-
KIPiAE
- здесь недавно
- Сообщения: 46
- Зарегистрирован: 15 янв 2020, 18:47
- Имя: Олег
- Благодарил (а): 7 раз
сервопривод XDL L7
Сообщение
KIPiAE »
можете подробно описать объяснить ошибку AL-51 сервопривода XDL L7SA004AE?поворотный стол, мне кажется подшипники или что то мешает ему крутится, механикам толково не могу объяснить.
Просмотр полной версии : Carrier коды ошибок (Alarm list)
Привет всем! Люди не могу понять что за ошибки такие выдает AL06 :eek:! Заранее благодарен!
muravei77
08.07.2010, 00:24
в архиве есть.
Где? Друг, ткни меня носом!
Таблица 1-7. Индикация сигналов тревоги в контроллере
№ ОПИСАНИЕ СИГНАЛОВ ТРЕВОГИ
AL20 Размыкание предохранителя контрольной схемы (24 в)
AL21 Размыкание предохранителя микросхемы (18в.)
AL22 Безопасность мотора вентилятора испарителя
AL23 Безопасность автотрансформатора
AL24 Безопасность мотора компрессора
AL25 Безопасность мотора вентилятора конденсатора
AL26 Сбой датчика всего входящего и возвратного воздуха
AL27 Сбой калибровки схемы датчика
AL51 Сбой Списка Сигналов тревоги
AL52 Сигнал тревоги – список полон
AL53 Сбой датчика напряжения сети
AL54 Сбой датчика первичной подачи воздуха
AL55 Сбой датчика вторичной подачи воздуха
AL56 Сбой датчика первичного возвратного воздуха
AL57 Сбой датчика температуры окружающей сети
AL58 Безопасность компрессор высокого давления
AL59 Безопасность термостата прекращения нагрева (HTT)
AL60 Сбой датчика прекращения разморозки
AL61 Сбой обогревателей
AL62 Сбой схемы компрессора
AL63 Ток сверх лимита
AL64 Температура на выходе сверх лимита
AL65 Сбой датчика давления на выходе или на конденсаторе
AL66 Сбой датчика давления на всасывании
AL67 Сбой датчика влажности
ERR# Сбой внутреннего микропроцессора
Entr stpt Ввод контрольной точки (нажать «стрелку» и Enter)
LO Низкое напряжение сети
VENT Режим VENT – опция Controlled Atmosphere (CA) option
P-CA Предпоездочный режим — опция Controlled Atmosphere (CA) option
И все!!!
muravei77
09.07.2010, 00:21
rogg, я тоже не нашёл. сорри за дезу.))
Штож, за ошибон такой… мож на дисплее лишний знак горит, или наоборот?
Утром еду на обслугу. Все запишу.
muravei77
10.07.2010, 02:16
rogg, и полную марку контейнера запиши.
model number 69NT40-511-13
Alarm list:
AL01 IA56
AL02 AA06
AL03 AA53
AL04 IA21
AL05 AA06
AL06 IA21
насчет ia53 мне ясно. с напругой действительно проблемы есть, lo почти на всех выдает периодически. Ia56 тоже. Aa21 пока все работает ничего не предпринимаю. а вот aa06 для меня загадка.
надо просто тупо пере прошить контроллер и всё пойдёт
Gosha_37
17.05.2011, 07:33
Добрый день.Проблемка с рефом Carrier 69NT40 ,работает несколько минут ,температуру до -7 догоняет выдаёт ошибку AL15 и включает оттайку.Далее всё повторяется .Где найти коды ошибок с AL01-AL19 ?:confused:
AL15 Loss of Cooling. Future Expansion .- AL15 Потеря охлаждения. Расширения в будущем. ( перевод) Ошибка в процессе ежедневных данных , то есть произошедшая только что.
Есть ли лед на линии всасывания? Может быть недостаточно хладогента в смстеме ?
Вот перечень кодов —
AL13 модуль расширения
Сигнализация 13 срабатывает, если модуль управления потерял связь с расширением
модуль для более чем на пять минут или связи не выполнит в течение
первые 15 секунд при включении питания. Этот сигнал вызывает недостаточность действий C (вентилятор испарителя
только) или D (все машины с) функции CD29 Кодекса, если устройство имеет скоропортящихся
заданного значения. Отказ действия D (все машины в выключенном состоянии) срабатывает, если устройство имеет замороженные
уставки
AL14 Несоблюдение последовательности фаз — Electronic
Сигнализация срабатывает 14, если электронная система обнаружения фазы не в состоянии определить
правильное соотношение фаз. DIRCHECK будет отображаться в то время как
отношений определяется. Если система не может определить правильное соотношение
сигнализации 14 будет оставаться активным. Additiotnal информацию о определением фазы
могут быть размещены на Функция кодекса Cd41. Если право наиболее цифра кода является Cd41
3 или 4, это указывает на неправильный двигателя или датчик проводки. Если право наиболее цифра 5,
Это указывает на то удалось текущей сборки датчика.
AL15 Потеря охлаждения будущего расширения
AL16 ток компрессора высокого
Сигнализация 16 срабатывает компрессор ток составляет 15% по сравнению рассчитаны максимум
в течение 10 минут из последнего часа. Тревоги отображаются только и будут вызывать
с когда компрессор работает на один час без перегрузки по току.
AL17 чередования фаз Failure — Давление
Сигнализация 17 срабатывает, если компрессора в обоих направлениях не в состоянии генерировать
достаточно перепада давления. Контроллер будет пытаться перезагрузить каждые двадцать
минут и отключения сигнализации в случае успеха. Этот сигнал вызывает недостаточность действий
C (только вентилятор испарителя) или D (все машины с) функции CD29 Кодекса, если
Группа скоропортящихся точек. Отказ действия D (все машины в выключенном состоянии) срабатывает, если
Группа замороженных точек
AL18 разряд высокого давления
Сигнализация 18 срабатывает, если давление на выходе составляет 10% по сравнению рассчитаны максимум для
10 минут в течение последнего часа. Тревоги отображаются только и будет приводить в движение
когда компрессор работает на один час без избыточного давления.
AL19 разряда высокая температура
Сигнализация срабатывает 19 разряда, если температура превышает 135_C (275_F) в течение 10
минут в течение последнего часа. Тревоги отображаются только и будет приводить в движение, когда
компрессор работает на один час без перегрева
Gosha_37
19.05.2011, 12:40
Большое спасибо ,поедем на неделе посмотрим !
Gosha_37
19.05.2011, 12:52
Смотри файловый архив.
Просмотрел файловый архив там с AL20…,а AL01-AL19 ненашёл,прошу прощения что я невнимательный.
Dissantnik
22.09.2012, 12:59
Термо датчик поменяй и немучайся,это такая мондула за испорителем в камере,как правело именно отказ датчика приводит к таким проблемам
sahholod
22.09.2012, 13:25
Dissantnik,Ты рядом с Эстонией))). Тема год назад ушла…
Глебов А.А.
23.09.2012, 02:42
Улыбнуло)))
megayarik
04.10.2012, 18:42
Здравствуйте,у меня была такая же проблема,ошибка al-06 это плохой контакт клавиатуры управления агрегетом.
megayarik
04.10.2012, 18:44
Здравствуйте,у меня была такая же проблема,ошибка al-06 это плохой контакт в разъеме клавиатуры управления агрегетом.
reefer007
09.10.2012, 23:27
model number 69NT40-511-13
Alarm list:
AL01 IA56
AL02 AA06
AL03 AA53
AL04 IA21
AL05 AA06
AL06 IA21
Давайте по-порядку.
AL01 IA56 — inaktiv alarm (неактивная ошибка) -сбой датчика температуры обратного воздуха. Запусти P 5-0 в меню PTI, если пройдет, хорошо, если нет -меняй датчик.
AL02 AA06 — aktiv alarm (активная ошибка ) — сбой работы клавиатуры. Лучше сразу меняй (хотя может быть проблема в разъёме между клавиатурой и дисплеем).
AL03 AA53 — aktiv alarm (активная ошибка ) — низкое напряжение с блока батареек. Если есть — меняй, если нет- перепрошей контроллер.
AL04 IA21 — inaktiv alarm (неактивная ошибка) — была проблема с предохранителями F1, F2 или плохой контакт на разъёме KA.
al 15 вообще что за ошибка? carrier ml 2i
iscander
10.05.2014, 11:23
al 15 вообще что за ошибка? carrier ml 2i
AL15
Loss of Cool
Alarm 15 is activated when SMV is greater than 15%, unit is in economized or
standard operating modes and Return — Supply Temperature Difference is less
than 0.5C after 4 minutes of compressor run time. The alarm triggers failure action
C ( evaporator fan only) or D ( all machinery off ) if in perishable mode and
failure action D ( all machinery off ) if a frozen set point has been selected.. The
alarm remains active until the unit is power cycled.
Короче: проверь уровень фреона, судя по всему утечка.
опередил, пока я кофе наливал))
iscander
10.05.2014, 11:29
опередил, пока я кофе наливал))
Рад стараться. Служу дяде Серёже! 26469
muravei77
10.05.2014, 13:40
я недавно видел все от AL-01 до 15.. подряд все:-D
я недавно видел все от AL-01 до 15
кста, чем закончилось-то?
muravei77
10.05.2014, 14:01
кста, чем закончилось-то? см. личку.
iscander
10.05.2014, 16:53
см. личку.
аналогично))
А я? А мне? Тоже хочу знать чем кончилось. И что было то.
muravei77
10.05.2014, 17:49
А я? А мне? ну как про тебя забудешь..)) и ты лс смотри.
microlink2
13.06.2014, 13:42
щас то же самое АL15 и встаёт высвечивая АЛАРМ. чем закончилось если помните? Спасибо!
microlink2
13.06.2014, 13:48
Добрый день! Меня (не мастер!!! преобрели этот гемор с полгода назад) тоже посетила AL15 зажигает ALЯRM и встаёт. После перезапуска может поработать. Фреон судя по смотровому окошку в ресивере есть (шарики всплывают). Начал набирать температуру до -9С встаёт на оттайку. И так по кругу. Поставил оттайку с авто на 3 часа. Внутри испаритель чистый (оттаивает). Куда смотреть??
Андрей 631
13.06.2014, 17:20
Добрый день! Меня (не мастер!!! преобрели этот гемор с полгода назад) тоже посетила AL15 зажигает ALЯRM и встаёт. После перезапуска может поработать. Фреон судя по смотровому окошку в ресивере есть (шарики всплывают). Начал набирать температуру до -9С встаёт на оттайку. И так по кругу. Поставил оттайку с авто на 3 часа. Внутри испаритель чистый (оттаивает). Куда смотреть??
Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.
microlink2
14.06.2014, 12:11
Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.
Давление в понедельник только мастер будет….
В смотр окнах фреон вроде есть…
Что обмёрзло и нормально ли это?2744127442
iscander
14.06.2014, 12:15
Давление в понедельник только мастер будет….
А ты хто? Хто ты будешь такой? microlink2, ?? Смени имя!
microlink2
14.06.2014, 14:12
А ты хто? Хто ты будешь такой? microlink2, ?? Смени имя!
да мне тоже твоё не нравится. ты по теме пиши. остальное лирика!
microlink2
14.06.2014, 14:20
Давления при работе на холод для начала посмотри, фильтр-осушитель и циркуляцию воздуха внутри контейнера проверь.
спасибо!
iscander
14.06.2014, 14:58
ты по теме пиши.
Приказывать будешь своим холопам.
Андрей39
07.07.2014, 20:43
Андрей привет, это-же ты рефмеханик25?
дмитрий09
10.12.2014, 12:04
AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить.
помогите плиз я не могу сделать мне нужна температура +6 а там показывает AL52 что делать по порядку объясните пожалуйста а то у меня в пятницу продукты придут а я ничего не могу сделать я в тайге даже специалиста вызвать не могу
iscander
10.12.2014, 18:25
AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить.
31873
Андрей39
25.05.2015, 19:25
Андрей привет, напиши свой телефон, надо связаться.
AL01 AA77 ошибка Alarm не горит и ничего не происходит, молчит. где найти прошивку
дмитрий09, Здравствуй дмитрий09 ! AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить .Такая же проблема у меня сегодня .Как решил тогда 10.12.2014 давно конечно было ? Шома.
AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить
Вообще не напрягаясь! А ты кто?
Вообще не напрягаясь!
АдЫн маленький уточнений-если они все неактивные..))
Шома, решай проблему с активными ошибками. *list*
Сообщение от Шома
AL52 Сигнал тревоги – список полон как мне его скинуть или сбросить
Вообще не напрягаясь! А ты кто?
Холодильщик. Приходиться ремонтировать все что есть вокруг холодильное.
В нашем маленьком городе имеется всего то 1 рефконтейнер ,хозяин которого в течении последних лет обращался из-за утечек.В прошлую весну поменял конденсатор (хозяин заказал ) с легка изучив ( Carrier 69NT40-511 Руководство по эксплуатации и обслуживанию Холодильный агрегат Carrier 69NT40-511-300 ).
Проблема ушла по рефу не обращается говорит все нормально.К контроллеру не лазил и особо в него не вникал по нему не было вопросов.Тем более не предстояло задачи изучить этот контроллер ,мануал и начинать широко применять на практике радуя владельцев ,попутно зарабатывая деньги.
Сейчас по наводке хозяина рефа обратился с соседнего города еще один владелец ентот уже продвинутый имеет 2 рефконтейнера и они посвежее .Один из них с ID-974 уже 4 года по словам владельца поставили как сгорела плата контроллера .Настроен на -15град .Второй с ошибкой а 52 стоит на аларм и не включается .Пользуются пока вручную принудительно включая компрессор и тэны.
Спасибо форумчане за советы по проблеме.
Изучаю пока ваши сообщения и матчасть (особенно как это скидывать ошибки со списка не напрягаясь).
Это усложняется еще тем растояние до рефа 80км .
Шома, скачай мануалку и раз ты холодильщик, то проблем для тебя не составит сбросить неактивные ошибки и определить, а также устранить активные…
Серега136
14.06.2016, 08:14
добрый день ,может кто нибудь подсказать по реф установке митсубиси.Зарание спасибо.
Добре вечоре, друже.
Сегодня приехал я значится на рефах масло поменять и обнаружил на одном ошибку aa21.
Почесал репу, почитал доки на телефоне.. нашел следующее:
сигнал 21 появляется, если перегорает один из предохранителей (f1/f2) в цепи питания микропроцессора -18 вольт переменного тока. регулируемый клапан всасывания будет открыт, лимит тока действовать не будет. компрессор будет попеременно включаться и выключаться. управление температурой осуществляется за счет цикличной работы компрессора.
Проверил предохранители — живы, достал тестер, начал искать куда делись 18 вольт.
Пока искал — ошибка пропала.
Но… осадочек остался. Небось завтра (после завтра, через неделю…месяц, нужное подчеркнуть), опять отвалится.
Так-то вроде не критично оно ибо работает в режиме -20 и соленоид вроде должен быть открыт, и на модулирующий как бы пох. Но неприятно.
Есть какие-нибудь идеи, от чего оно бывает, что можно проверить, подкрутить, зачистить??
Eugene31
26.01.2017, 07:57
neosfen, а у тебя рефы какие? У мну на Vector 1850 такая же вылезла, а работа на тепло (хрукты-овосчи). И что самое интересное, вторая ошибка по давлению масла не сбрасывается, я со своей стороны автоэлектрика перекопал всё, датчики-провода, всё норм. Сбрасываю «Ащипку» даю пуск, 15 секунд и на экране А11, А21.*lol_stena**HELP* причём старт даже отдалённо не наблюдается.*lol_stena*
Мужики спасайте, чиллер кариер 30RH-140 выбил ошибку B2 потеря связи с платой SCPM. как найти эту связь, где загвоздка?
Eugene31
17.03.2017, 11:46
Да, я так понимаю, что форум мёртв. Полтора месяца, и ни одного ответа.
sahholod
17.03.2017, 11:53
что форум мёртв.
Ну, может только для тебя?
sne, Добрый день,не подскажешь ,что делать, Carrier Xarios350 включаю ,запускается и тут-же загорается красная лампочка ,смотрю ошибку,выдаёт А01 А02
Да, я так понимаю, что форум мёртв. Полтора месяца, и ни одного ответа.
Ну ты тему бы создал. Ибо здесь каша и в большинстве по рефконтейнерам.
Вектор с контейнерами — разные вещи.
21 ошибка у меня даже мурзилке не значится.
sne, Добрый день,не подскажешь ,что делать, Carrier Xarios350 включаю ,запускается и тут-же загорается красная лампочка ,смотрю ошибку,выдаёт А01 А02
Ехать в сервис.
Скорее всего газ — тю-тю. Может и электрика.
Сегодня приехал на новый объект. 12 Реф.контейнеров carrier MKL2. Работы много, как бы все решаемо, есть только пару тройку вопросов. На данный момент много ошибок победил, кроме одной.
1. Ошибка 87(ошибка1-4).Не могу понять?
2. 1 контейнер(409), маркером написано 413. Что в действительности тайна. Думаю стравить…..азот, трв, масло…. да перевести на 134 как все.
Ошибка 87(ошибка1-4).Не могу понять?
дату выстави правильную.
дату выстави правильную.
SerB, Спасибо, у соседей нашёл, но все равно Спасибо. Сегодня приехал, авария ушла. Появились 60,61.(я так понял датчик и тены).
Остался последний вопрос, масло??? Почитаю, потом спрошу.
По-идее, 87 ошибка не уйдет сама по себе. Эт 86-я могет, часов через 10-12 работы контейнера..
По-идее, 87 ошибка не уйдет сама по себе. Эт 86-я могет, часов через 10-12 работы контейнера..
SerB, ну она висит скорее всего, просто появилась 60. Нужно лист полистать. Это не главное.
1.Подскажи пожалуйста, букварь рекомендует SW20 масло 100/20 sus/iso. Искандер у соседей рекомендовал за 13г.:
Mobil Arctic 22CC,
— Emcarate RL32,
— Planetelf ACD32
150/32
Мне проблиматичны данные виды масел, но нет проблем с BSE32. Поэтому я хочу перевести все на 32.
2. Контейнер который на 409/413 перевести на 134 поставив ТРВ carrier TXV(14-00273-08).
3.Я относительно недавно занялся Рём.Реф.контейнеров и не знаю фирм надежных и с большим перечнем Расходняка на Реф.контейнера.не поможешь? Куда можно обратиться.т.к ещё датчики, тены и другой расходняк.
Спасибо за помощь.
В Питере полно контор по запчастям. навскидку-http://refexpress.ru/zapasnye-chasti/carrier/ ? но цены тебя не порадуют. Сложно что-либо посоветовать. Я беру в Голландии иль в штатах. Можно и в чайне, но надо знать хитрые ходы..))
В Питере полно контор по запчастям. навскидку-http://refexpress.ru/zapasnye-chasti/carrier/ ? но цены тебя не порадуют. Сложно что-либо посоветовать. Я беру в Голландии иль в штатах. Можно и в чайне, но надо знать хитрые ходы..))
Ну оттуда наверное и срок поставки приличный. Просто покупать зип на перед неоправданно, Питер относительно местного предложения от контор 2-2,5 раза дешевле. Да и тоже бавает под заказ. Поэтому в принципе цены питерские мне более менее нормальные относительно местных.
А что, касаемо масло и ТРВ???
SerB, Вот такие мановакуметры найти не могу, они наверное точно только в европпе???
muravei77
11.11.2017, 15:44
Ref81, карриер не делает ни компрессоров, ни манометров, ни фильтров ни…. много чего. просто возьми аналог с креплением на щит по диаметру-залитый глицерином. цена будет раз пять дешевле.
Ref81, карриер не делает ни компрессоров, ни манометров, ни фильтров ни…. много чего. просто возьми аналог с креплением на щит по диаметру-залитый глицерином. цена будет раз пять дешевле.
Привет!!! Спасибо, рассматривал этот вариант как последний. Просто зак нормальный, да, да, нет нет.Понимает что за бренд надо платить.Просто думал, а вдруг кто из тех кто торгует запчастями для Реф.контейнеров будет, но чет не встретил. Ну, да и ладно, это не главные комплектующие.
Спасибо.
Собственно, они (манометры) там нах не нужны..
muravei77
11.11.2017, 16:17
Понимает что за бренд надо платить
в данном случае за надпись.
А что, касаемо масло и ТРВ???
Промывай и заливай, делов-то..*CRAZY*
Собственно, они (манометры) там нах не нужны..
Согласен. Но вот хочет, человек заменить разбитые, свёрнутые.
в данном случае за надпись.
Получается так. Но, я же говорю, он сказал да-да, нет-нет.
Промывай и заливай, делов-то..*CRAZY*
Ну не скажи. Может просто у Тебя уже рука набита, Ты то поди не одну сотню таких контейнеров реанимировал. Всему своё время.
Может просто у Тебя уже рука набита
Ага, на предпоследнем контейнере, где переставлял компрессор с древнего аналогового с минералкой и промывал на новом систему с коксом вместо масла в системе я изрядно повеселился..)) Баллона 4 в общей сложности ушло для промывки кондера . труб и испара с ресивером..И все равно потом еще SSV пришлось менять, вернее верхнюю его часть.
Вот бы там приблуда для промывки пригодилась! Да только так и не собрал, все лень-матушка..
52942529435294452945
[QUOTE=SerB;552519]Да только так и не собрал, все лень-матушка..
Всему своё время, соберешь.
В пятницу тоже КМ раскидал под дефектовку, а там. Давно таково не видел. Рефу говорю надо систему мыть, что толку в капиталке КМ. Сейчас соберем и вся срань с системы прилетит. А тот не в какую…
я недавно видел все от AL-01 до 15.. подряд все:-D
Муравей привет.С 1 по 16. Поделись опытом в твоём случае, что было? Спасибо.
Муравей привет.С 1 по 16. Поделись опытом в твоём случае, что было? Спасибо.
muravei77, намекни если не трудно, в какую сторону смотреть.
muravei77
27.11.2017, 12:34
muravei77, намекни если не трудно, в какую сторону смотреть.
в личку смотреть..
Добрый вечер! Подскажите кариер. Вектор 1800 самостоятельно переключается на электро двигатель, куда лезти?
Vera_nvrsk
13.01.2018, 07:01
Доброго дня
Подскажите вышла активная ошибка 07 на карриер микролинк 3, не могу найти что это?
В сети все есть, не надо лениться.
Vera_nvrsk
15.01.2018, 08:29
Спасибо большое, за помощь
Vector 1800 ошибка А124 проверьте терм заверш оттаив 1
Подскажите что копать. (какие обычно проблеммы связанные с этой ошибкой)
Заранее благодарен
Александр
Подскажите что за ошибка dal86
Всем привет что за ошибка dal86
http://www.transtec.ru/transforum/viewtopic.php?p=538
Пожалуйста.
Всем доброго времени суток , помогите пожалуйста нужна программа для диагностики Кариер (трейлерных установок) также цены на неё и кабель / и где можно приобрести ? также если у кого есть мануал как по Reefer Manager буду очень благодарен
Всем добродо времени суток , подскажите пожалуйста где и почем можно приобрести reefer manager+tru tech ( также кабель)
ну и по возможности pcmcia для трейлерных вроде подходит ?
заранее спасибо
Доброго времени суток , может кто знает где и по каким ценам можно приобрести программы Reefer Manager+Tru tech( к ним кабель также) и pcmcia для Carrier установок ,
и есть ли у кого мануал по этим программам пожалуйста сообщите
Здравствуйте. А кто-нибудь сможет пояснить что это за коды?
Рефка работает вроде нормально, проблем не возникает.
57417
На передней панели написаны все коды ошибок.
Emir evpat
31.08.2019, 11:48
Всем доброго времени суток! Ребята, я новичек…Возникла проблема Аl52 , с чего начинать и как убрать этот полный список?
Пожалуйста расскажите подробно а то продукты пропадут…
Спасибо заранее)))
Приветствую.
Сейчас появился AL25 (Безопасность мотора вентилятора конденсатора)
… пока вентилятор не толкнёшь, то мотор не запустится. Это чинится или мотор меняется целиком?
Приветствую.
Сейчас появился AL25 (Безопасность мотора вентилятора конденсатора)
… пока вентилятор не толкнёшь, то мотор не запустится. Это чинится или мотор меняется целиком?
Для начала выясни почему вентилятор не запускается.
vegapiratr
12.11.2019, 15:28
Димаа, не плохо указывать тип установки!
Нет возможности произвести осмотр контактной части(клемной коробки) ,но думаю, что обрыв одной из фаз обмотки статора двигателя .
Нет возможности произвести осмотр контактной части(клемной коробки) ,но думаю, что обрыв одной из фаз обмотки статора двигателя .
Это на двигателе, а с других точек прозвонить, а потом уж принимать решение снимать его или как…
Это на двигателе, а с других точек прозвонить, а потом уж принимать решение снимать его или как…
А вот это, хорошая мысль
Установка carrier, порой приходит контейнер , температура соответствует уставки , но компрессор не включается, соответственно и вентилятор конденсатора не запускается , ну и самое главное он not “in range” (не светится индикатор in range)
Проблема решается переменной местами фазных проводов в вилке.
А вот теперь вопрос; а где в контейнере само реле выбора фаз? Или как это исправить, чтоб больше никому не перекручивать провода в вилке ?
Спасибо
tvmaster
15.01.2020, 12:20
Установка carrier, порой приходит контейнер , температура соответствует уставки , но компрессор не включается, соответственно и вентилятор конденсатора не запускается , ну и самое главное он not “in range” (не светится индикатор in range)
Проблема решается переменной местами фазных проводов в вилке.
А вот теперь вопрос; а где в контейнере само реле выбора фаз? Или как это исправить, чтоб больше никому не перекручивать провода в вилке ?
Спасибо
Поставьте второй контактор ( с другой фазировкой) и реле ( модуль) чередования фаз с управлением двумя контакторами.
Wladimir56
23.03.2020, 16:53
Всем привет! Код ошибки L21 . Проверил F1 ,F2 предохранители исправны, переменное напряжение между ними 30в, относительно 8 вывода- 15 (вместо 18). Выдернул оба предохранителя, включил питание , напряжение не изменилось Т.Е. осталось по 15 в. Посоветуйте пожалуйста, лезть проверять питание процессора или искать почему 15 вместо 18?
Сергей Р
24.03.2020, 05:56
Я так понял контейнер мор флот Провода всё равно перекручивать. Перекручивать надо только на подводе к контейнеру. Реле чередования фаз находится в пульте управления в блоке питания На разных моделях установлено по разному.
Wladimir56
25.03.2020, 18:21
Сергей Р, Спасибо за подсказ, поеду на объект завтра, холодно у нас -16.А контейнер действительно мор флот.)))
deffrost
08.08.2020, 17:08
Всем привет. Тут так много написано про ошибку al15 что ничего не понятно, кто решал проблему может подсказать. Спасибо.
что ничего не понятно
:)Привет Читайте , проверяйте .Вопрос ведь не в том что «кто то отремонтирует ? «
AL15 Потеря охлаждения.
