCFIL. 1 Allocate bits 1 and 2 to ACCFIL. 2 Allocate bits 2 and 3 to ACCFIL. 3 Allocate bits 3 and 4 to ACCFIL. 4 Allocate bits 4 and 5 to ACCFIL. 5 Allocate bits 5 and 6 to ACCFIL. 6 Allocate bits 6 and 7 to ACCFIL. 7 Allocate bits 7 and 8 to ACCFIL. 8 Allocate bits 8 and 9 to ACCFIL. 9 Allocate bits 9 and 10 to ACCFIL. A Allocate bits 10 and 11 to ACCFIL. B Allocate bits 11 and 12 to ACCFIL. C Allocate bits 12 and 13 to ACCFIL. D Allocate bits 13 and 14 to ACCFIL. E Allocate bits 14 and 15 to ACCFIL. n.X ACCFIL Allocation Enable/Disable Selection 0 Disable ACCFIL allocation. 1 Enable ACCFIL allocation. n.X G_SEL Allocation (Option) 0 to E The settings are the same as for the ACCFIL allocations. n. X G_SEL Allocation Enable/Disable Selection 0 Disable G_SEL allocation. 1 Enable G_SEL allocation. 7.2 List of Servo Parameters 7-46 Pn82B 2 Option Field Allocations 2 0000h to 1F1Fh –1D1Ch All After restart Setup *13 Pn82C 2 Option Field Allocations 3 0000h to 1F1Fh –1F1Eh All After restart Setup *13 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M2 *13 n.X V_PPI Allocation (Option) 0 Allocate bit 0 to V_PPI. 1 Allocate bit 1 to V_PPI. 2 Allocate bit 2 to V_PPI. 3 Allocate bit 3 to V_PPI. 4 Allocate bit 4 to V_PPI. 5 Allocate bit 5 to V_PPI. 6 Allocate bit 6 to V_PPI. 7 Allocate bit 7 to V_PPI. 8 Allocate bit 8 to V_PPI. 9 Allocate bit 9 to V_PPI. A Allocate bit 10 to V_PPI. B Allocate bit 11 to V_PPI. C Allocate bit 12 to V_PPI. D Allocate bit 13 to V_PPI. E Allocate bit 14 to V_PPI. F Allocate bit 15 to V_PPI. n.X V_PPI Allocation Enable/Disable Selection 0 Disable V_PPI allocation. 1 Enable V_PPI allocation. n.X P_PI_CLR Allocation (Option) 0 to F The settings are the same as for the V_PPI allocations. n.X P_PI_CLR Allocation Enable/Disable Selection 0 Disable P_PI_CLR allocation. 1 Enable P_PI_CLR allocation. M2 *13 n.X P_CL Allocation (Option) 0 to F The settings are the same as for the V_PPI allocations. n.X P_CL Allocation Enable/Disable Selection 0 Disable P_CL allocation. 1 Enable P_CL allocation. n.X N_CL Allocation (Option) 0 to F The settings are the same as for the V_PPI allocations. n.X N_CL Allocation Enable/Disable Selection 0 Disable N_CL allocation. 1 Enable N_CL allocation. 7.2 List of Servo Parameters 7-47 7 Parameter Lists Pn82D 2 Option Field Allocations 4 0000h to 1F1Ch – 0000h All After restart Setup *13 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M2 *13 n.X BANK_SEL1 Allocation (Option) 0 Allocate bits 0 to 3 to BANK_SEL1. 1 Allocate bits 1 to 4 to BANK_SEL1. 2 Allocate bits 2 to 5 to BANK_SEL1. 3 Allocate bits 3 to 6 to BANK_SEL1. 4 Allocate bits 4 to 7 to BANK_SEL1. 5 Allocate bits 5 to 8 to BANK_SEL1. 6 Allocate bits 6 to 9 to BANK_SEL1. 7 Allocate bits 7 to 10 to BANK_SEL1. 8 Allocate bits 8 to 11 to BANK_SEL1. 9 Allocate bits 9 to 12 to BANK_SEL1. A Allocate bits 10 to 13 to BANK_SEL1. B Allocate bits 11 to 14 to BANK_SEL1. C Allocate bits 12 to 15 to BANK_SEL1. n.X BANK_SEL1 Allocation Enable/Disable Selection 0 Disable BANK_SEL1 allocation. 1 Enable BANK_SEL1 allocation. n.X LT_DISABLE Allocation (Option) 0 to F The settings are the same as for the V_PPI allocations. n.X LT_DISABLE Allocation Enable/Disable Selection 0 Disable LT_DISABLE allocation. 1 Enable LT_DISABLE allocation. 7.2 List of Servo Parameters 7-48 Pn82E 2 Option Field Allocations 5 0000h to 1D1Fh – 0000h All After restart Setup *13 Pn833 2 Motion Settings 0000h to 0001h – 0000h All After restart Setup *2 Pn834 4 First Stage Linear Accel- eration Constant 2 1 to 20,971,520 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn836 4 Second Stage Linear Acceleration Constant 2 1 to 20,971,520 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn838 4 Acceleration Constant Switching Speed 2 0 to 2,097,152,000 1 refer- ence unit/s 0All Immedi- ately *10 Setup *2 Pn83A 4 First Stage Linear Deceleration Constant 2 1 to 20,971,520 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M2 *13 n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X OUT_SIGNAL Allocation (Option) 0 Allocate bits 0 to 2 to OUT_SIGNAL. 1 Allocate bits 1 to 3 to OUT_SIGNAL. 2 Allocate bits 2 to 4 to OUT_SIGNAL. 3 Allocate bits 3 to 5 to OUT_SIGNAL. 4 Allocate bits 4 to 6 to OUT_SIGNAL. 5 Allocate bits 5 to 7 to OUT_SIGNAL. 6 Allocate bits 6 to 8 to OUT_SIGNAL. 7 Allocate bits 7 to 9 to OUT_SIGNAL. 8 Allocate bits 8 to 10 to OUT_SIGNAL. 9 Allocate bits 9 to 11 to OUT_SIGNAL. A Allocate bits 10 to 12 to OUT_SIGNAL. B Allocate bits 11 to 13 to OUT_SIGNAL. C Allocate bits 12 to 14 to OUT_SIGNAL. D Allocate bits 13 to 15 to OUT_SIGNAL. n.X OUT_SIGNAL Allocation Enable/Disable Selection 0 Disable OUT_SIGNAL allocation. 1 Enable OUT_SIGNAL allocation. n.X Linear Acceleration/Deceleration Constant Selection 0 Use Pn80A to Pn80F and Pn827. (The settings of Pn834 to Pn840 are ignored.) 1 Use Pn834 to Pn840. (The settings of Pn80A to Pn80F and Pn827 are ignored.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-49 7 Parameter Lists Pn83C 4 Second Stage Linear Deceleration Constant 2 1 to 20,971,520 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn83E 4 Deceleration Constant Switching Speed 2 0 to 2,097,152,000 1 refer- ence unit/s 0All Immedi- ately *10 Setup *2 Pn840 4 Linear Deceleration Constant 2 for Stopping 1 to 20,971,520 10,000 refer- ence units/s 2 100 All Immedi- ately *10 Setup *2 Pn842 *14 4 Second Origin Approach Speed 1 0 to 20,971,520 100 ref- erence units/s 0All Immedi- ately *10 Setup *2 Pn844 *15 4 Second Origin Approach Speed 2 0 to 20,971,520 100 ref- erence units/s 0All Immedi- ately *10 Setup *2 Pn846 2 POSING Command Scurve Acceleration/ Deceleration Rate 0 to 50 1% 0 All Immedi- ately *10 Setup – Pn847 2 Position Correction Table Function Selec- tions 0000h to 1111h – 0000h All After restart Setup Pn850 2 Number of Latch Sequences 0 to 8 – 0 All Immedi- ately Setup *2 Pn851 2 Continuous Latch Sequence Count 0 to 255 – 0 All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence All Axes n.X Position Correction Table Selection 0 Do not use Position Correction Table. 1 Use Position Correction Table. n.X Reserved parameter (Do not change.) n.X Position Correction Table-Related Monitor Selection 0 Monitor the position information before position correction. 1 Monitor the position information after position correction. n.X Position Correction Axis Selection for Position Correction Table 0 Correct the position of axis A. 1 Correct the position of axis B. 7.2 List of Servo Parameters 7-50 Pn852 2 Latch Sequence 1 to 4 Settings 0000h to 3333h – 0000h All Immedi- ately Setup *2 Pn853 2 Latch Sequence 5 to 8 Settings 0000h to 3333h – 0000h All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence n.X Latch Sequence 1 Signal Selection 0Phase C 1 EXT1 signal 2 EXT2 signal 3 EXT3 signal n.X Latch Sequence 2 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 1 Signal Selec- tion. n.X Latch Sequence 3 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 1 Signal Selec- tion. n.X Latch Sequence 4 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 1 Signal Selec- tion. n.X Latch Sequence 5 Signal Selection 0Phase C 1 EXT1 signal 2 EXT2 signal 3 EXT3 signal n.X Latch Sequence 6 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 5 Signal Selec- tion. n.X Latch Sequence 7 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 5 Signal Selec- tion. n.X Latch Sequence 8 Signal Selection 0 to 3 The settings are the same as those for the Latch Sequence 5 Signal Selec- tion. 7.2 List of Servo Parameters 7-51 7 Parameter Lists Pn860 2 SVCMD_IO Input Signal Monitor Allocations 1 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn861 2 SVCMD_IO Input Signal Monitor Allocations 2 0000h to 1616h – 0000h All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 n.X Input Signal Monitor Allocation for CN1-3 (SVCMD_IO) 0 Allocate bit 24 (IO_STS1) to CN1-3 input signal monitor. 1 Allocate bit 25 (IO_STS2) to CN1-3 input signal monitor. 2 Allocate bit 26 (IO_STS3) to CN1-3 input signal monitor. 3 Allocate bit 27 (IO_STS4) to CN1-3 input signal monitor. 4 Allocate bit 28 (IO_STS5) to CN1-3 input signal monitor. 5 Allocate bit 29 (IO_STS6) to CN1-3 input signal monitor. 6 Allocate bit 30 (IO_STS7) to CN1-3 input signal monitor. n.X CN1-3 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-3 input signal monitor. 1 Enable allocation for CN1-3 input signal monitor. n.X Input Signal Monitor Allocation for CN1-4 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-4 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-4 input signal monitor. 1 Enable allocation for CN1-4 input signal monitor. M3 *8 n.X Input Signal Monitor Allocation for CN1-5 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-5 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-5 input signal monitor. 1 Enable allocation for CN1-5 input signal monitor. n.X Input Signal Monitor Allocation for CN1-6 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-6 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-6 input signal monitor. 1 Enable allocation for CN1-6 input signal monitor. 7.2 List of Servo Parameters 7-52 Pn862 2 SVCMD_IO Input Signal Monitor Allocations 3 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn863 2 SVCMD_IO Input Signal Monitor Allocations 4 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn864 2 SVCMD_IO Input Signal Monitor Allocations 5 0000h to 1616h – 0000h All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 n.X Input Signal Monitor Allocation for CN1-7 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-7 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-7 input signal monitor. 1 Enable allocation for CN1-7 input signal monitor. n.X Input Signal Monitor Allocation for CN1-8 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-8 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-8 input signal monitor. 1 Enable allocation for CN1-8 input signal monitor. M3 *8 n.X Input Signal Monitor Allocation for CN1-9 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-9 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-9 input signal monitor. 1 Enable allocation for CN1-9 input signal monitor. n.X Input Signal Monitor Allocation for CN1-10 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-10 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-10 input signal monitor. 1 Enable allocation for CN1-10 input signal monitor. M3 *8 n.X Input Signal Monitor Allocation for CN1-11 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-11 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-11 input signal monitor. 1 Enable allocation for CN1-11 input signal monitor. n.X Input Signal Monitor Allocation for CN1-12 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-12 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-12 input signal monitor. 1 Enable allocation for CN1-12 input signal monitor. 7.2 List of Servo Parameters 7-53 7 Parameter Lists Pn865 2 SVCMD_IO Input Signal Monitor Allocations 6 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn868 2 SVCMD_IO Output Sig- nal Monitor Allocations 1 0000h to 1616h – 0000h All Immedi- ately Setup *2 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 n.X Input Signal Monitor Allocation for CN1-13 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-13 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-13 input signal monitor. 1 Enable allocation for CN1-13 input signal monitor. n.X Input Signal Monitor Allocation for CN1-14 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-3 allocations. n.X CN1-14 Input Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-14 input signal monitor. 1 Enable allocation for CN1-14 input signal monitor. M3 *8 n.X Output Signal Monitor Allocation for CN1-23 and CN1-24 (SVCMD_IO) 0 Allocate bit 24 (IO_STS1) to CN1-23/CN1-24 output signal monitor. 1 Allocate bit 25 (IO_STS2) to CN1-23/CN1-24 output signal monitor. 2 Allocate bit 26 (IO_STS3) to CN1-23/CN1-24 output signal monitor. 3 Allocate bit 27 (IO_STS4) to CN1-23/CN1-24 output signal monitor. 4 Allocate bit 28 (IO_STS5) to CN1-23/CN1-24 output signal monitor. 5 Allocate bit 29 (IO_STS6) to CN1-23/CN1-24 output signal monitor. 6 Allocate bit 30 (IO_STS7) to CN1-23/CN1-24 output signal monitor. n.X CN1-23/CN1-24 Output Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-23/CN1-24 output signal monitor. 1 Enable allocation for CN1-23/CN1-24 output signal monitor. n.X Output Signal Monitor Allocation for CN1-25 and CN1-26 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-23/CN1-24 allocations. n.X CN1-25/CN1-26 Output Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-25/CN1-26 output signal monitor. 1 Enable allocation for CN1-25/CN1-26 output signal monitor. 