Xdl l7sa004ae ошибка al 51

KIPiAE

здесь недавно
здесь недавно
Сообщения: 46
Зарегистрирован: 15 янв 2020, 18:47
Имя: Олег
Благодарил (а): 7 раз

сервопривод XDL L7

Сообщение

KIPiAE »

можете подробно описать объяснить ошибку AL-51 сервопривода XDL L7SA004AE?поворотный стол, мне кажется подшипники или что то мешает ему крутится, механикам толково не могу объяснить.


Просмотр полной версии : Carrier коды ошибок (Alarm list)


Привет всем! Люди не могу понять что за ошибки такие выдает AL06 :eek:! Заранее благодарен!


muravei77

08.07.2010, 00:24

в архиве есть.


Где? Друг, ткни меня носом!

Таблица 1-7. Индикация сигналов тревоги в контроллере

№ ОПИСАНИЕ СИГНАЛОВ ТРЕВОГИ
AL20 Размыкание предохранителя контрольной схемы (24 в)
AL21 Размыкание предохранителя микросхемы (18в.)
AL22 Безопасность мотора вентилятора испарителя
AL23 Безопасность автотрансформатора
AL24 Безопасность мотора компрессора
AL25 Безопасность мотора вентилятора конденсатора
AL26 Сбой датчика всего входящего и возвратного воздуха
AL27 Сбой калибровки схемы датчика
AL51 Сбой Списка Сигналов тревоги
AL52 Сигнал тревоги – список полон
AL53 Сбой датчика напряжения сети
AL54 Сбой датчика первичной подачи воздуха
AL55 Сбой датчика вторичной подачи воздуха
AL56 Сбой датчика первичного возвратного воздуха
AL57 Сбой датчика температуры окружающей сети
AL58 Безопасность компрессор высокого давления
AL59 Безопасность термостата прекращения нагрева (HTT)
AL60 Сбой датчика прекращения разморозки
AL61 Сбой обогревателей
AL62 Сбой схемы компрессора
AL63 Ток сверх лимита
AL64 Температура на выходе сверх лимита
AL65 Сбой датчика давления на выходе или на конденсаторе
AL66 Сбой датчика давления на всасывании
AL67 Сбой датчика влажности
ERR# Сбой внутреннего микропроцессора
Entr stpt Ввод контрольной точки (нажать «стрелку» и Enter)
LO Низкое напряжение сети
VENT Режим VENT – опция Controlled Atmosphere (CA) option
P-CA Предпоездочный режим — опция Controlled Atmosphere (CA) option

И все!!!


muravei77

09.07.2010, 00:21

rogg, я тоже не нашёл. сорри за дезу.))


Штож, за ошибон такой… мож на дисплее лишний знак горит, или наоборот?


Утром еду на обслугу. Все запишу.


muravei77

10.07.2010, 02:16

rogg, и полную марку контейнера запиши.


model number 69NT40-511-13
Alarm list:
AL01 IA56
AL02 AA06
AL03 AA53
AL04 IA21
AL05 AA06
AL06 IA21


насчет ia53 мне ясно. с напругой действительно проблемы есть, lo почти на всех выдает периодически. Ia56 тоже. Aa21 пока все работает ничего не предпринимаю. а вот aa06 для меня загадка.


надо просто тупо пере прошить контроллер и всё пойдёт


Gosha_37

17.05.2011, 07:33

Добрый день.Проблемка с рефом Carrier 69NT40 ,работает несколько минут ,температуру до -7 догоняет выдаёт ошибку AL15 и включает оттайку.Далее всё повторяется .Где найти коды ошибок с AL01-AL19 ?:confused:



AL15 Loss of Cooling. Future Expansion .- AL15 Потеря охлаждения. Расширения в будущем. ( перевод) Ошибка в процессе ежедневных данных , то есть произошедшая только что.

Есть ли лед на линии всасывания? Может быть недостаточно хладогента в смстеме ?

Вот перечень кодов —

AL13 модуль расширения

Сигнализация 13 срабатывает, если модуль управления потерял связь с расширением
модуль для более чем на пять минут или связи не выполнит в течение
первые 15 секунд при включении питания. Этот сигнал вызывает недостаточность действий C (вентилятор испарителя
только) или D (все машины с) функции CD29 Кодекса, если устройство имеет скоропортящихся
заданного значения. Отказ действия D (все машины в выключенном состоянии) срабатывает, если устройство имеет замороженные
уставки

AL14 Несоблюдение последовательности фаз — Electronic

Сигнализация срабатывает 14, если электронная система обнаружения фазы не в состоянии определить
правильное соотношение фаз. DIRCHECK будет отображаться в то время как
отношений определяется. Если система не может определить правильное соотношение
сигнализации 14 будет оставаться активным. Additiotnal информацию о определением фазы
могут быть размещены на Функция кодекса Cd41. Если право наиболее цифра кода является Cd41
3 или 4, это указывает на неправильный двигателя или датчик проводки. Если право наиболее цифра 5,
Это указывает на то удалось текущей сборки датчика.

AL15 Потеря охлаждения будущего расширения

AL16 ток компрессора высокого

Сигнализация 16 срабатывает компрессор ток составляет 15% по сравнению рассчитаны максимум
в течение 10 минут из последнего часа. Тревоги отображаются только и будут вызывать
с когда компрессор работает на один час без перегрузки по току.

AL17 чередования фаз Failure — Давление

Сигнализация 17 срабатывает, если компрессора в обоих направлениях не в состоянии генерировать
достаточно перепада давления. Контроллер будет пытаться перезагрузить каждые двадцать
минут и отключения сигнализации в случае успеха. Этот сигнал вызывает недостаточность действий
C (только вентилятор испарителя) или D (все машины с) функции CD29 Кодекса, если
Группа скоропортящихся точек. Отказ действия D (все машины в выключенном состоянии) срабатывает, если
Группа замороженных точек

AL18 разряд высокого давления

Сигнализация 18 срабатывает, если давление на выходе составляет 10% по сравнению рассчитаны максимум для
10 минут в течение последнего часа. Тревоги отображаются только и будет приводить в движение
когда компрессор работает на один час без избыточного давления.

AL19 разряда высокая температура

Сигнализация срабатывает 19 разряда, если температура превышает 135_C (275_F) в течение 10
минут в течение последнего часа. Тревоги отображаются только и будет приводить в движение, когда
компрессор работает на один час без перегрева


Gosha_37

19.05.2011, 12:40

Большое спасибо ,поедем на неделе посмотрим !


Gosha_37

19.05.2011, 12:52

Смотри файловый архив.
Просмотрел файловый архив там с AL20…,а AL01-AL19 ненашёл,прошу прощения что я невнимательный.


Dissantnik

22.09.2012, 12:59

Термо датчик поменяй и немучайся,это такая мондула за испорителем в камере,как правело именно отказ датчика приводит к таким проблемам


sahholod

22.09.2012, 13:25

Dissantnik,Ты рядом с Эстонией))). Тема год назад ушла…


Глебов А.А.

23.09.2012, 02:42

Улыбнуло)))


megayarik

04.10.2012, 18:42

Здравствуйте,у меня была такая же проблема,ошибка al-06 это плохой контакт клавиатуры управления агрегетом.


megayarik

04.10.2012, 18:44

Здравствуйте,у меня была такая же проблема,ошибка al-06 это плохой контакт в разъеме клавиатуры управления агрегетом.



reefer007

09.10.2012, 23:27

model number 69NT40-511-13
Alarm list:
AL01 IA56
AL02 AA06
AL03 AA53
AL04 IA21
AL05 AA06
AL06 IA21

Давайте по-порядку.
AL01 IA56 — inaktiv alarm (неактивная ошибка) -сбой датчика температуры обратного воздуха. Запусти P 5-0 в меню PTI, если пройдет, хорошо, если нет -меняй датчик.

AL02 AA06 — aktiv alarm (активная ошибка ) — сбой работы клавиатуры. Лучше сразу меняй (хотя может быть проблема в разъёме между клавиатурой и дисплеем).

AL03 AA53 — aktiv alarm (активная ошибка ) — низкое напряжение с блока батареек. Если есть — меняй, если нет- перепрошей контроллер.

AL04 IA21 — inaktiv alarm (неактивная ошибка) — была проблема с предохранителями F1, F2 или плохой контакт на разъёме KA.


al 15 вообще что за ошибка? carrier ml 2i


iscander

10.05.2014, 11:23

al 15 вообще что за ошибка? carrier ml 2i

AL15
Loss of Cool
Alarm 15 is activated when SMV is greater than 15%, unit is in economized or
standard operating modes and Return — Supply Temperature Difference is less
than 0.5C after 4 minutes of compressor run time. The alarm triggers failure action
C ( evaporator fan only) or D ( all machinery off ) if in perishable mode and
failure action D ( all machinery off ) if a frozen set point has been selected.. The
alarm remains active until the unit is power cycled.
Короче: проверь уровень фреона, судя по всему утечка.


опередил, пока я кофе наливал))


iscander

10.05.2014, 11:29

опередил, пока я кофе наливал))

Рад стараться. Служу дяде Серёже! 26469


muravei77

10.05.2014, 13:40

я недавно видел все от AL-01 до 15.. подряд все:-D


я недавно видел все от AL-01 до 15
кста, чем закончилось-то?


muravei77

10.05.2014, 14:01

кста, чем закончилось-то? см. личку.



iscander

10.05.2014, 16:53

см. личку.

аналогично))

А я? А мне? Тоже хочу знать чем кончилось. И что было то.


muravei77

10.05.2014, 17:49

А я? А мне? ну как про тебя забудешь..)) и ты лс смотри.


microlink2

13.06.2014, 13:42

щас то же самое АL15 и встаёт высвечивая АЛАРМ. чем закончилось если помните? Спасибо!


microlink2

13.06.2014, 13:48

Добрый день! Меня (не мастер!!! преобрели этот гемор с полгода назад) тоже посетила AL15 зажигает ALЯRM и встаёт. После перезапуска может поработать. Фреон судя по смотровому окошку в ресивере есть (шарики всплывают). Начал набирать температуру до -9С встаёт на оттайку. И так по кругу. Поставил оттайку с авто на 3 часа. Внутри испаритель чистый (оттаивает). Куда смотреть??


Андрей 631

13.06.2014, 17:20

Добрый день! Меня (не мастер!!! преобрели этот гемор с полгода назад) тоже посетила AL15 зажигает ALЯRM и встаёт. После перезапуска может поработать. Фреон судя по смотровому окошку в ресивере есть (шарики всплывают). Начал набирать температуру до -9С встаёт на оттайку. И так по кругу. Поставил оттайку с авто на 3 часа. Внутри испаритель чистый (оттаивает). Куда смотреть??
Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.


microlink2

14.06.2014, 12:11

Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.

Давление в понедельник только мастер будет….
В смотр окнах фреон вроде есть…
Что обмёрзло и нормально ли это?2744127442


iscander

14.06.2014, 12:15

Давление в понедельник только мастер будет….
А ты хто? Хто ты будешь такой? microlink2, ?? Смени имя!


microlink2

14.06.2014, 14:12

А ты хто? Хто ты будешь такой? microlink2, ?? Смени имя!

да мне тоже твоё не нравится. ты по теме пиши. остальное лирика!


microlink2

14.06.2014, 14:20

Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.

спасибо!


iscander

14.06.2014, 14:58

ты по теме пиши.
Приказывать будешь своим холопам.


Андрей39

07.07.2014, 20:43

Андрей привет, это-же ты рефмеханик25?


дмитрий09

10.12.2014, 12:04

AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить.
помогите плиз я не могу сделать мне нужна температура +6 а там показывает AL52 что делать по порядку объясните пожалуйста а то у меня в пятницу продукты придут а я ничего не могу сделать я в тайге даже специалиста вызвать не могу


iscander

10.12.2014, 18:25

AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить.
31873


Андрей39

25.05.2015, 19:25

Андрей привет, напиши свой телефон, надо связаться.


AL01 AA77 ошибка Alarm не горит и ничего не происходит, молчит. где найти прошивку


дмитрий09, Здравствуй дмитрий09 ! AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить .Такая же проблема у меня сегодня .Как решил тогда 10.12.2014 давно конечно было ? Шома.


AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить
Вообще не напрягаясь! А ты кто?


Вообще не напрягаясь!
АдЫн маленький уточнений-если они все неактивные..))


Шома, решай проблему с активными ошибками. *list*


Сообщение от Шома
AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить
Вообще не напрягаясь! А ты кто?

Холодильщик. Приходиться ремонтировать все что есть вокруг холодильное.
В нашем маленьком городе имеется всего то 1 рефконтейнер ,хозяин которого в течении последних лет обращался из-за утечек.В прошлую весну поменял конденсатор (хозяин заказал ) с легка изучив ( Carrier 69NT40-511 Руководство по эксплуатации и обслуживанию Холодильный агрегат Carrier 69NT40-511-300 ).

Проблема ушла по рефу не обращается говорит все нормально.К контроллеру не лазил и особо в него не вникал по нему не было вопросов.Тем более не предстояло задачи изучить этот контроллер ,мануал и начинать широко применять на практике радуя владельцев ,попутно зарабатывая деньги.
Сейчас по наводке хозяина рефа обратился с соседнего города еще один владелец ентот уже продвинутый имеет 2 рефконтейнера и они посвежее .Один из них с ID-974 уже 4 года по словам владельца поставили как сгорела плата контроллера .Настроен на -15град .Второй с ошибкой а 52 стоит на аларм и не включается .Пользуются пока вручную принудительно включая компрессор и тэны.

Спасибо форумчане за советы по проблеме.
Изучаю пока ваши сообщения и матчасть (особенно как это скидывать ошибки со списка не напрягаясь).
Это усложняется еще тем растояние до рефа 80км .


Шома, скачай мануалку и раз ты холодильщик, то проблем для тебя не составит сбросить неактивные ошибки и определить, а также устранить активные…


Серега136

14.06.2016, 08:14

добрый день ,может кто нибудь подсказать по реф установке митсубиси.Зарание спасибо.


Добре вечоре, друже.

Сегодня приехал я значится на рефах масло поменять и обнаружил на одном ошибку aa21.
Почесал репу, почитал доки на телефоне.. нашел следующее:

сигнал 21 появляется, если перегорает один из предохранителей (f1/f2) в цепи питания микропроцессора -18 вольт переменного тока. регулируемый клапан всасывания будет открыт, лимит тока действовать не будет. компрессор будет попеременно включаться и выключаться. управление температурой осуществляется за счет цикличной работы компрессора.

Проверил предохранители — живы, достал тестер, начал искать куда делись 18 вольт.
Пока искал — ошибка пропала.

Но… осадочек остался. Небось завтра (после завтра, через неделю…месяц, нужное подчеркнуть), опять отвалится.
Так-то вроде не критично оно ибо работает в режиме -20 и соленоид вроде должен быть открыт, и на модулирующий как бы пох. Но неприятно.

Есть какие-нибудь идеи, от чего оно бывает, что можно проверить, подкрутить, зачистить??


Eugene31

26.01.2017, 07:57

neosfen, а у тебя рефы какие? У мну на Vector 1850 такая же вылезла, а работа на тепло (хрукты-овосчи). И что самое интересное, вторая ошибка по давлению масла не сбрасывается, я со своей стороны автоэлектрика перекопал всё, датчики-провода, всё норм. Сбрасываю «Ащипку» даю пуск, 15 секунд и на экране А11, А21.*lol_stena**HELP* причём старт даже отдалённо не наблюдается.*lol_stena*


Мужики спасайте, чиллер кариер 30RH-140 выбил ошибку B2 потеря связи с платой SCPM. как найти эту связь, где загвоздка?


Eugene31

17.03.2017, 11:46

Да, я так понимаю, что форум мёртв. Полтора месяца, и ни одного ответа.


sahholod

17.03.2017, 11:53

что форум мёртв.
Ну, может только для тебя?


sne, Добрый день,не подскажешь ,что делать, Carrier Xarios350 включаю ,запускается и тут-же загорается красная лампочка ,смотрю ошибку,выдаёт А01 А02


Да, я так понимаю, что форум мёртв. Полтора месяца, и ни одного ответа.
Ну ты тему бы создал. Ибо здесь каша и в большинстве по рефконтейнерам.
Вектор с контейнерами — разные вещи.
21 ошибка у меня даже мурзилке не значится.

sne, Добрый день,не подскажешь ,что делать, Carrier Xarios350 включаю ,запускается и тут-же загорается красная лампочка ,смотрю ошибку,выдаёт А01 А02
Ехать в сервис.
Скорее всего газ — тю-тю. Может и электрика.


Сегодня приехал на новый объект. 12 Реф.контейнеров carrier MKL2. Работы много, как бы все решаемо, есть только пару тройку вопросов. На данный момент много ошибок победил, кроме одной.
1. Ошибка 87(ошибка1-4).Не могу понять?
2. 1 контейнер(409), маркером написано 413. Что в действительности тайна. Думаю стравить…..азот, трв, масло…. да перевести на 134 как все.


Ошибка 87(ошибка1-4).Не могу понять?
дату выстави правильную.


дату выстави правильную.
SerB, Спасибо, у соседей нашёл, но все равно Спасибо. Сегодня приехал, авария ушла. Появились 60,61.(я так понял датчик и тены).
Остался последний вопрос, масло??? Почитаю, потом спрошу.


По-идее, 87 ошибка не уйдет сама по себе. Эт 86-я могет, часов через 10-12 работы контейнера..


По-идее, 87 ошибка не уйдет сама по себе. Эт 86-я могет, часов через 10-12 работы контейнера..

SerB, ну она висит скорее всего, просто появилась 60. Нужно лист полистать. Это не главное.
1.Подскажи пожалуйста, букварь рекомендует SW20 масло 100/20 sus/iso. Искандер у соседей рекомендовал за 13г.:
Mobil Arctic 22CC,
— Emcarate RL32,
— Planetelf ACD32
150/32
Мне проблиматичны данные виды масел, но нет проблем с BSE32. Поэтому я хочу перевести все на 32.
2. Контейнер который на 409/413 перевести на 134 поставив ТРВ carrier TXV(14-00273-08).
3.Я относительно недавно занялся Рём.Реф.контейнеров и не знаю фирм надежных и с большим перечнем Расходняка на Реф.контейнера.не поможешь? Куда можно обратиться.т.к ещё датчики, тены и другой расходняк.
Спасибо за помощь.


В Питере полно контор по запчастям. навскидку-http://refexpress.ru/zapasnye-chasti/carrier/ ? но цены тебя не порадуют. Сложно что-либо посоветовать. Я беру в Голландии иль в штатах. Можно и в чайне, но надо знать хитрые ходы..))


В Питере полно контор по запчастям. навскидку-http://refexpress.ru/zapasnye-chasti/carrier/ ? но цены тебя не порадуют. Сложно что-либо посоветовать. Я беру в Голландии иль в штатах. Можно и в чайне, но надо знать хитрые ходы..))
Ну оттуда наверное и срок поставки приличный. Просто покупать зип на перед неоправданно, Питер относительно местного предложения от контор 2-2,5 раза дешевле. Да и тоже бавает под заказ. Поэтому в принципе цены питерские мне более менее нормальные относительно местных.
А что, касаемо масло и ТРВ???


SerB, Вот такие мановакуметры найти не могу, они наверное точно только в европпе???


muravei77

11.11.2017, 15:44

Ref81, карриер не делает ни компрессоров, ни манометров, ни фильтров ни…. много чего. просто возьми аналог с креплением на щит по диаметру-залитый глицерином. цена будет раз пять дешевле.


Ref81, карриер не делает ни компрессоров, ни манометров, ни фильтров ни…. много чего. просто возьми аналог с креплением на щит по диаметру-залитый глицерином. цена будет раз пять дешевле.

Привет!!! Спасибо, рассматривал этот вариант как последний. Просто зак нормальный, да, да, нет нет.Понимает что за бренд надо платить.Просто думал, а вдруг кто из тех кто торгует запчастями для Реф.контейнеров будет, но чет не встретил. Ну, да и ладно, это не главные комплектующие.
Спасибо.


Собственно, они (манометры) там нах не нужны..


muravei77

11.11.2017, 16:17

Понимает что за бренд надо платить
в данном случае за надпись.


А что, касаемо масло и ТРВ???
Промывай и заливай, делов-то..*CRAZY*


Собственно, они (манометры) там нах не нужны..
Согласен. Но вот хочет, человек заменить разбитые, свёрнутые.

в данном случае за надпись.
Получается так. Но, я же говорю, он сказал да-да, нет-нет.

Промывай и заливай, делов-то..*CRAZY*
Ну не скажи. Может просто у Тебя уже рука набита, Ты то поди не одну сотню таких контейнеров реанимировал. Всему своё время.


Может просто у Тебя уже рука набита
Ага, на предпоследнем контейнере, где переставлял компрессор с древнего аналогового с минералкой и промывал на новом систему с коксом вместо масла в системе я изрядно повеселился..)) Баллона 4 в общей сложности ушло для промывки кондера . труб и испара с ресивером..И все равно потом еще SSV пришлось менять, вернее верхнюю его часть.


Вот бы там приблуда для промывки пригодилась! Да только так и не собрал, все лень-матушка..

52942529435294452945


[QUOTE=SerB;552519]Да только так и не собрал, все лень-матушка..
Всему своё время, соберешь.


В пятницу тоже КМ раскидал под дефектовку, а там. Давно таково не видел. Рефу говорю надо систему мыть, что толку в капиталке КМ. Сейчас соберем и вся срань с системы прилетит. А тот не в какую…


я недавно видел все от AL-01 до 15.. подряд все:-D

Муравей привет.С 1 по 16. Поделись опытом в твоём случае, что было? Спасибо.


Муравей привет.С 1 по 16. Поделись опытом в твоём случае, что было? Спасибо.

muravei77, намекни если не трудно, в какую сторону смотреть.


muravei77

27.11.2017, 12:34

muravei77, намекни если не трудно, в какую сторону смотреть.
в личку смотреть..



Добрый вечер! Подскажите кариер. Вектор 1800 самостоятельно переключается на электро двигатель, куда лезти?


Vera_nvrsk

13.01.2018, 07:01

Доброго дня
Подскажите вышла активная ошибка 07 на карриер микролинк 3, не могу найти что это?


В сети все есть, не надо лениться.


Vera_nvrsk

15.01.2018, 08:29

Спасибо большое, за помощь


Vector 1800 ошибка А124 проверьте терм заверш оттаив 1
Подскажите что копать. (какие обычно проблеммы связанные с этой ошибкой)
Заранее благодарен
Александр


Подскажите что за ошибка dal86


Всем привет что за ошибка dal86



http://www.transtec.ru/transforum/viewtopic.php?p=538
Пожалуйста.


Всем доброго времени суток , помогите пожалуйста нужна программа для диагностики Кариер (трейлерных установок) также цены на неё и кабель / и где можно приобрести ? также если у кого есть мануал как по Reefer Manager буду очень благодарен


Всем добродо времени суток , подскажите пожалуйста где и почем можно приобрести reefer manager+tru tech ( также кабель)
ну и по возможности pcmcia для трейлерных вроде подходит ?
заранее спасибо


Доброго времени суток , может кто знает где и по каким ценам можно приобрести программы Reefer Manager+Tru tech( к ним кабель также) и pcmcia для Carrier установок ,
и есть ли у кого мануал по этим программам пожалуйста сообщите



Здравствуйте. А кто-нибудь сможет пояснить что это за коды?
Рефка работает вроде нормально, проблем не возникает.
57417


На передней панели написаны все коды ошибок.


Emir evpat

31.08.2019, 11:48

Всем доброго времени суток! Ребята, я новичек…Возникла проблема Аl52 , с чего начинать и как убрать этот полный список?
Пожалуйста расскажите подробно а то продукты пропадут…
Спасибо заранее)))


Приветствую.
Сейчас появился AL25 (Безопасность мотора вентилятора конденсатора)
… пока вентилятор не толкнёшь, то мотор не запустится. Это чинится или мотор меняется целиком?


Приветствую.
Сейчас появился AL25 (Безопасность мотора вентилятора конденсатора)
… пока вентилятор не толкнёшь, то мотор не запустится. Это чинится или мотор меняется целиком?

Для начала выясни почему вентилятор не запускается.


vegapiratr

12.11.2019, 15:28

Димаа, не плохо указывать тип установки!



Нет возможности произвести осмотр контактной части(клемной коробки) ,но думаю, что обрыв одной из фаз обмотки статора двигателя .


Нет возможности произвести осмотр контактной части(клемной коробки) ,но думаю, что обрыв одной из фаз обмотки статора двигателя .

Это на двигателе, а с других точек прозвонить, а потом уж принимать решение снимать его или как…


Это на двигателе, а с других точек прозвонить, а потом уж принимать решение снимать его или как…
А вот это, хорошая мысль


Установка carrier, порой приходит контейнер , температура соответствует уставки , но компрессор не включается, соответственно и вентилятор конденсатора не запускается , ну и самое главное он not “in range” (не светится индикатор in range)
Проблема решается переменной местами фазных проводов в вилке.
А вот теперь вопрос; а где в контейнере само реле выбора фаз? Или как это исправить, чтоб больше никому не перекручивать провода в вилке ?
Спасибо


tvmaster

15.01.2020, 12:20

Установка carrier, порой приходит контейнер , температура соответствует уставки , но компрессор не включается, соответственно и вентилятор конденсатора не запускается , ну и самое главное он not “in range” (не светится индикатор in range)
Проблема решается переменной местами фазных проводов в вилке.
А вот теперь вопрос; а где в контейнере само реле выбора фаз? Или как это исправить, чтоб больше никому не перекручивать провода в вилке ?
Спасибо

Поставьте второй контактор ( с другой фазировкой) и реле ( модуль) чередования фаз с управлением двумя контакторами.


Wladimir56

23.03.2020, 16:53

Всем привет! Код ошибки L21 . Проверил F1 ,F2 предохранители исправны, переменное напряжение между ними 30в, относительно 8 вывода- 15 (вместо 18). Выдернул оба предохранителя, включил питание , напряжение не изменилось Т.Е. осталось по 15 в. Посоветуйте пожалуйста, лезть проверять питание процессора или искать почему 15 вместо 18?


Сергей Р

24.03.2020, 05:56

Я так понял контейнер мор флот Провода всё равно перекручивать. Перекручивать надо только на подводе к контейнеру. Реле чередования фаз находится в пульте управления в блоке питания На разных моделях установлено по разному.


Wladimir56

25.03.2020, 18:21

Сергей Р, Спасибо за подсказ, поеду на объект завтра, холодно у нас -16.А контейнер действительно мор флот.)))


deffrost

08.08.2020, 17:08

Всем привет. Тут так много написано про ошибку al15 что ничего не понятно, кто решал проблему может подсказать. Спасибо.


что ничего не понятно
:)Привет Читайте , проверяйте .Вопрос ведь не в том что «кто то отремонтирует ? «
AL15 Потеря охлаждения.


Powered by vBulletin® Version 4.2.3 Copyright © 2023 vBulletin Solutions, Inc. All rights reserved. Перевод: zCarot

Ошибки чиллера

  • Ошибки чиллеров Aermec
  • Ошибки чиллеров Lessar
  • Ошибки чиллеров Dantex
  • Ошибки чиллеров NED
  • Ошибки чиллеров Wesper
  • Ошибки чиллеров York
  • Ошибки чиллеров Clivet
  • Ошибки чиллеров Carrier

Коды ошибок чиллеров Aermec

Ошибка Значение
Flowswitch срабатывание реле защиты от перепада давления и, или реле защиты по протоку воды
C1 Compressor срабатывание размыкателя цепи компрессора 1
C1А Compres срабатывание размыкателя цепи компрессора 1А
C2 Compressor срабатывание размыкателя цепи компрессора 2
C2А Compres срабатывание размыкателя цепи компрессора 2А
C1В Compres срабатывание размыкателя цепи компрессора 1В
C2В Compres срабатывание размыкателя цепи компрессора 2В
C1 Low Pres. срабатывание реле/датчика низкого давления контура 1
C2 Low Pres. срабатывание реле/датчика низкого давления контура 2
C1 High Pres срабатывание реле/датчика высокого давления контура 1
C2 High Pres срабатывание реле/датчика высокого давления контура 2
C1 Anti-Freez срабатывание защиты от замораживания контура 1
C2 Anti-Freez срабатывание защиты от замораживания контура 2
C1 Sensor неисправность датчика в контуре 1
C2 Sensor неисправность датчика в контуре 2
Volt. monitor срабатывание защиты от нештатного напряжения питания
C1 Pumpdown неисправность в цилиндре компрессора контура 1
C2 Pumpdown неисправность в цилиндре компрессора контура 2
Eprom неисправность электронной карты (обратитесь в сервисную службу)
Ram неисправность электронной карты (обратитесь в сервисную службу)
Flowswitch R срабатывание реле защиты по протоку воды системы рекуперации тепла (только для модификаций D и Т)
C1 EV. Pump срабатывание размыкателя цепи насоса в испарителе контура 1
C1 Ev.A.Freez срабатывание защиты по температуре газообразного хладагента на выходе испарителя контура 1
C2 Ev.A.Freez срабатывание защиты по температуре газообразного хладагента на выходе испарителя контура 2

Коды ошибок чиллеров Lessar

Моноблочные чиллеры LUC-F(D)HDA30CAP

Ошибка Значение
E0 ошибка EEPROM чиллера
E1 неправильное чередование фаз
E2 ошибка связи
E3 ошибка датчика температуры прямой воды
E4 ошибка датчика температуры воды на выходе из кожухотрубного теплообменника
E5 ошибка датчика температуры на трубе конденсатора А
E6 ошибка датчика температуры на трубе конденсатора В
E7 ошибка датчика температуры наружного воздуха
E8 ошибка защиты по электропитанию
E9 ошибка датчика протока воды ( ручной сброс аварии )
EA зарезервировано
Eb ошибка датчика температуры для защиты от замерзания кожухотрубного теплообменника
EC потеря связи проводного пульта управления с чиллером
Ed зарезервировано
EF ошибка датчика температуры воды на входе в кожухотрубный теплообменник
P0 сработала защита по превышению давления или температуры хладагента в контуре А
P1 сработала защита по низкому давлению хладагента в контуре А ( ручной сброс аварии )
P2 сработала защита по превышению давления или температуры хладагента в контуре В ( ручной сброс аварии )
P3 сработала защита по низкому давлению хладагента в контуре B ( ручной сброс аварии )
P4 сработала защита по превышению тока контура А ( ручной сброс аварии )
P5 сработала защита по превышению тока контура В ( ручной сброс аварии )
P6 сработала защита по высокой температуре конденсации в контуре А
P7 сработала защита по высокой температуре конденсации в контуре B
P8 зарезервировано
P9 сработала защита по превышению разности температур прямой и обратной воды
PA защита от низкой температуры наружного воздуха при пуске
Pb сработала защита от обмерзания
PC защита по давлению предупреждающая обмерзание контура А ( ручной сброс аварии )
PD защита по давлению, предупреждающая обмерзание контрура В ( ручной сброс аварии )
PE защита от низкой температуры в кожухотрубном испарителе

Коды ошибок чиллеров Dantex

Модульные чиллеры серии DN

Для модулей производительностью 25/30/35 кВт

Ошибка Значение
E0 ошибка расходомера воды ( трижды )
E1 ошибка в последовательности подключения фаз
E2 ошибка связи
E3 ошибка датчика температуры воды на выходе
E4 ошибка датчика температуры воды на выходе из кожухотрубного теплообменника
E5 ошибка датчика температуры трубок конденсатора А
E6 ошибка датчика температуры трубок конденсатора B
E7 ошибка датчика температуры наружного воздуха
E8 ошибка датчика температуры нагнетаемого воздуха в системе А ( компрессор с цифровым управлением )
E9 ошибка расходомера воды ( в первый и второй раз )
EA основной блок зафиксировал уменьшение количества дополнительных блоков
EB ошибка датчика температуры в системе защиты от обмерзания кожухотрубного теплообменника
EC проводной контроллер не находит в сети один из модульных блоков
ED ошибка в системе управления и связи между блоками
Ed четырехкратное в течение 1 часа срабатывание электрической защиты
EE ошибка связи проводного пульта управления с микропроцессором блока
EF ошибка датчика температуры воды на входе
P0 ошибка в системе защиты от повышения давления или защиты от перегрева воздуха в системе A
P1 защита от понижения давления в системе A
P2 ошибка в системе защиты от повышения давления или защиты от перегрева воздуха в системе В
P3 защита от понижения давления в системе В
P4 защита от перегрузки по току в системе A
P5 защита от перегрузки по току в системе B
P6 защита от высокого давления в конденсаторе системы A
P7 защита от высокого давления в конденсаторе системы B
P8 датчик температуры в линии нагнетания компрессора с цифровым управлением системы А
Pb система защиты от обмерзания
PE защита от понижения температуры теплообменника «труба в трубе»
F1 неисправность электрически стираемой программируемой постоянной памяти
F2 ошибка в количестве соединяемых параллельно проводных контроллеров

Для модулей производительностью 55/60/65 кВт

Ошибка Значение
E0 ошибка в определении расхода воды ( трижды )
E1 ошибка в последовательности подключения фаз
E2 ошибка связи
E3 ошибка датчика температуры охлаждаемой воды на выходе
E4 ошибка датчика температуры воды на выходе из кожухотрубного теплообменника
E5 ошибка датчика температуры трубок конденсатора А
E6 ошибка датчика температуры трубок конденсатора В
E7 ошибка датчика температуры наружного воздуха
E8 ошибка датчика температуры в линии нагнетания компрессора системы A
E9 ошибка в определении расхода воды ( первый и второй раз )
EA основной блок фиксирует уменьшение количества дополнительных блоков
EB ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника
EC проводной контроллер не обнаружил выхода одного из модульных блоков
ED ошибка связи между проводным контроллером и модульным блоком
Ed четырехкратное в течение 1 часа срабатывание защиты электропитания
EE ошибка связи между проводным контроллером и компьютером
EF ошибка датчика температуры воды на входе
P0 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А
P1 срабатывание защиты от низкого давления в системе А
P2 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B
P3 срабатывание защиты от низкого давления в системе B
P4 срабатывание защиты от перегрузки по току в системе А
P5 срабатывание защиты от перегрузки по току в системе B
P6 срабатывание защиты от высокого давления в конденсаторе в системе А
P7 срабатывание защиты от высокого давления в конденсаторе в системе B
P8 ошибка датчика температуры в линии нагнетания компрессора системы А
P9 защита по разности температур воды на входе и выходе
PA защита от переохлаждения при пуске
Pb срабатывание защиты от обмерзания
PC ( резервный код )
PE защита от переохлаждения кожухотрубного теплообменника
F1 неисправность электрически стираемой программируемой постоянной памяти
F2 ошибка в количестве соединяемых параллельно проводных контроллеров

Для модулей производительностью 130 кВт

Ошибка Значение
E0 ошибка в определении расхода воды (трижды)
E1 ошибка в последовательности подключения фаз
E2 ошибка связи
E3 ошибка датчика температуры охлаждаемой воды на выходе
E4 ошибка датчика температуры воды на выходе из кожухотрубного теплообменника
E5 ошибка датчика температуры трубок конденсатора А
E6 ошибка датчика температуры трубок конденсатора В
E7 ошибка датчика температуры наружного воздуха
E8 ошибка датчика температуры в линии нагнетания компрессора системы A
E9 ошибка в определении расхода воды (первый и второй раз)
EA основной блок фиксирует уменьшение количества дополнительных блоков
EB ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника
EC проводной контроллер не обнаружил выхода одного из модульных блоков
ED ошибка связи между проводным контроллером и модульным блоком
Ed четырехкратное в течение 1 часа срабатывание защиты электропитания
EE ошибка связи между проводным контроллером и компьютером
EF ошибка датчика температуры воды на входе
P0 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А
P1 срабатывание защиты от низкого давления в системе А
P2 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B
P3 срабатывание защиты от низкого давления в системе B
P4 срабатывание защиты от перегрузки по току в системе А
P5 срабатывание защиты от перегрузки по току в системе B
P6 срабатывание защиты от высокого давления в конденсаторе в системе А
P7 срабатывание защиты от высокого давления в конденсаторе в системе B
P8 ошибка датчика температуры в линии нагнетания компрессора системы А
P9 защита по разности температур воды на входе и выходе
PA защита от переохлаждения при пуске
Pb срабатывание защиты от обмерзания
PC ( резервный код )
PE защита от переохлаждения кожухотрубного теплообменника
P1 неисправность электрически стираемой программируемой постоянной памяти
F2 ошибка в количестве соединяемых параллельно проводных контроллеров

Для модулей производительностью 200 кВт

Ошибка Значение
E0 ошибка в определении расхода воды ( трижды )
E1 ошибка в последовательности подключения фаз
E2 ошибка связи
E3 ошибка датчика температуры охлаждаемой воды на выходе
E4 ошибка датчика температуры воды на выходе из кожухотрубного теплообменника
E5 ошибка датчика температуры трубок конденсатора А
E6 ошибка датчика температуры трубок конденсатора В
E7 ошибка датчика температуры наружного воздуха или сбой питания
E8 ( резервный код )
E9 ошибка в определении расхода воды ( первый и второй раз )
EA основной блок фиксирует уменьшение количества дополнительных блоков
Eb ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника
EC проводной контроллер не обнаружил выхода одного из модульных блоков
Ed четырехкратное в течение 1 часа срабатывание защиты электропитания
EF ошибка датчика температуры воды на входе
P0 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А
P1 срабатывание защиты от низкого давления в системе А
P2 срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B
P3 срабатывание защиты от низкого давления в системе B
P4 срабатывание защиты от перегрузки по току в системе А
P5 срабатывание защиты от перегрузки по току в системе B
P6 срабатывание защиты от высокого давления в конденсаторе в системе А
P7 срабатывание защиты от высокого давления в конденсаторе в системе B
P8 ошибка датчика температуры в линии нагнетания компрессора системы А
P9 защита по разности температур воды на входе и выходе
PA защита от переохлаждения при пуске
Pb срабатывание защиты от обмерзания
PC ( резервный код )
PE защита от переохлаждения кожухотрубного теплообменника
F1 неисправность электрически стираемой программируемой постоянной памяти
F2 ошибка в количестве соединяемых параллельно проводных контроллеров

Коды ошибок чиллеров NED

Ошибка Значение
AL001 внешний сигнал тревоги
AL002 слишком часто переписывается EEPROM
AL003 ошибка записи в EEPROM
AL004 датчик температуры воды на входе в испаритель
AL005 датчик температуры воды на выходе из испарителя
AL006 датчик температуры воды на входе в конденсатор
AL007 датчик температуры наружного воздуха
AL008 перегрузка насоса 1 в контуре потребителей
AL009 перегрузка насоса 2 в контуре потребителей
AL010 перегрузка насоса 1 в контуре конденсатора
AL011 ошибка в количестве соединяемых параллельно проводных контроллеров
AL011 перегрузка насоса 2 в контуре конденсатора
AL012 насос 1 в контуре потребителей. Нет расхода воды 1)
AL013 насос 2 в контуре потребителей. Нет расхода воды 1)
AL014 насос 1 в контуре конденсатора. Нет расхода воды 1)
AL015 насос 2 в контуре конденсатора. Нет расхода воды 1)
AL016 неисправна группа насосов в контуре потребителей
AL017 неисправна группа насосов в контуре конденсатора
AL018 требуется т/о насоса 1 в контуре потребителей
AL019 требуется т/о насоса 2 в контуре потребителей
AL020 требуется т/о насоса 1 в контуре конденсатора
AL021 требуется т/о насоса 2 в контуре конденсатора
AL022 высокая температура охлажденной воды
AL023 ненормальная работа фрикулинга
AL024 нет связи с подчиненным контроллером
AL025 слишком часто переписывается EEPROM в подчиненном контроллере
AL026 ошибка записи в EEPROM в подчиненном контроллере
AL027 нет связи с платой расширения срСОЕ 1
AL028 неисправность подогревателя испарителя
AL029 реле контроля фаз
AL030 нет связи с платой расширения срСОЕ 2
AL021 нет сигнала «открыто» от клапана в контуре теплообменника фрикулинга
AL022 нет сигнала «закрыто» от клапана в контуре теплообменника фрикулинга
AL023 авария привода клапана в контуре теплообменника фрикулинга
AL024 нет сигнала «открыто» от клапана на байпасе фрикулинга
AL025 нет сигнала «закрыто» от клапана на байпасе фрикулинга
AL026 авария привода клапана на байпасе фрикулинга
AL027 клапаны фрикулинга не готовы
AL100 контур 1 – датчик давления нагнетания
AL101 контур 1 – датчик давления всасывания
AL102 контур 1 – датчик температуры нагнетания
AL103 контур 1 – датчик температуры всасывания
AL105 рабочий диапазон контура 1 – высокий коэффициент сжатия
AL106 рабочий диапазон контура 1 – высокое давление нагнетания
AL107 рабочий диапазон контура 1 – высокий ток двигателя
AL108 рабочий диапазон контура 1 – высокое давление всасывания
AL109 рабочий диапазон контура 1 – низкий коэффициент сжатия
AL110 рабочий диапазон контура 1 – низкое дифференциальное давление
AL111 рабочий диапазон контура 1 – низкое давление нагнетания
AL112 рабочий диапазон контура 1 – низкое давление всасывания
AL113 рабочий диапазон контура 1 – высокая температура нагнетания
AL114 драйвер ЭРВ контура 1 – низкая температура перегрева
AL115 драйвер ЭРВ контура 1 – минимальное рабочее давлениев
AL116 драйвер ЭРВ контура 1 – максимальное рабочее давление
AL117 драйвер ЭРВ контура 1 – высокая температура конденсации
AL118 драйвер ЭРВ контура 1 – низкая температура всасывания
AL119 драйвер ЭРВ контура 1 – неисправность двигателя
AL120 драйвер ЭРВ контура 1 – аварийное закрытие вентиля
AL121 драйвер ЭРВ контура 1 – значение вне диапазона
AL122 драйвер ЭРВ контура 1 – нарушение диапазона настройки
AL123 драйвер ЭРВ контура 1 – потеря соединения
AL124 драйвер ЭРВ контура 1 – низкий заряд батареи
AL125 драйвер ЭРВ контура 1 – память EEPROM
AL126 драйвер ЭРВ контура 1 – неполное закрытие вентиля
AL127 драйвер ЭРВ контура 1 – несовместимость микропрограммного обеспечения
AL128 драйвер ЭРВ контура 1 – ошибка конфигурирования
AL166 контур 1 – тревога защиты от замерзания
AL167 контур 1 – требуется т/о компрессора 1
AL168 контур 1 – требуется т/о компрессора 2
AL169 контур 1 – требуется т/о компрессора 3
AL170 контур 1 – требуется т/о компрессора 4
AL171 контур 1 – требуется т/о компрессора 5
AL172 контур 1 – требуется т/о компрессора 6
AL173 контур 1 – датчик температуры конденсации
AL174 контур 1 – требуется т/о вентилятора 1
AL175 контур 1 – требуется т/о вентилятора 2
AL176 контур 1 – требуется т/о вентилятора 3
AL177 контур 1 – требуется т/о вентилятора 4
AL178 контур 1 – высокое давление от реле давления
AL179 контур 1 –низкое давления от реле давления
AL180 контур 1 – перегрузка компрессора 1
AL181 контур 1 – перегрузка компрессора 2
AL182 контур 1 – перегрузка компрессора 3
AL183 контур 1 – перегрузка компрессора 4
AL184 контур 1 – перегрузка компрессора 5
AL185 контур 1 – перегрузка компрессора 6
AL186 Контур 1 – превышена длительность перекачивание хладагента
AL187 контур 1 – датчик температуры воды на выходе испарителя
AL188 контур 1 – защита от замерзания испарителя по датчику темп. на выходе из испарителя
AL189 контур 1 – перегрузка вентилятора конденсатора
AL200 контур 2 – датчик давления нагнетания
AL201 контур 2 – датчик давления всасывания
AL202 контур 2 – датчик температуры нагнетания
AL203 контур 2 – датчик температуры всасывания
AL205 рабочий диапазон контура 2 – высокий коэффициент сжатия
AL206 рабочий диапазон контура 2 – высокое давление нагнетания
AL207 рабочий диапазон контура 2 – высокий ток двигателя
AL208 рабочий диапазон контура 2 – высокое давление всасывания
AL209 рабочий диапазон контура 2 – низкий коэффициент сжатия
AL210 рабочий диапазон контура 2 – низкое дифференциальное давление
AL211 рабочий диапазон контура 2 – низкое давление нагнетания
AL212 рабочий диапазон контура 2 – низкое давление всасывания
AL213 рабочий диапазон контура 2 – высокая температура нагнетания
AL214 драйвер ЭРВ контура 2 – низкая температура перегрева
AL215 драйвер ЭРВ контура 2 – минимальное рабочее давление
AL216 драйвер ЭРВ контура 2 – максимальное рабочее давление
AL217 драйвер ЭРВ контура 2 – высокая температура конденсации
AL218 драйвер ЭРВ контура 2 – низкая температура всасывания
AL219 драйвер ЭРВ контура 2 – неисправность двигателя
AL220 драйвер ЭРВ контура 2 – аварийное закрытие вентиля
AL221 драйвер ЭРВ контура 2 – значение вне диапазона
AL222 драйвер ЭРВ контура 2 – нарушение диапазона настройки
AL223 драйвер ЭРВ контура 2 – потеря соединения
AL224 драйвер ЭРВ контура 2 – низкий заряд батареи
AL225 драйвер ЭРВ контура 2 – память EEPROM
AL226 драйвер ЭРВ контура 2 – неполное закрытие вентиля
AL227 драйвер ЭРВ контура 2 – несовместимость микропрограммного обеспечения
AL228 драйвер ЭРВ контура 2 – ошибка конфигурирования
AL266 контур 2 – тревога защиты от замерзания
AL267 контур 2 – требуется т/о компрессора 1
AL268 контур 2 – требуется т/о компрессора 2
AL269 контур 2 – требуется т/о компрессора 3
AL270 контур 2 – требуется т/о компрессора 4
AL271 контур 2 – требуется т/о компрессора 5
AL272 контур 2 – требуется т/о компрессора 6
AL273 контур 2 – датчик температуры конденсации
AL274 контур 2 – требуется т/о вентилятора 1
AL275 контур 2 – требуется т/о вентилятора 2
AL276 контур 2 – требуется т/о вентилятора 3
AL277 контур 2 – требуется т/о вентилятора 4
AL278 контур 2 –высокое давление от реле давления
AL279 контур 2 – низкое давление от реле давления
AL280 контур 2 – перегрузка компрессора 1
AL281 контур 2 – перегрузка компрессора 2
AL282 контур 2 – перегрузка компрессора 3
AL283 контур 2 – перегрузка компрессора 4
AL284 контур 2 – перегрузка компрессора 5
AL285 контур 2 – перегрузка компрессора 6
AL286 контур 2 – превышена длительность перекачивание хладагента
AL287 контур 2 – датчик температуры воды на выходе испарителя
AL288 контур 2 – защита от замерзания испарителя по датчику темп. на выходе из испарителя
AL289 контур 2 – перегрузка вентилятора конденсатора