Powered by vBulletin® Version 4.2.3 Copyright © 2023 vBulletin Solutions, Inc. All rights reserved. Перевод: zCarot
Ошибки чиллера
- Ошибки чиллеров Aermec
- Ошибки чиллеров Lessar
- Ошибки чиллеров Dantex
- Ошибки чиллеров NED
- Ошибки чиллеров Wesper
- Ошибки чиллеров York
- Ошибки чиллеров Clivet
- Ошибки чиллеров Carrier
Коды ошибок чиллеров Aermec
Ошибка | Значение |
Flowswitch | срабатывание реле защиты от перепада давления и, или реле защиты по протоку воды |
C1 Compressor | срабатывание размыкателя цепи компрессора 1 |
C1А Compres | срабатывание размыкателя цепи компрессора 1А |
C2 Compressor | срабатывание размыкателя цепи компрессора 2 |
C2А Compres | срабатывание размыкателя цепи компрессора 2А |
C1В Compres | срабатывание размыкателя цепи компрессора 1В |
C2В Compres | срабатывание размыкателя цепи компрессора 2В |
C1 Low Pres. | срабатывание реле/датчика низкого давления контура 1 |
C2 Low Pres. | срабатывание реле/датчика низкого давления контура 2 |
C1 High Pres | срабатывание реле/датчика высокого давления контура 1 |
C2 High Pres | срабатывание реле/датчика высокого давления контура 2 |
C1 Anti-Freez | срабатывание защиты от замораживания контура 1 |
C2 Anti-Freez | срабатывание защиты от замораживания контура 2 |
C1 Sensor | неисправность датчика в контуре 1 |
C2 Sensor | неисправность датчика в контуре 2 |
Volt. monitor | срабатывание защиты от нештатного напряжения питания |
C1 Pumpdown | неисправность в цилиндре компрессора контура 1 |
C2 Pumpdown | неисправность в цилиндре компрессора контура 2 |
Eprom | неисправность электронной карты (обратитесь в сервисную службу) |
Ram | неисправность электронной карты (обратитесь в сервисную службу) |
Flowswitch R | срабатывание реле защиты по протоку воды системы рекуперации тепла (только для модификаций D и Т) |
C1 EV. Pump | срабатывание размыкателя цепи насоса в испарителе контура 1 |
C1 Ev.A.Freez | срабатывание защиты по температуре газообразного хладагента на выходе испарителя контура 1 |
C2 Ev.A.Freez | срабатывание защиты по температуре газообразного хладагента на выходе испарителя контура 2 |
Коды ошибок чиллеров Lessar
Моноблочные чиллеры LUC-F(D)HDA30CAP
Ошибка | Значение |
E0 | ошибка EEPROM чиллера |
E1 | неправильное чередование фаз |
E2 | ошибка связи |
E3 | ошибка датчика температуры прямой воды |
E4 | ошибка датчика температуры воды на выходе из кожухотрубного теплообменника |
E5 | ошибка датчика температуры на трубе конденсатора А |
E6 | ошибка датчика температуры на трубе конденсатора В |
E7 | ошибка датчика температуры наружного воздуха |
E8 | ошибка защиты по электропитанию |
E9 | ошибка датчика протока воды ( ручной сброс аварии ) |
EA | зарезервировано |
Eb | ошибка датчика температуры для защиты от замерзания кожухотрубного теплообменника |
EC | потеря связи проводного пульта управления с чиллером |
Ed | зарезервировано |
EF | ошибка датчика температуры воды на входе в кожухотрубный теплообменник |
P0 | сработала защита по превышению давления или температуры хладагента в контуре А |
P1 | сработала защита по низкому давлению хладагента в контуре А ( ручной сброс аварии ) |
P2 | сработала защита по превышению давления или температуры хладагента в контуре В ( ручной сброс аварии ) |
P3 | сработала защита по низкому давлению хладагента в контуре B ( ручной сброс аварии ) |
P4 | сработала защита по превышению тока контура А ( ручной сброс аварии ) |
P5 | сработала защита по превышению тока контура В ( ручной сброс аварии ) |
P6 | сработала защита по высокой температуре конденсации в контуре А |
P7 | сработала защита по высокой температуре конденсации в контуре B |
P8 | зарезервировано |
P9 | сработала защита по превышению разности температур прямой и обратной воды |
PA | защита от низкой температуры наружного воздуха при пуске |
Pb | сработала защита от обмерзания |
PC | защита по давлению предупреждающая обмерзание контура А ( ручной сброс аварии ) |
PD | защита по давлению, предупреждающая обмерзание контрура В ( ручной сброс аварии ) |
PE | защита от низкой температуры в кожухотрубном испарителе |
Коды ошибок чиллеров Dantex
Модульные чиллеры серии DN
Для модулей производительностью 25/30/35 кВт
Ошибка | Значение |
E0 | ошибка расходомера воды ( трижды ) |
E1 | ошибка в последовательности подключения фаз |
E2 | ошибка связи |
E3 | ошибка датчика температуры воды на выходе |
E4 | ошибка датчика температуры воды на выходе из кожухотрубного теплообменника |
E5 | ошибка датчика температуры трубок конденсатора А |
E6 | ошибка датчика температуры трубок конденсатора B |
E7 | ошибка датчика температуры наружного воздуха |
E8 | ошибка датчика температуры нагнетаемого воздуха в системе А ( компрессор с цифровым управлением ) |
E9 | ошибка расходомера воды ( в первый и второй раз ) |
EA | основной блок зафиксировал уменьшение количества дополнительных блоков |
EB | ошибка датчика температуры в системе защиты от обмерзания кожухотрубного теплообменника |
EC | проводной контроллер не находит в сети один из модульных блоков |
ED | ошибка в системе управления и связи между блоками |
Ed | четырехкратное в течение 1 часа срабатывание электрической защиты |
EE | ошибка связи проводного пульта управления с микропроцессором блока |
EF | ошибка датчика температуры воды на входе |
P0 | ошибка в системе защиты от повышения давления или защиты от перегрева воздуха в системе A |
P1 | защита от понижения давления в системе A |
P2 | ошибка в системе защиты от повышения давления или защиты от перегрева воздуха в системе В |
P3 | защита от понижения давления в системе В |
P4 | защита от перегрузки по току в системе A |
P5 | защита от перегрузки по току в системе B |
P6 | защита от высокого давления в конденсаторе системы A |
P7 | защита от высокого давления в конденсаторе системы B |
P8 | датчик температуры в линии нагнетания компрессора с цифровым управлением системы А |
Pb | система защиты от обмерзания |
PE | защита от понижения температуры теплообменника «труба в трубе» |
F1 | неисправность электрически стираемой программируемой постоянной памяти |
F2 | ошибка в количестве соединяемых параллельно проводных контроллеров |
Для модулей производительностью 55/60/65 кВт
Ошибка | Значение |
E0 | ошибка в определении расхода воды ( трижды ) |
E1 | ошибка в последовательности подключения фаз |
E2 | ошибка связи |
E3 | ошибка датчика температуры охлаждаемой воды на выходе |
E4 | ошибка датчика температуры воды на выходе из кожухотрубного теплообменника |
E5 | ошибка датчика температуры трубок конденсатора А |
E6 | ошибка датчика температуры трубок конденсатора В |
E7 | ошибка датчика температуры наружного воздуха |
E8 | ошибка датчика температуры в линии нагнетания компрессора системы A |
E9 | ошибка в определении расхода воды ( первый и второй раз ) |
EA | основной блок фиксирует уменьшение количества дополнительных блоков |
EB | ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника |
EC | проводной контроллер не обнаружил выхода одного из модульных блоков |
ED | ошибка связи между проводным контроллером и модульным блоком |
Ed | четырехкратное в течение 1 часа срабатывание защиты электропитания |
EE | ошибка связи между проводным контроллером и компьютером |
EF | ошибка датчика температуры воды на входе |
P0 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А |
P1 | срабатывание защиты от низкого давления в системе А |
P2 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B |
P3 | срабатывание защиты от низкого давления в системе B |
P4 | срабатывание защиты от перегрузки по току в системе А |
P5 | срабатывание защиты от перегрузки по току в системе B |
P6 | срабатывание защиты от высокого давления в конденсаторе в системе А |
P7 | срабатывание защиты от высокого давления в конденсаторе в системе B |
P8 | ошибка датчика температуры в линии нагнетания компрессора системы А |
P9 | защита по разности температур воды на входе и выходе |
PA | защита от переохлаждения при пуске |
Pb | срабатывание защиты от обмерзания |
PC | ( резервный код ) |
PE | защита от переохлаждения кожухотрубного теплообменника |
F1 | неисправность электрически стираемой программируемой постоянной памяти |
F2 | ошибка в количестве соединяемых параллельно проводных контроллеров |
Для модулей производительностью 130 кВт
Ошибка | Значение |
E0 | ошибка в определении расхода воды (трижды) |
E1 | ошибка в последовательности подключения фаз |
E2 | ошибка связи |
E3 | ошибка датчика температуры охлаждаемой воды на выходе |
E4 | ошибка датчика температуры воды на выходе из кожухотрубного теплообменника |
E5 | ошибка датчика температуры трубок конденсатора А |
E6 | ошибка датчика температуры трубок конденсатора В |
E7 | ошибка датчика температуры наружного воздуха |
E8 | ошибка датчика температуры в линии нагнетания компрессора системы A |
E9 | ошибка в определении расхода воды (первый и второй раз) |
EA | основной блок фиксирует уменьшение количества дополнительных блоков |
EB | ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника |
EC | проводной контроллер не обнаружил выхода одного из модульных блоков |
ED | ошибка связи между проводным контроллером и модульным блоком |
Ed | четырехкратное в течение 1 часа срабатывание защиты электропитания |
EE | ошибка связи между проводным контроллером и компьютером |
EF | ошибка датчика температуры воды на входе |
P0 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А |
P1 | срабатывание защиты от низкого давления в системе А |
P2 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B |
P3 | срабатывание защиты от низкого давления в системе B |
P4 | срабатывание защиты от перегрузки по току в системе А |
P5 | срабатывание защиты от перегрузки по току в системе B |
P6 | срабатывание защиты от высокого давления в конденсаторе в системе А |
P7 | срабатывание защиты от высокого давления в конденсаторе в системе B |
P8 | ошибка датчика температуры в линии нагнетания компрессора системы А |
P9 | защита по разности температур воды на входе и выходе |
PA | защита от переохлаждения при пуске |
Pb | срабатывание защиты от обмерзания |
PC | ( резервный код ) |
PE | защита от переохлаждения кожухотрубного теплообменника |
P1 | неисправность электрически стираемой программируемой постоянной памяти |
F2 | ошибка в количестве соединяемых параллельно проводных контроллеров |
Для модулей производительностью 200 кВт
Ошибка | Значение |
E0 | ошибка в определении расхода воды ( трижды ) |
E1 | ошибка в последовательности подключения фаз |
E2 | ошибка связи |
E3 | ошибка датчика температуры охлаждаемой воды на выходе |
E4 | ошибка датчика температуры воды на выходе из кожухотрубного теплообменника |
E5 | ошибка датчика температуры трубок конденсатора А |
E6 | ошибка датчика температуры трубок конденсатора В |
E7 | ошибка датчика температуры наружного воздуха или сбой питания |
E8 | ( резервный код ) |
E9 | ошибка в определении расхода воды ( первый и второй раз ) |
EA | основной блок фиксирует уменьшение количества дополнительных блоков |
Eb | ошибка датчика температуры 1 в системе защиты от обмерзания кожухотрубного теплообменника |
EC | проводной контроллер не обнаружил выхода одного из модульных блоков |
Ed | четырехкратное в течение 1 часа срабатывание защиты электропитания |
EF | ошибка датчика температуры воды на входе |
P0 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы А |
P1 | срабатывание защиты от низкого давления в системе А |
P2 | срабатывание защиты от высокого давления или от перегрева в линии нагнетания системы B |
P3 | срабатывание защиты от низкого давления в системе B |
P4 | срабатывание защиты от перегрузки по току в системе А |
P5 | срабатывание защиты от перегрузки по току в системе B |
P6 | срабатывание защиты от высокого давления в конденсаторе в системе А |
P7 | срабатывание защиты от высокого давления в конденсаторе в системе B |
P8 | ошибка датчика температуры в линии нагнетания компрессора системы А |
P9 | защита по разности температур воды на входе и выходе |
PA | защита от переохлаждения при пуске |
Pb | срабатывание защиты от обмерзания |
PC | ( резервный код ) |
PE | защита от переохлаждения кожухотрубного теплообменника |
F1 | неисправность электрически стираемой программируемой постоянной памяти |
F2 | ошибка в количестве соединяемых параллельно проводных контроллеров |
Коды ошибок чиллеров NED
Ошибка | Значение |
AL001 | внешний сигнал тревоги |
AL002 | слишком часто переписывается EEPROM |
AL003 | ошибка записи в EEPROM |
AL004 | датчик температуры воды на входе в испаритель |
AL005 | датчик температуры воды на выходе из испарителя |
AL006 | датчик температуры воды на входе в конденсатор |
AL007 | датчик температуры наружного воздуха |
AL008 | перегрузка насоса 1 в контуре потребителей |
AL009 | перегрузка насоса 2 в контуре потребителей |
AL010 | перегрузка насоса 1 в контуре конденсатора |
AL011 | ошибка в количестве соединяемых параллельно проводных контроллеров |
AL011 | перегрузка насоса 2 в контуре конденсатора |
AL012 | насос 1 в контуре потребителей. Нет расхода воды 1) |
AL013 | насос 2 в контуре потребителей. Нет расхода воды 1) |
AL014 | насос 1 в контуре конденсатора. Нет расхода воды 1) |
AL015 | насос 2 в контуре конденсатора. Нет расхода воды 1) |
AL016 | неисправна группа насосов в контуре потребителей |
AL017 | неисправна группа насосов в контуре конденсатора |
AL018 | требуется т/о насоса 1 в контуре потребителей |
AL019 | требуется т/о насоса 2 в контуре потребителей |
AL020 | требуется т/о насоса 1 в контуре конденсатора |
AL021 | требуется т/о насоса 2 в контуре конденсатора |
AL022 | высокая температура охлажденной воды |
AL023 | ненормальная работа фрикулинга |
AL024 | нет связи с подчиненным контроллером |
AL025 | слишком часто переписывается EEPROM в подчиненном контроллере |
AL026 | ошибка записи в EEPROM в подчиненном контроллере |
AL027 | нет связи с платой расширения срСОЕ 1 |
AL028 | неисправность подогревателя испарителя |
AL029 | реле контроля фаз |
AL030 | нет связи с платой расширения срСОЕ 2 |
AL021 | нет сигнала «открыто» от клапана в контуре теплообменника фрикулинга |
AL022 | нет сигнала «закрыто» от клапана в контуре теплообменника фрикулинга |
AL023 | авария привода клапана в контуре теплообменника фрикулинга |
AL024 | нет сигнала «открыто» от клапана на байпасе фрикулинга |
AL025 | нет сигнала «закрыто» от клапана на байпасе фрикулинга |
AL026 | авария привода клапана на байпасе фрикулинга |
AL027 | клапаны фрикулинга не готовы |
AL100 | контур 1 – датчик давления нагнетания |
AL101 | контур 1 – датчик давления всасывания |
AL102 | контур 1 – датчик температуры нагнетания |
AL103 | контур 1 – датчик температуры всасывания |
AL105 | рабочий диапазон контура 1 – высокий коэффициент сжатия |
AL106 | рабочий диапазон контура 1 – высокое давление нагнетания |
AL107 | рабочий диапазон контура 1 – высокий ток двигателя |
AL108 | рабочий диапазон контура 1 – высокое давление всасывания |
AL109 | рабочий диапазон контура 1 – низкий коэффициент сжатия |
AL110 | рабочий диапазон контура 1 – низкое дифференциальное давление |
AL111 | рабочий диапазон контура 1 – низкое давление нагнетания |
AL112 | рабочий диапазон контура 1 – низкое давление всасывания |
AL113 | рабочий диапазон контура 1 – высокая температура нагнетания |
AL114 | драйвер ЭРВ контура 1 – низкая температура перегрева |
AL115 | драйвер ЭРВ контура 1 – минимальное рабочее давлениев |
AL116 | драйвер ЭРВ контура 1 – максимальное рабочее давление |
AL117 | драйвер ЭРВ контура 1 – высокая температура конденсации |
AL118 | драйвер ЭРВ контура 1 – низкая температура всасывания |
AL119 | драйвер ЭРВ контура 1 – неисправность двигателя |
AL120 | драйвер ЭРВ контура 1 – аварийное закрытие вентиля |
AL121 | драйвер ЭРВ контура 1 – значение вне диапазона |
AL122 | драйвер ЭРВ контура 1 – нарушение диапазона настройки |
AL123 | драйвер ЭРВ контура 1 – потеря соединения |
AL124 | драйвер ЭРВ контура 1 – низкий заряд батареи |
AL125 | драйвер ЭРВ контура 1 – память EEPROM |
AL126 | драйвер ЭРВ контура 1 – неполное закрытие вентиля |
AL127 | драйвер ЭРВ контура 1 – несовместимость микропрограммного обеспечения |
AL128 | драйвер ЭРВ контура 1 – ошибка конфигурирования |
AL166 | контур 1 – тревога защиты от замерзания |
AL167 | контур 1 – требуется т/о компрессора 1 |
AL168 | контур 1 – требуется т/о компрессора 2 |
AL169 | контур 1 – требуется т/о компрессора 3 |
AL170 | контур 1 – требуется т/о компрессора 4 |
AL171 | контур 1 – требуется т/о компрессора 5 |
AL172 | контур 1 – требуется т/о компрессора 6 |
AL173 | контур 1 – датчик температуры конденсации |
AL174 | контур 1 – требуется т/о вентилятора 1 |
AL175 | контур 1 – требуется т/о вентилятора 2 |
AL176 | контур 1 – требуется т/о вентилятора 3 |
AL177 | контур 1 – требуется т/о вентилятора 4 |
AL178 | контур 1 – высокое давление от реле давления |
AL179 | контур 1 –низкое давления от реле давления |
AL180 | контур 1 – перегрузка компрессора 1 |
AL181 | контур 1 – перегрузка компрессора 2 |
AL182 | контур 1 – перегрузка компрессора 3 |
AL183 | контур 1 – перегрузка компрессора 4 |
AL184 | контур 1 – перегрузка компрессора 5 |
AL185 | контур 1 – перегрузка компрессора 6 |
AL186 | Контур 1 – превышена длительность перекачивание хладагента |
AL187 | контур 1 – датчик температуры воды на выходе испарителя |
AL188 | контур 1 – защита от замерзания испарителя по датчику темп. на выходе из испарителя |
AL189 | контур 1 – перегрузка вентилятора конденсатора |
AL200 | контур 2 – датчик давления нагнетания |
AL201 | контур 2 – датчик давления всасывания |
AL202 | контур 2 – датчик температуры нагнетания |
AL203 | контур 2 – датчик температуры всасывания |
AL205 | рабочий диапазон контура 2 – высокий коэффициент сжатия |
AL206 | рабочий диапазон контура 2 – высокое давление нагнетания |
AL207 | рабочий диапазон контура 2 – высокий ток двигателя |
AL208 | рабочий диапазон контура 2 – высокое давление всасывания |
AL209 | рабочий диапазон контура 2 – низкий коэффициент сжатия |
AL210 | рабочий диапазон контура 2 – низкое дифференциальное давление |
AL211 | рабочий диапазон контура 2 – низкое давление нагнетания |
AL212 | рабочий диапазон контура 2 – низкое давление всасывания |
AL213 | рабочий диапазон контура 2 – высокая температура нагнетания |
AL214 | драйвер ЭРВ контура 2 – низкая температура перегрева |
AL215 | драйвер ЭРВ контура 2 – минимальное рабочее давление |
AL216 | драйвер ЭРВ контура 2 – максимальное рабочее давление |
AL217 | драйвер ЭРВ контура 2 – высокая температура конденсации |
AL218 | драйвер ЭРВ контура 2 – низкая температура всасывания |
AL219 | драйвер ЭРВ контура 2 – неисправность двигателя |
AL220 | драйвер ЭРВ контура 2 – аварийное закрытие вентиля |
AL221 | драйвер ЭРВ контура 2 – значение вне диапазона |
AL222 | драйвер ЭРВ контура 2 – нарушение диапазона настройки |
AL223 | драйвер ЭРВ контура 2 – потеря соединения |
AL224 | драйвер ЭРВ контура 2 – низкий заряд батареи |
AL225 | драйвер ЭРВ контура 2 – память EEPROM |
AL226 | драйвер ЭРВ контура 2 – неполное закрытие вентиля |
AL227 | драйвер ЭРВ контура 2 – несовместимость микропрограммного обеспечения |
AL228 | драйвер ЭРВ контура 2 – ошибка конфигурирования |
AL266 | контур 2 – тревога защиты от замерзания |
AL267 | контур 2 – требуется т/о компрессора 1 |
AL268 | контур 2 – требуется т/о компрессора 2 |
AL269 | контур 2 – требуется т/о компрессора 3 |
AL270 | контур 2 – требуется т/о компрессора 4 |
AL271 | контур 2 – требуется т/о компрессора 5 |
AL272 | контур 2 – требуется т/о компрессора 6 |
AL273 | контур 2 – датчик температуры конденсации |
AL274 | контур 2 – требуется т/о вентилятора 1 |
AL275 | контур 2 – требуется т/о вентилятора 2 |
AL276 | контур 2 – требуется т/о вентилятора 3 |
AL277 | контур 2 – требуется т/о вентилятора 4 |
AL278 | контур 2 –высокое давление от реле давления |
AL279 | контур 2 – низкое давление от реле давления |
AL280 | контур 2 – перегрузка компрессора 1 |
AL281 | контур 2 – перегрузка компрессора 2 |
AL282 | контур 2 – перегрузка компрессора 3 |
AL283 | контур 2 – перегрузка компрессора 4 |
AL284 | контур 2 – перегрузка компрессора 5 |
AL285 | контур 2 – перегрузка компрессора 6 |
AL286 | контур 2 – превышена длительность перекачивание хладагента |
AL287 | контур 2 – датчик температуры воды на выходе испарителя |
AL288 | контур 2 – защита от замерзания испарителя по датчику темп. на выходе из испарителя |
AL289 | контур 2 – перегрузка вентилятора конденсатора |
Коды ошибок чиллеров Wesper
Ошибка | Значение |
ADC | ошибка, связанная с микропроцессором |
CPF | неисправность датчика высокого давления |
EPF | неисправность датчика низкого давления |
REF | низкое давление фреона – возможно утечка |
CPnc | датчик высокого давления не измеряет |
EPnc | датчик низкого давления не измеряет |
CFC1 | дефект компрессора 1 |
CFC2 | дефект компрессора 2 |
EWTH | дефект измерителя температуры воды на входе |
EWTL | дефект измерителя температуры воды на выходе |
LWTC | температура воды на входе не меняется |
LWTH | температура воды на выходе не меняется |
LWTL | датчик температуры входящей воды неисправен |
LWLH | датчик температуры исходящей воды неисправен |
DISL | термостат линии нагнетания компрессора неисправен |
OATH | термостат наружного воздуха неисправен |
OATL | термостат наружного воздуха неисправен |
OCTL | термостат конденсатора не работает |
HPP | высокое давление компрессора |
HP | лимитированная защита по давлению компрессора |
HPC | блокировка через реле высокого давления |
LP | сработала защита по низкому давлению |
DIS | сработал термостат компрессора |
LO | выходящая вода имеет низкую температуру |
HI | выходящая вода имеет высокую температуру |
FS | сработало реле протока на линии воды |
CF1 | блокировка тепловым реле компрессора 1 |
CF2 | блокировка тепловым реле компрессора 2 |
OF1 | блокировка тепловым реле компрессора 2 |
PF | блокировка двигателя насоса тепловым реле |
Lou | недостаток воды в контуре чиллера |
EEP | ошибка, связанная с микропроцессором |
JUMP | ошибочная конфигурация перемычек ( DIP ) |
ConF | неверная конфигурация контроллера |
Коды ошибок чиллеров York
Компрессор 1 / Компрессор 2 | Значение |
C1-H1 / C2-H2 | высокое давление |
C1-L1 / C2-L2 | слишком низкое давление |
C1-t1 / C2-t2 | срабатывание защиты от низкого давления и термистора всасываемого газа |
C1-51 / C2-52 | срабатывание термореле компрессора |
C1-61 / C2-62 | срабатывание термостата контроля отработанного газа |
C1-71 / C2-72 | срабатывание внутреннего термистора компрессора Thermistor |
C1-o1 / C2-o2 | срабатывание регулятора дифференциального давления |
C1-28 / C2-28 | отказ датчика давления всасываемого газа ( открыт / закорочен ) |
Коды ошибок чиллеров Clivet
Центральный модуль
Ошибка | Значение |
E001 | отказ датчика темп. вход. воды в блоке управления |
E002 | отказ датчика темп. выход. воды в блоке управления |
E003 | отказ датчика внешней температуры |
E004 | отказ ввода сброса воды |
E005 | отказ датчика внешнего RH% |
E006 | отказ датчика внешнего RH% |
E007 | температура в насосе 2 в блоке управления |
E008 | температура в насосе 2 в блоке управления |
E009 | давление в системе |
E010 | монитор фаз |
E011 | антифриз в блоке управления |
E012 | пред. антифриз в блоке управления |
E013 | замена центрального насоса |
E014 | конфигурация устройства |
E015 | отказ предела потребления |
E016 | отказ сети в блоке управления |
E017 | блокировка управления нагрева |
E018 | неправильная разница температур |
E019 | низкая внешняя температура |
Модуль компрессора
Ошибка | Значение |
E101 | отказ датчика конденсации / испарения |
E102 | отказ датчика давления конденсации |
E103 | отказ датчика давления испарения |
E104 | отказ датчика температуры восстановления |
E105 | высокое давление |
E106 | низкое давление |
E107 | терм. вентилятор / насос |
E111 | конденс / испар подача воды |
E112 | пред. высокое давление 1 |
E113 | пред. высокое давление 1 |
E114 | пред. низкое давление |
E115 | обяз. разморозка |
E116 | макс. разница давления |
E117 | восстановление воды |
E118 | восстановление тепла |
E108 | терм. компрессор 1 |
E109 | терм. компрессор 2 |
E110 | терм. компрессор 3 |
E213 | модуль не подключен |
E119 | разница давлений масла |
E120 | замерзание конденсатора |
E121 | пред. BP2 |
E123 | TA TEE |
E124 | TS TEE |
E125 | пред. макс. TS TEE |
E126 | пред. макс. TS TEE |