7.2 List of Servo Parameters 7-54 Pn869 2 SVCMD_IO Output Sig- nal Monitor Allocations 2 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn86A 2 SVCMD_IO Output Sig- nal Monitor Allocations 3 0000h to 1616h – 0000h All Immedi- ately Setup *2 Pn880 2 Station Address Moni- tor (for maintenance, read only) 03h to EFh – – All – Setup *1 Pn881 2 Set Transmission Byte Count Monitor [bytes] (for maintenance, read only) 17, 32, 48 – – All – Setup *1 Pn882 2 Transmission Cycle Set- ting Monitor [× 0.25 μs] (for maintenance, read only) 0h to FFFFh – – All – Setup *1 Pn883 2 Communications Cycle Setting Monitor [trans- mission cycles] (for maintenance, read only) 0 to 32 – – All – Setup *1 Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 n.X Output Signal Monitor Allocation for CN1-27 and CN1-28 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-23/CN1-24 allocations. n.X CN1-27/CN1-28 Output Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-27/CN1-28 output signal monitor. 1 Enable allocation for CN1-27/CN1-28 output signal monitor. n.X Output Signal Monitor Allocation for CN1-29 and CN1-30 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-23/CN1-24 allocations. n.X CN1-29/CN1-30 Output Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-29/CN1-30 output signal monitor. 1 Enable allocation for CN1-29/CN1-30 output signal monitor. M3 *8 n.X Output Signal Monitor Allocation for CN1-31 and CN1-32 (SVCMD_IO) 0 to 6 The settings are the same as the CN1-23/CN1-24 allocations. n.X CN1-31/CN1-32 Output Signal Monitor Enable/Disable Selection 0 Disable allocation for CN1-31/CN1-32 output signal monitor. 1 Enable allocation for CN1-31/CN1-32 output signal monitor. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.2 List of Servo Parameters 7-55 7 Parameter Lists *1. Refer to the following manual for details. Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29) *2. Refer to the following manual for details. Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual (Manual No.: SIEP S800001 31) *3. Set a percentage of the motor rated torque. *4. Normally set this parameter to 0. If you use an External Regenerative Resistor, set the capacity (W) of the Exter- nal Regenerative Resistor. *5. The upper limit is two times the maximum output capacity (W) of the SERVOPACK. *6. These parameters are for SERVOPACKs with the dynamic brake option. Refer to the following manual for details. Σ-7-Series AC Servo Drive Σ-7S/Σ-7W SERVOPACK with Dynamic Brake Hardware Option Specifications Prod- uct Manual (Manual No.: SIEP S800001 73) *7. The SGLFW2 is the only Yaskawa Linear Servomotor that supports this function. *8. Enabled only when Pn61A is set to n.2 or n.3. *9. This parameter is valid only when the MECHATROLINK-III standard servo profile is used. *10.The parameter setting is enabled after SENS_ON command execution is completed. *11.Change the setting when the reference is stopped (i.e., while DEN is set to 1). If you change the setting during operation, the reference output will be affected. *12.The settings are updated only if the reference is stopped (i.e., only if DEN is set to 1). *13.Refer to the following manual for details. Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual (Manual No.: SIEP S800001 30) *14.This parameter is valid only when the MECHATROLINK-II-compatible profile is used. *15.The setting of Pn842 is valid while Pn817 is set to 0. *16.The setting of Pn844 is valid while Pn818 is set to 0. *17.You can check overspeed detection speed with MECHATROLINK-III Common Parameter 05 PnA0A (Maximum Output Speed). Pn884 2 Communications Con- trols 2 0000h to 0001h – 0000h All Immedi- ately Setup *2 Pn88A 2 MECHATROLINK Receive Error Counter Monitor (for maintenance, read only) 0 to 65,535 – 0 All – Setup – Pn890 to Pn8A6 4 Command Data Moni- tor during Alarm/Warn- ing (for maintenance, read only) 0h to FFFFFFFFh –0h All –Setup *1 Pn8A8 to Pn8BE 4 Response Data Monitor during Alarm/Warning (for maintenance, read only) 0h to FFFFFFFFh –0h All –Setup *1 Pn900 2 Number of Parameter Banks 0 to 16 – 0 All After restart Setup *2 Pn901 2 Number of Parameter Bank Members 0 to 15 – 0 All After restart Setup *2 Pn902 to Pn910 2 Parameter Bank Mem- ber Definition 0000h to 08FFh – 0000h All After restart Setup *2 Pn920 to Pn95F 2 Parameter Bank Data (Not saved in nonvolatile memory.) 0000h to FFFFh – 0000h All Immedi- ately Setup *2 Continued from previous page. Parameter No. Size Name Setting Range Setting Unit Default Setting Applicable Motors When Enabled Classi- fication Refer- ence M3 *8 n.X MECHATROLINK Communications Error Holding Brake Signal Setting 0 Maintain the status set by the BRK_ON or BRK_OFF command when a MECHA- TROLINK communications error occurs. 1 Apply the holding brake when a MECHATROLINK communications error occurs. n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) n.X Reserved parameter (Do not change.) 7.3 List of MECHATROLINK-III Common Parameters 7-56 7.3 List of MECHATROLINK-III Common Parameters The following table lists the common MECHATROLINK-III parameters. These common parame- ters are used to make settings from the host controller via MECHATROLINK communications. Do not change the settings with the Digital Operator or any other device. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 01 PnA02 4 Encoder Type (read only) 0h or 1h – – All – Device information 02 PnA04 4 Motor Type (read only) 0h or 1h – – All – 04 PnA08 4 Rated Speed (read only) 0h to FFFFFFFFh 1 min -1 –All– 05 PnA0A 4 Maximum Output Speed (read only) 0h to FFFFFFFFh 1 min -1 –All– 06 PnA0C 4 Speed Multiplier (read only) -1,073,741,823 to 1,073,741,823 ––All– Device information 07 PnA0E 4 Rated Torque (read only) 0h to FFFFFFFFh 1 Nm– All – 08 PnA10 4 Maximum Output Torque (read only) 0h to FFFFFFFFh 1 Nm– All – 09 PnA12 4 Torque Multiplier (read only) -1,073,741,823 to 1,073,741,823 ––All– 0A PnA14 4 Resolution (read only) 0h to FFFFFFFFh 1 pulse/rev – Rotary – 0B PnA16 4 Linear Scale Pitch 0 to 65,536,000 1 nm [0.01 μm] 0Linear After restart 0C PnA18 4 Pulses per Scale Pitch (read only) 0h to FFFFFFFFh 1 pulse/ pitch –Linear– Continued on next page. 0000h Absolute encoder 0001h Incremental encoder 0000h Rotary Servomotor 0001h Linear Servomotor 7.3 List of MECHATROLINK-III Common Parameters 7-57 7 Parameter Lists 21 PnA42 4 Electronic Gear Ratio (Numerator) 1 to 1,073,741,824 –16All After restart Machine specifications 22 PnA44 4 Electronic Gear Ratio (Denominator) 1 to 1,073,741,824 –1All After restart 23 PnA46 4 Absolute Encoder Origin Offset -1,073,741,823 to 1,073,741,823 1 reference unit 0All Immedi- ately *1 24 PnA48 4 Multiturn Limit 0 to 65,535 1 Rev 65535 Rotary After restart 25 PnA4A 4 Limit Setting 0h to 33h – 0000h All After restart 26 PnA4C 4 Forward Software Limit -1,073,741,823 to 1,073,741,823 1 reference unit 10737418 23 All Immedi- ately 27 PnA4E 4 Reserved parameter (Do not change.) ––0All Immedi- ately 28 PnA50 4 Reverse Software Limit -1,073,741,823 to 1,073,741,823 1 reference unit -1073741 823 All Immedi- ately 29 PnA52 4 Reserved parameter (Do not change.) ––0All Immedi- ately 41 PnA82 4 Speed Unit 0h to 4h – 0h All After restart Unit settings 42 PnA84 4 Speed Base Unit *2, *3 (Set the value of n from the following formula: Speed unit (41 PnA82) × 10 n ) -3 to 3 – 0 All After restart 43 PnA86 4 Position Unit 0h – 0h All After restart Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication Bit 0 P-OT (0: Enabled, 1: Disabled) Bit 1 N-OT (0: Enabled, 1: Disabled) Bit 2 Reserved. Bit 3 Reserved. Bit 4 P-SOT (0: Disabled, 1: Enabled) Bit 5 N-SOT (0: Disabled, 1: Enabled) Bits 6 to 31 Reserved. 0000h Reference units/s 0001h Reference units/min 0002h Percentage (%) of rated speed *2 0003h min -1 *2 0004h Maximum motor speed/40000000h *3 0000h Reference units 7.3 List of MECHATROLINK-III Common Parameters 7-58 44 PnA88 4 Position Base Unit (Set the value of n from the following formula: Position unit (43 PnA86) × 10 n ) 0–0All After restart Unit settings 45 PnA8A 4 Acceleration Unit 0h – 0h All After restart 46 PnA8C 4 Acceleration Base Unit (Set the value of n from the following formula: Acceleration unit (45 PnA8A) × 10 n ) 4 to 6 – 4 All After restart 47 PnA8E 4 Torque Unit 1h or 2h – 1h All After restart 48 PnA90 4 Torque Base Unit *4 (Set the value of n from the following formula: Torque unit (47 PnA8E) × 10 n ) -5 to 0 – 0 All After restart 49 PnA92 4 Supported Unit (read only) –– 0601011F h All – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 0000h Reference units/s 2 0001h Percentage (%) of rated torque 0002h Maximum torque/40000000h *4 Speed Units Bit 0 Reference units/s (1: Enabled) Bit 1 Reference units/min (1: Enabled) Bit 2 Percentage (%) of rated speed (1: Enabled) Bit 3 min -1 (rpm) (1: Enabled) Bit 4 Maximum motor speed/4000000h (1: Enabled) Bits 5 to 7 Reserved (0: Disabled). Position Units Bit 8 Reference units (1: Enabled) Bits 9 to 15 Reserved (0: Disabled). Acceleration Units Bit 16 Reference units/s 2 (1: Enabled) Bit 17 ms (acceleration time required to reach rated speed) (0: Disabled) Bits 18 to 23 Reserved (0: Disabled). Torqu e Un its Bit 24 Nm (0: Disabled) Bit 25 Percentage (%) of rated torque (1: Enabled) Bit 26 Maximum torque/40000000h (1: Enabled) Bits 27 to 31 Reserved (0: Disabled). 7.3 List of MECHATROLINK-III Common Parameters 7-59 7 Parameter Lists 61 PnAC2 4 Speed Loop Gain 1,000 to 2,000,000 0.001 Hz [0.1 Hz] 40000 All Immedi- ately Tuning 62 PnAC4 4 Speed Loop Integral Time Constant 150 to 512,000 1 μs [0.01 ms] 20000 All Immedi- ately 63 PnAC6 4 Position Loop Gain 1,000 to 2,000,000 0.001/s [0.1/s] 40000 All Immedi- ately 64 PnAC8 4 Feed Forward Com- pensation 0 to 100 1% 0 All Immedi- ately 65 PnACA 4 Position Loop Inte- gral Time Constant 0 to 5,000,000 1 μs [0.1 ms] 0All Immedi- ately 66 PnACC 4 In-position Range 0 to 1,073,741,824 1 reference unit 7All Immedi- ately 67 PnACE 4 Near-position Range 1 to 1,073,741,824 1 reference unit 10737418 24 All Immedi- ately 81 PnB02 4 Exponential Func- tion Acceleration/ Deceleration Time Constant 0 to 510,000 1 μs [0.1 ms] 0All Immedi- ately *5 82 PnB04 4 Movement Average Time 0 to 510,000 1 μs [0.1 ms] 0All Immedi- ately *5 83 PnB06 4 Final Travel for Exter- nal Input Positioning -1,073,741,823 to 1,073,741,823 1 reference unit 100 All Immedi- ately 84 PnB08 4 Zero Point Return Approach Speed 0h to 3FFFFFFFh 10 -3 min -1 × 5,000h reference units/s con- verted to 10 -3 min -1 All Immedi- ately 85 PnB0A 4 Zero Point Return Creep Speed 0h to 3FFFFFFFh 10 -3 min -1 × 500h reference units/s con- verted to 10 -3 min -1 All Immedi- ately 86 PnB0C 4 Final Travel for Zero Point Return -1,073,741,823 to 1,073,741,823 1 reference unit 100 All Immedi- ately 87 PnB0E 4 Monitor Select 1 0h to Fh – 1h All Immedi- ately Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 0000h APOS 0001h CPOS 0002h PERR 0003h LPOS1 0004h LPOS2 0005h FSPD 0006h CSPD 0007h TRQ 0008h ALARM 0009h MPOS 000Ah Reserved (undefined value). 000Bh Reserved (undefined value). 000Ch CMN1 (common monitor 1) 000Dh CMN2 (common monitor 2) 000Eh OMN1 (optional monitor 1) 000Fh OMN2 (optional monitor 2) 7.3 List of MECHATROLINK-III Common Parameters 7-60 88 PnB10 4 Monitor Select 2 0h to Fh – 0h All Immedi- ately Command-related parameters 89 PnB12 4 Monitor Select for SEL_MON1 0h to 9h – 0h All Immedi- ately Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 0000h to 000Fh The settings are the same as those for Fixed Monitor Selection 1. 0000h TPOS (target position in reference coordinate system) 0001h IPOS (reference position in reference coordinate system) 0002h POS_OFFSET (offset set in POS_SET (Set Coordinate System) command) 0003h TSPD (target speed) 0004h SPD_LIM (speed limit) 0005h TRQ_LIM (torque limit) 0006h SV_STAT (servo actual operating status) Monitor Description Byte 1: Current communications phase 00h: Phase 0 01h: Phase 1 02h: Phase 2 03h: Phase 3 Byte 2: Current control mode 00h: Position control mode 01h: Speed control mode 02h: Torque control mode Byte 3: Reserved Byte 4: Expansion signal monitor 0007h Reserved. 0008h INIT_PGPOS (Low) Lower 32 bits of initial encoder position con- verted to 64-bit position reference data 0009h INIT_PGPOS (High) Upper 32 bits of initial encoder position con- verted to 64-bit position reference data Bit Name Description Value Setting Bit 0 LT_RDY1 Processing status for latch detection for LT_REQ1 in SVCM- D_CTRL region 0 Latch detection not yet pro- cessed. 1 Processing latch detection in progress. Bit 1 LT_RDY1 Processing status for latch detection for LT_REQ2 in SVCM- D_CTRL region 0 Latch detection not yet pro- cessed. 