Коды ошибок чиллеров Wesper

Ошибка Значение
ADC ошибка, связанная с микропроцессором
CPF неисправность датчика высокого давления
EPF неисправность датчика низкого давления
REF низкое давление фреона – возможно утечка
CPnc датчик высокого давления не измеряет
EPnc датчик низкого давления не измеряет
CFC1 дефект компрессора 1
CFC2 дефект компрессора 2
EWTH дефект измерителя температуры воды на входе
EWTL дефект измерителя температуры воды на выходе
LWTC температура воды на входе не меняется
LWTH температура воды на выходе не меняется
LWTL датчик температуры входящей воды неисправен
LWLH датчик температуры исходящей воды неисправен
DISL термостат линии нагнетания компрессора неисправен
OATH термостат наружного воздуха неисправен
OATL термостат наружного воздуха неисправен
OCTL термостат конденсатора не работает
HPP высокое давление компрессора
HP лимитированная защита по давлению компрессора
HPC блокировка через реле высокого давления
LP сработала защита по низкому давлению
DIS сработал термостат компрессора
LO выходящая вода имеет низкую температуру
HI выходящая вода имеет высокую температуру
FS сработало реле протока на линии воды
CF1 блокировка тепловым реле компрессора 1
CF2 блокировка тепловым реле компрессора 2
OF1 блокировка тепловым реле компрессора 2
PF блокировка двигателя насоса тепловым реле
Lou недостаток воды в контуре чиллера
EEP ошибка, связанная с микропроцессором
JUMP ошибочная конфигурация перемычек ( DIP )
ConF неверная конфигурация контроллера

Коды ошибок чиллеров York

Компрессор 1 / Компрессор 2 Значение
C1-H1 / C2-H2 высокое давление
C1-L1 / C2-L2 слишком низкое давление
C1-t1 / C2-t2 срабатывание защиты от низкого давления и термистора всасываемого газа
C1-51 / C2-52 срабатывание термореле компрессора
C1-61 / C2-62 срабатывание термостата контроля отработанного газа
C1-71 / C2-72 срабатывание внутреннего термистора компрессора Thermistor
C1-o1 / C2-o2 срабатывание регулятора дифференциального давления
C1-28 / C2-28 отказ датчика давления всасываемого газа ( открыт / закорочен )

Коды ошибок чиллеров Clivet

Центральный модуль

Ошибка Значение
E001 отказ датчика темп. вход. воды в блоке управления
E002 отказ датчика темп. выход. воды в блоке управления
E003 отказ датчика внешней температуры
E004 отказ ввода сброса воды
E005 отказ датчика внешнего RH%
E006 отказ датчика внешнего RH%
E007 температура в насосе 2 в блоке управления
E008 температура в насосе 2 в блоке управления
E009 давление в системе
E010 монитор фаз
E011 антифриз в блоке управления
E012 пред. антифриз в блоке управления
E013 замена центрального насоса
E014 конфигурация устройства
E015 отказ предела потребления
E016 отказ сети в блоке управления
E017 блокировка управления нагрева
E018 неправильная разница температур
E019 низкая внешняя температура

Модуль компрессора

Ошибка Значение
E101 отказ датчика конденсации / испарения
E102 отказ датчика давления конденсации
E103 отказ датчика давления испарения
E104 отказ датчика температуры восстановления
E105 высокое давление
E106 низкое давление
E107 терм. вентилятор / насос
E111 конденс / испар подача воды
E112 пред. высокое давление 1
E113 пред. высокое давление 1
E114 пред. низкое давление
E115 обяз. разморозка
E116 макс. разница давления
E117 восстановление воды
E118 восстановление тепла
E108 терм. компрессор 1
E109 терм. компрессор 2
E110 терм. компрессор 3
E213 модуль не подключен
E119 разница давлений масла
E120 замерзание конденсатора
E121 пред. BP2
E123 TA TEE
E124 TS TEE
E125 пред. макс. TS TEE
E126 пред. макс. TS TEE
E127 отказ питания
E128 ошибка шагового двигателя

Коды ошибок чиллеров Carrier

Код № НАИМЕНОВАНИЕ ОПИСАНИЕ
AL20 Перегорел предохранитель цепи управления (24 В переменного тока) Сигнал 20 появляется, если перегорает предохранитель (F3); при этом останавливаются все контролируемые программой узлы агрегата. Сигнал будет оставаться активным до замены предохранителя на 15 А.
AL21 Перегорел предохранитель цепи микропроцессора (18 В переменного тока) Сигнал 21 появляется, если перегорает один из предохранителей (F1/F2) в цепи питания микропроцессора -18 вольт переменного тока. Регулируемый клапан всасывания будет открыт, лимит тока действовать не будет. Компрессор будет попеременно включаться и выключаться. Управление температурой осуществляется за счет цикличной работы компрессора.
AL22 Защита электродвигателя вентилятора испарителя Сигнал 22 появляется при срабатывании внутреннего устройства защиты электродвигателя испарителя. Сигнал выключает все контролируемые узлы до тех пор, пока не будет осуществлен сброс защитного устройства электродвигателя.
AL23 Отсоединена перемычка КА2-КВ10 Сигнал 23 появляется при отсутствии перемычки. Сигнал остается активным до тех пор, пока перемычка не восстановлена.
AL24 Защита электродвигателя компрессора Сигнал 24 появляется при срабатывании внутреннего устройства защиты электродвигателя компрессора. Сигнал выключает все контролируемые узлы, за исключением вентиляторов испарителя; сигнал остается активным до момента сброса устройства защиты электродвигателя.
AL25 Защита электродвигателя вентилятора конденсатора Сигнал 25 появляется при срабатывании внутреннего устройства защиты электродвигателя конденсатора и выключает все контролируемые узлы, за исключением вентиляторов испарителя. Сигнал остается активным до момента сброса устройства защиты электродвигателя. Этот сигнал не действует при работе агрегата с конденсатором водяного охлаждения.
AL26 Неисправность всех датчиков подаваемого и отработанного воздуха Сигнал 26 появляется, если контроллер обнаруживает, что показания всех датчиков находятся за пределами заданного диапазона. Это может произойти в том случае, если температура в кузове выходит за пределы от -50°С до +70°С (-58°F до +158°F). Этот сигнал вызывает реакцию на неисправность в соответствии с кодом функции Cd29.
AL27 Ошибка калибровки цепи датчика Контроллер включает в себя встроенный аналогово-цифровой преобразователь (АЦП), используемый для преобразования аналоговых показателей (датчиков температуры, датчиков тока и т.д.) в цифровые. Контроллер постоянно проверяет калибровку АЦП. Если АЦП не поддается калибровке в течение 30 секунд подряд, выводится этот сигнал. Сигнал перестает быть активным при успешной калибровке АЦП.
AL51 Ошибка в списке сигналов В ходе начальной диагностики проверяется EEPROM для оценки его содержания. При этом проверяются заданное значение и список сигналов. Если содержание признается недействительным, выдается сигнал 51. В процессе управления любая операция, связанная со списком сигналов и совершенная с ошибкой, вызывает появление сигнала 51. Сигнал 51 предназначен «только для вывода на дисплей» и не заносится в список сигналов. При нажатии клавиши ENTER в момент, когда на дисплей выведено сообщение «CLEAr», производится попытка удалить список сигналов. Если эта попытка успешна (все сигналы деактивируются), то происходит сброс сигнала 51.
AL52 Список сигналов заполнен Сигнал 52 появляется, если список сигналов заполнен — при включении или после внесения сигнала в список. Сигнал 52 выводится на дисплей, но не заносится в список сигналов. Этот сигнал можно сбросить, удалив список сигналов. Удаление происходит в том случае, если содержащиеся в списке сигналы не активны.
AL53 Неисправность никель-кадмиевой батареи Сигнал 53 выдается, если заряд никель-кадмиевой батареи слишком мал для осуществления записи с питанием от батареи. ПРИМЕЧАНИЕ: Проверьте и перезарядите или замените батарею.
AL54 Неисправность основного датчика подаваемого воздуха (STS) Сигнал 54 выдается в случае недействительных показаний основного датчика подаваемого воздуха, находящихся за пределами от -50 до +70°С (от -58° F до +158°F), или если логическая проверка этого датчика выявляет его неисправность. Если сигнал 54 выдается в тот момент, когда для управления используется основной датчик подаваемого воздуха, то для управления будет использоваться вторичный датчик подаваемого воздуха, если он установлен в агрегате. Если агрегат не оборудован вторичным датчиком подаваемого воздуха, то при появлении сигнала AL54 для управления будет использоваться величина: показания основного датчика отработанного воздуха минус 2°С.
AL55 Неисправность регистратора DataCORDER Этот сигнал выводится, чтобы указать на отключение DataCORDER в связи с внутренней неисправностью. Чтобы удалить этот сигнал, просто переконфигурируйте агрегат на номер его модели OEM с помощью карты мультиконфигураций.
AL56 Неисправность основного датчика отработанного воздуха (RTS) Сигнал 56 выдается в случае недействительных показаний основного датчика отработанного воздуха, находящихся за пределами от -50 до +70°С (от -58°F до +158°F). Если сигнал 56 выдается в тот момент, когда для управления используется основной датчик отработанного воздуха, то для управления будет использоваться вторичный датчик отработанного воздуха, если он установлен в агрегате. Если агрегат не оборудован вторичным датчиком отработанного воздуха или он неисправен, то для управления будет использоваться основной датчик подаваемого воздуха.
AL57 Неисправность датчика температуры окружающей среды (AMBS) Сигнал 57 выдается в случае недействительных показаний температуры окружающей среды, находящихся за пределами рабочего диапазона от -50°С (-58°F) до +70°С (+158°F).
AL58 Защита компрессора по повышенному давлению (HPS) Сигнал 58 выдается, если защитное реле высокого давления нагнетания компрессора (HPS) остается разомкнутым не менее одной минуты. Сигнал остается активным до тех пор, пока реле не замкнется, после чего компрессор снова включается.
AL59 Защита термостата завершения нагревания (НТТ) Safety Сигнал 59 выдается при размыкании термостата завершения нагревания (НТТ) и вызывает выключение нагревателя. Сигнал остается активным до замыкания термостата.
AL60 Неисправность датчика завершения оттаивания (DTS) Сигнал 60 указывает на возможную неисправность датчика завершения оттаивания (DTS). Он появляется при размыкании термостата завершения нагревания (НТТ), или если показания DTS не превышают 25,6°С (78°F) через два часа после начала оттаивания. Контроллер проверяет, снизились ли показания датчика завершения оттаивания (DTS) до 10°С или ниже через полчаса после достижения заданного значения а диапазоне замороженных грузов, или через полчаса непрерывной работы компрессора при падении температуры отработанного воздуха ниже 7°С (45°F). Если этого не произошло, то выдается сигнал неисправности DTS, и режим оттаивания управляется показаниями датчика температуры отработанного воздуха (RTS). Через час контроллер завершит режим оттаивания.
AL61 Неисправность нагревателей Сигнал 61 относится к нагревателям; он выдается при обнаружении ненормального уровня тока при включении (выключении) нагревателя. Проверяется уровень тока в каждой фазе источника тока. Этот сигнал выводится на дисплей, но не вызывает каких-либо действий; он удаляется при нормальном уровне тока, потребляемого нагревателем.
AL62 Неисправность цепи компрессора Сигнал 62 вызывается ненормальным повышением (понижением) уровня тока при включении (выключении) компрессора. Предполагается, что компрессор потребляет ток минимум в 2 А; в противном случае выдается этот сигнал. Этот сигнал выводится на дисплей, но не вызывает каких-либо действий; он удаляется при нормальном уровне тока, потребляемого компрессором.
AL63 Превышение лимита тока Сигнал 63 выдается системой ограничения тока. Если компрессор ВКЛЮЧЕН, и процедуры ограничения уровня тока не в состоянии удержать его в заданных пользователем пределах, выдается сигнал превышения лимита тока. Этот сигнал предназначается только для вывода на дисплей; он удаляется при изменении режима потребления тока агрегатом, при изменении лимита тока с помощью кода Cd32, или если шаговому двигателю регулируемого клапана давления всасывания (SMV) выдается разрешение открыть его на 100%.
AL64 Превышение предела температуры нагнетания (CPDT) Сигнал 64 выдается, если обнаружено, что температура нагнетания превышает 135°С (275°F) в течение трех минут подряд, если она превышает 149°С (300°F), или если показания датчика находятся за пределами рабочего диапазона. Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий.
AL65 Неисправность датчика давления нагнетания (DPT) Сигнал 65 выдается, если показания датчика давления нагнетания компрессора находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий.
AL66 Неисправность датчика давления всасывания (SPT) Сигнал 66 выдается, если показания датчика давления всасывания находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба) до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий.
AL67 Неисправность датчика влажности Сигнал 67 выдается, если показания датчика влажности находятся за пределами рабочего диапазона относительной влажности от 0% до 100%. Если сигнал 67 становится активным, а ранее был выбран режим осушения, то режим осушения выключается.
AL68 Неисправность датчика давления конденсатора (СРТ) Сигнал 68 выдается, если показания датчика давления конденсатора находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба) до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий.
AL69 Неисправность датчика температуры всасывания (CPSS) Сигнал 69 выдается, если показания датчика температуры всасывания находятся за пределами рабочего диапазона от -60°С (от -76°F) до 150°С (302°F). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий.
ПРИМЕЧАНИЕ: Если контроллер конфигурирован на работу с четырьмя датчиками без регистратора DataCORDER, то сигналы регистратора AL70 и AL71 будут обрабатываться как сигналы контроллера AL70 и AL71.
ERR# Внутренняя неисправность микропроцессора #0 — Ошибка ОЗУ — Указывает на ошибку рабочей памяти контроллера.
#1 — Ошибка программной памяти — Указывает на сбой в программе контроллера.
#2 — Время ожидания истекло — Программа контроллера вошла в режим, при котором ее выполнение прекращается.
#3 — Неисправность внутреннего таймера — Внутренние таймеры неисправны. Невозможно выполнять циклы с заданным временем, например, оттаивание.
#4 — Неисправность внутреннего счетчика — Неисправность внутренних многоцелевых счетчиков. Счетчики используются таймерами и другими устройствами.
#5 — Неисправность АЦП — Неисправность аналого-цифрового преобразователя (АЦП) контроллера.
Entr StPt Ввести заданное значение (Нажать на клавишу со стрелкой и на Enter) Контроллер подсказывает оператору на необходимость ввести заданное значение.
LO Пониженное напряжение в сети (Коды функций Cd27-38 не действуют, сигнал НЕ сохраняется). Это сообщение выводится попеременно с указанием заданного значения, если напряжение сети ниже 75% от номинала.

Консультация инженера

Консультация инженера

Выполним подбор и расчет оборудования, осуществляем замеры по месту нахождения объекта

Заказать консультацию

Обслуживание и ремонт чиллеров – процедура не дешевая, но при своевременном принятии решения эти затраты можно снизить. Вы можете обратиться в компанию «Градиент» и проводить техническое обслуживание и диагностику холодильных машин на постоянной основе. Это позволит предотвратить большинство неисправностей оборудования. Оказываем услуги по доступным ценам по всей России.

Типичные ошибки чиллера

Инженерное оборудование имеет подробную инструкцию по использованию, где можно посмотреть коды ошибок чиллера. Если вам сложно разобраться самостоятельно, вы всегда можете воспользоваться помощью наших специалистов. Опытные мастера устранят ошибки чиллеров carrier, clivet, york, trane, lessar, aermec, wesper и др.

К наиболее распространенным неисправностям относятся:

  • Контроллер хладоносителя показывает несоответствие действующей рабочей точки и рекомендованной производителем. Если вовремя не отремонтировать технику, возможно самопроизвольное перепрограммирование, замерзание воды в испарителе, разрыв пластин теплообменника.
  • Аварийный сигнал при утечке фреона требует настройки реле. Иначе снижается температура кипения, вода замерзает и теплообменник лопается.
  • Вентилятор перегревается или перемерзает и выходит из строя, в результате чего возникает авария. Не стоит повышать давление реле выше рекомендованного производителем показателя. Иначе появляется риск повреждения контура фреона, и аппарат выходит из строя.
  • Ошибка чиллера может возникнуть, если не очищать сеточку фильтра. Тогда теплообменник загрязняется, а давление падает. Оборудование может полностью перестать функционировать.
  • Насос без тепловой защиты может перегреваться, поэтому нужно перекрыть его к охладителю, чего требует инструкция к оборудованию.
  • При прекращении подачи хладоносителя необходимо отключать насос. Просто перекрыть краны недостаточно, должно быть автоматическое реле, которое предотвратит сбои в системе. Код ошибки чиллера говорит о том, что охлаждаемая жидкость не поступает, фреон выкипает. Из-за этого могут лопнуть пластины.
  • Как подстроить реле низкого давления

Если ошибка чиллера выдает «Пониженное давление фреона», необходимо подстроить показатель. Для этого сначала нужно удостовериться, что в аппарате достаточный уровень фреона. Для удобства внутри установки расположен смотровой глазок.

Если он остается прозрачным во всех режимах работы, заправка находится на оптимальном уровне. Если же проскакивают пузыри или есть пена, нужна дозаправка системы. В норме в процессе подстройки снимается защитная крышка и пластина фиксации. Винт регулировки поворачивают против часовой стрелки на один оборот, так значение уменьшается на 1-1,5 бар.

К основным причинам срабатывания ошибки низкого давления относятся:

  • утечка хладагента;
  • низкий уровень расхода воды;
  • сбои датчика температуры;
  • неправильная работа ТРВ.

Обращаясь в СК «Градиент» для исправления ошибок чиллера, вы получаете гарантированное качество. Работы выполняем быстро, используем оригинальные комплектующие, чтобы продлить срок эксплуатации оборудования. Строго придерживаемся рекомендаций производителя.

Наша компания существует на рынке более 20 лет и зарекомендовала себя как надежного партнера в продаже и сервисном обслуживании холодильных установок. Мастера своевременно повышают квалификацию и проходят аттестацию. Организуем сертифицированную техническую поддержку.

Чтобы вызвать специалиста, заполняйте онлайн-форму на сайте или свяжитесь с нами по телефону.

Консультация инженера

Консультация инженера

Выполним подбор и расчет оборудования, осуществляем замеры по месту нахождения объекта

Заказать консультацию

L7S Series

VER 2.0

Introduction

Table of Contents

Hello. Thank you for choosing LS Mecapion L7 Series.

This user manual describes how to use the product and what precautions to take.

Failure to comply with guidelines may cause injury or product damage. Be sure to read this user manual before you use the product and follow all guidelines.

 The contents of this manual are subject to change without prior notice depending on software versions.

 No reproduction of part or all of the contents of this manual in any form, by any means or for any purpose, shall be permitted without the explicit written consent of LS Mecapion.

 The patent, trademark, copyright and other intellectual property rights in this user manual are reserved by LS Mecapion. No use for purposes other than those related to the product of LS

Mecapion shall be authorized.

iii

iv

Table of Contents

Safety Precautions

Safety precautions are categorized as either Danger or Caution, depending on the seriousness of the precaution.

Precautions

Danger

Definition

Failure to comply with guidelines may cause death or serious injury.

Caution

Failure to comply with guidelines may cause injury or property damage.

 Certain conditions that are listed as Caution may also result in serious injury.

Electric Shock Precautions

Danger

 Before wiring or inspection tasks, turn off the power. Wait 15 minutes until the charge lamp goes off, and then check the voltage.

 Be sure to ground both the servo drive and the servo motor.

 Only specifically trained professional engineers are permitted to perform wiring tasks.

 Perform wiring tasks after you install both the servo drive and the servo motor.

 Do not operate the device with wet hands.

 Do not open the servo drive cover while in operation.

 Do not operate the device with the servo drive cover removed.

 Even if the power is off, do not remove the servo drive cover.

Fire Prevention Precautions

Caution

 Install the servo drive, the servo motor, and the regenerative resistance on non-combustible material.

 In case of servo drive malfunction, disconnect the input power.

Table of Contents

Installation Precautions

Store and use the product in an environment as follows:

Environment

Servo Drive

Conditions

0 ~ 40 ℃

Servo Motor

Usage temp. 0 ~ 50 ℃

Storage temp. -20 ~ 65 ℃

Usage humidity

Storage humidity

Altitude

Below 90% RH (non-condensing)

Spacing

Others

-20 ~ 60 ℃

Below 80% RH

Below 90% RH

Below 1000 m

 When installing 1 unit:

 More than 40 mm space at the top and bottom of the control panel

 More than 10 mm space at the left and right sides of the control panel

 When installing 2 or more units:

 More than 100 mm space at the top of the control panel

 More than 40 mm space at the bottom of the control panel

 More than 30 mm space at the left and right sides of the control panel

 More than 2 mm between units

 Refer to «2.2.2 Installation Inside the

Control Panel.»

 Install in a location free from iron, corrosive gas, and combustible gas.

 Install in a location free from vibration or shock.

Caution

 Make sure that the installation orientation is correct.

 Do not drop the product or expose it to excessive shock.

 Install in a location that is free from water, corrosive gas, combustible gas, or flammable material.

 Install in a location that can support the weight of the product.

 Do not stand on the product or place heavy objects on top of it.

 Be sure to maintain the specified spacing when you install the servo drive.

 Be sure not to get conductive or flammable debris inside either the servo drive or the servo motor.

 Firmly fix the servo motor onto the machine.

 Be sure to install a servo motor with a gearbox in the specified direction.

 Do not touch the rotating unit of the servo motor while you operate the machine.

 Do not apply excessive shock when you connect a coupling to the servo motor shaft.

 Do not place a load on the servo motor shaft that is heavier than specified.

v

vi

Table of Contents

Wiring Precautions

Caution

 Be sure to use AC 200-230 V for the input power of the servo drive.

 Be sure to connect the servo drive ground terminal.

 Do not connect commercial power directly to the servo motor.

 Do not connect commercial power directly to the U, V, and W output terminal of the servo drive.

 Directly connect U, V, W output terminals of the servo drive and U, V, W input terminals of the servo motor, but do not install a magnetic contactor between the wiring.

 Be sure to use a pressurized terminal with an insulation tube when you connect the power terminal for the servo drive.

 When wiring, be sure to separate the U, V, and W cables for the servo motor power and encoder cable.

 Be sure to use robotic cable if the motor requires movement.

 Before you perform power line wiring, turn off the input power of the servo drive, and then wait until the charge lamp goes off completely.

 Be sure to use shielded twisted-pair wire for the pulse command signal (PF+, PF-, PR+, PR-), speed command signal (SPDCOM), and torque command signal (TRQCOM).

Precautions for Initial Operation

Caution

 Check the input voltage (AC 200-230 V) and power unit wiring before you turn on the power.

 The servo must be in the OFF mode when you turn on the power.

 Before you turn on the power, check the motor’s ID and the encoder pulse for L7 □A □□□A.

 Set the motor ID ([P0-00]) and the encoder pulse ([P0-02]) for L7 □A □□□A first after you turn on the power.

 After you complete the above settings, set the drive mode for the servo drive that is connected to the upper level controller to [P0-03].

 Refer to Chapter 1.2 «System Configuration» to perform CN1 wiring for the servo drive according to each drive mode.

 You can check the ON/OFF state for each input terminal of CN1 at [St-14].

Precautions for Handling and Operation

Caution

 Check and adjust each parameter before operation.

 Do not touch the rotating unit of the motor during operation.

 Do not touch the heat sink during operation.

 Be sure to attach or remove the CN1 and CN2 connectors when the power is off.

 Extreme change of parameters may cause system instability.

Table of Contents

Precautions for Use

Caution

 Install an emergency stop circuit on the outside to immediately stop operation if necessary.

 Reset the alarm when the servo is off. Be warned that the system restarts immediately if the alarm is reset while the servo is on.

 Minimize electromagnetic interference by using a noise filter or DC reactor. Otherwise, adjacent electrical devices may malfunction because of the interference.

 Use only the specified combinations of servo drive and servo motor.

 The electric brake on the servo motor keeps the motor at a standstill. Do not use it for ordinary braking.

 The electric brake may not function properly depending on the brake lifespan and mechanical structure (for example, if the ball screw and servo motor are combined via the timing belt).

Install an emergency stop device to ensure mechanical safety.

Malfunction Precautions

Caution

 For potentially dangerous situations that may occur during emergency stop or device malfunction, use a servo motor with an electric brake, or separately install a brake system on the outside.

 In case of an alarm, solve the source of the problem. After you solve the problem and ensure safety, deactivate the alarm and start operation again.

 Do not get close to the machine until the problem is solved.

Precautions for Repair/Inspection

Caution

 Before performing servicing tasks, turn off the power. Wait 15 minutes until the charge lamp goes off, and then check the voltage. Voltage may remain in the condenser even after you turn off power and may cause an electric shock.

 Only authorized personnel are permitted to perform repair, inspection or replacement of parts.

 Do not modify the product.

General Precautions

Caution

 This user manual is subject to change upon product modification or standards changes. In case of such changes, the user manual will be issued with a new product number.

Product Application

Caution

 This product is not designed or manufactured for machines or systems that are used in situations related to human life.

 This product is manufactured under strict quality control. However, be sure to install safety devices when applying the product to a facility where a malfunction in the product might cause a major accident or significant loss.

vii

Table of Contents

EEPROM Lifespan

Caution

 EEPROM is rewritable up to 1 million times for the purpose of, among others, recording parameter settings. The servo drive may malfunction depending on the lifespan of EEPROM when the total counts of the following tasks exceed 1 million.

 EEPROM recording as a result of parameter changes

 EEPROM recording as a result of alarm trigger

Responding to international regulations

L7 Series responds to international regulations with standard models.

Model(Note1) Low Voltage Directive EMC Directive

L7SA001X

L7SA002X

L7SA004X

L7SA008X

L7SA010X

L7SA020X

L7SA035X

EN61800-5-1 EN61800-3

Note1) X = A or B: A = Quadrature Encoder Type, B = Serial Encoder Type.

※1: For more information, please feel free to ask LS Mecapion.

※2: Please follow the regulations of destination when exporting.

viii

Table of Contents

Table of Contents

Introduction …………………………………………………………………………………………………….. iii

Safety Precautions …………………………………………………………………………………………… iv

Table of Contents …………………………………………………………………………………………….. ix

1. Product Components and Signals …………………………………………………………. 2-1

1.1

Product Components ……………………………………………………………………………………….. 2-1

1.1.1

Product Verification ……………………………………………………………………………. 2-1

1.1.2

Part Names ……………………………………………………………………………………… 2-3

1.2

System Configuration ……………………………………………………………………………………. 2-8

1.2.1

Overview …………………………………………………………………………………………. 2-8

1.2.2

Wiring Diagram of the Entire CN1 Connector …………………………………… 2-10

1.2.3

Example of Position Operation Mode Wiring ……………………………………. 2-11

1.2.4

Example of Speed Operation Mode Wiring ……………………………………….. 2-12

1.2.5

Example of Torque Operation Mode Wiring ……………………………………… 2-13

1.2.6

Examples of Speed / Position Operation Mode Wiring ………………………. 2-14

1.3

Signal ………………………………………………………………………………………………………….. 2-17

1.3.1

Digital Input Contact Signal ……………………………………………………………….. 2-17

1.3.2

Analog Input Contact Signal ………………………………………………………………. 2-18

1.3.3

Digital Output Contact Signal ……………………………………………………………… 2-18

1.3.4

Monitor Output Signal and Output Power ………………………………………… 2-19

1.3.5

Pulse Train Input Signal ………………………………………………………………….. 2-19

1.3.6

Encoder Output Signal ……………………………………………………………………. 2-20

2 Installation ……………………………………………………………………………………………. 2-1

2.1

2.2

Servo Motor ………………………………………………………………………………………………….. 2-1

2.1.1

Usage Environment ………………………………………………………………………….. 2-1

2.1.2

Prevention of Excessive Impact ………………………………………………………… 2-1

2.1.3

Motor Connection …………………………………………………………………………….. 2-1

2.1.4

Load Device Connection …………………………………………………………………… 2-2

2.1.5

Cable Installation ……………………………………………………………………………… 2-2

Servo Drive …………………………………………………………………………………………………… 2-3

2.2.1

Usage Environment ………………………………………………………………………….. 2-3

2.2.2

Installation Inside the Control Panel ………………………………………………….. 2-4

2.2.3

Power Wiring …………………………………………………………………………………… 2-5

3 Wiring Method ………………………………………………………………………………………. 3-1

3.1

Internal Block Diagram ………………………………………………………………………………….. 3-1

3.1.1

L7 Drive Block Diagr

am [L7SA001□ — L7SA004□] ……………………………….. 3-1

3.1.2

L7 Drive Block Diagram [L7SA008□ — L7SA035□] ……………………………….. 3-2

3.1.3

L7 Drive Block Diagram [L7SA050□ ] …………………………………………………. 3-3

3.2

Power Wiring ………………………………………………………………………………………………… 3-4

3.2.1

L7 Drive Wiring Diagram [L7SA0

01□ — L7SA035□] ………………………………. 3-4

3.2.2

L7 Drive Wiring Diagram [L7SA050□] ………………………………………………… 3-5

3.2.3

Dimensions for Power Circuit Electrical Parts ……………………………………. 3-6

3.3

Timing Diagram …………………………………………………………………………………………… 3-10

3.3.1

Timing Diagram During Power Input ………………………………………………… 3-10

ix

x

Table of Contents

3.4

3.3.2

Timing Diagram at the Time of Alarm Trigger …………………………………….3-11

Control Signal Wiring …………………………………………………………………………………… 3-12

3.4.1

Contact Input Signal ……………………………………………………………………….. 3-12

3.4.2

Contact Output Signal …………………………………………………………………….. 3-13

3.4.3

Analog Input/Output Signals …………………………………………………………… 3-14

3.4.4

Pulse Train Input Signal ………………………………………………………………….. 3-15

3.4.5

Encoder Output Signal ……………………………………………………………………. 3-16

3.5

3.6

3.7

Quadrature Encoder Signaling Unit (CN2) Wiring …………………………………………… 3-17

3.5.1

APCS-E



AS Cable ………………………………………………………………………. 3-17

3.5.2

APCS-E



BS Cable ………………………………………………………………………. 3-17

Serial Encoder Signaling Unit (CN2) Wiring …………………………………………………… 3-18

3.6.1

APCS-E



CS Cable ………………………………………………………………………. 3-18

Multi Turn Encoder signal unit(CN2) wiring …………………………………………………… 3-20

3.7.1

APCS-E



CS1 Cable …………………………………………………………………….. 3-20

3.7.2

APCS-E



DS1 Cable …………………………………………………………………….. 3-20

3.7.3

APCS-E



ES1 Cable …………………………………………………………………….. 3-21

3.8

Transmission of Absolute Encoder Data ……………………………………………………….. 3-22

3.8.1

Transmission of Absolute Encoder Data ………………………………………….. 3-22

4 Parameters ……………………………………………………………………………………………. 4-1

4.1

4.2

How to Use the Loader …………………………………………………………………………………… 4-1

4.1.1

Names and Functions of Each Parts ………………………………………………….. 4-1

4.1.2

Status Summary Display…………………………………………………………………… 4-2

4.1.3

Parameter Handling …………………………………………………………………………. 4-4

4.1.4

Data Display ……………………………………………………………………………………… 4-8

4.1.5

External Input Contact Signal Display [St-14] …………………………………… 4-10

4.1.6

External Input Signal and Logic Definition …………………………………………4-11

4.1.7

External Output Contact Signal Display [St-15]……………………………………… 4-19

4.1.8

External Output Signal and Logic Definition …………………………………………. 4-20

Parameter Description ……………………………………………………………………………………. 4-26

4.2.1

Parameter System ……………………………………………………………………………. 4-26

4.2.2

Operation Status Display Parameter …………………………………………………… 4-27

4.2.3

System Setting Parameter …………………………………………………………………. 4-30

4.2.4

Control Setting Parameter …………………………………………………………………. 4-34

4.2.5

Input/Output Setting Parameter ………………………………………………………….. 4-37

4.2.6

Speed Operation Setting Parameter ……………………………………………………. 4-40

4.2.7

Position Operation Setting Parameter …………………………………………………. 4-42

4.2.8

Operation Handling Parameter …………………………………………………………… 4-45

4.3

Operation Status Display ………………………………………………………………………………… 4-49

4.3.1

Status Display [St-00] ……………………………………………………………………….. 4-49

4.3.2

Speed Display …………………………………………………………………………………. 4-49

4.3.3

Position Display ……………………………………………………………………………….. 4-49

4.3.4

Torque and Load Display …………………………………………………………………… 4-49

4.3.5

I/O Status Display …………………………………………………………………………….. 4-50

4.3.6

Miscellaneous Status and Data Display ……………………………………………….. 4-50

4.3.7

Version Display………………………………………………………………………………… 4-51

4.4

Parameter Setting …………………………………………………………………………………………. 4-52

4.4.1

System Parameter Setting …………………………………………………………………. 4-52

4.4.2

Control Parameter Setting …………………………………………………………………. 4-55

5

6

Table of Contents

4.5

4.6

4.4.3

Analog Input/Output Parameter Setting ……………………………………………….. 4-59

4.4.4

Input/Output Contact Point Parameter Setting ………………………………………. 4-61

4.4.5

Speed Operation Parameter Setting ……………………………………………………. 4-64

4.4.6

Position Operation Parameter Setting …………………………………………………. 4-65

Alarms and Warnings …………………………………………………………………………………….. 4-67

4.5.1

Servo Alarm Status Summary Display List ……………………………………………. 4-67

4.5.2

Servo Warning Status Summary Display List ………………………………………… 4-69

Motor Type and ID (to be continued on the next page) ………………………………………… 4-70

Handling and Operation ………………………………………………………………………… 5-1

5.1

What to Check Before Operation ……………………………………………………………………….. 5-1

5.1.1

Wiring Check …………………………………………………………………………………….. 5-1

5.1.2

Drive Signal (CN1) Wiring Check …………………………………………………………. 5-1

5.1.3

Surrounding Environment Check ………………………………………………………….. 5-1

5.1.4

Machine Status Check………………………………………………………………………… 5-1

5.1.5

System Parameter Check ……………………………………………………………………. 5-2

5.2

Handling ………………………………………………………………………………………………………… 5-3

5.2.1

Manual JOG Operation [Cn-00] ……………………………………………………………. 5-3

5.2.2

Program JOG Operation [Cn-01] ………………………………………………………….. 5-5

5.2.3

Alarm Reset [Cn-02] …………………………………………………………………………… 5-6

5.2.4

Reading Alarm History [Cn-03] …………………………………………………………….. 5-7

5.2.5

Alarm History Reset [Cn-04] ………………………………………………………………… 5-8

5.2.6

Auto Gain Tuning [Cn-05] ……………………………………………………………………. 5-9

5.2.7

Phase Z Search Operation [Cn-06] …………………………………………………….. 5-10

5.2.8

Input Contact Forced ON/OFF [Cn-07] ………………………………………………… 5-11

5.2.9

Output Contact Forced ON/OFF [Cn-08] ……………………………………………… 5-13

5.2.10

Parameter Reset [Cn-09] …………………………………………………………………… 5-15

5.2.11

Automatic Speed Command Offset Correction [Cn-10] …………………………… 5-16

5.2.12

Automatic Torque Command Offset Correction [Cn-11] ………………………….. 5-17

5.2.13

Manual Speed Command Offset Correction [Cn-12] ……………………………. 5-18

5.2.14

Manual Torque Command Offset Correction [Cn-13] …………………………… 5-19

5.2.15

Absolute Encoder Reset [Cn-14] ………………………………………………………… 5-20

5.2.16

Instantaneous Maximum Load Factor Initialization [Cn-15]……………………… 5-21

5.2.17

Parameter Lock [Cn-16] ……………………………………………………………………. 5-22

5.2.18

Current Offset[Cn-17] ……………………………………………………………………….. 5-23

Communication Protocol ………………………………………………………………………. 6-1

6.1

6.2

6.3

Overview and Communication Specifications ………………………………………………………. 6-1

6.1.1

Overview ………………………………………………………………………………………….. 6-1

6.1.2

Communication Specifications and Cable Access Rate ……………………………. 6-2

Communication Protocol Base Structure …………………………………………………………….. 6-3

6.2.1

Sending/Receiving Packet Structure …………………………………………………….. 6-3

6.2.2

Protocol Command Codes ………………………………………………………………….. 6-5

L7 Servo Drive Communication Address Table …………………………………………………… 6-10

6.3.1

Operation Status Parameter Communication Address Table …………………… 6-10

6.3.2

System Parameter Communication Address Table ………………………………… 6-12

6.3.3

Control Parameter Communication Address Table ………………………………… 6-14

6.3.4

Input/Output Parameter Communication Address Table …………………………. 6-16

6.3.5

Speed Operation Parameter Communication Address Table …………………… 6-17

6.3.6

Position Operation Parameter Communication Address Table …………………. 6-18

xi

Table of Contents

7 Product Specifications ………………………………………………………………………….. 7-1

7.1

Servo Motor ……………………………………………………………………………………………………. 7-1

7.1.1

Product Features ……………………………………………………………………………….. 7-2

7.1.2

Outline Drawing ……………………………………………………………………………….. 7-23

7.2

Servo Drive ………………………………………………………………………………………………….. 7-35

7.2.1

Product Features ……………………………………………………………………………… 7-35

7.2.2

Outline Drawing ……………………………………………………………………………….. 7-37

7.3

Options and Peripheral Devices ………………………………………………………………………. 7-39

8 Maintenance and Inspection ………………………………………………………………….. 8-1

8.1

Maintenance and Inspection ……………………………………………………………………………… 8-1

8.1.1

Precautions ………………………………………………………………………………………. 8-1

8.1.2

What to Inspect …………………………………………………………………………………. 8-1

8.1.3

Parts Replacement Cycle ……………………………………………………………………. 8-2

8.2

Diagnosis of Abnormality and Troubleshooting …………………………………………………….. 8-3

8.2.1

Servo Motor ………………………………………………………………………………………. 8-3

8.2.2

Servo Drive ………………………………………………………………………………………. 8-4

9 Appendix …………………………………………………………………………………………….. 9-15

9.1

Motor Type and ID (to be continued on the next page) ………………………………………… 9-15

9.2

Test Drive Procedure ……………………………………………………………………………………… 9-18

Quality Assurance ………………………………………………………………………………………… 9-22

User Manual Revision History ………………………………………………………………………. 9-23

xii

1. Product Components and Signals

1. Product Components and Signals

1.1 Product Components

1.1.1 Product Verification

Series

Name

Servo

Series

1. Check the name tag to verify that the product received matches the model ordered.

 Does the format of the servo drive’s name tag match?

 Does the format of the servo motor’s name tag match?

2. Check the product and options.

 Are the type and length of the cables correct?

 Does the regenerative resistance conform to the required standard?

 Is the shape of the shaft end correct?

 Is there any abnormality when the oil seal or brake is mounted?

 Are the gearbox and the gear ratios correct?

 Is the encoder format correct?

3. Check the exterior of the device.

 Is there any foreign substance or humidity?

 Is there any discoloring, contamination, damage or disconnection of wires?

 Are the bolts at joints fastened sufficiently?

 Is there any abnormal sound or excessive friction during rotation?

Servo Drive Product Format

L7 S A 004 A AA

Communication

Type

S: Standard I/O type

N: Network type

Input

Voltage

A: 220 VAC

B: 400 VAC

Capacity

001: 100 W 050: 5.0 kW

002: 200 W 075: 7.5 kW

004: 400 W 110: 11.0kW

008: 750 W 150: 15.0kW

010: 1.0 kW

020: 2.0 kW

035: 3.5 kW

Encoder Type Option

A: Parallel

(Pulse type)

B: Serial

(communication type)

Exclusive

Option

2-1

1. Product Components and Signals

Servo Motor Product Format

APM – S B 04 A E K 1 G1 03

Servo Motor

Motor Shape

S: Solid Shaft

H: Hollow Shaft

B: Assembly

F: Flat Type

Flange Size

A : 40 Flange

B : 60 Flange

C : 80 Flange

D : 100 Flange

E : 130 Flange

F : 180 Flange

G : 220 Flange

H : 250 Flange

J : 280 Flange

Motor Capacity

R3 : 30[W]

R5 : 50[W]

01 : 100[W]

02 : 200[W]

03 : 300[W]

04 : 400[W]

05 : 450[W]

06 : 550/600[W]

07 : 650[W]

08 : 750/800[W]

09 : 850/900[W]

10 : 1.0[kW]

·

·

150 : 15.0[kW]

220 : 22.0[kW]

300 : 30.0[kW]

370 : 37.0[kW]

Rated RPM

A: 3000 [RPM]

D: 2000 [RPM]

G: 1500 [RPM]

M: 1000 [RPM]

Encoder Type

Parallel(pulse type)

A: Inc. 1024 [P/R]

B: Inc. 2000 [P/R]

C: Inc. 2048 [P/R]

D: Inc. 2500 [P/R]

E: Inc. 3000 [P/R]

F: Inc. 5000 [P/R]

G: Inc. 6000 [P/R]

Serial BISS

(communication type)

N : 19bit S-Turn Abs.

M : 19bit M-Turn Abs.

(18bit SA M-Turn Abs.)

Shaft Cross-section

N: Straight

K: One-sided round key (standard)

D: D Cut

T: Tapering

R: Double-sided round key

H: Hollow Shaft

Gearbox

Classification

03: 1/3

10: 1/10

Gearbox

Specifications

Non-existent:

No gearbox

G1: For general industrial purposes (Foot Mount)

G2: For general industrial purposes (Flange Mount)

G3: Precise Gearbox

Oil Seal and Brake

Non-existent: None attached

1: Oil Seal attached

2: Brake attached

3: Oil Seal and Brake attached

2-2

1.1.2 Part Names

Servo Motor

 80 Flange or below

1. Product Components and Signals

Motor

Connector

Motor Power

Cable

Encoder

Connector

Encoder

Cable

Bearing Cap

 80 Flange or below(Flat Type)

Shaft

Flange

Encoder

Cover

Frame

Housing

Power connector

Encoder connector

 130 Flange or higher

Bearing Cap

Shaft

Flange

Frame

Mold Housing Encoder Cover

Motor

Connector

Encoder

Connector

Encoder

Cover

Shaft

Flange

Frame

Housing

2-3

1. Product Components and Signals

Servo Drive

 L7SA 001 □, L7SA 002□, L7SA 004□

Operation keys

(Mode, Up, Down, Set)

Main power connector (L1,

L2, L3)

DC reactor connector

(PO, PI)

Short circuit when not used

Regenerative resistance connector (B+, B, BI)

 When basic installation is in use short circuit B and BI terminals

 When installing external resistance install in the

B+ and B terminals

Control power connector

(C1, C2)

Motor power cable connector (U, V, W)

2-4

Heat sink

Display

CN5:

USB connector

CN4:

RS-422 communication connector

CN3:

RS-422 communication connector

CN1:

Control signal connector

CN2:

Encoder signal connector

Front cover

Ground

 L7SA 008 □, L7SA 010□

Operation keys

(Mode, Up, Down, Set)

Main power connector

(L1, L2, L3)

DC reactor connector

(PO, PI)

Short circuit when not used

Regenerative resistance connector (B+, B, BI)

 When basic installation is in use short circuit B and BI terminals.

 When installing external resistance install in the

B+ and B terminals.

Control power connector

(C1, C2)

Motor power cable connector (U, V, W)

1. Product Components and Signals

Display

CN5:

USB connector

CN4:

RS-422 communication connector

CN3:

RS-422 communication connector

CN1:

Control signal connector

Heat sink

CN2:

Encoder signal connector

Front cover

Ground

2-5

1. Product Components and Signals

 L7SA 020 □, L7SA 035□

Operation keys

(Mode, Up, Down, Set)

Main power connector

(L1, L2, L3)

DC reactor connector

(PO, PI)

Short circuit when not used

Regenerative resistance connector (B+, B, BI)

 When basic installation is in useshort circuit B and BI terminals.

 When installing external resistance install in the

B+ and B terminals.

Control power connector

(C1, C2)

Motor power cable connector (U, V, W)

2-6

Heat sink

Display

CN5:

USB connector

CN4:

RS-422 communication connector

CN3:

RS-422 communication connector

CN1:

Control signal connector

CN2:

Encoder signal connector

Front cover

Ground

 L7SA 050□

1. Product Components and Signals

Operation keys

(Mode, Up, Down, Set)

Display

CN5:

USB Connector

CN4:

RS-422 Communication connector

CN3:

RS-422 Communication connector

CN1:

Control signal connector

Control power connector

(C1, C2)

DC reactor connector

(PO, PI)

Short circuit when not used

*Not used(N)

CN2:

Encoder signal connector

Front cover

Main power connector

(L1, L2, L3)

Ground

Regenerative resistance connector (B+, B)

 When basic installation is in use, leave it.

 When installing external resistance, install in the B+ and B terminals after attaching wires of internal resistance to

“NC” hole on the case.

Motor power cable connector (U, V, W)

2-7

1. Product Components and Signals

1.2 System Configuration

1.2.1 Overview

The L7 servo system can be configured in various ways depending on its interface with the upper level controller.

(1) Position Operation System

The servo is run by pulse commands. You can change the location of the servo motor by changing command pulses based on a certain transfer unit.

Upper Level Controller Position Controller Servo Drive

Servo Motor

Position

Controller

Speed

Controller

Change

Position

Command

Pulse

Position

Controller

Speed

Controller

Current

Controller

Motor

Encoder

Position Feedback

 Advantage: The structure of the upper level controller is simple because pulse input is linked to transfer units.

 Disadvantages:

 Fast rotation is compromised when a precise transfer unit is used.

 Response is low because multiple levels of controllers are used.

(2) Speed Operation System

The servo is run by speed commands. There are two types of speed commands: analog voltage command and digital speed command.

Upper Level Controller Servo Drive Servo Motor

Speed Command

Position

Controller

Speed

Controller

Change

Speed

Command

Speed

Controller

Current

Controller

Motor

Encoder

Position Feedback

 Advantages:

 The servo responds quickly.

 Precision control is easy.

 Disadvantage: The upper level controller is complex.

2-8

1. Product Components and Signals

(3) Torque Operation System

The servo is run by torque commands. Analog voltage-based commands are used.

Upper Level Controller Servo Drive Servo Motor

Torque Command

Position

Controller

Torque

Controller

Change

Torque

Command

Torque

Controller

Current

Controller

Motor

Encoder

Position Feedback

 Advantages:

 The servo responds quickly.

 Precise control is easy.

 Disadvantage: The upper level controller is complex.

(4) Operation Mode

The L7 servo drive can be run in torque, speed and position modes, depending on its interface with the upper level controller. The operation modes can be switched by parameters or digital input contact point.

Operation Mode

0

System Configuration

The servo is run on the torque operation system.

1

2

3

4

5

The servo is run on the speed operation system.

The servo is run on the position operation system.

The servo is run with the speed and position operation systems as points of contact.

The servo is run with the speed and torque operation systems as points of contact.

The servo is run with the position and torque operation systems as points of contact.