E127 | отказ питания |
E128 | ошибка шагового двигателя |
Коды ошибок чиллеров Carrier
Код № | НАИМЕНОВАНИЕ | ОПИСАНИЕ |
AL20 | Перегорел предохранитель цепи управления (24 В переменного тока) | Сигнал 20 появляется, если перегорает предохранитель (F3); при этом останавливаются все контролируемые программой узлы агрегата. Сигнал будет оставаться активным до замены предохранителя на 15 А. |
AL21 | Перегорел предохранитель цепи микропроцессора (18 В переменного тока) | Сигнал 21 появляется, если перегорает один из предохранителей (F1/F2) в цепи питания микропроцессора -18 вольт переменного тока. Регулируемый клапан всасывания будет открыт, лимит тока действовать не будет. Компрессор будет попеременно включаться и выключаться. Управление температурой осуществляется за счет цикличной работы компрессора. |
AL22 | Защита электродвигателя вентилятора испарителя | Сигнал 22 появляется при срабатывании внутреннего устройства защиты электродвигателя испарителя. Сигнал выключает все контролируемые узлы до тех пор, пока не будет осуществлен сброс защитного устройства электродвигателя. |
AL23 | Отсоединена перемычка КА2-КВ10 | Сигнал 23 появляется при отсутствии перемычки. Сигнал остается активным до тех пор, пока перемычка не восстановлена. |
AL24 | Защита электродвигателя компрессора | Сигнал 24 появляется при срабатывании внутреннего устройства защиты электродвигателя компрессора. Сигнал выключает все контролируемые узлы, за исключением вентиляторов испарителя; сигнал остается активным до момента сброса устройства защиты электродвигателя. |
AL25 | Защита электродвигателя вентилятора конденсатора | Сигнал 25 появляется при срабатывании внутреннего устройства защиты электродвигателя конденсатора и выключает все контролируемые узлы, за исключением вентиляторов испарителя. Сигнал остается активным до момента сброса устройства защиты электродвигателя. Этот сигнал не действует при работе агрегата с конденсатором водяного охлаждения. |
AL26 | Неисправность всех датчиков подаваемого и отработанного воздуха | Сигнал 26 появляется, если контроллер обнаруживает, что показания всех датчиков находятся за пределами заданного диапазона. Это может произойти в том случае, если температура в кузове выходит за пределы от -50°С до +70°С (-58°F до +158°F). Этот сигнал вызывает реакцию на неисправность в соответствии с кодом функции Cd29. |
AL27 | Ошибка калибровки цепи датчика | Контроллер включает в себя встроенный аналогово-цифровой преобразователь (АЦП), используемый для преобразования аналоговых показателей (датчиков температуры, датчиков тока и т.д.) в цифровые. Контроллер постоянно проверяет калибровку АЦП. Если АЦП не поддается калибровке в течение 30 секунд подряд, выводится этот сигнал. Сигнал перестает быть активным при успешной калибровке АЦП. |
AL51 | Ошибка в списке сигналов | В ходе начальной диагностики проверяется EEPROM для оценки его содержания. При этом проверяются заданное значение и список сигналов. Если содержание признается недействительным, выдается сигнал 51. В процессе управления любая операция, связанная со списком сигналов и совершенная с ошибкой, вызывает появление сигнала 51. Сигнал 51 предназначен «только для вывода на дисплей» и не заносится в список сигналов. При нажатии клавиши ENTER в момент, когда на дисплей выведено сообщение «CLEAr», производится попытка удалить список сигналов. Если эта попытка успешна (все сигналы деактивируются), то происходит сброс сигнала 51. |
AL52 | Список сигналов заполнен | Сигнал 52 появляется, если список сигналов заполнен — при включении или после внесения сигнала в список. Сигнал 52 выводится на дисплей, но не заносится в список сигналов. Этот сигнал можно сбросить, удалив список сигналов. Удаление происходит в том случае, если содержащиеся в списке сигналы не активны. |
AL53 | Неисправность никель-кадмиевой батареи | Сигнал 53 выдается, если заряд никель-кадмиевой батареи слишком мал для осуществления записи с питанием от батареи. ПРИМЕЧАНИЕ: Проверьте и перезарядите или замените батарею. |
AL54 | Неисправность основного датчика подаваемого воздуха (STS) | Сигнал 54 выдается в случае недействительных показаний основного датчика подаваемого воздуха, находящихся за пределами от -50 до +70°С (от -58° F до +158°F), или если логическая проверка этого датчика выявляет его неисправность. Если сигнал 54 выдается в тот момент, когда для управления используется основной датчик подаваемого воздуха, то для управления будет использоваться вторичный датчик подаваемого воздуха, если он установлен в агрегате. Если агрегат не оборудован вторичным датчиком подаваемого воздуха, то при появлении сигнала AL54 для управления будет использоваться величина: показания основного датчика отработанного воздуха минус 2°С. |
AL55 | Неисправность регистратора DataCORDER | Этот сигнал выводится, чтобы указать на отключение DataCORDER в связи с внутренней неисправностью. Чтобы удалить этот сигнал, просто переконфигурируйте агрегат на номер его модели OEM с помощью карты мультиконфигураций. |
AL56 | Неисправность основного датчика отработанного воздуха (RTS) | Сигнал 56 выдается в случае недействительных показаний основного датчика отработанного воздуха, находящихся за пределами от -50 до +70°С (от -58°F до +158°F). Если сигнал 56 выдается в тот момент, когда для управления используется основной датчик отработанного воздуха, то для управления будет использоваться вторичный датчик отработанного воздуха, если он установлен в агрегате. Если агрегат не оборудован вторичным датчиком отработанного воздуха или он неисправен, то для управления будет использоваться основной датчик подаваемого воздуха. |
AL57 | Неисправность датчика температуры окружающей среды (AMBS) | Сигнал 57 выдается в случае недействительных показаний температуры окружающей среды, находящихся за пределами рабочего диапазона от -50°С (-58°F) до +70°С (+158°F). |
AL58 | Защита компрессора по повышенному давлению (HPS) | Сигнал 58 выдается, если защитное реле высокого давления нагнетания компрессора (HPS) остается разомкнутым не менее одной минуты. Сигнал остается активным до тех пор, пока реле не замкнется, после чего компрессор снова включается. |
AL59 | Защита термостата завершения нагревания (НТТ) Safety | Сигнал 59 выдается при размыкании термостата завершения нагревания (НТТ) и вызывает выключение нагревателя. Сигнал остается активным до замыкания термостата. |
AL60 | Неисправность датчика завершения оттаивания (DTS) | Сигнал 60 указывает на возможную неисправность датчика завершения оттаивания (DTS). Он появляется при размыкании термостата завершения нагревания (НТТ), или если показания DTS не превышают 25,6°С (78°F) через два часа после начала оттаивания. Контроллер проверяет, снизились ли показания датчика завершения оттаивания (DTS) до 10°С или ниже через полчаса после достижения заданного значения а диапазоне замороженных грузов, или через полчаса непрерывной работы компрессора при падении температуры отработанного воздуха ниже 7°С (45°F). Если этого не произошло, то выдается сигнал неисправности DTS, и режим оттаивания управляется показаниями датчика температуры отработанного воздуха (RTS). Через час контроллер завершит режим оттаивания. |
AL61 | Неисправность нагревателей | Сигнал 61 относится к нагревателям; он выдается при обнаружении ненормального уровня тока при включении (выключении) нагревателя. Проверяется уровень тока в каждой фазе источника тока. Этот сигнал выводится на дисплей, но не вызывает каких-либо действий; он удаляется при нормальном уровне тока, потребляемого нагревателем. |
AL62 | Неисправность цепи компрессора | Сигнал 62 вызывается ненормальным повышением (понижением) уровня тока при включении (выключении) компрессора. Предполагается, что компрессор потребляет ток минимум в 2 А; в противном случае выдается этот сигнал. Этот сигнал выводится на дисплей, но не вызывает каких-либо действий; он удаляется при нормальном уровне тока, потребляемого компрессором. |
AL63 | Превышение лимита тока | Сигнал 63 выдается системой ограничения тока. Если компрессор ВКЛЮЧЕН, и процедуры ограничения уровня тока не в состоянии удержать его в заданных пользователем пределах, выдается сигнал превышения лимита тока. Этот сигнал предназначается только для вывода на дисплей; он удаляется при изменении режима потребления тока агрегатом, при изменении лимита тока с помощью кода Cd32, или если шаговому двигателю регулируемого клапана давления всасывания (SMV) выдается разрешение открыть его на 100%. |
AL64 | Превышение предела температуры нагнетания (CPDT) | Сигнал 64 выдается, если обнаружено, что температура нагнетания превышает 135°С (275°F) в течение трех минут подряд, если она превышает 149°С (300°F), или если показания датчика находятся за пределами рабочего диапазона. Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий. |
AL65 | Неисправность датчика давления нагнетания (DPT) | Сигнал 65 выдается, если показания датчика давления нагнетания компрессора находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий. |
AL66 | Неисправность датчика давления всасывания (SPT) | Сигнал 66 выдается, если показания датчика давления всасывания находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба) до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий. |
AL67 | Неисправность датчика влажности | Сигнал 67 выдается, если показания датчика влажности находятся за пределами рабочего диапазона относительной влажности от 0% до 100%. Если сигнал 67 становится активным, а ранее был выбран режим осушения, то режим осушения выключается. |
AL68 | Неисправность датчика давления конденсатора (СРТ) | Сигнал 68 выдается, если показания датчика давления конденсатора находятся за пределами рабочего диапазона от 73,20 см ртутного столба (30 дюймов ртутного столба) до 32,34 кг/см2 (460 psig). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий. |
AL69 | Неисправность датчика температуры всасывания (CPSS) | Сигнал 69 выдается, если показания датчика температуры всасывания находятся за пределами рабочего диапазона от -60°С (от -76°F) до 150°С (302°F). Сигнал предназначается только для вывода на дисплей и не вызывает каких-либо действий. |
ПРИМЕЧАНИЕ: Если контроллер конфигурирован на работу с четырьмя датчиками без регистратора DataCORDER, то сигналы регистратора AL70 и AL71 будут обрабатываться как сигналы контроллера AL70 и AL71. | ||
ERR# | Внутренняя неисправность микропроцессора |
#0 — Ошибка ОЗУ — Указывает на ошибку рабочей памяти контроллера. #1 — Ошибка программной памяти — Указывает на сбой в программе контроллера. #2 — Время ожидания истекло — Программа контроллера вошла в режим, при котором ее выполнение прекращается. #3 — Неисправность внутреннего таймера — Внутренние таймеры неисправны. Невозможно выполнять циклы с заданным временем, например, оттаивание. #4 — Неисправность внутреннего счетчика — Неисправность внутренних многоцелевых счетчиков. Счетчики используются таймерами и другими устройствами. #5 — Неисправность АЦП — Неисправность аналого-цифрового преобразователя (АЦП) контроллера. |
Entr StPt | Ввести заданное значение (Нажать на клавишу со стрелкой и на Enter) | Контроллер подсказывает оператору на необходимость ввести заданное значение. |
LO | Пониженное напряжение в сети (Коды функций Cd27-38 не действуют, сигнал НЕ сохраняется). | Это сообщение выводится попеременно с указанием заданного значения, если напряжение сети ниже 75% от номинала. |
Консультация инженера
Выполним подбор и расчет оборудования, осуществляем замеры по месту нахождения объекта
Заказать консультацию
Обслуживание и ремонт чиллеров – процедура не дешевая, но при своевременном принятии решения эти затраты можно снизить. Вы можете обратиться в компанию «Градиент» и проводить техническое обслуживание и диагностику холодильных машин на постоянной основе. Это позволит предотвратить большинство неисправностей оборудования. Оказываем услуги по доступным ценам по всей России.
Типичные ошибки чиллера
Инженерное оборудование имеет подробную инструкцию по использованию, где можно посмотреть коды ошибок чиллера. Если вам сложно разобраться самостоятельно, вы всегда можете воспользоваться помощью наших специалистов. Опытные мастера устранят ошибки чиллеров carrier, clivet, york, trane, lessar, aermec, wesper и др.
К наиболее распространенным неисправностям относятся:
- Контроллер хладоносителя показывает несоответствие действующей рабочей точки и рекомендованной производителем. Если вовремя не отремонтировать технику, возможно самопроизвольное перепрограммирование, замерзание воды в испарителе, разрыв пластин теплообменника.
- Аварийный сигнал при утечке фреона требует настройки реле. Иначе снижается температура кипения, вода замерзает и теплообменник лопается.
- Вентилятор перегревается или перемерзает и выходит из строя, в результате чего возникает авария. Не стоит повышать давление реле выше рекомендованного производителем показателя. Иначе появляется риск повреждения контура фреона, и аппарат выходит из строя.
- Ошибка чиллера может возникнуть, если не очищать сеточку фильтра. Тогда теплообменник загрязняется, а давление падает. Оборудование может полностью перестать функционировать.
- Насос без тепловой защиты может перегреваться, поэтому нужно перекрыть его к охладителю, чего требует инструкция к оборудованию.
- При прекращении подачи хладоносителя необходимо отключать насос. Просто перекрыть краны недостаточно, должно быть автоматическое реле, которое предотвратит сбои в системе. Код ошибки чиллера говорит о том, что охлаждаемая жидкость не поступает, фреон выкипает. Из-за этого могут лопнуть пластины.
- Как подстроить реле низкого давления
Если ошибка чиллера выдает «Пониженное давление фреона», необходимо подстроить показатель. Для этого сначала нужно удостовериться, что в аппарате достаточный уровень фреона. Для удобства внутри установки расположен смотровой глазок.
Если он остается прозрачным во всех режимах работы, заправка находится на оптимальном уровне. Если же проскакивают пузыри или есть пена, нужна дозаправка системы. В норме в процессе подстройки снимается защитная крышка и пластина фиксации. Винт регулировки поворачивают против часовой стрелки на один оборот, так значение уменьшается на 1-1,5 бар.
К основным причинам срабатывания ошибки низкого давления относятся:
- утечка хладагента;
- низкий уровень расхода воды;
- сбои датчика температуры;
- неправильная работа ТРВ.
Обращаясь в СК «Градиент» для исправления ошибок чиллера, вы получаете гарантированное качество. Работы выполняем быстро, используем оригинальные комплектующие, чтобы продлить срок эксплуатации оборудования. Строго придерживаемся рекомендаций производителя.
Наша компания существует на рынке более 20 лет и зарекомендовала себя как надежного партнера в продаже и сервисном обслуживании холодильных установок. Мастера своевременно повышают квалификацию и проходят аттестацию. Организуем сертифицированную техническую поддержку.
Чтобы вызвать специалиста, заполняйте онлайн-форму на сайте или свяжитесь с нами по телефону.
Консультация инженера
Выполним подбор и расчет оборудования, осуществляем замеры по месту нахождения объекта
Заказать консультацию
L7S Series
VER 2.0
Introduction
Table of Contents
Hello. Thank you for choosing LS Mecapion L7 Series.
This user manual describes how to use the product and what precautions to take.
Failure to comply with guidelines may cause injury or product damage. Be sure to read this user manual before you use the product and follow all guidelines.
The contents of this manual are subject to change without prior notice depending on software versions.
No reproduction of part or all of the contents of this manual in any form, by any means or for any purpose, shall be permitted without the explicit written consent of LS Mecapion.
The patent, trademark, copyright and other intellectual property rights in this user manual are reserved by LS Mecapion. No use for purposes other than those related to the product of LS
Mecapion shall be authorized.
iii
iv
Table of Contents
Safety Precautions
Safety precautions are categorized as either Danger or Caution, depending on the seriousness of the precaution.
Precautions
Danger
Definition
Failure to comply with guidelines may cause death or serious injury.
Caution
Failure to comply with guidelines may cause injury or property damage.
Certain conditions that are listed as Caution may also result in serious injury.
Electric Shock Precautions
Danger
Before wiring or inspection tasks, turn off the power. Wait 15 minutes until the charge lamp goes off, and then check the voltage.
Be sure to ground both the servo drive and the servo motor.
Only specifically trained professional engineers are permitted to perform wiring tasks.
Perform wiring tasks after you install both the servo drive and the servo motor.
Do not operate the device with wet hands.
Do not open the servo drive cover while in operation.
Do not operate the device with the servo drive cover removed.
Even if the power is off, do not remove the servo drive cover.
Fire Prevention Precautions
Caution
Install the servo drive, the servo motor, and the regenerative resistance on non-combustible material.
In case of servo drive malfunction, disconnect the input power.
Table of Contents
Installation Precautions
Store and use the product in an environment as follows:
Environment
Servo Drive
Conditions
0 ~ 40 ℃
Servo Motor
Usage temp. 0 ~ 50 ℃
Storage temp. -20 ~ 65 ℃
Usage humidity
Storage humidity
Altitude
Below 90% RH (non-condensing)
Spacing
Others
-20 ~ 60 ℃
Below 80% RH
Below 90% RH
Below 1000 m
When installing 1 unit:
More than 40 mm space at the top and bottom of the control panel
More than 10 mm space at the left and right sides of the control panel
When installing 2 or more units:
More than 100 mm space at the top of the control panel
More than 40 mm space at the bottom of the control panel
More than 30 mm space at the left and right sides of the control panel
More than 2 mm between units
Refer to «2.2.2 Installation Inside the
Control Panel.»
Install in a location free from iron, corrosive gas, and combustible gas.
Install in a location free from vibration or shock.
Caution
Make sure that the installation orientation is correct.
Do not drop the product or expose it to excessive shock.
Install in a location that is free from water, corrosive gas, combustible gas, or flammable material.
Install in a location that can support the weight of the product.
Do not stand on the product or place heavy objects on top of it.
Be sure to maintain the specified spacing when you install the servo drive.
Be sure not to get conductive or flammable debris inside either the servo drive or the servo motor.
Firmly fix the servo motor onto the machine.
Be sure to install a servo motor with a gearbox in the specified direction.
Do not touch the rotating unit of the servo motor while you operate the machine.
Do not apply excessive shock when you connect a coupling to the servo motor shaft.
Do not place a load on the servo motor shaft that is heavier than specified.
v
vi
Table of Contents
Wiring Precautions
Caution
Be sure to use AC 200-230 V for the input power of the servo drive.
Be sure to connect the servo drive ground terminal.
Do not connect commercial power directly to the servo motor.
Do not connect commercial power directly to the U, V, and W output terminal of the servo drive.
Directly connect U, V, W output terminals of the servo drive and U, V, W input terminals of the servo motor, but do not install a magnetic contactor between the wiring.
Be sure to use a pressurized terminal with an insulation tube when you connect the power terminal for the servo drive.
When wiring, be sure to separate the U, V, and W cables for the servo motor power and encoder cable.
Be sure to use robotic cable if the motor requires movement.
Before you perform power line wiring, turn off the input power of the servo drive, and then wait until the charge lamp goes off completely.
Be sure to use shielded twisted-pair wire for the pulse command signal (PF+, PF-, PR+, PR-), speed command signal (SPDCOM), and torque command signal (TRQCOM).
Precautions for Initial Operation
Caution
Check the input voltage (AC 200-230 V) and power unit wiring before you turn on the power.
The servo must be in the OFF mode when you turn on the power.
Before you turn on the power, check the motor’s ID and the encoder pulse for L7 □A □□□A.
Set the motor ID ([P0-00]) and the encoder pulse ([P0-02]) for L7 □A □□□A first after you turn on the power.
After you complete the above settings, set the drive mode for the servo drive that is connected to the upper level controller to [P0-03].
Refer to Chapter 1.2 «System Configuration» to perform CN1 wiring for the servo drive according to each drive mode.
You can check the ON/OFF state for each input terminal of CN1 at [St-14].
Precautions for Handling and Operation
Caution
Check and adjust each parameter before operation.
Do not touch the rotating unit of the motor during operation.
Do not touch the heat sink during operation.
Be sure to attach or remove the CN1 and CN2 connectors when the power is off.
Extreme change of parameters may cause system instability.
Table of Contents
Precautions for Use
Caution
Install an emergency stop circuit on the outside to immediately stop operation if necessary.
Reset the alarm when the servo is off. Be warned that the system restarts immediately if the alarm is reset while the servo is on.
Minimize electromagnetic interference by using a noise filter or DC reactor. Otherwise, adjacent electrical devices may malfunction because of the interference.
Use only the specified combinations of servo drive and servo motor.
The electric brake on the servo motor keeps the motor at a standstill. Do not use it for ordinary braking.
The electric brake may not function properly depending on the brake lifespan and mechanical structure (for example, if the ball screw and servo motor are combined via the timing belt).
Install an emergency stop device to ensure mechanical safety.
Malfunction Precautions
Caution
For potentially dangerous situations that may occur during emergency stop or device malfunction, use a servo motor with an electric brake, or separately install a brake system on the outside.
In case of an alarm, solve the source of the problem. After you solve the problem and ensure safety, deactivate the alarm and start operation again.
Do not get close to the machine until the problem is solved.
Precautions for Repair/Inspection
Caution
Before performing servicing tasks, turn off the power. Wait 15 minutes until the charge lamp goes off, and then check the voltage. Voltage may remain in the condenser even after you turn off power and may cause an electric shock.
Only authorized personnel are permitted to perform repair, inspection or replacement of parts.
Do not modify the product.
General Precautions
Caution
This user manual is subject to change upon product modification or standards changes. In case of such changes, the user manual will be issued with a new product number.
Product Application
Caution
This product is not designed or manufactured for machines or systems that are used in situations related to human life.
This product is manufactured under strict quality control. However, be sure to install safety devices when applying the product to a facility where a malfunction in the product might cause a major accident or significant loss.
vii
Table of Contents
EEPROM Lifespan
Caution
EEPROM is rewritable up to 1 million times for the purpose of, among others, recording parameter settings. The servo drive may malfunction depending on the lifespan of EEPROM when the total counts of the following tasks exceed 1 million.
EEPROM recording as a result of parameter changes
EEPROM recording as a result of alarm trigger
Responding to international regulations
L7 Series responds to international regulations with standard models.
Model(Note1) Low Voltage Directive EMC Directive
L7SA001X
L7SA002X
L7SA004X
L7SA008X
L7SA010X
L7SA020X
L7SA035X
EN61800-5-1 EN61800-3
Note1) X = A or B: A = Quadrature Encoder Type, B = Serial Encoder Type.
※1: For more information, please feel free to ask LS Mecapion.
※2: Please follow the regulations of destination when exporting.