1 Processing latch detection in progress. Bits 2 and 3 LT_SEL1R Latch signal 0Phase C 1 External input signal 1 2 External input signal 2 3 External input signal 3 Bits 4 and 5 LT_SEL2R Latch signal 0Phase C 1 External input signal 1 2 External input signal 2 3 External input signal 3 Bit 6 Reserved (0). 7.3 List of MECHATROLINK-III Common Parameters 7-61 7 Parameter Lists 8A PnB14 4 Monitor Select for SEL_MON2 0h to 9h – 0h All Immedi- ately Command-related parameters 8B PnB16 4 Zero Point Detection Range 0 to 250 1 reference unit 10 All Immedi- ately 8C PnB18 4 Forward Torque Limit 0 to 800 1% 100 All Immedi- ately 8D PnB1A 4 Reverse Torque Limit 0 to 800 1% 100 All Immedi- ately 8E PnB1C 4 Zero Speed Detec- tion Range 1,000 to 10,000,000 10 -3 min -1 20000 All Immedi- ately 8F PnB1E 4 Speed Match Signal Detection Range 0 to 100,000 10 -3 min -1 10000 All Immedi- ately 90 PnB20 4 SVCMD_CTRL bit Enabled/Disabled (read only) –– 0FFF3F3F h All – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication 0000h to 0009h The settings are the same as those for SEL_MON Monitor Selection 1. Bit 0 CMD_PAUSE (1: Enabled) Bit 1 CMD_CANCEL (1: Enabled) Bits 2 and 3 STOP_MODE (1: Enabled) Bits 4 and 5 ACCFIL (1: Enabled) Bits 6 and 7 Reserved (0: Disabled). Bit 8 LT_REQ1 (1: Enabled) Bit 9 LT_REQ2 (1: Enabled) Bits 10 and 11 LT_SEL1 (1: Enabled) Bits 12 and 13 LT_SEL2 (1: Enabled) Bits 14 and 15 Reserved (0: Disabled). Bits 16 to 19 SEL_MON1 (1: Enabled) Bits 20 to 23 SEL_MON2 (1: Enabled) Bits 24 to 27 SEL_MON3 (1: Enabled) Bits 28 to 31 Reserved (0: Disabled). 7.3 List of MECHATROLINK-III Common Parameters 7-62 91 PnB22 4 SVCMD_STAT bit Enabled/Disabled (read only) –– 0FFF3F33 h All – Command-related parameters 92 PnB24 4 I/O Bit Enabled/Dis- abled (Output) (read only) –– 01FF01F0 h All – Continued on next page. Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication Bit 0 CMD_PAUSE_CMP (1: Enabled) Bit 1 CMD_CANCEL_CMP (1: Enabled) Bit 2 and 3 Reserved (0: Disabled). Bits 4 and 5 ACCFIL (1: Enabled) Bits 6 and 7 Reserved (0: Disabled). Bit 8 L_CMP1 (1: Enabled) Bit 9 L_CMP2 (1: Enabled) Bit 10 POS_RDY (1: Enabled) Bit 11 PON (1: Enabled) Bit 12 M_RDY (1: Enabled) Bit 13 SV_ON (1: Enabled) Bits 14 and 15 Reserved (0: Disabled). Bits 16 to 19 SEL_MON1 (1: Enabled) Bits 20 to 23 SEL_MON2 (1: Enabled) Bits 24 to 27 SEL_MON3 (1: Enabled) Bits 28 to 31 Reserved (0: Disabled). Bits 0 to 3 Reserved (0: Disabled). Bit 4 V_PPI (1: Enabled) Bit 5 P_PPI (1: Enabled) Bit 6 P_CL (1: Enabled) Bit 7 N_CL (1: Enabled) Bit 8 G_SEL (1: Enabled) Bits 9 to 11 G_SEL (0: Disabled) Bits 12 to 15 Reserved (0: Disabled). Bits 16 to 19 BANK_SEL (1: Enabled) Bits 20 to 24 SO1 to SO5 (1: Enabled) Bits 25 to 31 Reserved (0: Disabled). 7.3 List of MECHATROLINK-III Common Parameters 7-63 7 Parameter Lists *1. The parameter setting is enabled after SENS_ON command execution is completed. *2. If you set the Speed Unit Selection (parameter 41) to either 0002h or 0003h, set the Speed Base Unit Selection (parameter 42) to a number between -3 and 0. *3. If you set the Speed Unit Selection (parameter 41) to 0004h, set the Speed Base Unit Selection (parameter 42) to 0. *4. If you set the Torque Unit Selection (parameter 47) to 0002h, set the Torque Base Unit Selection (parameter 48) to 0. *5. Change the setting when the reference is stopped (i.e., while DEN is set to 1). If you change the setting during operation, the reference output will be affected. 93 PnB26 4 I/O Bit Enabled/Dis- abled (Input) (read only) –– FF0FFEFE h All – Command-related parameters Continued from previous page. Parameter No. Size Name Setting Range Setting Unit [Resolution] Default Setting Applicable Motors When Enabled Classi- fication Bit 0 Reserved (0: Disabled). Bit 1 DEC (1: Enabled) Bit 2 P-OT (1: Enabled) Bit 3 N-OT (1: Enabled) Bit 4 EXT1 (1: Enabled) Bit 5 EXT2 (1: Enabled) Bit 6 EXT3 (1: Enabled) Bit 7 ESTP (1: Enabled) Bit 8 Reserved (0: Disabled). Bit 9 BRK_ON (1: Enabled) Bit 10 P-SOT (1: Enabled) Bit 11 N-SOT (1: Enabled) Bit 12 DEN (1: Enabled) Bit 13 NEAR (1: Enabled) Bit 14 PSET (1: Enabled) Bit 15 ZPOINT (1: Enabled) Bit 16 T_LIM (1: Enabled) Bit 17 V_LIM (1: Enabled) Bit 18 V_CMP (1: Enabled) Bit 19 ZSPD (1: Enabled) Bits 20 to 23 Reserved (0: Disabled). Bits 24 to 31 IO_STS1 to IO_STS8 (1: Enabled) Index Index-1 Index A active alarm axis - - - - - - - - - - - - - - - - - - - - - - - - xii alarm reset possibility - - - - - - - - - - - - - - - - - - - - 6-2 B base block (BB) - - - - - - - - - - - - - - - - - - - - - - - - - xii C coefficient of speed fluctuation - - - - - - - - - - - - - - - 2-7 L Linear Servomotor - - - - - - - - - - - - - - - - - - - - - - - xii list of alarms - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2 list of warnings - - - - - - - - - - - - - - - - - - - - - - - 6-36 M Main Circuit Cable - - - - - - - - - - - - - - - - - - - - - - - xii Monitoring Digital Operator - - - - - - - - - - - - - - - - - - 3-25 , 5-6 MECHATROLINK-III - - - - - - - - - - - - - - - - - - 3-25 SigmaWin+ - - - - - - - - - - - - - - - - - - - - 3-25 , 5-6 P Parameter Lists - - - - - - - - - - - - - - - - - - - - - - - - 7-2 parameters notation (numeric settings) - - - - - - - - - - - - - - - - xiii notation (selecting functions) - - - - - - - - - - - - - - - xiii Position Correction Axis Selection for Position Correction Table - - - - - - - - - - - - - - - - - - 3-4 Position Correction Table - - - - - - - - - - - - - - - - - - 3-2 Alarm - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-5 Block Diagram - - - - - - - - - - - - - - - - - - - - - - 3-3 Correction Amount - - - - - - - - - - - - - - - - - - - - 3-7 Correction Position - - - - - - - - - - - - - - - - - - - - 3-7 Details - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-7 Enable/Disable - - - - - - - - - - - - - - - - - - - - - - 3-4 Parameter Settings - - - - - - - - - - - - - - - - - - - - 3-4 Position Measurements - - - - - - - - - - - - - - - - - 3-6 Pre-Correction Position - - - - - - - - - - - - - - - - - 3-7 Settings - - - - - - - - - - - - - - - - - - - - - - - - - - 3-6 Settings with the MEM_WR Command - - - - - - - 3-20 Settings with the SigmaWin+ - - - - - - - - - - - - - - 3-8 Tab le No . - - - - - - - - - - - - - - - - - - - - - - - - - 3-7 Position Correction Table-Related Monitor Selection - - - 3-4 Position Deviation between Axes Overflow Alarm Level - - - - - - - - - - - - - - - - - - - - - - - - - - 5-3 Position Deviation between Axes Overflow Detection - - - - - - - - - - - - - - - - - - - - - - - - 5-2 , 5-3 Alarm - - - - - - - - - - - - - - - - - - - - - - - - - - - -5-4 Parameter Settings - - - - - - - - - - - - - - - - - - - -5-3 Warning - - - - - - - - - - - - - - - - - - - - - - - - - - -5-5 Position Deviation between Axes Overflow Warning Level - - - - - - - - - - - - - - - - - - - - - - - - - -5-3 R Rotary Servomotor - - - - - - - - - - - - - - - - - - - - - - - xii S Servo Drive - - - - - - - - - - - - - - - - - - - - - - - - - - - xii servo lock - - - - - - - - - - - - - - - - - - - - - - - - - - - - xii servo OFF - - - - - - - - - - - - - - - - - - - - - - - - - - - - xii servo ON - - - - - - - - - - - - - - - - - - - - - - - - - - - - xii Servo System - - - - - - - - - - - - - - - - - - - - - - - - - - xii Servomotor - - - - - - - - - - - - - - - - - - - - - - - - - - - xii SERVOPACK - - - - - - - - - - - - - - - - - - - - - - - - - - xii specifications - - - - - - - - - - - - - - - - - - - - - - - -2-5 SigmaWin+ - - - - - - - - - - - - - - - - - - - - - - - - - - - xii storage humidity - - - - - - - - - - - - - - - - - - - - - - - -2-5 storage temperature - - - - - - - - - - - - - - - - - - - - - -2-5 surrounding air humidity - - - - - - - - - - - - - - - - - - - -2-5 surrounding air temperature - - - - - - - - - - - - - - - - -2-5 Synchronized Stopping - - - - - - - - - - - - - - - - - - - -4-2 Alarms - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-6 Mode Selection - - - - - - - - - - - - - - - - - - - - - -4-4 Parameter Settings - - - - - - - - - - - - - - - - - - - -4-4 Timing Chart - - - - - - - - - - - - - - - - - - - - - - - -4-3 Warning - - - - - - - - - - - - - - - - - - - - - - - - - - -4-7 synchronized stopping axis - - - - - - - - - - - - - - - - - - xii Synchronized Stopping End Speed - - - - - - - - - - - - -4-4 Synchronized Stopping Selection - - - - - - - - - - - - - -4-4 Synchronized Stopping Speed Feedforward - - - - - - - -4-5 T troubleshooting alarms - - - - - - - - - - - - - - - - - - - -6-7 troubleshooting warnings - - - - - - - - - - - - - - - - - -6-39 Revision History-1 Revision History The date of publication, revision number, and web revision number are given at the bottom right of the back cover. Refer to the following example. Date of Publication Rev. No. Web Rev. No. Section Revised Contents October 2019 <2> 0 Preface, Chapter 6, 7 Revision: Partly revised February 2019 <1> 0 All chapters Partly revised. Back cover Revision: Address November 2017 ––– First edition MANUAL NO. SIEP S800002 29A <0>-1 Published in Japan November 2017 Date of publication Revision number Web revision number IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan Phone: +81-4-2962-5151 Fax: +81-4-2962-6138 http://www.yaskawa.co.jp YASKAWA AMERICA, INC. 2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 http://www.yaskawa.com YASKAWA ELÉTRICO DO BRASIL LTDA. 777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187HOMEYASKAWA EUROPE GmbH Hauptstraβe 185, 65760 Eschborn, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 http://www.yaskawa.eu.com E-mail: [email protected] YASKAWA ELECTRIC KOREA CORPORATION 35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea Phone: +82-2-784-7844 Fax: +82-2-784-8495 http://www.yaskawa.co.kr YASKAWA ASIA PACIFIC PTE. LTD. 30A, Kallang Place, #06-01, 339213, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 http://www.yaskawa.com.sg YASKAWA ELECTRIC (THAILAND) CO., LTD. 59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 http://www.yaskawa.co.th YASKAWA ELECTRIC (CHINA) CO., LTD. 22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 http://www.yaskawa.com.cn YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082 YASKAWA ELECTRIC TAIWAN CORPORATION 12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 http://www.yaskawa.com.tw In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements. © 2017 YASKAWA ELECTRIC CORPORATION Published in Japan October 2019 MANUAL NO. SIEP S800002 29C <2>-0 18-10-15 Original instructions -7W SERVOPACK with FT/EX Specification for Gantry Applications -7-Series AC Servo Drive Product Manual
(The parameter data in the SERVOPACK is incorrect.)
(The parameter data in the SERVOPACK is incorrect.)
(The parameter setting was out of the setting range.)
(Detected when the power to the main circuit is turned ON.)
(Detected in the SERVOPACK main circuit power supply section.)
(The servomotor rotational speed exceeds the maximum.)
(Vibration was detected while executing the advanced autotuning, one-parameter tuning, EasyFFT, or tuning-less function.)
(Incremental)
(Absolute)
(Detected when the servo is ON.)
(Detected when the servo is ON.)
(Detected when the servomotor power is ON.)
(Reception error)
(Timer stop)
(Position error exceeded the value set in the excessive position error alarm level (Pn520).)
(With the main power supply ON, voltage was low for more than 1 second in an R, S, or T phase.)
(Detected when the main power supply was turned ON.)
|
|
Сервисный центр «Кернел» предлагает выполнить качественный ремонт сервопривода Yaskawa в на компонентном уровне в максимально сжатые сроки. Сервопривод относятся к сложной промышленной электронике именно поэтому ремонтом сервоприводов Yaskawa, впрочем, как и других производителей должны заниматься специалисты, имеющие не только высшее техническое образование, но и солидный опыт в ремонте подобной промышленной электроники.
Также для восстановления подобного промышленного оборудования понадобится хорошая материально-техническая база. При выполнении всех выше перечисленных условий, шансы на успешный ремонт сервопривода Yaskawa возрастают в геометрической прогрессии.
Именно поэтому за ремонтом сервоприводов, независимо от производителя лучше всего обращаться в специализированный сервисный центр, который отвечает всем техническим требованиям, такой как Кернел. Наш цент имеет отличную материально-техническую базу, а за время существования с 2002 года специалисты компании накопили бесценный опыт в том числе опыт в ремонте сервоприводов Yaskawa.
Особенности ремонта сервопривода Yaskawa
Ремонт сервоприводов имеет ряд индивидуальных особенностей, это связано с конструктивными особенностями данного промышленного оборудования. По аналогии с частотными преобразователями они состоят из двух взаимосвязанных частей, это:
- Аппаратная часть;
- Программная часть.