2-9

1. Product Components and Signals

1.2.2 Wiring Diagram of the Entire CN1 Connector

DC 24V

Digital Input

Command Pulse Input

+24V IN 50

Note 1)

STOP 48

3.3k

(DIA)

EMG

CWLIM

18

19

(DI9)

(DI8)

CCWL IM 20

(DI7)

DIR 46

(DI6)

ALMRST 17

(DI5)

SPD3 21

(DI4)

SPD2 22

(DI3)

SPD1 23

(DI2)

SVON 47

(DI1)

EGEAR1 **

EGEAR2 **

PCON **

GAIN2 **

P_CLR

T_LMT

**

**

MODE **

ABS_RQ **

ZCLAMP **

ABS_RST **

Note 2)

CN1

PULCOM 49

Note 1)

(DO1)

38

39

(DO2)

(DO3)

(DO4)

(DO5)

Note 2)

40

41

43

44

45

16

15

14

25

24

**

**

**

**

28

29

37

34

35

Upper Level

Controller

Line Driver

PF+

PF-

9

10

PR+

PR-

11

12

Analog Input

Analog Speed

Command/Limit

-10V~+10V

-10V~+10V

Open Collector

TRQCOM 1

32

33

30

31

4

5

36

Analog Torque

Command/Limit

SPDCOM 27

GND 8

GND 8

ALARM+

ALARM-

Digital Output

READY+

READY-

ZSPD

BRAKE

INPOS

ALO0

ALO1

ALO2

GND24

GND24

INSPD

TLMT

VLMT

WARN

MONIT1

MONIT2

GND

+12VA

-12VA

AO

/AO

BO

/BO

ZO

/ZO

SG

Analog Output

-10V~+10V

-10V~+10V

Encoder Pulse Output

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

2-10

1. Product Components and Signals

1.2.3 Example of Position Operation Mode Wiring

DC 24V

Digital Input

Command Pulse Input

EMG 18

CWLIM 19

CCWLIM 20

DIR 46

ALMRST 17

EGEAR1 **

EGEAR2 **

SVON

**

47

PCON

GAIN2

_

MODE

ABS_RQ **

ZCLAMP **

ABS_RST **

**

**

**

**

SPD3

SPD2

SPD1

21

22

23

PULCOM 49

+24V IN 50

Note 1)

3.3k

38

39

(DO2)

40

41

(DI5)

(DI4)

(DI3)

(DI2)

(DI1)

(DI9)

(DI8)

(DI7)

(DI6)

(DO3)

(DO4)

(DO5)

43

44

45

16

15

14

Note 2)

CN1

Note 2)

25

24

**

**

**

**

28

29

37

34

35

Upper Level

Controller

Line Driver

PF+

PF-

9

10

PR+

PR-

11

12

Analog Input

-10V~+10V

Open Collector

4

5

36

32

33

30

31

Analog Torque

Command/Limit

TRQCOM 1

GND 8

ALARM+

ALARM-

Digital Output

READY+

READY-

ZSPD

BRAKE

INPOS

ALO0

ALO1

ALO2

GND24

GND24

INSPD

TLMT

VLMT

WARN

MONIT1

MONIT2

GND

+12VA

-12VA

AO

/AO

BO

/BO

ZO

/ZO

SG

Analog Output

-10V~ +10V

-10V~+10V

Encoder Pulse Output

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

2-11

1. Product Components and Signals

1.2.4 Example of Speed Operation Mode Wiring

Analog Input

Analog Speed

Command/Limit

Analog Torque

Command/Limit

DC 24V

Digital Input

+24V IN 50

STOP

Note 1)

3.3k

48

(DIA)

EMG 18

(DI9)

CWLIM 19

(DI8)

CCWLIM 20

(DI7)

DIR 46

(DI6)

ALMRST 17

(DI5)

SPD3 21

(DI4)

SPD2 22

(DI3)

SPD1 23

(DI2)

SVON 47

(DI1)

EGEAR1 **

EGEAR2 **

PCON

GAIN2

P_CLR

T_LMT

MODE **

ABS_RQ **

ZCLAMP **

ABS_RST **

**

**

**

**

Note 2)

(DO2)

(DO3)

(DO4)

(DO5)

CN1

Note 2)

38

39

40

41

25

24

45

**

**

**

28

29

43

44

**

16

15

14

ALARM+

ALARM-

Digital Output

READY+

READY-

ZSPD

BRAKE

INSPD

ALO0

ALO1

ALO2

GND24

GND24

INPOS

TLMT

VLMT

WARN

MONIT1

MONIT2

Analog Output

-10V~+10V

-10V~+10V

37

34

35

GND

+12VA

-12VA

Encoder Pulse Output

-10V~+10V

-10V~+10V

SPDCOM 27

GND 8

TRQCOM 1

GND 8

32

33

30

31

4

5

36

AO

/AO

BO

/BO

ZO

/ZO

SG

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

2-12

1. Product Components and Signals

1.2.5 Example of Torque Operation Mode Wiring

Analog Input

Analog Speed

Command/Limit

Analog Torque

Command/Limit

DC 24V

Digital Input

+24VIN 50

Note 1)

STOP 48

3.3k

(DI9)

EMG

CWLIM

CCWLIM

DIR

18

19

20

46

(DI8)

(DI7)

(DI6)

(DI5)

ALMRST 17

ABS_RQ

**

**

(DI4)

(DI3)

(DI2)

SVON 47

EGEAR1

EGEAR2

PCON

GAIN2

_

**

**

**

**

**

MODE **

ZCLAMP **

ABS_RST

SPD3

**

SPD2

SPD1

21

22

23

Note 1)

(DO1)

38 ALARM+

39 ALARM-

Digital Output

(DO2)

40 READY+

41 READY-

(DO3)

(DO4)

(DO5)

16

15

14

43

44

**

(DI1)

Note 2)

CN1

Note 2)

25

24

45

**

**

**

28

29

ZSPD

BRAKE

INSPD

ALO0

ALO1

ALO2

GND24

GND24

INPOS

TLMT

VLMT

WARN

MONIT1

MONIT2

Analog Output

-10V~+10V

-10V~+10V

37

34

35

GND

+12VA

-12VA

Encoder Pulse Output

-10V~+10V

-10V~+10V

SPDCOM 27

GND 8

TRQCOM 1

GND 8

31

4

5

36

32

33

30

AO

/AO

BO

/BO

ZO

/ZO

SG

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

2-13

1. Product Components and Signals

1.2.6 Examples of Speed / Position Operation Mode

Wiring

DC 24V

Digital Input

Command Pulse Input

Note 3)

+24V IN 50

Note 1)

3.3k

(DIA)

STOP 48

EMG 18

CWLIM 19

(DI9)

(DI8)

CCWLIM 20

MODE

ALMRST

**

17

(DI7)

(DI6)

(DI5)

(DI4)

(DI3)

PCON

**

P-CLR

**

GAIN2

**

SVON 47

EGEAR1

EGEAR2

T_LMT

ABS_RQ

ZCLAMP

SPD3

SPD2

SPD1

DIR

ABS_RST

**

21

22

23

46

**

**

**

**

**

PULCOM 49

(DI2)

(DI1)

Note 2)

(DO2)

(DO3)

(DO4)

(DO5)

CN1

Note 2)

38

39

40

41

43

**

45

16

15

14

25

24

**

**

**

44

28

29

37

34

35

Upper Level

Controller

Line Driver

PF+

PF-

9

10

PR+

PR-

11

12

Analog Input

Analog Speed

Command/Limit

-10V~+10V

-10V~+10V

Open Collector

31

4

5

36

32

33

30

Analog Torque

Command/Limit

SPDCOM 27

GND 8

TRQCOM 1

GND 8

ALARM+

ALARM-

Digital Output

READY+

READY-

ZSPD

INSPD

INPOS

ALO0

ALO1

ALO2

GND24

GND24

TLMT

VLMT

WARN

BRAKE

MONIT1

MONIT2

GND

+12VA

-12VA

AO

/AO

BO

/BO

ZO

/ZO

SG

Analog Output

-10V~+10V

-10V~+10V

Encoder Pulse Output

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

Note 3) Input Contact Mode = ON : Speed Control Mode, Mode = OFF : Position Operation Mode

2-14

1. Product Components and Signals

1.2.7 Example of Speed/Torque

Operation

Mode Wiring

Analog Input

Analog Speed

Command/Limit

Analog Torque

Command/Limit

DC 24V

Digital Input

Note 3)

+24V IN

3.3k

Note 1)

STOP 48

(DIA)

EMG 18

(DI9)

CWLIM 19

(DI8)

CCWLIM 20

(DI7)

(DI6)

MODE

**

ALMRST 17

(DI5)

PCON

GAIN2

T_LMT

SVON

**

**

**

47

(DI4)

(DI3)

(DI2)

(DI1)

EGEAR1

EGEAR2

P_CLR

ABS_RQ

ZCLAMP

DIR

SPD3

SPD2

SPD1

ABS_RST

50

**

**

**

**

**

46

21

22

23

**

Note 2)

Note 1)

(DO1)

38 ALARM+

Digital Output

(DO2)

(DO3)

(DO4)

(DO5)

CN1

Note 2)

39

40

41

**

**

**

16

15

14

25

24

**

45

43

44

28

29

ALARM-

READY+

READY-

TLMT

VLMT

INSPD

ALO0

ALO1

ALO2

GND24

GND24

WARN

INPOS

ZSPD

BRAKE

MONIT1

MONIT2

Analog Output

-10V~+10V

-10V~+10V

37

34

35

GND

+12VA

-12VA

Encoder Pulse Output

-10V~+10V

-10V~+10V

SPDCOM 27

GND 8

TRQCOM 1

GND 8

31

4

5

36

32

33

30

AO

/AO

BO

/BO

ZO

/ZO

SG

Upper Level

Controller

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

Note 3) Input Contact Mode = ON : Speed Control Mode, Mode = OFF : Torque Operation Mode

2-15

1. Product Components and Signals

1.2.8 Example of Position/Torque Operation Mode

Wiring

DC 24V

Digital Input

Command Pulse Input

Note 3)

+24V IN 50

Note 1)

(DO1)

38 ALARM+

Digital Output

39 ALARM-

CCWLIM 20

3.3k

Note 1)

STOP 48

(DIA)

EMG 18

(DI9)

CWLIM 19

(DI8)

(DI7)

MODE

**

(DI6)

ALMRST 17

(DI5)

P_CLR

**

(DI4)

T_LMT

**

(DI3)

(DI2)

ABS_RQ

**

SVON 47

(DI1)

EGEAR1

EGEAR2

PCON

GAIN2

ZCLAMP

DIR

SPD3

SPD2

SPD1

ABS_RST

**

46

21

22

23

**

**

**

**

**

PULCOM 49

Note 2)

(DO2)

(DO3)

(DO4)

(DO5)

CN1

Note 2)

40

41

**

**

45

16

15

14

25

24

READY+

READY-

VLMT

TLMT

INPOS

ALO0

ALO1

ALO2

GND24

GND24

** INSPD

** WARN

44 BRAKE

43

ZSPD

28

29

MONIT1

MONIT2

Analog Output

-10V~+10V

-10V~+10V

37

34

35

GND

+12VA

-12VA

Upper Level

Controller

Line Driver

PF+

PF-

9

10

PR+

PR-

11

12

32 AO

Encoder Pulse Output

Open Collector

33

30

/AO

BO

Analog Input

-10V~+10V

31 /BO

Upper Level

Controller

Analog Speed

Command/Limit

Analog Torque

Command/Limit

-10V~+10V

SPDCOM 27

GND 8

TRQCOM 1

GND 8

4

5

36

ZO

/ZO

SG

Connect to Connector Case

Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.

Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and

Logic Definition.»

Note 3) Input Contact Mode = ON : Position Control Mode, Mode = OFF : Torque Operation Mode

2-16

1. Product Components and Signals

1.3 Signal

1.3.1 Digital Input Contact Signal

Pin

Number of

Factory

Setting

Name Details

50

47

23

+24 V IN

SVON

SPD1

Input contact +24

[V] power

Servo ON

Multi-speed 1

22

21

17

46

20

SPD2

SPD3

Multi-speed 2

Multi-speed 3

ALMRST Reset upon alarm

DIR

Select rotation direction

CCWLMT

Counter-clockwise limit

CWLMT Clockwise limit 19

18

48

Allocate

Allocate

EMG

STOP

EGEAR1

EGEAR2

Emergency stop

Stop

Electronic gear ratio 1

Electronic gear ratio 2

P control action

Select gain 2

Allocate PCON

Allocate GAIN2

Allocate P_CLR Clear error pulse

Allocate

Allocate

Allocate

Allocate

T_LMT

MODE

ABS_RQ

ZCLAMP

Allocate ABS_RST

Control torque with

TRQCOM

Change operation modes

Request absolute position data

Zero clamp

Reset absolute encoder data

O

O

X

X

X

O

O

O

O

O

X

O

O

O

O

O

O

X

O

X

O

O

O

O

O

O

O

O

O

O

O

O

X

X

O

O

X

O

X

O

O

O

Applicable Modes

Speed Speed

Position Speed Torque

/Position /Torque

Position

/Torque

O

O

X

X

X

O

O

O

O

O

O

X

X

X

X

X

O

X

O

X

O

O

O

O/X

O/X

O/X

O

O

O

O

O

O/X

X/O

X/O

O

O

X/O

O

O

O

O/X

O

O

O

O/X

O/X

O/X

O

O

O

O

O

O

X

X

O/X

O/X

X

O

O

O

O/X

O

O

O

O

O

O

X/O

O/X

O/X

O/X

O/X

O/X

O

O

O

O

O

O

X

X

X

O

2-17

1. Product Components and Signals

1.3.2 Analog Input Contact Signal

Pin

Number

27

1

8

37

Name Description

SPDCOM

Analog speed command (-10-+10 [V])

Analog Speed Limit

(-10-+10 [V])

TRQCOM

Analog Torque

Command

(-10-+10 [V])

Analog torque limit

(-10-+10 [V])

GND

Grounding for analog signals

Applicable Modes

Position Speed Torque

Speed Speed

/Position /Torque

Position

/Torque

X

X

X

O

O

O

X

X

O

O

X

O

O

X

O

O/X

X

X

O

O

O/X

X/O

X/O

O/X

O

X

X/O

X/O

O/X

O

1.3.3 Digital Output Contact Signal

Pin

Number of

Factory

Setting

Name Description

16

15

14

ALO0

ALO1

ALO2

Alarm group contact output 1

Alarm group contact output 2

Alarm group contact output 3

38 / 39 ALARM +/- Alarm

Applicable Modes

Position Speed Torque

Speed

/Position

Speed

/Torque

Position

/Torque

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

40 / 41 READY +/- Ready for operation

43 ZSPD Zero speed reached

O

O

O

O

O

O

O

O

O

O

O

O

44

45

Allocate

Allocate

Allocate

Allocate

24

25

BRAKE

INPOS

TLMT

VLMT

INSPD

Brake

Position reached

Torque limit

Speed limit

Speed reached

WARN Warning

GND24

Input/output contact

Grounding of drive power (24 [V])

O

O

O

O

X

O

O

O

X

O

O

O

O

O

O

X

O

O

X

O

O

O

X/O

O

O

O/X

O

O

O

X

O

O

O/X

O

O

O

O/X

O

O

X

O

O

2-18

1. Product Components and Signals

1.3.4 Monitor Output Signal and Output Power

Pin

Number

28

29

8

37

34

35

Name Description

MONIT1

MONIT2

GND

+12 V

-12 V

Analog monitor output 1

(-10-+10 [V])

Analog monitor output 2

(-10-+10 [V])

Grounding for analog signals

Terminal for +12 [V] power output

Terminal for -12 [V] power output

Applicable Modes

Position Speed Torque

Speed

/Position

Speed

/Torque

Position

/Torque

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1.3.5 Pulse Train Input Signal

Line Driver (5 V)

Pin

Number

Name Description

9

10

11

12

49

PF+

PF-

F+ pulse input

F- pulse input

PR+ R+ pulse input

PR- R- pulse input

PULCOM Not for use

Open Collector (24 V)

Applicable Modes

Position Speed Torque

Speed

/Position

Speed

/Torque

Position

/Torque

O X X X/O X O/X

O

O

X

X

X

X

X/O

X/O

X

X

O/X

O/X

O

X

X

X

X

X

X/O

X

X

X

O/X

X

Pin

Number

Name

9

10

11

12

49

PF+

PF-

PR+

PR-

PULCOM

Description

Not for use

F pulse input

Not for use

R pulse input

+24 V power input

Applicable Modes

Position Speed Torque

Speed

/Position

Speed

/Torque

Position

/Torque

X X X X X X

O X X X/O X O/X

X

O

O

X

X

X

X

X

X

X

X/O

X/O

X

X

X

X

O/X

O/X

2-19

1. Product Components and Signals

1.3.6 Encoder Output Signal

Pin

Number

Name

32

33

30

31

4

5

AO

/AO

BO

/BO

ZO

/ZO

Description

Outputs encoder signals received from the motor as signals pre-scaled according to the ratio defined by [P0-14].

(5 [V] line driver method)

Outputs encoder Z signals received from the motor.

(5 [V] line driver method)

Applicable Modes

Position Speed Torque

Speed

/Position

Speed

/Torque

Position

/Torque

O

O

O

O

O

O

O

O

O

O

O

O

2-20

2. Installation

2 Installation

2.1 Servo Motor

2.1.1 Usage Environment

Item

Ambient temperature

Ambient humidity

External vibration

Requirements

0 ∼ 40[℃]

Notes

Consult with our technical support team to customize the product if the temperature in the installation environment is over the given temperature.

80[%] RH or lower Use the product in steam-free places.

Vibration acceleration

19.6 [㎨] or below in the

X and Y directions

Excessive vibration reduces the lifespan of bearings.

2.1.2 Prevention of Excessive Impact

Excessive impact to the motor shaft during installation, or the motor falling during handling, may damage the encoder.

2.1.3 Motor Connection

 The motor might burn out when commercial power is directly connected to it.

Be sure to connect via the specified drive.

 Connect the ground terminal of the motor to either of the two ground terminals inside the drive, and the remaining terminal to the type-3 grounding.

U

– U

V — V

W

– W

— F.G

 Connect the U, V, and W terminals of the motor, just as the U, V, and W terminals of the drive.

 Make sure that the pins on the motor connector are securely connected.

 In case of moisture or condensation on the motor, make sure that insulation resistance is 10 [㏁]

(500 [V]) or higher before you start installation.

2-1

2. Installation

2.1.4 Load Device Connection

For coupling connection: Make sure that the motor shaft and the load shaft are aligned within the tolerance.

Load shaft

0.03 [㎜] or below (peak to peak)

Motor shaft

0.03 [㎜] or below (peak to peak)

For pulley connection:

Flange

40

60

80

130

180

Lateral Load

N kgf

148 15

206

255

725

1548

21

26

74

158

Axial Load

N kgf

39 4

69

98

362

519

7

10

37

53

Notes

Lateral load

Nr: 30 [㎜] or below

220 1850 189 781 90

Axial load

2.1.5 Cable Installation

 In case of vertical installation, make sure that no oil or water flows into connection parts.

 Do not apply pressure or scratch, to cables.

In case of moving the motor, be sure to use robotic cables to prevent sway.

2-2

2. Installation

2.2 Servo Drive

2.2.1 Usage Environment

Item Requirements Notes

Ambient temperature

0∼50[℃]

Caution

Install a cooling fan on the control panel in to keep the surrounding temperature within the required range.

Ambient humidity

External vibration

Surrounding conditions

90[%] RH or lower

Caution

Condensation or freezing of moisture inside the drive during prolonged periods of inactivity may damage it.

Remove any moisture completely before you operate the drive after a prolonged period of inactivity.

Vibration acceleration 4.9

[㎨] or lower

Excessive vibration reduces the lifespan of the machine and causes malfunction.

 No exposure to direct sunlight.

 No corrosive gas or combustible gas.

 No oil or dust.

 Sufficient ventilation for closed areas.

2-3

2. Installation

2.2.2 Installation Inside the Control Panel

Comply with the spaces specified in the following images for installation inside the control panel.

40 mm or longer

100 mm or longer

10 mm or longer

10 mm or longer

30 mm or longer

30 mm or longer

2-4

40 mm or longer

40 mm or longer

2 mm or longer

When installing 1 unit: When installing 2 or more units:

Caution

 Make sure that heat does not affect the drive during the installation of external regenerative resistance.

 When assembling the control panel of the servo drive, make sure that it is sufficiently close to the wall.

 When assembling the control panel, make sure that metal powder caused by drilling does not enter the drive.

 Make sure that oil, water, and metal dust do not enter the drive through gaps or the ceiling.

 Protect the control panel with air purge in places where there is a lot of harmful gas or dust.

2. Installation

2.2.3 Power Wiring

 Make sure that the input power voltage is within the allowed range.

Caution

Overvoltage can damage the drive.

 Connecting commercial power to the U, V and W terminals of the drive may cause damage.

Be sure to supply power via L1, L2 and L3 terminals.

 Connect short-circuit pins to the B and BI terminals. For external regenerative resistance, use standard resistance for the B+ and B terminals after removing the short-circuit pins.

Model

L7□A001□

L7□A002□

Resistance

Value

100 [Ω]

Standard

Capacity

* Notes

Built-in 50 [W]

Caution

For more information about resistance for expanding regenerative capacity, refer to “7.3

Option and Peripheral Device.”

L7□A004□

L7□A08□

L7□A010□

L7□A020□

L7□A035□

L7□A050□

40 [Ω]

13 [Ω]

Built-in 100

[W]

Built-in 150

[W]

Built-in 120[W] 6.8[

Ω]

 Configure the system in a way that main power (L1, L2, L3) is supplied only after control power (C1,

C2). (Refer to “Chapter 3 Wiring.”)

 High voltage remains for a while, even after the main power is disconnected.

Danger

After disconnecting the main power, make sure that the charge lamp is off before you start wiring. There is a risk of electric shock.

 Grounding must be done over the shortest distance.

A long ground wire is susceptible to noise which may cause malfunction.

2-5

3. Wiring Method

3 Wiring Method

3.1 Internal Block Diagram

3.1.1 L7 Drive Block Diagram [L7SA001□ — L7SA004□]

If you use a DC reactor, connect to the PO and PI pins.

If you use external regenerative resistance, connect to the B+ and B pins after removing the B and BI shortcircuit pins.

3-1

3. Wiring Method

3.1.2 L7 Drive Block Diagram [L7SA008□ — L7SA035□]

3-2

NOTE 1) If you use a DC reactor, connect to the PO and PI pins.

If you use external regenerative resistance, connect to the B+ and B pins after you remove the B and BI short-circuit pins.

The L7SA008

□ and L7SA035□ models are cooled by a DC 24 [V] cooling fan.

3. Wiring Method

3.1.3 L7 Drive Block Diagram [L7SA050□ ]

Diode

(Note1)

PO

PI

B+ B

(Note2)

External Regenerative

Resistance(separately Installed)

IGBT

Three-phase

Power Input

AC200~230V

L1

L2

L3

Chage

Lamp

Regenerative

Resistance

Thermister

Current Sensor

U

V

W

M

(Note3)

FAN

E

T1 T2

Thermister

Control Power

Failure Detection

Circuit

One-phase

Power Input

AC200~230V

C1

C2

S

M

P

S

Main Power

Failure Detection

Circuit

Internal

Temperature

Detection

Circuit

Relay

Operation

Circuit

DC Voltage

Detection

Circuit

Regenerative

Braking

Operation

Circuit

IGBT

Temperature

Detection

Circuit

Main Control

PWM

Signal

SC Detection

Circuit

POWER Circuit Access(CN7)

U and V

Current

Detection

Circuit

U,VCurrent

DC Voltage

DB

Operation

Circuit

BISS

CN3,CN4

RS422

Communication

CN5

USB

Communication

USB TO UART

A/D Conversion

DSP / FPGA

Encoder

Input

CN2

Analog Input

(2 points)

D/A Conversion

Monitor Output

(10 points)

P/C Insulation I/F

Contact Input

(10 points)

Pulse Input

(2 points)

Contact Output

(5 points)

Encoder

Output

Upper Level Controller Connection(CN1)

NOTE 1) If you use a DC reactor, connect to the PO and PI pins.

If you use external regenerative resistance, connect to the B+ and B pins after attaching wires of internal regenerative resistance to “NC” hole on the case.

The L7SA050□ models are cooled by a DC 24 [V] cooling fan.

3-3

3. Wiring Method

3.2 Power Wiring

3.2.1 L7 Drive Wiring Diagram [L7SA001□ — L7SA035□]

(200~230V)

R S T

Main

OFF

NF

Main

ON

RA

1MC 1Ry

1SK

1MC

L1

L2

L3

PO PI

U

V

W

M

C1

C2

E

+24V

1Ry

RA

Alarm+

Alarm-

38

39

CN1

B+

B

BI

주2)

Regenerative Resistance

회생저항

NOTE 1) It takes approximately one to two seconds until alarm signal is output after you turn on the main power. Accordingly, push and hold the main power ON switch for at least two seconds.

Short-circuit B and BI terminals before use. Regenerative resistance of L7SA001

□-L7SA004□ (50 [W], 100

[Ω]), L7SA010□ (100 [W], 40 [Ω]), and L7SA035□ (150 [W], 13 [Ω]) exist inside. If regenerative capacity is high because of frequent acceleration and deceleration, open the short-circuit pins (B,

BI) and connect external regenerative resistance to B and B+.

Remove approximately 7-10 [mm] of the sheath from the cables for the main circuit power and attach crimp terminals.

(Refer to “3.2.2 Power Circuit Electric Sub Assembly Standards.”)

7~10 ㎜

Connect or remove the main circuit power unit wiring after pushing the button of the L7SA001

□ – L7SA010□ drive terminal. For L7SA035

□ drive, use a (-) slot screwdriver for connection and removal.

3-4

3. Wiring Method

3.2.2 L7 Drive Wiring Diagram [L7SA050□]

R S T

(200~230V)

Main

OFF

Main

ON

(Note1)

RA

NF

1MC 1Ry

1SK

1MC

Servo Drive

DC Reactor

L1

L2

L3

PO PI

U

V

W

M

C1

C2

E

Encoder

1Ry

+24V

RA

Alarm+

38

B+

B

Alarm-

39

CN1 external regenerative

(Note2) resistance

NOTE 1) It takes approximately one to two seconds until alarm signal is output after you turn on the main power. Accordingly, push and hold the main power ON switch for at least two seconds.

NOTE 2) Check status of connection of internal regenerative resistance (B+, B) before using because

L7SA050□ (120[W], 6.8[Ω]) has internal regenerative resistance. If the value of regenerative voltage is too high by frequent deceleration and acceleration, install external regenerative resistance on B, B+ terminal after attaching internal regenerative resistance connected B+, B to

“NC” hole on the case.

3-5

3. Wiring Method

3.2.3 Dimensions for Power Circuit Electrical Parts

Name

MCCB(NFB)

Noise Filter

(NF)

DC reactor

MC

Wire

L1,L2,L3

PO,PI,N,

B+,B,BI

U,V,W

C1

C2

L7SA001

□ L7SA002□

30A Frame 5A (ABE33b/5)

HFN-10 (10 A)

11A / 240V

(GM□-9)

L7SA004□

30A Frame

10A

(ABE33b/10)

L7SA008□ L7SA010□

30A Frame 15A (ABE33b/15) 30A Frame 30A (ABE33b/30)

TB6-B010LBEI(10A)

HFN-15 (15 A)

18A / 240V

(GM□-18)

L7SA020□ L7SA035□

TB6-B030NBDC(30A)

HFN-30 (30 A)

32A / 240V

(GM□-32)

L7SA050□

50A Frame

40A(ABE53b

/40)

TB6-

B040A(40A)

HFN-

40(40A)

50A / 240V

(GM□-50)

AWG16

(1.5 ㎟)

AWG16(1.5 ㎟)

AWG14

(2.5 ㎟)

AWG16(1.5 ㎟)

AWG12

(4.0 ㎟)

AWG16(1.5 ㎟)

AWG10 (6.0

㎟)

AWG16(1.5

㎟)

Crimp terminal

UA-F1510, SEOIL

(10 mm Strip & Twist)

UA-F2010, SEOIL

(10 mm Strip & Twist)

UA-F4010, SEOIL(10 mm

Strip & Twist)

GP110028

KET

Regenerative resistance

(Provided by default)

50 [W]

100 Ω

100 [W]

40 Ω

150 [W]

13 Ω

Connector

(L1,L2…U,V,W

)

• BLF 5.08/03/180F SN BK BX

• BLF 5.08/11/180F SN BK BX

• BLZ7.62HP/03/180LR

SN BK BX SO

BLZ7.62HP/11/180LR

SN BK BX SO

Note1) Use 600V-PVC Insulated wire for wiring.

Use approved UL wire (Temp. 60℃ or above) for UL (CSA) Regulation.

Use approved wire for any other regulations.

Use equivalent or advanced components compare to components above for any special applications.

120[W]

6.8Ω

3-6

( L7SA004□ or below)

Length of strip

7~10[㎜]

3. Wiring Method

0.6

3.5

0.4~0.5[N·m]

100

Weidmueller’s

SD 0.6×3.5×100

(L7SA008□ ~ L7SA010□)

M4 : 1.2[N·m]

Length of strip

7~10[㎜]

0.4~0.5[N·m]

A B

C

Weidmueller’s

SD 0.6×3.5×100

M4 : 1.2[N·m]

3-7

3. Wiring Method

(L7SA020□ ~ L7SA035□)

Length of strip

7~10[㎜]

0.4~0.5[N·m]

A B

C

Weidmueller’s

SD 0.6×3.5×100

M4 : 1.2[N·m]

1) Refer to the drawings above for wiring with BLF 5.08 or BLZ 7.62HP Series connector.

2) Insert wire into wire-hole when upper screw is untightened and then, use appropriate (-) shaped screwdriver with 0.4 ~ 0.5[N.m] torque to make tight completely.

3) Cut by vibration, malfunction or fire by contact could be occurred if torque of screwing was not enough.

4) After wiring, tight completely by using hooks to both side when connectors are attached to servo drive.

5) FG screw, which is located on the bottom of servo drive, has to be M4 and put on the FG screw with

1.2[N.m] torque.

6) Malfunction of drive could be occurred if torque of screwing was not enough.

7) Recommended (-) shaped screwdriver: We idmueller’s SD 0.6×3.5×100.

3-8

3. Wiring Method

TB3

TB2

TB1

(L7SA050□)

TB1

Terminal Block Signals

L1 L2 L3 B+ B U V W FG FG

Screw : M4

Screwing torque : 1.2[N·m]

TB2

N

TB3

C1

PO

C2

P1

Screw : M4

Screwing torque : 1.2[N·m]

Screw : M4

Screwing torque : 1.2[N·m]

1) Cut by vibration, malfunction or fire by contact could be occurred if torque of screwing was not enough.

3-9

3. Wiring Method

3.3 Timing Diagram

3.3.1 Timing Diagram During Power Input

For L7 Series, connect single-phase power to the C1 and C2 terminals to supply power to the control circuit, and three-phase power to L1, L2, and L3 to supply power to the main circuit.

The servo signal becomes Ready after the maximum time of 120 [ms] that is required to reset the inside of the device. If you change the signal to ON, the servo operates in 40 [ms].

Main power, control power supply

200 ms

50 ms

Control power establishment 5

[V]

Control program reset

150 ms

120 ms

10 ms

Main power establishment

Alarm

(Normally On)

10 ms

Servo Ready

Servo On

5 ms

Clear DB

3-10

PWM output

(motor rotation)

40 ms 2 ms

3. Wiring Method

3.3.2 Timing Diagram at the Time of Alarm Trigger

When the alarm triggered in the servo drive, it blocks the PWM and the motor stops.

Caution

 After solving the problem that triggered the alarm, and changing the command signal (Servo

ON) to OFF, reset the alarm.

200 ms

Main power, control power supply

Control power establishment

5 [V]

Control program

Reset

Main power establishment

150 ms

Alarm

(Normally On)

Alarm triggered by an anomaly

Remove causes that triggered alarm

10 ms

Servo RDY

Servo On

Clear DB

PWM

(Motor rotation)

RESET

5 ms

40 ms

2 ms

30 ms

3-11

3. Wiring Method

3.4 Control Signal Wiring

3.4.1 Contact Input Signal

Caution

1. There are two input contacts based on the characteristics of individual signals: contact A and contact B. They can be set by [P2-08] and [P2-09].

2. It is possible to turn each contact on or off forcibly with [Cn-07]. Take extra caution because each contact is automatically turned off when power is off.

3. The signal definition of each contact can be modified by [P2-00], [P2-01], [P2-02], [P2-03], and

[P2-04].

DC 24V

R1

R2

COM

R1: 3.3 KΩ, R2: 680 Ω

Internal

Circuit

3-12

3. Wiring Method

3.4.2 Contact Output Signal

Caution

1. There are two output contacts based on the characteristics of individual signals: contact A and contact B. They can be set by [P2-10].

2. It is possible to turn each contact on or off forcibly with [Cn-08]. Take extra caution because each contact is automatically turned off when power is off.

3. The signal definition of each contact point can be modified by [P2-05], [P2-06], and [P2-07].

4. Overvoltage and overcurrent may cause damage because a transistor switch is used internally.

 Rated voltage and current: DC 24 [V] ±10%, 120 [㎃]

Contact

Note 1)

L

Contact

L

Internal

Circuit

DC 24V

NOTE 1) For alarm and READY output signals, the GND24 terminal is separated.

3-13

3. Wiring Method

3.4.3 Analog Input/Output Signals

1. Keep GND as 0 [V] of control power.

2. Keep the input signal command voltage within ±10 [V], and input impedance at 22 [㏀].

3. Output signal voltage for Monitor 1 (No. 28) and Monitor 2 (No. 29) is ±10 [V].

Servo Drive

Input/output signal

Twisted Pair

Shield Wire

AGND

Input/output signal

AGND

FG

Configure wiring as shown in the following image when you adjust analog input with parameter resistance by using power supplied by the drive.

Do not exceed the maximum output capacity of 30 [㎃].

+12 [V] (34)

330 [Ω] 1/4 [W]

5 [kΩ]

Analog command

(26), (27), (1)

0.1 [uF]

330 [Ω] 1/4 [W]

-12 [V] (35)

AGND

(8)

3-14

3. Wiring Method

3.4.4 Pulse Train Input Signal

(1) Line Driver (5 [V]) Pulse Input

Upper level controller

PF

PR

Line driver

Twisted Pair

Shield Wire

Servo Drive

PF+

PF-

PR+

PR-

FG

Line receiver

(2) Open Collector (24 [V]) Pulse Input

Upper level controller

GND24

Shield Wire

+24 [V]

PF-

Servo Drive

Pulse COM

PR-

FG

GND24

(3) 12 [V] or 5 [V] NPN Open Collector Pulse Command

Upper level controller

Servo Drive

NPN

GND12

R

R

Power note

1)

PR+

PF+

PF-

PR-

FG

NOTE 1) When using 5 [V] power: Resistance R = 100-

150 [Ω], 1/2 [W]

When using 12 [V] power: Resistance R = 560-

680 [Ω], 1/2 [W]

When using 24 [V] power: Resistance R = 1.5 [kΩ], 1/2 [W]

3-15

3. Wiring Method

(4) PNP Open Collector Pulse Command

NOTE 1)

When using 24 [V] power: Resistance R = 1.5 [kΩ], 1/2 [W]

When using 12 [V] power: Resistance R = 560-

680 [Ω], 1/2 [W]

When using 5 [V] power: Resistance R = 100-

150 [Ω], 1/2 [W]

3.4.5 Encoder Output Signal

Connect the GND terminal of the upper level controller and the GND terminal of CN1 because encoder signals are output based on the GND of control power.

Encoder signals for the servo motor received from CN2 are pre-scaled, according to the ratio defined by [P0-14] and output in line driver mode.

Upper level controller

Servo Drive

Line driver

PA

AO

/AO

GND

Line receiver

GND

GND

Set “1” on the 3 rd

bit in the menu [P0-17]

‘Fuction Select Bit’,

It outputs open collector A,B,Z phases through existing AL0, AL1 and AL2 contact points.

(Output voltage 40mA and below, Maximum frequency 100Khz)

3-16

3. Wiring Method

3.5 Quadrature Encoder Signaling Unit (CN2)

Wiring

3.5.1 APCS-E



AS Cable

Servo Motor

Encoder

Cable

Connector

Maker — AMP

172163-1

170361-1

6

7

8

9

10

11

1

2

3

4

5

12

13

14

15

AWG24 7Pair Twisted

Shield Wire

/Z

U

/U

V

/V

W

A

/A

B

/B

Z

/W

5V

GND

SHD

Servo Drive

13

12

11

10

9

8

5

6

3

4

1

2

14

7

Frame

Cable

Connector(CN2)

Maker – 3M

10314-52A0-008

10114-3000VE

3.5.2 APCS-E



BS Cable

Servo Motor

Encoder

Cable

Connector

MS3108B20-29S

E

F

K

L

A

B

C

D

M

N

P

R

H

G

J

AWG24 7Pair Twisted

Shield Wire

U

/U

V

/V

W

/W

5V

GND

SHD

A

/A

B

/B

Z

/Z

9

8

5

6

3

4

1

2

14

7

13

12

11

10

Frame

Servo Drive

Cable

Connector(CN2)

Maker – 3M

10314-52A0-008

10114-3000VE

3-17

3-18

3. Wiring Method

3.6 Serial Encoder Signaling Unit (CN2)

Wiring

3.6.1 APCS-E



CS Cable

Servo Motor

Encoder

Cable

Connector

Maker — AMP

172161-1

170361-1

7

8

1

2

3

4

9

AWG24 4Pair Twisted

Shield Wire

MA

/MA

SL

/SL

3

4

5

6

Servo Drive

+5V

GND

14

7

SHD Frame

Cable

Connector(CN2)

Maker – 3M

10314-52A0-008

10114-3000VE

3.6.2 APCS-E



DS Cable

3. Wiring Method

3.6.3 APCS-E



ES Cable

Connector

Tyco Connector

(7Ciruits)

Servo Motor

9

4

1

6

2

7

5

Servo Drive

MA

/MA

SL

/SL

5V

GND

SHD

14

7

3

4

5

6

Frame

Cable

Connector(CN2)

Maker — 3M

10314-52A0-008

10114-3000VE

3-19

3. Wiring Method

3.7 Multi Turn Encoder signal unit(CN2) wiring

3.7.1 APCS-E



CS1 Cable

Servo Motor

AWG24 4Pair Twist

Shield Wire

Encoder

Cable

Connector

MS3108S20-29S

9

8

5

6

7

1

2

3

4

Servo Drive

MA

/MA

SL

/SL

BAT+

BAT-

5V

GND

SHD

14

7

3

4

5

6

Cable

Connector (CN2)

Maker — 3M

10314-52A0-008

Frame

10114-3000VE

3.7.2 APCS-E



DS1 Cable

Servo Motor

Encode r

Cable

Connector

MS3108S20-29S

G

J

E

F

H

A

B

C

D

AWG24 4Pair Twist

Shield Wire

Servo Drive

MA

/MA

SL

/SL

BAT+

BAT-

5V

GND

SHD Frame

14

3

4

5

6

7

Cable

Connector(CN2)

Maker — 3M

10314-52A0-008

10114-3000VE

3-20

3. Wiring Method

3.7.3 APCS-E



ES1 Cable

Servo Motor

Connector

Tyco Connector

(7 Circuits)

8

3

9

4

1

6

2

7

5

Servo Drive

MA

/MA

SL

/SL

BAT+

BAT_

5V

GND

SHD

3

4

5

6

14

7

Cable

Connector(CN2)

Frame

Maker — 3M

10314-52A0-008

10114-3000VE

3-21

3. Wiring Method

3.8 Transmission of Absolute Encoder Data

3.8.1 Transmission of Absolute Encoder Data

Upon the absolute encoder’s request for absolute data, the data of the absolute encoder are transmitted to the upper level controller in the form of quadrature pulses through the output of the encoder output signals, AO and BO.

In this case, pulses are output at the speed of 500 [Kpps].

Among absolute data, multi-turn data are transmitted first, followed by single-turn data.

(Refer to “4.1.6 External Input Signal and Logic Definition» for information on the allocation of the sequence input signal and ABS-RQ signal.)

Transmission Sequence of Absolute Data

1. When the servo is OFF, change the ABS_RQ signal on the upper level controller to ON.

2. The servo drive checks the ABS_RQ signal for 10 [ms].

3. The servo drive prepares the transmission of multi-turn data for 100 [ms].

4. The servo drive transmits multi-turn data for up to 140 [ms] (based on 16-bit multi-turn data).

5. The servo drive prepares the transmission of single-turn data for 100 [ms].

6. The servo drive transmits single-turn data with the pre-scaler ratio applied for up to 1100 [ms]

(based on 19-bit single-turn data).

7. The servo drive operates with normal encoder output signals 100 [ms] after the single-turn data are completely transmitted.

Absolute data transmission

Pre-scaler pulse output

3-22

4 Parameters

4.1 How to Use the Loader

4.1.1 Names and Functions of Each Parts

4. Parameters

Display 5-digit FND data.

Digit 5 Digit 4 Digit 3 Digit 2 Digit 1

Displays the decimal point.

[MODE]: Change display mode.

[/LEFT]: Move to another data digit.

[UP]: Increase displayed data.

[DOWN]: Decrease displayed data.

[SET]: Confirm displayed data.

[/RIGHT]: Move to another data digit.

E.g.) 123.4

In the case of 16 bits, the minus symbol is used.

In the case of 32 bits, a dot is used.

E.g.) -123.4

4-1

4. Parameters

4.1.2 Status Summary Display

(1) Status Summary Display in Speed Mode

Example of the OFF status of the servo in speed control mode

4-2

DIGIT 3-1: Displays the current status of the servo.

 bb — Servo OFF

 run — Servo ON

 Pot — CCW Limit

 not — CW Limit

DIGIT 4_High: ZSPD

DIGIT 4_Medium: INSPD or INPOS

DIGIT 4_Low: Command (speed or torque)

DIGIT 4_DOT: READY

DIGIT 5: Displays the current control mode.

 P — Position control

 S — Speed control

 T — Torque control

DIGIT 5_DOT: Servo ON

Example of the ON status of the servo in speed control mode

4. Parameters

(2) Servo Operation Status Summary Display List

The following list explains the operation status summary display of different modes of the servo.

Notes Operation Status

Screen

Function

Displays the servo’s OFF status when in the position mode.

Displays the servo’s ON status when in position mode.

Displays CCW status when in position mode.

Displays CW status when in position mode.

Displays the servo’s OFF status when in speed mode.

Displays the servo’s ON status when in speed mode.

Displays CCW status when in speed mode.

Displays CW status when in speed mode.

Displays the servo’s OFF status when in torque mode.

Displays the servo’s ON status when in torque mode.

Displays CCW status when in torque mode.

Displays CW status when in torque mode.

4-3

4. Parameters

4.1.3 Parameter Handling

(1) Parameter Movement

Example of changing speed control mode to position control mode ([P0-03]: 00001 -> 00002)

St-26

St-25

P0-27

P1-25 P2-22 P3-20

P0-26

P4-13

P4-12

Cn-15

Cn-14

St-24 P0-25 P4-11 Cn-13

DOWN

UP

St-02

St-01

Operation Status

Summary Display

St-00

P0-02 P4-02

P0-01

P0-00

P1-00 P2-00 P3-00

MODE

P4-01

P4-00

Cn-02

Cn-01

Cn-00

 If the alarm does not go off at the starting operation, the speed operation mode [S=bb] indicating operation status is displayed.

 Editable parameters are from [P0-00] to [Cn-15]. Press [SET] when a parameter number is displayed and you can see and edit the parameter data.

 In the initial parameter edit status, the number on the far right flickers (ON and OFF for 0.5 seconds respectively) and becomes editable.

4-4

4. Parameters

(2) Example of changing speed control mode to position control

mode ( [P0-03]: 00001 -> 00002 )

Ord er

1

2

3

4

5

6

7

8

Loader Displays Keys to Use What to Do

Displays the speed control mode with main power and control power permitted.

Press [MODE] to move to [P0-00].

Press [UP] or [DOWN] to move to [P0-

03].

Press [SET] to go to the parameter edit window. The parameter is displayed as

00001.

Press [UP] or [DOWN] at the blinking cursor to change the number to 00002.

Press and hold [SET] for approximately one second. After two flickers, the number will be saved as 00002 in the parameter.

Press and hold [MODE] for approximately one second to return to the P0-03 parameter.

Press [MODE] to change status to position operation [P= bb] status which is the summary display of the current status.

NOTE 1)

“ ” indicates flickering.

If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.

4-5

4. Parameters

4-6

(3) Example of changing speed proportional gain 2

([P1-07]: 200 [rad/s] -> 500 [rad/s])

Ord er

1

2

3

4

5

6

7

8

Loader Displays Keys to Use What to Do

Displays the speed control mode with main power and permitted control power.

Press [MODE] to move to [P1-00].

Press [UP] or [DOWN] to move to [P1-

07].

Press [SET] to enter parameter edit mode. The parameter is displayed as

00200.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.

Press [UP] or [DOWN] at the blinking

DIGIT 3 position to change the number to 00500.

Press and hold [SET] for approximately one second. After two flickers, the number will be saved as 00500 in the parameter.

Press and hold [MODE] for approximately one second to return to

[P1-07].

NOTE 1)

“ ” indicates flickering.

If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.

4. Parameters

(4) Example of changing DAC output offset 1

([P0-19]: 0 [Unit/V] -> -500 [Unit/V])

Ord er

Loader Displays Keys to Use What to Do

1

2

3

4

5

6

7

8

Displays the speed control mode with main power and control power permitted.

Press [MODE] to move to [P0-00].

Press [UP] or [DOWN] to move to [P0-

19].

Press [SET] to enter parameter edit mode. The parameter is displayed as

00000.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.

Press [UP] or [DOWN] at the blinking

DIGIT 3 position to change the number to -0500.

Press and hold [SET] for approximately one second. After two flickers, the number will be saved as -0500 in the parameter.

Press and hold [MODE] for approximately one second to return to

[P0-19].

NOTE 1)

“ ” indicates flickering.

If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.

4-7

4. Parameters

4.1.4 Data Display

(1) Binary

① Minimum (0b00000)

(2) Hex

① Minimum (0x0000)

(3) 16-bit Unsigned Integer

① E.g.) 0

② Maximum (0b11111)

② Maximum (0xFFFF)

② E.g.) +1234

(4) 16-bit Signed Integer

① E.g.) -1234 ② E.g.) +5678

① E.g.) -1234 ② E.g.) +5678

4-8

(5) 16-bit Decimal Point Display

① E.g.) -123.4 ② E.g.) +123.4

① E.g.) -123.4 ② E.g.) +123.4

4. Parameters

(6) 32-bit Signed Integer Data Display

Minimum (-2147483648)

Display upper two digits Display middle four digits Display lower four digits

Maximum (2147483647)

Display upper two digits Display middle four digits Display lower four digits

E.g.) [St-16]: Displayed as Upper = 0, Middle = 0012, and

Lower = 2071

Order Loader Displays

1

2

3

4

5

6

7

Keys to Use What to Do

Displays the speed control mode with main power and control power permitted.