viii
Table of Contents
Table of Contents
Introduction …………………………………………………………………………………………………….. iii
Safety Precautions …………………………………………………………………………………………… iv
Table of Contents …………………………………………………………………………………………….. ix
1. Product Components and Signals …………………………………………………………. 2-1
1.1
Product Components ……………………………………………………………………………………….. 2-1
1.1.1
Product Verification ……………………………………………………………………………. 2-1
1.1.2
Part Names ……………………………………………………………………………………… 2-3
1.2
System Configuration ……………………………………………………………………………………. 2-8
1.2.1
Overview …………………………………………………………………………………………. 2-8
1.2.2
Wiring Diagram of the Entire CN1 Connector …………………………………… 2-10
1.2.3
Example of Position Operation Mode Wiring ……………………………………. 2-11
1.2.4
Example of Speed Operation Mode Wiring ……………………………………….. 2-12
1.2.5
Example of Torque Operation Mode Wiring ……………………………………… 2-13
1.2.6
Examples of Speed / Position Operation Mode Wiring ………………………. 2-14
1.3
Signal ………………………………………………………………………………………………………….. 2-17
1.3.1
Digital Input Contact Signal ……………………………………………………………….. 2-17
1.3.2
Analog Input Contact Signal ………………………………………………………………. 2-18
1.3.3
Digital Output Contact Signal ……………………………………………………………… 2-18
1.3.4
Monitor Output Signal and Output Power ………………………………………… 2-19
1.3.5
Pulse Train Input Signal ………………………………………………………………….. 2-19
1.3.6
Encoder Output Signal ……………………………………………………………………. 2-20
2 Installation ……………………………………………………………………………………………. 2-1
2.1
2.2
Servo Motor ………………………………………………………………………………………………….. 2-1
2.1.1
Usage Environment ………………………………………………………………………….. 2-1
2.1.2
Prevention of Excessive Impact ………………………………………………………… 2-1
2.1.3
Motor Connection …………………………………………………………………………….. 2-1
2.1.4
Load Device Connection …………………………………………………………………… 2-2
2.1.5
Cable Installation ……………………………………………………………………………… 2-2
Servo Drive …………………………………………………………………………………………………… 2-3
2.2.1
Usage Environment ………………………………………………………………………….. 2-3
2.2.2
Installation Inside the Control Panel ………………………………………………….. 2-4
2.2.3
Power Wiring …………………………………………………………………………………… 2-5
3 Wiring Method ………………………………………………………………………………………. 3-1
3.1
Internal Block Diagram ………………………………………………………………………………….. 3-1
3.1.1
L7 Drive Block Diagr
am [L7SA001□ — L7SA004□] ……………………………….. 3-1
3.1.2
L7 Drive Block Diagram [L7SA008□ — L7SA035□] ……………………………….. 3-2
3.1.3
L7 Drive Block Diagram [L7SA050□ ] …………………………………………………. 3-3
3.2
Power Wiring ………………………………………………………………………………………………… 3-4
3.2.1
L7 Drive Wiring Diagram [L7SA0
01□ — L7SA035□] ………………………………. 3-4
3.2.2
L7 Drive Wiring Diagram [L7SA050□] ………………………………………………… 3-5
3.2.3
Dimensions for Power Circuit Electrical Parts ……………………………………. 3-6
3.3
Timing Diagram …………………………………………………………………………………………… 3-10
3.3.1
Timing Diagram During Power Input ………………………………………………… 3-10
ix
x
Table of Contents
3.4
3.3.2
Timing Diagram at the Time of Alarm Trigger …………………………………….3-11
Control Signal Wiring …………………………………………………………………………………… 3-12
3.4.1
Contact Input Signal ……………………………………………………………………….. 3-12
3.4.2
Contact Output Signal …………………………………………………………………….. 3-13
3.4.3
Analog Input/Output Signals …………………………………………………………… 3-14
3.4.4
Pulse Train Input Signal ………………………………………………………………….. 3-15
3.4.5
Encoder Output Signal ……………………………………………………………………. 3-16
3.5
3.6
3.7
Quadrature Encoder Signaling Unit (CN2) Wiring …………………………………………… 3-17
3.5.1
APCS-E
AS Cable ………………………………………………………………………. 3-17
3.5.2
APCS-E
BS Cable ………………………………………………………………………. 3-17
Serial Encoder Signaling Unit (CN2) Wiring …………………………………………………… 3-18
3.6.1
APCS-E
CS Cable ………………………………………………………………………. 3-18
Multi Turn Encoder signal unit(CN2) wiring …………………………………………………… 3-20
3.7.1
APCS-E
CS1 Cable …………………………………………………………………….. 3-20
3.7.2
APCS-E
DS1 Cable …………………………………………………………………….. 3-20
3.7.3
APCS-E
ES1 Cable …………………………………………………………………….. 3-21
3.8
Transmission of Absolute Encoder Data ……………………………………………………….. 3-22
3.8.1
Transmission of Absolute Encoder Data ………………………………………….. 3-22
4 Parameters ……………………………………………………………………………………………. 4-1
4.1
4.2
How to Use the Loader …………………………………………………………………………………… 4-1
4.1.1
Names and Functions of Each Parts ………………………………………………….. 4-1
4.1.2
Status Summary Display…………………………………………………………………… 4-2
4.1.3
Parameter Handling …………………………………………………………………………. 4-4
4.1.4
Data Display ……………………………………………………………………………………… 4-8
4.1.5
External Input Contact Signal Display [St-14] …………………………………… 4-10
4.1.6
External Input Signal and Logic Definition …………………………………………4-11
4.1.7
External Output Contact Signal Display [St-15]……………………………………… 4-19
4.1.8
External Output Signal and Logic Definition …………………………………………. 4-20
Parameter Description ……………………………………………………………………………………. 4-26
4.2.1
Parameter System ……………………………………………………………………………. 4-26
4.2.2
Operation Status Display Parameter …………………………………………………… 4-27
4.2.3
System Setting Parameter …………………………………………………………………. 4-30
4.2.4
Control Setting Parameter …………………………………………………………………. 4-34
4.2.5
Input/Output Setting Parameter ………………………………………………………….. 4-37
4.2.6
Speed Operation Setting Parameter ……………………………………………………. 4-40
4.2.7
Position Operation Setting Parameter …………………………………………………. 4-42
4.2.8
Operation Handling Parameter …………………………………………………………… 4-45
4.3
Operation Status Display ………………………………………………………………………………… 4-49
4.3.1
Status Display [St-00] ……………………………………………………………………….. 4-49
4.3.2
Speed Display …………………………………………………………………………………. 4-49
4.3.3
Position Display ……………………………………………………………………………….. 4-49
4.3.4
Torque and Load Display …………………………………………………………………… 4-49
4.3.5
I/O Status Display …………………………………………………………………………….. 4-50
4.3.6
Miscellaneous Status and Data Display ……………………………………………….. 4-50
4.3.7
Version Display………………………………………………………………………………… 4-51
4.4
Parameter Setting …………………………………………………………………………………………. 4-52
4.4.1
System Parameter Setting …………………………………………………………………. 4-52
4.4.2
Control Parameter Setting …………………………………………………………………. 4-55
5
6
Table of Contents
4.5
4.6
4.4.3
Analog Input/Output Parameter Setting ……………………………………………….. 4-59
4.4.4
Input/Output Contact Point Parameter Setting ………………………………………. 4-61
4.4.5
Speed Operation Parameter Setting ……………………………………………………. 4-64
4.4.6
Position Operation Parameter Setting …………………………………………………. 4-65
Alarms and Warnings …………………………………………………………………………………….. 4-67
4.5.1
Servo Alarm Status Summary Display List ……………………………………………. 4-67
4.5.2
Servo Warning Status Summary Display List ………………………………………… 4-69
Motor Type and ID (to be continued on the next page) ………………………………………… 4-70
Handling and Operation ………………………………………………………………………… 5-1
5.1
What to Check Before Operation ……………………………………………………………………….. 5-1
5.1.1
Wiring Check …………………………………………………………………………………….. 5-1
5.1.2
Drive Signal (CN1) Wiring Check …………………………………………………………. 5-1
5.1.3
Surrounding Environment Check ………………………………………………………….. 5-1
5.1.4
Machine Status Check………………………………………………………………………… 5-1
5.1.5
System Parameter Check ……………………………………………………………………. 5-2
5.2
Handling ………………………………………………………………………………………………………… 5-3
5.2.1
Manual JOG Operation [Cn-00] ……………………………………………………………. 5-3
5.2.2
Program JOG Operation [Cn-01] ………………………………………………………….. 5-5
5.2.3
Alarm Reset [Cn-02] …………………………………………………………………………… 5-6
5.2.4
Reading Alarm History [Cn-03] …………………………………………………………….. 5-7
5.2.5
Alarm History Reset [Cn-04] ………………………………………………………………… 5-8
5.2.6
Auto Gain Tuning [Cn-05] ……………………………………………………………………. 5-9
5.2.7
Phase Z Search Operation [Cn-06] …………………………………………………….. 5-10
5.2.8
Input Contact Forced ON/OFF [Cn-07] ………………………………………………… 5-11
5.2.9
Output Contact Forced ON/OFF [Cn-08] ……………………………………………… 5-13
5.2.10
Parameter Reset [Cn-09] …………………………………………………………………… 5-15
5.2.11
Automatic Speed Command Offset Correction [Cn-10] …………………………… 5-16
5.2.12
Automatic Torque Command Offset Correction [Cn-11] ………………………….. 5-17
5.2.13
Manual Speed Command Offset Correction [Cn-12] ……………………………. 5-18
5.2.14
Manual Torque Command Offset Correction [Cn-13] …………………………… 5-19
5.2.15
Absolute Encoder Reset [Cn-14] ………………………………………………………… 5-20
5.2.16
Instantaneous Maximum Load Factor Initialization [Cn-15]……………………… 5-21
5.2.17
Parameter Lock [Cn-16] ……………………………………………………………………. 5-22
5.2.18
Current Offset[Cn-17] ……………………………………………………………………….. 5-23
Communication Protocol ………………………………………………………………………. 6-1
6.1
6.2
6.3
Overview and Communication Specifications ………………………………………………………. 6-1
6.1.1
Overview ………………………………………………………………………………………….. 6-1
6.1.2
Communication Specifications and Cable Access Rate ……………………………. 6-2
Communication Protocol Base Structure …………………………………………………………….. 6-3
6.2.1
Sending/Receiving Packet Structure …………………………………………………….. 6-3
6.2.2
Protocol Command Codes ………………………………………………………………….. 6-5
L7 Servo Drive Communication Address Table …………………………………………………… 6-10
6.3.1
Operation Status Parameter Communication Address Table …………………… 6-10
6.3.2
System Parameter Communication Address Table ………………………………… 6-12
6.3.3
Control Parameter Communication Address Table ………………………………… 6-14
6.3.4
Input/Output Parameter Communication Address Table …………………………. 6-16
6.3.5
Speed Operation Parameter Communication Address Table …………………… 6-17
6.3.6
Position Operation Parameter Communication Address Table …………………. 6-18
xi
Table of Contents
7 Product Specifications ………………………………………………………………………….. 7-1
7.1
Servo Motor ……………………………………………………………………………………………………. 7-1
7.1.1
Product Features ……………………………………………………………………………….. 7-2
7.1.2
Outline Drawing ……………………………………………………………………………….. 7-23
7.2
Servo Drive ………………………………………………………………………………………………….. 7-35
7.2.1
Product Features ……………………………………………………………………………… 7-35
7.2.2
Outline Drawing ……………………………………………………………………………….. 7-37
7.3
Options and Peripheral Devices ………………………………………………………………………. 7-39
8 Maintenance and Inspection ………………………………………………………………….. 8-1
8.1
Maintenance and Inspection ……………………………………………………………………………… 8-1
8.1.1
Precautions ………………………………………………………………………………………. 8-1
8.1.2
What to Inspect …………………………………………………………………………………. 8-1
8.1.3
Parts Replacement Cycle ……………………………………………………………………. 8-2
8.2
Diagnosis of Abnormality and Troubleshooting …………………………………………………….. 8-3
8.2.1
Servo Motor ………………………………………………………………………………………. 8-3
8.2.2
Servo Drive ………………………………………………………………………………………. 8-4
9 Appendix …………………………………………………………………………………………….. 9-15
9.1
Motor Type and ID (to be continued on the next page) ………………………………………… 9-15
9.2
Test Drive Procedure ……………………………………………………………………………………… 9-18
Quality Assurance ………………………………………………………………………………………… 9-22
User Manual Revision History ………………………………………………………………………. 9-23
xii
1. Product Components and Signals
1. Product Components and Signals
1.1 Product Components
1.1.1 Product Verification
Series
Name
Servo
Series
1. Check the name tag to verify that the product received matches the model ordered.
Does the format of the servo drive’s name tag match?
Does the format of the servo motor’s name tag match?
2. Check the product and options.
Are the type and length of the cables correct?
Does the regenerative resistance conform to the required standard?
Is the shape of the shaft end correct?
Is there any abnormality when the oil seal or brake is mounted?
Are the gearbox and the gear ratios correct?
Is the encoder format correct?
3. Check the exterior of the device.
Is there any foreign substance or humidity?
Is there any discoloring, contamination, damage or disconnection of wires?
Are the bolts at joints fastened sufficiently?
Is there any abnormal sound or excessive friction during rotation?
Servo Drive Product Format
L7 S A 004 A AA
Communication
Type
S: Standard I/O type
N: Network type
Input
Voltage
A: 220 VAC
B: 400 VAC
Capacity
001: 100 W 050: 5.0 kW
002: 200 W 075: 7.5 kW
004: 400 W 110: 11.0kW
008: 750 W 150: 15.0kW
010: 1.0 kW
020: 2.0 kW
035: 3.5 kW
Encoder Type Option
A: Parallel
(Pulse type)
B: Serial
(communication type)
Exclusive
Option
2-1
1. Product Components and Signals
Servo Motor Product Format
APM – S B 04 A E K 1 G1 03
Servo Motor
Motor Shape
S: Solid Shaft
H: Hollow Shaft
B: Assembly
F: Flat Type
Flange Size
A : 40 Flange
B : 60 Flange
C : 80 Flange
D : 100 Flange
E : 130 Flange
F : 180 Flange
G : 220 Flange
H : 250 Flange
J : 280 Flange
Motor Capacity
R3 : 30[W]
R5 : 50[W]
01 : 100[W]
02 : 200[W]
03 : 300[W]
04 : 400[W]
05 : 450[W]
06 : 550/600[W]
07 : 650[W]
08 : 750/800[W]
09 : 850/900[W]
10 : 1.0[kW]
·
·
150 : 15.0[kW]
220 : 22.0[kW]
300 : 30.0[kW]
370 : 37.0[kW]
Rated RPM
A: 3000 [RPM]
D: 2000 [RPM]
G: 1500 [RPM]
M: 1000 [RPM]
Encoder Type
Parallel(pulse type)
A: Inc. 1024 [P/R]
B: Inc. 2000 [P/R]
C: Inc. 2048 [P/R]
D: Inc. 2500 [P/R]
E: Inc. 3000 [P/R]
F: Inc. 5000 [P/R]
G: Inc. 6000 [P/R]
Serial BISS
(communication type)
N : 19bit S-Turn Abs.
M : 19bit M-Turn Abs.
(18bit SA M-Turn Abs.)
Shaft Cross-section
N: Straight
K: One-sided round key (standard)
D: D Cut
T: Tapering
R: Double-sided round key
H: Hollow Shaft
Gearbox
Classification
03: 1/3
10: 1/10
Gearbox
Specifications
Non-existent:
No gearbox
G1: For general industrial purposes (Foot Mount)
G2: For general industrial purposes (Flange Mount)
G3: Precise Gearbox
Oil Seal and Brake
Non-existent: None attached
1: Oil Seal attached
2: Brake attached
3: Oil Seal and Brake attached
2-2
1.1.2 Part Names
Servo Motor
80 Flange or below
1. Product Components and Signals
Motor
Connector
Motor Power
Cable
Encoder
Connector
Encoder
Cable
Bearing Cap
80 Flange or below(Flat Type)
Shaft
Flange
Encoder
Cover
Frame
Housing
Power connector
Encoder connector
130 Flange or higher
Bearing Cap
Shaft
Flange
Frame
Mold Housing Encoder Cover
Motor
Connector
Encoder
Connector
Encoder
Cover
Shaft
Flange
Frame
Housing
2-3
1. Product Components and Signals
Servo Drive
L7SA 001 □, L7SA 002□, L7SA 004□
Operation keys
(Mode, Up, Down, Set)
Main power connector (L1,
L2, L3)
DC reactor connector
(PO, PI)
Short circuit when not used
Regenerative resistance connector (B+, B, BI)
When basic installation is in use short circuit B and BI terminals
When installing external resistance install in the
B+ and B terminals
Control power connector
(C1, C2)
Motor power cable connector (U, V, W)
2-4
Heat sink
Display
CN5:
USB connector
CN4:
RS-422 communication connector
CN3:
RS-422 communication connector
CN1:
Control signal connector
CN2:
Encoder signal connector
Front cover
Ground
L7SA 008 □, L7SA 010□
Operation keys
(Mode, Up, Down, Set)
Main power connector
(L1, L2, L3)
DC reactor connector
(PO, PI)
Short circuit when not used
Regenerative resistance connector (B+, B, BI)
When basic installation is in use short circuit B and BI terminals.
When installing external resistance install in the
B+ and B terminals.
Control power connector
(C1, C2)
Motor power cable connector (U, V, W)
1. Product Components and Signals
Display
CN5:
USB connector
CN4:
RS-422 communication connector
CN3:
RS-422 communication connector
CN1:
Control signal connector
Heat sink
CN2:
Encoder signal connector
Front cover
Ground
2-5
1. Product Components and Signals
L7SA 020 □, L7SA 035□
Operation keys
(Mode, Up, Down, Set)
Main power connector
(L1, L2, L3)
DC reactor connector
(PO, PI)
Short circuit when not used
Regenerative resistance connector (B+, B, BI)
When basic installation is in useshort circuit B and BI terminals.
When installing external resistance install in the
B+ and B terminals.
Control power connector
(C1, C2)
Motor power cable connector (U, V, W)
2-6
Heat sink
Display
CN5:
USB connector
CN4:
RS-422 communication connector
CN3:
RS-422 communication connector
CN1:
Control signal connector
CN2:
Encoder signal connector
Front cover
Ground
L7SA 050□
1. Product Components and Signals
Operation keys
(Mode, Up, Down, Set)
Display
CN5:
USB Connector
CN4:
RS-422 Communication connector
CN3:
RS-422 Communication connector
CN1:
Control signal connector
Control power connector
(C1, C2)
DC reactor connector
(PO, PI)
Short circuit when not used
*Not used(N)
CN2:
Encoder signal connector
Front cover
Main power connector
(L1, L2, L3)
Ground
Regenerative resistance connector (B+, B)
When basic installation is in use, leave it.
When installing external resistance, install in the B+ and B terminals after attaching wires of internal resistance to
“NC” hole on the case.
Motor power cable connector (U, V, W)
2-7
1. Product Components and Signals
1.2 System Configuration
1.2.1 Overview
The L7 servo system can be configured in various ways depending on its interface with the upper level controller.
(1) Position Operation System
The servo is run by pulse commands. You can change the location of the servo motor by changing command pulses based on a certain transfer unit.
Upper Level Controller Position Controller Servo Drive
Servo Motor
Position
Controller
Speed
Controller
Change
Position
Command
Pulse
Position
Controller
Speed
Controller
Current
Controller
Motor
Encoder
Position Feedback
Advantage: The structure of the upper level controller is simple because pulse input is linked to transfer units.
Disadvantages:
Fast rotation is compromised when a precise transfer unit is used.
Response is low because multiple levels of controllers are used.
(2) Speed Operation System
The servo is run by speed commands. There are two types of speed commands: analog voltage command and digital speed command.
Upper Level Controller Servo Drive Servo Motor
Speed Command
Position
Controller
Speed
Controller
Change
Speed
Command
Speed
Controller
Current
Controller
Motor
Encoder
Position Feedback
Advantages:
The servo responds quickly.
Precision control is easy.
Disadvantage: The upper level controller is complex.
2-8
1. Product Components and Signals
(3) Torque Operation System
The servo is run by torque commands. Analog voltage-based commands are used.
Upper Level Controller Servo Drive Servo Motor
Torque Command
Position
Controller
Torque
Controller
Change
Torque
Command
Torque
Controller
Current
Controller
Motor
Encoder
Position Feedback
Advantages:
The servo responds quickly.
Precise control is easy.
Disadvantage: The upper level controller is complex.
(4) Operation Mode
The L7 servo drive can be run in torque, speed and position modes, depending on its interface with the upper level controller. The operation modes can be switched by parameters or digital input contact point.
Operation Mode
0
System Configuration
The servo is run on the torque operation system.
1
2
3
4
5
The servo is run on the speed operation system.
The servo is run on the position operation system.
The servo is run with the speed and position operation systems as points of contact.
The servo is run with the speed and torque operation systems as points of contact.
The servo is run with the position and torque operation systems as points of contact.
2-9
1. Product Components and Signals
1.2.2 Wiring Diagram of the Entire CN1 Connector
DC 24V
Digital Input
Command Pulse Input
+24V IN 50
Note 1)
STOP 48
3.3kΩ
(DIA)
EMG
CWLIM
18
19
(DI9)
(DI8)
CCWL IM 20
(DI7)
DIR 46
(DI6)
ALMRST 17
(DI5)
SPD3 21
(DI4)
SPD2 22
(DI3)
SPD1 23
(DI2)
SVON 47
(DI1)
EGEAR1 **
EGEAR2 **
PCON **
GAIN2 **
P_CLR
T_LMT
**
**
MODE **
ABS_RQ **
ZCLAMP **
ABS_RST **
Note 2)
CN1
PULCOM 49
Note 1)
(DO1)
38
39
(DO2)
(DO3)
(DO4)
(DO5)
Note 2)
40
41
43
44
45
16
15
14
25
24
**
**
**
**
28
29
37
34
35
Upper Level
Controller
Line Driver
PF+
PF-
9
10
PR+
PR-
11
12
Analog Input
Analog Speed
Command/Limit
-10V~+10V
-10V~+10V
Open Collector
TRQCOM 1
32
33
30
31
4
5
36
Analog Torque
Command/Limit
SPDCOM 27
GND 8
GND 8
ALARM+
ALARM-
Digital Output
READY+
READY-
ZSPD
BRAKE
INPOS
ALO0
ALO1
ALO2
GND24
GND24
INSPD
TLMT
VLMT
WARN
MONIT1
MONIT2
GND
+12VA
-12VA
AO
/AO
BO
/BO
ZO
/ZO
SG
Analog Output
-10V~+10V
-10V~+10V
Encoder Pulse Output
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
2-10
1. Product Components and Signals
1.2.3 Example of Position Operation Mode Wiring
DC 24V
Digital Input
Command Pulse Input
EMG 18
CWLIM 19
CCWLIM 20
DIR 46
ALMRST 17
EGEAR1 **
EGEAR2 **
SVON
**
47
PCON
GAIN2
_
MODE
ABS_RQ **
ZCLAMP **
ABS_RST **
**
**
**
**
SPD3
SPD2
SPD1
21
22
23
PULCOM 49
+24V IN 50
Note 1)
3.3kΩ
38
39
(DO2)
40
41
(DI5)
(DI4)
(DI3)
(DI2)
(DI1)
(DI9)
(DI8)
(DI7)
(DI6)
(DO3)
(DO4)
(DO5)
43
44
45
16
15
14
Note 2)
CN1
Note 2)
25
24
**
**
**
**
28
29
37
34
35
Upper Level
Controller
Line Driver
PF+
PF-
9
10
PR+
PR-
11
12
Analog Input
-10V~+10V
Open Collector
4
5
36
32
33
30
31
Analog Torque
Command/Limit
TRQCOM 1
GND 8
ALARM+
ALARM-
Digital Output
READY+
READY-
ZSPD
BRAKE
INPOS
ALO0
ALO1
ALO2
GND24
GND24
INSPD
TLMT
VLMT
WARN
MONIT1
MONIT2
GND
+12VA
-12VA
AO
/AO
BO
/BO
ZO
/ZO
SG
Analog Output
-10V~ +10V
-10V~+10V
Encoder Pulse Output
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
2-11
1. Product Components and Signals
1.2.4 Example of Speed Operation Mode Wiring
Analog Input
Analog Speed
Command/Limit
Analog Torque
Command/Limit
DC 24V
Digital Input
+24V IN 50
STOP
Note 1)
3.3kΩ
48
(DIA)
EMG 18
(DI9)
CWLIM 19
(DI8)
CCWLIM 20
(DI7)
DIR 46
(DI6)
ALMRST 17
(DI5)
SPD3 21
(DI4)
SPD2 22
(DI3)
SPD1 23
(DI2)
SVON 47
(DI1)
EGEAR1 **
EGEAR2 **
PCON
GAIN2
P_CLR
T_LMT
MODE **
ABS_RQ **
ZCLAMP **
ABS_RST **
**
**
**
**
Note 2)
(DO2)
(DO3)
(DO4)
(DO5)
CN1
Note 2)
38
39
40
41
25
24
45
**
**
**
28
29
43
44
**
16
15
14
ALARM+
ALARM-
Digital Output
READY+
READY-
ZSPD
BRAKE
INSPD
ALO0
ALO1
ALO2
GND24
GND24
INPOS
TLMT
VLMT
WARN
MONIT1
MONIT2
Analog Output
-10V~+10V
-10V~+10V
37
34
35
GND
+12VA
-12VA
Encoder Pulse Output
-10V~+10V
-10V~+10V
SPDCOM 27
GND 8
TRQCOM 1
GND 8
32
33
30
31
4
5
36
AO
/AO
BO
/BO
ZO
/ZO
SG
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
2-12
1. Product Components and Signals
1.2.5 Example of Torque Operation Mode Wiring
Analog Input
Analog Speed
Command/Limit
Analog Torque
Command/Limit
DC 24V
Digital Input
+24VIN 50
Note 1)
STOP 48
3.3kΩ
(DI9)
EMG
CWLIM
CCWLIM
DIR
18
19
20
46
(DI8)
(DI7)
(DI6)
(DI5)
ALMRST 17
ABS_RQ
**
**
(DI4)
(DI3)
(DI2)
SVON 47
EGEAR1
EGEAR2
PCON
GAIN2
_
**
**
**
**
**
MODE **
ZCLAMP **
ABS_RST
SPD3
**
SPD2
SPD1
21
22
23
Note 1)
(DO1)
38 ALARM+
39 ALARM-
Digital Output
(DO2)
40 READY+
41 READY-
(DO3)
(DO4)
(DO5)
16
15
14
43
44
**
(DI1)
Note 2)
CN1
Note 2)
25
24
45
**
**
**
28
29
ZSPD
BRAKE
INSPD
ALO0
ALO1
ALO2
GND24
GND24
INPOS
TLMT
VLMT
WARN
MONIT1
MONIT2
Analog Output
-10V~+10V
-10V~+10V
37
34
35
GND
+12VA
-12VA
Encoder Pulse Output
-10V~+10V
-10V~+10V
SPDCOM 27
GND 8
TRQCOM 1
GND 8
31
4
5
36
32
33
30
AO
/AO
BO
/BO
ZO
/ZO
SG
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
2-13
1. Product Components and Signals
1.2.6 Examples of Speed / Position Operation Mode
Wiring
DC 24V
Digital Input
Command Pulse Input
Note 3)
+24V IN 50
Note 1)
3.3k
Ω
(DIA)
STOP 48
EMG 18
CWLIM 19
(DI9)
(DI8)
CCWLIM 20
MODE
ALMRST
**
17
(DI7)
(DI6)
(DI5)
(DI4)
(DI3)
PCON
**
P-CLR
**
GAIN2
**
SVON 47
EGEAR1
EGEAR2
T_LMT
ABS_RQ
ZCLAMP
SPD3
SPD2
SPD1
DIR
ABS_RST
**
21
22
23
46
**
**
**
**
**
PULCOM 49
(DI2)
(DI1)
Note 2)
(DO2)
(DO3)
(DO4)
(DO5)
CN1
Note 2)
38
39
40
41
43
**
45
16
15
14
25
24
**
**
**
44
28
29
37
34
35
Upper Level
Controller
Line Driver
PF+
PF-
9
10
PR+
PR-
11
12
Analog Input
Analog Speed
Command/Limit
-10V~+10V
-10V~+10V
Open Collector
31
4
5
36
32
33
30
Analog Torque
Command/Limit
SPDCOM 27
GND 8
TRQCOM 1
GND 8
ALARM+
ALARM-
Digital Output
READY+
READY-
ZSPD
INSPD
INPOS
ALO0
ALO1
ALO2
GND24
GND24
TLMT
VLMT
WARN
BRAKE
MONIT1
MONIT2
GND
+12VA
-12VA
AO
/AO
BO
/BO
ZO
/ZO
SG
Analog Output
-10V~+10V
-10V~+10V
Encoder Pulse Output
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
Note 3) Input Contact Mode = ON : Speed Control Mode, Mode = OFF : Position Operation Mode
2-14
1. Product Components and Signals
1.2.7 Example of Speed/Torque
Operation
Mode Wiring
Analog Input
Analog Speed
Command/Limit
Analog Torque
Command/Limit
DC 24V
Digital Input
Note 3)
+24V IN
3.3k
Ω
Note 1)
STOP 48
(DIA)
EMG 18
(DI9)
CWLIM 19
(DI8)
CCWLIM 20
(DI7)
(DI6)
MODE
**
ALMRST 17
(DI5)
PCON
GAIN2
T_LMT
SVON
**
**
**
47
(DI4)
(DI3)
(DI2)
(DI1)
EGEAR1
EGEAR2
P_CLR
ABS_RQ
ZCLAMP
DIR
SPD3
SPD2
SPD1
ABS_RST
50
**
**
**
**
**
46
21
22
23
**
Note 2)
Note 1)
(DO1)
38 ALARM+
Digital Output
(DO2)
(DO3)
(DO4)
(DO5)
CN1
Note 2)
39
40
41
**
**
**
16
15
14
25
24
**
45
43
44
28
29
ALARM-
READY+
READY-
TLMT
VLMT
INSPD
ALO0
ALO1
ALO2
GND24
GND24
WARN
INPOS
ZSPD
BRAKE
MONIT1
MONIT2
Analog Output
-10V~+10V
-10V~+10V
37
34
35
GND
+12VA
-12VA
Encoder Pulse Output
-10V~+10V
-10V~+10V
SPDCOM 27
GND 8
TRQCOM 1
GND 8
31
4
5
36
32
33
30
AO
/AO
BO
/BO
ZO
/ZO
SG
Upper Level
Controller
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
Note 3) Input Contact Mode = ON : Speed Control Mode, Mode = OFF : Torque Operation Mode
2-15
1. Product Components and Signals
1.2.8 Example of Position/Torque Operation Mode
Wiring
DC 24V
Digital Input
Command Pulse Input
Note 3)
+24V IN 50
Note 1)
(DO1)
38 ALARM+
Digital Output
39 ALARM-
CCWLIM 20
3.3k
Ω
Note 1)
STOP 48
(DIA)
EMG 18
(DI9)
CWLIM 19
(DI8)
(DI7)
MODE
**
(DI6)
ALMRST 17
(DI5)
P_CLR
**
(DI4)
T_LMT
**
(DI3)
(DI2)
ABS_RQ
**
SVON 47
(DI1)
EGEAR1
EGEAR2
PCON
GAIN2
ZCLAMP
DIR
SPD3
SPD2
SPD1
ABS_RST
**
46
21
22
23
**
**
**
**
**
PULCOM 49
Note 2)
(DO2)
(DO3)
(DO4)
(DO5)
CN1
Note 2)
40
41
**
**
45
16
15
14
25
24
READY+
READY-
VLMT
TLMT
INPOS
ALO0
ALO1
ALO2
GND24
GND24
** INSPD
** WARN
44 BRAKE
43
ZSPD
28
29
MONIT1
MONIT2
Analog Output
-10V~+10V
-10V~+10V
37
34
35
GND
+12VA
-12VA
Upper Level
Controller
Line Driver
PF+
PF-
9
10
PR+
PR-
11
12
32 AO
Encoder Pulse Output
Open Collector
33
30
/AO
BO
Analog Input
-10V~+10V
31 /BO
Upper Level
Controller
Analog Speed
Command/Limit
Analog Torque
Command/Limit
-10V~+10V
SPDCOM 27
GND 8
TRQCOM 1
GND 8
4
5
36
ZO
/ZO
SG
Connect to Connector Case
Note 1) Input signals DI1 to DIA and output signals DO1 to DO5 are default signals allocated by the factory.
Note 2) **These are non-allocated signals. You can change their allocation by setting parameters. For information, refer to «4.1.6 External Input Signal and Logic Definition» and «4.1.8 External Output Signal and
Logic Definition.»