В первую очередь ремонтируется аппаратная часть промышленного сервопривода. После глубокой диагностики неисправного блока выявляются все неисправные компоненты, которые в последствии заменяются на оригинальные запасные части (по возможности), в случае если сервопривод уже давно снят с производства и найти оригинальные запчасти просто невозможно они заменяются на аналоги.
Данный вид ремонта называется компонентным. От других видов его отличает две немаловажные детали.
- Значительное удешевление ремонта;
- Существенное сокращение времени ремонта.
По завершении ремонта аппаратной части сервопривода наступает очередь программной. В зависимости от серии выбирается программный продукт и зашивается в блок.
Заключительный этап ремонта сервопривода Yaskawa это проверка на специализированном стенде. Все блоки проверяются без нагрузки и с нагрузкой не менее двух часов.
Коды предупреждений и ошибок сервопривода Yaskawa
Ошибки, связанные с идентификацией модуля обратной связи
Номер аварийного сигнала: Имя аварийного сигнала (Описание аварийного сигнала) |
Причина |
Расследование причин |
Устранение причины |
A.044: Ошибка задания параме- тра полузамкнутого/пол- ностью замкнутого цикла управления |
Подключенный дополнительный модуль и значение настройки параме- тра Pn00B.3 и/или Pn002.3 не совпа- дают. |
Проверьте настройки PN00B.3 и/или Pn002.3 |
Настройка дополнитель- ного модуля должна совпа- дать с настройками Pn00B.3 и/или Pn002.3. |
A.051: Предупреждение о непод- держиваемом устройстве |
1) Неподдерживаемое устройство не было подключено. 2)Неподдерживаемая комбинация: а) СЕРВОУЗЕЛ (вращательный двигатель) с модулем обратной связи для линейного двигателя б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя 3) Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3. |
Проверьте xарактеристики продукта |
Настройте Pn00B.3. Выберите правильную ком- бинацию устройств |
A.E72: Ошибка обнаружения модуля обратной связи |
Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи. |
Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи. |
Правильно подключите модуль обратной связи. |
Модуль обратной связи был отключен. |
— |
Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание. |
|
Произошла ошибка модуля обратной связи. |
— |
Замените модуль обратной связи. |
|
Произошла ошибка СЕРВОУЗЛА. |
— |
Замените СЕРВОУЗЕЛ. |
|
A.E75: Неподдерживаемый модуль обратной связи |
Был подключен неподдерживаемый модуль обратной связи. |
См. каталог подключенного модуля обратной связи или руководство СЕРВОУЗЛА |
Подключите совместимый модуль обратной связи. |
Была использована неподходящая версия прошивки Sigma-5. |
— |
Замените СЕРВОУЗЕЛ. |
Ошибки в полностью замкнутом цикле управления
Номер аварийного сигнала: Имя аварийного сигнала (Описание аварийного сигнала) |
Причина |
Расследование причин |
Устранение причины |
A.041: Ошибка настройки импульсов на выходе дат- чика положения |
Импульс на выходе датчика положения (Pn212) выходит за пределы допусти- мого диапазона и не отвечает условиям настройки. |
Проверьте параметр Pn212. |
Установите верное значе- ние для параметра Pn212. |
A.042: Ошибка комбинации параметра |
Скорость программирования работы JOG (Fn004) ниже, чем диапазон уста- вок после изменения скорости движе- ния при программировании работы JOG (Pn533). |
Убедитесь, что условия обнаружения соблюдаются. |
Увеличьте значение скоро- сти движения при програм- мировании работы JOG (Pn533). |
A.511: Превышение скорости импульсов на выходе дат- чика положения |
Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). |
Проверьте настройку вывода импульсов на выходе датчика положения |
Уменьшите значение импульса на выходе дат- чика положения (Pn212). |
A.8A0: Ошибка внешнего дат- чика положения |
Произошла ошибка внешнего датчика положения. |
— |
Замените внешний датчик положения. |
A.8A1: Ошибка в модуле внеш- него датчика положения |
Произошел сбой при использовании серийного конвертера. |
— |
Замените серийный конвер- тер. |
A.8A2 Ошибка в сенсоре внеш- него датчика положения |
Произошла ошибка внешнего датчика положения. |
— |
Замените внешний датчик положения. |
A.8A3 Ошибка в позиции внеш- него датчика положения |
Произошла ошибка абсолютного внеш- него датчика положения |
— |
Есть вероятность неисправ- ности во внешнем абсолют- ном датчике положения. Подробную информацию об исправлении неисправ- ностей см. в руководстве по эксплуатации датчика положения от производи- теля. |
A.8A5 Разгон внешнего датчика положения |
Произошло превышение скорости на внешнем датчике положения. |
— |
Замените внешний датчик положения. |
A.8A6 Перегрев внешнего дат- чика положения |
Произошел перегрев внешнего датчика положения. |
— |
Замените внешний датчик положения. |
A.CF1: Ошибка в системе связи внешнего датчика поло- жения |
Неправильное подключение кабеля между серийным конвертером и СЕР- ВОУЗЛОМ, либо неисправный контакт. |
Проверьте проводку внеш- него датчика положения. |
Исправьте проводку кабеля. |
Указанный кабель не используется, либо слишком длинный. |
Подтвердите характери- стики проводки внешнего датчика положения. |
Используйте указанный кабель макс. длиной 20 м. |
|
A.CF2: Ошибка таймера в системе связи внешнего датчика положения |
Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗ- ЛОМ. |
— |
Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода. |
A.D10: Ошибка переполнения при позиционировании нагрузки электродвига- теля |
Направление вращения двигателя и направление установки внешнего дат- чика положения противоположны. |
Проверьте направление вращения серводвигателя и направление установки внешнего датчика положе- ния. |
Установите внешний дат- чик положения в противо- положном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление. |
Неверно выполнен монтаж нагрузки и соединений внешнего датчика положе- ния. |
Проверьте механические соединения внешнего дат- чика положения |
Проверьте механические соединения. |
Смотреть все коды ошибок сервопривода Yaskawa Sigma-5
Схемы подключения сервоприводов Yaskawa
В некоторых случает может понадобится схема подключения сервоприводов, ниже мы показаны схемы сервопривода Yaskawa.
Схема конфигурации системы Yaskawa |
Схема подключения сервопривода Yaskawa |
|
|
Преимущество ремонта сервоприводов Yaskawa в нашем сервисном центре
Во время эксплуатации электроприводов Yaskawa может возникнуть проблема, далеко не всегда возникшую проблему можно исправить на месте своими силами, наш сервисный центр готов вам в этом помочь, выполнив качественный ремонт сервоприводов Yaskawa в сжатые сроки с полугодовой гарантией.
Мы не только восстановим неисправный блок, но и подскажем как действовать в той или иной ситуации для максимально долгой и безаварийной работы сервопривода.
Работы, проводимые при ремонте сервопривода Yaskawa:
- Предварительный осмотр на возможность восстановления бесплатный;
- Мы производим ремонт сервопривода Yaskawa на компонентном уровне (экономия бюджета и времени)
- При ремонте сервоприводов ни каких конструктивных изменений не вносим;
- Ремонт блоков с применением оригинальных запасных частей (по возможности).
- Вы платите исключительно за результат — работающий сервопривод;
- Гарантия на ремонт сервоприводов Yaskawa и на запасные части замененные в процессе ремонта 6 месяцев;
- Сроки ремонта варьируются от 5 до 15 рабочих дней;
За два десятилетия существования сервисного центра нашими специалистами были успешно проведены тысячи подобных ремонтов с каждым разом поднимая квалификацию наших инженеров. Ниже представлен далеко не полный список сервоприводов Yaskawa серии Sigma-5 ремонтируемые в нашем сервисном центре.
Буквенно-цифровое обозначение |
Сервопривода Yaskawa Sigma-5 |
SGDV-1R9D01A |
Ремонт сервопривода Yaskawa Sigma-5 0.45 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-3R5D01A |
Ремонт сервопривода Yaskawa Sigma-5 1.0 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-5R4D01A |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-8R4D01A |
Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-120D01A |
Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-170D01A |
Ремонт сервопривода Yaskawa Sigma-5 4.40 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-210D01A |
Ремонт сервопривода Yaskawa Sigma-5 5.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-260D01A |
Ремонт сервопривода Yaskawa Sigma-5 7.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-280D01A |
Ремонт сервопривода Yaskawa Sigma-5 11.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-370D01A |
Ремонт сервопривода Yaskawa Sigma-5 15.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-1R9D05A |
Ремонт сервопривода Yaskawa Sigma-5 0.45 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-3R5D05A |
Ремонт сервопривода Yaskawa Sigma-5 1.0 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-5R4D05A |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-8R4D05A |
Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-120D05A |
Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-170D05A |
Ремонт сервопривода Yaskawa Sigma-5 4.40 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-210D05A |
Ремонт сервопривода Yaskawa Sigma-5 5.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-260D05A |
Ремонт сервопривода Yaskawa Sigma-5 7.50 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-280D05A |
Ремонт сервопривода Yaskawa Sigma-5 11.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-370D05A |
Ремонт сервопривода Yaskawa Sigma-5 15.00 кВт, питающая сеть только 3 фазы 400 В. |
SGDV-R70A01A |
Ремонт сервопривода Yaskawa Sigma-5 0.05 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-R90A01A |
Ремонт сервопривода Yaskawa Sigma-5 0.10 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-1R6A01A |
Ремонт сервопривода Yaskawa Sigma-5 0.20 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-2R8A01A |
Ремонт сервопривода Yaskawa Sigma-5 0.40 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-5R5A01A |
Ремонт сервопривода Yaskawa Sigma-5 0.75 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-120A01A008000 |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть 1 фаза 230 В. |
SGDV-120A01A |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 230 В. |
SGDV-180A01A |
Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 230 В. |
SGDV-200A01A |
Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 230 В. |
SGDV-R90A05A |
Ремонт сервопривода Yaskawa Sigma-5 0.10 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-1R6A05A |
Ремонт сервопривода Yaskawa Sigma-5 0.20 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-2R8A05A |
Ремонт сервопривода Yaskawa Sigma-5 0.40 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-5R5A05A |
Ремонт сервопривода Yaskawa Sigma-5 0.75 кВт, питающая сеть 1/3 фазы 230 В. |
SGDV-120A05A008000 |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть 1 фаза 230 В. |
SGDV-120A05A |
Ремонт сервопривода Yaskawa Sigma-5 1.50 кВт, питающая сеть только 3 фазы 230 В. |
SGDV-180A05A |
Ремонт сервопривода Yaskawa Sigma-5 2.00 кВт, питающая сеть только 3 фазы 230 В. |
SGDV-200A05A |
Ремонт сервопривода Yaskawa Sigma-5 3.00 кВт, питающая сеть только 3 фазы 230 В. |
В таблице представлены исключительно сервопривода Yaskawa Sigma-5 ремонт которых мы вам предлагаем, также специалисты нашей компании ремонтируют сервопривода не зависимо от того под каким брендом они были выпущены.
Оставить заявку на ремонт сервопривода Yaskawa
У вас остались вопросы, связанные с ремонтом или сбросом ошибок, а также программированием и настройкой сервоприводов Yaskawa? Оставьте заявку на ремонт сервопривода Yaskawa в нашим менеджерам. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона: +7(8482) 79-78-54; +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
За время существования сервисного центра нашими специалистами были отремонтированы тысячи единиц промышленной электроники. Вот далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.
|
|
Ремонт сервоприводов Yaskawa sigma в Тольятти
Ремонт сервоприводов Yaskawa sigma в Тольятти, одна из многих услуг предлагаемых сервисным центром «РемПромЭл». Сервопривод относится к сложной промышленной электронике и состоит из двух взаимосвязанных составляющих- это электронная и силовая часть. Подобное конструктивное исполнение значительно усложняет ремонт сервоприводов Yaskawa.
Сервопривода достаточно распространенное промышленное оборудование, и как все подвержены износу. В зависимости от интенсивности использования, нагрузки, среды в которой работает оборудования сервопривода выходят из строя останавливая рабочий процесс.
В целях сомнительной «экономии» некоторые пытаются провести ремонт сервоусилителя Yaskawa sigma самостоятельно на территории производства. Зачастую данные действия приводят к значительному удорожанию ремонта а при самом неблагоприятном исходе могут привести к не ремонтопригодности серводрайвера.
В виду вышесказанного, настоятельно рекомендуем, не пытайтесь проводить ремонт сервоприводов Yaskawa sigma своими силами, обратитесь за помощью к специалистам. Современный специализированный сервисный центр имеет в наличии весь необходимый инструмент, включая специальное диагностическое оборудование, а компетентный персонал проведет качественный ремонт сервоприводов Yaskawa sigma в Тольятти, дополнительно сервисные центры дают гарантию на проведенные ремонтные работы.
Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»
Ремонт сервоприводов Yaskawa в сервисном центре самое разумное и экономически выгодное решение. Грамотные специалисты со знанием дела проведут глубокую диагностику неисправного блока и последующий ремонт сервопривода Yaskawa sigma в кратчайшие сроки. К написанному можно добавить то, что каждый без исключения ремонт сервопривода Yaskawa sigma в СЦ «РемПромЭл» проводится с применением оригинальных запасных частей.
В 2013-ом году специалистами компании был проведен первый ремонт сервопривода Yaskawa положивший начало дальнейшему развитию в данном направлении. За прошедшее время были отремонтированы сотни единиц промышленного оборудования и накоплен колоссальный, бесценный опыт в ремонте сервоприводов различных производителей.
Сервисный центр «РемПромЭл» оснащен самым современным диагностическим и ремонтным оборудованием, имеются в наличии расходные материалы, а так же на складе компании богатый выбор оригинальных запасных частей, что дает возможность провести качественный ремонт сервоприводов Yaskawa sigma.
Обратившись в СЦ за ремонтом сервоприводов вы получите:
- Глубокую диагностику с выявлением неисправного компонента;
- Чистку неисправного блока;
- Ремонт сервопривода Yaskawa sigma в кратчайшие сроки;
- Настройка сервоусилителя;
- Проверку отремонтированного блока на специальном стенде в условиях максимально приближенных к реальным;
- Видео проверки отремонтированного серводрайвера.
Отдельное внимание мы уделяем качеству проведения ремонта и даем гарантию на ремонт сервоприводов Yaskawa sigma, а так же на замененные в процессе ремонта запасные части и расходные материалы 6 месяцев.