Press [MODE] to move to [St-00].

Press [UP] or [DOWN] to move to [St-

16].

Press [SET] to display lower digit data.

Each time you press [/LEFT] or

[/RIGHT] lower, middle, and upper data is displayed.

Each time you press [/LEFT] or

[/RIGHT] lower, middle, and upper data is displayed.

Press and hold [MODE] for approximately one second to return to

[St-16].

NOTE 1)

“ ” indicates flickering.

4-9

4. Parameters

4.1.5 External Input Contact Signal Display [St-14]

You can check whether the ON/OFF status of digital input/output signals that access the servo drive are on or off.

(1) External Input Signal Display

The positions of the seven segment LEDs and CN1 connector pins correspond as follows.

If an LED that corresponds to a pin is turned on/off, it indicates ON/OFF accordingly.

 Input Contact Display

Number

Contact

Number

CN1

Pin number

(A)

DIA

48

Allocated default

Signal name

STOP

(9)

DI9

18

(8)

DI8

19

EMG CWLIM

(7)

DI7

20

CCWLI

M

(6)

DI6

46

DIR

(5)

DI5

17

ALMR

ST

(4)

DI4

21

(3)

DI3

22

(2)

DI2

23

(1)

DI1

47

SPD3 SPD2 SPD1 SVON

4-10

4. Parameters

4.1.6 External Input Signal and Logic Definition

The following describes how to allocate input signals and how to view them.

(1) Input Signal Allocation

L7 Drive allows for the allocation of a total of 19 input contact functions to 10 hardware contacts.

Each of the input contact functions is located at the designated digit of parameter [P2-00],

[P2-01], [P2-02], [P2-03], or [P2-04]. Changing the value of the digit allows allocation to pins

DI1 through DIA

The default input signal allocation is as follows:

One number can be allocated to two input signals such as N (input signal): 1 (input allocation number).

E.g.) If SVON and SPD1 are allocated to DI #01, you can use both the SVON signal and the

SPD1 signal when entering DI #01.

Input Signal

Input Allocation Number

4-11

4. Parameters

Signal Name

Parameter

Allocation

Servo ON

[P2-00].Set Digit 1

Multi-speed 1

[P2-00]. Set Digit 2

Multi-speed 2

[P2-00]. Set Digit 3

Multi-speed 3

[P2-00]. Set Digit 4

Alarm reset

[P2-01]. Set Digit 1

Select rotation direction

[P2-01]. Set Digit 2

Forward rotation prohibited

[P2-01]. Set Digit 3

Reverse rotation prohibited

[P2-01]. Set Digit 4

Emergency stop

[P2-02]. Set Digit 1

Stop

[P2-02]. Set Digit 2

Electronic gear ratio 1

[P2-02]. Set Digit 3

Electronic gear ratio 2

[P2-02]. Set Digit 4

P control action

[P2-03]. Set Digit 1

Select gain 2

[P2-03]. Set Digit 2

Error pulse clear

[P2-03]. Set Digit 3

Torque limit

[P2-03]. Set Digit 4

Change operation modes

[P2-04]. Set Digit 1

Absolute encoder data request

[P2-04]. Set Digit 2

Zero clamp

[P2-04]. Set Digit 3

Reset absolute encoder data

[P2-04]. Set Digit 4

Input

Signal

SVON

SPD1

SPD2

SPD3

ALMRST

DIR

CCWLIM

CWLIM

EMG

STOP

EGEAR1

EGEAR2

PCON

GAIN2

P_CLR

T_LMT

MODE

ABS_RQ

ZCLAMP

ABS_RS

T

Alwa ys

Alloc ated

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

48

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

CN1 Pin Default Allocation Number

18 19 20 46 17 21 22 23 47

No

Allo cati on

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Input

Signal

Definition

Default setting

[P2-00]

[P2-01]

[P2-02]

[P2-03]

[P2-04]

0x4321

0x8765

0x00A9

0x0000

0x0000

NOTE 1) CN1 connector pin is not allocated when the default value is «0».

NOTE 2) For ABS_RST Signal, hold

“High” for 500ms or longer in order to reset absolute encoder data.

4-12

4. Parameters

(2) Example of Changing Input Signal Allocation

The input signal definition can be changed in [P2-00], [P2-01], [P2-02], [P2-03], and [P2-04].

The input signal logic definition can be changed in [P2-08] and [P2-09].

Allocate input signals as shown in the following table:

Input Signal Input Allocation Number

4-13

4. Parameters

Signal Name

Parameter

Allocation

Servo ON

[P2-00].Set Digit 1

Multi-speed 1

[P2-00]. Set Digit 2

Multi-speed 2

[P2-00]. Set Digit 3

Multi-speed 3

[P2-00]. Set Digit 4

Alarm reset

[P2-01]. Set Digit 1

Select rotation direction

[P2-01]. Set Digit 2

Forward rotation prohibited

[P2-01]. Set Digit 3

Reverse rotation prohibited

[P2-01]. Set Digit 4

Emergency stop

[P2-02]. Set Digit 1

Stop

[P2-02]. Set Digit 2

Electronic gear ratio 1

[P2-02]. Set Digit 3

Electronic gear ratio 2

[P2-02]. Set Digit 4

P control action

[P2-03]. Set Digit 1

Select gain 2

[P2-03]. Set Digit 2

Error pulse clear

[P2-03]. Set Digit 3

Torque limit

[P2-03]. Set Digit 4

Change operation modes

[P2-04]. Set Digit 1

Absolute encoder data request

[P2-04]. Set Digit 2

Zero clamp

[P2-04]. Set Digit 3

Reset absolute encoder data

[P2-04]. Set Digit 4

Input

Signal

SVON

SPD1

SPD2

SPD3

ALMRST

DIR

CCWLIM

CWLIM

EMG

STOP

EGEAR1

EGEAR2

PCON

GAIN2

P_CLR

T_LMT

MODE

ABS_RQ

ZCLAMP

ABS_RS

T

Alwa ys

Alloc ated

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

48

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

18

CN1 Pin Default Allocation Number

19 20 46 17 21 22 23 47

No

Alloc ation

Input

Signal

Definition

Value

After

Changing

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

[P2-00]

[P2-01]

[P2-02]

[P2-03]

[P2-04]

0x0321

0x0765

0x0080

0x9000

0x000A

NOTE 1) CN1 connector pin is not allocated when the default value is «0».

NOTE 2) For ABS_RST Signal, hold

“High” for 500ms or longer in order to reset absolute encoder data.

4-14

4. Parameters

Examples of Changing Input Signal Allocation

The following is an example of changing input signal allocation.

The allocation signals of SVON (CN1-47) and STOP (CN1-48) can be switched in the following sequence.

[P2-00]:

Before Changing After Changing

[P2-02]:

Order

1

2

3

4

5

6

7

8

9

10

11

12

Loader Displays Keys to Use What to Do

Press [MODE] to move to [P2-00].

Press [SET] to enter parameter edit mode. The parameter is displayed as

04321.

Press [UP] or [DOWN] at the blinking cursor to change the number to

0432A.

Hold down [SET] for approximately one second. After two flickers, the number is saved as 0432A for the parameter.

Hold down [MODE] for approximately one second to return to [P2-00].

Press [UP] or [DOWN] at the blinking cursor to change the number to P2-02.

Press [SET] to enter parameter edit mode. The parameter is displayed as

000A9.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 2.

Press [UP] or [DOWN] at the blinking cursor to change the number to

00019.

Hold down [SET] for approximately one second. After two flickers, the number is saved as 00019 for the parameter.

Hold down [MODE] for approximately one second to return to [P2-02].

** Modification is not possible with the servo on &. Reset the parameter.

In case of exiting without saving the set value

Hold down [MODE] for approximately one second to return to the parameter.

NOTE 1)

“ ” indicates flickering.

4-15

4. Parameters

(3) Input signal logic definition

L7 Drive allows for defining the logic of input signals for 10 hardware contacts from DI1 to

DIA through parameters [P2-08] and [P2-09].

The logic of input signals as set in the factory is as follows.

Input signal logic definition

Input signal logic definition number

Signal Name

Parameter

Allocation

Servo ON

[P2-08].Set Digit 1

Multi-speed 1

[P2-08]. Set Digit 2

Multi-speed 2

[P2-08]. Set Digit 3

Multi-speed 3

[P2-08]. Set Digit 4

Alarm reset

[P2-08]. Set Digit 5

Select rotation direction

[P2-09]. Set Digit 1

Forward rotation prohibited

[P2-09]. Set Digit 2

Reverse rotation prohibited

[P2-09]. Set Digit 3

Emergency stop

[P2-09]. Set Digit 4

Stop

[P2-09]. Set Digit 5

Input

Signal

(Initial name)

SVON

SPD1

SPD2

SPD3

ALMRST

DIR

CCWLIM

CWLIM

EMG

STOP

48 18

1

CN1 Pin Default Allocation Number

19 20 46 17 21 22 23 47

Contact B

1

1

1

1

1

1 0

0

0

0

0

0

0

0

0

0

Input signal logic setting

[P2-08]

[P2-09]

NOTE 1) For the purpose of the input signal logic definitions, Contact A is 1 and Contact B is 0.

Default setting

0x11111

0x10001

4-16

4. Parameters

(4) Example of Changing Input Signal Logic Definitions

Input signal logic definitions can be changed in [P2-08] and [P2-09].

When input signals are allocated as below, settings will be done as shown in table below.

Input signal logic definition

Input signal logic definition number

Signal Name

Parameter

Allocation

Servo ON

[P2-08].Set Digit 1

Multi-speed 1

[P2-08]. Set Digit 2

Multi-speed 2

[P2-08]. Set Digit 3

Multi-speed 3

[P2-08]. Set Digit 4

Alarm reset

[P2-08]. Set Digit 5

Select rotation direction

[P2-09]. Set Digit 1

Forward rotation prohibited

[P2-09]. Set Digit 2

Reverse rotation prohibited

[P2-09]. Set Digit 3

Emergency stop

[P2-09]. Set Digit 4

Stop

[P2-09]. Set Digit 5

Input

Signal

SVON

SPD1

SPD2

SPD3

ALMRST

DIR

CCWLIM

CWLIM

EMG

STOP

48 18

CN1 Pin Default Allocation Number

19 20 46 17 21 22 23

1

1

1

1

1

1

1

1

47

Cont act B

Input signal logic definition

1 0

Default setting

0

0

0

0

0

0

0

0

0

[P2-08]

[P2-09]

NOTE 1) For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0.

0x11111

0x11101

4-17

4. Parameters

4-18

Examples of changing input signal logic definitions

The table below shows examples of changing input signal logic definitions.

The sequence of changing logic signal contact A of SVON (CN1-47) to contact B and logic signal contact B of CCWLIM (1-20) to contact A is as follows.

[P2-08]:

Before changing After changing

[P2-09]:

Order

1

2

3

4

5

6

7

8

9

10

11

12

Loader Displays Keys to Use What to Do

Press [UP] or [DOWN] at the blinking cursor to move to [P2-08].

Press [SET] to enter parameter edit mode. The parameter is displayed as

11111.

Press [UP] or [DOWN] at the blinking cursor to change the number to 11110.

Hold down [SET] for approximately one second. After two flickers, the number is saved as 11110 for the parameter.

Hold down [MODE] for approximately one second to return to [P2-08].

Press [UP] or [DOWN] at the blinking cursor to change the number to [P2-

09].

Press [SET] to enter parameter edit mode. The parameter is displayed as

10001.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 2.

Press [UP] or [DOWN] at the blinking cursor to change the number to

10011.

In case of exiting without saving the set value

Hold down [SET] for approximately one second. After two flickers, the number is saved as 10011 for the parameter.

Hold down [MODE] for approximately one second to return to [P2-09].

** Modification is not possible with the servo on &. Reset the parameter.

Hold down [MODE] for approximately one second to return to the parameter.

NOTE 1)

“ ” indicates flickering.

4. Parameters

4.1.7 External Output Contact Signal Display [St-15]

You can check whether the ON/OFF status of digital input/output signals that access the servo drive are on or off.

(1) External Output Signal Display

The positions of the seven segment LEDs and CN1 connector pins correspond as follows.

If an LED that corresponds to a pin is turned on/off, it indicates ON/OFF accordingly.

Output Contact Display

Number

Contact

Number

CN1 pin number

Allocated default signal name

(5)

DO5

45

INPOS

(4)

DO4

44

BRAKE

(3)

DO3

43

ZSPD

(2)

DO2

40/41

READY

(1)

DO1

38/39

ALARM

4-19

4. Parameters

4.1.8 External Output Signal and Logic Definition

The following explains output signal allocation and the method of checking allocation status.

(1) Output Signal Allocation

 Output signal definition: [P2-05], [P2-06], [P2-07]

 Output signal logic definition: [P2-10]

 The default output signal allocation is as follows:

Output Signal

Output Allocation Number

Signal Name

Parameter Allocation

Alarm

[P2-05].Set Digit 1

Servo Ready

[P2-05]. Set Digit 2

Zero speed achieved

[P2-05]. Set Digit 3

Brake

[P2-05]. Set Digit 4

Position reached

[P2-06]. Set Digit 1

Torque limit reached

[P2-06]. Set Digit 2

Speed limit reached

[P2-06]. Set Digit 3

Speed achieved

[P2-06]. Set Digit 4

Warning

[P2-07]. Set Digit 1

Output

Signal

ALARM

READY

ZSPD

BRAKE

INPOS

TLMT

VLMT

INSPD

WARN

Alwa ys

Alloc ated

F

F

F

F

F

F

F

F

F

CN1 Pin Default Allocation Number

45 44 43 40/41 38/39

Not

Alloc ated

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

NOTE 1) CN1 connector pin is not allocated when the default value is «0».

Internal

Parameter

[P2-05]

[P2-06]

[P2-07]

4-20

Default

Value

0x4321

0x0005

0x0000

(2) Examples of Changing Output Signal Allocation

 The output signal definition can be changed in [P2-05], [P2-06], and [P2-07].

 The output signal logic definition can be changed in [P2-10].

 Allocate output signals as in the following table:

Output Signal

Output Allocation Number

4. Parameters

Signal Name

Parameter Allocation

Alarm

[P2-05].Set Digit 1

Servo Ready

[P2-05]. Set Digit 2

Zero speed achieved

[P2-05]. Set Digit 3

Brake

[P2-05]. Set Digit 4

Position reached

[P2-06]. Set Digit 1

Torque limit reached

[P2-06]. Set Digit 2

Speed limit reached

[P2-06]. Set Digit 3

Speed achieved

[P2-06]. Set Digit 4

Warning

[P2-07]. Set Digit 1

Output

Signal

ALARM

READY

ZSPD

BRAKE

INPOS

TLMT

VLMT

INSPD

WARN

Alwa ys

Alloc ated

F

F

F

F

F

F

F

F

F

CN1 Pin Default Allocation Number

45 44 43 40/41 38/39

Not

Alloc ated

5

5

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

NOTE 1) CN1 connector pin is not allocated when the default value is «0».

0

0

0

0

0

0

0

0

0

Internal

Parameter

[P2-05]

[P2-06]

[P2-07]

Value

After

Changing

0x0301

0x5400

0x0002

4-21

4. Parameters

Example of Changing Output Signal Allocation

The following is an example of output signal allocation change.

The sequence of switching the allocation signals of ALARM (CN1-38/39) and ZSPD (CN1-

43) is as follows:

Before Changing After Changing

[P2-05]:

Order

Loader Window

Display Result

Keys to Use What to Do

1

2

3

4

5

6

7

8

Press [MODE] to move to [P2-05].

Press [SET] to enter parameter edit mode. The parameter is displayed as 04321.

Press [UP] or [DOWN] at the blinking cursor to change the number to 04323.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.

Press [UP] or [DOWN] at the blinking cursor to change the number to 04123.

Hold down [SET] for approximately one second. After two flickers, the number will be saved as 04123 for the parameter.

Hold down [MODE] for approximately one second to return to [P2-05].

** Modification is not possible with the servo on & Reset the parameter.

In case of exiting without saving the set value

Hold down [MODE] for approximately one second to return to the parameter.

NOTE 1)

“ ” indicates flickering.

If two output signals are allocated to a number, the output contact setting error [AL-72] alarm will be triggered.

4-22

4. Parameters

(3) Output Signal Logic Definition

Output signal logic definition: [P2-10]

The logic of output signals as shipped from the factory is as follows.

Output signal logic definitions

Output signal logic definition number

DO1(Contact A/Contact B)

DO2(Contact A/Contact B)

DO3(Contact A/Contact B)

DO4(Contact A/Contact B)

DO5(Contact A/Contact B)

Signal Name

Parameter Allocation

Alarm

[P2-10].Set Digit 1

Servo Ready

[P2-10]. Set Digit 2

Zero speed achieved

[P2-10].Digit 3

Brake

[P2-10].Digit 4

Position reached

[P2-10].Digit 5

Input

Signal

(Initial

Name)

ALARM

READY

ZSPD

BRAKE

INPOS 1

1

1 0

0

0

0

CN1 Pin Default Allocation Number

45 44 43 40 /41 38 /39

Contact B

Output

Signal

Logic

Definition

Default

Setting

0

[P2-10]

NOTE 1) For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0

0x10110

4-23

4. Parameters

(4) Examples of Changing Output Signal Logic Definition

 Output signal logic definitions can be changed at [P2-10]

 Set output signals as shown in the table below when they are allocated as below.

Output signal logic definitions

Output signal logic definition number

DO1(Contact A/Contact B)

DO2(Contact A/Contact B)

DO3(Contact A/Contact B)

DO4(Contact A/Contact B)

DO5(Contact A/Contact B)

Signal Name

Parameter Allocation

Alarm

[P2-10].Set Digit 1

Servo Ready

[P2-10]. Set Digit 2

Zero speed achieved

[P2-10].Digit 3

Brake

[P2-10].Digit 4

Position reached

[P2-10].Digit 5

Input

Signal

(Initial

Name)

ALARM

READY

ZSPD

BRAKE

INPOS

CN1 Pin Default Allocation Number

45 44 43 40 /41 38 /39

Contact B

1

1

1

1

0

0

0

0

0

Output

Signal

Logic

Definition

Default

Setting

[P2-10] 0x11110

For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0

4-24

4. Parameters

Example of Changing Output Signal Allocation

The following is an example of output signal allocation change.

The sequence of switching the allocation signals of ALM (CN1-38/39) and ZSPD (CN1-43) is as follows:

Before Changing After Changing

[P2-05]:

Order

Loader Window

Display Result

Keys to Use What to Do

1

2

3

4

5

6

7

8

Press [MODE] to move to [P2-05].

Press [SET] to enter parameter edit mode. The parameter is displayed as 04321.

Press [UP] or [DOWN] at the blinking cursor to change the number to 04323.

Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.

Press [UP] or [DOWN] at the blinking cursor to change the number to 04123.

Hold down [SET] for approximately one second. After two flickers, the number will be saved as 04123 for the parameter.

Hold down [MODE] for approximately one second to return to [P2-05].

** Modification is not possible with the servo on & Reset the parameter.

In case of exiting without saving the set value

Hold down [MODE] for approximately one second to return to the parameter.

NOTE 1)

“ “indicates flickering.

If two output signals are allocated to a number, the output contact setting error [AL-72] alarm will be triggered.

4-25

4. Parameters

4.2 Parameter Description

4.2.1 Parameter System

There are a total of eight groups of parameters. Each group is explained in the following table:

Move to

Another

Parameter

MODE Key

Parameter

Number

St-00 — St-26

P0-00 — P0-27

P1-00 — P1-29

P2-00 — P2-22

P3-00 — P3-20

P4-00 — P4-14

Cn-00 — Cn-18

Initial Screen

Parameter

Group Name

Details

E.g.) In speed mode

Status Summary

Display

Displays the status summary of the servo.

Displays the operation status of the servo.

Status

System

Saves system configuration information.

Control

IN / OUT

Save control-related parameters.

Saves parameters related to analog and digital input/output.

Saves speed operation parameters.

Speed

Operation

Position

Operation

Saves position pulse operation parameters.

Performs operation handling.

Command

The following explains the acronyms related to application mode in the parameter.

 P: Use in position control mode.

 S: Use in speed control mode.

 T: Use in torque control mode.

Press [MODE] once to move to the next display mode.

4-26

4. Parameters

4.2.2 Operation Status Display Parameter

Code

St-00

St-01

St-02

St-03

St-04

St-05

St-06

St-07

St-08

For detailed information, refer to «4.3 Operation Status Display.»

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Parameter

Name

Current operation status

Operation status

Current operation speed

Current speed

Current command speed

Command speed

Follow position pulse

Feedback pulse

Position command pulse

Command pulse

Remaining position pulse

Pulse error

Input pulse frequency

Input Pulse frequency

Current operation torque

Current torque

Current command torque

Command torque

Unit Initial

Details

Minimum Maximum

— —

0

[RPM]

-10000

[RPM]

-10000

[pulse]

-2^30

[pulse]

-2^30

[pulse]

-2^30

0

0

10000

0

10000

0

2^30

0

2^30

0

2^30

Displays the current operation status.

DIGIT 5: Operation Mode

DIGIT 4: ZSPD, INPOS/INSPD, Command, READY

DIGIT 3-1: Run Status

(Details: Refer to «4.1.2 Status Summary Display.»)

Displays the current operation speed.

(Details: Refer to “4.3.2 Speed Display.”)

Displays the current command speed.

(Details: Refer to “4.3.2 Speed Display.”)

Displays the accumulated number of tracked position command pulses.

 Displays the accumulated number of position command pulses that followed as a result of the rotation of the servo motor because the servo was turned on.

 If a number is lower than the minimum or higher than the maximum, it is displayed as the minimum or maximum.

(Details: Refer to “4.3.3 Position Display.”)

Displays the accumulated number of position command pulses.

 Displays the accumulated number of position command pulses that have been entered since the servo turned on.

(Details: Refer to

“4.3.3 Position Display.”)

Displays the remaining position pulses that the servo has to operate.

 This is the difference between command pulse and tracking pulse, and displays the remaining position pulses for the servo to operate.

 The remaining position pulses, which are displayed when the servo is off, are ignored when the servo turns on.

(Details: Refer to “4.3.3 Position Display.”)

Displays input pulse frequency. [Kpps]

-1000.0

[%]

0.0

1000.0

0.0

-300.0

[%]

-300.0

300.0

0.0

300.0

Displays the current load factor against the rated load factor.

 Displays the load currently output by the servo motor as a percentage against the rated output.

Displays the command load factor against the rated load factor.

 Displays the load currently output by the servo motor as a percentage against the rated output.

(Details: Refer to “4.3.4 Torque and Load Display.”)

4-27

4. Parameters

Code

St-09

St-10

St-11

St-12

St-13

St-14

St-15

St-16

St-17

St-18

Parameter Unit Initial

Details

Name Minimum Maximum

Accumulated overload rate

[%]

Accumulated overload -300.0

Instantaneous maximum load factor

[%]

0.0

300.0

0.0

Maximum load

Torque limit

Torque limit

DC link voltage

DC link voltage

-300.0

[%]

-300.0

[V]

0.0

300.0

300.0

0.0

500.0

Displays the currently accumulated load factor against the maximum accumulated load factor as a percentage.

(Details: Refer to “4.3.4 Torque and Load Display.”)

Displays the instantaneous maximum load factor against the rated load factor.

 Displays, as a percentage, the maximum overload between the current time and the start of control set off when the servo turned on.

(Details: Refer to “4.3.4 Torque and Load Display.”)

Displays the torque limit value.

 Displays, as a percentage, the maximum torque that the servo motor can output, against the rated torque.

(T_LMT contact ON: Analog torque input. T_LMT contact OFF: [P1-13] and [P1-14] values)

Displays the current DC link voltage of the main power.

 The DC link voltage of the standard drive that uses

220 [V] is approximately 300 [V].

 The maximum DC link voltage allowed for the standard drive that uses 220 [V] is 405 [V].

 The overvoltage alarm [AL-41] triggers when the

DC link voltage threshold is exceeded because there is either too much or too little regenerative resistance.

 The normal DC link voltage in the regenerative section is 385 [V] or below.

(Details:

Refer to “4.3.4 Torque and Load Display.”)

Displays the regenerative overload rate. Regenerative overload [%]

Regeneration overload 0.0

Input contact status —

0.0

20.0

Input Status

Output contact status

Output status

Displays the input contact status that the servo recognizes.

(Details: Refer to “4.1.5 External Input Contact Signal

Display.”)

Displays the output contact status that the servo outputs.

(Details: Refer to “4.1.6 External Input Contact Signal

Display.”)

Displays the single-turn data of the encoder in pulses. Single-turn data

(Single-turn data)

Single-turn data

Single-turn data

(Degrees)

Single-turn data

(Degrees)

Multi-turn data

Multi-turn data

[pulse]

0

[˚]

0.0

[rev]

-32768

0

2^30

0.0

360.0

0

32767

Displays the single-turn data of the encoder in degrees.

Displays the multi-turn data of the encoder.

4-28

4. Parameters

Code

St-19

St-20

St-21

St-22

St-23

St-24

St-25

St-26

St-27

Parameter

Name

Internal temperature

Room temperature

Rated motor speed

Rated RPM

Maximum motor speed

Maximum RPM

Rated motor current

Rated current

U phase current offset

U Phase current offset

V phase current offset

V phase current offset

Program version

Software version

Unit Initial

Minimum Maximum

[℃] 0

Details

Displays the internal temperature sensor value.

-40

[RPM]

0

[RPM]

0

[A]

0.00

[mA]

-200

[mA]

-200

200

0

10000

0

10000

0.00

655.35

0

200

0

200

Displays the rated speed of the currently installed motor.

Displays the maximum speed of the currently installed motor.

Displays the rated current of the currently installed motor.

Displays the U phase current offset.

Displays the V phase current offset.

Displays the version of the currently installed program.

(Details: R efer to “4.3.7 Software Version

Display.”)

FPGA Version — —

— —

Displays the version of the currently installed

FPGA version.

FPGA Version

Analog Torque

Command

Analog Tq CMD

%

-3000

0

3000

Displays the values of the current analog torque command

4-29

4. Parameters

4.2.3 System Setting Parameter

For detailed information, refer to «4.4.1 System Parameter Setting.»

Code

**P0-00

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Parameter

Name

Motor ID

Motor ID

Unit

Minimum

0

Initial

Maximum

999

999

Details

 Set Motor ID.

 If the attempt to read motor data fails, the initial value is set to 999.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

Encoder type — 0

**P0-01

**P0-02

*P0-03

**P0-04

**P0-05

Encoder type

Encoder pulse

Enc resolution

Select operation mode

Operation mode

RS422 communication speed

RS422 baud rate

System ID

System ID

0

[ppr]

1

0

[bps]

0

0

5

3000

30000

1

5

0

3

0

99

 0: Quadrature Type encoder.

 1: Single turn Serial encoder.

 3: Multi turn Serial encoder

(Details: Refer to “4.4.1 System Parameter

Setting.»)

 Serial Type encoder: Set the number of bits per turn from the encoder.

 Quadrature Type encoder: Sets the number of encoder pulses.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

Sets operation mode.

(0: Torque operation. 1: Speed operation. 2: Position operation. 3: Speed/position operation. 4:

Torque/speed operation. 5: Torque/position operation.)

(Details: Refer to “4.4.1 Speed Operation Parameter

Setting.»)

Sets communication speed for RS-422 communication.

 0 : 9600 [bps]

 1 : 19200 [bps]

 2 : 38400 [bps]

 3 : 57600 [bps]

(Details: Refer to “4.4.1 System Parameter Setting.»)

Sets drive ID for communication.

 An ID can be given to the servo if USB communication, RS422 communication and BUS communication are used for communication with the servo.

 A unique ID can be given to the servo and used for individual communication with it.

(Details: Refer to “4.4.1 System Parameter Setting.»)

4-30

4. Parameters

Code

P0-06

P0-07

P0-08

*P0-09

**P0-10

**P0-11

*P0-12

P0-13

*P0-14

*P0-15

Parameter

Name

Main power input mode

Power fail mode

RST checking time

RST check time

Displays parameter upon start.

Start up parameter

Regenerative overload derating

Regeneration derating

Regenerative resistance value

Regeneration brake resistor

Regenerative resistance capacity

Regeneration brake capacity

Overload check

Base load factor

Unit Initial

Minimum Maximum

0b00000

[ms]

0

Details

0b00000 Sets main power input.

DIGIT 1-> 0: Single-phase power

1: 3-phase power input

0b11111

Caution: Using single-phase power may lower motor output.

DIGIT2 -> 0: Error in case of phase loss

1: Warning in case of phase loss

20

Sets the time to check main power phase loss.

5000

0

[%]

1

[Ω]

0

26

100

200

0

Sets the number for the operation status parameter that is displayed at the start.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

Sets derating factor for checking of regenerative resistance overload. The overload alarm triggers quickly when the derating value is set to 100% or below.

Sets the resistance value for regenerative braking resistance. If set to 0, the default resistance value of the drive is used.

0 1000

[W]

0

[%]

0

30000

100

Sets the capacity for the current regenerative resistance. If set to 0, a default resistance capacity embedded in the drive is used.

Overload check base

Continuous overload warning level

Overload Warning Level

Encoder output scaling

Pulse out per rotation.

PWM OFF delay time

PWM OFF delay

10

[%]

10

-2^21

[ms]

0

100

50

100

12000

2^21

10

1000

Indicates the load factor for starting continuous overload checks. If set to 100 or below, an overload check starts early and the overload alarm triggers early.

Indicates the level of continuous overload warning signal output. Outputs the warning signal when the percentage value against alarm trigger load factor is reached.

Sets the encoder output pulses per a rotation, when the servo outputs an encoder output signal to the outside.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

Sets the time to delay until the PWM signal actually goes off after the servo is turned off.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

4-31

4. Parameters

Code

*P0-16

*P0-17

P0-18

Parameter

Name

DB control mode

DB control mode

Function setting bit

Function select bit

DAC output mode

DAC mode (F)

Unit

Minimum

0x0

0b00000

0x0000

Initial

Maximu m

0x0

Details

0x3

0x3210

0xFFFF

Sets DB control mode.

 0: Hold after DB stop

 1: Release after DB stop

 2: Release after free run stop

 3: Hold after free run stop

(Details: Refer to “4.4.1 System Parameter

Setting.»)

0b00000 Sets drive function per digit.

DIGIT 1 -> Sets the direction of the servo rotation.

 0: Forward (CCW), Reverse (CW)

 1: Forward (CW), Reverse (CCW)

0b11111

DIGIT 2 -> Sets the lock of the servo motor when the value of analog speed command is 0 in speed operation mode.

 0: Not for use

 1: Use

DIGIT 3 -> Sets the open collector contacts for encoder pulse output.

 0: Not for use

 1: Use(ALO0-> A Phase, ALO1->B

Phase, ALO2-> Z Phase)

DIGIT 4 -> Sets the range of monitor output voltage.

 0: -10V~+10V

 1: 0~10V

DIGIT 5 -> Sets EEPROM save function in communication.

 0: Enable to save parameter data when writing through communication.

 1: Unable to save parameter data when writing through communication.

(Details: Refer to “4.4.1 System Parameter

Setting.»)

Sets output mode for 1-2 analog output channels.

Sets CH0-CH3 from the bottom, HEX Code, in order.

 Output CH0 and CH1 as MONIT1 and

MONIT2.

 0 : Speed Feedback [RPM]

 1 : Speed Command [RPM]

 2 : Torque Feedback [%]

 3 : Torque Command [%]

 4 : Position Command Frequency [0.1

Kpps]

 5 : Following Error [pulse]

 6 : DC Link Voltage [V]

 D: Speed command (User) [RPM]

 E: Torque command (User) [%]

(Details: Refer to “4.4.1 System Parameter

Setting.»)

4-32

4. Parameters

Code

P0-19

P0-20

P0-21

Parameter

Name

DAC output offset 1

(MONIT1)

DAC output offset 1

(MONIT1)

DAC output offset 2

(MONIT2)

DAC offset 2 (F)

(MONIT2)

Reserved

Unit Initial

Minimum Maximum

[Unit/V] 0

-1000

[Unit/V]

-1000

1000

0

1000

Details

Sets offset for 1-2 analog output channels.

 Speed: [RPM]

 Torque: [%]

 Position command frequency: [0.1

Kpps]

 Position: [pulse]

 DC Link: [V]

 Offset

(Details: Refer to “4.4.1 System Parameter

Setting.»)

P0-22

P0-23

P0-24

P0-25

Reserved

DAC output scale 1

(MONIT1)

DAC scale1 (F)

(MONIT1)

DAC output scale 2

(MONIT2)

DAC scale 2 (F)

(MONIT2)

Reserved

[Unit/V]

1

[Unit/V]

1

P0-26 Reserved

P0-27

P0-28

U phase Current Offset value

U Current Offset

V phase Current Offset value

V Current Offset

P0-29 Reserved

[mA]

-9999

[mA]

-9999

500

10000

500

10000

Sets magnification for 1-2 analog output channels.

Sets magnification as setting Unit/V.

E.g.) Channel 1 scale 100 [RPM]: Output 100

[RPM] as 1 [V].

(Details: Refer to “4.4.1 System Parameter

Setting.»)

0

9999

0

9999

Store U phase Current Offset value.

Store V phase Current Offset value.

4-33

4. Parameters

4.2.4 Control Setting Parameter

Code

P1-00

P1-01

P1-02

P1-03

P1-04

P1-05

P1-06

P1-07

P1-08

P1-09

P1-10

For detailed information, refer to «4.4.2 Control Parameter Setting.»

Parameter

Name

Inertia ratio

Inertia ratio

Position proportional gain

1

Position P gain 1

Position Proportional Gain

2

Position P gain 2

Position command filter time constant

Pos. command filter time constant

Position feedforward gain

Pos. feedforward gain

Position feedforward

Filter time constant

Pos. feedforward time constant

Speed proportional gain 1

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Unit

Minimum

[%]

0

Initial

Maximum

100

20000

Details

Sets inertia ratio for load.

 Inertia ratio is considered 100 percent when there is no load from the motor. Because setting inertia ratio against load is an important control parameter for the operation of the servo, inertia ratio shall be set by calculating load inertia by the machine system and rotor inertia from the motor specification table.

 Setting an accurate inertia ratio is crucial for optimal servo operation.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

[Hz]

0

50

500

Sets position control proportional gain 1.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

[Hz]

0

70

500

Sets position control proportional gain 2.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

[ms]

0

0

1000

Sets filter time constant for internal position command which is reflected by electric gear ratio.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

[%]

0

[ms]

0

0

100

0

1000

Sets position feedforward control ratio.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

Sets position feedforward control filter time constant.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

[rad/s] 400

Speed P gain 1

Speed proportional gain 2

Speed P gain 2

0

[rad/s]

0

[ms]

1

5000

700

5000

50

1000

Sets speed control proportional gain 1.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

Sets speed control proportional gain 2.

(Detai ls: Refer to “4.4.2 Control Parameter

Setting.”)

Sets speed control integral time constant 1.

(Details: Refer to “4.4.2 Control Parameter

Setting.”)

Speed integral time constant 1

Speed time constant 1

Speed integral time constant 2

Speed time constant 2

Speed command filter time constant

Speed command filter time constant

[ms]

1

[ms]

0

15

1000

10

1000

Sets speed control integral time constant 2.

Sets filter time constant for speed command values.

4-34

4. Parameters

Code

P1-11

P1-12

P1-13

P1-14

Parameter

Name

Speed feedback filter time constant

Spd. feedback filter time constant

Torque command filter time constant

Trq. command filter time constant

Forward rotation torque limit

Positive torque limit

Negative torque limit

Negative torque limit

Gain transfer mode

Unit

Minimum

0.1[ms]

0

[ms]

0

[%]

0

[%]

0

P1-15

P1-16

P1-17

Conversion mode 0x00

[ms]

1

0

Initial

Maximum

0.5

Details

Sets filter time constant for speed search values.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

100

10

Sets filter time constant for torque command values.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

1000

Sets forward rotation torque limit.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

300

300

300

300

0x00

0x43

1

100

0

1

Sets negative torque limit.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

Sets gain transfer mode. [0x0F (DIGIT 1)]

 0: Use only gain 1.

 1: ZSPD automatic gain transfer

In case of zero speed, transfer from gain 1 to gain 2.

In the opposite case, transfer from gain 2 to gain

1.

 2: INPOS automatic gain transfer

In case of IN position, transfer from gain 1 to gain

2.

In the opposite case, transfer from gain 2 to gain

1.

 3: Manual gain transfer

When the gain 2 contact is on, transfer from gain

1 to gain 2.

In the opposite case, transfer from gain 2 to gain

1.

Sets P and PI control transfer modes. [0xF0 (DIGIT

2)]

0: Control PI only.

 1: Control P if the command torque is higher than the set torque [P1-24].

 2: Control P if the command speed is higher than the set speed [P1-25].

 3: Control P if the current acceleration is higher than the set acceleration [P1-26].

 4: Control P if the current position error is higher than the set position error [P1-27].

 Control P if the PCON contact is on (highest priority).

(Details: Refer t o “4.4.2 Control Parameter Setting.”)

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets gain transfer time during operation.

When converting gain 1 to gain 2 and gain 2 to gain

1, conversion is scheduled according to the set time.

Select whether to use the notch filter or not.

0: Do not use. 1: Use

(Details: Refer to “4.4.2 Control Parameter Setting.”)

Gain transfer time

Gain conversion time

Resonance avoidance operation

Notch filter use

4-35

4. Parameters

Code

P1-18

P1-19

P1-20

P1-21

P1-22

Parameter

Name

Resonance avoidance frequency

Notch frequency

Resonance avoidance range

Notch bandwidth

Auto gain tuning speed

Auto gain tuning Speed

Auto gain tuning distance

Auto gain tuning distance

Torque control speed limiting mode

Velocity limit switch

(torque control)

Unit

Minimum

[Hz]

0

[Hz]

0

100

[RPM]

1

1

0

[RPM]

P1-23

P1-24

P1-25

P1-26

P1-27

Speed limit

Velocity limit value

(torque control)

P control conversion torque

Torque switch value

(P control conversion)

P control conversion speed

Speed switch value

(P control conversion)

P control conversion acceleration

Acc. switch value

(P control conversion)

P control conversion position error

Position Err switch value

(P control conversion)

0

%

0 rpm

0 rpm/s

0 pulse

0

Initial

Maximum

300

1000

100

1000

Details

Sets resonance avoidance frequency.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

Sets the scope of resonance avoidance frequency.

(Details: Refer to “4.4.2 Control Parameter Setting.”)

8

10

3

5

0

Sets speed for automatic gain tuning run.

Sets round-trip distance for automatic gain tuning run.

3

Sets speed limit mode during torque control.

0: Limit to [P1-23]. 1: Maximum motor speed

2: Analog speed command

3: Limited to the smaller value between the value of

[P1-23] and the analog speed command.

2000

Sets speed limit when speed limit mode [P1-22] is 0 during torque control.

10000

200

When setting P and PI control transfer mode [P1-15], sets [0x10 (DIGIT 2)] P control conversion torque.

300

50

When setting P and PI control transfer mode [P1-15], sets [0x20 (DIGIT 2)] P control conversion speed.

6000

1000

5000

When setting P and PI control transfer mode [P1-15], sets [0x30 (DIGIT 2)] P control conversion acceleration.

2000

10000

When setting P and PI control transfer mode [P1-15], sets [0x40 (DIGIT 2)] P control conversion position error .

4-36

4. Parameters

4.2.5 Input/Output Setting Parameter

Code

**P2-00

**P2-01

**P2-02

**P2-03

**P2-04

**P2-05

**P2-06

**P2-07

**P2-08

For detailed information, refer to «4.4.3 Analog Input/Output Parameter Setting» and «4.4.4

Input/Output Contact Parameter Setting.»

Parameter

Name

Input signal definition 1

Input port define 1

Input signal definition 2

Input Port define 2

Input signal definition 3

Input Port define 3

Input signal definition 4

Input Port define 4

Input signal definition 5

Input Port define 5

Output signal definition 1

Output port define 1

Output signal definition 2

Output port define 2

Output signal definition 3

Output port define 3

Input signal logic definition 1

Input logic set 1

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Unit Initial

Details

Minimum

0

0

0

0

0

0

0

0

0

Maximum

0x4321

0xFFFF

0x8765

0xFFFF

0x00A9

0xFFFF

0x0000

0xFFFF

0x0F00

0xFFFF

0x4321

0xFFFF

0x0005

0xFFFF

0x0000

0xFFFF

0b11111

0b11111

Allocates a CN1 connector pin for a digital input signal.

 Initial input signal allocation

[P2-00]DIGIT 1 = SVON (DI1)

[P2-00]DIGIT 2 = SPD1 (DI2)

[P2-00]DIGIT 3 = SPD2 (DI3)

[P2-00]DIGIT 4 = SPD3 (DI4)

[P2-01]DIGIT 1 = ALARMST (DI5)

[P2-01]DIGIT 2 = DIR (DI6)

[P2-01]DIGIT 3 = CCWLIM (DI7)

[P2-01]DIGIT 4 = CWLIM (DI8)

[P2-02]DIGIT 1 = EMG (DI9)

[P2-02]DIGIT 2 = STOP (DIA)

[P2-02]DIGIT 3 = EGEAR1 (**)

[P2-02]DIGIT 4 = EGEAR2 (**)

[P2-03]DIGIT 1 = PCON (**)

[P2-03]DIGIT 2 = GAIN2 (**)

[P2-03]DIGIT 3 = P_CLR (**)

[P2-03]DIGIT 4 = T_LMT (**)

[P2-04]DIGIT 1 = MODE (**)

[P2-04]DIGIT 2 = ABS_RQ (**)

[P2-04]DIGIT 3 = ZCLAMP (**)

[P2-04]DIGIT 4 = ABS_RST (**)

(**) Unallocated signals

(Details: Refer to “4.1.6 External Input Signal and

Logic Definition.”)

Allocate a CN1 connector pin for a digital output signal.

 Initial output signal allocation

[P2-05]DIGIT 1 = ALARM (DO1)

[P2-05]DIGIT 2 = READY (DO2)

[P2-05]DIGIT 3 = ZSPD (DO3)

[P2-05]DIGIT 4 = BREAK (DO4)

[P2-06]DIGIT 1 = INPOS (DO5)

[P2-06]DIGIT 2 = TLMT (**)

[P2-06]DIGIT 3 = VMLT (**)

[P2-06]DIGIT 4 = INSPD (**)

[P2-07]DIGIT 1 = WARN (**)

(**) Unallocated signals

(Details: Refer to “4.1.8 External Output Signal and Logic Definition.”)

In case of dual allocation, the output contact setting error [AL-72] occurs.

Define CN1 connector logic for a digital input signal. (0: Contact B. 1: Contact A)

Initial input logic definitions

[P2-08]DIGIT 1 = DI1 (CN1 #47) (Contact A)

[P2-08]DIGIT 2 = DI2 (CN1 #23) (Contact A)

[P2-08]DIGIT 3 = DI3 (CN1 #22) (Contact A)

[P2-08]DIGIT 4 = DI4 (CN1 #21) (Contact A)

[P2-08]DIGIT 5 = DI5 (CN1 #17) (Contact A)

(Details: Refe r to “4.1.6 External Input Signal and

Logic Definition.”)

4-37

4. Parameters

Code

**P2-09

**P2-10

P2-11

P2-12

P2-13

P2-14

Parameter

Name

Input signal logic definition 2

Input logic set 2

Output signal logic definition

Output logic set

Position reached output range

In position range

Zero speed output range

Zero speed range

Range of output for speed reached

In speed range

Brake output action speed

Brake output speed

Unit Initial

Details

Minimum Maximum

0

0

[pulse]

1

[RPM]

1

[RPM]

1

[RPM]

0

0b10001

0b11111

0b10110

0b11111

10

65535

10

500

10

500

100

6000

Define CN1 connector logic for a digital input signal.(0: Contact B, 1: Contact A)

Initial input logic definitions

[P2-09]DIGIT 1 = DI6 (CN1 #46) (Contact A)

[P2-09]DIGIT 2 = DI7 (CN1 #20) (Contact A)

[P2-09]DIGIT 3 = DI8 (CN1 #19) (Contact A)

[P2-09]DIGIT 4 = DI9 (CN1 #18) (Contact A)

[P2-09]DIGIT 5 = DIA (CN1 #48) (Contact A)

(Details: Refer to “4.1.6 External Input Signal and Logic Definition.”)

Define CN1 connector logic for a digital output signal (0: Contact B, 1: Contact A)

Initial input logic definitions

[P2-10]DIGIT 1 = DO1 (CN #38/39) (Contact B)

[P2-10]DIGIT 2 = DO2 (CN #40/41) (Contact A)

[P2-10]DIGIT 3 = DO3 (CN #43) (Contact A)

[P2-10]DIGIT 4 = DO4 (CN #44) (Contact B)

[P2-10]DIGIT 5 = DO5 (CN #45) (Contact A)

(Deta ils: Refer to “4.1.8 External Output Signal and Logic Definition.”)

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets remaining pulse range for position reached output in position operation mode.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets speed range for zero speed output during a stop.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets speed range for command speed reached output.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets speed for turning on the brake output contact.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

P2-15

P2-16

*P2-17

Brake output delay time

Brake output delay time

Position pulse clear mode

PCLR mode

Analog speed scale

Analog speed command scale

[ms]

0

0

[RPM]

1

500

1000

1

1

2000

15000

Sets how much time to delay until the brake output contact turns on when the servo is off or stops.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Select operation type for position pulse clear

(PCLR) mode.

 0: Operate in edge mode.

 1: Operate in level mode.(Torque :

Continue)

 2: Operate in level mode.(Torque : 0)

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Sets speed scale when the analog speed command is 10 [V].

(Details: Refer to “4.4.3 Analog Input/Output

Parameter

Setting.”)

4-38

4. Parameters

Code

P2-18

P2-19

*P2-20

P2-21

P2-22

Parameter

Name

Analog speed offset

Analog speed command offset

Zero speed clamp voltage

Zero speed clamp voltage

Analog torque scale

Unit Initial

Details

Minimum Maximum

[mV] 0

-1000 1000

Sets offset for analog speed commands.

(Details: Refer to “4.4.3 Analog Input/Output

Parameter

Setting.”)

[mV]

0

[%]

0

1000

100

Sets voltage range for the clamp operation of the analog zero speed command.

Analog torque scale

Analog torque command offset

Analog torque command offset

Zero torque clamp voltage

Zero torque clamp voltage

1

[mV]

-1000

[mV]

0

350

0

1000

0

1000

Sets torque scale when the analog torque command is 10 [V].

(Details: Refer to “4.4.3 Analog Input/Output

Parameter

Setting.”)

Sets offset for analog torque commands.

(Details: Refer to “4.4.3 Analog Input/Output

Parameter

Setting.”)

Sets voltage range for the clamp operation of the analog zero torque command.

4-39

4. Parameters

4.2.6 Speed Operation Setting Parameter

Code

P3-00

P3-01

P3-02

P3-03

P3-04

P3-05

P3-06

P3-07

P3-08

P3-09

P3-10

*P3-11

P3-12

For detailed information, refer to «4.4.5 Speed Operation Parameter Setting.»