Note 3) Input Contact Mode = ON : Position Control Mode, Mode = OFF : Torque Operation Mode
2-16
1. Product Components and Signals
1.3 Signal
1.3.1 Digital Input Contact Signal
Pin
Number of
Factory
Setting
Name Details
50
47
23
+24 V IN
SVON
SPD1
Input contact +24
[V] power
Servo ON
Multi-speed 1
22
21
17
46
20
SPD2
SPD3
Multi-speed 2
Multi-speed 3
ALMRST Reset upon alarm
DIR
Select rotation direction
CCWLMT
Counter-clockwise limit
CWLMT Clockwise limit 19
18
48
Allocate
Allocate
EMG
STOP
EGEAR1
EGEAR2
Emergency stop
Stop
Electronic gear ratio 1
Electronic gear ratio 2
P control action
Select gain 2
Allocate PCON
Allocate GAIN2
Allocate P_CLR Clear error pulse
Allocate
Allocate
Allocate
Allocate
T_LMT
MODE
ABS_RQ
ZCLAMP
Allocate ABS_RST
Control torque with
TRQCOM
Change operation modes
Request absolute position data
Zero clamp
Reset absolute encoder data
O
O
X
X
X
O
O
O
O
O
X
O
O
O
O
O
O
X
O
X
O
O
O
O
O
O
O
O
O
O
O
O
X
X
O
O
X
O
X
O
O
O
Applicable Modes
Speed Speed
Position Speed Torque
/Position /Torque
Position
/Torque
O
O
X
X
X
O
O
O
O
O
O
X
X
X
X
X
O
X
O
X
O
O
O
O/X
O/X
O/X
O
O
O
O
O
O/X
X/O
X/O
O
O
X/O
O
O
O
O/X
O
O
O
O/X
O/X
O/X
O
O
O
O
O
O
X
X
O/X
O/X
X
O
O
O
O/X
O
O
O
O
O
O
X/O
O/X
O/X
O/X
O/X
O/X
O
O
O
O
O
O
X
X
X
O
2-17
1. Product Components and Signals
1.3.2 Analog Input Contact Signal
Pin
Number
27
1
8
37
Name Description
SPDCOM
Analog speed command (-10-+10 [V])
Analog Speed Limit
(-10-+10 [V])
TRQCOM
Analog Torque
Command
(-10-+10 [V])
Analog torque limit
(-10-+10 [V])
GND
Grounding for analog signals
Applicable Modes
Position Speed Torque
Speed Speed
/Position /Torque
Position
/Torque
X
X
X
O
O
O
X
X
O
O
X
O
O
X
O
O/X
X
X
O
O
O/X
X/O
X/O
O/X
O
X
X/O
X/O
O/X
O
1.3.3 Digital Output Contact Signal
Pin
Number of
Factory
Setting
Name Description
16
15
14
ALO0
ALO1
ALO2
Alarm group contact output 1
Alarm group contact output 2
Alarm group contact output 3
38 / 39 ALARM +/- Alarm
Applicable Modes
Position Speed Torque
Speed
/Position
Speed
/Torque
Position
/Torque
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
40 / 41 READY +/- Ready for operation
43 ZSPD Zero speed reached
O
O
O
O
O
O
O
O
O
O
O
O
44
45
Allocate
Allocate
Allocate
Allocate
24
25
BRAKE
INPOS
TLMT
VLMT
INSPD
Brake
Position reached
Torque limit
Speed limit
Speed reached
WARN Warning
GND24
Input/output contact
Grounding of drive power (24 [V])
O
O
O
O
X
O
O
O
X
O
O
O
O
O
O
X
O
O
X
O
O
O
X/O
O
O
O/X
O
O
O
X
O
O
O/X
O
O
O
O/X
O
O
X
O
O
2-18
1. Product Components and Signals
1.3.4 Monitor Output Signal and Output Power
Pin
Number
28
29
8
37
34
35
Name Description
MONIT1
MONIT2
GND
+12 V
-12 V
Analog monitor output 1
(-10-+10 [V])
Analog monitor output 2
(-10-+10 [V])
Grounding for analog signals
Terminal for +12 [V] power output
Terminal for -12 [V] power output
Applicable Modes
Position Speed Torque
Speed
/Position
Speed
/Torque
Position
/Torque
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
1.3.5 Pulse Train Input Signal
Line Driver (5 V)
Pin
Number
Name Description
9
10
11
12
49
PF+
PF-
F+ pulse input
F- pulse input
PR+ R+ pulse input
PR- R- pulse input
PULCOM Not for use
Open Collector (24 V)
Applicable Modes
Position Speed Torque
Speed
/Position
Speed
/Torque
Position
/Torque
O X X X/O X O/X
O
O
X
X
X
X
X/O
X/O
X
X
O/X
O/X
O
X
X
X
X
X
X/O
X
X
X
O/X
X
Pin
Number
Name
9
10
11
12
49
PF+
PF-
PR+
PR-
PULCOM
Description
Not for use
F pulse input
Not for use
R pulse input
+24 V power input
Applicable Modes
Position Speed Torque
Speed
/Position
Speed
/Torque
Position
/Torque
X X X X X X
O X X X/O X O/X
X
O
O
X
X
X
X
X
X
X
X/O
X/O
X
X
X
X
O/X
O/X
2-19
1. Product Components and Signals
1.3.6 Encoder Output Signal
Pin
Number
Name
32
33
30
31
4
5
AO
/AO
BO
/BO
ZO
/ZO
Description
Outputs encoder signals received from the motor as signals pre-scaled according to the ratio defined by [P0-14].
(5 [V] line driver method)
Outputs encoder Z signals received from the motor.
(5 [V] line driver method)
Applicable Modes
Position Speed Torque
Speed
/Position
Speed
/Torque
Position
/Torque
O
O
O
O
O
O
O
O
O
O
O
O
2-20
2. Installation
2 Installation
2.1 Servo Motor
2.1.1 Usage Environment
Item
Ambient temperature
Ambient humidity
External vibration
Requirements
0 ∼ 40[℃]
Notes
Consult with our technical support team to customize the product if the temperature in the installation environment is over the given temperature.
80[%] RH or lower Use the product in steam-free places.
Vibration acceleration
19.6 [㎨] or below in the
X and Y directions
Excessive vibration reduces the lifespan of bearings.
2.1.2 Prevention of Excessive Impact
Excessive impact to the motor shaft during installation, or the motor falling during handling, may damage the encoder.
2.1.3 Motor Connection
The motor might burn out when commercial power is directly connected to it.
Be sure to connect via the specified drive.
Connect the ground terminal of the motor to either of the two ground terminals inside the drive, and the remaining terminal to the type-3 grounding.
U
– U
V — V
W
– W
— F.G
Connect the U, V, and W terminals of the motor, just as the U, V, and W terminals of the drive.
Make sure that the pins on the motor connector are securely connected.
In case of moisture or condensation on the motor, make sure that insulation resistance is 10 [㏁]
(500 [V]) or higher before you start installation.
2-1
2. Installation
2.1.4 Load Device Connection
For coupling connection: Make sure that the motor shaft and the load shaft are aligned within the tolerance.
Load shaft
0.03 [㎜] or below (peak to peak)
Motor shaft
0.03 [㎜] or below (peak to peak)
For pulley connection:
Flange
40
60
80
130
180
Lateral Load
N kgf
148 15
206
255
725
1548
21
26
74
158
Axial Load
N kgf
39 4
69
98
362
519
7
10
37
53
Notes
Lateral load
Nr: 30 [㎜] or below
220 1850 189 781 90
Axial load
2.1.5 Cable Installation
In case of vertical installation, make sure that no oil or water flows into connection parts.
Do not apply pressure or scratch, to cables.
In case of moving the motor, be sure to use robotic cables to prevent sway.
2-2
2. Installation
2.2 Servo Drive
2.2.1 Usage Environment
Item Requirements Notes
Ambient temperature
0∼50[℃]
Caution
Install a cooling fan on the control panel in to keep the surrounding temperature within the required range.
Ambient humidity
External vibration
Surrounding conditions
90[%] RH or lower
Caution
Condensation or freezing of moisture inside the drive during prolonged periods of inactivity may damage it.
Remove any moisture completely before you operate the drive after a prolonged period of inactivity.
Vibration acceleration 4.9
[㎨] or lower
Excessive vibration reduces the lifespan of the machine and causes malfunction.
No exposure to direct sunlight.
No corrosive gas or combustible gas.
No oil or dust.
Sufficient ventilation for closed areas.
2-3
2. Installation
2.2.2 Installation Inside the Control Panel
Comply with the spaces specified in the following images for installation inside the control panel.
40 mm or longer
100 mm or longer
10 mm or longer
10 mm or longer
30 mm or longer
30 mm or longer
2-4
40 mm or longer
40 mm or longer
2 mm or longer
When installing 1 unit: When installing 2 or more units:
Caution
Make sure that heat does not affect the drive during the installation of external regenerative resistance.
When assembling the control panel of the servo drive, make sure that it is sufficiently close to the wall.
When assembling the control panel, make sure that metal powder caused by drilling does not enter the drive.
Make sure that oil, water, and metal dust do not enter the drive through gaps or the ceiling.
Protect the control panel with air purge in places where there is a lot of harmful gas or dust.
2. Installation
2.2.3 Power Wiring
Make sure that the input power voltage is within the allowed range.
Caution
Overvoltage can damage the drive.
Connecting commercial power to the U, V and W terminals of the drive may cause damage.
Be sure to supply power via L1, L2 and L3 terminals.
Connect short-circuit pins to the B and BI terminals. For external regenerative resistance, use standard resistance for the B+ and B terminals after removing the short-circuit pins.
Model
L7□A001□
L7□A002□
Resistance
Value
100 [Ω]
Standard
Capacity
* Notes
Built-in 50 [W]
Caution
For more information about resistance for expanding regenerative capacity, refer to “7.3
Option and Peripheral Device.”
L7□A004□
L7□A08□
L7□A010□
L7□A020□
L7□A035□
L7□A050□
40 [Ω]
13 [Ω]
Built-in 100
[W]
Built-in 150
[W]
Built-in 120[W] 6.8[
Ω]
Configure the system in a way that main power (L1, L2, L3) is supplied only after control power (C1,
C2). (Refer to “Chapter 3 Wiring.”)
High voltage remains for a while, even after the main power is disconnected.
Danger
After disconnecting the main power, make sure that the charge lamp is off before you start wiring. There is a risk of electric shock.
Grounding must be done over the shortest distance.
A long ground wire is susceptible to noise which may cause malfunction.
2-5
3. Wiring Method
3 Wiring Method
3.1 Internal Block Diagram
3.1.1 L7 Drive Block Diagram [L7SA001□ — L7SA004□]
If you use a DC reactor, connect to the PO and PI pins.
If you use external regenerative resistance, connect to the B+ and B pins after removing the B and BI shortcircuit pins.
3-1
3. Wiring Method
3.1.2 L7 Drive Block Diagram [L7SA008□ — L7SA035□]
3-2
NOTE 1) If you use a DC reactor, connect to the PO and PI pins.
If you use external regenerative resistance, connect to the B+ and B pins after you remove the B and BI short-circuit pins.
The L7SA008
□ and L7SA035□ models are cooled by a DC 24 [V] cooling fan.
3. Wiring Method
3.1.3 L7 Drive Block Diagram [L7SA050□ ]
Diode
(Note1)
PO
PI
B+ B
(Note2)
External Regenerative
Resistance(separately Installed)
IGBT
Three-phase
Power Input
AC200~230V
L1
L2
L3
Chage
Lamp
Regenerative
Resistance
Thermister
Current Sensor
U
V
W
M
(Note3)
FAN
E
T1 T2
Thermister
Control Power
Failure Detection
Circuit
One-phase
Power Input
AC200~230V
C1
C2
S
M
P
S
Main Power
Failure Detection
Circuit
Internal
Temperature
Detection
Circuit
Relay
Operation
Circuit
DC Voltage
Detection
Circuit
Regenerative
Braking
Operation
Circuit
IGBT
Temperature
Detection
Circuit
Main Control
PWM
Signal
SC Detection
Circuit
POWER Circuit Access(CN7)
U and V
Current
Detection
Circuit
U,VCurrent
DC Voltage
DB
Operation
Circuit
BISS
CN3,CN4
RS422
Communication
CN5
USB
Communication
USB TO UART
A/D Conversion
DSP / FPGA
Encoder
Input
CN2
Analog Input
(2 points)
D/A Conversion
Monitor Output
(10 points)
P/C Insulation I/F
Contact Input
(10 points)
Pulse Input
(2 points)
Contact Output
(5 points)
Encoder
Output
Upper Level Controller Connection(CN1)
NOTE 1) If you use a DC reactor, connect to the PO and PI pins.
If you use external regenerative resistance, connect to the B+ and B pins after attaching wires of internal regenerative resistance to “NC” hole on the case.
The L7SA050□ models are cooled by a DC 24 [V] cooling fan.
3-3
3. Wiring Method
3.2 Power Wiring
3.2.1 L7 Drive Wiring Diagram [L7SA001□ — L7SA035□]
(200~230V)
R S T
Main
OFF
NF
Main
ON
RA
1MC 1Ry
1SK
1MC
L1
L2
L3
PO PI
U
V
W
M
C1
C2
E
+24V
1Ry
RA
Alarm+
Alarm-
38
39
CN1
B+
B
BI
주2)
Regenerative Resistance
회생저항
NOTE 1) It takes approximately one to two seconds until alarm signal is output after you turn on the main power. Accordingly, push and hold the main power ON switch for at least two seconds.
Short-circuit B and BI terminals before use. Regenerative resistance of L7SA001
□-L7SA004□ (50 [W], 100
[Ω]), L7SA010□ (100 [W], 40 [Ω]), and L7SA035□ (150 [W], 13 [Ω]) exist inside. If regenerative capacity is high because of frequent acceleration and deceleration, open the short-circuit pins (B,
BI) and connect external regenerative resistance to B and B+.
Remove approximately 7-10 [mm] of the sheath from the cables for the main circuit power and attach crimp terminals.
(Refer to “3.2.2 Power Circuit Electric Sub Assembly Standards.”)
7~10 ㎜
Connect or remove the main circuit power unit wiring after pushing the button of the L7SA001
□ – L7SA010□ drive terminal. For L7SA035
□ drive, use a (-) slot screwdriver for connection and removal.
3-4
3. Wiring Method
3.2.2 L7 Drive Wiring Diagram [L7SA050□]
R S T
(200~230V)
Main
OFF
Main
ON
(Note1)
RA
NF
1MC 1Ry
1SK
1MC
Servo Drive
DC Reactor
L1
L2
L3
PO PI
U
V
W
M
C1
C2
E
Encoder
1Ry
+24V
RA
Alarm+
38
B+
B
Alarm-
39
CN1 external regenerative
(Note2) resistance
NOTE 1) It takes approximately one to two seconds until alarm signal is output after you turn on the main power. Accordingly, push and hold the main power ON switch for at least two seconds.
NOTE 2) Check status of connection of internal regenerative resistance (B+, B) before using because
L7SA050□ (120[W], 6.8[Ω]) has internal regenerative resistance. If the value of regenerative voltage is too high by frequent deceleration and acceleration, install external regenerative resistance on B, B+ terminal after attaching internal regenerative resistance connected B+, B to
“NC” hole on the case.
3-5
3. Wiring Method
3.2.3 Dimensions for Power Circuit Electrical Parts
Name
MCCB(NFB)
Noise Filter
(NF)
DC reactor
MC
Wire
L1,L2,L3
PO,PI,N,
B+,B,BI
U,V,W
C1
C2
L7SA001
□ L7SA002□
30A Frame 5A (ABE33b/5)
HFN-10 (10 A)
11A / 240V
(GM□-9)
L7SA004□
30A Frame
10A
(ABE33b/10)
L7SA008□ L7SA010□
30A Frame 15A (ABE33b/15) 30A Frame 30A (ABE33b/30)
TB6-B010LBEI(10A)
HFN-15 (15 A)
18A / 240V
(GM□-18)
L7SA020□ L7SA035□
TB6-B030NBDC(30A)
HFN-30 (30 A)
32A / 240V
(GM□-32)
L7SA050□
50A Frame
40A(ABE53b
/40)
TB6-
B040A(40A)
HFN-
40(40A)
50A / 240V
(GM□-50)
AWG16
(1.5 ㎟)
AWG16(1.5 ㎟)
AWG14
(2.5 ㎟)
AWG16(1.5 ㎟)
AWG12
(4.0 ㎟)
AWG16(1.5 ㎟)
AWG10 (6.0
㎟)
AWG16(1.5
㎟)
Crimp terminal
UA-F1510, SEOIL
(10 mm Strip & Twist)
UA-F2010, SEOIL
(10 mm Strip & Twist)
UA-F4010, SEOIL(10 mm
Strip & Twist)
GP110028
KET
Regenerative resistance
(Provided by default)
50 [W]
100 Ω
100 [W]
40 Ω
150 [W]
13 Ω
Connector
(L1,L2…U,V,W
)
• BLF 5.08/03/180F SN BK BX
• BLF 5.08/11/180F SN BK BX
• BLZ7.62HP/03/180LR
SN BK BX SO
BLZ7.62HP/11/180LR
SN BK BX SO
Note1) Use 600V-PVC Insulated wire for wiring.
Use approved UL wire (Temp. 60℃ or above) for UL (CSA) Regulation.
Use approved wire for any other regulations.
Use equivalent or advanced components compare to components above for any special applications.
120[W]
6.8Ω
3-6
( L7SA004□ or below)
Length of strip
7~10[㎜]
3. Wiring Method
0.6
3.5
0.4~0.5[N·m]
100
Weidmueller’s
SD 0.6×3.5×100
(L7SA008□ ~ L7SA010□)
M4 : 1.2[N·m]
Length of strip
7~10[㎜]
0.4~0.5[N·m]
A B
C
Weidmueller’s
SD 0.6×3.5×100
M4 : 1.2[N·m]
3-7
3. Wiring Method
(L7SA020□ ~ L7SA035□)
Length of strip
7~10[㎜]
0.4~0.5[N·m]
A B
C
Weidmueller’s
SD 0.6×3.5×100
M4 : 1.2[N·m]
1) Refer to the drawings above for wiring with BLF 5.08 or BLZ 7.62HP Series connector.
2) Insert wire into wire-hole when upper screw is untightened and then, use appropriate (-) shaped screwdriver with 0.4 ~ 0.5[N.m] torque to make tight completely.
3) Cut by vibration, malfunction or fire by contact could be occurred if torque of screwing was not enough.
4) After wiring, tight completely by using hooks to both side when connectors are attached to servo drive.
5) FG screw, which is located on the bottom of servo drive, has to be M4 and put on the FG screw with
1.2[N.m] torque.
6) Malfunction of drive could be occurred if torque of screwing was not enough.
7) Recommended (-) shaped screwdriver: We idmueller’s SD 0.6×3.5×100.
3-8
3. Wiring Method
TB3
TB2
TB1
(L7SA050□)
TB1
Terminal Block Signals
L1 L2 L3 B+ B U V W FG FG
Screw : M4
Screwing torque : 1.2[N·m]
TB2
N
TB3
C1
PO
C2
P1
Screw : M4
Screwing torque : 1.2[N·m]
Screw : M4
Screwing torque : 1.2[N·m]
1) Cut by vibration, malfunction or fire by contact could be occurred if torque of screwing was not enough.
3-9
3. Wiring Method
3.3 Timing Diagram
3.3.1 Timing Diagram During Power Input
For L7 Series, connect single-phase power to the C1 and C2 terminals to supply power to the control circuit, and three-phase power to L1, L2, and L3 to supply power to the main circuit.
The servo signal becomes Ready after the maximum time of 120 [ms] that is required to reset the inside of the device. If you change the signal to ON, the servo operates in 40 [ms].
Main power, control power supply
200 ms
50 ms
Control power establishment 5
[V]
Control program reset
150 ms
120 ms
10 ms
Main power establishment
Alarm
(Normally On)
10 ms
Servo Ready
Servo On
5 ms
Clear DB
3-10
PWM output
(motor rotation)
40 ms 2 ms
3. Wiring Method
3.3.2 Timing Diagram at the Time of Alarm Trigger
When the alarm triggered in the servo drive, it blocks the PWM and the motor stops.
Caution
After solving the problem that triggered the alarm, and changing the command signal (Servo
ON) to OFF, reset the alarm.
200 ms
Main power, control power supply
Control power establishment
5 [V]
Control program
Reset
Main power establishment
150 ms
Alarm
(Normally On)
Alarm triggered by an anomaly
Remove causes that triggered alarm
10 ms
Servo RDY
Servo On
Clear DB
PWM
(Motor rotation)
RESET
5 ms
40 ms
2 ms
30 ms
3-11
3. Wiring Method
3.4 Control Signal Wiring
3.4.1 Contact Input Signal
Caution
1. There are two input contacts based on the characteristics of individual signals: contact A and contact B. They can be set by [P2-08] and [P2-09].
2. It is possible to turn each contact on or off forcibly with [Cn-07]. Take extra caution because each contact is automatically turned off when power is off.
3. The signal definition of each contact can be modified by [P2-00], [P2-01], [P2-02], [P2-03], and
[P2-04].
DC 24V
R1
R2
COM
R1: 3.3 KΩ, R2: 680 Ω
Internal
Circuit
3-12
3. Wiring Method
3.4.2 Contact Output Signal
Caution
1. There are two output contacts based on the characteristics of individual signals: contact A and contact B. They can be set by [P2-10].
2. It is possible to turn each contact on or off forcibly with [Cn-08]. Take extra caution because each contact is automatically turned off when power is off.
3. The signal definition of each contact point can be modified by [P2-05], [P2-06], and [P2-07].
4. Overvoltage and overcurrent may cause damage because a transistor switch is used internally.
Rated voltage and current: DC 24 [V] ±10%, 120 [㎃]
Contact
Note 1)
L
Contact
L
Internal
Circuit
DC 24V
NOTE 1) For alarm and READY output signals, the GND24 terminal is separated.
3-13
3. Wiring Method
3.4.3 Analog Input/Output Signals
1. Keep GND as 0 [V] of control power.
2. Keep the input signal command voltage within ±10 [V], and input impedance at 22 [㏀].
3. Output signal voltage for Monitor 1 (No. 28) and Monitor 2 (No. 29) is ±10 [V].
Servo Drive
Input/output signal
Twisted Pair
Shield Wire
AGND
Input/output signal
AGND
FG
Configure wiring as shown in the following image when you adjust analog input with parameter resistance by using power supplied by the drive.
Do not exceed the maximum output capacity of 30 [㎃].
+12 [V] (34)
330 [Ω] 1/4 [W]
5 [kΩ]
Analog command
(26), (27), (1)
0.1 [uF]
330 [Ω] 1/4 [W]
-12 [V] (35)
AGND
(8)
3-14
3. Wiring Method
3.4.4 Pulse Train Input Signal
(1) Line Driver (5 [V]) Pulse Input
Upper level controller
PF
PR
Line driver
Twisted Pair
Shield Wire
Servo Drive
PF+
PF-
PR+
PR-
FG
Line receiver
(2) Open Collector (24 [V]) Pulse Input
Upper level controller
GND24
Shield Wire
+24 [V]
PF-
Servo Drive
Pulse COM
PR-
FG
GND24
(3) 12 [V] or 5 [V] NPN Open Collector Pulse Command
Upper level controller
Servo Drive
NPN
GND12
R
R
Power note
1)
PR+
PF+
PF-
PR-
FG
NOTE 1) When using 5 [V] power: Resistance R = 100-
150 [Ω], 1/2 [W]
When using 12 [V] power: Resistance R = 560-
680 [Ω], 1/2 [W]
When using 24 [V] power: Resistance R = 1.5 [kΩ], 1/2 [W]
3-15
3. Wiring Method
(4) PNP Open Collector Pulse Command
NOTE 1)
When using 24 [V] power: Resistance R = 1.5 [kΩ], 1/2 [W]
When using 12 [V] power: Resistance R = 560-
680 [Ω], 1/2 [W]
When using 5 [V] power: Resistance R = 100-
150 [Ω], 1/2 [W]
3.4.5 Encoder Output Signal
Connect the GND terminal of the upper level controller and the GND terminal of CN1 because encoder signals are output based on the GND of control power.
Encoder signals for the servo motor received from CN2 are pre-scaled, according to the ratio defined by [P0-14] and output in line driver mode.
Upper level controller
Servo Drive
Line driver
PA
AO
/AO
GND
Line receiver
GND
GND
Set “1” on the 3 rd
bit in the menu [P0-17]
‘Fuction Select Bit’,
It outputs open collector A,B,Z phases through existing AL0, AL1 and AL2 contact points.
(Output voltage 40mA and below, Maximum frequency 100Khz)
3-16
3. Wiring Method
3.5 Quadrature Encoder Signaling Unit (CN2)
Wiring
3.5.1 APCS-E
AS Cable
Servo Motor
Encoder
Cable
Connector
Maker — AMP
172163-1
170361-1
6
7
8
9
10
11
1
2
3
4
5
12
13
14
15
AWG24 7Pair Twisted
Shield Wire
/Z
U
/U
V
/V
W
A
/A
B
/B
Z
/W
5V
GND
SHD
Servo Drive
13
12
11
10
9
8
5
6
3
4
1
2
14
7
Frame
Cable
Connector(CN2)
Maker – 3M
10314-52A0-008
10114-3000VE
3.5.2 APCS-E
BS Cable
Servo Motor
Encoder
Cable
Connector
MS3108B20-29S
E
F
K
L
A
B
C
D
M
N
P
R
H
G
J
AWG24 7Pair Twisted
Shield Wire
U
/U
V
/V
W
/W
5V
GND
SHD
A
/A
B
/B
Z
/Z
9
8
5
6
3
4
1
2
14
7
13
12
11
10
Frame
Servo Drive
Cable
Connector(CN2)
Maker – 3M
10314-52A0-008
10114-3000VE
3-17
3-18
3. Wiring Method
3.6 Serial Encoder Signaling Unit (CN2)
Wiring
3.6.1 APCS-E
CS Cable
Servo Motor
Encoder
Cable
Connector
Maker — AMP
172161-1
170361-1
7
8
1
2
3
4
9
AWG24 4Pair Twisted
Shield Wire
MA
/MA
SL
/SL
3
4
5
6
Servo Drive
+5V
GND
14
7
SHD Frame
Cable
Connector(CN2)
Maker – 3M
10314-52A0-008
10114-3000VE
3.6.2 APCS-E
DS Cable
3. Wiring Method
3.6.3 APCS-E
ES Cable
Connector
Tyco Connector
(7Ciruits)
Servo Motor
9
4
1
6
2
7
5
Servo Drive
MA
/MA
SL
/SL
5V
GND
SHD
14
7
3
4
5
6
Frame
Cable
Connector(CN2)
Maker — 3M
10314-52A0-008
10114-3000VE
3-19
3. Wiring Method
3.7 Multi Turn Encoder signal unit(CN2) wiring
3.7.1 APCS-E
CS1 Cable
Servo Motor
AWG24 4Pair Twist
Shield Wire
Encoder
Cable
Connector
MS3108S20-29S
9
8
5
6
7
1
2
3
4
Servo Drive
MA
/MA
SL
/SL
BAT+
BAT-
5V
GND
SHD
14
7
3
4
5
6
Cable
Connector (CN2)
Maker — 3M
10314-52A0-008
Frame
10114-3000VE
3.7.2 APCS-E
DS1 Cable
Servo Motor
Encode r
Cable
Connector
MS3108S20-29S
G
J
E
F
H
A
B
C
D
AWG24 4Pair Twist
Shield Wire
Servo Drive
MA
/MA
SL
/SL
BAT+
BAT-
5V
GND
SHD Frame
14
3
4
5
6
7
Cable
Connector(CN2)
Maker — 3M
10314-52A0-008
10114-3000VE
3-20
3. Wiring Method
3.7.3 APCS-E
ES1 Cable
Servo Motor
Connector
Tyco Connector
(7 Circuits)
8
3
9
4
1
6
2
7
5
Servo Drive
MA
/MA
SL
/SL
BAT+
BAT_
5V
GND
SHD
3
4
5
6
14
7
Cable
Connector(CN2)
Frame
Maker — 3M
10314-52A0-008
10114-3000VE
3-21
3. Wiring Method
3.8 Transmission of Absolute Encoder Data
3.8.1 Transmission of Absolute Encoder Data
Upon the absolute encoder’s request for absolute data, the data of the absolute encoder are transmitted to the upper level controller in the form of quadrature pulses through the output of the encoder output signals, AO and BO.
In this case, pulses are output at the speed of 500 [Kpps].
Among absolute data, multi-turn data are transmitted first, followed by single-turn data.
(Refer to “4.1.6 External Input Signal and Logic Definition» for information on the allocation of the sequence input signal and ABS-RQ signal.)
Transmission Sequence of Absolute Data
1. When the servo is OFF, change the ABS_RQ signal on the upper level controller to ON.
2. The servo drive checks the ABS_RQ signal for 10 [ms].
3. The servo drive prepares the transmission of multi-turn data for 100 [ms].
4. The servo drive transmits multi-turn data for up to 140 [ms] (based on 16-bit multi-turn data).
5. The servo drive prepares the transmission of single-turn data for 100 [ms].
6. The servo drive transmits single-turn data with the pre-scaler ratio applied for up to 1100 [ms]
(based on 19-bit single-turn data).
7. The servo drive operates with normal encoder output signals 100 [ms] after the single-turn data are completely transmitted.
Absolute data transmission
Pre-scaler pulse output
3-22
4 Parameters
4.1 How to Use the Loader
4.1.1 Names and Functions of Each Parts
4. Parameters
Display 5-digit FND data.
Digit 5 Digit 4 Digit 3 Digit 2 Digit 1
Displays the decimal point.
[MODE]: Change display mode.
[/LEFT]: Move to another data digit.
[UP]: Increase displayed data.
[DOWN]: Decrease displayed data.
[SET]: Confirm displayed data.
[/RIGHT]: Move to another data digit.
E.g.) 123.4
In the case of 16 bits, the minus symbol is used.
In the case of 32 bits, a dot is used.