Настройка сервоусилителей Yaskawa sigma в Тольятти
Настройка сервоприводов (сервоусилителей) — это заключительный этап ремонта и в тоже время очень важный. Для правильной работы восстановленного блока просто необходимо провести грамотное программирование сервоусилителя. Ремонт и дальнейшую настройку сервоприводов выполняют разные специалисты, так как подобная работа довольно сложная и имеет свою специфику.
Настройка сервоусилителей или как еще называют программирование сервоприводов Yaskawa sigma, неотъемлемая часть процесса реанимирования, ввиду того, что ремонт силовой части это только половина мероприятий направленных на восстановление работоспособности сервоприводов.
В некоторых случаях возникает необходимость провести программирование сервоусилителя без его ремонта. Причин по которым может возникнуть подобная необходимость масса.
Настройка сервоуслилтелей Yaskawa sigma в Тольятти может быть и отдельной услугой предоставляемой сервисным центром «РемПромЭл». Инженеры компании проведут необходимую настройку сервоприводов не только на территории сервисного центра, при необходимости можно заказать услугу выезда специалиста на территорию заказчика (по предварительной договоренности).
От качественной настройки сервоусилителя зависит правильная и безаварийная работа связки сервопривода и серводвигателя, а для этого требуется не много, просто программирование сервопривода Yaskawa sigma должен проводить компетентный персонал с богатым опытом по настройке сервоуслилтелей.
Подключение сервопривода Yaskawa
Подключение сервопривода Yaskawa к оборудованию заказчика это еще одна услуга предоставляемая нашей компанией.
При необходимости специалист центра выполнит подключение сервопривода Yaskawa sigma с выездом на территорию заказчика.
В некоторых случаях на производстве может быть дефицит квалифицированны кадров которые могли бы произвести качественное подключение сервопривода, именно по этому мы предлагаем услуги нашего сервисного центра.
Свяжитесь с нашими менеджерами, закажите выезд специалиста, и подключением сервопривода Yaskawa sigma займется инженер сервисного центра. В случае заказа на подключение сервопривода Yaskawa sigma силами наших специалистов вы получаете гарантию качества и работоспособности вашего оборудования.
Доверяя работу по подключению сервопривода Yaskawa sigma профессионалам, вы избавляетесь от головной боли и гарантированно получаете работающее оборудование в кратчайшие сроки за разумную цену.
Ошибки сервопривода Yaskawa sigma
Многие сервопривода данного производителя, за редким исключением оснащен информационной панелью с помощью которой проходит процесс программирования сервоприводов, а так же на ней в случае нештатной ситуации отображается код ошибки которая привела к остановке оборудования.
У каждого производителя разные коды ошибок у кого то это могут быть цифровые обозначения у кого то буквенные, но вся прелесть заключается в том, что открыв документацию и расшифровав код ошибки сервопривода мы с большой долей вероятности можем исправить эту ошибку на месте, сбросить ее на сервоприводе и запустить оборудование заново.
К сожалению не все ошибки сервоприводов можно исправить и сбросить самостоятельно, в некоторых случаях придется обращаться к специалистам сервисного центра.
Самые распространенные ошибки сервоприводов:
- Превышение тока;
- Перенапряжение или недостаточное напряжение;
- Перегрузка;
- Ошибка сигнала энкодера;
- Превышение температуры IGBT-модуля ;
- Ошибка связи;
- Обрыв фазы питания;
- Короткое замыкание.
Это не полный список распространенных ошибок сервоприводов которые можно сбросить самостоятельно без обращения к специалистам.
Коды ошибок сервопривода Yaskawa sigma-5
Ошибки, связанные с идентификацией модуля обратной связи
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.044 Ошибка задания параметра полузамкнутого / полностью замкнутого цикла управления |
Подключенный дополнительный модуль и значение настройки параметра Pn00B.3 и/или Pn002.3 не совпадают. |
Проверьте настройки PN00B.3 и/или Pn002.3. Настройка дополнительного модуля должна совпадать с настройками Pn00B.3 и/или Pn002.3. |
A.051 Предупреждение о неподдерживаемом устройстве |
1) Неподдерживаемое устройство не было подключено. 2) Неподдерживаемая комбинация: а) СЕРВОУЗЕЛ (вращательный двигатель) с модулем обратной связи для линейного двигателя б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя 3) Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3. |
Проверьте характеристики продукта. Настройте Pn00B.3. |
A.E72 Ошибка обнаружения модуля обратной связи |
Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи. |
Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи. Правильно подключите модуль обратной связи. |
Модуль обратной связи был отключен. | Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание. | |
Произошла ошибка модуля обратной связи. | Замените модуль обратной связи. | |
Произошла ошибка СЕРВОУЗЛА. | Замените СЕРВОУЗЕЛ. | |
A.E75 Неподдерживаемый модуль обратной связи |
Был подключен неподдерживаемый модуль обратной связи. | Подключите совместимый модуль обратной связи. |
Была использована неподходящая версия прошивки Sigma-5. | Замените СЕРВОУЗЕЛ. |
Ошибки в полностью замкнутом цикле управления
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.041 Ошибка настройки импульсов на выходе дат чика положения |
Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. | Установите верное значение для параметра Pn212. |
A.042 Ошибка комбинации параметра |
Скорость программирования работы JOG (Fn004) ниже, чем диапазон уставок после изменения скорости движения при программировании работы JOG (Pn533). | Увеличьте значение скорости движения при программировании работы JOG (Pn533). |
A.511 Превышение скорости импульсов на выходе датчика положения |
Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). | Уменьшите значение импульса на выходе датчика положения (Pn212). |
A.8A0 Ошибка внешнего датчика положения |
Произошла ошибка внешнего датчика положения. | Замените внешний датчик положения. |
A.8A1 Ошибка в модуле внешнего датчика положения |
Произошел сбой при использовании серийного конвертера. | Замените серийный конвертер. |
A.8A2 Ошибка в сенсоре внешнего датчика положения |
Произошла ошибка внешнего датчика положения. | Замените внешний датчик положения. |
A.8A3 Ошибка в позиции внешнего датчика положения |
Произошла ошибка абсолютного внешнего датчика положения. | Есть вероятность неисправности во внешнем абсолютном датчике положения. Подробную информацию об исправлении неисправностей см. в руководстве по эксплуатации датчика положения от производителя. |
A.8A5 Разгон внешнего датчика положения |
Произошло превышение скорости на внешнем датчике положения. | Замените внешний датчик положения. |
A.8A6 Перегрев внешнего датчика положения |
Произошел перегрев внешнего датчика положения. | Замените внешний датчик положения. |
A.CF1 Ошибка в системе связи внешнего датчика положения |
Неправильное подключение кабеля между серийным конвертером и СЕРВОУЗЛОМ, либо неисправный контакт. |
Проверьте проводку внешнего датчика положения. Исправьте проводку кабеля. |
Указанный кабель не используется, либо слишком длинный. |
Подтвердите характеристики проводки внешнего датчика положения. Используйте указанный кабель макс. длиной 20 м. |
|
A.CF2 Ошибка таймера в системе связи внешнего датчика положения |
Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗЛОМ. | Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода. |
A.D10 Ошибка переполнения при позиционировании нагрузки электродвигателя |
Направление вращения двигателя и направление установки внешнего датчика положения противоположны. | Установите внешний датчик положения в противоположном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление. |
Неверно выполнен монтаж нагрузки и соединений внешнего датчика положения. | Проверьте механические соединения. |
Ошибки в полузамкнутом цикле управления с вращательными двигателями
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.041 Ошибка настройки импульсов на выходе датчика положения |
Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. | Установите верное значение для параметра Pn212. |
A.511 Превышение скорости импульсов на выходе датчика положения |
Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). | Уменьшите значение импульса на выходе датчика положения (Pn212). |
A.810 Ошибка резервирования датчика положения |
Сбой всех источников питания абсолютного датчика положения и позиционные данные были потеряны. | Замените аккумулятор или примите аналогичные меры для обеспечения питания датчика положения и настройте датчик положения (Fn008). |
A.820 Ошибка контрольной суммы датчика положения |
Произошла ошибка датчика положения. | Снова настройте датчик положения с помощью Fn008. Если аварийный сигнал по-прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Произошла ошибка СЕРВОУЗЛА. | Этот СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ. | |
A.830 Ошибка батареи абсолютного датчика положения |
Напряжение аккумулятора ниже, чем указанное значение после включения источника питания системы управления. |
Измерьте напряжение батареи. Замените батарею. |
A.840 Ошибка данных датчика положения |
Произошла ошибка датчика положения. | Если аварийный сигнал попрежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Неисправность датчика положения из-за шумовых помех и т.д. | Проверьте проводку вокруг датчика положения, отделив кабель датчика положения от кабеля главной цепи серводвигателя, либо проверив заземляющий провод и другие элементы проводки. | |
Если файл шкалы настраивается для подключения датчика Холла, то необходимо подключить датчик Холла. Отключение датчика Холла (Pn080.0 = 1) и выполнение работы без датчика приведет к ошибке A.840. |
||
A.850 Разгон датчика положения |
Датчик положения работал с высокой скоростью, когда было включено питание. |
Проверьте монитор скорости (Un000), чтобы подтвердить скорость серводвигателя, когда включено питание. Сократите скорость серводвигателя до значения ниже 200 мин-1 и включите источник питания системы управления. |
A.860 Перегрев датчика положения |
Слишком высокая внутренняя температура датчика положения. |
Измерьте температуру окружающей среды вокруг серводвигателя. Рабочая температура серводвигателя должна быть 40 °C или меньше. |
A.C80 Ошибка сброса абсолютного датчика положения и ошибка уставки многооборотного предела |
Не был правильно сброшен или задан многооборотный предел абсолютного датчика положения. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Сброс абсолютного датчика положения не был завершен или не поддерживается. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ. |
|
A.C90 Ошибка в системе связи датчика положения |
Невозможно установить соединение между Sigma-5 и модулем обратной связи. |
Проверьте состояние контакта разъема датчика Повторно вставьте разъем и убедитесь, что проводка датчика положения выполнена правильно. Используйте кабель датчика положения с заданными номинальными значениями. |
A.C91 Ошибка позиционных данных в системе связи датчика положения |
Шумовые помехи возникают на линии сигнала ввода/вывода, поскольку кабель датчика положения сгибается и повреждается его покрытие. Кабель датчика положения скручивается с линией высокого напряжения, либо располагается рядом с ней. |
Проверьте кабель датчика положения, разъем и расположение кабеля. Убедитесь, что нет никаких проблем с расположением кабеля датчика положения. Убедитесь, что в кабеле датчика положения нет скачков напряжения. |
A.C92 Ошибка таймера в системе связи датчика положения |
Шумовые помехи от датчика положения возникают на линии сигнала ввода/вывода. | Примите соответствующие меры. |
В датчике положения наблюдалась чрезмерная вибрация и рывки. | Сократите вибрацию установки или правильно установите серводвигатель. | |
A.CA0 Ошибка параметра датчика положения |
Произошла ошибка датчика положения. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
A.CB0 Ошибка ответа на запрос датчика положения |
Неверные контакты и монтаж проводки датчика положения. |
Проверьте монтаж проводки датчика положения. Исправьте контакты и монтаж проводки датчика положения. |
Шумовые помехи произошли в связи с некорректными характеристиками кабеля датчика положения. |
Проверьте монтаж проводки датчика положения. Используйте «витую пару» из луженой отожженной меди или экранированную «витую пару» с жилой толщиной не менее 0,12 мм². |
|
Шумовые помехи возникли, поскольку длина проводников кабеля датчика положения слишком велика. |
Проверьте монтаж проводки датчика положения. Длина проводки не должна превышать 20 м максимум. |
|
A.CC0 Несогласованность многооборотного предела |
При использовании серводвигателя с прямым приводом (DD), многооборотное предельное значение (Pn205) отличается от значения датчика положения. | Исправьте настройки параметра Pn205 (от 0 до 65535). |
A.D30 Переполнение координат |
Данные многооборотной позиции превысили +/-32767. | Исправьте настройки (от -32767 до +32767). |
Все возможные ошибки сервопривода Yaskawa серии sigma-5 — Скачать в формате DDF
Типы сервоприводов Yaskawa
Сервопривод | Тип сервопривода |
---|---|
Yaskawa SGD |
SGDV-180A01A; SGDB-30ADG; SGDS-50A01A; SGDV-180A01A002000; SGDV-8R4D01A020000; SGDH-50DE; SGD7S-200A00A002; SGDV-3R5D01A; SGDV-3R5D11A020000; SGDM-10DN; SGD7S-120A00A002; SGDM-15ADA; SGD7S-1R6AM0A000F50; SGDB-15VD; SGDB-15VDY1; SGDB-30VDY1; SGD7S-5R5A00A002 |
Yaskawa sigma-5 |
SGDV-R70F01A; SGDV-120D01A; SGDV-2R8A01A; SGDV-3R8A01A; SGDV-180A01A; SGDV-550A01A; SGDV-590A01A; SGDV-5R4D01A; SGDV-210D01A; SGDV-260D01A; SGDV-R90F01A; SGDV-R70A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-200A01A; SGDV-330A01A; SGDV-260D01A; SGDV-280D01A; SGDV-120D01A; SGDV-8R4D01A; SGDV-3R8A01A; SGDV-12001A; SGDV-2R8F01A; SGDV-2R8F01A |
Yaskawa sigma-7 |
SGD7W-1R6A20A700; SGD7W-1R6A30A700; SGD7W-2R8A20A700; SGD7W-2R8A30A700; SGD7W-5R4D30B; SGD7S-2R8F30A; SGD7S-R70A20A; SGD7S-1R6A20A; SGD7S-3R8A20A; SGD7S-3R8A30A; SGD7S-7R6A30A; SGD7S-180A30A; SGD7S-200A20A; SGD7S-470A20A; SGD7S-590A20A; SGD7S-780A20A; SGD7S-5R4D30B000F64; SGD7S-8R4D30B000F64; SGD7S-260D30B000F64; SGD7S-1R6AA0A; SGD7S-3R8AA0A; SGD7S-200AA0A |
Указанные в таблице типы сервоприводов Yaskawa это далеко не все, мы предлагаем качественный ремонт сервоприводов в Тольятти абсолютно любых производителей и года выпуска.
Оставить заявку на ремонт сервопривода Yaskawa
Вы заинтересованы в качественном ремонте дорогостоящего промышленного оборудования силами специалистов нашего сервисного центра, Вы сделали правильный выбор, мы приложим максимум усилий для скорейшего восстановления вышедшего из строя серводрайвера, что позволит Вам максимально сократить простой оборудования и сэкономить значительную сумму.