Parameter

Name

Speed command 1

Speed command 1

Speed command 2

Speed command 2

Speed command 3

Speed command 3

Speed command 4

Speed command 4

Speed command 5

Speed command 5

Speed command 6

Speed command 6

Speed command 7

Speed command 7

Z detection operation speed

Z search operation speed

Speed command acceleration time

Speed command

ACC. time

Speed command deceleration time

Speed command DEC. time

Speed command S-curve time

Speed command

S-curve time

Speed operation pattern

ACC.DEC. pattern

Manual JOG operation speed

JOG operation speed

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Unit Initial

Details

Minimum Maximum

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

1

10

6000

100

6000

500

6000

1000

6000

1500

6000

2000

6000

3000

6000

10

300

Sets 1-6 speed commands based on the speed command input contact.

SPD1 SPD2 SPD3 Speed Control

OFF

ON

OFF

ON

OFF

ON

OFF

OFF

ON

ON

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

Analog speed command

Digital speed command 1

Digital speed command 2

Digital speed command 3

Digital speed command 4

Digital speed command 5

OFF ON ON Digital speed command 6

ON ON ON Digital speed command 7

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

Sets Z detection operation speed.

[ms]

0

[ms]

0

[ms]

1

0

[RPM]

-6000

0

10000

0

10000

10

100

0

1

500

6000

Sets acceleration time for speed commands.

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

Sets deceleration time for speed commands.

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

Sets S-Curve time for speed commands.

Sets acceleration/deceleration type for speed commands.

(0;Trapezoidal, 1;Sinusoidal)

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

Sets operation speed for manual JOG operation

[Cn-00].

4-40

4. Parameters

Code

P3-13

P3-14

P3-15

P3-16

P3-17

P3-18

P3-19

P3-20

Parameter

Name

Program JOG operation speed 1

Program jog speed 1

Program JOG operation speed 2

Program jog speed 2

Program JOG operation speed 3

Program jog speed 3

Program JOG operation speed 4

Program jog speed 4

Program JOG operation time 1

Program jog time 1

Program JOG operation time 2

Program jog time 2

Program JOG operation time 3

Program jog time 3

Program JOG operation time 4

Program jog time 4

Unit

Minimum

[ms]

0

[ms]

0

[ms]

0

[ms]

0

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

[RPM]

-6000

Initial

Maximum

500

65535

5000

65535

500

65535

5000

65535

0

6000

3000

6000

0

6000

-3000

6000

Details

Sets operation speed/operation time for programs 1 to 4 during program JOG operation [Cn-01].

A test run repeats from step 1 to step 4.

Sets operation speed ([P3-13]-[P3-16]) and operation time ([P3-17]-[P3-20]) for each step.

E.g.) Step 1 operation

4-41

4. Parameters

4.2.7 Position Operation Setting Parameter

Code

For detailed information, refer to «4.4.6 Position Operation Parameter Setting.»

Parameter

Name

Position input pulse logic

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Unit Initial

Minimum Maximum

Details

— 0

Sets logic for position operation input pulses.

— The type of position command input pulses and rotation direction per logic are as follows:

PF + PR

Phase

A + B

Positive

Logic

0

Forward rotation

PULS

(CN1-9)

SIGN

(CN1-11)

CW+CCW

Positive

Logic

1

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

Pulse + direction positive logic

2

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

Reverse rotation

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

**P4-00

Pulse Input Logic 0 5

PF + PR Forward rotation

Phase

A + B

Negative

Logic

3

PULS

(CN1-9)

SIGN

(CN1-11)

CW+CCW

Negative

Logic

4

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

Pulse + direction negative logic

5

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

Reverse rotation

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

H Level

E.g.) Relation between direction signals and rotation directions when the position pulse input logic is set to 2.

When the direction signal is low: Reverse rotation (CW/clockwise)

When the direction signal is high: Forward rotation (CCW/counterclockwise)

(Details: Refer to “4.4.6 Position Operation

Parameter Setting.

”)

4-42

4. Parameters

Code

*P4-01

*P4-02

*P4-03

*P4-04

*P4-05

*P4-06

*P4-07

*P4-08

Parameter

Name

Electronic gear ratio numerator 1

Electric gear num.1

Electronic gear ratio numerator 2

Electric gear num.2

Electronic gear ratio numerator 3

Electric gear num.3

Electronic gear ratio numerator 4

Electric gear num.4

Electronic gear ratio denominator 1

Electric gear den.1

Electronic gear ratio denominator 2

Electric gear den.2

Electronic gear ratio denominator 3

Electric gear den.3

Electronic gear ratio denominator 4

Electric gear den.4

Electronic gear ratio mode

P4-09

Electric gear mode

P4-10

P4-11

P4-12

Electric gear ratio numerator offset

Electric gear num. offset

Position error

Following error range

Limit contact function

Position limit function

Unit

Minimum

1

1

1

1

1

1

1

1

0

-30000

[Pulse]

1

0

Initial

Maximum

1000

2^21

1000

2^21

1000

2^21

1000

2^21

1000

32767

2000

32767

3000

32767

4000

32767

0

1

0

30000

90000

2^30

0

1

Details

Sets electronic gear ratio numerator/denominator 1,

2, 3, and 4.

EGEAR

1

EGEAR

2

Electronic Gear

Ratio

Numerator /

Denominator

Electronic

Gear Ratio

OFF OFF

Electronic gear ratio numerator 1

Electronic gear ratio denominator 1

Electronic gear ratio numerator 2

Electronic gear ratio 1

ON OFF

Electronic gear ratio 2

Electronic gear ratio denominator 2

Electronic gear ratio numerator 3

OFF ON

Electronic gear ratio 3

Electronic gear ratio denominator 3

Electronic gear ratio numerator 4

ON ON

Electronic gear ratio 4

Electronic gear ratio denominator 4

 The electronic gear ratio is the numerator/denominator form of the relation between the position command input pulse and the motor encoder pulse. It is important to set the ratio so that there is no error during position operation.

(Details: Refer to “4.4.6 Position Operation

Parameter Setting.”)

Select an electronic gear ratio mode.

 0: Select electronic gear ratio 1-4.

 1: Override offset [P4-10] on the electronic gear ratio numerator 0.

(Details: Refer to “4.4.6 Position Operation

Parameter

Setting.”)

Sets the offset of the electronic gear ratio numerator

0.

The offset will be set on the electronic gear ratio numerator 0.

 EGEAR1 contact LOW -> HIGH

: Increase the electronic gear ratio numerator by

1.

 EGEAR2 contact LOW -> HIGH

: Decrease the electronic gear ratio numerator by 1)

(Details: Refer to “4.4.6 Position Operation

Parameter

Setting.”)

Sets range for triggering the position error alarm.

(Details: Refer to “4.4.4 Input/Output Contact

Parameter

Setting.”)

Select the operation type of position command pulse clear for CWLIM and CCWLIM contacts.

 0: Ignore any input pulses when the CCWLIM /

CWLIM contact is on.

 1: When the CCWLIM / CWLIM contact is on, receive an input pulses and save them to buffer.

4-43

4. Parameters

Code

P4-13

Parameter

Name

Backlash compensation

Backlash compensation

Pulse input filter

**P4-14

Pulse input filter

Unit

Minimum

0

0

Initial

Maximu m

0

10000

3

5

Details

Sets backlash compensation in position operation.

Sets backlash compensation by converting the amount of backlashes to number of pulses if the position changes because of backlashes caused by position operation.

Sets in the opposite direction according to the amount of backlashes.

(Details: Refer to “4.4.6 Position Operation

Parameter

Setting.”)

Sets filter frequency according to pulse input.

 0 : No filter used

 1 : 500 Khz (Min)

 2 : 750 Khz

 3 : 1 Mhz (Default)

 4 : 1.25 Mhz

The frequency bands above were determined based on the width of input pulse in consideration of the characteristics of digital filters.

4-44

4. Parameters

4.2.8 Operation Handling Parameter

Code

Cn-00

Cn-01

Cn-02

Parameter

Name

Manual JOG operation

Jog

“**” Modification is not possible with the servo on & Power reset parameter.

“*” Parameter that cannot be modified with the servo on

Unit

Minimu m

Initial

Maximu m

Details

The drive performs manual JOG operation by itself.

(Refer to “Chapter 5 Handling and

Operation.”)

 [MODE]: Finish

 [UP]: Forward rotation (CCW)

 [DOWN]: Reverse rotation (CW)

 [SET]: Servo ON / OFF

Related parameters are as follows:

 [P3-08]: Speed command acceleration time

 [P3-09]: Speed command deceleration time

 [P3-10]: Speed command S-curve

 [P3-11]: Speed operation pattern

 [P3-12]: JOG operation speed

Operate regardless of the contact input status of CN1.

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

(Details: Refer to «5.2 Handling.»)

Program JOG operation

Program jog

Continuously operates according to the program already set.

 [SET]: Program JOG run or stop

Related parameters are as follows:

 [P3-08]: Speed command acceleration time

 [P3-09]: Speed command deceleration time

 [P3-10]: Speed command S-curve

 [P3-11]: Speed operation pattern

 [P3-13~16]: Program operation speed 1 to 4

 [P3-17~20]: Program operation time 1 to

4

Operate regardless of the contact input status of CN1.

(Details: Refer to “4.4.5 Speed Operation

Parameter

Setting.”)

(Details: Refer to «5.2 Handling.»)

Alarm reset

Alarm reset

Reset the alarm that went off.

(Details: Refer to «5.2 Handling.»)

4-45

4. Parameters

Code

Cn-03

Cn-04

Cn-05

Cn-06

Cn-07

Cn-08

Cn-09

Parameter

Name

Get alarm history

Get alarm history

Alarm history clear

Alarm history clear

Auto gain tuning

Auto gain tuning

Z search

Z detection

Input contact forced

ON/OFF

Forced input test

Output contact forced

ON / OFF

Forced output test

Parameter initialization

Parameter Initialization

Unit Initial

Minimum Maximum

— —

— —

Details

Check the saved alarm code history.

[UP] or [DOWN]: Reads alarm codes.

 E.g.) Recent first history [AL-42]:

RST_PFAIL occurs.

 01: Latest alarm

 20: 20th previous alarm

(Details: Refer to «5.2 Handling.»)

Deletes the entire saved alarm code history.

(Details: Refer to «5.2 Handling.»)

Performs automatic gain tuning operation.

Related parameters are as follows.

 [P1-22]: Auto gain tuning speed

 [P1-23]: Auto gain tuning distance

(Details: Refer to «5.2 Handling.»)

Perform Z detection.

 [SET]: Mode entering and servo ON status

 [UP]: Phase Z forward search

 [DOWN]: Phase Z reverse search

Related parameters are as follows.

 [P3-07]: Sets Z-phase search operation speed [RPM].

(Details: Refer to «5.2 Handling.»)

Forcibly turns on/off the input contact temporarily.

 [UP]: (A),(8),(6),(4), and (2) signals forced

ON/OFF

 [DOWN]: (9),(7),(5),(3), and (1) signals forced ON/OFF

 [MODE]: Move to another digit.

(Details: Refer to «5.2 Handling.»)

Forcibly turns on/off the output contact temporarily.

 [UP]: (4) and (2) signals forced ON/OFF

 [DOWN]: (5),(3), and (1) signals forced

ON/OFF

 [MODE]: Move to another digit.

(Details: Refer to «5.2 Handling.»)

Initializes parameter data.

(Details: Refer to «5.2 Handling.»)

4-46

4. Parameters

Code

Parameter

Name

Auto speed command offset correction

Unit

Minimu m

Cn-10

Cn-11

Cn-12

Cn-13

Auto speed command offset calibration

Auto torque command offset correction

Auto torque command offset calibration

Manual speed command offset correction

Manual speed command offset calibration

Manual torque command offset correction

Manual torque command offset calibration

Initial

Maximu m

Details

Calibrates the offset of analog speed commands automatically.

The possible voltage range is from -1 V to 1

V.

If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.

You can check the calibrated offset in the analog speed command offset [P2-18].

(Details: Refer to «5.2 Handling.»)

Calibrates the offset of analog torque commands automatically.

The possible voltage range is from -1 V to 1

V.

If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.

You can check the calibrated offset in the analog torque command offset [P2-21].

(Details: Refer to «5.2 Handling.»)

Calibrates the offset of analog speed commands manually.

The possible voltage range is from -1 V to 1

V.

If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.

You can check the calibrated offset in the analog speed command offset [P2-18].

(Details: Refer to «5.2 Handling.»)

Calibrate the offset of analog torque commands manually.

The possible voltage range is from +1 V to —

1 V.

If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.

You can check the calibrated offset in the analog torque command offset [P2-21].

(Details: Refer to «5.2 Handling.»)

4-47

4. Parameters

Code

Cn-14

Cn-15

Cn-16

Cn-17

Parameter

Name

Absolute encoder reset

Abs encoder reset

Max load clear

Max load clear

Parameter lock

Parameter lock

Current offset

Calculate current offset

Unit

Minimum

Initial

Maximu m

Details

Resets the absolute encoder.

(Details: Refer to «5.2 Handling.»)

Reset the instantaneous maximum load factor to

0.

 [UP]: Displays the + forward maximum load factor.

 [DOWN]: Displays the — direction maximum load factor.

 [SET]: Initializes the maximum load factor.

(Details: Refer to «5.2 Handling.»)

Lock or Unlock whole parameter.

[UP] : Unlock

[DOWN] : Lock

(Details: Refer to “5.2 Handling.”)

Store existing current offset value into [P0-27]

~[P0-28] Parameter.

(Details: Refer to “5.2 Handling.”)

4-48

4. Parameters

4.3 Operation Status Display

4.3.1 Status Display [St-00]

Refer to «4.1.2 Status Summary Display.»

4.3.2 Speed Display

1. Current operation speed [St-01]

Displays the current operation speed in [RPM].

2. Current command speed [St-02]

Displays the current command speed in [RPM].

4.3.3 Position Display

1. Tracking position pulse [St-03]

Displays the accumulated number of position command pulses that followed as a result of rotation of the servo motor since the servo was turned on.

2. Position command pulse [St-04]

Displays the accumulated number of position command pulses that have been entered since the servo turned on.

3. Remaining position pulse [St-05]

 This is the difference between command pulse and tracking pulse, and displays the remaining position pulses for the servo to operate.

 The remaining position pulses delayed while the servo is off are ignored when it is turned on.

4. Input pulse frequency [St-06]

Displays input pulse frequency.

4.3.4 Torque and Load Display

1. Current operation torque [St-07]

Displays the energy (load) output by the servo motor as a percentage of the rated output.

2. Current command torque [St-08]

Displays the internal torque command calculated from the servo’s control algorithm as a percentage of the rated torque.

3. Accumulated overload rate [St

–09]

Displays the current energy (load) as a percentage of the rated energy (load) of the servo motor.

4. Instantaneous maximum load factor [St

–10]

Displays the maximum (peak) load between the current time and the start of control after the servo is turned on as a percentage of the rated output.

4-49

4. Parameters

5. Torque limit [St

–11]

Displays the maximum torque that the servo motor can output as a percentage of the rated torque.

6. DC link voltage [St

–12]

 The DC link voltage of the standard drive that uses 220 [V] is approximately 300 [V].

 The maximum DC link voltage allowed for the standard drive that uses 220 [V] is 405 [V].

 The overvoltage alarm [AL-41] triggers when the DC link voltage threshold is exceeded because there is either too much or too little regenerative resistance.

 The normal DC link voltage in the regenerative section is 385 [V] or below.

7. Regenerative overload [St

–13]

Displays overload rate relative to the regenerative capacity of the servo drive.

4.3.5 I/O Status Display

1. CN1 I/O input contact point status [St-14]

Refer to «4.1.4 External Input Contact Point Signal Display [St-14].»

2. CN1 I/O output contact status [St-15]

Refer to «4.1.6 External Output Contact Signal Display [St-15].»

4.3.6 Miscellaneous Status and Data Display

1. Single-turn data (pulse) display [St-16]

Displays the single-turn data of the encoder in pulses.

2. Single-turn data (degree) display [St-17]

Displays the single-turn data of the encoder in degrees.

3. Multi-turn data display [St-18]

Displays the multi-turn data of the encoder.

4. Inside temperature display [St-19]

Displays the temperature sensor value of the servo drive in [℃].

5. Rated motor speed display [St-20]

Displays the rated speed of the currently installed motor in [RPM].

6. Peak motor speed display [St-21]

Displays the peak speed of the currently installed motor in [RPM].

7. Rated motor current display [St-22]

Displays the rated current of the currently installed motor in [A].

8. U phase current offset display [St-23]

Displays the U phase current offset in [mA].

9. V phase current offset display [St-24]

Displays the V phase current offset in [mA].

4-50

4.3.7 Version Display

1. Software version display [St-25]

Displays the version of the currently installed software.

A 0.01. 3

Encoder Version Drive capacity

Type

A: Parallel

B: Serial

No.

0

1

2

3

4

5

6

7

8

Drive capacity default

100W

200W

400W

750W

1kW

2kW

3.5kW

5kW

4. Parameters

4-51

4. Parameters

4.4 Parameter Setting

4.4.1 System Parameter Setting

1. Motor ID setting [P0-00]

 Single turn Serial encoder: Reads the motor ID from the encoder and displays it.

 Quadrature type Incremental encoder: Sets motor ID manually.

 Multi turn Serial encoder: Sets motor ID manually.

2. Encoder setting

 Encoder type [P0-01]

Numb er

0

3

Encoder Type

Quadrature type incremental encoder

Multi turn Serial encoder

1

Encoder Type

Single-turn Serial type encoder

 Encoder pulse [P0-02]

Refer to servo motor product format on Chapter

“1. Product Components and Signals” for value of encoder pulses. Set number of pulses[P/R] if the encoder is pulse type and set number of bit if the encoder is communication type(Serial).

Ex)

Set “3000”[P/R] in [P0-02] when the motor is APM-SB04AEK1G103 because “E” indicates that encoder type is Quadrature type 3000[P/R].

3. Operation mode setting [P0-03]: Sets operation mode of the servo.

Operation Mode

0

1

2

3

4

5

Operation Method

Torque control operation

Speed control operation

Position control operation

Mode contact ON: Position control operation

Mode contact OFF: Speed control operation

Mode contact ON: Speed control operation

Mode contact OFF: Torque control operation

Mode contact ON: Position control operation

Mode contact OFF: Torque control operation

4. System ID setting

An ID can be given to the servo if RS422 communication and BUS communication are used for communication with the servo. Communication-related options are required in this case.

 Communication speed setting [P0-04]

You can select the baud rate, the communication speed of RS422.

 0: 9600 [bps]

 1: 19200 [bps]

 2: 38400 [bps]

4-52

4. Parameters

 3: 57600 [bps]

 System ID [P0-05]

A unique ID can be given to the servo and used for individual communication with it.

5. Main power input mode setting [P0-06]

Sets the main power input mode and processing mode in case of phase loss.

 DIGIT 1: Sets the main power input type.

(0: Single-phase power input. 1: Three-phase power input.)

 DIGIT 2: Sets how to handle errors and warnings in case of main power phase loss.

(0: Error in case of main power phase loss. 1: Warning in case of main power phase loss.)

6. RST checking time setting [P0-07]

Sets checking time for main power phase loss.

7. Start-up display parameter setting [P0-08]

 You can set the parameter to be applied when the servo is turned on.

 There are 26 values available for setting, from [St-00] to [St-25]. Choose one for a specific parameter.

8. Regenerative overload derating factor setting [P0-09]

Sets derating factor for checking of regenerative resistance overload. When the derating value is set to 100% or below, the overload alarm triggers at a time proportional to the set value.

9. Regenerative resistance value setting [P0-10]

Sets the resistance value for regenerative braking resistance. If set to 0, a default resistance capacity embedded in the drive is used.

10. Regenerative resistance capacity setting [P0-11]

Sets the capacity for the current regenerative resistance. If set to 0, a default resistance capacity embedded in the drive is used.

11. Overload check default load factor setting [P0-12]

Indicates the load factor for starting continuous overload checks. If set to 100 or below, an overload check starts early and the overload alarm triggers early.

12. Overload warning level setting [P0-13]

Sets the level for continuous overload warning signal output. A warning signal is issued when the percentage value set relative to the alarm trigger value is reached.

13. Encoder pulse prescale output (encoder output scaling[P0-14])

When an encoder signal is output from the servo to the outside, its output pulses are pre-scaled as the value of encoder output scaling[P0-14]

 E.g.) Set the value of encoder output scaling[P0-14] in a motor whose encoder pulse is 3,000

[ppr].

 encoder output scaling[P0-14] = 12,000[ppr]

=> Encoder pulse output: 3,000 [ppr] × 4 = 12,000 [ppr]

14. PWM OFF delay time setting [P0-15]

Sets the time span between servo OFF command and actual PWM OFF. This is to prevent the motor from slipping down the vertical axis until the motor brake comes into effect after receiving the

4-53

4. Parameters

4-54

servo off command and then the brake signal. Set a PWM off delay when operating the motor brake with the output contact point brake signal. (Range: 0-1000 [ms]. Initial value: 10.)

15. DB control mode [P0-16]: Sets DB control mode.

 0: Hold after DB stop

 1: Release after DB stop.

 2: Release after free run stop.

 3: Hold after free run stop.

16. Servo function setting bit [P0-17]

Sets drive function per digit.

 DIGIT 1 -> Sets the operation direction of the servo.

 0: CCW (Forward), CW (Reverse)

 1: CW (Forward), CCW (Reverse)

 DIGIT 2 -> Sets the lock of the servo motor when the value of analog speed command is 0 in speed operation mode.

 0: Not for use

 1 : Use(Enable to maintain powerful state of “stop” by switching to position operation mode temporarily when the value of analog speed command is 0 in speed operation mode.

 DIGIT 3 -> Sets the open collector contacts for encoder ouput .

 0: Not for use

 1 : Use(ALO0,ALO1,ALO2 output contacts  open collector A,B,Z output)

 DIGIT 4 -> Sets the range of monitor output voltage.(can be applied both monitor1 and 2)

 0: -10~+10V

 1 : 0~+10V

 DIGIT 5 -> Sets EEPROM save function in communication.

 0: Enable to save parameter data when writing through communication.

 1: Unable to save parameter data when writing through communication.

17. DAC output setting

There are 2 kinds of DAC output, each of which is made every 200 [usec] according to the condition of used data.

 DAC output type [P0-18 DIGIT 1, DIGIT 2]

Type

0

1

2

3

4

Data Content

Speed feedback [RPM]

Speed command [RPM]

Torque feedback [%]

Torque command [%]

Position command frequency

[0.1 Kpps]

 DAC output scale[P0-23], [P0-24]

Type

5

6

D

E

Data Content

Following error [pulse]

DC link voltage [V]

Speed command (user) [RPM]

Torque command (user) [%]

4. Parameters

If the output value is too low or too high, output ratio can be adjusted.

Sets magnification [Unit/V] for analog output channels 1 and 2.

(Speed [RPM], torque [%], position command frequency [0.1 Kpps], position [pulse], DC link [V])

Example) Channel 1 scale 100 =>100 [RPM] is output as 1 [V].

 DAC output offset [P0-19], [P0-20]

Sets offset [Unit/V] for 1 ~ 2 analog output channels.

(Speed [RPM], torque [%], position command frequency [0.1 Kpps], position [pulse], DC_Link

[V])

4.4.2 Control Parameter Setting

The order of setting control parameters is as follows:

 Load inertia ratio [P1-00] setting: Refer to “5.2.6 Auto Gain Tuning [Cn-05].”

 Position proportional gain [P1-01] and [P1-02] adjustment:

Increase the gain to the extent that the servo motor does not overshoot or take off (do not use during speed operation or torque operation).

 Speed proportional gain [P1-06] and [P1-07] adjustment:

Increase the gain to the extent that the servo motor does not vibrate.

 Speed integral time constant [P1-08] and [P1-09] adjustment:

Refer to the following table and perform setting according to the speed proportional gain.

(1) Inertia Ratio Setting [P1-00]

An inertia ratio shall be set by calculating load inertia from the machine system and rotor inertia from the motor specification table.

Setting inertia ratio against load is an important control parameter for the operation of the servo. Setting accurate inertia ratio is crucial for optimal servo operation.

 The following table contains control gain recommendations for different categories of inertia ratio:

Motor

Flange

40

~ 80

Inertia Ratio

Category

[Inertia]

(Multiple)

Position

Proportional

Gain

40 ~ 90 Low inertia

Medium inertia

1 ~ 5

5 ~ 20

High inertia 20 ~ 50

20 ~ 70

10 ~ 40

Gain Range

Speed

Proportional

Gain

Speed Integral

Gain

400 ~ 1000 10 ~ 40

200 ~ 500

100 ~ 300

20 ~ 60

50 ~ 100

* Inertia ratio can be tuned during a test drive if it is hard to calculate.

4-55

4. Parameters

(2) Position Control Gain

Position command

+

Differ entiati on

FF filter time constant

[P1-05]

Position error

Current position

Proportional gain

[P1-01]

Feedforward gain

[P1-04]

+

+

Speed

Command

4-56

Pulse output

Prescale

[P0-14]

 Position command: Count the position command pulses entering from outside, and converts them into position commands, apply an electric gear ratio, and then pass through [P1-03] position command filter, and use it as an internal position command. In the case that Numerator of electric gear is bigger, a change of external input position command pulse influences on a change of internal position command. And this influence is getting bigger. So there is need to adjust ‘[P1-03] position command filter time constant’

 Current position: Count pulse signals received from the encoder and convert them to current position by using electronic gear ratio settings.

 Position proportional gain [P1-01] and [P1-02]: Convert the difference between the position command and the current position into a speed command by multiplying it by position proportional gain.

* Recommended value = speed proportional gain [P1-06] / 10

 Feedforward gain [P1-04]: Calculate the gradient with the differential value of the position command.

Reduce time to target position by adding the speed command to the gradient. If the resultant value is too big, overshooting or instability might occur in position control. Therefore, it is important to gradually increase the value from a small value while watching the test drive.

 Feedforward filter [P1-05]: If position commands change too drastically, the feedforward control filter vibrates. In this case, set a filter value to remove the vibration.

(3) Speed Control Gain

Analog speed command

Speed command filter time constant

[P1- 10]

Speed integral time constant

[P1-08]

+

Digital speed command +

Speed

Proportional Gain

[P1-06]

Torque command

— Current speed

Speed feedback filter time constant [P1-11]

Speed calculation

Encoder signal

Current torque

 Speed command: Use an analog speed signal entering from outside as a speed command after running it through the speed command filter [P1-10], or use a digital speed command and [RPM] set in the internal parameter.

 Current speed: Calculate speed by counting encoder signals as time progresses, and use the calculated speed as the current speed after running it through a filter. An algorithm, which projects

4. Parameters

speed by using the current torque and inertia, is used to make up for the errors occurring during speed calculation at a very low speed. Therefore, an accurate motor constant and inertia ratio are closely associated with the stability of motor speed control.

 Speed integral time constant [P1-08]: Calculate the integral value of the speed error, which is the difference between the command and the current speed, and convert it into a torque command by multiplying it by integral time constant.

A decreased integral time constant solves the transient response issue and thus improves speed tracking. If the integral time constant is too small, however, overshoot occurs. On the other hand, if the integral time constant is too big, excessive response drops and proportional control takes over.

* Recommended value = 10000 / speed proportional gain [P1-06]

Speed

Low

High

Command speed

Tracking speed

Time

 Speed proportional gain [P1-06]: Convert the speed error into a torque command by multiplying it by proportional gain.

If the result value is large, speed response accelerates and thus speed tracking increases. If the value is too big, however, vibration occurs. If the value is too small, speed response slows down and speed tracking decreases. Consequently, the servo loses its power.

Speed

Command speed

High

Low

Time

 Speed feedback filter time constant [P1-11]: If the speed of the motor changes because of vibration of the drive system, or vibration occurs due to gain when there is too much load inertia, you can control the vibration by applying a filter to speed feedback. If you set too great a value, speed responsiveness will be reduced and thus the power of control will be compromised.

* Recommended value = 0 to speed integral time constant [P1-08]/10

(4) Torque Command Filter Time Constant Setting [P1-12]

You can improve the stability of command signals by setting a digital filter for analog torque command voltage. If you set too great a value, responsiveness for torque commands will be reduced. It is important to set an appropriate value for your system.

4-57

4. Parameters

(5) Torque Limit Setting [P1-13], [P1-14]

You can set maximum torque limits for forward rotation [P1-13] and for reverse rotation [P1-

14] separately. The setting is displayed as a percentage of the rated torque and the standard is 300 [%].

4-58

(6) Gain 1<->Gain 2 Transfer Mode Setting [P1-15] 0x0F (DIGIT 1)

Set speed gain transfer mode. [0x0F (DIGIT 1)]

 0: Use only gain 1.

 1: ZSPD auto gain transfer

In case of zero speed, transfer from gain 1 to gain 2.

In the opposite case, transfer from gain 2 to gain 1.

 2: INPOS auto gain transfer

In case of IN position, transfer from gain 1 to gain 2.

In the opposite case, transfer from gain 2 to gain 1.

 3: Manual gain transfer

When the gain 2 contact is on, transfer from gain 1 to gain 2.

In the opposite case, transfer from gain 2 to gain 1.

(7) Gain 1<->Gain 2 Conversion Time Setting [P1-16]

 Set gain transfer time during operation.

 When converting gain 1 to gain 2 and gain 2 to gain 1, conversion is scheduled according to the set time.

(8) P / PI Conversion Mode Setting [P1-15 DIGIT 2]

Set P and PI control conversion modes. [0xF0 (DIGIT 2)]

 0: Control PI only.

 1: Control P if the command torque is higher than the set torque [P1-24].

 2: Control P if the command speed is higher than the set speed [P1-25].

 3: Control P if the current acceleration is higher than the set acceleration [P1-26].

 4: Control P if the current position error is higher than the set position error [P1-27].

 Control P if the PCON contact is on (highest priority).

With such functions, you can improve position operation by applying the P control operation stop function after PI control operation.

4. Parameters

(9) Resonance Avoidance Operation Setting [P1-17], [P1-18], [P1-

19]

Torque output

Resonance avoidance frequency [P1-18]

Torque output frequency

Resonance avoidance range

BW [P1-19]

If vibration occurs at certain frequencies in certain systems because of mechanical resonance, you can control the vibration by controlling torque output for the specific frequencies.

 Resonance avoidance operation [P1-17]

 0: Not for use

 1: Use

4.4.3 Analog Input/Output Parameter Setting

(1) Analog Speed Scale Setting

 Analog speed scale [P2-17]: Set the analog speed command of 10 [V] in the unit of [RPM]. The maximum value is the maximum motor speed.

 Analog speed command offset [P2-18]: There are cases where a certain level of voltage remains on the analog signal access circuit, even at the 0 speed command. In this case, you can compensate it by setting the voltage as offset. The unit is [㎷].

 Zero speed command clamp setting

Speed

-10 [V]

Zero speed command clamp voltage”

[P2-19] = 0

+10 [V]

Voltage

-10 [V]

-㎷

+㎷

+10 [V]

Zero speed command clamp voltage

[P2-19]

Zero speed command clamp voltage

[P2-19] = Not 0 [mV]

4-59

4. Parameters

(2) Analog Torque Scale Setting

 Analog torque command scale [P2-20]: Set the analog torque command of 10 [V] as a percentage of the rated torque. The setting should be within the torque limit [P1-13] and [P-14] of system parameter setting.

 Torque command offset [P2-21]: There are cases in which a certain level of voltage remains on the analog circuit, even at the 0 torque command, because of problems with the circuit. You can compensate this by setting the voltage as offset. The unit is [㎷].

 Zero torque command clamp

Torque

-10 [V]

Zero torque command clamp voltage

[P2-22] = 0

+10 [V]

Voltage

-10 [V]

-㎷

+㎷

+10 [V]

Zero torque command clamp voltage

[P2-22]

Zero torque command clamp voltage

[P2-22] = Not 0 [mV]

4-60

4. Parameters

4.4.4 Input/Output Contact Point Parameter Setting

(1) Position Operation Parameter Setting

 Position reached output range [P2-11]: If the error pulse, which is the difference between the command position pulse and the follow position pulse, reaches this range, a signal is output to indicate that the position has been decided.

Pulse counter

Command pulse counter

Error pulse Follow pulse counter

Position reached output range

[P2-11]

Time

Position decision

Completed output

If you set too great a value, the target position complete output signal might occur during operation depending on the position command pulse. Therefore, it is important to set an appropriate value.

 Position operation follow error range [P4-11]

Pulse counter Command pulse counter

Error pulse

Position follow error range

Follow pulse counter

Time

Position follow error alarm

If the error pulse is greater than the position operation tracking error range, the position tracking error alarm [AL-51] triggers.

4-61

4. Parameters

4-62

(2) Speed Operation Parameter Setting

Speed

Range of output for speed reached

[P2-13]

Command speed

Zero speed output range [P2-12]

Zero speed (ZSPD)

Time

Speed reached

(INSPD)

 Zero speed output range [P2-12]: When the current speed becomes lower than the set speed, the zero speed signal is output.

 Speed-reached output range [P2-13]: The speed-reached signal is output.

(3) Brake Signal Output Parameter Setting

Speed Motor operation speed

Servo OFF or Alarm trigger

Brake signal output

Operation speed [P2-

14]

Time

Servo ON input

Brake

Output signal

Within 50 [msec]

Brake signal output

Delay time [P2-15]

 Brake signal output operation speed [P2-14], brake signal output delay time [P2-15]

In the event that an alarm triggers when the servo’s built-in brake is applied to the vertical axis for the operation of the motor by the servo, this feature is activated to prevent the vertical axis from falling to the motor brake.

This may occur as a result of the brake signal’s turning off, which is triggered by first of either the brake signal output operation speed [P2-14] or the brake signal output delay time [P2-15].

4. Parameters

(4) Position Pulse Clear Mode [P2-16]

Set the operation of position pulse clear mode in position operation mode.

Setting

0

1

2

Operation

Operate only on the edge where the contact point turns from off to on.

(Do not operate when it is off or on.)

Operate immediately at contact point on_ Level. Then, maintain torque when contact is “High”.

Operate immediately at contact point on_ Level.

Then, torque is “0” when contact is “High”.

(5) Output Signal Logic Definition Setting [P2-10]

You can change the output condition of the current output contact point to initial status ON or initial status OFF.

4-63

4. Parameters

4.4.5 Speed Operation Parameter Setting

(1) Speed Command [P3-00]-[P3-06]

You can adjust operation speed in [RPM]. Operation speed is determined by speed command input contact points.

SPD1

OFF

ON

OFF

ON

OFF

ON

OFF

ON

SPD2

OFF

OFF

ON

ON

OFF

OFF

ON

ON

SPD3

OFF

OFF

OFF

OFF

ON

ON

ON

ON

Speed Control

Analog speed command

Digital speed command

1

Digital speed command

2

Digital speed command

3

Digital speed command

4

Digital speed command

5

Digital speed command

6

Digital speed command

7

(2) Acceleration/Deceleration Time

 Acceleration time [P3-08]: Sets the time required for the motor to reach the rated motor speed from zero speed in [ms] units.

 Deceleration time [P3-09]: Sets the time required for the motor to stop after running at the rated motor speed in [ms] units.

(3) S-Curve Operation [P3-11]

You can set acceleration/deceleration operation as an S-curve pattern for smooth acceleration/deceleration.

 0: Trapezoidal -> Set acceleration/deceleration time [P3-08] and [P3-09].

 1: Sinusoidal -> Set acceleration/deceleration time [P3-08] and [P3-09] + S-curve time [P3-10].

(4) Manual JOG Operation [Cn-00]

Press RIGHT for forward rotation at JOG operation speed [P3-12]. Press LEFT for reverse rotation at JOG operation speed [P3-12]. The contact point input status by CN1 is ignored.

(5) Program JOG Operation [Cn-01]

A test drive repeats from step 1 to step 4.

Set operation speed [P3-13]-[P3-16]) and operation time ([P3-17]-[P3-20]) for each step.

4-64

4. Parameters

4.4.6 Position Operation Parameter Setting

(1) Input Pulse Logic [P4-00]

Set type of the position command input pulse and rotation method per logic.

 0: A+B

 1: CW+CCW, positive logic

 2: Pulse + sign, positive logic

 3: A+B

 4: CW + CCW, negative logic

 5: Pulse + sign, negative logic

PF + PR

Phase

A + B

Positive

Logic

0

Forward rotation

PULS

(CN1-9)

SIGN

(CN1-11)

CW+CCW

Positive

Logic

1

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

Pulse + direction positive logic

2

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

Reverse rotation

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

PULS

(CN1-9)

SIGN

(CN1-11)

L Level

PF + PR

Phase

A + B

Negative

Logic

3

Forward rotation

PULS

(CN1-9)

SIGN

(CN1-11)

CW+CCW

Negative

Logic

4

PULS

(CN1-9)

SIGN

(CN1-11)

Pulse + direction negative logic

5

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

L Level

Reverse rotation

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

PULS

(CN1-9)

SIGN

(CN1-11)

H Level

H Level

4-65

4. Parameters

4-66

(2) Electronic Gear Ratio [P4-01] ~ [P4-08]

The electronic gear ratio is the numerator/denominator form of the relation between the position command input pulse and the motor encoder pulse. It is important to set the ratio so that there is no error during position operation. The following describes how to set it:

* Electronic gear ratio = transmission per input pulse x number of pulses per motor rotation / transmission per motor rotation

e.g.) If deceleration ratio is 1/2, ball screw lead is 10 [㎜], and encoder pulse is 3000 in the unit of commands that control each pulse in 1 [㎛].

1. Transmission per input pulse = 1 × 10 — 3 = 0.001 [㎜]

2. Number of pulses per motor rotation = number of encoder pulses × 4 = 3000 × 4 = 12000

3. Transmission per motor rotation = 10 × 1/2 = 5 [㎜]

4. Electronic gear ratio = 12000 × 10 — 3/5 = 12/5

Therefore, the numerator and denominator of electronic gear ratio are 12 and 5 respectively.

NOTE 1) There are 12,000 pulses per rotation for a 3,000-pulse encoder because the servo drive controls pulses by multiplying them by four in quadrature type encoder signals.

In this case, motor speed ([RPM]) is calculated as follows:

Motor speed = 60 × electronic gear ratio × input pulse frequency / number of pulses per motor rotation

The following is how to calculate error pulse [St-05], the difference between command pulse and tracking pulse during operation. Error pulse = command pulse frequency × electronic gear ratio × {1 —

(0.01 × [P1-05])} / [P1-01]

In the case of serial type encoder, It is 523288 pulses per 1 rotation without X4.

(3) Backlash Compensation [P4-13]

Sets backlash compensation by converting the amount of backlashes into the number of pulses if the position changes because of backlashes caused by position operation.

(4) Electronic Gear Ratio Offset Adjustment: For reasons of wear

and tear on the machine during position pulse command operation

If the operation distance per rotation changes, you can adjust the change caused by wear and tear with offset.

 Electronic gear ratio setting mode [P4-09]

 0: Use electronic gear ratio 0-3.

 1: Use electronic gear ratio 0. Override the value on the electronic gear ratio numerator.

 Electronic gear ratio numerator offset setting

In the above example, if you enter 12,000 for the numerator and 5,000 for the denominator and turn on the EGEAR1 contact point, the numerator increases by one. If you turn on the EGEAR2 contact, the numerator decreases by one. The change is saved in the [P4-10] parameter.

If the offset is two, the electronic gear ratio for operation changes from 12000/5000 to 12002/5000.

Also, if the offset is -2, the electronic gear ratio for operation changes from 12000/5000 to

11998/5000.

4. Parameters

4.5 Alarms and Warnings

4.5.1 Servo Alarm Status Summary Display List

Alarm

Code

If an alarm triggers, the malfunction signal output contact point (ALARM) turns off and the dynamic brake stops the motor.

Name

IPM Fault

IPM temperature

Overcurrent

Current offset

Overcurrent (/CL)

Continuous overload

Room temperature

Regen. Overload

Motor cable open

Encoder comm.

Details What to inspect

Overcurrent (H/W)

IPM module overheat

Overcurrent (S/W)

Abnormal current offset

Overcurrent (H/W)

Continuous overload

Drive overheat

Regenerative overload

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID / drive ID / encoder setting.

Check for equipment clash or confinement.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Replace the drive if [St-23] and [St-24] are

10% or higher of the rated current.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Check for equipment clash or confinement.

Check load and brake condition.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check the temperature inside the drive

[St-19].

Install a cooling fan and check load.

Check input voltage, regenerative braking resistance, and wiring.

Replace the drive.

Motor cable disconnection Motor wiring

Serial encoder communication error

Check for incorrect wiring of the serial encoder cable.

4-67

4. Parameters

Alarm

Code

Name Details What to inspect

Encoder cable open

Encoder data error

Motor setting error

Encoder Z PHASE Open

Under voltage

Overvoltage

RST power fail

Control power fail

Over speed limit

Position following

EMG

Over pulse CMD

Parameter checksum

Encoder cable disconnection

Encoder data error

Check whether the encoder cable is disconnected.

Check the [P0-02] setting and encoder wiring.

Check the [P0-00] setting. Motor ID setting error

Encoder Z PHASE cable broken

Check the encoder cable

Low voltage

Overvoltage

Main power failure

Check input voltage and power unit wiring.

Check input voltage and wiring. Check for braking resistance damage.

Check for excessive regenerative operation. Check regenerative resistance.

Check power unit wiring and power.

Control power failure Check power unit wiring and power.

Overspeed

Excessive position error

Check the encoder, encoder setting, encoder wiring, gain setting, motor wiring, motor ID, electronic gear ratio, and speed command scale.

Check the excessive position command pulse setting [P4-11], wiring, limit contact point, gain setting, encoder setting, and electronic gear ratio.

Check for equipment confinement and load.

Emergency stop

Pulse command frequency error

Check the emergency stop contact signal, external 24 V power, and contact points.

Check pulse command frequency from the upper level controller.

Check command pulse type.

Parameter error Factory reset [Cn-21].

Parameter range

Invalid factory setting

GPIO setting

Parameter range error

Factory setting error

Output contact point setting error

Factory reset [Cn-21].

Factory reset [Cn-21].

Factory reset [Cn-21].

4-68

4. Parameters

4.5.2 Servo Warning Status Summary Display List

If a warning code is displayed as the current operation status [St-00], the servo drive is operating abnormally. Check what needs to be inspected for the issue.

Warning

State

(CODE)

Name Cause What to inspect

RST_PFAIL

LOW_BATT

OV_TCMD

OV_VCMD

OV_LOAD

SETUP

UD_VTG

EMG

Main power phase loss

Battery low

Excessive torque command

Overspeed command

Overload warning

Capacity setting

Low voltage warning

EMG contact point

If the [P0-06] DIGIT 2 is set to 1, the main power fails.

More than the maximum torque commands have been entered.

More than the maximum speed commands have been entered.

The maximum overload [P0-13] has been reached.

The electric current capacity of the motor is bigger than that of the drive.

When [P0-06] DIGIT 2 is set to 1, the

DC link voltage is 190 V or below.

Check the I/O wiring and [P2-09] setting

— Warning code is indicated in hexadecimal. If the over 2 warning codes occurs, the sum of warning codes will be displayed. For example, if [W-04] Excessive Toque Command and [W-

08] Excessive Speed Command are occurred at the same time, [W-0C] will be displayed.

If warning code 80 occurs, “SV-ON” state changes to “SV-OFF” state automatically.

-To avoid warning code 80, wire EMG contact or change EMG input signal logic definition.

(Refer to 4.1 How to Use the Loader)

4-69

4. Parameters

4.6 Motor Type and ID (to be continued on the next page)

Model Name

SAR3A

SAR5A

SA01A

SA015A

SB01A

SB02A

SB04A

HB02A

HB04A

SC04A

SC06A

SC08A

SC10A

SC03D

SC05D

SC06D

SC07D

SE09A

SE15A

SE22A

SE30A

SE06D

SE11D

SE16D

SE22D

SE03M

SE06M

SE09M

SE12M

SE05G

SE09G

13

15

16

21

22

23

ID

1

2

3

5

11

12

24 1000

25 300

26

27

450

550

28 650

61 900

62 1500

63 2200

64 3000

65 600

66 1100

67 1600

68 2200

69 300

70 600

71 900

72 1200

73

74

450

850

400

200

400

400

600

800

Watt

30

50

100

150

100

200

Notes

Hollow type

Hollow type

ID Watt

75 1300

76 1700

77 900

78 1500

81 3000

82 5000

85 2200

190 3500

87 5500

88 7500

89 1200

90 2000

192 3000

92 4400

93 1800

191 2900

95 4400

96 6000

111 2200

193 3500

113 5500

114 7500

115 11000

121 1200

122 2000

195 3000

124 4400

125 6000

131 1800

194 2900

133 4400

134 6000

Model Name

SE13G

SE17G

HE09A

HE15A

SF30A

SF50A

SF22D

LF35D

SF55D

SF75D

SF12M

SF20M

LF30M

SF44M

SF20G

LF30G

SF44G

SF60G

SG22D

LG35D

SG55D

SG75D

SG110D

SG12M

SG20M

LG30M

SG44M

SG60M

SG20G

LG30G

SG44G

SG60G

Notes

Hollow type

Hollow type

4-70

725 300

726 500

727 600

728 700

761 900

762 1500

763 2200

764 3000

765 600

766 1100

767 1600

768 2200

769 300

ID Watt

135 8500

136 11000

137 15000

711 100

712 200

713 400

721 400

722 600

723 800

724 1000

770 600

771 900

772 1200

773 450

774 850

775 1300

776 1700

FE22A

FE30A

FE06D

FE11D

FE16D

FE22D

FE03M

FC03D

FC05D

FC06D

FC07D

FE09A

FE15A

Model Name

SG85G

SG110G

SG150G

FB01A

FB02A

FB04A

FC04A

FC06A

FC08A

FC10A

FE06M

FE09M

FE12M

FE05G

FE09G

FE13G

FE17G

Notes

4. Parameters

FG12M

FG20M

FG30M

FG44M

FG20G

FG30G

FF60G

FF75G

FG22D

FG35D

FG55D

FG75D

Model Name

FF30A

FF50A

FF22D

FF35D

FF55D

FF75D

FF12M

FF20M

FF30M

FF44M

FF20G

FF30G

FF44G

795 4400

796 6000

804 7500

811 2200

812 3500

813 5500

814 7500

821 1200

822 2000

823 3000

824 4400

831 1800

832 2900

ID Watt

781 3000

782 5000

785 2200

786 3500

787 5500

788 7500

789 1200

790 2000

791 3000

792 4000

793 1800

794 2900

Notes

4-71

4. Parameters

611

612

613

621

ID

601

602

603

622

623

Watt

63

126

188

126

251

377

251

461

712

632 838

633 1257

641 1728

642 2513

Model Name

DB03D

DB06D

DB09D

DC06D

DC12D

DC18D

DD12D

DD22D

DD34D

DE40D

DE60D

DFA1G

DFA6G

Notes ID Model Name Watt Notes

4-72

5. Handling and Operation

5 Handling and Operation

5.1 What to Check Before Operation

Thoroughly check the following lists during test drive to prevent injury or product damage in servo motor.