E.g.) -123.4
4-1
4. Parameters
4.1.2 Status Summary Display
(1) Status Summary Display in Speed Mode
① Example of the OFF status of the servo in speed control mode
4-2
DIGIT 3-1: Displays the current status of the servo.
bb — Servo OFF
run — Servo ON
Pot — CCW Limit
not — CW Limit
DIGIT 4_High: ZSPD
DIGIT 4_Medium: INSPD or INPOS
DIGIT 4_Low: Command (speed or torque)
DIGIT 4_DOT: READY
DIGIT 5: Displays the current control mode.
P — Position control
S — Speed control
T — Torque control
DIGIT 5_DOT: Servo ON
② Example of the ON status of the servo in speed control mode
4. Parameters
(2) Servo Operation Status Summary Display List
The following list explains the operation status summary display of different modes of the servo.
Notes Operation Status
Screen
Function
Displays the servo’s OFF status when in the position mode.
Displays the servo’s ON status when in position mode.
Displays CCW status when in position mode.
Displays CW status when in position mode.
Displays the servo’s OFF status when in speed mode.
Displays the servo’s ON status when in speed mode.
Displays CCW status when in speed mode.
Displays CW status when in speed mode.
Displays the servo’s OFF status when in torque mode.
Displays the servo’s ON status when in torque mode.
Displays CCW status when in torque mode.
Displays CW status when in torque mode.
4-3
4. Parameters
4.1.3 Parameter Handling
(1) Parameter Movement
Example of changing speed control mode to position control mode ([P0-03]: 00001 -> 00002)
St-26
St-25
P0-27
P1-25 P2-22 P3-20
P0-26
P4-13
P4-12
Cn-15
Cn-14
St-24 P0-25 P4-11 Cn-13
DOWN
UP
St-02
St-01
Operation Status
Summary Display
St-00
P0-02 P4-02
P0-01
P0-00
P1-00 P2-00 P3-00
MODE
P4-01
P4-00
Cn-02
Cn-01
Cn-00
If the alarm does not go off at the starting operation, the speed operation mode [S=bb] indicating operation status is displayed.
Editable parameters are from [P0-00] to [Cn-15]. Press [SET] when a parameter number is displayed and you can see and edit the parameter data.
In the initial parameter edit status, the number on the far right flickers (ON and OFF for 0.5 seconds respectively) and becomes editable.
4-4
4. Parameters
(2) Example of changing speed control mode to position control
mode ( [P0-03]: 00001 -> 00002 )
Ord er
1
2
3
4
5
6
7
8
Loader Displays Keys to Use What to Do
Displays the speed control mode with main power and control power permitted.
Press [MODE] to move to [P0-00].
Press [UP] or [DOWN] to move to [P0-
03].
Press [SET] to go to the parameter edit window. The parameter is displayed as
00001.
Press [UP] or [DOWN] at the blinking cursor to change the number to 00002.
Press and hold [SET] for approximately one second. After two flickers, the number will be saved as 00002 in the parameter.
Press and hold [MODE] for approximately one second to return to the P0-03 parameter.
Press [MODE] to change status to position operation [P= bb] status which is the summary display of the current status.
NOTE 1)
“ ” indicates flickering.
If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.
4-5
4. Parameters
4-6
(3) Example of changing speed proportional gain 2
([P1-07]: 200 [rad/s] -> 500 [rad/s])
Ord er
1
2
3
4
5
6
7
8
Loader Displays Keys to Use What to Do
Displays the speed control mode with main power and permitted control power.
Press [MODE] to move to [P1-00].
Press [UP] or [DOWN] to move to [P1-
07].
Press [SET] to enter parameter edit mode. The parameter is displayed as
00200.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.
Press [UP] or [DOWN] at the blinking
DIGIT 3 position to change the number to 00500.
Press and hold [SET] for approximately one second. After two flickers, the number will be saved as 00500 in the parameter.
Press and hold [MODE] for approximately one second to return to
[P1-07].
NOTE 1)
“ ” indicates flickering.
If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.
4. Parameters
(4) Example of changing DAC output offset 1
([P0-19]: 0 [Unit/V] -> -500 [Unit/V])
Ord er
Loader Displays Keys to Use What to Do
1
2
3
4
5
6
7
8
Displays the speed control mode with main power and control power permitted.
Press [MODE] to move to [P0-00].
Press [UP] or [DOWN] to move to [P0-
19].
Press [SET] to enter parameter edit mode. The parameter is displayed as
00000.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.
Press [UP] or [DOWN] at the blinking
DIGIT 3 position to change the number to -0500.
Press and hold [SET] for approximately one second. After two flickers, the number will be saved as -0500 in the parameter.
Press and hold [MODE] for approximately one second to return to
[P0-19].
NOTE 1)
“ ” indicates flickering.
If you hold down [UP] / [DOWN] at the current cursor in the parameter window, the number continues to increase/decrease.
4-7
4. Parameters
4.1.4 Data Display
(1) Binary
① Minimum (0b00000)
(2) Hex
① Minimum (0x0000)
(3) 16-bit Unsigned Integer
① E.g.) 0
② Maximum (0b11111)
② Maximum (0xFFFF)
② E.g.) +1234
(4) 16-bit Signed Integer
① E.g.) -1234 ② E.g.) +5678
① E.g.) -1234 ② E.g.) +5678
4-8
(5) 16-bit Decimal Point Display
① E.g.) -123.4 ② E.g.) +123.4
① E.g.) -123.4 ② E.g.) +123.4
4. Parameters
(6) 32-bit Signed Integer Data Display
① Minimum (-2147483648)
Display upper two digits Display middle four digits Display lower four digits
② Maximum (2147483647)
Display upper two digits Display middle four digits Display lower four digits
E.g.) [St-16]: Displayed as Upper = 0, Middle = 0012, and
Lower = 2071
Order Loader Displays
1
2
3
4
5
6
7
Keys to Use What to Do
Displays the speed control mode with main power and control power permitted.
Press [MODE] to move to [St-00].
Press [UP] or [DOWN] to move to [St-
16].
Press [SET] to display lower digit data.
Each time you press [/LEFT] or
[/RIGHT] lower, middle, and upper data is displayed.
Each time you press [/LEFT] or
[/RIGHT] lower, middle, and upper data is displayed.
Press and hold [MODE] for approximately one second to return to
[St-16].
NOTE 1)
“ ” indicates flickering.
4-9
4. Parameters
4.1.5 External Input Contact Signal Display [St-14]
You can check whether the ON/OFF status of digital input/output signals that access the servo drive are on or off.
(1) External Input Signal Display
The positions of the seven segment LEDs and CN1 connector pins correspond as follows.
If an LED that corresponds to a pin is turned on/off, it indicates ON/OFF accordingly.
Input Contact Display
Number
Contact
Number
CN1
Pin number
(A)
DIA
48
Allocated default
Signal name
STOP
(9)
DI9
18
(8)
DI8
19
EMG CWLIM
(7)
DI7
20
CCWLI
M
(6)
DI6
46
DIR
(5)
DI5
17
ALMR
ST
(4)
DI4
21
(3)
DI3
22
(2)
DI2
23
(1)
DI1
47
SPD3 SPD2 SPD1 SVON
4-10
4. Parameters
4.1.6 External Input Signal and Logic Definition
The following describes how to allocate input signals and how to view them.
(1) Input Signal Allocation
L7 Drive allows for the allocation of a total of 19 input contact functions to 10 hardware contacts.
Each of the input contact functions is located at the designated digit of parameter [P2-00],
[P2-01], [P2-02], [P2-03], or [P2-04]. Changing the value of the digit allows allocation to pins
DI1 through DIA
The default input signal allocation is as follows:
One number can be allocated to two input signals such as N (input signal): 1 (input allocation number).
E.g.) If SVON and SPD1 are allocated to DI #01, you can use both the SVON signal and the
SPD1 signal when entering DI #01.
Input Signal
Input Allocation Number
4-11
4. Parameters
Signal Name
Parameter
Allocation
Servo ON
[P2-00].Set Digit 1
Multi-speed 1
[P2-00]. Set Digit 2
Multi-speed 2
[P2-00]. Set Digit 3
Multi-speed 3
[P2-00]. Set Digit 4
Alarm reset
[P2-01]. Set Digit 1
Select rotation direction
[P2-01]. Set Digit 2
Forward rotation prohibited
[P2-01]. Set Digit 3
Reverse rotation prohibited
[P2-01]. Set Digit 4
Emergency stop
[P2-02]. Set Digit 1
Stop
[P2-02]. Set Digit 2
Electronic gear ratio 1
[P2-02]. Set Digit 3
Electronic gear ratio 2
[P2-02]. Set Digit 4
P control action
[P2-03]. Set Digit 1
Select gain 2
[P2-03]. Set Digit 2
Error pulse clear
[P2-03]. Set Digit 3
Torque limit
[P2-03]. Set Digit 4
Change operation modes
[P2-04]. Set Digit 1
Absolute encoder data request
[P2-04]. Set Digit 2
Zero clamp
[P2-04]. Set Digit 3
Reset absolute encoder data
[P2-04]. Set Digit 4
Input
Signal
SVON
SPD1
SPD2
SPD3
ALMRST
DIR
CCWLIM
CWLIM
EMG
STOP
EGEAR1
EGEAR2
PCON
GAIN2
P_CLR
T_LMT
MODE
ABS_RQ
ZCLAMP
ABS_RS
T
Alwa ys
Alloc ated
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
48
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
CN1 Pin Default Allocation Number
18 19 20 46 17 21 22 23 47
No
Allo cati on
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Input
Signal
Definition
Default setting
[P2-00]
[P2-01]
[P2-02]
[P2-03]
[P2-04]
0x4321
0x8765
0x00A9
0x0000
0x0000
NOTE 1) CN1 connector pin is not allocated when the default value is «0».
NOTE 2) For ABS_RST Signal, hold
“High” for 500ms or longer in order to reset absolute encoder data.
4-12
4. Parameters
(2) Example of Changing Input Signal Allocation
The input signal definition can be changed in [P2-00], [P2-01], [P2-02], [P2-03], and [P2-04].
The input signal logic definition can be changed in [P2-08] and [P2-09].
Allocate input signals as shown in the following table:
Input Signal Input Allocation Number
4-13
4. Parameters
Signal Name
Parameter
Allocation
Servo ON
[P2-00].Set Digit 1
Multi-speed 1
[P2-00]. Set Digit 2
Multi-speed 2
[P2-00]. Set Digit 3
Multi-speed 3
[P2-00]. Set Digit 4
Alarm reset
[P2-01]. Set Digit 1
Select rotation direction
[P2-01]. Set Digit 2
Forward rotation prohibited
[P2-01]. Set Digit 3
Reverse rotation prohibited
[P2-01]. Set Digit 4
Emergency stop
[P2-02]. Set Digit 1
Stop
[P2-02]. Set Digit 2
Electronic gear ratio 1
[P2-02]. Set Digit 3
Electronic gear ratio 2
[P2-02]. Set Digit 4
P control action
[P2-03]. Set Digit 1
Select gain 2
[P2-03]. Set Digit 2
Error pulse clear
[P2-03]. Set Digit 3
Torque limit
[P2-03]. Set Digit 4
Change operation modes
[P2-04]. Set Digit 1
Absolute encoder data request
[P2-04]. Set Digit 2
Zero clamp
[P2-04]. Set Digit 3
Reset absolute encoder data
[P2-04]. Set Digit 4
Input
Signal
SVON
SPD1
SPD2
SPD3
ALMRST
DIR
CCWLIM
CWLIM
EMG
STOP
EGEAR1
EGEAR2
PCON
GAIN2
P_CLR
T_LMT
MODE
ABS_RQ
ZCLAMP
ABS_RS
T
Alwa ys
Alloc ated
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
48
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
18
CN1 Pin Default Allocation Number
19 20 46 17 21 22 23 47
No
Alloc ation
Input
Signal
Definition
Value
After
Changing
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[P2-00]
[P2-01]
[P2-02]
[P2-03]
[P2-04]
0x0321
0x0765
0x0080
0x9000
0x000A
NOTE 1) CN1 connector pin is not allocated when the default value is «0».
NOTE 2) For ABS_RST Signal, hold
“High” for 500ms or longer in order to reset absolute encoder data.
4-14
4. Parameters
Examples of Changing Input Signal Allocation
The following is an example of changing input signal allocation.
The allocation signals of SVON (CN1-47) and STOP (CN1-48) can be switched in the following sequence.
[P2-00]:
Before Changing After Changing
[P2-02]:
Order
1
2
3
4
5
6
7
8
9
10
11
12
※
Loader Displays Keys to Use What to Do
Press [MODE] to move to [P2-00].
Press [SET] to enter parameter edit mode. The parameter is displayed as
04321.
Press [UP] or [DOWN] at the blinking cursor to change the number to
0432A.
Hold down [SET] for approximately one second. After two flickers, the number is saved as 0432A for the parameter.
Hold down [MODE] for approximately one second to return to [P2-00].
Press [UP] or [DOWN] at the blinking cursor to change the number to P2-02.
Press [SET] to enter parameter edit mode. The parameter is displayed as
000A9.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 2.
Press [UP] or [DOWN] at the blinking cursor to change the number to
00019.
Hold down [SET] for approximately one second. After two flickers, the number is saved as 00019 for the parameter.
Hold down [MODE] for approximately one second to return to [P2-02].
** Modification is not possible with the servo on &. Reset the parameter.
In case of exiting without saving the set value
Hold down [MODE] for approximately one second to return to the parameter.
NOTE 1)
“ ” indicates flickering.
4-15
4. Parameters
(3) Input signal logic definition
L7 Drive allows for defining the logic of input signals for 10 hardware contacts from DI1 to
DIA through parameters [P2-08] and [P2-09].
The logic of input signals as set in the factory is as follows.
Input signal logic definition
Input signal logic definition number
Signal Name
Parameter
Allocation
Servo ON
[P2-08].Set Digit 1
Multi-speed 1
[P2-08]. Set Digit 2
Multi-speed 2
[P2-08]. Set Digit 3
Multi-speed 3
[P2-08]. Set Digit 4
Alarm reset
[P2-08]. Set Digit 5
Select rotation direction
[P2-09]. Set Digit 1
Forward rotation prohibited
[P2-09]. Set Digit 2
Reverse rotation prohibited
[P2-09]. Set Digit 3
Emergency stop
[P2-09]. Set Digit 4
Stop
[P2-09]. Set Digit 5
Input
Signal
(Initial name)
SVON
SPD1
SPD2
SPD3
ALMRST
DIR
CCWLIM
CWLIM
EMG
STOP
48 18
1
CN1 Pin Default Allocation Number
19 20 46 17 21 22 23 47
Contact B
1
1
1
1
1
1 0
0
0
0
0
0
0
0
0
0
Input signal logic setting
[P2-08]
[P2-09]
NOTE 1) For the purpose of the input signal logic definitions, Contact A is 1 and Contact B is 0.
Default setting
0x11111
0x10001
4-16
4. Parameters
(4) Example of Changing Input Signal Logic Definitions
Input signal logic definitions can be changed in [P2-08] and [P2-09].
When input signals are allocated as below, settings will be done as shown in table below.
Input signal logic definition
Input signal logic definition number
Signal Name
Parameter
Allocation
Servo ON
[P2-08].Set Digit 1
Multi-speed 1
[P2-08]. Set Digit 2
Multi-speed 2
[P2-08]. Set Digit 3
Multi-speed 3
[P2-08]. Set Digit 4
Alarm reset
[P2-08]. Set Digit 5
Select rotation direction
[P2-09]. Set Digit 1
Forward rotation prohibited
[P2-09]. Set Digit 2
Reverse rotation prohibited
[P2-09]. Set Digit 3
Emergency stop
[P2-09]. Set Digit 4
Stop
[P2-09]. Set Digit 5
Input
Signal
SVON
SPD1
SPD2
SPD3
ALMRST
DIR
CCWLIM
CWLIM
EMG
STOP
48 18
CN1 Pin Default Allocation Number
19 20 46 17 21 22 23
1
1
1
1
1
1
1
1
47
Cont act B
Input signal logic definition
1 0
Default setting
0
0
0
0
0
0
0
0
0
[P2-08]
[P2-09]
NOTE 1) For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0.
0x11111
0x11101
4-17
4. Parameters
4-18
Examples of changing input signal logic definitions
The table below shows examples of changing input signal logic definitions.
The sequence of changing logic signal contact A of SVON (CN1-47) to contact B and logic signal contact B of CCWLIM (1-20) to contact A is as follows.
[P2-08]:
Before changing After changing
[P2-09]:
Order
1
2
3
4
5
6
7
8
9
10
11
12
※
Loader Displays Keys to Use What to Do
Press [UP] or [DOWN] at the blinking cursor to move to [P2-08].
Press [SET] to enter parameter edit mode. The parameter is displayed as
11111.
Press [UP] or [DOWN] at the blinking cursor to change the number to 11110.
Hold down [SET] for approximately one second. After two flickers, the number is saved as 11110 for the parameter.
Hold down [MODE] for approximately one second to return to [P2-08].
Press [UP] or [DOWN] at the blinking cursor to change the number to [P2-
09].
Press [SET] to enter parameter edit mode. The parameter is displayed as
10001.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 2.
Press [UP] or [DOWN] at the blinking cursor to change the number to
10011.
In case of exiting without saving the set value
Hold down [SET] for approximately one second. After two flickers, the number is saved as 10011 for the parameter.
Hold down [MODE] for approximately one second to return to [P2-09].
** Modification is not possible with the servo on &. Reset the parameter.
Hold down [MODE] for approximately one second to return to the parameter.
NOTE 1)
“ ” indicates flickering.
4. Parameters
4.1.7 External Output Contact Signal Display [St-15]
You can check whether the ON/OFF status of digital input/output signals that access the servo drive are on or off.
(1) External Output Signal Display
The positions of the seven segment LEDs and CN1 connector pins correspond as follows.
If an LED that corresponds to a pin is turned on/off, it indicates ON/OFF accordingly.
Output Contact Display
Number
Contact
Number
CN1 pin number
Allocated default signal name
(5)
DO5
45
INPOS
(4)
DO4
44
BRAKE
(3)
DO3
43
ZSPD
(2)
DO2
40/41
READY
(1)
DO1
38/39
ALARM
4-19
4. Parameters
4.1.8 External Output Signal and Logic Definition
The following explains output signal allocation and the method of checking allocation status.
(1) Output Signal Allocation
Output signal definition: [P2-05], [P2-06], [P2-07]
Output signal logic definition: [P2-10]
The default output signal allocation is as follows:
Output Signal
Output Allocation Number
Signal Name
Parameter Allocation
Alarm
[P2-05].Set Digit 1
Servo Ready
[P2-05]. Set Digit 2
Zero speed achieved
[P2-05]. Set Digit 3
Brake
[P2-05]. Set Digit 4
Position reached
[P2-06]. Set Digit 1
Torque limit reached
[P2-06]. Set Digit 2
Speed limit reached
[P2-06]. Set Digit 3
Speed achieved
[P2-06]. Set Digit 4
Warning
[P2-07]. Set Digit 1
Output
Signal
ALARM
READY
ZSPD
BRAKE
INPOS
TLMT
VLMT
INSPD
WARN
Alwa ys
Alloc ated
F
F
F
F
F
F
F
F
F
CN1 Pin Default Allocation Number
45 44 43 40/41 38/39
Not
Alloc ated
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
NOTE 1) CN1 connector pin is not allocated when the default value is «0».
Internal
Parameter
[P2-05]
[P2-06]
[P2-07]
4-20
Default
Value
0x4321
0x0005
0x0000
(2) Examples of Changing Output Signal Allocation
The output signal definition can be changed in [P2-05], [P2-06], and [P2-07].
The output signal logic definition can be changed in [P2-10].
Allocate output signals as in the following table:
Output Signal
Output Allocation Number
4. Parameters
Signal Name
Parameter Allocation
Alarm
[P2-05].Set Digit 1
Servo Ready
[P2-05]. Set Digit 2
Zero speed achieved
[P2-05]. Set Digit 3
Brake
[P2-05]. Set Digit 4
Position reached
[P2-06]. Set Digit 1
Torque limit reached
[P2-06]. Set Digit 2
Speed limit reached
[P2-06]. Set Digit 3
Speed achieved
[P2-06]. Set Digit 4
Warning
[P2-07]. Set Digit 1
Output
Signal
ALARM
READY
ZSPD
BRAKE
INPOS
TLMT
VLMT
INSPD
WARN
Alwa ys
Alloc ated
F
F
F
F
F
F
F
F
F
CN1 Pin Default Allocation Number
45 44 43 40/41 38/39
Not
Alloc ated
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
NOTE 1) CN1 connector pin is not allocated when the default value is «0».
0
0
0
0
0
0
0
0
0
Internal
Parameter
[P2-05]
[P2-06]
[P2-07]
Value
After
Changing
0x0301
0x5400
0x0002
4-21
4. Parameters
Example of Changing Output Signal Allocation
The following is an example of output signal allocation change.
The sequence of switching the allocation signals of ALARM (CN1-38/39) and ZSPD (CN1-
43) is as follows:
Before Changing After Changing
[P2-05]:
Order
Loader Window
Display Result
Keys to Use What to Do
1
2
3
4
5
6
7
8
※
Press [MODE] to move to [P2-05].
Press [SET] to enter parameter edit mode. The parameter is displayed as 04321.
Press [UP] or [DOWN] at the blinking cursor to change the number to 04323.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.
Press [UP] or [DOWN] at the blinking cursor to change the number to 04123.
Hold down [SET] for approximately one second. After two flickers, the number will be saved as 04123 for the parameter.
Hold down [MODE] for approximately one second to return to [P2-05].
** Modification is not possible with the servo on & Reset the parameter.
In case of exiting without saving the set value
Hold down [MODE] for approximately one second to return to the parameter.
NOTE 1)
“ ” indicates flickering.
If two output signals are allocated to a number, the output contact setting error [AL-72] alarm will be triggered.
4-22
4. Parameters
(3) Output Signal Logic Definition
Output signal logic definition: [P2-10]
The logic of output signals as shipped from the factory is as follows.
Output signal logic definitions
Output signal logic definition number
DO1(Contact A/Contact B)
DO2(Contact A/Contact B)
DO3(Contact A/Contact B)
DO4(Contact A/Contact B)
DO5(Contact A/Contact B)
Signal Name
Parameter Allocation
Alarm
[P2-10].Set Digit 1
Servo Ready
[P2-10]. Set Digit 2
Zero speed achieved
[P2-10].Digit 3
Brake
[P2-10].Digit 4
Position reached
[P2-10].Digit 5
Input
Signal
(Initial
Name)
ALARM
READY
ZSPD
BRAKE
INPOS 1
1
1 0
0
0
0
CN1 Pin Default Allocation Number
45 44 43 40 /41 38 /39
Contact B
Output
Signal
Logic
Definition
Default
Setting
0
[P2-10]
NOTE 1) For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0
0x10110
4-23
4. Parameters
(4) Examples of Changing Output Signal Logic Definition
Output signal logic definitions can be changed at [P2-10]
Set output signals as shown in the table below when they are allocated as below.
Output signal logic definitions
Output signal logic definition number
DO1(Contact A/Contact B)
DO2(Contact A/Contact B)
DO3(Contact A/Contact B)
DO4(Contact A/Contact B)
DO5(Contact A/Contact B)
Signal Name
Parameter Allocation
Alarm
[P2-10].Set Digit 1
Servo Ready
[P2-10]. Set Digit 2
Zero speed achieved
[P2-10].Digit 3
Brake
[P2-10].Digit 4
Position reached
[P2-10].Digit 5
Input
Signal
(Initial
Name)
ALARM
READY
ZSPD
BRAKE
INPOS
CN1 Pin Default Allocation Number
45 44 43 40 /41 38 /39
Contact B
1
1
1
1
0
0
0
0
0
Output
Signal
Logic
Definition
Default
Setting
[P2-10] 0x11110
For the purpose of the input signal logic definition, Contact A is 1 and Contact B is 0
4-24
4. Parameters
Example of Changing Output Signal Allocation
The following is an example of output signal allocation change.
The sequence of switching the allocation signals of ALM (CN1-38/39) and ZSPD (CN1-43) is as follows:
Before Changing After Changing
[P2-05]:
Order
Loader Window
Display Result
Keys to Use What to Do
1
2
3
4
5
6
7
8
※
Press [MODE] to move to [P2-05].
Press [SET] to enter parameter edit mode. The parameter is displayed as 04321.
Press [UP] or [DOWN] at the blinking cursor to change the number to 04323.
Press [/LEFT] or [/RIGHT] at the blinking cursor to move to the desired digit, DIGIT 3.
Press [UP] or [DOWN] at the blinking cursor to change the number to 04123.
Hold down [SET] for approximately one second. After two flickers, the number will be saved as 04123 for the parameter.
Hold down [MODE] for approximately one second to return to [P2-05].
** Modification is not possible with the servo on & Reset the parameter.
In case of exiting without saving the set value
Hold down [MODE] for approximately one second to return to the parameter.
NOTE 1)
“ “indicates flickering.
If two output signals are allocated to a number, the output contact setting error [AL-72] alarm will be triggered.
4-25
4. Parameters
4.2 Parameter Description
4.2.1 Parameter System
There are a total of eight groups of parameters. Each group is explained in the following table:
Move to
Another
Parameter
MODE Key
Parameter
Number
—
St-00 — St-26
P0-00 — P0-27
P1-00 — P1-29
P2-00 — P2-22
P3-00 — P3-20
P4-00 — P4-14
Cn-00 — Cn-18
Initial Screen
Parameter
Group Name
Details
E.g.) In speed mode
Status Summary
Display
Displays the status summary of the servo.
Displays the operation status of the servo.
Status
System
Saves system configuration information.
Control
IN / OUT
Save control-related parameters.
Saves parameters related to analog and digital input/output.
Saves speed operation parameters.
Speed
Operation
Position
Operation
Saves position pulse operation parameters.
Performs operation handling.
Command
The following explains the acronyms related to application mode in the parameter.
P: Use in position control mode.
S: Use in speed control mode.
T: Use in torque control mode.
Press [MODE] once to move to the next display mode.
4-26
4. Parameters
4.2.2 Operation Status Display Parameter
Code
St-00
St-01
St-02
St-03
St-04
St-05
St-06
St-07
St-08
For detailed information, refer to «4.3 Operation Status Display.»
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Parameter
Name
Current operation status
Operation status
Current operation speed
Current speed
Current command speed
Command speed
Follow position pulse
Feedback pulse
Position command pulse
Command pulse
Remaining position pulse
Pulse error
Input pulse frequency
Input Pulse frequency
Current operation torque
Current torque
Current command torque
Command torque
Unit Initial
Details
Minimum Maximum
— —
0
[RPM]
-10000
[RPM]
-10000
[pulse]
-2^30
[pulse]
-2^30
[pulse]
-2^30
0
0
10000
0
10000
0
2^30
0
2^30
0
2^30
Displays the current operation status.
DIGIT 5: Operation Mode
DIGIT 4: ZSPD, INPOS/INSPD, Command, READY
DIGIT 3-1: Run Status
(Details: Refer to «4.1.2 Status Summary Display.»)
Displays the current operation speed.
(Details: Refer to “4.3.2 Speed Display.”)
Displays the current command speed.
(Details: Refer to “4.3.2 Speed Display.”)
Displays the accumulated number of tracked position command pulses.
Displays the accumulated number of position command pulses that followed as a result of the rotation of the servo motor because the servo was turned on.
If a number is lower than the minimum or higher than the maximum, it is displayed as the minimum or maximum.
(Details: Refer to “4.3.3 Position Display.”)
Displays the accumulated number of position command pulses.
Displays the accumulated number of position command pulses that have been entered since the servo turned on.
(Details: Refer to
“4.3.3 Position Display.”)
Displays the remaining position pulses that the servo has to operate.
This is the difference between command pulse and tracking pulse, and displays the remaining position pulses for the servo to operate.
The remaining position pulses, which are displayed when the servo is off, are ignored when the servo turns on.
(Details: Refer to “4.3.3 Position Display.”)