У вас есть проблемы с сервоприводом? Вам нужен срочный ремонт сервопривода Yaskawa sigma-5, sigma-7 или других серий? Оставьте заявку на ремонт сервопривода Yaskawa в Тольятти воспользовавшись одноименной кнопкой на сайте либо обратитесь к нашим менеджерам. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом верхнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона: +7(927)610-78-70; +7(848)255-80-30
- Написав на электронную почту: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
- Перейти в начало статьи
#1
OFFLINE
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 01 Ноябрь 2016 — 19:17
Подскажите кто сталкивался и что означает ошибка 410, моргает на драйвере.
На оси Y левый мотор едет а правый молчит, чувствуется как портал перекашивает, и при этом звук перемещения изменился, так как на одном серваке портал перемещается.
Драйвер сервопривода SERVOPACK SGDV-7R6A002000.
-
0
- Наверх
#2
andrey-kalin
- Пол:Мужчина
- Из:СССР
Отправлено 01 Ноябрь 2016 — 19:19
-
0
- Наверх
#3
3D-BiG
- Пол:Мужчина
- Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
- Интересы:Полежать на диване, пофлудить на форуме….
- Из:СССР
Отправлено 01 Ноябрь 2016 — 20:12
В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..
Сообщение отредактировал 3D-BiG: 01 Ноябрь 2016 — 20:14
-
0
Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion
- Наверх
#4
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 01 Ноябрь 2016 — 20:25
провода смотри , обрыв
релюшка не могла какая нить на плате сдохнуть?
-
0
- Наверх
#5
T-Rex
- Пол:Мужчина
- Из:Йошкар-Ола
Отправлено 01 Ноябрь 2016 — 22:35
что означает ошибка 410
В серии Yaskawa Sigma-V ошибка А.410 — это «Undervoltage». Либо проблемы с питанием (на входные клеммы приходит слишком низкое напряжение, менее 120V для 200-вольтной версии), либо неисправность драйвера.
релюшка не могла какая нить на плате сдохнуть?
Ну уж точно не «релюшка». Входные силовые цепи, от клемм питания до DC-звена, надо проверять. Квалифицированный ремонтник в дальнейших пояснениях не нуждается, а неквалифицированному туда соваться не следует.
-
0
- Наверх
#6
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 01 Ноябрь 2016 — 23:33
В серии Yaskawa Sigma-V ошибка А.410 — это «Undervoltage». Либо проблемы с питанием (на входные клеммы приходит слишком низкое напряжение, менее 120V для 200-вольтной версии), либо неисправность драйвера.
Ну уж точно не «релюшка». Входные силовые цепи, от клемм питания до DC-звена, надо проверять. Квалифицированный ремонтник в дальнейших пояснениях не нуждается, а неквалифицированному туда соваться не следует.
Вот фото, точно ли это А410?
Буквально вчера решил навести порядок в шкафу, открыл шкаф и воздухом с компрессора обдул все содержимое, пылищи много насосал вентиляторами, всё работало, сегодня с утра тоже всё пахало, пока не заметил что звук изменился при перемещении…
У меня на поворотную ось C стоит драйвер рядом, если предположить, что с оси Y один умер, я могу переставить с оси С, или его нужно будет перенастраивать?
-
0
- Наверх
#7
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 02 Ноябрь 2016 — 21:18
В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..
Проблема нашлась! Две жилы питающего двигатель провода спеклись, ноль с фазой, заменили провод, но драйвер не ожил. Скачал Сигма Вин+. Как скачать все параметры, чтобы залить на другой драйвер?
-
0
- Наверх
#8
3D-BiG
- Пол:Мужчина
- Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
- Интересы:Полежать на диване, пофлудить на форуме….
- Из:СССР
Отправлено 02 Ноябрь 2016 — 21:28
Прежде всего достучаться до драйвера, зайти в него, считать параметры и сохранить их в виде файла с расширением usr. Подключиться к новому драйверу, зайти в него, открыть окно с параметрами, считать ранее записанные параметры и скопировать их в серводрайв…. далее тестить….
-
0
Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion
- Наверх
#9
courage
- Пол:Мужчина
- Город:Новосибирск, Россия
- Из:Новосибирск
Отправлено 03 Ноябрь 2016 — 08:49
Устанавливаете SigmaWin+ у себя накомпьютере
Подключаете сервоусилитель через кабель
Устанавлваете драйвер на обнаруженное устройство из папки C:Program filesSigmaIDEDriversUSB
ну или Program files (x86)
Выполняете поиск сервоприводов, надо установить галочку USB
Заходите в верхнем меню в Parameters-Edit parameters
Выделяете все и жмете на иконку с дискетой для сохранения.
На новом надо будет в этом же окне сделать Import.
Только вот рекомендую чтобы вам это показал знающий человек, а вы запомнили и поняли как делать.
Теперь о проблеме которую вы хотите решить.
Не факт что с сервоусилителем проблема. Вполне возможно что хана двигателю пришла. Например к этому сервоусилителю подключите с другого двигатель и энкодер и проверьте что он будет выдавать и будет ли он этим двигателем управлять, а то вполне возможно что вы не ту проблему решаете.
Ну а если уж движок, там совсем другой подход к решению проблемы Отдельного вопроса заслуживает «спекание проводов». Это в каком же месте произошло и как это стало возможно.
Сервоприводы 750 Вт?
-
0
Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.
- Наверх
#10
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 03 Ноябрь 2016 — 11:03
Сервоприводы 1 Кв, на проводе в том месте гусеници, где она не сгибается вообще. И ещё, когда я подключался к драйверу Y2, выбирал Servopack online, и он его определял и подключался, а когда подключился к драйверу оси C, то он не захотел через servopack online, только через offline. Как это понимать, может китайцы поставили еле работающий драйвер на ось C, и все манипуляции с заменой и пере прошивкой параметров драйверов будет не удачная затея?
-
0
- Наверх
#11
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 03 Ноябрь 2016 — 11:44
На всех драйверах горит светодиод ярко, а на этом еле еле, очень тускло. А двигатель звонили, все обмотки целые…
-
0
- Наверх
#12
courage
- Пол:Мужчина
- Город:Новосибирск, Россия
- Из:Новосибирск
Отправлено 05 Ноябрь 2016 — 10:20
Сервоприводы 1 Кв, на проводе в том месте гусеници, где она не сгибается вообще. И ещё, когда я подключался к драйверу Y2, выбирал Servopack online, и он его определял и подключался, а когда подключился к драйверу оси C, то он не захотел через servopack online, только через offline. Как это понимать, может китайцы поставили еле работающий драйвер на ось C, и все манипуляции с заменой и пере прошивкой параметров драйверов будет не удачная затея?
Через Offline это вы можете просто параметры посмотреть, это не подключение к драйверу.
По модели они одинаковые хоть? Сбоку наклейка с маркировкой.
Попробуйте от оси C отключить силовой и энкодерный кабели мотора и подключиться. Пусть даже с ошибкой но он должен дать зайти в настройки привода.
-
0
Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.
- Наверх
#13
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 06 Ноябрь 2016 — 11:44
Пробовал с начала 7-ой версией, но она както не понятно подключалась, установил 5.57, с ней более понятно и видно как и что… скинул настройки с X, Y1, Y2, и Z, все через Servopack online, а вот с осью C опять не получилось через онлайн…Что делать, в чем прикол?
-
0
- Наверх
#14
courage
- Пол:Мужчина
- Город:Новосибирск, Россия
- Из:Новосибирск
Отправлено 07 Ноябрь 2016 — 01:46
Мотор пробовали отключить от серводрайвера и подключиться?
По маркировке на серводрайвере можете сравнить тот что на оси С и на оси Y например?
-
0
Опыт прямопропорционален количеству испорченного оборудования.
Сертифицированный инженер по обслуживанию источников механизированной резки и система автоматизации Hypertherm.
Представитель и инженер сервисной и техподдержки компании Weihong (Ncstudio, NK105, NK260, NK300) на территории России.
- Наверх
#15
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 09 Ноябрь 2016 — 23:02
В таких случаях берется даташит на устройство и находится в нем номер ошибки с пояснением, хотя для Yaskawa проще подключить комп с программой SigmaWinPlus по кабелю к драйверу (для 5-х подходит микро-USB, для более ранних версий — паял кабель согласно даташиту и через USB-COM переходник) — так эта программа даст более развернутый ответ по ошибке… Не раз она меня выручала при работе с такими серваками..
Заменили сгоревшие детали в драйвере, также заменили провод. При включении мигает Pot not, при подключении через провод в компу Fwd. And Rev. run prohibited (PTNT) ? Что может быть. Очень нужна помошь!!! Сможете через Тимвивер подключиться… Мой мобильный +79628665205
Кто может помочь!!! Очень нужна помощь, но не бесплатно конечно…
Прикрепленные изображения
-
0
- Наверх
#16
T-Rex
- Пол:Мужчина
- Из:Йошкар-Ола
Отправлено 09 Ноябрь 2016 — 23:58
При включении мигает Pot not, при подключении через провод в компу Fwd. And Rev. run prohibited (PTNT) ? Что может быть.
P-OT (Positive OverTravel) и N-OT (Negative OverTravel) — сигналы, запрещающие дальнейшее движение вперед или назад соответственно. Иными словами их смысл можно сформулировать, как «заехали за концевик». Все это растолковано в параграфе 4.2.2 мануала на Yaskawa Sigma-5.
Смотрите, не подключены ли в вашем станке какие-нибудь сигнальные цепи к контактам CN1-7 и CN1-8 (разъем CN1 на «сервопаке»). Если что-то туда подключено — разбирайтесь с источником сигнала, блокирующего движение оси (подключение через Тимвьюер при этом вам не поможет, тут надо глазами в электрошкаф станка смотреть).
Если к ним ничего не подключено — вероятно, слетели настройки сервопака, в которых назначается функционирование данных сигналов (вполне возможно, не только они). Чтобы не мучаться в этом случае, скопируйте «Сигмавином» в него настройки с исправного сервопака той же оси Y…
-
0
- Наверх
#17
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 10 Ноябрь 2016 — 00:46
когда я считывал параметры Y2 через сигма Вин, зашел в параметры, выбрал галочку все, и нажал на дискету, а на ютубе видел видео, что нужно нажимать кнопку Read, потом все галочки, а потом на дискету… Я просто думаю правильно ли я скинул параметры в файл, а то новый придет, и будет какая нить опять проблема?
но исправный сервопак двигает двигатель в обратную сторону от сломанного, какой параметр отвечает за направление движения?
-
0
- Наверх
#18
3D-BiG
- Пол:Мужчина
- Город:Ареал обитания — вся страна, но обычно встречаюсь в Новосибирске…
- Интересы:Полежать на диване, пофлудить на форуме….
- Из:СССР
Отправлено 10 Ноябрь 2016 — 11:22
Откройте документацию и посмотрите… Или вы предлагает это сделать за вас?
-
0
Лужу, паяю, станки ЧПУ починяю….
Еще частенько здесь болтаю: Телеграм сообщество ЧПУшников: t.me/cncunion
- Наверх
#19
Komandor
- Пол:Мужчина
- Город:Краснодар
- Из:Краснодарский край
Отправлено 10 Ноябрь 2016 — 18:43
P-OT (Positive OverTravel) и N-OT (Negative OverTravel) — сигналы, запрещающие дальнейшее движение вперед или назад соответственно. Иными словами их смысл можно сформулировать, как «заехали за концевик». Все это растолковано в параграфе 4.2.2 мануала на Yaskawa Sigma-5.
Смотрите, не подключены ли в вашем станке какие-нибудь сигнальные цепи к контактам CN1-7 и CN1-8 (разъем CN1 на «сервопаке»). Если что-то туда подключено — разбирайтесь с источником сигнала, блокирующего движение оси (подключение через Тимвьюер при этом вам не поможет, тут надо глазами в электрошкаф станка смотреть).
Если к ним ничего не подключено — вероятно, слетели настройки сервопака, в которых назначается функционирование данных сигналов (вполне возможно, не только они). Чтобы не мучаться в этом случае, скопируйте «Сигмавином» в него настройки с исправного сервопака той же оси Y…
Записал настройки с Y1 на Y2, изменил только вращение мотора. Перекидывал все провода с Y1 на Y2, драйвер работает и двигатель вращает, только не в ту сторону, так как изменил вращение. Как только подключаю провод управления Y2 назад, на его место, то после перегрузки станка ны драйвере горит BB.
Забыл написать, что провода с Y1 подключал на драйвер Y2, но если провода Y2 подключить на драйвер Y1, то на драйвере Y1 c проводами Y2 загорается BB. Могли ли слететь настройки
н-кодера двигателя Y2 ? У меня на оси C стоит такой же мотор как и везде, можно ли его заменить, на другой, нужно ли его н-кодер настраивать с драйвером?
-
0
- Наверх
#20
T-Rex
- Пол:Мужчина
- Из:Йошкар-Ола
Отправлено 10 Ноябрь 2016 — 19:06
после перегрузки станка ны драйвере горит BB
В общем, все печально — ни разу в мануал не заглядывали…
Сообщение «bb» («Base Blocked») даже и заглядывания в мануал обычно не требует. Относительно него самые разные фирмы, производящие сервоприводы, проявляют удивительное единодушие — «управление мотором сервопривода напрочь блокировано, так как на входах интерфейса отсутствует разрешающий (или присутствует запрещающий) сигнал». Обычно этот сигнал поступает от цепи E-Stop (аварийной остановки).
«Base» в данном контексте означает силовой модуль, управляющий обмотками мотора. То есть в состоянии «bb» напряжение на них не подается.
В общем, продолжайте разбираться с настройками интерфейсных входов в сервопаке. Где-то снова накосячили.
-
0
- Наверх
31 января 2023 г. 04:53
При работе промышленной электроники YASKAWA в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы YASKAWA: Yaskawa V1000, Yaskawa J1000, Yaskawa A1000, Yaskawa L1000. В свою очередь серия Yaskawa V1000 включает в себя следующие модели: CIMR-VUBA0001, CIMR-VUBA0002, CIMR-VUBA0003, CIMR-VUBA0006, CIMR-VUBA0010, CIMR-VUBA0012, CIMR-VUBA0018, CIMR-VU2A0001, CIMR-VU2A0002, CIMR-VU2A0004, CIMR-VU2A0006, CIMR-VU2A0010, CIMR-VU2A0012, CIMR-VU2A0020, CIMR-VU2A0030, CIMR-VU2A0040, CIMR-VU2A0056, CIMR-VU2A0069, CIMR-VU4A0001, CIMR-VU4A0002, CIMR-VU4A0004, CIMR-VU4A0005, CIMR-VU4A0007, CIMR-VU4A0009, CIMR-VU4A0011, CIMR-VU4A0018, CIMR-VU4A0023, CIMR-VU4A0031, CIMR-VU4A0038. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.