5.1.1 Wiring Check

1. Is the voltage (AC 200 [V]) appropriate for the power input terminals?

2. Are the power cables (U, V, W, and FG) between the drive and the motor connected correctly?

3. Is the voltage of 24 [V] connected to control signals correctly?

4. Is the regenerative resistance appropriate for the capacity and correctly connected?

5. Are the wiring cables free from bends or dents?

6. Are the grounding and shielding free from defects?

5.1.2 Drive Signal (CN1) Wiring Check

Make sure that the wiring and contact for drive signals are as in the following table:

Pin

Number

18

47

48

Pin Name

EMG

SVON

STOP

State of

Contact

ON

OFF

OFF

Pin

Number

19

20

17

Pin Name

CWLIM

CCWLIM

ALMRST

State of

Contact

ON

ON

OFF

The above is factory-initialized status. Different functions may be allocated according to input signal allocations ([P2-00], [P2-01], [P2-02], [P2-03], and [P2-04]).

5.1.3 Surrounding Environment Check

Is there any metal powder or water around wires?

5.1.4 Machine Status Check

1. Is the coupling of the servo motor in good condition?

2. Are the locking bolts tightly screwed?

3. Are there any obstacles in the machine operation area?

5-1

5. Handling and Operation

5.1.5 System Parameter Check

1. Is the motor ID setting [P0-00] in good condition?

2. Are the encoder type [P0-01] and the encoder pulse [P0-02] in good condition?

3. Is control gain set to an appropriate value?

*Note: Refer to «Appendix 2 Test Drive Procedure.»

5-2

5. Handling and Operation

5.2 Handling

5.2.1 Manual JOG Operation [Cn-00]

The drive performs manual JOG operation by itself.

1. Press [SET] in [Cn-00] and [JoG] is displayed.

2. Press [SET] and [SV-on] is displayed and the servo turns on for operation.

If an alarm triggers, check wiring and other possible causes before restarting.

3. Press and hold [UP] and the motor turns forward (CCW) at the JOG operation speed [P3-12].

4. Press and hold [DOWN] and the motor turns counterclockwise at the JOG operation speed [P3-12].

5. Press [SET] again and the manual JOG operation finishes and the servo turns off.

6. Press [MODE] for a while and then you return to the parameter screen [Cn-00].

Related Parameters

[P3-08]

[P3-09]

[P3-10]

*[P3-11]

[P3-12]

Speed

Speed command acceleration time [ms]

Speed command deceleration time [ms]

Speed command S-curve time [ms]

Speed operation pattern

JOG operation speed [RPM]

The parameter marked with “*” cannot be modified when the servo is on.

Initial

0

0

10

0

500

5-3

5-4

5. Handling and Operation

[Example of handling manual JOG operation]

Order Loader Displays

1

2

3

4

5

6

7

8

Keys to Use What to Do

Displays the speed control mode with main power and control power permitted.

Press [MODE] to move to [Cn-

00].

Press [SET] to enter manual

JOG operation.

Press [SET] to turn on the servo.

Press and hold [UP] when the servo is on and the motor turns forward (CCW). Lift your hand off the key and the motor stops.

Press and hold [DOWN] when the servo is on and the motor turns reverse (CW). Lift your hand off the key and the motor stops.

Press [SET] and the servo changes to OFF.

Press [MODE] for a second and you return to the parameter screen [Cn-00].

“ ” indicates flickering.

5. Handling and Operation

5.2.2 Program JOG Operation [Cn-01]

Continuously operates according to the program already set.

1. Press [SET] in [Cn-01] and [P-JoG] is displayed.

2. Press [SET] and [run] is displayed. The program JOG operation starts after the servo is turned on.

(If an alarm triggers at this moment, check the wiring of the servo and other possible causes before restarting.)

3. Press [SET] again and the program JOG operation finishes and the servo is turned off.

4. Press [MODE] for a while and then you return to the parameter screen [Cn-00].

5. Four operation steps repeat continuously from 0 to 3. Operation speed and time can be set in the following parameter:

Related Parameters

[P3-08]

[P3-09]

[P3-10]

[P3-11]

Speed

Speed command acceleration time [ms]

Speed command deceleration time [ms]

Speed command S-curve time [ms]

Speed operation pattern

Initial

100

100

10

0

Step

0

1

2

3

Program Operation Speed

[P3-13]

[P3-14]

[P3-15]

[P3-16]

Program Operation Time

[P3-17]

[P3-18]

[P3-19]

[P3-20]

[Example of handling program JOG operation]

Order Loader Displays

1

2

3

4

5

6

7

Keys to Use What to Do

Displays the speed control mode with main power and control power permitted.

Press [MODE] to move to [Cn-

00].

Press [UP] or [DOWN] to move to

[Cn-01].

Press [SET] to enter program

Jog operation.

Press [SET] and the motor starts operating according to the predefined program.

Press [SET] again and the operation ends. [done] is displayed.

Press [MODE] for approximately one second to return to [Cn-01].

“ ” indicates flickering.

5-5

5. Handling and Operation

5.2.3 Alarm Reset [Cn-02]

Reset the alarm that went off.

1. Contact alarm reset: If you turn on ALMRST among input contacts, the alarm is reset and becomes normal.

2. Operation alarm reset: If you press [SET] in the alarm reset [Cn-02] parameter among operation handling parameters, [ALrst] is displayed. If you press [SET] again, the alarm is reset and becomes normal.

※ If the alarm keeps ringing after the reset, check and remove possible causes and then repeat the process.

[Example of alarm reset]

Order

1

Loader Displays Keys to Use What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

6

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-02].

Press [SET] to enter alarm reset mode.

Press [SET] to reset the alarm.

[done] is displayed.

Press [MODE] for a second to return to [Cn-02].

※ “ ” indicates flickering.

5-6

5. Handling and Operation

5.2.4 Reading Alarm History [Cn-03]

Check the saved alarm history.

[Example of getting alarm history]

Order Loader Displays Keys to Use

1

What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

6

7

8

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-03].

Press [SET] to start reading alarm history.

Press [SET] and the most recent alarm code is displayed.

Example: Recent first history [AL-

42]: Main power failure occurred.

01: Latest alarm

20: 20th previous alarm

Press [UP] or [DOWN] to read alarm history.

Example: The second previous history [AL-10]: Over current (HW) occurred.

01: Latest alarm

20: 20th previous alarm

Press [SET] to finish reading alarm history.

[done] is displayed.

Press [MODE] for a second to return to [Cn-03].

※ “ ” indicates flickering.

5-7

5. Handling and Operation

5.2.5 Alarm History Reset [Cn-04]

Delete all currently stored alarm history.

[Example of alarm history reset]

Order Loader Displays Keys to Use

1

What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

6

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-04].

Press [SET] to enter alarm history reset.

Press [SET] to delete alarm history.

[done] is displayed.

Press [MODE] for a second to return to [Cn-04].

“ ” indicates flickering.

5-8

5. Handling and Operation

5.2.6 Auto Gain Tuning [Cn-05]

Perform automatic tuning operation.

1. Press [SET] from the [Cn-05] parameter and [Auto] is displayed.

2. Press [SET] and [run] is displayed and automatic gain tuning starts.

If an alarm triggers at this moment, check the wiring of the servo and other possible causes before restarting.

3. When gain adjustment is completed, inertia ratio [%] is displayed, and [P1-00], [P1-06] and [P1-08] is automatically changed and saved.

Related Parameters

[P1-20]

[P1-21]

Name

Auto gain tuning speed [100 RPM]

Auto gain tuning distance

Initial

8

3

[Example of handling auto gain tuning]

Order Loader Displays Keys to Use

1

What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

6

7

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-05].

Press [SET] to enter automatic gain tuning.

Press [SET] to start three cycles of forward rotation and reverse rotation.

Upon completion of automatic tuning, the tuning result will be displayed on the loader.

Press [SET] for retuning.

Press [MODE] for a second to return to [Cn-05].

“ ” indicates flickering.

5-9

5. Handling and Operation

5.2.7 Phase Z Search Operation [Cn-06]

Perform phase Z search operation.

1. Press [SET] in [Cn-06] and [Z-rtn] is displayed.

2. Press [SET] and [run] is displayed and the servo turns on.

3. While you hold down UP, the motor keeps turning forward (CCW) until it finds the phase Z position of the encoder.

4. While you hold down DOWN, the motor keeps turning counterclockwise until it finds the phase Z position of the encoder.

5. Press [SET] and [done] is played and the phase Z search ends.

※ This function is useful for finding the Z position and assembling it by a specific standard.

Related Parameters

[P3-07]

Name

Phase Z search operation speed setting [RPM]

Initial

10

[Example of handling phase Z search operation]

Ord er

Loader Displays Keys to Use

1

What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

6

7

8

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-06].

Press [SET] to enter phase Z search operation.

Press [SET] to turn on the servo.

Press [UP] and the motor turns forward (CCW) until it finds phase Z.

Press [DOWN] and the motor turns reverse (CW) until it finds phase Z.

Press [SET] to end the phase Z search operation mode.

The servo turns off and [done] is displayed.

Press [MODE] for a second to return to the parameter screen [Cn-06].

※ “ ” indicates flickering.

5-10

5. Handling and Operation

5.2.8 Input Contact Forced ON/OFF [Cn-07]

The drive forcibly turns on/off the input contact without an upper level controller or I/O jig.

(1) Input Contact Forced ON/OFF Setting

The positions of the seven segment LEDs and CN1 contacts correspond as follows.

If an LED that corresponds to a contact is turned on/off, it indicates ON/OFF accordingly.

[Input Contact Setting]

(A) (9) Number

CN1 pin number

Allocated default signal name

48

STOP

18

EMG

(8)

19

CWLIM

(7)

20

CCWLIM

(6)

46

DIR

(5)

17

ALMRST

(4)

21

SPD3

(3)

22

SPD2

(2)

23

SPD1

(1)

47

SVON

Press [UP] on each digit and the (A), (8), (6), (4), and (2) signals turn on or off forcibly.

Press [DOWN] on each digit and the (9), (7), (5), (3), and (1) signals turn on or off forcibly.

Press [MODE] to move to another digit.

5-11

5. Handling and Operation

5-12

(2) Example of Input Contact Forced ON/OFF

(SVON ON → EMG ON → EMG OFF → SVON OFF)

[Example of handling input contact forced ON/OFF]

Order Loader Displays Keys to Use

1

2

3

4

5

6

7

8

9

10

11

12

What to Do

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-07].

Press [SET] to enter input forced

ON/OFF mode.

Press [SET] to enter forced input bit setting.

Press [DOWN] to turn on the servo forcibly.

Press [MODE] at the blinking cursor to move to the desired digit, DIGIT

5.

Press [DOWN] to turn on EMG forcibly.

Press [DOWN] to turn off EMG forcibly.

Press [MODE] at the cursor to move to the desired digit, DIGIT 1.

Press [DOWN] to turn off the servo forcibly.

Press [SET] to end input forced

ON/OFF mode.

[done] is displayed.

Press [MODE] for a second to return to [Cn-07].

“ ” indicates flickering.

5. Handling and Operation

5.2.9 Output Contact Forced ON/OFF [Cn-08]

Without an upper level controller or I/O jig, the drive forcibly turns on/off the output contact.

(1) Output Contact Forced ON/OFF Setting

The positions of the seven segment LEDs and CN1 contact correspond as follows.

If an LED that corresponds to a contact is turned on/off, it indicates ON/OFF accordingly.

[Output Contact Setting]

Number

CN1 — pin number

Allocated default signal name

(5)

45

(4)

44

(3)

43

(2) (1)

40 /41 38 / 39

INPOS BRAKE ZSPD READY ALARM

Press [UP] on each digit and the (4) and (2) signals are turned on or off for forced output.

Press [Down] on each digit and the (5), (3) and (1) signals are turned on or off for forced output.

Press [MODE] to move to another digit.

5-13

5. Handling and Operation

(2) Example of Output Contact Forced ON/OFF

(BRAKE OFF)

[Example of handling output contact forced ON/OFF]

Order Loader Displays Keys to Use What to Do

1

2

3

4

5

6

7

8

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-08].

Press [SET] to enter input forced

ON/OFF setting.

Press [SET] to enter forced output bit setting.

Press [MODE] at the blinking cursor to move to the desired digit, DIGIT 2, and it rotates.

Press [UP] to turn off the brake signal.

Press [SET] to end input forced

ON/OFF mode.

[done] is displayed.

Press [MODE] for a second to return to [Cn-08].

“ ” indicates flickering.

5-14

5. Handling and Operation

5.2.10 Parameter Reset [Cn-09]

Reset parameter data.

[Example of initializing parameters]

Order Loader Displays Keys to Use

1

What to Do

Displays the speed control mode with main power and control power permitted.

2

3

4

5

Press [MODE] to move to [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-09].

Press [SET] to enter parameter reset.

Press [SET] to reset data.

[done] is displayed.

Press [MODE] for a second to return to [Cn-09].

“ ” indicates flickering.

5-15

5. Handling and Operation

5.2.11 Automatic Speed Command Offset Correction

[Cn-10]

This calibrates the offset of analog speed commands automatically.

The range of adjustable speed command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.

You can check the corrected offset value in the analog speed offset [P2-18].

[Example of handling automatic speed command offset calibration]

Order Loader Displays Keys to Use What to Do

1

2

3

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-10].

Press [SET] to enter offset correction.

4 or

Press [SET] to compensate offset.

[done] is displayed.

If the value exceeds the allowed range, [oVrnG] is displayed.

5

Press [MODE] for a second to return to [Cn-10].

※ “ ” indicates flickering.

5-16

5. Handling and Operation

5.2.12 Automatic Torque Command Offset Correction

[Cn-11]

This calibrates the offset of analog torque commands automatically.

The range of adjustable torque command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.

You can check the corrected offset value in the analog torque offset [P2-21].

[Example of handling automatic torque command offset correction]

Order Loader Displays Keys to Use What to Do

1

2

3

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-11].

Press [SET] to enter offset correction.

4 or

Press [SET] to compensate offset.

[Done] is displayed.

If the value exceeds the allowed range, [oVrnG] is displayed.

5

Press [MODE] for a second to return to [Cn-11].

※ “ ” indicates flickering.

5-17

5. Handling and Operation

5-18

5.2.13 Manual Speed Command Offset Correction

[Cn-12]

This calibrates the offset value of analog speed commands manually. Example: -10

The range of adjustable speed command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.

You can check the corrected offset value in the analog speed offset [P2-18].

[Example of handling manual speed command offset correction]

Order Loader Displays Keys to Use What to Do

1

2

3

4

5

6

7 or

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-12].

Press [SET] to enter offset correction.

Press [SET] to enter offset correction setting.

The current offset value displayed.

Press [UP] or [DOWN] to adjust the value.

Press [SET] to save the adjusted offset value.

[Done] is displayed.

If you press [MODE] and it will not be saved.

Press [MODE] for a second to return to [Cn-12].

※ “ ” indicates flickering.

5. Handling and Operation

5.2.14 Manual Torque Command Offset Correction

[Cn-13]

This calibrates the offset value of analog torque commands manually.

The range of adjustable torque command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.

You can check the corrected offset value in the analog torque command offset [P2-21].

[Example of handling manual torque command offset correction]

Order Loader Displays Keys to Use What to Do

1

2

3

4

5

6

7 or

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-13].

Press [SET] to enter offset correction.

Press [SET] to enter offset correction setting.

The current offset value displayed.

Press [UP] or [DOWN] to adjust the value.

Press [SET] to save the adjusted offset value.

[Done] is displayed.

If you press [MODE] and it will not be saved.

Press [MODE] for a second to return to the parameter screen [Cn-13].

※ “ ” indicates flickering.

5-19

5. Handling and Operation

5.2.15 Absolute Encoder Reset [Cn-14]

Initialize values of [St-16], [St-17],[St-

18] to “0” when It is connected with Multi turn Motor.

[Example of how to use Absolute Encoder Reset]

Orde r

Loader Displays Keys to Use What to Do

1

2

3

4 or

Press [MODE] key to display [Cn-00].

Move to [Cn-14] by Pressing [UP] or

[DOWN] key.

When pressing [SET] key, the value of absolute encoder data will be initialized to “0”. Then, it will be displayed [donE].

When pressing [MODE] key, it will be returned to [Cn-14] without initialization.

Press [MODE] for a second to return to the parameter screen [Cn-14].

“ ” indicates flickering.

5-20

5. Handling and Operation

5.2.16 Instantaneous Maximum Load Factor

Initialization [Cn-15]

Reset the instantaneous maximum load factor to 0.

[Example of initializing the instantaneous maximum load factor]

Order Loader Displays Keys to Use What to Do

1

2

3

4

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-15].

Press [SET] to enter instantaneous maximum load factor initialization.

Press [SET] and the current maximum load factor is displayed.

5 or

Press [UP] and the forward direction maximum load factor is displayed.

Press [DOWN] and the reverse direction maximum load factor is displayed.

6

7 or

Press [SET] and the instantaneous maximum load factor is reset.

[Done] is displayed.

If you press [MODE] and will not reset.

Press [MODE] for a second to return to [Cn-15].

※ “ ” indicates flickering.

5-21

5. Handling and Operation

5.2.17 Parameter Lock [Cn-16]

Lock or Unlock whole parameter.

[Example of locking or unlocking parameter]

Order Loader Displays Keys to Use

1

2

3

4 or

What to Do

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-16].

Press [SET] to enter parameter lock setting.

Press [UP] to unlock whole parameter.

Press [DOWN] to lock whole parameter.

5

Hold down [MODE] for a second to return to [Cn-16].

“ ” indicates flickering.

5-22

5. Handling and Operation

5.2.18 Current Offset[Cn-17]

Store existing current offset value into [P0-27] ~ [P0-28] parameter.

[Example of setting current offset value]

Order Loader Displays Keys to Use

1

2

3

6

7

What to Do

Press [MODE] to display [Cn-00].

Press [UP] or [DOWN] to move to

[Cn-17].

Press [SET] to enter current offset value setting.

Press [SET] to store U phase current offset value into [P0-27] and V phase current offset value into [P0-28].

Hold down [MODE] for a second to return to [Cn-17].

“ ” indicates flickering.

5-23

6. Communication Protocol

6 Communication Protocol

6.1 Overview and Communication

Specifications

6.1.1 Overview

The L7 servo drive uses RS-422 serial communication. By connecting it to a PC or an upper level controller, you can test drive it or change gain tuning and parameters.

You can also operate or handle communication of up to 32 axes by connecting multiple L7 servo drives via a multi-drop method.

(1) Serial Communication Access through RS422

PC

Servo

Drive

Serial Port

RS-232C/422

Communication

Converter

CN4

CN3

(2) Multi-Drop Access through RS422 (up to 32 machines)

PC

Servo

Drive

Servo

Drive

Servo

Drive

CN4

CN3

CN4

CN3

CN4

CN3

Serial Port

RS-232C/422

Communication

Converter

NOTE 1) When using a PC as the upper level controller, you have to use the RS232/RS485 communication converter.

The CN3 and the CN4 connector pins of the servo drive are connected on a one-to-one basis internally, making multi-drop wiring easy.

6-1

6. Communication Protocol

6.1.2 Communication Specifications and Cable

Access Rate

(1) Communication Specifications

Item Specifications

Communication standard ANSI/TIA/EIA-422 standard

Communication protocol

Data bit

Data

Type

Stop bit

Parity

Synchronous method

Transmission speed

Transmission distance

Current consumption

MODBUS-RTU

8 bit

1 bit

None

Asynchronous

9600 /19200/38400/57600 [bps]

[P0-04] can be selected.

Up to 200 [m]

100 [㎃] or below

(2) Connection of CN3 and CN4 Connector Pins

1

8

1

8

CN 3

Pin Number

1

2

3

4

5

6

7

8

CN 4

Pin Function

Not for use.

Terminating resistance connection note 1)

RXD+

TXD-

TXD+

RXD-

Not for use.

GND

NOTE 1) In case of multi access connection, apply terminating resistance by connecting Pin 2 of the last drive to Pin 6 (RXD-).

NOTE 2) Connect TXD+ and TXD-, and RXD+ and RXD- in twisted pairs.

NOTE 3) The TXD and RXD in the above table are based on the servo drive.

6-2

6. Communication Protocol

6.2 Communication Protocol Base Structure

The communication of the L7 servo drive complies with the international standard MODBUS-

RTU protocol. For information about items not covered in this manual, refer to the following standard. (Related standard: Mudbugs application protocol specification 1.1b, 2006.12.28)

Also, the concept of sending and receiving in this manual is based on the host.

6.2.1 Sending/Receiving Packet Structure

The maximum sending/receiving packet length of the MODBUS-RTU protocol is 256 bytes.

Make sure that the total length of the sending/receiving packet does not exceed 256 bytes.

The MODBUS-RTU communication mode requires space of at least 3.5 char between the end of the previous packet and the beginning of the next packet as show in the following image to distinguish packets.

Packet1 Packet2 Packet3 to at least 3.5 char at least 3.5 char 4.5 char

(1) Sending Packet Structure

Bytes

Details

Additional

Address

0

Node ID

Functio n Code

1

Function

2

Data

(2) Receiving Packet Structure

[Normal Response]

Additional

Address

Function

Code

Bytes

Details

0

Node ID

1

Function

2

Data

Data

.

.

Data

.

.

[Abnormal Response]

Additiona l Address

Functio n Code

0 Bytes

Descripti on

Node ID

1

Function+

0x80

Data

2

Exception code

.

.

.

.

Error Check n-1 n

CRC (MSB) CRC (LSB)

Error Check n-1 n

CRC (MSB) CRC (LSB)

Error Check

3 4

CRC (MSB) CRC (LSB)

6-3

6. Communication Protocol

(3) Protocol Packet Code

 Node ID

Indicates the exchange number of the servo drive to send.

Set the exchange number of the servo drive to [P0-05].

 Function Code

The following are the Modbus-RTU standard function codes supported by the L7 servo drive.

 D a t a

Category i d n g] e n

[

S

Public function code

User defined function code

Comman d Code

0x03

0x03

0x06

0x10

0x6A

Details

Read single register

Read multi register

Write single register

Write multi register

Read each block register

Read

Purpose

Write

For read register commands, the Modbus address, the number of registers, and the number of bytes will be set. For write register commands, the Modbus address, the number of bytes, and other necessary values will be set.

[Receiving]

In the case of read register commands, normal responses are received with the same node ID and function code as they are sent. In terms of data, registers are received according to the order of sent registers.

In the case of write single register commands, the same data as those sent are received. In the case of write multi registers, the start address of the register, whose data were to be used with the write multi register command, and the number of registers are received.

(4) CRC

Abnormal responses consist of node ID, error code, and exception code. The packet structure is the same for all abnormal responses regardless of their function codes.

Enter the 16-bit CRC check sum. Send 1 byte of MSB and LSB each.

(5) Exception Code

The followings are the exception codes for all abnormal responses of all function codes supported in the L7 servo drive.

Exception Code

0x01

0x02

0x03

0x04

0x05

0x06

Description

Unsupported function codes

Invalid register address

Non-matching node IDs or CRC check errors

Command handling failure

Waiting(state of preparing data)

Locking(state of locking parameter)

6-4

6. Communication Protocol

6.2.2 Protocol Command Codes

(1) Read Single Register (0x03)

Read the single register (16-bit data) value.

Sending Packet

Byte

0

Node ID

Content

1 Function

2 Starting Address Hi

3 Starting Address Lo

4 Quantity of Register Hi

5 Quantity of Register Lo

6 CRC Hi

7 CRC Lo

Example)

Value

0x00

0x03

0x00

0x6B

0x00

0x01

Byte

0

1

2

3

4

5

6

Byte

0

1

2

3

4

Normal Receiving Packet

Content

Node ID

Value

0x00

Function

Byte Count

0x03

0x02

Register Value Hi

Register Value Lo

CRC Hi

CRC Lo

0x02

0x2B

Error Receiving Packet

Content Value

Node ID

Error Code

0x00

0x03 + 0x80

Exception Code

CRC Hi

CRC Lo

0x01 ~ 0x04

Slave Address(Node-ID)

Function Code

Staring Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

CRC Hi

CRC Lo

Node-ID

03

00

6B

00

01

CRC Hi

CRC Lo

Request

Response

Slave Address(Node-ID)

Function Code

Byte Count

Register Value Hi (108)

Register Value Lo (108)

CRC Hi

CRC Lo

Node-ID

03

06

02

2B

CRC Hi

CRC Lo

6-5

6. Communication Protocol

Sending Packet

Content Byte

4

5

6

7

0

1

2

3

Node ID

Function

Starting Address Hi

Starting Address Lo

Quantity of Register Hi

Quantity of Register Lo

CRC Hi

CRC Lo

Example)

(2) Read Multi Register (0x03)

Read the continuous register block (16-bit data) value.

Value

0x00

0x03

0x00

0x6B

0x00

0x03

Byte

8

9

10

Byte

2

3

0

1

4

4

5

6

7

0

1

2

3

Normal Receiving Packet

Content Value

Node ID

Function

Byte Count

Register Value Hi

Register Value Lo

Register Value Hi

Register Value Lo

Register Value Hi

0x00

0x03

0x06

0x02

0x2B

0x00

0x00

0x00

Register Value Lo

CRC Hi

CRC Lo

Error Receiving Packet

0x64

.

Content

Node ID

Error Code

Value

0x00

0x03 + 0x80

Exception Code

CRC Hi

CRC Lo

0x01 ~ 0x04

Slave Address(Node-ID)

Function Code

Staring Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

CRC Hi

CRC Lo

Node-ID

03

00

6B

00

01

CRC Hi

CRC Lo

Request

Response

Slave Address(Node-ID)

Function Code

Byte Count

Register Value Hi (108)

Register Value Lo (108)

CRC Hi

CRC Lo

Node-ID

03

06

02

2B

CRC Hi

CRC Lo

6-6

6. Communication Protocol

(3) Write Single Register (0x06)

Write values on the single register (16-bit data).

5

6

7

Sending Packet

Content Byte

2

3

0

1

4

Node ID

Function

Register Address Hi

Register Address Lo

Register Value Hi

Register Value Lo

CRC Hi

CRC Lo

0x03

Value

0x00

0x06

0x00

0x01

0x00

Byte

Normal Receiving Packet

Content

Node ID

Value

0x00

0

1 Function

Register Address Hi

0x06

0x00 2

3

4

Register Address Lo

Register Value Hi

0x01

0x00

5

6

7

Register Value Lo

CRC Hi

CRC Lo

0x03

Byte

0

Error Receiving Packet

Content

Node ID

Value

0x00

1

2

3

4

Error Code

Exception Code

CRC Hi

CRC Lo

0x06 + 0x80

0x01 ~ 0x06

Example)

Slave Address (Node-ID)

Function Code

Register Address Hi

Register Address Lo

Register Value Hi (1)

Register Value Lo (1)

CRC Hi

CRC Lo

Node-ID

06

00

01

00

03

CRC Hi

CRC Lo

Request

Response

Slave Address (Node-ID)

Function Code

Register Address Hi

Register Address Lo

Register Value Hi (1)

Register Value Lo (1)

CRC Hi

CRC Lo

Node-ID

06

00

01

00

00

CRC Hi

CRC Lo

6-7

6. Communication Protocol

(4) Write Multi Register (0x10)

Writes values on the continuous register block (16-bit data).

4

5

6

7

Byte

0 Node ID

Sending Packet

Content

1

2

3

Function

Starting Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

Byte Count

Register Value Hi

8

9

Register Value Lo

Register Value Hi

10 Register Value Lo

11 CRC Hi

12 CRC Lo

Example)

0x0A

0x01

0x02

Value

0x00

0x10

0x00

0x01

0x00

0x02

0x04

0x00

Byte

0

1

2

3

Byte

0

1

6

7

4

5

2

3

4

Normal Receiving Packet

Content

Node ID

Value

0x00

Function

Starting Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

0x10

0x00

0x01

0x00

0x02

CRC Hi

CRC Lo

Error Receiving Packet

Content

Node ID

Error Code

Value

0x00

0x10 + 0x80

Exception Code

CRC Hi

CRC Lo

0x01 ~ 0x04

Slave Address (Node-ID)

Function Code

Starting Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

Byte Count

Registers Values Hi

Registers Values Lo

Registers Values Hi

Registers Values Lo

CRC Hi

CRC Lo

Node-ID

10

00

01

00

02

04

00

0A

01

02

CRC Hi

CRC Lo

Request

Response

Slave Address (Node-ID)

Function Code

Starting Address Hi

Starting Address Lo

Quantity of Registers Hi

Quantity of Registers Lo

CRC Hi

CRC Lo

Node-ID

10

00

01

00

02

CRC Hi

CRC Lo

6-8

6. Communication Protocol

(5) Read Each Block Register (0x6A)

Read values on the discontinuous register block (16-bit data).

4

5

6

7

Byte

0

1

2

3

Node ID

Function

Sending Packet

Content

Byte Count

Address Hi

Address Lo

Address Hi

Address Lo

Address Hi

8

9

Address Lo

CRC Hi

10 CRC Lo

0x01

0x00

0x04

0x00

0x08

Value

0x00

0x6A

0x06

0x00

Byte

0

1

2

3

4

5

6

7

Normal Receiving Packet

Node ID

Function

Content

Byte Count

Register Value Hi

Register Value Lo

Register Value Hi

Register Value Lo

Register Value Hi

8

9

Register Value Lo

CRC Hi

10 CRC Lo

Value

0x00

0x6A

0x06

0x02

0x2B

0x00

0x00

0x00

0x64

.

Byte

0

1

2

3

4

Error Receiving Packet

Content

Node ID

Value

0x00

Error Code

Exception Code

CRC Hi

CRC Lo

0x6A + 0x80

0x01 ~ 0x04

Example)

Slave Address (Node-ID)

Function Code

Byte Count

Address Hi (First)

Address Lo

Address Hi (Second)

Address Lo

Address Hi (Third)

Address Lo

CRC Hi

CRC Lo

Node-ID

6A

06

01

00

02

04

00

0A

CRC Hi

CRC Lo

Request

Response

Slave Address (Node-ID)

Function Code

Byte Count

Address’s Value Hi (First)

Address’s Value Lo

Address’s Value Hi (Second)

Address’s Value Lo

Address’s Value Hi (Third)

Address’s Value Lo

CRC Hi

CRC Lo

Node-ID

6A

06

02

2B

00

00

00

05

CRC Hi

CRC Lo

6-9

6. Communication Protocol

6.3 L7 Servo Drive Communication Address

Table

6.3.1 Operation Status Parameter Communication

Address Table

16

18

20

22

24

26

28

30

32

34

2

4

6

8

10

12

14

Communicatio n Address

(Decimal

Number)

0

Parameter Name

Parameter

Number

Operation Status Display Parameter

Current operation status

Current operation speed

Current command speed

Tracking position pulse — L

Tracking position pulse — H

Position command pulse — L

Position command pulse — H

Remaining position pulse —

L

Remaining position pulse —

H

Input pulse frequency

– L

Input pulse frequency — H

Current operation torque

Current command torque

Accumulated overload rate

Instantaneous maximum load factor

Torque limit value

DC Link Voltage

Regenerative overload

St — 00

St — 01

St — 02

St — 03

St — 04

St — 05

St — 06

St — 07

St — 08

St — 09

St — 10

St — 11

St — 12

St — 13

INT32

INT16

INT16

INT16

INT16

INT16

UINT16

UINT16

Material Type

INT16

BIT0: Alarm

BIT1: Servo on

BIT2: Warning

BIT3: CCW limit

BIT4: CW limit

BIT5: Zero speed

BIT6: In speed

BIT7: In position

BIT8: Power ready

BIT9: Analog command active

BIT10 — BIT13: Control mode

(0: Trq, 1: Spd, 2: Pos, 3: Spd/Pos,

4: Trq/Spd, 5: Trq/Pos)

INT16

INT16

INT32

INT32

INT32

6-10

6. Communication Protocol

Communicatio n Address

(Decimal

Number)

36

38

40

42

44

46

48

50

52

54

56

58

60

Parameter Name

Parameter

Number

Operation Status Display Parameter

Input contact status

Output contact status

Single-turn data — L

Single-turn data — H

Single-turn data (degree)

Multi-turn data — L

Multi-turn data — H

Temperature in the servo drive

Rated motor speed

Maximum motor speed

Rated motor current

Phase U current offset

Phase V current offset

St — 14

St — 15

St — 16

St — 17

St — 18

St — 19

St — 20

St — 21

St — 22

St — 23

St — 24

62

64

66

68

Software version

FPGA version

Analog torque command

Reserved

St — 25

St — 26

St-27

UINT16

UINT16

INT32

UINT16

INT32

Material Type

INT16

UINT16

UINT16

UINT16

INT16

INT16

UINT16

BIT0-BIT4: Drive capacity

(1: 100W, 2: 200W, 3: 400W, 4: 750W, 5:

1kW, 6: 3.5kW)

BIT5-BIT14: Version number

BIT 15: Encoder type

(0: Quadrature, 1: Serial)

UINT16

INT16

6-11

6. Communication Protocol

6.3.2 System Parameter Communication Address

Table

The following table lists Modbus communication addresses for the system parameter group

[P0-xx].

Communicatio n Address

(Decimal

Number)

70

72

74

76

78

80

82

84

86

88

90

92

94

96

114

116

118

120

122

124

126

128

98

100

102

104

106

108

110

112

Parameter Name

Parameter

Number

System Parameter Parameter

Motor ID

Encoder Type

Encoder pulse

Select operation mode

RS-422 communication speed

System ID

Main power input mode

RST checking time

Start-up display parameter

Regenerative overload derating

Regenerative resistance value

Regenerative resistance capacity

Overload detection base load factor

Continuous overload warning level

Encoder output pre-scale — L

Encoder output pre-scale — H

PWM OFF delay time

Dynamic brake control mode

Function setting bit

DAC output mode

DAC output offset 1

DAC output offset 2

Reserved

Reserved

DAC output scale 1

DAC output scale 2

Reserved

Reserved

U Phase Current Offset

V Phase Current Offset

P0 — 11

P0 — 12

P0 — 13

P0 — 00

P0 — 01

P0 — 02

P0 — 03

P0 — 04

P0 — 05

P0 — 06

P0 — 07

P0 — 08

P0 — 09

P0 — 10

P0 — 14

P0 — 15

P0

– 16

P0 — 17

P0

– 18

P0 — 19

P0 — 20

P0

– 21

P0

– 22

P0

– 23

P0

– 24

P0

– 25

P0 — 26

P0 — 27

P0 — 28

Material Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

INT16

INT16

INT32

UINT16

UINT16

UINT16

UINT16

INT16

INT16

6-12

Communicatio n Address

(Decimal

Number)

130

132

134

136

138

Parameter Name

Parameter

Number

System Parameter Parameter

W Phase Current Offset

Reserved

Reserved

Reserved

Reserved

P0 — 29

6. Communication Protocol

Material Type

INT16

6-13

6. Communication Protocol

6.3.3 Control Parameter Communication Address

Table

The following table lists Modbus communication addresses for the control parameter group

[P1-xx].

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

Communicatio n Address

(Decimal

Number)

140

142

144

146

148

150

152

154

156

158

160

162

164

Parameter Name

Control Parameter Parameter

Inertia ratio

Position proportional gain 1

Position proportional gain 2

Position command filter time constant

Position feedforward gain

Position feedforward filter time constant

Speed proportional gain 1

Speed proportional gain 2

Speed integral time constant 1

Speed integral time constant 2

Speed command filter time constant

Speed feedback filter time constant

Torque command filter time constant

Forward rotation torque limit

Reverse rotation torque limit

Gain transfer mode

Gain transfer time

Resonance avoidance operation

Resonance avoidance frequency

Resonance avoidance range

Auto gain tuning speed

Auto gain tuning distance

Torque control speed limiting mode

Speed limit

Control P transfer torque

Control P transfer speed

Control P transfer acceleration

Control P transfer position error

Parameter

Number

P1 — 00

P1 — 01

P1 — 02

P1 — 03

P1 — 04

P1 — 05

P1 — 06

P1 — 07

P1 — 08

P1 — 09

P1 — 10

P1 — 11

P1 — 12

P1 — 13

P1 — 14

P1 — 15

P1 — 16

P1 — 17

P1 — 18

P1 — 19

P1 — 20

P1 — 21

P1 — 22

P1 — 23

P1 — 24

P1 — 25

P1 — 26

P1 — 27

Material Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

6-14

Communicatio n Address

(Decimal

Number)

196

212

214

216

218

198

200

202

204

206

208

210

Parameter Name

Parameter

Number

Control Parameter Parameter

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

6. Communication Protocol

Material Type

6-15

6. Communication Protocol

6.3.4 Input/Output Parameter Communication

Address Table

The following table lists Modbus communication addresses for the input/output parameter

(analog and digital) parameter group [P2-xx].

Communicatio n Address

(Decimal

Number)

220

222

268

270

272

274

276

278

254

256

258

260

262

264

266

240

242

244

246

248

250

252

224

226

228

230

232

234

236

238

Parameter Name

Parameter

Number

Input/Output Parameter Parameter

Input signal definition 1

Input signal definition 2

Input signal definition 3

Input signal definition 4

Input signal definition 5

Output signal definition 1

Output signal definition 2

Output signal definition 3

Input signal logic definition 1

Input signal logic definition 2

Output signal logic definition

Range of output for position reached

Zero speed output range

Range of output for speed reached

Brake output operation speed

Brake output delay time

Position pulse clear mode

Analog speed command scale

Analog speed command offset

Zero speed clamp speed

Analog torque command scale

Analog torque command offset

Zero speed clamp voltage

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

P2 — 17

P2 — 18

P2 — 19

P2 — 20

P2 — 21

P2 — 22

P2 — 10

P2 — 11

P2 — 12

P2 — 13

P2 — 14

P2 — 15

P2 — 16

P2 — 00

P2 — 01

P2 — 02

P2 — 03

P2 — 04

P2 — 05

P2 — 06

P2 — 07

P2 — 08

P2 — 09

Material Type

UINT16

INT16

UINT16

UINT16

INT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

6-16

6. Communication Protocol

6.3.5 Speed Operation Parameter Communication

Address Table

The following table lists Modbus communication addresses for the speed operation parameter group [P3-xx].

Communicatio n Address

(Decimal

Number)

280

282

300

302

304

306

308

310

312

284

286

288

290

292

294

296

298

314

316

318

320

322

324

326

328

Parameter Name

Parameter

Number

Input/Output Parameter Parameter

Digital speed command 1

Digital speed command 2

Digital speed command 3

Digital speed command 4

Digital speed command 5

Digital speed command 6

Digital speed command 7

Z search operation speed setting

Speed command acceleration time

Speed command deceleration time

Speed command S-Curve time

Speed operation pattern

Manual JOG operation speed

Program JOG operation speed 1

Program JOG operation speed 2

Program JOG operation speed 3

Program JOG operation speed 4

Program JOG operation time 1

Program JOG operation time 2

Program JOG operation time 3

Program JOG operation time 4

Reserved

Reserved

Reserved

Reserved

P3 — 17

P3 — 18

P3 — 19

P3 — 20

P3 — 10

P3 — 11

P3 — 12

P3 — 13

P3 — 14

P3 — 15

P3 — 16

P3 — 00

P3 — 01

P3 — 02

P3 — 03

P3 — 04

P3 — 05

P3 — 06

P3 — 07

P3 — 08

P3 — 09

Material Type

UINT16

UINT16

UINT16

UINT16

INT16

INT16

INT16

INT16

INT16

INT16

INT16

UINT16

UINT16

UINT16

UINT16

UINT16

INT16

INT16

INT16

INT16

INT16

6-17

6. Communication Protocol

6.3.6 Position Operation Parameter Communication

Address Table

The following table lists Modbus communication addresses for the position operation parameter group [P4-xx].

Communicatio n Address

(Decimal

Number)

330

332

334

336

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

Parameter Name

Position input pulse logic

Electronic gear ratio numerator

1

– L

Electronic gear ratio numerator

1

– H

Electronic gear ratio numerator

2

– L

Electronic gear ratio numerator

2

– H

Electronic gear ratio numerator

3

– L

Electronic gear ratio numerator

3

– H

Electronic gear ratio numerator

4

– L

Electronic gear ratio numerator

4 — H

Electronic gear ratio denominator 1

Electronic gear ratio denominator 2

Electronic gear ratio denominator 3

Electronic gear ratio denominator 4

Electronic gear ratio mode

Electronic gear ratio numerator offset

Position error range — L

Position error range- H

Limit contact function

Backlash compensation

Pulse input filter

Parameter

Number

Position operation Parameter

P4 — 00

P4 — 01

P4 — 02

P4 — 03

P4 — 04

P4 — 05

P4 — 06

P4

– 07

P4 — 08

P4

– 09

P4 — 10

P4 — 11

P4

– 12

P4 — 13

P4

– 14

Material Type

UINT16

INT32

INT32

INT32

INT32

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

INT32

UINT16

UINT16

UINT16

6-18

7. Product Specifications

7 Product Specifications

7.1 Servo Motor

■ Heat Sink Specifications

Type

AP04

AP06

AP08

AP13

AP18

AP22

Dimensions(mm)

250x250x6

250x250x6

250x250x12

350x350x20

550x550x30

650x650x35

Materials

Aluminum

NOTE 1) The data on the product features is measured when those heat sinks are applied.

7-1

7. Product Specifications

7.1.1 Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

SAR3A SAR5A

L7A001

SA01A SA015A

L7A002

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Speed and position detector

Specifications and features

Standard

Option

Protection method

Time rating

Ambient temperature

Ambient humidity

Weight

0.03

0.10

0.97

0.29

2.92

0.0164

0.0167

5.56

0.05

0.16

1.62

0.48

4.87

0.02

3000

5000

0.10

0.32

3.25

0.96

9.74

0.05

0.02

Motor inertia x 30

0.05

10.55 23.78

Quad. Type Incremental 2048[P/R]

Serial Type(coming soon)

Continuous

0~40[°C]

20~80[%]RH (no condensation)

0.15

0.48

4.87

1.43

14.62

0.06

0.07

Motor inertia x 20

35.34

Fully closed

 self-cooling IP55(excluding axis penetration)

Atmosphere

Anti-vibration

[kg]

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration of 49[m/s2](5G)

0.3 0.4

Rotation Speed

– Torque Characteristics

0.5 0.7

APM-SAR3A APM-SAR5A

APM-SA01A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SA015A

Repeatedly used area

Continuously used area

7-2

7. Product Specifications

■ Product Features

Servo Drive Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

Rated rotation speed

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Specifications and features

Time rating

Ambient temperature

Ambient humidity

Atmosphere

SB01A

0.10

0.32

3.25

0.96

9.74

L7A002

SB02A

0.20

0.64

6.49

1.91

19.48

3000

5000

0.11 0.18 0.32

0.12 0.19

Motor inertia x 20

0.33

8.89 22.26 50.49

Quad. Type Incremental 3000[P/R]

Serial Type 19[Bit]

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

0~40[°C]

SB04A

L7A004

0.40

1.27

12.99

3.82

20~80[%]RH (no condensation)

38.96

No direct sunlight, corrosive gas, or combustible gas

Weight

Anti-vibration

[kg]

Vibration acceleration 49[m/s2](5G)

0.8 1.1

Rotation speed

– Torque Characteristics

1.6

APM-SB01A

APM-SB02A APM-SB04A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

7-3

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

SBN01A

Applicable drive (L7□A□□)

SBN02A

L7A002

Rated output 0.1 0.2

Rated torque

Maximum instantaneous torque

Rated rotation speed

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

0.32

3.25

0.95

9.74

0.64

6.49

1.91

19.48

SBN04A

3000

0.4

1.27

12.99

3.82

38.96

SBN04A-BK

L7A004

0.4

1.27

12.99

3.82

38.96

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

0.11

0.12

8.91

Fully closed

0.18

0.19

5000

0.32

0.33

Motor inertia x 20

0.25

22.22 50.41

Quad. Type Incremental 3000[P/R]

63.84

Serial Type 19[Bit]

0.26 self-cooling IP55(excluding axis penetration)

Specifications and features

Time rating

Ambient temperature

Ambient humidity

Atmosphere

Continuous

0~40[°C]

20~80[%]RH (no condensation)

No direct sunlight, corrosive gas, or combustible gas

Weight

Anti-vibration

[kg] 0.8

Vibration acceleration of 49[m/s2](5G)

1.1 1.6 1.6

Rotation speed

– Torque Characteristics

APM-SBN01A APM-SBN02A APM-SBN04A

Repeatedly used area

Continuously used area

APM-SBN04A-BK

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

7-4

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Ambient temperature

Ambient humidity

Weight

SC04A

L7

□A004

0.4

1.27

12.99

3.82

38.96

0.67

SC06A SC08A

L7

□A008

0.6 0.8

1.91

19.49

5.73

58.47

1.09

3000

5000

2.55

25.98

7.64

77.95

1.51

0.69 1.11 1.54

Motor inertia x 15

1.97

24.05 33.39 43.02 52.57

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

Continuous

0~40[°C]

20~80[%]RH (no condensation)

SC10A

L7

□A010

1.0

3.19

32.48

9.56

97.43

1.93

Fully closed

 self-cooling IP65(excluding axis penetration)

Atmosphere

Anti-vibration

[kg]

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

1.9 2.5 3.2

Rotation speed

– Torque Characteristics

3.8

APM-SC04A

APM-SC06A

APM-SC08A

Repeatedly used area

Continuously used area

APM-SC10A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

7-5

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

SC03D

Applicable drive (L7□A□□)

L7

A004

0.30 Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

1.43

14.61

4.30

43.84

0.67

SC05D

0.45

2.15

21.92

6.45

65.77

1.09

SC06D

L7

2000

3000

□A008

0.55

2.63

26.79

7.88

80.38

1.51

SC07D

0.65

3.10

31.66

9.31

94.99

1.93

0.69 1.11 1.54

Motor inertia x 15

1.97

30.43 42.27 45.69 49.97

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

0~40[°C]

20~80[%]RH (no condensation)

No direct sunlight, corrosive gas, or combustible gas.