Displays input pulse frequency. [Kpps]
-1000.0
[%]
0.0
1000.0
0.0
-300.0
[%]
-300.0
300.0
0.0
300.0
Displays the current load factor against the rated load factor.
Displays the load currently output by the servo motor as a percentage against the rated output.
Displays the command load factor against the rated load factor.
Displays the load currently output by the servo motor as a percentage against the rated output.
(Details: Refer to “4.3.4 Torque and Load Display.”)
4-27
4. Parameters
Code
St-09
St-10
St-11
St-12
St-13
St-14
St-15
St-16
St-17
St-18
Parameter Unit Initial
Details
Name Minimum Maximum
Accumulated overload rate
[%]
Accumulated overload -300.0
Instantaneous maximum load factor
[%]
0.0
300.0
0.0
Maximum load
Torque limit
Torque limit
DC link voltage
DC link voltage
-300.0
[%]
-300.0
[V]
0.0
300.0
—
300.0
0.0
500.0
Displays the currently accumulated load factor against the maximum accumulated load factor as a percentage.
(Details: Refer to “4.3.4 Torque and Load Display.”)
Displays the instantaneous maximum load factor against the rated load factor.
Displays, as a percentage, the maximum overload between the current time and the start of control set off when the servo turned on.
(Details: Refer to “4.3.4 Torque and Load Display.”)
Displays the torque limit value.
Displays, as a percentage, the maximum torque that the servo motor can output, against the rated torque.
(T_LMT contact ON: Analog torque input. T_LMT contact OFF: [P1-13] and [P1-14] values)
Displays the current DC link voltage of the main power.
The DC link voltage of the standard drive that uses
220 [V] is approximately 300 [V].
The maximum DC link voltage allowed for the standard drive that uses 220 [V] is 405 [V].
The overvoltage alarm [AL-41] triggers when the
DC link voltage threshold is exceeded because there is either too much or too little regenerative resistance.
The normal DC link voltage in the regenerative section is 385 [V] or below.
(Details:
Refer to “4.3.4 Torque and Load Display.”)
Displays the regenerative overload rate. Regenerative overload [%]
Regeneration overload 0.0
Input contact status —
0.0
20.0
—
Input Status
Output contact status
Output status
—
—
—
—
—
—
Displays the input contact status that the servo recognizes.
(Details: Refer to “4.1.5 External Input Contact Signal
Display.”)
Displays the output contact status that the servo outputs.
(Details: Refer to “4.1.6 External Input Contact Signal
Display.”)
Displays the single-turn data of the encoder in pulses. Single-turn data
(Single-turn data)
Single-turn data
Single-turn data
(Degrees)
Single-turn data
(Degrees)
Multi-turn data
Multi-turn data
[pulse]
0
[˚]
0.0
[rev]
-32768
0
2^30
0.0
360.0
0
32767
Displays the single-turn data of the encoder in degrees.
Displays the multi-turn data of the encoder.
4-28
4. Parameters
Code
St-19
St-20
St-21
St-22
St-23
St-24
St-25
St-26
St-27
Parameter
Name
Internal temperature
Room temperature
Rated motor speed
Rated RPM
Maximum motor speed
Maximum RPM
Rated motor current
Rated current
U phase current offset
U Phase current offset
V phase current offset
V phase current offset
Program version
Software version
Unit Initial
Minimum Maximum
[℃] 0
Details
Displays the internal temperature sensor value.
-40
[RPM]
0
[RPM]
0
[A]
0.00
[mA]
-200
[mA]
-200
—
—
200
0
10000
0
10000
0.00
655.35
0
200
0
200
—
—
Displays the rated speed of the currently installed motor.
Displays the maximum speed of the currently installed motor.
Displays the rated current of the currently installed motor.
Displays the U phase current offset.
Displays the V phase current offset.
Displays the version of the currently installed program.
(Details: R efer to “4.3.7 Software Version
Display.”)
FPGA Version — —
— —
Displays the version of the currently installed
FPGA version.
FPGA Version
Analog Torque
Command
Analog Tq CMD
%
-3000
0
3000
Displays the values of the current analog torque command
4-29
4. Parameters
4.2.3 System Setting Parameter
For detailed information, refer to «4.4.1 System Parameter Setting.»
Code
**P0-00
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Parameter
Name
Motor ID
Motor ID
Unit
Minimum
—
0
Initial
Maximum
999
999
Details
Set Motor ID.
If the attempt to read motor data fails, the initial value is set to 999.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Encoder type — 0
**P0-01
**P0-02
*P0-03
**P0-04
**P0-05
Encoder type
Encoder pulse
Enc resolution
Select operation mode
Operation mode
RS422 communication speed
RS422 baud rate
System ID
System ID
0
[ppr]
1
—
0
[bps]
0
—
0
5
3000
30000
1
5
0
3
0
99
0: Quadrature Type encoder.
1: Single turn Serial encoder.
3: Multi turn Serial encoder
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Serial Type encoder: Set the number of bits per turn from the encoder.
Quadrature Type encoder: Sets the number of encoder pulses.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Sets operation mode.
(0: Torque operation. 1: Speed operation. 2: Position operation. 3: Speed/position operation. 4:
Torque/speed operation. 5: Torque/position operation.)
(Details: Refer to “4.4.1 Speed Operation Parameter
Setting.»)
Sets communication speed for RS-422 communication.
0 : 9600 [bps]
1 : 19200 [bps]
2 : 38400 [bps]
3 : 57600 [bps]
(Details: Refer to “4.4.1 System Parameter Setting.»)
Sets drive ID for communication.
An ID can be given to the servo if USB communication, RS422 communication and BUS communication are used for communication with the servo.
A unique ID can be given to the servo and used for individual communication with it.
(Details: Refer to “4.4.1 System Parameter Setting.»)
4-30
4. Parameters
Code
P0-06
P0-07
P0-08
*P0-09
**P0-10
**P0-11
*P0-12
P0-13
*P0-14
*P0-15
Parameter
Name
Main power input mode
Power fail mode
RST checking time
RST check time
Displays parameter upon start.
Start up parameter
Regenerative overload derating
Regeneration derating
Regenerative resistance value
Regeneration brake resistor
Regenerative resistance capacity
Regeneration brake capacity
Overload check
Base load factor
Unit Initial
Minimum Maximum
—
0b00000
[ms]
0
Details
0b00000 Sets main power input.
DIGIT 1-> 0: Single-phase power
1: 3-phase power input
0b11111
Caution: Using single-phase power may lower motor output.
DIGIT2 -> 0: Error in case of phase loss
1: Warning in case of phase loss
20
Sets the time to check main power phase loss.
5000
—
0
[%]
1
[Ω]
0
26
100
200
0
Sets the number for the operation status parameter that is displayed at the start.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Sets derating factor for checking of regenerative resistance overload. The overload alarm triggers quickly when the derating value is set to 100% or below.
Sets the resistance value for regenerative braking resistance. If set to 0, the default resistance value of the drive is used.
0 1000
[W]
0
[%]
0
30000
100
Sets the capacity for the current regenerative resistance. If set to 0, a default resistance capacity embedded in the drive is used.
Overload check base
Continuous overload warning level
Overload Warning Level
Encoder output scaling
Pulse out per rotation.
PWM OFF delay time
PWM OFF delay
10
[%]
10
—
-2^21
[ms]
0
100
50
100
12000
2^21
10
1000
Indicates the load factor for starting continuous overload checks. If set to 100 or below, an overload check starts early and the overload alarm triggers early.
Indicates the level of continuous overload warning signal output. Outputs the warning signal when the percentage value against alarm trigger load factor is reached.
Sets the encoder output pulses per a rotation, when the servo outputs an encoder output signal to the outside.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Sets the time to delay until the PWM signal actually goes off after the servo is turned off.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
4-31
4. Parameters
Code
*P0-16
*P0-17
P0-18
Parameter
Name
DB control mode
DB control mode
Function setting bit
Function select bit
DAC output mode
DAC mode (F)
Unit
Minimum
—
0x0
—
0b00000
—
0x0000
Initial
Maximu m
0x0
Details
0x3
0x3210
0xFFFF
Sets DB control mode.
0: Hold after DB stop
1: Release after DB stop
2: Release after free run stop
3: Hold after free run stop
(Details: Refer to “4.4.1 System Parameter
Setting.»)
0b00000 Sets drive function per digit.
DIGIT 1 -> Sets the direction of the servo rotation.
0: Forward (CCW), Reverse (CW)
1: Forward (CW), Reverse (CCW)
0b11111
DIGIT 2 -> Sets the lock of the servo motor when the value of analog speed command is 0 in speed operation mode.
0: Not for use
1: Use
DIGIT 3 -> Sets the open collector contacts for encoder pulse output.
0: Not for use
1: Use(ALO0-> A Phase, ALO1->B
Phase, ALO2-> Z Phase)
DIGIT 4 -> Sets the range of monitor output voltage.
0: -10V~+10V
1: 0~10V
DIGIT 5 -> Sets EEPROM save function in communication.
0: Enable to save parameter data when writing through communication.
1: Unable to save parameter data when writing through communication.
(Details: Refer to “4.4.1 System Parameter
Setting.»)
Sets output mode for 1-2 analog output channels.
Sets CH0-CH3 from the bottom, HEX Code, in order.
Output CH0 and CH1 as MONIT1 and
MONIT2.
0 : Speed Feedback [RPM]
1 : Speed Command [RPM]
2 : Torque Feedback [%]
3 : Torque Command [%]
4 : Position Command Frequency [0.1
Kpps]
5 : Following Error [pulse]
6 : DC Link Voltage [V]
D: Speed command (User) [RPM]
E: Torque command (User) [%]
(Details: Refer to “4.4.1 System Parameter
Setting.»)
4-32
4. Parameters
Code
P0-19
P0-20
P0-21
Parameter
Name
DAC output offset 1
(MONIT1)
DAC output offset 1
(MONIT1)
DAC output offset 2
(MONIT2)
DAC offset 2 (F)
(MONIT2)
Reserved
Unit Initial
Minimum Maximum
[Unit/V] 0
-1000
[Unit/V]
-1000
1000
0
1000
Details
Sets offset for 1-2 analog output channels.
Speed: [RPM]
Torque: [%]
Position command frequency: [0.1
Kpps]
Position: [pulse]
DC Link: [V]
Offset
(Details: Refer to “4.4.1 System Parameter
Setting.»)
P0-22
P0-23
P0-24
P0-25
Reserved
DAC output scale 1
(MONIT1)
DAC scale1 (F)
(MONIT1)
DAC output scale 2
(MONIT2)
DAC scale 2 (F)
(MONIT2)
Reserved
[Unit/V]
1
[Unit/V]
1
P0-26 Reserved
P0-27
P0-28
U phase Current Offset value
U Current Offset
V phase Current Offset value
V Current Offset
P0-29 Reserved
[mA]
-9999
[mA]
-9999
500
10000
500
10000
Sets magnification for 1-2 analog output channels.
Sets magnification as setting Unit/V.
E.g.) Channel 1 scale 100 [RPM]: Output 100
[RPM] as 1 [V].
(Details: Refer to “4.4.1 System Parameter
Setting.»)
0
9999
0
9999
Store U phase Current Offset value.
Store V phase Current Offset value.
4-33
4. Parameters
4.2.4 Control Setting Parameter
Code
P1-00
P1-01
P1-02
P1-03
P1-04
P1-05
P1-06
P1-07
P1-08
P1-09
P1-10
For detailed information, refer to «4.4.2 Control Parameter Setting.»
Parameter
Name
Inertia ratio
Inertia ratio
Position proportional gain
1
Position P gain 1
Position Proportional Gain
2
Position P gain 2
Position command filter time constant
Pos. command filter time constant
Position feedforward gain
Pos. feedforward gain
Position feedforward
Filter time constant
Pos. feedforward time constant
Speed proportional gain 1
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Unit
Minimum
[%]
0
Initial
Maximum
100
20000
Details
Sets inertia ratio for load.
Inertia ratio is considered 100 percent when there is no load from the motor. Because setting inertia ratio against load is an important control parameter for the operation of the servo, inertia ratio shall be set by calculating load inertia by the machine system and rotor inertia from the motor specification table.
Setting an accurate inertia ratio is crucial for optimal servo operation.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
[Hz]
0
50
500
Sets position control proportional gain 1.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
[Hz]
0
70
500
Sets position control proportional gain 2.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
[ms]
0
0
1000
Sets filter time constant for internal position command which is reflected by electric gear ratio.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
[%]
0
[ms]
0
0
100
0
1000
Sets position feedforward control ratio.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
Sets position feedforward control filter time constant.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
[rad/s] 400
Speed P gain 1
Speed proportional gain 2
Speed P gain 2
0
[rad/s]
0
[ms]
1
5000
700
5000
50
1000
Sets speed control proportional gain 1.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
Sets speed control proportional gain 2.
(Detai ls: Refer to “4.4.2 Control Parameter
Setting.”)
Sets speed control integral time constant 1.
(Details: Refer to “4.4.2 Control Parameter
Setting.”)
Speed integral time constant 1
Speed time constant 1
Speed integral time constant 2
Speed time constant 2
Speed command filter time constant
Speed command filter time constant
[ms]
1
[ms]
0
15
1000
10
1000
Sets speed control integral time constant 2.
Sets filter time constant for speed command values.
4-34
4. Parameters
Code
P1-11
P1-12
P1-13
P1-14
Parameter
Name
Speed feedback filter time constant
Spd. feedback filter time constant
Torque command filter time constant
Trq. command filter time constant
Forward rotation torque limit
Positive torque limit
Negative torque limit
Negative torque limit
Gain transfer mode
Unit
Minimum
0.1[ms]
0
[ms]
0
[%]
0
[%]
0
—
P1-15
P1-16
P1-17
Conversion mode 0x00
[ms]
1
—
0
Initial
Maximum
0.5
Details
Sets filter time constant for speed search values.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
100
10
Sets filter time constant for torque command values.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
1000
Sets forward rotation torque limit.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
300
300
300
300
0x00
0x43
1
100
0
1
Sets negative torque limit.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
Sets gain transfer mode. [0x0F (DIGIT 1)]
0: Use only gain 1.
1: ZSPD automatic gain transfer
In case of zero speed, transfer from gain 1 to gain 2.
In the opposite case, transfer from gain 2 to gain
1.
2: INPOS automatic gain transfer
In case of IN position, transfer from gain 1 to gain
2.
In the opposite case, transfer from gain 2 to gain
1.
3: Manual gain transfer
When the gain 2 contact is on, transfer from gain
1 to gain 2.
In the opposite case, transfer from gain 2 to gain
1.
Sets P and PI control transfer modes. [0xF0 (DIGIT
2)]
0: Control PI only.
1: Control P if the command torque is higher than the set torque [P1-24].
2: Control P if the command speed is higher than the set speed [P1-25].
3: Control P if the current acceleration is higher than the set acceleration [P1-26].
4: Control P if the current position error is higher than the set position error [P1-27].
Control P if the PCON contact is on (highest priority).
(Details: Refer t o “4.4.2 Control Parameter Setting.”)
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets gain transfer time during operation.
When converting gain 1 to gain 2 and gain 2 to gain
1, conversion is scheduled according to the set time.
Select whether to use the notch filter or not.
0: Do not use. 1: Use
(Details: Refer to “4.4.2 Control Parameter Setting.”)
Gain transfer time
Gain conversion time
Resonance avoidance operation
Notch filter use
4-35
4. Parameters
Code
P1-18
P1-19
P1-20
P1-21
P1-22
Parameter
Name
Resonance avoidance frequency
Notch frequency
Resonance avoidance range
Notch bandwidth
Auto gain tuning speed
Auto gain tuning Speed
Auto gain tuning distance
Auto gain tuning distance
Torque control speed limiting mode
Velocity limit switch
(torque control)
Unit
Minimum
[Hz]
0
[Hz]
0
100
[RPM]
1
—
1
—
0
[RPM]
P1-23
P1-24
P1-25
P1-26
P1-27
Speed limit
Velocity limit value
(torque control)
P control conversion torque
Torque switch value
(P control conversion)
P control conversion speed
Speed switch value
(P control conversion)
P control conversion acceleration
Acc. switch value
(P control conversion)
P control conversion position error
Position Err switch value
(P control conversion)
0
%
0 rpm
0 rpm/s
0 pulse
0
Initial
Maximum
300
1000
100
1000
Details
Sets resonance avoidance frequency.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
Sets the scope of resonance avoidance frequency.
(Details: Refer to “4.4.2 Control Parameter Setting.”)
8
10
3
5
0
Sets speed for automatic gain tuning run.
Sets round-trip distance for automatic gain tuning run.
3
Sets speed limit mode during torque control.
0: Limit to [P1-23]. 1: Maximum motor speed
2: Analog speed command
3: Limited to the smaller value between the value of
[P1-23] and the analog speed command.
2000
Sets speed limit when speed limit mode [P1-22] is 0 during torque control.
10000
200
When setting P and PI control transfer mode [P1-15], sets [0x10 (DIGIT 2)] P control conversion torque.
300
50
When setting P and PI control transfer mode [P1-15], sets [0x20 (DIGIT 2)] P control conversion speed.
6000
1000
5000
When setting P and PI control transfer mode [P1-15], sets [0x30 (DIGIT 2)] P control conversion acceleration.
2000
10000
When setting P and PI control transfer mode [P1-15], sets [0x40 (DIGIT 2)] P control conversion position error .
4-36
4. Parameters
4.2.5 Input/Output Setting Parameter
Code
**P2-00
**P2-01
**P2-02
**P2-03
**P2-04
**P2-05
**P2-06
**P2-07
**P2-08
For detailed information, refer to «4.4.3 Analog Input/Output Parameter Setting» and «4.4.4
Input/Output Contact Parameter Setting.»
Parameter
Name
Input signal definition 1
Input port define 1
Input signal definition 2
Input Port define 2
Input signal definition 3
Input Port define 3
Input signal definition 4
Input Port define 4
Input signal definition 5
Input Port define 5
Output signal definition 1
Output port define 1
Output signal definition 2
Output port define 2
Output signal definition 3
Output port define 3
Input signal logic definition 1
Input logic set 1
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Unit Initial
Details
Minimum
—
0
—
0
—
—
0
—
0
0
—
0
—
0
—
0
—
0
Maximum
0x4321
0xFFFF
0x8765
0xFFFF
0x00A9
0xFFFF
0x0000
0xFFFF
0x0F00
0xFFFF
0x4321
0xFFFF
0x0005
0xFFFF
0x0000
0xFFFF
0b11111
0b11111
Allocates a CN1 connector pin for a digital input signal.
Initial input signal allocation
[P2-00]DIGIT 1 = SVON (DI1)
[P2-00]DIGIT 2 = SPD1 (DI2)
[P2-00]DIGIT 3 = SPD2 (DI3)
[P2-00]DIGIT 4 = SPD3 (DI4)
[P2-01]DIGIT 1 = ALARMST (DI5)
[P2-01]DIGIT 2 = DIR (DI6)
[P2-01]DIGIT 3 = CCWLIM (DI7)
[P2-01]DIGIT 4 = CWLIM (DI8)
[P2-02]DIGIT 1 = EMG (DI9)
[P2-02]DIGIT 2 = STOP (DIA)
[P2-02]DIGIT 3 = EGEAR1 (**)
[P2-02]DIGIT 4 = EGEAR2 (**)
[P2-03]DIGIT 1 = PCON (**)
[P2-03]DIGIT 2 = GAIN2 (**)
[P2-03]DIGIT 3 = P_CLR (**)
[P2-03]DIGIT 4 = T_LMT (**)
[P2-04]DIGIT 1 = MODE (**)
[P2-04]DIGIT 2 = ABS_RQ (**)
[P2-04]DIGIT 3 = ZCLAMP (**)
[P2-04]DIGIT 4 = ABS_RST (**)
(**) Unallocated signals
(Details: Refer to “4.1.6 External Input Signal and
Logic Definition.”)
Allocate a CN1 connector pin for a digital output signal.
Initial output signal allocation
[P2-05]DIGIT 1 = ALARM (DO1)
[P2-05]DIGIT 2 = READY (DO2)
[P2-05]DIGIT 3 = ZSPD (DO3)
[P2-05]DIGIT 4 = BREAK (DO4)
[P2-06]DIGIT 1 = INPOS (DO5)
[P2-06]DIGIT 2 = TLMT (**)
[P2-06]DIGIT 3 = VMLT (**)
[P2-06]DIGIT 4 = INSPD (**)
[P2-07]DIGIT 1 = WARN (**)
(**) Unallocated signals
(Details: Refer to “4.1.8 External Output Signal and Logic Definition.”)
In case of dual allocation, the output contact setting error [AL-72] occurs.
Define CN1 connector logic for a digital input signal. (0: Contact B. 1: Contact A)
Initial input logic definitions
[P2-08]DIGIT 1 = DI1 (CN1 #47) (Contact A)
[P2-08]DIGIT 2 = DI2 (CN1 #23) (Contact A)
[P2-08]DIGIT 3 = DI3 (CN1 #22) (Contact A)
[P2-08]DIGIT 4 = DI4 (CN1 #21) (Contact A)
[P2-08]DIGIT 5 = DI5 (CN1 #17) (Contact A)
(Details: Refe r to “4.1.6 External Input Signal and
Logic Definition.”)
4-37
4. Parameters
Code
**P2-09
**P2-10
P2-11
P2-12
P2-13
P2-14
Parameter
Name
Input signal logic definition 2
Input logic set 2
Output signal logic definition
Output logic set
Position reached output range
In position range
Zero speed output range
Zero speed range
Range of output for speed reached
In speed range
Brake output action speed
Brake output speed
Unit Initial
Details
Minimum Maximum
—
0
—
0
[pulse]
1
[RPM]
1
[RPM]
1
[RPM]
0
0b10001
0b11111
0b10110
0b11111
10
65535
10
500
10
500
100
6000
Define CN1 connector logic for a digital input signal.(0: Contact B, 1: Contact A)
Initial input logic definitions
[P2-09]DIGIT 1 = DI6 (CN1 #46) (Contact A)
[P2-09]DIGIT 2 = DI7 (CN1 #20) (Contact A)
[P2-09]DIGIT 3 = DI8 (CN1 #19) (Contact A)
[P2-09]DIGIT 4 = DI9 (CN1 #18) (Contact A)
[P2-09]DIGIT 5 = DIA (CN1 #48) (Contact A)
(Details: Refer to “4.1.6 External Input Signal and Logic Definition.”)
Define CN1 connector logic for a digital output signal (0: Contact B, 1: Contact A)
Initial input logic definitions
[P2-10]DIGIT 1 = DO1 (CN #38/39) (Contact B)
[P2-10]DIGIT 2 = DO2 (CN #40/41) (Contact A)
[P2-10]DIGIT 3 = DO3 (CN #43) (Contact A)
[P2-10]DIGIT 4 = DO4 (CN #44) (Contact B)
[P2-10]DIGIT 5 = DO5 (CN #45) (Contact A)
(Deta ils: Refer to “4.1.8 External Output Signal and Logic Definition.”)
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets remaining pulse range for position reached output in position operation mode.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets speed range for zero speed output during a stop.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets speed range for command speed reached output.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets speed for turning on the brake output contact.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
P2-15
P2-16
*P2-17
Brake output delay time
Brake output delay time
Position pulse clear mode
PCLR mode
Analog speed scale
Analog speed command scale
[ms]
0
—
0
[RPM]
1
500
1000
1
1
2000
15000
Sets how much time to delay until the brake output contact turns on when the servo is off or stops.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Select operation type for position pulse clear
(PCLR) mode.
0: Operate in edge mode.
1: Operate in level mode.(Torque :
Continue)
2: Operate in level mode.(Torque : 0)
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Sets speed scale when the analog speed command is 10 [V].
(Details: Refer to “4.4.3 Analog Input/Output
Parameter
Setting.”)
4-38
4. Parameters
Code
P2-18
P2-19
*P2-20
P2-21
P2-22
Parameter
Name
Analog speed offset
Analog speed command offset
Zero speed clamp voltage
Zero speed clamp voltage
Analog torque scale
Unit Initial
Details
Minimum Maximum
[mV] 0
-1000 1000
Sets offset for analog speed commands.
(Details: Refer to “4.4.3 Analog Input/Output
Parameter
Setting.”)
[mV]
0
[%]
0
1000
100
Sets voltage range for the clamp operation of the analog zero speed command.
Analog torque scale
Analog torque command offset
Analog torque command offset
Zero torque clamp voltage
Zero torque clamp voltage
1
[mV]
-1000
[mV]
0
350
0
1000
0
1000
Sets torque scale when the analog torque command is 10 [V].
(Details: Refer to “4.4.3 Analog Input/Output
Parameter
Setting.”)
Sets offset for analog torque commands.
(Details: Refer to “4.4.3 Analog Input/Output
Parameter
Setting.”)
Sets voltage range for the clamp operation of the analog zero torque command.
4-39
4. Parameters
4.2.6 Speed Operation Setting Parameter
Code
P3-00
P3-01
P3-02
P3-03
P3-04
P3-05
P3-06
P3-07
P3-08
P3-09
P3-10
*P3-11
P3-12
For detailed information, refer to «4.4.5 Speed Operation Parameter Setting.»
Parameter
Name
Speed command 1
Speed command 1
Speed command 2
Speed command 2
Speed command 3
Speed command 3
Speed command 4
Speed command 4
Speed command 5
Speed command 5
Speed command 6
Speed command 6
Speed command 7
Speed command 7
Z detection operation speed
Z search operation speed
Speed command acceleration time
Speed command
ACC. time
Speed command deceleration time
Speed command DEC. time
Speed command S-curve time
Speed command
S-curve time
Speed operation pattern
ACC.DEC. pattern
Manual JOG operation speed
JOG operation speed
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Unit Initial
Details
Minimum Maximum
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
1
10
6000
100
6000
500
6000
1000
6000
1500
6000
2000
6000
3000
6000
10
300
Sets 1-6 speed commands based on the speed command input contact.
SPD1 SPD2 SPD3 Speed Control
OFF
ON
OFF
ON
OFF
ON
OFF
OFF
ON
ON
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
Analog speed command
Digital speed command 1
Digital speed command 2
Digital speed command 3
Digital speed command 4
Digital speed command 5
OFF ON ON Digital speed command 6
ON ON ON Digital speed command 7
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
Sets Z detection operation speed.
[ms]
0
[ms]
0
[ms]
1
—
0
[RPM]
-6000
0
10000
0
10000
10
100
0
1
500
6000
Sets acceleration time for speed commands.
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
Sets deceleration time for speed commands.
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
Sets S-Curve time for speed commands.
Sets acceleration/deceleration type for speed commands.
(0;Trapezoidal, 1;Sinusoidal)
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
Sets operation speed for manual JOG operation
[Cn-00].
4-40
4. Parameters
Code
P3-13
P3-14
P3-15
P3-16
P3-17
P3-18
P3-19
P3-20
Parameter
Name
Program JOG operation speed 1
Program jog speed 1
Program JOG operation speed 2
Program jog speed 2
Program JOG operation speed 3
Program jog speed 3
Program JOG operation speed 4
Program jog speed 4
Program JOG operation time 1
Program jog time 1
Program JOG operation time 2
Program jog time 2
Program JOG operation time 3
Program jog time 3
Program JOG operation time 4
Program jog time 4
Unit
Minimum
[ms]
0
[ms]
0
[ms]
0
[ms]
0
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
[RPM]
-6000
Initial
Maximum
500
65535
5000
65535
500
65535
5000
65535
0
6000
3000
6000
0
6000
-3000
6000
Details
Sets operation speed/operation time for programs 1 to 4 during program JOG operation [Cn-01].
A test run repeats from step 1 to step 4.
Sets operation speed ([P3-13]-[P3-16]) and operation time ([P3-17]-[P3-20]) for each step.
E.g.) Step 1 operation
4-41
4. Parameters
4.2.7 Position Operation Setting Parameter
Code
For detailed information, refer to «4.4.6 Position Operation Parameter Setting.»