Частотные преобразователи YASKAWA имеют следующие распространенные ошибки:
Наиболее частые ошибки преобразователей YASKAWA V1000:
Ошибка bUS (error bUS) — ошибка коммуникационного модуля;
Ошибка CE (error CE) — ошибка связи MEMOBUSModbus;
Ошибка CF (error CF) — ошибка схемы управления;
Ошибка CoF (error CoF) — ошибка датчика тока;
Ошибка CPF02 (error CPF02) — ошибка АЦП;
Ошибка CPF03 (error CPF03) — ошибка ШИМ;
Ошибка CPF06 (error CPF06) — несоответствие параметров после замены платы управления или платы входных сигналов;
Ошибка CPF07 (error CPF07) — ошибка связи с платов входных сигналов;
Ошибка CPF08 (error CPF08) — ошибка памяти EEPROM;
Ошибка CPF11 (error CPF11) — ошибка памяти RAM;
Ошибка CPF12 (error CPF12) — ошибка FLASH памяти;
Ошибка CPF13 (error CPF13) — ошибка сторожевого таймера;
Ошибка CPF14 (error CPF14) — неиспраность схемы управления;
Ошибка CPF16 (error CPF16) — неисправность тактового генератора;
Ошибка CPF17 (error CPF17) — ошибка таймера;
Ошибка CPF18 (error CPF18) — неиспраность схемы управления;
Ошибка CPF19 (error CPF19) — неисправность схемы управления;
Ошибка CPF20 (error CPF20) — аппаратная неисправность RAM, FLASH, Watchdog, Clock;
Ошибка CPF21 (error CPF21) — аппаратная неисправность RAM, FLASH, Watchdog, Clock;
Ошибка CPF22 (error CPF22) — ошибка АЦП;
Ошибка CPF23 (error CPF23) — ошибка ШИМ;
Ошибка CPF24 (error CPF24) — ошибка Drive Capacity Signal;
Ошибка CPF25 (error CPF25) — плата входных сигналов повреждена или не установлена;
Ошибка dEv (error dEv)(отображается на дисплее, как «dEu») — нестабильная скорость;
Ошибка E5 (error E5)(отображается на дисплее, как «ES») — ошибка сторожевого таймера MECHATROLINK;
Ошибка EF0 (error EF0)(отображается на дисплее, как «EO») — неиспраность внешней опциональной платы;
Ошибка dWAL (error dWAL)(отображается на дисплее, как «dLJAL») — программная ошибка функции DriveWorksEZ;
Ошибка dWFL (error dWFL)(отображается на дисплее, как «dLJFL») — ошибка функции DriveWorksEZ;
Ошибка EF1 (error EF1) — внешняя неисправность по входу S1;
Ошибка EF2 (error EF2) — внешняя неисправность по входу S2;
Ошибка EF3 (error EF3) — внешняя неисправность по входу S3;
Ошибка EF4 (error EF4) — внешняя неисправность по входу S4;
Ошибка EF5 (error EF5) — внешняя неисправность по входу S5;
Ошибка EF6 (error EF6) — внешняя неисправность по входу S6;
Ошибка EF7 (error EF7) — внешняя неисправность по входу S7;
Ошибка Err (error Err) — ошибка запяси в память EEPROM;
Ошибка FbH (error FbH) — повышенное значение сигнала обратной связи PID регулятора;
Ошибка FbL (error FbL) — пониженное значение сигнала обратной связи PID регулятора, обрыв датчика;
Ошибка GF (error GF)(отображается на дисплее, как «6F», «CF») — короткое замыкание выхода ПЧ на землю;
Ошибка LF (error LF) — обрыв фазы на выходе инвертора;
Ошибка LF2 (error LF2) — небаланс тока на выходе ПЧ;
Ошибка nSE (error nSE)(отображается на дисплее, как «п5Е», «n5E») — ошибка функции Node Setup во время запуска;
Ошибка oC (error oC)(отображается на дисплее, как «0C») — перегрузка преобразователя;
Ошибка oFA00 (error oFA00) — ошибка связи с опциональной платой;
Ошибка oFA01 (error oFA01) — неисправность опционального модуля;
Ошибка oFA03 (error oFA03) — неисправность опциональной платы;
Ошибка oFA04 (error oFA04) — неисправность опциональной платы;
Ошибка oFA30 (error oFA30) — неисправность опциональной платы id30;
Ошибка oFA31 (error oFA31) — неисправность опциональной платы id31;
Ошибка oFA32 (error oFA32) — неисправность опциональной платы id32;
Ошибка oFA33 (error oFA33) — неисправность опциональной платы id33;
Ошибка oFA34 (error oFA34) — неисправность опциональной платы id34;
Ошибка oFA35 (error oFA35) — неисправность опциональной платы id35;
Ошибка oFA36 (error oFA36) — неисправность опциональной платы id36;
Ошибка oFA37 (error oFA37) — неисправность опциональной платы id37;
Ошибка oFA38 (error oFA38) — неисправность опциональной платы id38;
Ошибка oFA39 (error oFA39) — неисправность опциональной платы id39;
Ошибка oFA40 (error oFA40) — неисправность опциональной платы id40;
Ошибка oFA41 (error oFA41) — неисправность опциональной платы id41;
Ошибка oFA42 (error oFA42) — неисправность опциональной платы id42;
Ошибка oFA43 (error oFA43) — неисправность опциональной платы id43;
Ошибка oH (error oH)(отображается на дисплее, как «0H») — перегрев радиатора инвертора;
Ошибка oH1 (error oH1)(отображается на дисплее, как «0H1») — перегрев радиатора инвертора;
Ошибка oH3 (error oH3)(отображается на дисплее, как «0H3») — перегрев двигателя по датчику PTC1;
Ошибка oH4 (error oH4)(отображается на дисплее, как «0H4») — перегрев двигателя по датчику PTC2;
Ошибка oL1 (error oL1)(отображается на дисплее, как «0L1») — перегрузка двигателя;
Ошибка oL2 (error oL2)(отображается на дисплее, как «0L2») — перегрузка привода;
Ошибка oL3 (error oL3)(отображается на дисплее, как «0L3») — перегрузка по уставкам L6-02, L6-03;
Ошибка oL4 (error oL4)(отображается на дисплее, как «0L4») — перегрузка по уставкам L6-05, L6-06;
Ошибка oL5 (error oL5)(отображается на дисплее, как «0L5») — механическая неисправность по уставке L6-08;
Ошибка oL7 (error oL7)(отображается на дисплее, как «0L7») — ошибка торможения по уставке n3-04;
Ошибка oPr (error oPr)(отображается на дисплее, как «0Pr») — ошибка связи с внешней панелью оператора;
Ошибка oS (error oS)(отображается на дисплее, как «0S», «05», «o5») — превышение заданной скорости;
Ошибка ov (error ov)(отображается на дисплее, как «ou», «0u», «0v») — перенапряжение;
Ошибка PF (error PF) — обрыв фазы на входе ПЧ;
Ошибка PGo (error PGo)(отображается на дисплее, как «PG0») — импульсный вход не подключен;
Ошибка rH (error rH) — перегрев тормозного резистора;
Ошибка rr (error rr) — неисправность встроенного тормозного транзистора;
Ошибка SC (error SC)(отображается на дисплее, как «5C») — короткое замыкание IGBT-модуля;
Ошибка SEr (error SEr)(отображается на дисплее, как «5Er») — ошибка функции поиска скорости speed search;
Ошибка STo (error STo)(отображается на дисплее, как «5Го», «5Г0», «SГo») — неправильные параметры двигателя;
Ошибка UL3 (error UL3) — пониженный ток нагрузки по уставкам L6-02, L6-03;
Ошибка UL4 (error UL4) — пониженный ток нагрузки по уставкам L6-05, L6-06;
Ошибка UL5 (error UL5)(отображается на дисплее, как «ULS») — механическая неисправность по уставке L6-08;
Ошибка Uv1 (error Uv1)(отображается на дисплее, как «Uu1») — пониженное напряжение шины постоянного тока;
Ошибка Uv2 (error Uv1)(отображается на дисплее, как «Uu2») — пониженное напряжение источника питания схемы управления;
Ошибка Uv3 (error Uv3)(отображается на дисплее, как «Uu3») — неисправность схемы защиты от бросков тока;
Контакты
Время выполнения запроса: 0,00246596336365 секунды.
|
|
Ремонт сервоприводов Yaskawa sigma в Тольятти
Ремонт сервоприводов Yaskawa sigma в Тольятти, одна из многих услуг предлагаемых сервисным центром «РемПромЭл». Сервопривод относится к сложной промышленной электронике и состоит из двух взаимосвязанных составляющих- это электронная и силовая часть. Подобное конструктивное исполнение значительно усложняет ремонт сервоприводов Yaskawa.
Сервопривода достаточно распространенное промышленное оборудование, и как все подвержены износу. В зависимости от интенсивности использования, нагрузки, среды в которой работает оборудования сервопривода выходят из строя останавливая рабочий процесс.
В целях сомнительной «экономии» некоторые пытаются провести ремонт сервоусилителя Yaskawa sigma самостоятельно на территории производства. Зачастую данные действия приводят к значительному удорожанию ремонта а при самом неблагоприятном исходе могут привести к не ремонтопригодности серводрайвера.
В виду вышесказанного, настоятельно рекомендуем, не пытайтесь проводить ремонт сервоприводов Yaskawa sigma своими силами, обратитесь за помощью к специалистам. Современный специализированный сервисный центр имеет в наличии весь необходимый инструмент, включая специальное диагностическое оборудование, а компетентный персонал проведет качественный ремонт сервоприводов Yaskawa sigma в Тольятти, дополнительно сервисные центры дают гарантию на проведенные ремонтные работы.
Ремонт сервоприводов Yaskawa в СЦ «РемПромЭл»
Ремонт сервоприводов Yaskawa в сервисном центре самое разумное и экономически выгодное решение. Грамотные специалисты со знанием дела проведут глубокую диагностику неисправного блока и последующий ремонт сервопривода Yaskawa sigma в кратчайшие сроки. К написанному можно добавить то, что каждый без исключения ремонт сервопривода Yaskawa sigma в СЦ «РемПромЭл» проводится с применением оригинальных запасных частей.
В 2013-ом году специалистами компании был проведен первый ремонт сервопривода Yaskawa положивший начало дальнейшему развитию в данном направлении. За прошедшее время были отремонтированы сотни единиц промышленного оборудования и накоплен колоссальный, бесценный опыт в ремонте сервоприводов различных производителей.
Сервисный центр «РемПромЭл» оснащен самым современным диагностическим и ремонтным оборудованием, имеются в наличии расходные материалы, а так же на складе компании богатый выбор оригинальных запасных частей, что дает возможность провести качественный ремонт сервоприводов Yaskawa sigma.
Обратившись в СЦ за ремонтом сервоприводов вы получите:
- Глубокую диагностику с выявлением неисправного компонента;
- Чистку неисправного блока;
- Ремонт сервопривода Yaskawa sigma в кратчайшие сроки;
- Настройка сервоусилителя;
- Проверку отремонтированного блока на специальном стенде в условиях максимально приближенных к реальным;
- Видео проверки отремонтированного серводрайвера.
Отдельное внимание мы уделяем качеству проведения ремонта и даем гарантию на ремонт сервоприводов Yaskawa sigma, а так же на замененные в процессе ремонта запасные части и расходные материалы 6 месяцев.
Настройка сервоусилителей Yaskawa sigma в Тольятти
Настройка сервоприводов (сервоусилителей) — это заключительный этап ремонта и в тоже время очень важный. Для правильной работы восстановленного блока просто необходимо провести грамотное программирование сервоусилителя. Ремонт и дальнейшую настройку сервоприводов выполняют разные специалисты, так как подобная работа довольно сложная и имеет свою специфику.
Настройка сервоусилителей или как еще называют программирование сервоприводов Yaskawa sigma, неотъемлемая часть процесса реанимирования, ввиду того, что ремонт силовой части это только половина мероприятий направленных на восстановление работоспособности сервоприводов.
В некоторых случаях возникает необходимость провести программирование сервоусилителя без его ремонта. Причин по которым может возникнуть подобная необходимость масса.
Настройка сервоуслилтелей Yaskawa sigma в Тольятти может быть и отдельной услугой предоставляемой сервисным центром «РемПромЭл». Инженеры компании проведут необходимую настройку сервоприводов не только на территории сервисного центра, при необходимости можно заказать услугу выезда специалиста на территорию заказчика (по предварительной договоренности).
От качественной настройки сервоусилителя зависит правильная и безаварийная работа связки сервопривода и серводвигателя, а для этого требуется не много, просто программирование сервопривода Yaskawa sigma должен проводить компетентный персонал с богатым опытом по настройке сервоуслилтелей.
Подключение сервопривода Yaskawa
Подключение сервопривода Yaskawa к оборудованию заказчика это еще одна услуга предоставляемая нашей компанией.
При необходимости специалист центра выполнит подключение сервопривода Yaskawa sigma с выездом на территорию заказчика.
В некоторых случаях на производстве может быть дефицит квалифицированны кадров которые могли бы произвести качественное подключение сервопривода, именно по этому мы предлагаем услуги нашего сервисного центра.
Свяжитесь с нашими менеджерами, закажите выезд специалиста, и подключением сервопривода Yaskawa sigma займется инженер сервисного центра. В случае заказа на подключение сервопривода Yaskawa sigma силами наших специалистов вы получаете гарантию качества и работоспособности вашего оборудования.
Доверяя работу по подключению сервопривода Yaskawa sigma профессионалам, вы избавляетесь от головной боли и гарантированно получаете работающее оборудование в кратчайшие сроки за разумную цену.
Ошибки сервопривода Yaskawa sigma
Многие сервопривода данного производителя, за редким исключением оснащен информационной панелью с помощью которой проходит процесс программирования сервоприводов, а так же на ней в случае нештатной ситуации отображается код ошибки которая привела к остановке оборудования.