Vibration acceleration 49[m/s2](5G)

1.9 2.5 3.2

Rotation speed

– Torque Characteristics

3.9

APM-SC03D APM-SC05D APM-SC06D

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SC07D

Repeatedly used area

Continuously used area

7-6

7. Product Specifications

Product Features

Servo Motor Type (APM-



)

Applicable drive (L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

Rated rotation speed

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Specifications and features

Weight

Time rating

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

SE09A

L7□A008

0.9

2.86

29.23

8.59

87.69

6.66

6.80

12.32

SE15A SE22A

L7□A020

1.5 2.2

4.77

48.72

14.32

7.00

71.45

21.01

146.15

3000

5000

214.35

SE30A

L7□A035

3.0

9.55

97.43

28.64

292.29

SE06D

L7□A008

0.6

2.86

29.23

8.59

12.00

12.24

17.34

17.69

22.68

23.14

18.99

Motor inertia x 10

28.28 40.20 12.32

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

6.66

6.80

Continuous

0~40[°C]

20~80[%]RH(no condensation)

87.69

2000

3000

Fully closed

 self-cooling IP65(excluding axis penetration)

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

5.5 7.5 9.7 11.8

Rotation speed

– Torque Characteristics

5.5

SE11D

L7□A010

1.1

5.25

53.59

15.75

160.76

12.00

12.24

22.98

7.5

APM-SE09A

APM-SE15A APM-SE22A

Repeatedly used area

Continuously used area

APM-SE30A

Repeatedly used area

Continuously used area

APM-SE06D

Repeatedly used area

Continuously used area

APM-SE11D

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

7-7

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

SE16D

Applicable drive (L7□A□□)

SE22D

L7□A020

Rated output 1.6 2.2

Rated torque

Maximum instantaneous torque

Rated rotation speed

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

7.64

77.94

22.92

233.83

2000

10.50

107.17

31.51

321.52

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection

Method

Time rating

17.34

17.69

33.65

3000

22.68

23.14

Fully closed

SE03M

L7□A004

0.3

2.86

29.23

8.59

87.69

6.66

SE06M

L7□A008

0.6

5.73

58.46

17.19

175.30

12.00

6.80 12.24

Motor inertia x 10

17.69

48.64 12.32 27.35 42.59

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

Continuous

1000

2000

SE09M

L7□A010

0.9

8.59

87.69

25.78

263.06

17.34 self-cooling IP65(excluding axis penetration)

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg] 9.7

0~40[°C]

20~80[%]RH(no condensation)

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

11.8 5.5 7.5

Rotation speed

– Torque Characteristics

9.7

SE12M

L7□A020

1.2

11.46

116.92

34.37

350.75

22.68

23.14

57.89

11.8

APM-SE16D

APM-SE22D

APM-SE03M

Repeatedly used area

Continuously used area

APM-SE06M

7-8

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SE09M

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SE12M

Repeatedly used area

Continuously used area

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable drive

(L7□A□□)

SE05G

L7□A008

SE09G

L7□A010

SE13G SE17G

L7□A020

SF30A SF50A

L7□A035 L7□A050

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Speed and position detector

Standard

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

0.45

2.86

29.23

8.59

87.69

6.66

6.80

12.32

0.85

5.41

55.21

16.23

165.63

1500

3000

1.3

8.28

84.44

24.83

253.32

10.82

110.42

32.46

331.26

Continuous

0~40[°C]

1.7

20~80[%]RH(no condensation)

3.0

9.55

97.43

28.64

292.29

5.5

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

7.5 9.7

Rotation speed

– Torque Characteristics

11.8 12.4

3000

5000

Fully closed

 self-cooling IP65(excluding axis penetration)

5.0

15.91

162.38

47.74

487.15

12.00 17.34 22.68 30.74 52.13

12.24 17.69

Motor inertia x 10

24.40 39.49

23.14

51.63

Quadrature Type Incremental 3000[P/R]

31.37 53.19

Motor inertia x 5

29.66 48.58

Serial Type 19[bit]

17.7

APM-SE05G

APM-SE09G APM-SE13G

Repeatedly used area

Continuously used area

APM-SE17G

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SF30A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SF50A

Repeatedly used area

Continuously used area

7-9

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Rated power rate

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

[kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

SF22D

L7□A020

2.2

10.50

107.17

31.51

321.52

30.74

31.35

35.88

LF35D

L7□A035

2000

3000

3.5

16.71

170.50

50.13

511.51

SF12M

L7□A020

1.2

11.46

116.92

34.37

350.75

2000

SF20M LF30M

2.0

L7□A035

3.0

19.10

194.86

57.29

584.58

52.13 30.74 52.13 83.60

53.16 31.37 53.19

Motor inertia x 5

85.31

53.56 42.71 69.95 98.15

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

Continuous

0~40[°C]

1000

20~80[%]RH(no condensation)

28.64

292.29

85.93

876.88

1700

Fully closed

 self-cooling IP65(excluding axis penetration)

12.4

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

17.7 12.4

Rotation speed

– Torque Characteristics

17.7 26.3

SF44M

L7□A050

4.4

42.01

428.69

126.04

1286.08

2000

121.35

123.83

145.45

35.6

APM-SF22D

APM-LF35D

APM-SF12M

Repeatedly used area

Continuously used area

APM-SF20M

Repeatedly used area

Continuously used area

7-10

Repeatedly used area

Continuously used area

APM-LF30M

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SF44M

Repeatedly used area

Continuously used area

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Specifications and features

Weight

SF20G LF30G

L7□A035

1.8 2.9

11.46

116.92

34.37

18.46

188.37

55.38

350.75

3000

30.74

31.37

565.10

2700

52.13

53.19

SF44G

L7□A050

4.4

28.01

285.80

84.02

857.39

3000

83.60

85.31

SG20G

L7□A020

1.8

11.46

116.92

34.47

1500

350.80

3000

51.42

52.47

LG30G

L7□A035

2.9

18.46

188.37

55.38

565.10

2700

80.35

81.99

42.71

Motor inertia x 5

65.37 93.83 25.53 42.41

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

Protection method

Time rating

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

0~40[°C]

20~80[%]RH(no condensation)

12.4

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

17.7 26.3

Rotation speed

– Torque Characteristics

17.0 22.0

SG44G

L7□A050

4.4

28.01

285.80

84.02

857.39

3000

132.41

135.11

59.24

30.8

APM-SF44G

APM-SF20G APM-LF30G

Repeatedly used area

Continuously used area

APMa-SG20G

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-LG30G

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SG44G

Repeatedly used area

Continuously used area

7-11

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

SG12M

Applicable Drive

(L7□A□□)

L7□A020

Rated output 1.2

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

11.46

116.92

34.37

350.75

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Specifications and features

Time rating

Ambient temperature

51.42

52.47

25.53

2000

SG20M

2.0

19.10

194.86

57.29

584.58

80.35

81.99

45.39

LG30M

L7□A035

Fully closed

1000

3.0

28.64

292.29

85.93

876.88

1700

132.41

135.11

61.97

SG44M

L7

Continuous

0~40[°C]

□A050

4.4

42.01

428.69

126.04

1286.08

2000

172.91

176.44

Motor inertia x 5

102.08

SG22D

L7□A020

2.2

10.50

107.20

31.51

321.52

21.45

Quadrature Type Incremental 3000[P/R]

Serial Type 19[bit]

51.42

52.47

2000

3000 self-cooling IP65(excluding axis penetration)

LG35D

L7□A035

3.5

16.71

170.52

50.13

511.51

80.35

81.99

34.75

Weight

Ambient humidity

Atmosphere

Anti-vibration

[kg]

20~80[%]RH(no condensation)

17.0

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

22.0 30.8 37.5

Rotation speed

– Torque Characteristics

17.0 22.0

APM-SG12M APM-SG20M APM-LG30M

Repeatedly used area

7-12

Continuously used area

APM-SG44M

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-SG22D

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-LG35D

Repeatedly used area

Continuously used area

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

HB01A

Applicable Drive

(L7□A□□)

HB02A

L7□A002

Rated output 0.1 0.2

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

0.32

3.25

0.96

9.74

0.64

6.49

1.91

19.48

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Speed and position detector

Standard

Option

Protection method

Time rating

0.27

0.27

0.33

0.34

Motor inertia x 20

0.47

3.34 11.98 34.47

Quadrature Type Incremental 1024P/R

Fully closed

HB04A

L7□A004

0.4

1.27

12.99

3.82

38.96

3000

3500

0.46 x

Continuous

HE09A

L7□A010

0.9

2.86

29.23

8.59

87.69

19.56

19.96

HE15A

L7□A020

1.5

4.77

48.72

14.32

146.15

22.27

22.72

Motor inertia x 10

4.10

2048 P/R

10.01 self-cooling IP55(excluding axis penetration)

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg] 0.9

0~40°C

20~80[%]RH(no condensation)

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

1.2 1.7 5.8

Rotation speed

– Torque Characteristics

7.4

APM-HB04A

APM-HB01A

APM-HB02A

Repeatedly used area

Continuously used area

APM-HE09A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-HE15A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

7-13

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate

Speed and position detector

Specifications and features

Weight

[kW/s]

Standard

Option

Protection method

Time rating

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FB01A

L7□A001

0.10

0.32

3.25

0.96

9.74

0.09

0.09

11.38

0.7

FB02A

L7□A002

0.20

0.64

6.50

1.91

19.49

0.15

FB04A FC04A

L7□A004

0.40 0.40

1.27

12.99

1.27

13.00

3.82 3.82

38.98 38.98

0.25

3000

5000

0~40[°C]

0.50

Continuous

20~80[%]RH(no condensation)

No direct sunlight, corrosive gas, or combustible gas

0.9

Vibration acceleration 49[m/s2](5G)

1.3 1.6 2.2

Rotation speed

– Torque Characteristics

FC06A FC08A

L7□A008

0.60 0.75

1.91

19.50

5.73

2.39

24.36

7.16

58.47 73.08

0.88

0.15

Motor inertia x 20

27.95

0.25 0.51

65.90 32.62

Serial Type 19[bit]

X

0.89

Motor inertia x 15

41.69

Fully closed

 self-cooling IP65(excluding axis penetration)

1.25

1.27

45.78

2.7

APM-FB01A

APM-FB02A

APM-FB04A

Repeatedly used area

Continuously used area

APM-FC04A

Repeatedly used area

Continuously used area

7-14

Repeatedly used area

Repeatedly used area

Continuously used area

APM-FC06A

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

APM-FC08A

Repeatedly used area

Continuously used area

1.0

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output [kW]

Rated torque

Maximum instantaneous torque

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

Maximum rotation speed

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Speed and position detector

Specifications and features

Weight

Standard

Option

Protection method

Time rating

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FC10A FC03D

L7□A010 L7□A004

1.00 0.30

3.18 1.43

32.50

9.55

97.44

14.60

4.30

43.80

3000

4500

FC05D

0.45

2.15

21.90

6.45

65.80

1.62

1.65

62.74

0.50

0.51

41.28

0.88

1.25

0.89

Motor inertia x 15

1.27

52.76

Serial Type 19[bit]

55.39

X

1.62

1.65

59.64

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

0~40[°C]

FC06D

L7□A008

0.55

2.60

26.80

7.88

80.40

2000

3000

20~80[%]RH(no condensation)

FC07D

0.65

3.10

31.70

9.31

95.00

3.8

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

1.6 2.2 2.7 3.8

Rotation speed

– Torque Characteristics

APM-FC10A

APM-FC03D

APM-FC05D

Repeatedly used area

Continuously used area

APM-FC06D

Repeatedly used area

Repeatedly used area

Repeatedly used area

Continuously used area

APM-FC07D

Repeatedly used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

7-15

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

FE09A FE15A

L7□A010 L7□A020

0.9 1.5 Rated output

Rated torque

Maximum instantaneous torque

Rated rotation speed

Specifications and features

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Ambient temperature

Ambient humidity

Weight

Atmosphere

Anti-vibration

[kg]

2.86

29.20

8.59

87.70

5.66

5.77

14.47

4.77

48.70

14.32

146.10

10.18

10.39

22.38

3000

5000

FE22A

L7□A035

2.2

7.00

71.40

21.01

214.30

14.62

FE30A

L7□A035

3.0

9.55

97.40

28.65

292.20

19.04

14.92 19.43

Motor inertia x 10

33.59 47.85

Serial Type 19 [bit]

X

FE06D

L7□A008

0.6

2.86

29.2 0

8.59

87.70

5.66

5.77

14.49

5.0

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

6.7 8.5

Rotation speed

– Torque Characteristics

10.1 5.0

2000

3000

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

0~40[°C]

20~80[%]RH(no condensation)

FE11D

L7□A010

1.1

5.25

53.60

15.75

160.70

10.18

10.39

27.08

6.7

Repeatedly used area

7-16

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Repeatedly used area

7. Product Specifications

■ Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FE16D

L7□A020

1.6

7.63

77.90

22.92

233.80

14.62

14.92

39.89

2000

3000

FE22D

L7□A035

2.2

10.5

107.10

31.51

321.40

19.04

19.43

57.90

FE03M

L7□A004

0.3

2.86

29.22

8.59

87.66

FE06M

L7□A008

0.6

5.72

58.4

17.18

0~40[°C]

175.3

5.66 10.18

5.77 10.39

Motor inertia x 10

14.49 32.22

Serial Type 19 [bit]

X

Continuous

1000

2000

20~80[%]RH(no condensation_

FE09M

L7□A010

0.9

8.59

87.7

25.77

262.9

14.62

14.92

50.48

Fully closed

 self-cooling IP65(excluding axis penetration)

8.5

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

10.1 5.0

Rotation speed

– Torque Characteristics

6.7 8.5

FE12M

L7□A020

1.2

11.46

116.9

34.22

349.1

19.04

19.43

68.91

10.1

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

7-17

Repeatedly used area

7. Product Specifications

■Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FE05G

L7□A008

0.45

2.86

29.22

8.59

87.66

5.66

5.77

14.49

FE09G

L7□A010

0.85

5.41

55.19

16.23

165.57

1500

3000

FE13G FE17G

L7□A020

1.3 1.7

8.27

84.41

24.82

10.82

110.38

32.46

253.23 331.14

10.18 14.62 19.04

10.39 14.92

Motor inertia x 10

28.74 46.81

19.43

61.46

Serial Type 19 [bit]

X

Continuous

0~40[°C]

20~80[%]RH(no condensation)

FF30A

L7□A035

3.0

9.55

97.40

28.65

292.3

5.0

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

6.7 8.5

Rotation speed

– Torque Characteristics

10.1 12.5

3000

5000

Fully closed

 self-cooling IP65(excluding axis penetration)

FF50A

L7□A050

5.0

15.91

162.30

47.74

487.00

27.96 46.56

28.53 47.51

Motor inertia x 5

32.59 54.33

17.4

Repeatedly used area

Continuously used area

7-18

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

7. Product Specifications

■Protect Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FF22D

L7□A020

2.2

10.50

107.1

31.50

321.30

27.96

28.53

39.43

2000

3000

FF35D

L7□A035

3.5

16.70

170.4

50.10

511.40

46.56

47.51

59.89

FF20G

L7□A020

1.8

11.45

116.9

34.35

350.60

3000

FF30G

L7□A035

2.9

18.46

188.3

55.38

564.90

0~40[°C]

1500

2700

27.96 46.56

28.53 47.51

Motor inertia x 5

46.92 73.14

Serial Type 19 [bit]

X

Continuous

20~80[%]RH(no condensation)

FF44G

L7□A050

4.4

28.00

285.7

84.03

857.10

3000

73.85

75.36

106.15

Fully closed

 self-cooling IP65(excluding axis penetration)

12.5

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

17.4 12.5

Rotation speed

– Torque Characteristics

17.4 25.2

FF12M

L7□A020

1.2

11.46

116.9

34.38

350.70

1000

2000

27.96

28.53

46.94

12.5

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

7-19

7. Product Specifications

■Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

Rated output

Rated torque

Maximum instantaneous torque

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

Rated rotation speed

[r/min]

Maximum rotation speed

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Standard

Speed and position detector

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

FF20M

L7□A020

2.0

19.09

194.8

57.29

584.40

2000

46.56

47.51

78.27

1000

FF30M

L7□A035

3.0

28.64

292.2

85.94

876.60

1700

73.85

75.36

111.04

FF44M

L7□A050

4.4

42.02

428.7

126.1

128.60

1000

2000

FG22D

L7□A020

2.2

10.50

107.1

31.51

321.30

0~40[°C]

3000

106.7 41.13

108.9 41.97

Motor inertia x 5

165.38 26.78

Serial Type 19 [bit]

X

Continuous

2000

20~80[%]RH(no condensation)

FG35D

L7□A035

3.5

16.71

170.4

50.12

511.30

2700

71.53

72.99

38.99

Fully closed

 self-cooling IP65(excluding axis penetration)

17.4

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

25.2 33.8

Rotation speed

– Torque Characteristics

15.4 20.2

FG20G

L7□A020

1.8

11.50

116.9

34.40

350.80

1500

3000

14.13

41.97

31.91

15.4

Repeatedly used area

Continuously used area

Repeatedly used area

7-20

Repeatedly used area

Continuously used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

7. Product Specifications

■Product Features

Servo Motor Type (APM-



)

Applicable Drive

(L7□A□□)

FG30G

L7□A035

2.9 Rated output

Rated torque

Maximum instantaneous torque

Rated rotation speed

Maximum rotation speed

[kW]

[N

 m]

[kgf

 cm]

[N

 m]

[kgf

 cm]

[r/min]

[r/min]

Inertia moment

[kg

 m2x10-4]

[gf

 cm

 s2]

Allowed load inertia

Rated power rate [kW/s]

Speed and position detector

Standard

Option

Protection method

Time rating

Specifications and features

Weight

Ambient temperature

Ambient humidity

Atmosphere

Anti-vibration

[kg]

18.50

188.4

55.40

565.1

2700

71.53

72.99

47.66

1500

FG44G

L7□A050

4.4

28.00

285.8

84.00

857.4

3000

117.72

120.12

66.64

FG12M FG20M

L7□A020

1.2

11.50

116.9

34.40

350.8

41.13

41.97

2000

Fully closed

 self-cooling IP65(excluding axis penetration)

Continuous

2.0

19.10

194.9

57.30

584.6

71.53

72.99

Motor inertia x 5

31.91 51.00

Serial Type 19 [bit]

X

0~40[°C]

1000

20~80[%]RH(no condensation)

FG30M

L7□A035

3.0

28.60

292.3

85.90

876.9

1700

117.72

120.12

69.70

No direct sunlight, corrosive gas, or combustible gas

Vibration acceleration 49[m/s2](5G)

28.0 20.2 28.0 15.4

Rotation speed

– Torque Characteristics

20.2

FG44M

L7□A050

4.4

42.00

428.7

126.00

128.61

2000

149.40

152.45

118.14

33.5

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Repeatedly used area

Continuously used area

Repeatedly used area

Reapetedly used area

7-21

7. Product Specifications

■ Electric Brake Specifications

Applicable Motor

Series

Purpose

Input voltage [V]

Static friction torque

[N•m]

Capacity [W]

Coil resistance [Ω]

Rated current [A]

Braking mechanism

Insulation grade

Applicable Motor

Series

Purpose

Input voltage [V]

Static friction torque

[N•m]

Capacity [W]

Coil resistance [Ω]

Rated current [A]

Braking mechanism

Insulation grade

APM-SA

DC 24V

0.32

6

96

0.25

APM-FB

Maintenance

DC 24V

1.47

6.5

89

0.27

Spring brake

Grade F

APM-SB

1.47

6.5

89

0.27

APM-FC

Maintenance

DC 24V

APM-SC

9

64

0.38

Spring brake

GraDde F

APM-SE

Maintenance

DC 24V

3.23 10.4

19.4

29.6

0.81

3.23

9

64

0.38

Spring brake

Grade F

APM-SF

40

25

23

1.04

APM-SG

NOTE 1) The same specifications apply to all electric brakes installed in our servo motors.

NOTE 2) Electric brakes are designed to maintain a stop. Never use them for absolute braking.

NOTE 3) The characteristics of the electric brakes were measured at 20°C.

NOTE 4) These brake specifications are subject to change. Check the voltage specifications on your specific motor.

DC 90V

74

32

327

0.28

7-22

7. Product Specifications

7.1.2 Outline Drawing

SA Series | APM-SAR3A, APM-SAR5A, APM-SA01A, APM-

SA015A

Name

SAR3A

SAR5A

SA01A

SA015A

L

101.3(137.6)

External Dimensions

LM

76.3(112.6)

108.3(144.6) 83.3(119.5)

125.3(161.6) 100.3(136.5)

145.3 120.3

LC

42.5(42.4)

49.5(49.4)

66.5(66.4)

86.5

CB

66.3(102.3)

73.3(109.3)

90.3(126.3)

110.3

NOTE 1) The standard shaft end for 40 flange is straight.

NOTE 2) Use DC 24 [V] for brake-opening power.

NOTE 3) The sizes in parentheses apply when attached to brakes.(Except SA015A)

Weight (kg)

0.32(0.67)

0.38(0.73)

0.5(0.85)

0.7

7-23

7. Product Specifications

SB Series | APM-SB01A, APM-SB02A, APM-SB04A

7-24

Name

SB01A

SB02A

SB04A

L

122(162)

136(176)

164(199)

External Dimensions

LM LC

92(132) 52.5(52.3)

106(146)

134(169)

66.5(66.3)

94.5(94.3)

NOTE 1) Use DC 24 [V] for brake-opening power.

NOTE 2) The sizes in parentheses apply when attached to brakes.

CB

59.5(99.5)

73.5(113.5)

101.5(141.5)

Weight (kg)

0.82(1.4)

1.08(1.66)

1.58(2.16)

7. Product Specifications

SC Series | APM-SC04A,SC03D, APM-SC06A,SC05D,

APM-SC08A,SC06D, APM-SC10A,SC07D

Name

L

External Dimensions

LM LC

158.5(198.8) 118.5(158.8) 79(78.8)

CB

86(126.3)

SC04A,

SC03D

SC06A,

SC05D

SC08A,

SC06D

SC10A,

SC07D

178.5(218.8) 138.5(178.8)

198.5(238.8) 158.5(198.8)

218.5(258.8) 178.5(218.8)

99(98.8)

119(118.8)

139(138.8)

NOTE 1) Use DC 24 [V] for brake-opening power

NOTE 2) The sizes in parentheses apply when attached to brakes

.

106(146.3)

126(166.3)

146(186.3)

S

14

16

16

16

Weight

(kg)

1.88(2.92)

2.52(3.56)

3.15(4.22)

3.80(4.94)

7-25

7. Product Specifications

SE Series | APM-SE09A, SE06D, SE05G, SE03M, APM-SE15A,

SE11D,SE09G,SE06M, APM-SE22A, SE16D, SE13G, SE09M,

APM-SE30A, SE22D, SE17G, SE12M

7-26

Name

L

External Dimensions

LM LC

Key

Dimensions

S T W U

Weight

(kg)

SE09A, SE06D,

SE05G, SE03M

SE15A, SE11D,

SE09G, SE06M

SE22A, SE16D,

SE13G, SE09M

SE30A, SE22D,

SE17G, SE12M

201.3(239.3) 143.3(181.3) 93.8(93.6) 19 5 5

225.3(263.3) 167.3(205.3) 117.8(117.6) 19 5 5

3

3

5.5(7.04)

7.54(9.08)

249.3(287.3) 191.3(229.3) 141.8(141.6) 22 6 6 3.5 9.68(11.22)

273.3(311.3) 215.3(253.3) 165.8(165.6) 22 6 6 3.5 11.78(13.32)

NOTE 1) Use DC 24 [V] for brake-opening power

NOTE 2) . The sizes in parentheses apply when attached to brakes

.

7. Product Specifications

SF Series | APM-SF30A, SF22D, SF20G, SF12M, SF50A, LF35D,

LF30G, SF20M, SF30M, LF30M,SF44G, SF44M

Name

SF30A,

SF22D,

SF20G, SF12M

SF50A,LF35D,

LF30G,SF20M

LF30M,SF44G

SF44M

L

External Dimensions

LM LC LR

261.5

(312.9)

182.5

(233.9)

133

(132.7)

295.5

(346.9)

345.5

(396.9)

405.5

(456.9)

216.5

(267.9)

266.5

(317.9)

326.5

(377.9)

167

(166.7)

217

(216.7)

277

(276.7)

S

Key Dimensions

QK T W U

79 35

(0~+0.01)

60 8 10 5

NOTE 1) Eye bolts apply to LF30M or higher models

NOTE 2) Use DC 24 [V] for brake-opening power.

NOTE 3) The sizes in parentheses apply when attached to brakes.

Weight

(kg)

12.4(19.2)

17.7(24.9)

26.3(33.4)

35.6(42.8)

7-27

7. Product Specifications

SG Series | APM-SG22D, SG20G, SG12M, LG35D, LG30G,

SG20M, LG30M

7-28

Name

SG22D, SG20G,

SG12M

LG35D,LG30G,

SG20M

SG44G,

LG30M

SG44M

L

236.5

(302.7)

256.5

(322.7)

292.5

(358.7)

320.5

(386.7)

External Dimensions

LM

171.5

(237.7)

191.5

(257.7)

227.5

(293.7)

255.5

(321.7)

LC

122

(121.2)

142

(142.2)

178

(177.2)

206

(205.2)

LF LQ S

Shaft, Key

Dimensions

T W U

19 56.4 35 8 10 5

Weight

(Kg)

16.95

(30.76)

21.95

(35.7)

30.8

(44.94)

37.52

(50.94)

NOTE 1) Use DC 90 [V] for brake-opening power.

NOTE 2) The sizes in parentheses apply when attached to brakes.

7. Product Specifications

APM-HB01A (Hollow Shaft), APM-HB02A (Hollow Shaft),

APM-HB04A (Hollow Shaft)

External Dimensions

Name

HB01A

HB02A

HB04A

L

140.5

154.5

182.5

LM

98.5

112.5

140.5

LC

63.5

82.5

105.5

CB

24

38

66

Hollow

Shaft

Diameter

15

15

15

Weight (Kg)

0.89

1.16

1.69

APM-HE09A (Hollow Shaft), APM-HE15A (Hollow Shaft)

Name

HE09A

HE15A

L

207

231

External Dimensions

LM LC

150

174

111.5

135.5

Hollow

Shaft

Diameter

40

40

Weight (Kg)

5.82

7.43

7-29

7. Product Specifications

FB Series : APM-FB01A, APM-FB02A, APM-FB04A

7-30

Name

FB01A

FB02A

FB04A

L

109(149.2)

External Dimensions

LM

79(119.2)

LC

43.5(43)

120(160.2)

140(180.2)

90(130.2)

110(150.2)

54.5(54)

74.5(74)

NOTE 1) Use DC power (24V) to operate the brake.

NOTE 2) The sizes in parentheses apply when attached to the brakes.

Weight(kg)

0.72(1.3)

0.94(1.49)

1.32(1.87)

7. Product Specifications

FC Series | APM-FC04A,FC03D, APM-FC06A,FC05D,

APM-FC08A,FC06D, APM-FC10A,FC07D

Name

L

External Dimensions

LM

FC04A,FC03D 136.5(177) 96.5(137)

LC

Shaft, Key Dimensions

S H T W U

61(60.5) 14 -0.018 5 5 3

FC06A,FC05D 154.5(195) 114.5(155) 79(78.5) 19 -0.021 6 6 3.5

FC08A,FC06D 172.5(213) 132.5(173) 97(96.5) 19 -0.021 6 6 3.5

FC10A,FC07D 190.5(231) 150.5(191) 115(114.5) 19 -0.021 6 6 3.5

Weight(kg)

1.56(2.6)

2.18(3.22)

2.72(3.76)

3.30(4.34)

NOTE 3) Use DC power (24V) to operate the brake.

NOTE 4) The sizes in parentheses apply when attached to the brakes.

7-31

7. Product Specifications

FE Series | APM-FE09A, FE15A, FE22A, FE30A, FE06D, FE11D,

FE16D, FE22D, FE03M, FE06M, FE09M, FE12M, FE05G, FE09G,

FE13G, FE17G

Name

FE09A,FE06D,FE05G,FE03M

FE15A,FE11D,FE09G,FE06M

FE22A,FE16D,FE13G,FE09M

FE30A,FE22D,FE17G,FE12M

<Standard>

External Dimensions

L LM LC S

Key Dimensions

QW T W U

197 139 90 19 25 5 5 3

Weight(kg)

5.04

217 159 110 19 25 5 5 3 6.74

237 179 130 22 25 6 6 3.5 8.48

255 197 148 24 36 7 8 4 10.05

7-32

Name

FE09A,FE06D,FE05G,FE03M

FE15A,FE11D,FE09G,FE06M

FE22A,FE16D,FE13G,FE09M

FE30A,FE22D,FE17G,FE12M

<Brake>

External Dimensions

L LM

Key Dimensions

Weight(kg)

LC S QW T W U

236 178 90 19 25 5 5 3 6.58

256

276

294

198

218

236

110 19 25 5 5 3

130 22 25 6 6 3.5

148 24 36 7 8 4

NOTE 1) Use DC power (24V) to operate the brake.

8.28

10.02

11.59

7. Product Specifications

FF Series | APM-FF30A, FF50A, FF22D, FF35D, FF20G, FF30G,

FF44G, FF12M, FF20M, FF30M, FF44M

Name

FF30A,22D,20G,12M

FF50A,35D,30G,20M

44G,30M

44M

<Standard>

External Dimensions

L LM LC LR S

Key Dimensions

QK T W U

258

288

179

209

129

159 35 60 8 10 5

79

332 253 203

385 306 256 42 60 8 12 5

Weight(kg)

12.5

17.4

25.2

33.8

<Brake>

Name

FF30A,22D,20G,12M

FF50A,35D,30G,20M

44G,30M

44M

External Dimensions

L

310

LM

231

LC LR

129

343

384

437

261

305

358

159

203

256

79

NOTE 1) Eye bolts apply to FF30M or higher models.

NOTE 2) Use DC power (24V) to operate the brake.

S

Key Dimensions

QK T W U

Weight(kg)

35

42

60 8 10 5

60 8 12 5

19.7

24.6

32.4

41.0

7-33

7. Product Specifications

FG Series | APM-FG22D FG35D FG20G, FG30G, FG44G, FG12M,

FG20M, FG30M, FG44M

Name

FG22D,FG20G,FG12M

FG35D,FG30G,FG20M

FG44G,FG30M

FG44M

<Standard>

External Dimensions

L LM LC LR

230 165 115

S

Key Dimensions

QK T W U

251

283

305

186

218

240

135

168

190

65

35

42

60 50 8 10

60 50 8 12

Weight(kg)

15.42

20.22

28.02

33.45

7-34

<Brake>

Name

FG22D,FG20G,FG12M

FG35D,FG30G,FG20M

FG44G,FG30M

FG44M

External Dimensions

L LM LC LR

296 231 115

317

349

371

252

284

306

136

168

190

65

NOTE 1) Use DC power (90V) to operate the brake.

S

Key Dimensions

QK T W U

Weight(kg)

35

42

60 50 8 10

60 50 8 12

29.23

34.03

41.83

47.26

7. Product Specifications

7.2 Servo Drive

7.2.1 Product Features

Item

Input power

Type Name

Main power

L7□A

001□

L7□A

002□

L7□A

004□

L7□A

008□

L7□A

010□

3-phase AC 200-230 [V] (-15~10[%]), 50-60 [Hz]

L7□A

020□

L7□A

035□

Control power Single-phase AC 200-230 [V] (-15~10[%]), 50-60 [Hz]

Rated current [A] 1.4 1.7 3.0 5.2 6.75 13.5 16.7

L7□A

050□

32

Peak current [A] 4.2 5.1 9.0 15.6 20.25 40.5 50.1 96

Encoder Type

Quad. Type incremental line driver 2000-10000 [P/R]

Serial 17 / 19 bit / 21 bit

Control performan ce

Speed control range

Maximum 1: 5000

Speed

Control

Frequency response

Maximum 1 [kHz] or above (when the 19-bit serial encoder is applied).

Speed command

DC

–10 [V]~+10 [V] (Reverse rotation in case of negative voltage)

Acceleration/d eceleration time

Straight or S-curve acceleration/deceleration (0-10,000 [ms], possible to be set by one [ms] unit)

Speed change rate

±0.01 [%] or lower [when load changes between 0 and 100%]

±0.1[%] or lower [temperature 25 ±10℃]

Position

Control

Input frequency

Input pulse

Method

1 [Mpps], line driver / 200 [kbps], open collector

Symbol + pulse series, CW+CCW, A/B phase

Electric Gear

Ratio

Four digital gear ratios can be set, selected and tuned.

Torque command

DC

–10~+10 [V] (Reverse direction torque in case of negative voltage)

Torque

Control

Speed limit DC 0~10 [V], internal speed command within ±1[%]

Repetition accuracy

Within ±1[%]

Analog

Input

Input range DC 0~10 [V]

Angular resolution

12 [bit]*

Input/outp ut signal

Analog

Output

Output range DC 0~10 [V]

Angular resolution

12 [bit]

7-35

7. Product Specifications

Item

Type Name

L7□A

001□

L7□A

002□

L7□A

004□

L7□A

008□

L7□A

010□

L7□A

020□

L7□A

035□

L7□A

050□

Digital input

A total of 10 input channels (allocable)

SVON, SPD1, SPD2, SPD3, ALMRST, DIR, CCWLIM, CWLIM, EMG, STOP, EGEAR1, EGEAR2,

PCON, GAIN2, P_CLR, T_LMT, MODE, ABS_RQ, ZCLAMP

You can selectively allocate a total of 19 functions.

You can set the positive/negative logic of the selected signal.

Digital output

A total of 5 channels (allocable), 3 channels (fixed with alarm codes)

ALARM, READY, ZSPD, BRAKE, INPOS, TLMT, VLMT, INSPD, WARN

You can selectively allocate a total of nine kinds of output.

You can set the positive/negative logic of the selected signal.

Communic ation

RS422 Accessible to PC software and the RS422 server

USB

Status monitoring through PC software, JOG operation, and parameter uploading/downloading are possible.

Encoder Serial BiSS encoder and quadrature encoder supported

Encoder output method

Random pre-scale output through FPGA (maximum 6.4 Mpps)

Dynamic braking

Regenerati ve braking

Standard built-in (activated when the servo alarm goes off or when the servo is off)

Both default built-in and external installation possible

Displaying Seven segments (5 DIGIT)

Built-in functions

Selfsetting

Add-on functions

Loader (SET, MODE, UP, and [DOWN] keys)

Auto gain tuning, phase Z detection, manual JOG operation, program JOG operation, automatic analog input calibration

Protection function

Overcurrent, overload, overvoltage, voltage lack, main power input error, control power input error, overspeed, motor cable, heating error (power module heating, drive temperature error), encoder error, excessive regeneration, sensor error, communication error

Environment

Temperature 0 ~ 50[℃]

Humidity 90[%] RH or lower (no condensation)

Environment

Indoors, a place free from corrosive gas or combustible gas, or a place without liquid or conductive dust.

7-36

7.2.2 Outline Drawing

L7□A001□ ~ L7□A004□

7. Product Specifications

L7□A008□ / L7□A010□

Weight: 1.0[kg]

Weight: 1.5[kg](Cooling fan included)

7-37

7. Product Specifications

L7□A020□ / L7□A035□

L7□A050□

Weight: 2.5[kg](Cooling fan included)

7-38

Weight: 5.5[kg](Cooling fan included)

7. Product Specifications

7.3 Options and Peripheral Devices

■ Option (incremental encoder cable)

Category

Product

Name

Type

Name

(Note

1)

Applicable

Motors

Motor connection

Specifications

Drive connection (CN2)

For signaling

Quadrature type

Incremental

Encoder cable

(small capacity)

APCS-

E



AS

All models of

APM-SA,

APM-SB,

APM-SC and

APM-HB

Series

1. Motor connection

a. Cap specifications (15 positions): 172163-1 (AMP)

b. Socket specifications: 170361-1 (AMP)

2. Drive connection (CN2)

a. Case specifications: 10314-52A0-008 (3M)

b. Connector specifications: 10114-3000VE (3M)

c. Cable specifications: 7Px0.2SQ (AWG24)

Motor connection Drive connection (CN2)

For signaling

Quadrature type

Incremental

Encoder cable

(medium capacity)

E

APCS-



BS

All models of

APM-SE,

APM-SF,

APM-LF,

APL-LG,

APM-SG and

APM-HE

Series

1. Motor connection (MS: Military Standard)

a. Plug specifications: MS3108B (MS3106B) 20-29S

2. Drive connection (CN2)

a. Case specifications: 10314-52A0-008 (3M)

b. Connector specifications: 10114-3000VE (3M)

c. 3. Cable specifications: 7Px0.2SQ (AWG24)

NOTE 1) The



in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.

Cable length (m)

Robotic cable

General cable

3

F03

N03

5

F05

N05

10

F10

N10

20

F20

N20

7-39

7. Product Specifications

Option (serial encoder cable)

Category

Product

Name

Type Name

(Note 1)

Applicable

Motors

Motor connection

Specifications

Drive connection (CN2)

For signaling

Serial type

Encoder cable

(small capacity)

APCS-

E



CS

All models of

APM-SA,

(Will provide)

APM-SB and

APM-SC

Series

1. Motor connection

a. Cap specifications (9 positions): 172161-1 (AMP)

b. Socket specifications: 170361-1 (AMP)

2. Drive connection (CN2)

a. Case specifications: 10314-52A0-008 (3M)

b. Connector specifications: 10114-3000VE (3M)

3. Cable specifications: 4Px0.2SQ (AWG24)

Motor connection Drive connection (CN2)

For signaling

Serial type

Encoder cable

(medium capacity)

APCS-

E



DS

All models of

APM-SE,

APM-SF,

APM-SG,

APM-LF,

APM-LG

APM-FE

APM-FF and

APM-FG

Series

1. Motor connection (MS: Military Standard)

a. Plug specifications: MS3108B (MS3106B) 20-29S

2. Drive connection (CN2)

a. Case specifications: 10314-52A0-008 (3M)

b. Connector specifications: 10114-3000VE (3M)

3. Cable specifications: 4Px0.2SQ (AWG24)

7-40

Motor connection

7. Product Specifications

Drive connection (CN2)

For signaling

Encoder cable for flat type motor

(small capacity)

APCS-

E



ES

*Front :

APCS-

E



ES

* Rear :

APCS-

E



ES-R

All models of

APM-FB and

APM-FC

Series

1. Motor connection

a. Cap specifications: 2201825-1 (Tyco)

b. Socket specifications: 2174065-1(Tyco)

2. Drive connection(CN2)

a. Case specifications: 10314-52A0-008(3M)

b. Connector specifications: 10114-3000VE(3M)

3. Cable specifications: 4Px0.2SQ(AWG24)

Motor Connection

Drive Connection

For signaling

Multi turn

Type

Serial

Encoder

Cable

APCS-

E



CS1

All models of

APM-SB and

APM-SC

Series

APM-SA

(Will provide)

1. Motor connection

a. Cap specifications(9 Position) : 172161-1(AMP)

b. Socket specifications: 170361-1(AMP)

2. Drive connection(CN2)

a. Case specifications: 10314-52A0-008(3M)

b. Connector specifications: 10114-3000VE(3M)

3. Cable specifications: 4Px0.2SQ(AWG24) or

4Px24AWG

7-41

7. Product Specifications

Drive Connection

Motor Connection

7-42

For signaling

Multi turn

Type

Serial

Encoder

Cable

APCS-

E



ES1-

*Front :

APCS-

E



ES1

* Rear :

APCS-

E



ES1-

R

All models of

APM-FB and

APM-FC

Series

1. Motor connection

a. Cap specifications(9 Position): 2201825-

1(Tyco)

b. Socket specifications: 2174065-4(Tyco)

2. Drive connection(CN2)

a. Case specifications: 10314-52A0-008(3M)

b. Connector specifications: 10114-3000VE(3M)

3. Cable specifications : 4Px0.2SQ(AWG24) or

4Px24AWG

Motor Connection

Drive Connection

For signaling

Multi turn

Type

Serial

Encoder

Cable

E

APCS-



DS1

All models of

APM-SE,

APM-SF,

APM-SG,

APM-LF,

APM-LG,

APM-FE,

APM-FF and

APM-FG

Series

1. Motor connection

a. Cap specifications(9Position):MS3108B 20-29S

2. Drive connection(CN2)

a. Case specifications: 10314-52A0-008(3M)

b. Connector specifications: 10114-3000VE(3M)

3. Cable specifications: 4Px0.2SQ(AWG24)

NOTE 1) The



in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.

Cable length (m)

Robotic cable

General cable

3

F03

N03

5

F05

N05

10

F10

N10

20

F20

N20

7. Product Specifications

■ Option (power cable)

Category Product

Name

Type

Name

(Note 1)

Applicable

Motors

Motor connection

Specifications

Drive connection

For power

Standard type

Power cable

APCS-

P



GS

All models of

APM-SA,

APM-SB,

APM-SC and

APM-HB

Series

1. Motor connection

a. Cap specifications (4 positions): 172159-1 (AMP)

b. Socket specifications: 170362-1 (AMP)

2. Drive connection (U, V, W, and FG)

a. U,V and W pin specifications: UA-F1512 (SEOIL)

b. FG pin specifications: 1.5×4 (ring terminal)

3. Cable specifications: 4Cx0.75SQ (AWG18)

(APM-SAR3A, SAR5A, and SA01A use 0.5SQ)

Motor connection

Power Supply (DC24V)

For power

Brake type

Power cable

APC-

P



KB

All models of

APM-SA,

APM-SB and

APM-SC

Series

1. Motor connection

a. Cap specifications (6 positions): 172157-1 (AMP)

b. Socket specifications: 170362-1 (AMP)

2. For brake power

a. Connection terminal specifications: 1.5×3 (KET

GP110012)

b. Cable specifications: 2Cx0.75SQ (AWG18)

7-43

7. Product Specifications

Category Product

Name

Type

Name

(Note 1)

Applicable

Motors

Motor connection

Specifications

Drive connection

For power

Standard type

Power cable

APCS-

P



HS

All models of

APM-SE and

APM-HE

Series

1. Motor connection (MS: Military Standard)

a. Plug specifications: MS3108B (MS3106B) 20-4S

2. Drive connection (U, V, W, and FG)

a. U, V and W pin specifications: UA-F2512

b. FG pin specifications: 2.5×4 (ring terminal)

3. Cable specifications: 4Cx2.0SQ (AWG14)

Note: The drive end connection of the APM-SE03M Series cable uses the UA-F1512 pin.

Motor connection Drive connection

For power

Standard type

Power cable

APCS-

P



IS

All models of

APM-SF

APM-SG

APM-FF

APM-FG

SERIES

Below

3.5KW

1. Motor connection (MS: Military Standard)

a. Plug specifications: MS3108B (MS3106B) 22-22S

2. Drive connection (U, V, W, and FG)

a. U, V and W pin specifications: UA-F4012 (SEOIL)

b. FG pin specifications: 2.5 X 4 (ring terminal)

3. Cable specifications: 4Cx2.5SQ (AWG14)

Drive connection

Motor connection

For power

Power cable for flat type motor(small capacity)

APCS-

P



FS-

*Front :

APCS-

P



FS

* Rear :

APCS-

P



FS-

R

All models of

APM-FB and

APM-FC

Series

1. Motor connection

a. Plug specifications: KN5FT04SJ1 (JAE)

b. Socket specifications: ST-KN-S-C1B-3500(JAE)

2. Drive connections(U,V,W and FG)

a. U,V and W pin specifications: F1512

b. FG pin specifications: 1.5×4 (Ring terminal)

3. Cable specifications: 4Cx0.75SQ(AWG18)

7-44

7. Product Specifications

Category Product

Name

Type

Name

(Note 1)

Applicable

Motors

Motor connection

Specifications

Drive connection

For power

Brake cable for flat type motor(small capacity)

APCS-

B



QS

*Front :

APCS-

B



QS

* Rear :

APCS-

B



QS-

R

All models of

APM-FB and

APM-FC

Series

1. Motor connection

a. Plug specifications: : KN5FT02SJ1 (JAE)

b. Socket specifications: ST-KN-S-C1B-3500 (JAE)

2. Drive connection

a. Connection terminal specifications: 1.5×3(KET

GP110012)

3. Cable specifications: 2Cx0.75SQ or 2Cx18AWG18

Brake Connection

Drive Connection

For power

Brake cable

P

APC-



SB

All models of

APM-SG

APM-LG

APM-FG

Series

1. Motor side connector

a. PLUG : MS3108B14-7S

2. Power side Connector(+,-)

a. Connection terminals : 1.5×3(KET GP110012)

3. Cable

a. 2Cx0.75SQ or 2Cx19AWG

NOTE 1) The



in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.

Cable length (m)

Robotic cable

General cable

3

F03

N03

5

F05

N05

10

F10

N10

20

F20

N20

7-45

7. Product Specifications

■ Option (cable)

Categ ory

Product

Name

For signali ng

CN1 Cable

Type Name

(Note 1)

APC-CN1

A

Applicable

Drive

L7 SERIES

Specifications

[Upper level controller]

Pin number display

[Drive connection CN1]

1. Drive connection (CN1)

a. Case specifications: 10350-52A0-008 (3M)

b. Connector specifications: 10150-3000VE (3M)

c. Cable specifications: ROW-SB0.1Cx50C

(AWG 28)

[PC — USB port] [Servo drive

– CN5]

For signali ng

Communicatio n cable

APCS-

CM5L7U

L7 SERIES

1. PC connection: USB A plug

2. Drive connection (CN5): Mini USB 5P plug

3. Electrical requirements:

Double shielding, twisted pair, EMI filter installation

(similar product: KU-AMB518 by SANWA)

NOTE 1) The

in Type Name indicates the length of each cable. Refer to the table below for how to display them.

Cable length (m)

Written as

1

01

2

02

3

03

5

05

7-46

■ Option (connector)

Categ ory

Product

Name

Type Name Applicable

Drive

7. Product Specifications

Specifications

T/B

Terminal block for CN1

APC-VSCN1T

APC-VPCN1T

L7 SERIES

1. APC-VSCN1T: CN1 T/B expansion of APD-VS

2. APC-VPCN1T: CN1 T/B expansion of APD-VP

3. The cable length can be changed.

4. Standard cable length: 0.5 [m]

26

1

1

CN

CN

CN1

Connector

APC-CN1NNA L7 SERIES

50

25

1. Case specifications: 10350-52A0-008 (3M)

2. Connector specifications: 10150-3000VE (3M)

8

1

CN2

Connector

APC-CN3NNA L7 SERIES

14

7

1. Case specifications: 10314-52A0-008 (3M)

2. Connector specifications: 10114-3000VE (3M)

7-47

7. Product Specifications

■ Option (braking resistance)

Categ ory

Product

Name

Type Name Applicable

Drive

Resist ance

Braking resistance

APC-140R50

L7

□A001□

L7

□A002□

L7

□A004□

Specifications

Resist ance

Braking resistance

APC-300R30

L7□A008□

L7□A010□

Resist ance

Braking resistance

APC-600R30

L7□A020□

(2P)

L7□A035□

(3P)

Resist ance

Braking resistance

APC-600R28

L7□A050□

(4P)

7-48

8. Maintenance and Inspection

8 Maintenance and Inspection

8.1 Maintenance and Inspection

This chapter explains how to conduct basic maintenance and inspection, diagnosis and troubleshooting on the servo motor and drive.

8.1.1 Precautions

1. Measuring motor voltage: The voltage output from the servo amp to the motor is PWM controlled, and, for this reason, its waves take the form of pulses. Use a rectifier voltmeter for accurate measuring because different meters often produce different results.

2. Measuring motor current: Connect a moving-iron-type ampere meter directly for use as the pulse waveform becomes smooth sine waves to some degree because of the motor’s reactance.

3. Measuring electric power: Use an electrodynamometer based on the 3 power meter method.

4. Other gauges: When using an oscilloscope or digital voltmeter, make sure that they do not touch the ground. Use 1 [mA] or lower of gauge input current.