У каждого производителя разные коды ошибок у кого то это могут быть цифровые обозначения у кого то буквенные, но вся прелесть заключается в том, что открыв документацию и расшифровав код ошибки сервопривода мы с большой долей вероятности можем исправить эту ошибку на месте, сбросить ее на сервоприводе и запустить оборудование заново.
К сожалению не все ошибки сервоприводов можно исправить и сбросить самостоятельно, в некоторых случаях придется обращаться к специалистам сервисного центра.
Самые распространенные ошибки сервоприводов:
- Превышение тока;
- Перенапряжение или недостаточное напряжение;
- Перегрузка;
- Ошибка сигнала энкодера;
- Превышение температуры IGBT-модуля ;
- Ошибка связи;
- Обрыв фазы питания;
- Короткое замыкание.
Это не полный список распространенных ошибок сервоприводов которые можно сбросить самостоятельно без обращения к специалистам.
Коды ошибок сервопривода Yaskawa sigma-5
Ошибки, связанные с идентификацией модуля обратной связи
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.044 Ошибка задания параметра полузамкнутого / полностью замкнутого цикла управления |
Подключенный дополнительный модуль и значение настройки параметра Pn00B.3 и/или Pn002.3 не совпадают. |
Проверьте настройки PN00B.3 и/или Pn002.3. Настройка дополнительного модуля должна совпадать с настройками Pn00B.3 и/или Pn002.3. |
A.051 Предупреждение о неподдерживаемом устройстве |
1) Неподдерживаемое устройство не было подключено. 2) Неподдерживаемая комбинация: а) СЕРВОУЗЕЛ (вращательный двигатель) с модулем обратной связи для линейного двигателя б) СЕРВОУЗЕЛ (линейный двигатель) с модулем обратной связи для вращательного двигателя 3) Поддержка полностью замкнутого цикла не включена. Пожалуйста, настройте параметр Pn002.3. |
Проверьте характеристики продукта. Настройте Pn00B.3. |
A.E72 Ошибка обнаружения модуля обратной связи |
Неверное соединение между СЕРВОУЗЛОМ и модулем обратной связи. |
Проверьте соединение между СЕРВОУЗЛОМ и модулем обратной связи. Правильно подключите модуль обратной связи. |
Модуль обратной связи был отключен. | Выполните функцию Fn014 (сброс ошибки конфигурации в модуле опций) при использовании цифрового оператора или SigmaWin+, а затем выключите и снова включите питание. | |
Произошла ошибка модуля обратной связи. | Замените модуль обратной связи. | |
Произошла ошибка СЕРВОУЗЛА. | Замените СЕРВОУЗЕЛ. | |
A.E75 Неподдерживаемый модуль обратной связи |
Был подключен неподдерживаемый модуль обратной связи. | Подключите совместимый модуль обратной связи. |
Была использована неподходящая версия прошивки Sigma-5. | Замените СЕРВОУЗЕЛ. |
Ошибки в полностью замкнутом цикле управления
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.041 Ошибка настройки импульсов на выходе дат чика положения |
Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. | Установите верное значение для параметра Pn212. |
A.042 Ошибка комбинации параметра |
Скорость программирования работы JOG (Fn004) ниже, чем диапазон уставок после изменения скорости движения при программировании работы JOG (Pn533). | Увеличьте значение скорости движения при программировании работы JOG (Pn533). |
A.511 Превышение скорости импульсов на выходе датчика положения |
Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). | Уменьшите значение импульса на выходе датчика положения (Pn212). |
A.8A0 Ошибка внешнего датчика положения |
Произошла ошибка внешнего датчика положения. | Замените внешний датчик положения. |
A.8A1 Ошибка в модуле внешнего датчика положения |
Произошел сбой при использовании серийного конвертера. | Замените серийный конвертер. |
A.8A2 Ошибка в сенсоре внешнего датчика положения |
Произошла ошибка внешнего датчика положения. | Замените внешний датчик положения. |
A.8A3 Ошибка в позиции внешнего датчика положения |
Произошла ошибка абсолютного внешнего датчика положения. | Есть вероятность неисправности во внешнем абсолютном датчике положения. Подробную информацию об исправлении неисправностей см. в руководстве по эксплуатации датчика положения от производителя. |
A.8A5 Разгон внешнего датчика положения |
Произошло превышение скорости на внешнем датчике положения. | Замените внешний датчик положения. |
A.8A6 Перегрев внешнего датчика положения |
Произошел перегрев внешнего датчика положения. | Замените внешний датчик положения. |
A.CF1 Ошибка в системе связи внешнего датчика положения |
Неправильное подключение кабеля между серийным конвертером и СЕРВОУЗЛОМ, либо неисправный контакт. |
Проверьте проводку внешнего датчика положения. Исправьте проводку кабеля. |
Указанный кабель не используется, либо слишком длинный. |
Подтвердите характеристики проводки внешнего датчика положения. Используйте указанный кабель макс. длиной 20 м. |
|
A.CF2 Ошибка таймера в системе связи внешнего датчика положения |
Шумовые помехи в кабеле между серийным конвертером и СЕРВОУЗЛОМ. | Исправьте проводку вокруг серийного конвертера, например, отделив линию сигнала ввода/вывода от кабеля главной цепи или заземляющего провода. |
A.D10 Ошибка переполнения при позиционировании нагрузки электродвигателя |
Направление вращения двигателя и направление установки внешнего датчика положения противоположны. | Установите внешний датчик положения в противоположном направлении или измените настройки метода использования внешнего датчика положения (Pn002.3) на обратное направление. |
Неверно выполнен монтаж нагрузки и соединений внешнего датчика положения. | Проверьте механические соединения. |
Ошибки в полузамкнутом цикле управления с вращательными двигателями
Код и описание ошибки |
Причина | Устранение |
---|---|---|
A.041 Ошибка настройки импульсов на выходе датчика положения |
Импульс на выходе датчика положения (Pn212) выходит за пределы допустимого диапазона и не отвечает условиям настройки. | Установите верное значение для параметра Pn212. |
A.511 Превышение скорости импульсов на выходе датчика положения |
Превышен верхний предел скорости вывода импульсов, заданный в импульсе на выходе датчика положения (Pn212). | Уменьшите значение импульса на выходе датчика положения (Pn212). |
A.810 Ошибка резервирования датчика положения |
Сбой всех источников питания абсолютного датчика положения и позиционные данные были потеряны. | Замените аккумулятор или примите аналогичные меры для обеспечения питания датчика положения и настройте датчик положения (Fn008). |
A.820 Ошибка контрольной суммы датчика положения |
Произошла ошибка датчика положения. | Снова настройте датчик положения с помощью Fn008. Если аварийный сигнал по-прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Произошла ошибка СЕРВОУЗЛА. | Этот СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ. | |
A.830 Ошибка батареи абсолютного датчика положения |
Напряжение аккумулятора ниже, чем указанное значение после включения источника питания системы управления. |
Измерьте напряжение батареи. Замените батарею. |
A.840 Ошибка данных датчика положения |
Произошла ошибка датчика положения. | Если аварийный сигнал попрежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Неисправность датчика положения из-за шумовых помех и т.д. | Проверьте проводку вокруг датчика положения, отделив кабель датчика положения от кабеля главной цепи серводвигателя, либо проверив заземляющий провод и другие элементы проводки. | |
Если файл шкалы настраивается для подключения датчика Холла, то необходимо подключить датчик Холла. Отключение датчика Холла (Pn080.0 = 1) и выполнение работы без датчика приведет к ошибке A.840. |
||
A.850 Разгон датчика положения |
Датчик положения работал с высокой скоростью, когда было включено питание. |
Проверьте монитор скорости (Un000), чтобы подтвердить скорость серводвигателя, когда включено питание. Сократите скорость серводвигателя до значения ниже 200 мин-1 и включите источник питания системы управления. |
A.860 Перегрев датчика положения |
Слишком высокая внутренняя температура датчика положения. |
Измерьте температуру окружающей среды вокруг серводвигателя. Рабочая температура серводвигателя должна быть 40 °C или меньше. |
A.C80 Ошибка сброса абсолютного датчика положения и ошибка уставки многооборотного предела |
Не был правильно сброшен или задан многооборотный предел абсолютного датчика положения. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
Сброс абсолютного датчика положения не был завершен или не поддерживается. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то СЕРВОУЗЕЛ может быть неисправен. Замените СЕРВОУЗЕЛ. |
|
A.C90 Ошибка в системе связи датчика положения |
Невозможно установить соединение между Sigma-5 и модулем обратной связи. |
Проверьте состояние контакта разъема датчика Повторно вставьте разъем и убедитесь, что проводка датчика положения выполнена правильно. Используйте кабель датчика положения с заданными номинальными значениями. |
A.C91 Ошибка позиционных данных в системе связи датчика положения |
Шумовые помехи возникают на линии сигнала ввода/вывода, поскольку кабель датчика положения сгибается и повреждается его покрытие. Кабель датчика положения скручивается с линией высокого напряжения, либо располагается рядом с ней. |
Проверьте кабель датчика положения, разъем и расположение кабеля. Убедитесь, что нет никаких проблем с расположением кабеля датчика положения. Убедитесь, что в кабеле датчика положения нет скачков напряжения. |
A.C92 Ошибка таймера в системе связи датчика положения |
Шумовые помехи от датчика положения возникают на линии сигнала ввода/вывода. | Примите соответствующие меры. |
В датчике положения наблюдалась чрезмерная вибрация и рывки. | Сократите вибрацию установки или правильно установите серводвигатель. | |
A.CA0 Ошибка параметра датчика положения |
Произошла ошибка датчика положения. |
Выключите, затем снова включите питание. Если аварийный сигнал по прежнему отображается, то серводвигатель может быть неисправен. Замените серводвигатель. |
A.CB0 Ошибка ответа на запрос датчика положения |
Неверные контакты и монтаж проводки датчика положения. |
Проверьте монтаж проводки датчика положения. Исправьте контакты и монтаж проводки датчика положения. |
Шумовые помехи произошли в связи с некорректными характеристиками кабеля датчика положения. |
Проверьте монтаж проводки датчика положения. Используйте «витую пару» из луженой отожженной меди или экранированную «витую пару» с жилой толщиной не менее 0,12 мм². |
|
Шумовые помехи возникли, поскольку длина проводников кабеля датчика положения слишком велика. |
Проверьте монтаж проводки датчика положения. Длина проводки не должна превышать 20 м максимум. |
|
A.CC0 Несогласованность многооборотного предела |
При использовании серводвигателя с прямым приводом (DD), многооборотное предельное значение (Pn205) отличается от значения датчика положения. | Исправьте настройки параметра Pn205 (от 0 до 65535). |
A.D30 Переполнение координат |
Данные многооборотной позиции превысили +/-32767. | Исправьте настройки (от -32767 до +32767). |
Все возможные ошибки сервопривода Yaskawa серии sigma-5 — Скачать в формате DDF
Типы сервоприводов Yaskawa
Сервопривод | Тип сервопривода |
---|---|
Yaskawa SGD |
SGDV-180A01A; SGDB-30ADG; SGDS-50A01A; SGDV-180A01A002000; SGDV-8R4D01A020000; SGDH-50DE; SGD7S-200A00A002; SGDV-3R5D01A; SGDV-3R5D11A020000; SGDM-10DN; SGD7S-120A00A002; SGDM-15ADA; SGD7S-1R6AM0A000F50; SGDB-15VD; SGDB-15VDY1; SGDB-30VDY1; SGD7S-5R5A00A002 |
Yaskawa sigma-5 |
SGDV-R70F01A; SGDV-120D01A; SGDV-2R8A01A; SGDV-3R8A01A; SGDV-180A01A; SGDV-550A01A; SGDV-590A01A; SGDV-5R4D01A; SGDV-210D01A; SGDV-260D01A; SGDV-R90F01A; SGDV-R70A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-R90A01A; SGDV-5R5A01A; SGDV-200A01A; SGDV-330A01A; SGDV-260D01A; SGDV-280D01A; SGDV-120D01A; SGDV-8R4D01A; SGDV-3R8A01A; SGDV-12001A; SGDV-2R8F01A; SGDV-2R8F01A |
Yaskawa sigma-7 |
SGD7W-1R6A20A700; SGD7W-1R6A30A700; SGD7W-2R8A20A700; SGD7W-2R8A30A700; SGD7W-5R4D30B; SGD7S-2R8F30A; SGD7S-R70A20A; SGD7S-1R6A20A; SGD7S-3R8A20A; SGD7S-3R8A30A; SGD7S-7R6A30A; SGD7S-180A30A; SGD7S-200A20A; SGD7S-470A20A; SGD7S-590A20A; SGD7S-780A20A; SGD7S-5R4D30B000F64; SGD7S-8R4D30B000F64; SGD7S-260D30B000F64; SGD7S-1R6AA0A; SGD7S-3R8AA0A; SGD7S-200AA0A |
Указанные в таблице типы сервоприводов Yaskawa это далеко не все, мы предлагаем качественный ремонт сервоприводов в Тольятти абсолютно любых производителей и года выпуска.
Оставить заявку на ремонт сервопривода Yaskawa
Вы заинтересованы в качественном ремонте дорогостоящего промышленного оборудования силами специалистов нашего сервисного центра, Вы сделали правильный выбор, мы приложим максимум усилий для скорейшего восстановления вышедшего из строя серводрайвера, что позволит Вам максимально сократить простой оборудования и сэкономить значительную сумму.
У вас есть проблемы с сервоприводом? Вам нужен срочный ремонт сервопривода Yaskawa sigma-5, sigma-7 или других серий? Оставьте заявку на ремонт сервопривода Yaskawa в Тольятти воспользовавшись одноименной кнопкой на сайте либо обратитесь к нашим менеджерам. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом верхнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона: +7(927)610-78-70; +7(848)255-80-30
- Написав на электронную почту: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
- Перейти в начало статьи
-
Contents
-
Table of Contents
-
Troubleshooting
-
Bookmarks
Quick Links
-7-Series AC Servo Drive
-7S SERVOPACK with
FT/EX Specification for
Transfer and Alignment Application
with Special Motor, SGM7D Motor
Product Manual
Model: SGD7S-20AF84
SGD7S-30AF84
MANUAL NO. SIEP S800002 28C
Basic Information on SERVOPACKs
SERVOPACK Ratings and Specifications
Triggers at Preset Positions
Rotational Coordinate System
Maintenance
Parameter Lists
1
2
3
4
5
6
Troubleshooting