8.1.2 What to Inspect

Be sure to start inspection approximately 10 minutes after power is turned off because the charged voltage left in the internal smoothing condenser may cause an accident.

(1) Servo Motor Inspection

Caution

Be sure to start inspection approximately 10 minutes after power is turned off because the charged voltage left in the internal smoothing condenser may cause an accident.

Inspection

Item

Vibration and sound check

Exterior inspection

Insulation resistance measurement

Oil seal replacement

General inspection

Inspection Period Inspection and Handling Notes

Every month Touch and listen to sound.

The feel and sound should be no more notable than usual.

Depending on the contamination or damage

Clean with cloth or air pressure.

At least once a year

Disconnect from the drive and measure insulation resistance.

Normal resistance is 10 [㏁] or higher. Note 1)

Once every 5,000 hours at the least

Every 20,000 hours or once every 5 years at the least

Remove it from the machine for replacement.

Contact our service center.

If resistance is 10[㏁] or lower, contact our service center.

This only applies to motors with an oil seal.

Do not disassemble the servo motor for cleaning yourself.

NOTE 1) Conduct measuring between FG and one of the U, V, and W power lines of the servo motor.

8-1

8. Maintenance and Inspection

(2) Servo Drive Inspection

Inspection Item

Inspection

Period

How to inspect

What to do if abnormality is found

Cleaning of the main body and the board

At least once a year

Check if there is any dust or oil on it.

Loose screws

Defective parts on the main body or the board

At least once a year

At least once a year

Check whether screws on terminals and connectors are loose.

Check whether there is any discoloration, damage, or disconnection caused by heat.

Clean with air pressure or cloth.

Fasten the screws.

Contact our company.

8.1.3 Parts Replacement Cycle

The following parts may experience low performance or malfunction because of mechanical friction and aging. It is therefore important to conduct regular maintenance checks and replace parts.

1. Smoothing condenser: This part ages because of the impact of ripple current and other factors. Its lifespan greatly depends on the surrounding temperature and environment. When continuously used in an air-conditioned ordinary environment, it lasts 10 years on average. Inspect it at least once a year because it ages rapidly over a short period of time once it starts to do so. (Inspect more frequently when it gets closer to its obsolescence.)

※ Criteria for visual inspection:

a. Case’s condition: Expanded sides and bottom of the case

b. Lid’s condition: Notable expansion, severe cracks, or broken parts

c. Explosion valve’s condition: Notable valve expansion and operation

d. Besides, check regularly if there is any crack, broken part, discoloration, or leak on the exterior.

A condenser shall be deemed obsolete when its capacity becomes 85[%] or lower of the rated capacity.

2. Relays: Bad connection occurs because of wear and tear at the contact caused by switching current. A relay is deemed obsolete when its accumulated switching reaches 100,000 times as it depends greatly on power capacity.

3. Motor bearing: Replace when it reaches 20,000 to 30,000 hours of operation at the rated speed under the rated load. Replace if abnormal sound or vibration is detected during inspection, which are dependent on operating conditions.

[Standard Part Replacement Cycle]

Part Name

Smoothing condenser

Relays

Fuses

Aluminum electrolytic condensers on printed boards

Cooling fans

Motor bearings

Motor oil seals

Standard Replacement Cycle

7-8 years

10 years

5 years

4-5 years

5,000 hours

Method

Replace (decide after inspection).

Decide after inspection.

Replace.

Replace with new boards (decide after inspection).

Replace.

Decide after inspection.

Replace.

8-2

8. Maintenance and Inspection

8.2 Diagnosis of Abnormality and

Troubleshooting

AL-

is displayed if a problem occurs during operation. In this case, try to solve the problem by following this advice. If the problem persists, contact our service center.

8.2.1 Servo Motor

[Cause of abnormality, how to inspect, and troubleshooting]

Symptoms Cause

The input of CCWLIM and

CWLIM is off.

How to inspect

Refer to «1.2 System Configuration.»

Troubleshooting

Turn on the input of CCWLIM and

CWLIM.

The motor does not move.

Parameters are incorrectly set.

Check the parameters of the motor, encoder, and encoder type control mode.

The motor has defects.

Locking screws are loose.

Reset the parameters. (Refer to

“Chapter 4 Parameters.”)

Measure the motor lead terminal with a tester (resistance between phases: several ohms).

Replace the motor.

External wiring is incorrect or cables are disconnected.

Check locking screws. Fasten loose screws.

Check the wiring of the motor and the encoder.

Redo the wiring.

Replace cables.

Motor rotation is unstable.

The encoder has defects.

Connection is bad.

Input voltage is low.

Overload occurs.

The ambient temperature is high.

The surface of the motor is contaminated.

Check output waves.

Replace the encoder.

(Contact our service center.)

Check the connection of the motor lead terminal.

Fix bad connection.

Check the input voltage of the drive. Change power.

Check the condition of the machine.

Check the temperature around the motor. (40[℃] or lower)

Remove foreign substances in the rotating unit and provide lubricants (or grease).

Change heat transfer structure.

Install a cooling fan.

Check whether there is any foreign substance on the surface of the motor.

Clean the surface of the motor.

The motor overheats.

Overload occurs.

Reduce load.

Check the load factor of the drive.

Check acceleration/deceleration time.

Increase acceleration/deceleration time.

Replace with a motor of greater capacity.

The magnetic power of the magnets is reduced.

Coupling is bad.

Check counter voltage and voltage waveforms.

Check the tightness of coupling screws and the concentricity of the connection.

A strange sound occurs.

Bearings are abnormal.

Check the vibration and sound of bearings.

Parameters are incorrectly set.

(Inertia, gain, and time constant)

Check parameters.

Replace the motor.

Readjust the coupling.

Contact us.

Refer to “Chapter 4 Parameters.”

8-3

8. Maintenance and Inspection

8.2.2 Servo Drive

If an alarm triggers, the malfunction signal output contact (ALARM) is turned off and the dynamic brake stops the motor.

Alarm

Code

Name

IPM Fault

IPM temperature

Overcurrent

Current offset

Overcurrent (/CL)

Continuous overload

Room temperature

Regen. Overload

Motor cable open

Encoder comm.

Encoder cable open

Encoder data error

Motor setting error

Encoder Z PHASE Open

Under voltage

Overvoltage

Details What to inspect

Overcurrent (H/W)

IPM module overheat

Overcurrent (S/W)

Abnormal current offset

Overcurrent (H/W)

Continuous overload

Drive overheat

Regenerative overload

Check for incorrect drive output wiring / incorrect encoder wiring.

Check the motor ID / drive ID / encoder setting.

Check for equipment clash or confinement.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Replace the drive if [St-23] and [St-24] are 5% or higher of the rated current.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check for equipment clash or confinement.

Check for equipment clash or confinement.

Check load and brake condition.

Check for incorrect drive output wiring and incorrect encoder wiring.

Check the motor ID, drive ID, and encoder setting.

Check the temperature inside the drive [St-19].

Install a cooling fan and check load.

Check input voltage, regenerative braking resistance, and wiring.

Replace the drive.

Motor cable disconnection Motor wiring

Serial encoder communication error

Encoder cable disconnection

Encoder data error

Check for incorrect wiring of the serial encoder cable.

Check whether the encoder cable is disconnected.

Check the [P0-02] setting and encoder wiring.

Motor ID setting error

Encoder Z PHASE cable broken

Low voltage

Check the [P0-00] setting.

Check the encoder cable

Overvoltage

Check input voltage and power unit wiring.

Check input voltage and wiring. Check for braking resistance damage.

Check for excessive regenerative operation.

8-4

8. Maintenance and Inspection

Alarm

Code

Name

RST power fail

Control power fail

Over speed limit

Position following

EMG

Over pulse CMD

Parameter checksum

Parameter range

Invalid factory setting

GPIO setting

Details What to inspect

Check regenerative resistance.

Check power unit wiring and power. Main power failure

Control power failure

Overspeed

Excessive position error

Emergency stop

Pulse command frequency error

Parameter error

Check power unit wiring and power.

Check the encoder, encoder setting, encoder wiring, gain setting, motor wiring, motor ID, electric gear ratio, and speed command scale.

Check the excessive position command pulse setting [P4-11], wiring, limit contact point, gain setting, encoder setting, and electric gear ratio.

Check for equipment confinement and load.

Check the emergency stop contact signal, external 24 V power, and contact points.

Check pulse command frequency from the upper level controller.

Check command pulse type.

Factory reset [Cn-17].

Parameter range error Factory reset [Cn-17].

Invalid factory setting

Output contact point setting error

Factory reset [Cn-17].

Factory reset [Cn-17].

If a warning code is displayed in the current operation status [St-00], the servo drive is operating abnormally. Check what needs to be inspected for the issue.

Warning

State

(CODE)

Name Details and cause What to inspect

RST_PFAIL

LOW_BATT

OV_TCMD

OV_VCMD

OV_LOAD

SETUP

UD_VTG

Main power phase loss

If the [P0-06] DIGIT 2 is set to 1, the main power fails.

Low battery

Excessive torque command

Overspeed command

Overload warning

Capacity setting

Low voltage warning

EMG contact point

More than the maximum torque commands have been entered.

More than the maximum speed commands have been entered.

The maximum overload [P0-13] has been reached.

The electric current capacity of the motor is bigger than that of the drive.

When [P0-06] DIGIT 2 is set to 1, the DC link voltage is 190 V or below.

Check the I/O wiring and [P2-09] setting

EMG

Warning code is displayed to hexadecimal. If the over 2 warning codes occurs, the sum of warning codes will be displayed. For example, if [W-04] Excessive Toque Command and [W-

08] Excessive Speed Command are occurred at the same time, [W-0C] will be displayed.

If warning code 80 occurs, “SV-ON” state changes to “SV-OFF” state automatically.

-To avoid warning code 80, wire EMG contact or change EMG input signal logic definition.

(Refer to 4.1 How to Use the Loader)

8-5

8. Maintenance and Inspection

Servo Drive Overload Graphs (400W or below)

(

1) Graph of Overload during Rotation

Load (%)

AL-21

Occurring

Time (sec)

MAX MIN Load (%)

AL-21

Occurring

Time (sec)

100% or below

110

120

130

140

150

160

170

180

190

200

Infinite

55776.0

13944.0

6197.3

3486.0

1183.0

566.0

318.0

198.0

131.0

92.0

89241.6 33465.6

22310.4 8366.4

9915.7 3718.38

5577.6 2091.6

1892.8

905.6

508.8

316.8

209.6

147.2

709.8

339.6

190.8

118.8

78.6

55.2

210

220

230

240

250

260

270

280

290

300

66.8

50.1

38.5

30.3

24.2

4.2

3.8

3.4

3.0

2.7

MAX

106.9

80.2

61.6

48.5

38.7

6.7

6.1

5.4

4.8

4.3

MIN

40.08

30.06

23.1

18.18

14.52

2.52

2.28

2.04

1.8

1.62

Load Curve During Rotation

8-6

Load Factor (%)

8. Maintenance and Inspection

(2) Graph of Overload during Stop

Load (%)

AL-21

Occurring

Time (sec)

MAX MIN

100% or below

110

120

130

140

150

160

170

180

190

200

Infinite

37937.7 60700.3 22762.62

9483.9

4215.1

15174.2

6744.2

5690.34

2529.06

2371.0

926.0

3793.6

1481.6

1422.6

555.6

470.0

273.0

173.0

117.0

66.0

752.0

436.8

276.8

187.2

105.6

282

163.8

103.8

70.2

39.6

Load (%)

AL-21

Occurring

Time (sec)

260

270

280

290

300

210

220

230

240

250

3.8

3.4

3.1

2.7

2.5

50.1

38.5

30.3

9.7

8.3

MAX MIN

80.2 30.06

61.6 23.1

48.5 18.18

15.5 5.82

13.3 4.98

6.1 2.28

5.4 2.04

5.0 1.86

4.3 1.62

4.0 1.5

Load Curve During Stop

Load Factor (%)

8-7

8. Maintenance and Inspection

Servo Drive Overload Graphs (SA type of 100 W or below)

(1) Graph of Overload during Rotation

Load (%)

AL-21

Occurring

Time (sec)

100% or below

110

120

130

140

150

160

170

180

190

200

Infinite

MAX MIN

1696.0 2713.6 1017.6

424.0 678.4 254.4

188.4

106.0

301.5 113.064

169.6 63.6

70.4

26.8

20.6

16.2

13.0

10.5

112.6

42.9

33.0

25.9

20.8

16.8

42.24

16.08

12.36

9.72

7.8

6.3

Load (%)

210

220

230

240

250

260

270

280

290

300

AL-21

Occurring

Time (sec)

5.2

4.4

3.8

3.3

2.9

2.6

2.3

2.0

1.8

1.6

MAX

8.3

7.0

6.1

5.3

4.6

4.2

3.7

3.2

2.9

2.6

MIN

3.12

2.64

2.28

1.98

1.74

1.56

1.38

1.2

1.08

0.96

Load Curve during Rotation 100 W or Lower SA Type

8-8

Load Factor (%)

8. Maintenance and Inspection

(2) Graph of Overload during Stop

Load (%)

AL-21

Occurrin g Time

(sec)

100% or below

Infinite

110

120

130

140

150

160

170

180

190

200

1372.8

343.2

152.5

85.8

58.6

16.2

13.0

10.5

8.7

7.2

MAX

2196.5

549.1

244.0

137.3

93.8

25.9

20.8

16.8

13.9

11.5

MIN

823.68

205.92

91.518

51.48

35.16

9.72

7.8

6.3

5.22

4.32

Load (%)

AL-21

Occurring

Time

(sec)

MAX

210

220

230

240

250

260

270

280

290

300

3.9

3.4

3.0

2.6

2.3

2.0

1.8

1.6

1.5

1.3

6.2

5.4

4.8

4.2

3.7

3.2

2.9

2.6

2.4

2.1

MIN

2.34

2.04

1.8

1.56

1.38

1.2

1.08

0.96

0.9

0.78

Load Curve during Stop 100 W or Lower SA Type

Load Factor (%)

8-9

8. Maintenance and Inspection

Servo Drive Overload Graphs (750W, 1.0KW)

(1) Graph of Overload during Rotation

Load

(%)

AL-21

Occurri ng Time

(sec)

MAX MIN

100% or below

110

Infinite

105800 169280.0 63480

120 26450 42320.0 15870

170

180

190

200

130

140

150

160

11755 18808.0

6612.5 10580.0

2244.0

1073.6

3590.4

1717.8

603.2

413.6

273.6

201.0

965.1

661.8

437.8

321.6

7053

3967.5

1346.4

644.16

361.92

248.16

164.16

120.6

Load

(%)

270

280

290

300

210

220

230

240

250

260

AL-21

Occurri ng Time

(sec)

119.0

89.2

49.3

38.8

31.0

7.0

6.4

5.7

5.0

4.6

MAX

190.4

142.7

78.9

62.1

49.6

11.2

10.2

9.1

8.0

7.4

MIN

71.4

53.52

29.58

23.28

18.6

4.2

3.84

3.42

3

2.76

Load Curve during Rotation

Load Factor (%)

8-10

8. Maintenance and Inspection

(2) Graph of Overload during Stop

Load (%)

AL-21

Occurrin g Time

(sec)

MAX MIN

100% or below

Infinite

110 37937.7 60700.3 22762.62

120 9483.9 15174.2 5690.34

130 4215.1

140 2371.0

6744.2

3793.6

2529.06

1422.6

150

160

170

180

190

200

926.0

470.0

273.0

173.0

117.0

66.0

1481.6

752.0

436.8

276.8

187.2

105.6

555.6

282

163.8

103.8

70.2

39.6

Load

(%)

250

260

270

280

290

300

210

220

230

240

AL-21

Occurri ng Time

(sec)

50.1

38.5

30.3

9.7

8.3

3.8

3.4

3.1

2.7

2.5

MAX

80.2

61.6

48.5

15.5

13.3

6.1

5.4

5.0

4.3

4.0

MIN

30.06

23.1

18.18

5.82

4.98

2.28

2.04

1.86

1.62

1.5

Load Curve during Stop

Load Factor (%)

8-11

8. Maintenance and Inspection

Servo Drive Overload Graphs (2.0KW, 3.5kW, 5.0kW)

(1) Graph of Overload during Rotation

Load(%)

AL-21

Occurring

Time(sec)

100% or below

110

Infinite

4832.0

120

130

140

150

160

170

180

190

200

1208.0

536.9

302.0

257.0

229.0

200.0

165.0

131.0

103.0

MAX MIN

7731.2

1932.8

2899.2

724.8

859.0 322.1333

483.2 181.2

411.2

366.4

320.0

264.0

209.6

164.8

154.2

137.4

120

99

78.6

61.8

Load(%)

AL-21

Occurring

Time(sec)

210

220

230

240

250

260

270

280

290

300

66.8

50.1

38.5

30.3

24.2

4.2

3.8

3.4

3.0

2.7

MAX

106.9

80.2

61.6

48.5

38.7

6.7

6.1

5.4

4.8

4.3

MIN

40.08

30.06

23.1

18.18

14.52

2.52

2.28

2.04

1.8

1.62

Load Curve During Rotation

8-12

Load Factor (%)

8. Maintenance and Inspection

(2) Graph of Overload during Stop

Load(%)

AL-21

Occurring

Time (sec)

MAX

100% or below

110

120

130

140

150

160

170

180

190

200

Infinite

4832.0

1208.0

536.9

302.0

154.0

110.0

90.0

75.0

61.0

52.0

MIN

7731.2

1932.8

859.0

483.2

246.4

176.0

144.0

120.0

97.6

83.2

2899.2

724.8

322.1333

181.2

92.4

66

54

45

36.6

31.2

Load(%)

AL-21

Occurring

Time

(sec)

MAX

210

220

230

240

250

260

270

280

290

300

44.0

36.0

30.3

9.7

8.3

3.8

3.4

3.1

2.7

2.5

70.4

57.6

48.5

15.5

13.3

6.1

5.4

5.0

4.3

4.0

MIN

26.4

21.6

18.18

5.82

4.98

2.28

2.04

1.86

1.62

1.5

Load Curve During Stop

Load Factor (%)

8-13

9. Appendix

9 Appendix

9.1 Motor Type and ID (to be continued on the next page)

25

26

27

28

61

62 1500

300

450

550

650

900

63 2200

64 3000

65 600

66 1100

67 1600

68 2200

69 300

70

71

600

900

72 1200

73

74

450

850

11

12

13

15

16

ID

1

2

3

5

21

22

400

600

23 800

24 1000

Watt

30

50

100

150

100

200

400

200

400

SC03D

SC05D

SC06D

SC07D

SE09A

SE15A

SE22A

SE30A

SE06D

SE11D

SE16D

SE22D

SE03M

SE06M

SE09M

SE12M

SE05G

SE09G

Model Name

SAR3A

SAR5A

SA01A

SA015A

SB01A

SB02A

SB04A

HB02A

HB04A

SC04A

SC06A

SC08A

SC10A

Hollow type

Hollow type

Notes ID Watt

75 1300

76 1700

77 900

78 1500

81 3000

82 5000

85 2200

190 3500

87 5500

88 7500

89 1200

90 2000

192 3000

92 4400

93 1800

191 2900

95

96

4400

6000

111 2200

193 3500

113 5500

114 7500

115 11000

121 1200

122 2000

195 3000

124 4400

125 6000

131 1800

194 2900

133 4400

134 6000

Model Name

SE13G

SE17G

HE09A

HE15A

SF30A

SF50A

SF22D

LF35D

SF55D

SF75D

SF12M

SF20M

LF30M

SF44M

SF20G

LF30G

SF44G

SF60G

SG22D

LG35D

SG55D

SG75D

SG110D

SG12M

SG20M

LG30M

SG44M

SG60M

SG20G

LG30G

SG44G

SG60G

Notes

Hollow type

Hollow type

9-15

9. Appendix

725 300

726 500

727 600

728 700

761 900

762 1500

763 2200

764 3000

765 600

766 1100

767 1600

768 2200

769 300

ID Watt

135 8500

136 11000

137 15000

711 100

712 200

713 400

721 400

722 600

723 800

724 1000

770 600

771 900

772 1200

773 450

774 850

775 1300

776 1700

FE22A

FE30A

FE06D

FE11D

FE16D

FE22D

FE03M

FC03D

FC05D

FC06D

FC07D

FE09A

FE15A

Model Name

SG85G

SG110G

SG150G

FB01A

FB02A

FB04A

FC04A

FC06A

FC08A

FC10A

FE06M

FE09M

FE12M

FE05G

FE09G

FE13G

FE17G

9-16

Notes

FF60G

FF75G

FG22D

FG35D

FG55D

FG75D

FG12M

FG20M

FG30M

FG44M

FG20G

FG30G

Model Name

FF30A

FF50A

FF22D

FF35D

FF55D

FF75D

FF12M

FF20M

FF30M

FF44M

FF20G

FF30G

FF44G

795 4400

796 6000

804 7500

811 2200

812 3500

813 5500

814 7500

821 1200

822 2000

823 3000

824 4400

831 1800

832 2900

ID Watt

781 3000

782 5000

785 2200

786 3500

787 5500

788 7500

789 1200

790 2000

791 3000

792 4000

793 1800

794 2900

Notes

9. Appendix

611

612

613

621

ID

601

602

603

622

623

Watt

63

126

188

126

251

377

251

461

712

632 838

633 1257

641 1728

642 2513

Model Name

DB03D

DB06D

DB09D

DC06D

DC12D

DC18D

DD12D

DD22D

DD34D

DE40D

DE60D

DFA1G

DFA6G

Notes ID Model Name Watt Notes

9-17

9. Appendix

9.2 Test Drive Procedure

Thank you for purchasing our product. Conduct test drive following the process described as follows:

Caution

In order to prevent accidents, conduct an operation test and test drive in manual JOG operation when there is no load (the motor exists without any coupling or belt) after attaching the servo motor to your equipment. Afterwards, connect the load and conduct the final test drive.

1. Product check: Check the name tag to verify that the product matches the model you ordered.

(Refer to «Chapter 1.1.»)

 A name tag is attached to the right side of the product. (For motors, right side of the shaft)

 Main check point: Product capacity and main options

2. Power connection: Wire single-phase AC 220 [V] to control power input C1 and C2, and threephase AC 220 [V] to main power input L1, L2, and L3. (Refer to «Chapter 3.2.»)

 The product runs even if you input single-phase AC 220 [V] as the main power. However, such wiring reduces torque and the lifespan of the product. Be sure to input three-phase AC

220 [V].

3. Signal cable wiring: Wire CN1 (I/O), CN3, CN4, CN5 (communication), CN2 encoder cable, and motor power cable per operation mode. (Refer to «Chapter 1.2 and Chapter 3.»)

 Be sure to use robotic cables if the motor requires movement.

 Be sure to use twist shield cables as signal and encoder cables.

 Be sure to fasten bolts after locking the connector (drive direction) of the encoder cable.

 Be sure not to change the U, V, and W wiring of the motor power cable.

9-18

9. Appendix

4. Control power supply: Supply single-phase AC 220 [V] to C1 and C2.

 Be sure to check external input voltage before turning on the servo drive.

 Check whether the display is normal. (There should be no break on the seven segments or alarm output.)

5. Motor ID setting: Set motor ID in the parameter [P0-00] and encoder pulse in the parameter [P0-

02] respectively. (Refer to «Appendix 1.»)

(※ The serial encoder is automatically set.)

 Easy check: Check the motor ID and encoder pulse on the product name tag attached on the right side of the motor.

 Check whether the external control signal input is normal.

 For information on how to handle the keys of the servo drive loader, refer to «4.1 Loader

Handling.»

6. Main power supply: Supply three-phase AC 220 [V] to L1, L2, and L3.

 Be sure to check external input voltage before turning on the servo drive.

 When power is supplied, the red lamp on the charge LED at the bottom of the loader window comes on.

 If an alarm is displayed, it indicates that there is an error in the power circuit, wiring of the servo motor, or encoder wiring.

Turn off power and fix the error using the information in «[Alarm Codes and Descriptions].»

9-19

9. Appendix

7. Test drive: Start [Cn-00] by pressing [SET] to conduct test drive manually. (JOG operation speed can be changed in [P3-12].)

 * [Up]: Motor forward rotation (CCW) → Only operate while you hold down the key.

 * [Down]: Reverse motor rotation (CW) → Only operate while you hold down the key.

 During normal operation, the power input of the servo drive and wiring among motors are verified as normal.

 If the alarm is displayed, it indicates an error in the power circuit, wiring of the servo motor, or encoder wiring. Turn off power and fix the error using the information in «[Alarm Codes and Descriptions].»

Speed operation setting

9. Operation mode setting: Set operation mode in [P0-03].

 0: Torque control operation

 1: Speed control operation

 2: Position control operation

 3: Speed/position control operation

 4: Speed/torque control operation

 5: Position/torque control operation

Position operation setting

10. Perform speed operation with the upper level controller by adjusting the following parameter data.

a. Speed operation setting parameter: [P3-

01]~[P3-20]

b. Input/output setting parameter: [P2-00]~[P2-

22]

c. Control setting parameter:

[P1-00]~[P1-27]

(Refer to “Appendix 1.”)

9-20

11. Perform position operation with the upper level controller by adjusting the following parameter data.

a. Position operation setting parameter: [P4-

00]~[P4-14]

b. Input/output parameter setting parameter:

[P2-00]~[P2-22]

c. Control parameter setting parameter:

[P1-00]~[P1-27]

(Refer to “Appendix 1.”)

9. Appendix

10-1

 How to Set Control Parameters [Gain Tuning]

1) Auto gain tuning

→ Perform automatic gain tuning by pressing [SET] in [Cn-05].

→ If the load condition of the equipment is not directly related to motor shaft, it is hard to perform accurate gain tuning because of characteristics of automatic gain tuning. Therefore, manual gain tuning is recommended.

2) Manual gain tuning

→ Set inertia ratio [P1-00], speed proportional gain [P1-06], and speed integral time constant

[P1-08] as the standard gain.

→ Increase inertia ratio [P1-00] gradually until the motor starts vibrating.

→ For more stable control, increase speed proportional gain [P1-06] a little at a time until the motor vibrates slightly. If you increase speed integral time constant [P1-08], the motor stops vibrating.

→ Increase speed integral time constant [P1-08] in the last stage and the motor will stop vibrating. However, it takes as much time to reach normal state as the time constant set in responsiveness. If you set speed proportional gain [P1-06] too big in an effort to attain satisfying responsiveness, overshoot might occur. The allowed range of overshoot is generally 10 percent or below.

11-1

 How to Set Electric Gear Ratio [P4-01]~[P4-05]

→ Electric gear ratio = transmission per input pulse X number of pulses per motor rotation / transmission per motor rotation

9-21

9. Appendix

Quality Assurance

Product Name

Model Name

LS Mecapion Servo Drive

L7 Series

Date of

Installation

Warranty

Period

Customer

Name

Address

Phone

Name

Address Retailer

Phone

This product was produced under strict quality control and test procedures of LS Mecapion technicians.

Its term of warranty is 12 months after the date of installation. If no date of installation is written, the warranty is valid for 18 months after the date of manufacture. However, this term of warranty may change depending on contract terms.

Free Technical Support

If the drive malfunctions while properly used and the product warranty has not expired, contact one of our agencies or designated service centers. We will repair the drive free of charge.

Paid Technical Support

Technical support is not free if:

Malfunction was caused by the intentional or unintentional negligence of the consumer.

Malfunction was caused by inappropriate voltage or defects of machines connected to the product.

Malfunction was caused by Act of God (fire, flood, gas, earthquake, etc.).

The product was modified or repaired in a place that is not our agency or service center.

The LS Mecapion name tag is not attached to the product.

The warranty has expired.

Please fill out this quality assurance form after installing the servo and send the form to our quality

assurance department (the person in charge of technical support).

Send to: LS Mecapion Quality Assurance Service

Phone: +82 53 593-0066 (154) Fax: +82 53 591-8614

Visit the LS Mecapion homepage (http://www. lsmecapion.com) for useful information and services.

9-22

9. Appendix

User Manual Revision History

6

7

8

9

10

11

4

5

Number

1

2

3

Issued Year and

Month

2011.10.19

2011.12.19

2012.01.09

2012.02.05

2012.03.01

2012.04.09

Revised Content

Electronic gear ratio

Option specification name

Add 750W, 2KW

Position command filter time constant,

Warning code description

Brake resistance, Motor specification

Add FLAT Type Motor, Revise communication info correct minor typo

Version

Number

1.0

1.1

1.2

1.3

1.4

1.5

2012.06.19

2012.09.10

2012.11.15

2013.02.13

2013.04.05

Modify electric gear ratio

Refer to history of modification

Add Multi turn encoder and modify parameter

Add 5kW Drive Info

Add motor specific chart and option

1.6

1.7

1.8

1.9

2.0

Green Management

LS Mecapion considers environment protection as a high priority of management, and its employees try their best to protect the Earth.

Notes

Product Disposal

The LS Mecapion servo drive is environmentally friendly.

It can be broken down to iron, aluminum, bronze, and synthetic resin (cover), and separately recycled.

9-23

Omegagsm

  • Назад
  • 1
  • 2
  • Далее
  • Страница 1 из 2  

Рекомендуемые сообщения

  •  #1

Вышел из строя энкодер(показывал ошибку Al.16), был приобретён точно такой же энкодер, после установки сервопривод показывает Al.1A

Насколько я понимаю это ошибка несоответствия привода и двигателя, при отключении проверки соответствия в параметре 183,стал выкатывать ошибку Al.20

Поделиться сообщением


Ссылка на сообщение

  •  #2

Далее вопрос: при установке нового энкодера нужны ли танцы с бубном? Или всё и так должно нормально работать?

Поделиться сообщением


Ссылка на сообщение

  •  #3

На Mицубиши MR стоят не просто энкодеры , а интеллектуальные программируемые энкодеры, и то что вы установили такой же по шильдику не значит что он такой же точно как у вас был старый. Его надо программировать на конкретный двигатель и сервопривод. Вот такие вот дела.

Поделиться сообщением


Ссылка на сообщение

  •  #4

отключать проверку параметром 183 — плохая идея. в энкодере зашит идентификатор мотора, по которому усилитель определяет все его электрические и механические параметры. если энкодер от другого мотора (а он от другого, т.к. AL.1A) — работать (нормально) не будет. можно попробовать вручную прописать константы мотора в параметры 157-178. но сначала разобраться с ошибкой 20…

Поделиться сообщением


Ссылка на сообщение

  •  #5

Добрый день форумчане!

У меня подобная проблема, сервак Mitsubishi S MR-E-40AG-KH00, в определенном месте уходит в ошибку AL.20 до этого уходил в AL.16, думаю кабель где-то переламывается, сейчас будем. звонить.

Если энкодер умрёт, я думаю проблем не возникнет с перенастройкой если двигатель с энкодером + кабель новый установить ?


Изменено пользователем RegEdit

Поделиться сообщением


Ссылка на сообщение

  •  #6

27 минут назад, RegEdit сказал:

я думаю проблем не возникнет с перенастройкой если двигатель с энкодером + кабель новый установить ?

Не возникнет.

Поделиться сообщением


Ссылка на сообщение

  •  #7

А не проще только кабель перепаять новый, раз на него грешите.

Поделиться сообщением


Ссылка на сообщение

  •  #8

21.05.2019 в 17:27, Pavel47 сказал:

А не проще только кабель перепаять новый, раз на него грешите.

Не факт, что кабель, может и энкодер уже совсем плохой стал…А кабель звонится 4 из 4-х контактов..

Поделиться сообщением


Ссылка на сообщение

  •  #9

На сколько я помню, там должно быть 6 проводов.

Поделиться сообщением


Ссылка на сообщение

  •  #10

28.05.2019 в 13:49, Pavel47 сказал:

На сколько я помню, там должно быть 6 проводов.

Пинов там на сервак приходит 10, на энкодер 9, звонятся 4, из всех этих 10-ти пинов…

Поделиться сообщением


Ссылка на сообщение

  •  #11

По другому, более понятно, внутрь энкодера заходит 6 проводов, два питание и четыре связь с усилителем, ну и ещё экран само собой.


Изменено пользователем Pavel47

Поделиться сообщением


Ссылка на сообщение

  •  #12

Доброго времени суток форумчане! Вопрос всё по теме, что я писал выше.. Вообщем мой сервак уходит в ошибку, AL16 при пробуждении, либо AL20, либо при движении другой оси, казалось бы кабель т. к они физически рядом… Но произвёл «ракировку» кабелей т. е. на двигателях переставил кабель энкодера и соответственно на серводрайверах сделал ракировку, сервак в ошибку ушёл(тот же, значит проблема в двигателе) . Питание не перекидывал и провода к ЧПУ тоже. Умер энкодер двигателя по логике вещей, верно? Смысла новый энкодер брать нет, так как это танцы с бубном. У минсубиши брать нового образца серво и двигу тоже накладно для предприятия, как вариант на аля Ali… Что кто посоветует. Заранее спасибо! 


Изменено пользователем RegEdit

Поделиться сообщением


Ссылка на сообщение

  •  #13

4 минуты назад, RegEdit сказал:

Но произвёл «ракировку» кабелей т. е. на двигателях переставил кабель энкодера и соответственно на серводрайверах сделал ракировку, сервак в ошибку ушёл(тот же, значит проблема в двигателе) . Питание не перекидывал и провода к ЧПУ тоже.

Т.е. кабель энкодера от мотора у Вас подключён к одной серве, а провода питания к другой? Я правильно понял или нет?

Поделиться сообщением


Ссылка на сообщение

  •  #14

ТЕ кабеля проверили и усилители тоже, всё уперлось в энкодер всё таки. Мы заказывали новый энкодер у официалов года три назад на этот тип серваков, но уже в то время это было трудно так как привод старый и уже не выпускается давно, но у них на складе был старый энкодер, нам его запрограммировали под наш двигатель и продали за очень не гуманную цену. Работает. На Али кот в мешке.

Поделиться сообщением


Ссылка на сообщение

  •  #15

если мотор стандартный (HF-KE43?) проще всего поменять мотор. US$250 новый с ebay.

Поделиться сообщением


Ссылка на сообщение

  •  #16

12 часов назад, sergeijob сказал:

Т.е. кабель энкодера от мотора у Вас подключён к одной серве, а провода питания к другой? Я правильно понял или нет?

Да по факту поменяли чисто кабель энкодера, то есть перекунули концы там и там… То есть кабель  живой, а если на серве концы не перекидывать, то один в AL16, Другой в AL51 уходит.. 

10 часов назад, Merkwurdigliebe сказал:

если мотор стандартный (HF-KE43?) проще всего поменять мотор. US$250 новый с ebay.

HF-KN43, Да это и хочу сделать, тоже на ebay как-то страшно заряжать, спросить не с кего будет.

Иногда в AL20 проблемная серва уходит при пробуждении, тоже по энкодеру аларм. 

Поделиться сообщением


Ссылка на сообщение

  •  #17

46 минут назад, RegEdit сказал:

HF-KN43

$170 б/у, пишут, что проверенные. скорее всего так и есть..

вообще, ошибка энкодера — две причины. грязь и/или убитые подшипники. загрязнение часто встречается на моторах, которые прикручены к редукторам. несколько штук попадалось с загаженными какой-то липкой субстанцией экодерами. может они воздух со смазкой из редуктора насасывают при охдаждении, не знаю… если разбиты подшипники или посадочные места в крышках — ротор может начать тереться о статор, ободрать полимерное покрытие и загадить все внутри пылью от разрушающихся магнитов.

если подшипники живые, можно аккуратно снять крышку энкодера и посмотреть внимательно на внутренности не замаслено ли…

Поделиться сообщением


Ссылка на сообщение

  •  #18

Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?

AL16.jpg

Срок службы.jpg

ДАТАШИТ.jpg

1 час назад, Merkwurdigliebe сказал:

если подшипники живые, можно аккуратно снять крышку энкодера и посмотреть внимательно на внутренности не замаслено ли…

Дак если взорвать крышку энкодера это же всё, он более не рабочий будет либо его трудно будет отпозиционировать…:mellow:


Изменено пользователем RegEdit

Поделиться сообщением


Ссылка на сообщение

  •  #19

Только что, RegEdit сказал:

либо его трудно будет отпозиционировать

Если сделаете на корпусе энкодера и мотора метку, скажем шилом, и потом при установке совместите, то есть шанс, что позиционировать его не придётся.

Поделиться сообщением


Ссылка на сообщение

  •  #20

2 часа назад, sergeijob сказал:

Если сделаете на корпусе энкодера и мотора метку, скажем шилом, и потом при установке совместите, то есть шанс, что позиционировать его не придётся.

3 часа назад, RegEdit сказал:

Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?

Смотрите, я подключил другой двигатель к драйверу, тот же серводрайвер опять в ошибке, получается он не видит вообще никакой энкодер… Так как я отправляю в референс ось Z(которая давала ошибку), а так как кабель интерфейса тоже подключен к другому серводрайверу едет в референс ось X. Значит что-то с самим серводрайвером всё-таки?

Поделиться сообщением


Ссылка на сообщение

  •  #21

Поделиться сообщением


Ссылка на сообщение

  •  #22

8 часов назад, RegEdit сказал:

Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?

тады ой, значит усилок. с таким не встречался. я бы посмотрел наличие 5В питания на разъеме энкодера. если в порядке, даже не знаю — ломаться там особо нечему. на входе в усилке стоит диф приемник rs-422 и все…

а про энкодер — вдруг кому еще пригодится. выглядит он так:

IMG_0001.JPG

IMG_0004.JPG

IMG_0006.JPG


Изменено пользователем Merkwurdigliebe

Поделиться сообщением


Ссылка на сообщение

  •  #23

11 часов назад, Merkwurdigliebe сказал:

тады ой, значит усилок. с таким не встречался. я бы посмотрел наличиепитания на разъеме энкодера

Вот и Я понять не могу, почему так. Обычно ошибка энкодера на любом серваке это либо кабель, либо уже сам энкодер двигателя. 

Поделиться сообщением


Ссылка на сообщение

  •  #24

Замерил напряжение от усилителя(серводрайвера) на последних пинах по +2.4~2.6V.

То есть питание на энкодер всё-таки идет…

Поделиться сообщением


Ссылка на сообщение

  •  #25

RegEdit, а напряжение питания с рабочей сервой сравнили?

Поделиться сообщением


Ссылка на сообщение

  • Назад
  • 1
  • 2
  • Далее
  • Страница 1 из 2  

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Войти

Уже есть аккаунт? Войти в систему.

Войти


  • Последние посетители

      0 пользователей онлайн

    Ни одного зарегистрированного пользователя не просматривает данную страницу

(Ocr-Read Summary of Contents of some pages of the LSIS XDL-L7SA002X Document (Main Content), UPD: 02 February 2023)

  • 37, LSIS XDL-L7SA002X 2. Installation 2-5 2.2.3 Power Wiring  Make sure that the input power voltage is within the allowed range. Caution Overvoltage can damage the drive.  Connecting commercial power to the U, V and W terminals of the drive may cause damage. Be sure to supply power via L1, L2 and L3 terminals.  Connect short-circuit pins to the B and BI terminals. For external regenerative resistance, use standard resistance for the B+ and B terminals after …

  • 22, 1. Product Components and Signals 2-10 1.2.2 Wiring Diagram of the Entire CN1 Connector STOP 48 EMG 18 CWLIM 19 CCWL IM 20 MODE ALMRST PCON 17 P-CLR GAIN2 SVON 47 ALARM+38 ALARM-39 READY+40 READY-41 ZSPD43 INSPD INPOS 45 50+24V IN GND2424 ALO016 ALO115 ALO214 GND2425 SPDCOM 27 GND 8 TRQCOM 1 GND 8 DC 24V CN1 -10V ~ +10V -10V ~ +10V ( DIA ) ( DI9 ) ( DI8 ) ( DI 7 ) ( DI6 ) ( DI 5 ) ( DI4 ) ( DI3 ) ( DI2 ) ( DI1 ) ( DO1 ) ( DO2 ) ( DO3 ) ( DO4 ) ( DO5 …

  • 40, 3. Wiring Method 3-2 3.1.2 XDL-L7 Drive Block Diagram [XDL-L7SA008□ — XDL-L7SA035□] NOTE 1) If you use a DC reactor, connect to the PO and PI pins. If you use external regenerative resistance, connect to the B+ and B pins after you remove the B and BI short-circuit pins. The XDL-L7SA008 and XDL-L7SA035 models are cooled by a DC 24 [V] cooling fan.

  • 177, 6. Communication Protocol 6-11 Communicatio n Address Parameter Name Parameter Number Material Type (Decimal Number) Operation Status Display Parameter 36 Input contact status St — 14 UINT16 38 Output contact status St — 15 UINT16 40 Single-turn data — L St — 16 INT32 42 Single-turn data — H 44 Single-turn data (degree) St — 17 UINT16 46 Multi-turn data — L St — 18 …

  • 39, 3. Wiring Method 3-1 3 Wiring Method 3.1 Internal Block Diagram 3.1.1 XDL-L7 Drive Block Diagram [XDL-L7SA001□ — XDL-L7SA004□] If you use a DC reactor, connect to the PO and PI pins. If you use external regenerative resistance, connect to the B+ and B pins after removing the B and BI short- circuit pins.

  • 91, 4. Parameters 4-23 (3) Output Signal Logic Definition Output signal logic definition: [P2-10] The logic of output signals as shipped from the factory is as follows. Signal Name Input Signal (Initial Name) CN1 Pin Default Allocation Number Contact B Output Signal Logic Definition Default Setting Parameter Allocation 45 44 43 40 /41 38 /39 Alarm [P2-10].Set Digit 1 ALARM 0 [P2-10] 0x10110 Servo Ready [P2-10]. Set Digit…

  • 27, 1. Product Components and Signals 2-15 1.2.7 Example of Speed/Torque Operation Mode Wiring STOP 48 EMG 18 CWLIM 19 CCWL IM 20 ALMRST 17 PCON GAIN2 T_LMT SVON 47 ALARM+38 ALARM-39 READY+40 READY-41 50+24V IN GND2424 ALO016 ALO115 ALO214 GND2425 SPDCOM 27 GND 8 TRQCOM 1 GND 8 DC 24V CN1 -10V ~ +10V -10V ~ +10V ( DIA ) ( DI9 ) ( DI8 ) ( DI 7 ) ( DI6 ) ( DI 5 ) ( DI4 ) ( DI3 ) ( DI 2 ) ( DI1 ) ( DO1 ) ( DO2 ) ( DO3…

  • 200, LSIS XDL-L7SA002X 7. Product Specifications 7-16 Ambient temperature 0~40°C Ambient humidity 20~80[%]RH(no condensation) Atmosphere No direct sunlight, corrosive gas, or combustible gas Anti-vibration Vibration acceleration 49[m/s2](5G) Weight [kg] 0.9 1.2 1.7 5.8 7.4  Rotation speed – Torque Characteristics  ■ Product Features Servo Motor Type (XML-) FB01A FB02A FB04A FC04A FC06A Applicable Drive (XDL-L7A) XDL- L7□A001 XDL- …

  • 34, 2. Installation 2-2 2.1.4 Load Device Connection For coupling connection: Make sure that the motor shaft and the load shaft are aligned within the tolerance.  For pulley connection: Flange Lateral Load Axial Load Notes N kgf N kgf 40 148 15 39 4 60 206 21 69 7 80 255 26 98 10 130 725 74 362 37 180 1548 158 519 53 220 1850 189 781 90 2.1.5 Cable Installation  In case of vertical installation, make sure that no oil or water flows into…

  • 174, 6. Communication Protocol 6-8 (4) Write Multi Register (0x10) Writes values on the continuous register block (16-bit data). Sending Packet Normal Receiving Packet Byte Content Value Byte Content Value 0 Node ID 0x00 0 Node ID 0x00 1 Function 0x10 1 Function 0x10 2 Starting Address Hi 0x00 2 Starting Address Hi 0x00 3 Starting Address Lo 0x01 3 Starting Address Lo 0x01 4 Quantity of Registers Hi 0x00 4 Quantity of Registers…

  • 4, Table of Contents iv Safety Precautions Safety precautions are categorized as either Danger or Caution, depending on the seriousness of the precaution. Precautions Definition Danger Failure to comply with guidelines may cause death or serious injury. Caution Failure to comply with guidelines may cause injury or property damage.  Certain conditions that are listed as Caution may also result in serious injury.  Electric Shock Precautions …

  • 220, 7. Product Specifications 7-36  SE Series | XML-SE09A, SE06D, SE05G, SE03M, XML-SE15A, SE11D,SE09G,SE06M, XML-SE22A, SE16D, SE13G, SE09M, XML-SE30A, SE22D, SE17G, SE12M Name External Dimensions Key Dimensions Weight (kg) L LM LC S T W U SE09A, SE06D, SE05G, SE03M 201.3(239.3) 143.3(181.3) 93.8(93.6) 19 5 5 3 5.5(7.04) SE15A, SE11D, SE09G, SE06M 225.3(263.3) 167.3(205.3) 117.8(117.6) 19 5 5 3 7.54(9.08) SE22A, SE16D, SE13G, SE09M 249.3(287.3) 191.3(…

  • 191, 7. Product Specifications 7-7 Atmosphere No direct sunlight, corrosive gas, or combustible gas. Anti-vibration Vibration acceleration 49[m/s2](5G) Weight [kg] 1.9 2.5 3.2 3.9  Rotation speed – Torque Characteristics   Product Features Servo Motor Type (XML-) SE09A SE15A SE22A SE30A SE06D SE11D Applicable drive (XDL-L7A) XDL- …

  • 149, LSIS XDL-L7SA002X 5. Handling and Operation 5-7 5.2.4 Reading Alarm History [Cn-03] Check the saved alarm history. [Example of getting alarm history] Order Loader Displays Keys to Use What to Do 1 Displays the speed control mode with main power and control power permitted. 2 Press [MODE] to move to [Cn-00]. 3 Press [UP] or [DOWN] to move to [Cn-03]. 4 Press [SET] to start reading alarm history. 5 Press…

  • 105, 4. Parameters 4-37 Parameter Unit Initial Details Applica tion mode Code Name Minimum Maximum P1-22 Torque control speed limiting mode — 0 Sets speed limit mode during torque control. 0: Limit to [P1-23]. 1: Maximum motor speed 2: Analog speed command 3: Limited to the smaller value between the value of [P1-23] and the analog speed command. T Velocity limit switch (torque control) 0 3 P1-23 Speed limit [RPM] 2000 …

  • 203, 7. Product Specifications 7-19 [gfcms2] 5.77 10.39 14.92 19.43 5.77 10.39 Allowed load inertia Motor inertia x 10 Rated power rate [kW/s] 14.47 22.38 33.59 47.85 14.49 27.08 Speed and position detector Standard Serial Type 19 [bit] Option X Specifications and features Protection method Fully closedself-cooling IP65(excluding axis penetration) Time rating Continuous Ambient temperature 0~40[°C] Ambient…

Like this post? Please share to your friends:
  • Xerox 3045 ошибка 016 317
  • Xdcla exe системная ошибка отсутствует profiler dll
  • Xerox 3119 ошибка перегрев
  • Xc90 ошибка 164
  • Xerox 3020 ошибка подключения неправильные настройки