Parameter
Name
Position input pulse logic
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Unit Initial
Minimum Maximum
Details
— 0
Sets logic for position operation input pulses.
— The type of position command input pulses and rotation direction per logic are as follows:
PF + PR
Phase
A + B
Positive
Logic
0
Forward rotation
PULS
(CN1-9)
SIGN
(CN1-11)
CW+CCW
Positive
Logic
1
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
Pulse + direction positive logic
2
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
Reverse rotation
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
**P4-00
Pulse Input Logic 0 5
PF + PR Forward rotation
Phase
A + B
Negative
Logic
3
PULS
(CN1-9)
SIGN
(CN1-11)
CW+CCW
Negative
Logic
4
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
Pulse + direction negative logic
5
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
Reverse rotation
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
H Level
E.g.) Relation between direction signals and rotation directions when the position pulse input logic is set to 2.
When the direction signal is low: Reverse rotation (CW/clockwise)
When the direction signal is high: Forward rotation (CCW/counterclockwise)
(Details: Refer to “4.4.6 Position Operation
Parameter Setting.
”)
4-42
4. Parameters
Code
*P4-01
*P4-02
*P4-03
*P4-04
*P4-05
*P4-06
*P4-07
*P4-08
Parameter
Name
Electronic gear ratio numerator 1
Electric gear num.1
Electronic gear ratio numerator 2
Electric gear num.2
Electronic gear ratio numerator 3
Electric gear num.3
Electronic gear ratio numerator 4
Electric gear num.4
Electronic gear ratio denominator 1
Electric gear den.1
Electronic gear ratio denominator 2
Electric gear den.2
Electronic gear ratio denominator 3
Electric gear den.3
Electronic gear ratio denominator 4
Electric gear den.4
Electronic gear ratio mode
P4-09
Electric gear mode
P4-10
P4-11
P4-12
Electric gear ratio numerator offset
Electric gear num. offset
Position error
Following error range
Limit contact function
Position limit function
Unit
Minimum
—
—
1
1
—
1
1
—
1
—
1
—
1
—
1
—
0
—
-30000
[Pulse]
1
—
0
Initial
Maximum
1000
2^21
1000
2^21
1000
2^21
1000
2^21
1000
32767
2000
32767
3000
32767
4000
32767
0
1
0
30000
90000
2^30
0
1
Details
Sets electronic gear ratio numerator/denominator 1,
2, 3, and 4.
EGEAR
1
EGEAR
2
Electronic Gear
Ratio
Numerator /
Denominator
Electronic
Gear Ratio
OFF OFF
Electronic gear ratio numerator 1
Electronic gear ratio denominator 1
Electronic gear ratio numerator 2
Electronic gear ratio 1
ON OFF
Electronic gear ratio 2
Electronic gear ratio denominator 2
Electronic gear ratio numerator 3
OFF ON
Electronic gear ratio 3
Electronic gear ratio denominator 3
Electronic gear ratio numerator 4
ON ON
Electronic gear ratio 4
Electronic gear ratio denominator 4
The electronic gear ratio is the numerator/denominator form of the relation between the position command input pulse and the motor encoder pulse. It is important to set the ratio so that there is no error during position operation.
(Details: Refer to “4.4.6 Position Operation
Parameter Setting.”)
Select an electronic gear ratio mode.
0: Select electronic gear ratio 1-4.
1: Override offset [P4-10] on the electronic gear ratio numerator 0.
(Details: Refer to “4.4.6 Position Operation
Parameter
Setting.”)
Sets the offset of the electronic gear ratio numerator
0.
The offset will be set on the electronic gear ratio numerator 0.
EGEAR1 contact LOW -> HIGH
: Increase the electronic gear ratio numerator by
1.
EGEAR2 contact LOW -> HIGH
: Decrease the electronic gear ratio numerator by 1)
(Details: Refer to “4.4.6 Position Operation
Parameter
Setting.”)
Sets range for triggering the position error alarm.
(Details: Refer to “4.4.4 Input/Output Contact
Parameter
Setting.”)
Select the operation type of position command pulse clear for CWLIM and CCWLIM contacts.
0: Ignore any input pulses when the CCWLIM /
CWLIM contact is on.
1: When the CCWLIM / CWLIM contact is on, receive an input pulses and save them to buffer.
4-43
4. Parameters
Code
P4-13
Parameter
Name
Backlash compensation
Backlash compensation
Pulse input filter
**P4-14
Pulse input filter
Unit
Minimum
—
0
—
0
Initial
Maximu m
0
10000
3
5
Details
Sets backlash compensation in position operation.
Sets backlash compensation by converting the amount of backlashes to number of pulses if the position changes because of backlashes caused by position operation.
Sets in the opposite direction according to the amount of backlashes.
(Details: Refer to “4.4.6 Position Operation
Parameter
Setting.”)
Sets filter frequency according to pulse input.
0 : No filter used
1 : 500 Khz (Min)
2 : 750 Khz
3 : 1 Mhz (Default)
4 : 1.25 Mhz
The frequency bands above were determined based on the width of input pulse in consideration of the characteristics of digital filters.
4-44
4. Parameters
4.2.8 Operation Handling Parameter
Code
Cn-00
Cn-01
Cn-02
Parameter
Name
Manual JOG operation
Jog
“**” Modification is not possible with the servo on & Power reset parameter.
“*” Parameter that cannot be modified with the servo on
Unit
Minimu m
—
—
Initial
Maximu m
—
—
Details
The drive performs manual JOG operation by itself.
(Refer to “Chapter 5 Handling and
Operation.”)
[MODE]: Finish
[UP]: Forward rotation (CCW)
[DOWN]: Reverse rotation (CW)
[SET]: Servo ON / OFF
Related parameters are as follows:
[P3-08]: Speed command acceleration time
[P3-09]: Speed command deceleration time
[P3-10]: Speed command S-curve
[P3-11]: Speed operation pattern
[P3-12]: JOG operation speed
Operate regardless of the contact input status of CN1.
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
(Details: Refer to «5.2 Handling.»)
Program JOG operation
Program jog
—
—
—
—
Continuously operates according to the program already set.
[SET]: Program JOG run or stop
Related parameters are as follows:
[P3-08]: Speed command acceleration time
[P3-09]: Speed command deceleration time
[P3-10]: Speed command S-curve
[P3-11]: Speed operation pattern
[P3-13~16]: Program operation speed 1 to 4
[P3-17~20]: Program operation time 1 to
4
Operate regardless of the contact input status of CN1.
(Details: Refer to “4.4.5 Speed Operation
Parameter
Setting.”)
(Details: Refer to «5.2 Handling.»)
Alarm reset
Alarm reset
—
—
—
—
Reset the alarm that went off.
(Details: Refer to «5.2 Handling.»)
4-45
4. Parameters
Code
Cn-03
Cn-04
Cn-05
Cn-06
Cn-07
Cn-08
Cn-09
Parameter
Name
Get alarm history
Get alarm history
Alarm history clear
Alarm history clear
Auto gain tuning
Auto gain tuning
Z search
Z detection
Input contact forced
ON/OFF
Forced input test
Output contact forced
ON / OFF
Forced output test
Parameter initialization
Parameter Initialization
Unit Initial
Minimum Maximum
— —
— —
Details
Check the saved alarm code history.
[UP] or [DOWN]: Reads alarm codes.
E.g.) Recent first history [AL-42]:
RST_PFAIL occurs.
01: Latest alarm
20: 20th previous alarm
(Details: Refer to «5.2 Handling.»)
—
—
—
—
—
—
Deletes the entire saved alarm code history.
(Details: Refer to «5.2 Handling.»)
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Performs automatic gain tuning operation.
Related parameters are as follows.
[P1-22]: Auto gain tuning speed
[P1-23]: Auto gain tuning distance
(Details: Refer to «5.2 Handling.»)
Perform Z detection.
[SET]: Mode entering and servo ON status
[UP]: Phase Z forward search
[DOWN]: Phase Z reverse search
Related parameters are as follows.
[P3-07]: Sets Z-phase search operation speed [RPM].
(Details: Refer to «5.2 Handling.»)
Forcibly turns on/off the input contact temporarily.
[UP]: (A),(8),(6),(4), and (2) signals forced
ON/OFF
[DOWN]: (9),(7),(5),(3), and (1) signals forced ON/OFF
[MODE]: Move to another digit.
(Details: Refer to «5.2 Handling.»)
Forcibly turns on/off the output contact temporarily.
[UP]: (4) and (2) signals forced ON/OFF
[DOWN]: (5),(3), and (1) signals forced
ON/OFF
[MODE]: Move to another digit.
(Details: Refer to «5.2 Handling.»)
—
—
—
—
Initializes parameter data.
(Details: Refer to «5.2 Handling.»)
4-46
4. Parameters
Code
Parameter
Name
Auto speed command offset correction
Unit
Minimu m
—
Cn-10
Cn-11
Cn-12
Cn-13
Auto speed command offset calibration
Auto torque command offset correction
Auto torque command offset calibration
Manual speed command offset correction
Manual speed command offset calibration
Manual torque command offset correction
Manual torque command offset calibration
—
—
—
—
—
—
—
Initial
Maximu m
—
—
—
—
—
—
—
—
Details
Calibrates the offset of analog speed commands automatically.
The possible voltage range is from -1 V to 1
V.
If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.
You can check the calibrated offset in the analog speed command offset [P2-18].
(Details: Refer to «5.2 Handling.»)
Calibrates the offset of analog torque commands automatically.
The possible voltage range is from -1 V to 1
V.
If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.
You can check the calibrated offset in the analog torque command offset [P2-21].
(Details: Refer to «5.2 Handling.»)
Calibrates the offset of analog speed commands manually.
The possible voltage range is from -1 V to 1
V.
If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.
You can check the calibrated offset in the analog speed command offset [P2-18].
(Details: Refer to «5.2 Handling.»)
Calibrate the offset of analog torque commands manually.
The possible voltage range is from +1 V to —
1 V.
If offset voltage exceeds this range, [oVrnG] is displayed and there is no calibration.
You can check the calibrated offset in the analog torque command offset [P2-21].
(Details: Refer to «5.2 Handling.»)
4-47
4. Parameters
Code
Cn-14
Cn-15
Cn-16
Cn-17
Parameter
Name
Absolute encoder reset
Abs encoder reset
Max load clear
Max load clear
Parameter lock
Parameter lock
Current offset
Calculate current offset
Unit
Minimum
—
—
Initial
Maximu m
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Details
Resets the absolute encoder.
(Details: Refer to «5.2 Handling.»)
Reset the instantaneous maximum load factor to
0.
[UP]: Displays the + forward maximum load factor.
[DOWN]: Displays the — direction maximum load factor.
[SET]: Initializes the maximum load factor.
(Details: Refer to «5.2 Handling.»)
Lock or Unlock whole parameter.
[UP] : Unlock
[DOWN] : Lock
(Details: Refer to “5.2 Handling.”)
Store existing current offset value into [P0-27]
~[P0-28] Parameter.
(Details: Refer to “5.2 Handling.”)
4-48
4. Parameters
4.3 Operation Status Display
4.3.1 Status Display [St-00]
Refer to «4.1.2 Status Summary Display.»
4.3.2 Speed Display
1. Current operation speed [St-01]
Displays the current operation speed in [RPM].
2. Current command speed [St-02]
Displays the current command speed in [RPM].
4.3.3 Position Display
1. Tracking position pulse [St-03]
Displays the accumulated number of position command pulses that followed as a result of rotation of the servo motor since the servo was turned on.
2. Position command pulse [St-04]
Displays the accumulated number of position command pulses that have been entered since the servo turned on.
3. Remaining position pulse [St-05]
This is the difference between command pulse and tracking pulse, and displays the remaining position pulses for the servo to operate.
The remaining position pulses delayed while the servo is off are ignored when it is turned on.
4. Input pulse frequency [St-06]
Displays input pulse frequency.
4.3.4 Torque and Load Display
1. Current operation torque [St-07]
Displays the energy (load) output by the servo motor as a percentage of the rated output.
2. Current command torque [St-08]
Displays the internal torque command calculated from the servo’s control algorithm as a percentage of the rated torque.
3. Accumulated overload rate [St
–09]
Displays the current energy (load) as a percentage of the rated energy (load) of the servo motor.
4. Instantaneous maximum load factor [St
–10]
Displays the maximum (peak) load between the current time and the start of control after the servo is turned on as a percentage of the rated output.
4-49
4. Parameters
5. Torque limit [St
–11]
Displays the maximum torque that the servo motor can output as a percentage of the rated torque.
6. DC link voltage [St
–12]
The DC link voltage of the standard drive that uses 220 [V] is approximately 300 [V].
The maximum DC link voltage allowed for the standard drive that uses 220 [V] is 405 [V].
The overvoltage alarm [AL-41] triggers when the DC link voltage threshold is exceeded because there is either too much or too little regenerative resistance.
The normal DC link voltage in the regenerative section is 385 [V] or below.
7. Regenerative overload [St
–13]
Displays overload rate relative to the regenerative capacity of the servo drive.
4.3.5 I/O Status Display
1. CN1 I/O input contact point status [St-14]
Refer to «4.1.4 External Input Contact Point Signal Display [St-14].»
2. CN1 I/O output contact status [St-15]
Refer to «4.1.6 External Output Contact Signal Display [St-15].»
4.3.6 Miscellaneous Status and Data Display
1. Single-turn data (pulse) display [St-16]
Displays the single-turn data of the encoder in pulses.
2. Single-turn data (degree) display [St-17]
Displays the single-turn data of the encoder in degrees.
3. Multi-turn data display [St-18]
Displays the multi-turn data of the encoder.
4. Inside temperature display [St-19]
Displays the temperature sensor value of the servo drive in [℃].
5. Rated motor speed display [St-20]
Displays the rated speed of the currently installed motor in [RPM].
6. Peak motor speed display [St-21]
Displays the peak speed of the currently installed motor in [RPM].
7. Rated motor current display [St-22]
Displays the rated current of the currently installed motor in [A].
8. U phase current offset display [St-23]
Displays the U phase current offset in [mA].
9. V phase current offset display [St-24]
Displays the V phase current offset in [mA].
4-50
4.3.7 Version Display
1. Software version display [St-25]
Displays the version of the currently installed software.
A 0.01. 3
Encoder Version Drive capacity
Type
A: Parallel
B: Serial
No.
0
1
2
3
4
5
6
7
8
Drive capacity default
100W
200W
400W
750W
1kW
2kW
3.5kW
5kW
4. Parameters
4-51
4. Parameters
4.4 Parameter Setting
4.4.1 System Parameter Setting
1. Motor ID setting [P0-00]
Single turn Serial encoder: Reads the motor ID from the encoder and displays it.
Quadrature type Incremental encoder: Sets motor ID manually.
Multi turn Serial encoder: Sets motor ID manually.
2. Encoder setting
Encoder type [P0-01]
Numb er
0
3
Encoder Type
Quadrature type incremental encoder
Multi turn Serial encoder
1
Encoder Type
Single-turn Serial type encoder
Encoder pulse [P0-02]
Refer to servo motor product format on Chapter
“1. Product Components and Signals” for value of encoder pulses. Set number of pulses[P/R] if the encoder is pulse type and set number of bit if the encoder is communication type(Serial).
Ex)
Set “3000”[P/R] in [P0-02] when the motor is APM-SB04AEK1G103 because “E” indicates that encoder type is Quadrature type 3000[P/R].
3. Operation mode setting [P0-03]: Sets operation mode of the servo.
Operation Mode
0
1
2
3
4
5
Operation Method
Torque control operation
Speed control operation
Position control operation
Mode contact ON: Position control operation
Mode contact OFF: Speed control operation
Mode contact ON: Speed control operation
Mode contact OFF: Torque control operation
Mode contact ON: Position control operation
Mode contact OFF: Torque control operation
4. System ID setting
An ID can be given to the servo if RS422 communication and BUS communication are used for communication with the servo. Communication-related options are required in this case.
Communication speed setting [P0-04]
You can select the baud rate, the communication speed of RS422.
0: 9600 [bps]
1: 19200 [bps]
2: 38400 [bps]
4-52
4. Parameters
3: 57600 [bps]
System ID [P0-05]
A unique ID can be given to the servo and used for individual communication with it.
5. Main power input mode setting [P0-06]
Sets the main power input mode and processing mode in case of phase loss.
DIGIT 1: Sets the main power input type.
(0: Single-phase power input. 1: Three-phase power input.)
DIGIT 2: Sets how to handle errors and warnings in case of main power phase loss.
(0: Error in case of main power phase loss. 1: Warning in case of main power phase loss.)
6. RST checking time setting [P0-07]
Sets checking time for main power phase loss.
7. Start-up display parameter setting [P0-08]
You can set the parameter to be applied when the servo is turned on.
There are 26 values available for setting, from [St-00] to [St-25]. Choose one for a specific parameter.
8. Regenerative overload derating factor setting [P0-09]
Sets derating factor for checking of regenerative resistance overload. When the derating value is set to 100% or below, the overload alarm triggers at a time proportional to the set value.
9. Regenerative resistance value setting [P0-10]
Sets the resistance value for regenerative braking resistance. If set to 0, a default resistance capacity embedded in the drive is used.
10. Regenerative resistance capacity setting [P0-11]
Sets the capacity for the current regenerative resistance. If set to 0, a default resistance capacity embedded in the drive is used.
11. Overload check default load factor setting [P0-12]
Indicates the load factor for starting continuous overload checks. If set to 100 or below, an overload check starts early and the overload alarm triggers early.
12. Overload warning level setting [P0-13]
Sets the level for continuous overload warning signal output. A warning signal is issued when the percentage value set relative to the alarm trigger value is reached.
13. Encoder pulse prescale output (encoder output scaling[P0-14])
When an encoder signal is output from the servo to the outside, its output pulses are pre-scaled as the value of encoder output scaling[P0-14]
E.g.) Set the value of encoder output scaling[P0-14] in a motor whose encoder pulse is 3,000
[ppr].
encoder output scaling[P0-14] = 12,000[ppr]
=> Encoder pulse output: 3,000 [ppr] × 4 = 12,000 [ppr]
14. PWM OFF delay time setting [P0-15]
Sets the time span between servo OFF command and actual PWM OFF. This is to prevent the motor from slipping down the vertical axis until the motor brake comes into effect after receiving the
4-53
4. Parameters
4-54
servo off command and then the brake signal. Set a PWM off delay when operating the motor brake with the output contact point brake signal. (Range: 0-1000 [ms]. Initial value: 10.)
15. DB control mode [P0-16]: Sets DB control mode.
0: Hold after DB stop
1: Release after DB stop.
2: Release after free run stop.
3: Hold after free run stop.
16. Servo function setting bit [P0-17]
Sets drive function per digit.
DIGIT 1 -> Sets the operation direction of the servo.
0: CCW (Forward), CW (Reverse)
1: CW (Forward), CCW (Reverse)
DIGIT 2 -> Sets the lock of the servo motor when the value of analog speed command is 0 in speed operation mode.
0: Not for use
1 : Use(Enable to maintain powerful state of “stop” by switching to position operation mode temporarily when the value of analog speed command is 0 in speed operation mode.
DIGIT 3 -> Sets the open collector contacts for encoder ouput .
0: Not for use
1 : Use(ALO0,ALO1,ALO2 output contacts open collector A,B,Z output)
DIGIT 4 -> Sets the range of monitor output voltage.(can be applied both monitor1 and 2)
0: -10~+10V
1 : 0~+10V
DIGIT 5 -> Sets EEPROM save function in communication.
0: Enable to save parameter data when writing through communication.
1: Unable to save parameter data when writing through communication.
17. DAC output setting
There are 2 kinds of DAC output, each of which is made every 200 [usec] according to the condition of used data.
DAC output type [P0-18 DIGIT 1, DIGIT 2]
Type
0
1
2
3
4
Data Content
Speed feedback [RPM]
Speed command [RPM]
Torque feedback [%]
Torque command [%]
Position command frequency
[0.1 Kpps]
DAC output scale[P0-23], [P0-24]
Type
5
6
D
E
Data Content
Following error [pulse]
DC link voltage [V]
Speed command (user) [RPM]
Torque command (user) [%]
4. Parameters
If the output value is too low or too high, output ratio can be adjusted.
Sets magnification [Unit/V] for analog output channels 1 and 2.
(Speed [RPM], torque [%], position command frequency [0.1 Kpps], position [pulse], DC link [V])
Example) Channel 1 scale 100 =>100 [RPM] is output as 1 [V].
DAC output offset [P0-19], [P0-20]
Sets offset [Unit/V] for 1 ~ 2 analog output channels.
(Speed [RPM], torque [%], position command frequency [0.1 Kpps], position [pulse], DC_Link
[V])
4.4.2 Control Parameter Setting
The order of setting control parameters is as follows:
Load inertia ratio [P1-00] setting: Refer to “5.2.6 Auto Gain Tuning [Cn-05].”
Position proportional gain [P1-01] and [P1-02] adjustment:
Increase the gain to the extent that the servo motor does not overshoot or take off (do not use during speed operation or torque operation).
Speed proportional gain [P1-06] and [P1-07] adjustment:
Increase the gain to the extent that the servo motor does not vibrate.
Speed integral time constant [P1-08] and [P1-09] adjustment:
Refer to the following table and perform setting according to the speed proportional gain.
(1) Inertia Ratio Setting [P1-00]
An inertia ratio shall be set by calculating load inertia from the machine system and rotor inertia from the motor specification table.
Setting inertia ratio against load is an important control parameter for the operation of the servo. Setting accurate inertia ratio is crucial for optimal servo operation.
The following table contains control gain recommendations for different categories of inertia ratio:
Motor
Flange
40
~ 80
Inertia Ratio
Category
[Inertia]
(Multiple)
Position
Proportional
Gain
40 ~ 90 Low inertia
Medium inertia
1 ~ 5
5 ~ 20
High inertia 20 ~ 50
20 ~ 70
10 ~ 40
Gain Range
Speed
Proportional
Gain
Speed Integral
Gain
400 ~ 1000 10 ~ 40
200 ~ 500
100 ~ 300
20 ~ 60
50 ~ 100
* Inertia ratio can be tuned during a test drive if it is hard to calculate.
4-55
4. Parameters
(2) Position Control Gain
Position command
+
Differ entiati on
FF filter time constant
[P1-05]
Position error
—
Current position
Proportional gain
[P1-01]
Feedforward gain
[P1-04]
+
+
Speed
Command
4-56
Pulse output
Prescale
[P0-14]
Position command: Count the position command pulses entering from outside, and converts them into position commands, apply an electric gear ratio, and then pass through [P1-03] position command filter, and use it as an internal position command. In the case that Numerator of electric gear is bigger, a change of external input position command pulse influences on a change of internal position command. And this influence is getting bigger. So there is need to adjust ‘[P1-03] position command filter time constant’
Current position: Count pulse signals received from the encoder and convert them to current position by using electronic gear ratio settings.
Position proportional gain [P1-01] and [P1-02]: Convert the difference between the position command and the current position into a speed command by multiplying it by position proportional gain.
* Recommended value = speed proportional gain [P1-06] / 10
Feedforward gain [P1-04]: Calculate the gradient with the differential value of the position command.
Reduce time to target position by adding the speed command to the gradient. If the resultant value is too big, overshooting or instability might occur in position control. Therefore, it is important to gradually increase the value from a small value while watching the test drive.
Feedforward filter [P1-05]: If position commands change too drastically, the feedforward control filter vibrates. In this case, set a filter value to remove the vibration.
(3) Speed Control Gain
Analog speed command
Speed command filter time constant
[P1- 10]
Speed integral time constant
[P1-08]
+
Digital speed command +
Speed
Proportional Gain
[P1-06]
Torque command
— Current speed
Speed feedback filter time constant [P1-11]
Speed calculation
Encoder signal
Current torque
Speed command: Use an analog speed signal entering from outside as a speed command after running it through the speed command filter [P1-10], or use a digital speed command and [RPM] set in the internal parameter.
Current speed: Calculate speed by counting encoder signals as time progresses, and use the calculated speed as the current speed after running it through a filter. An algorithm, which projects
4. Parameters
speed by using the current torque and inertia, is used to make up for the errors occurring during speed calculation at a very low speed. Therefore, an accurate motor constant and inertia ratio are closely associated with the stability of motor speed control.
Speed integral time constant [P1-08]: Calculate the integral value of the speed error, which is the difference between the command and the current speed, and convert it into a torque command by multiplying it by integral time constant.
A decreased integral time constant solves the transient response issue and thus improves speed tracking. If the integral time constant is too small, however, overshoot occurs. On the other hand, if the integral time constant is too big, excessive response drops and proportional control takes over.
* Recommended value = 10000 / speed proportional gain [P1-06]
Speed
Low
High
Command speed
Tracking speed
Time
Speed proportional gain [P1-06]: Convert the speed error into a torque command by multiplying it by proportional gain.
If the result value is large, speed response accelerates and thus speed tracking increases. If the value is too big, however, vibration occurs. If the value is too small, speed response slows down and speed tracking decreases. Consequently, the servo loses its power.
Speed
Command speed
High
Low
Time
Speed feedback filter time constant [P1-11]: If the speed of the motor changes because of vibration of the drive system, or vibration occurs due to gain when there is too much load inertia, you can control the vibration by applying a filter to speed feedback. If you set too great a value, speed responsiveness will be reduced and thus the power of control will be compromised.
* Recommended value = 0 to speed integral time constant [P1-08]/10
(4) Torque Command Filter Time Constant Setting [P1-12]
You can improve the stability of command signals by setting a digital filter for analog torque command voltage. If you set too great a value, responsiveness for torque commands will be reduced. It is important to set an appropriate value for your system.
4-57
4. Parameters
(5) Torque Limit Setting [P1-13], [P1-14]
You can set maximum torque limits for forward rotation [P1-13] and for reverse rotation [P1-
14] separately. The setting is displayed as a percentage of the rated torque and the standard is 300 [%].
4-58
(6) Gain 1<->Gain 2 Transfer Mode Setting [P1-15] 0x0F (DIGIT 1)
Set speed gain transfer mode. [0x0F (DIGIT 1)]
0: Use only gain 1.
1: ZSPD auto gain transfer
In case of zero speed, transfer from gain 1 to gain 2.
In the opposite case, transfer from gain 2 to gain 1.
2: INPOS auto gain transfer
In case of IN position, transfer from gain 1 to gain 2.
In the opposite case, transfer from gain 2 to gain 1.
3: Manual gain transfer
When the gain 2 contact is on, transfer from gain 1 to gain 2.
In the opposite case, transfer from gain 2 to gain 1.
(7) Gain 1<->Gain 2 Conversion Time Setting [P1-16]
Set gain transfer time during operation.
When converting gain 1 to gain 2 and gain 2 to gain 1, conversion is scheduled according to the set time.
(8) P / PI Conversion Mode Setting [P1-15 DIGIT 2]
Set P and PI control conversion modes. [0xF0 (DIGIT 2)]
0: Control PI only.
1: Control P if the command torque is higher than the set torque [P1-24].
2: Control P if the command speed is higher than the set speed [P1-25].
3: Control P if the current acceleration is higher than the set acceleration [P1-26].
4: Control P if the current position error is higher than the set position error [P1-27].
Control P if the PCON contact is on (highest priority).
With such functions, you can improve position operation by applying the P control operation stop function after PI control operation.
4. Parameters
(9) Resonance Avoidance Operation Setting [P1-17], [P1-18], [P1-
19]
Torque output
Resonance avoidance frequency [P1-18]
Torque output frequency
Resonance avoidance range
BW [P1-19]
If vibration occurs at certain frequencies in certain systems because of mechanical resonance, you can control the vibration by controlling torque output for the specific frequencies.
Resonance avoidance operation [P1-17]
0: Not for use
1: Use
4.4.3 Analog Input/Output Parameter Setting
(1) Analog Speed Scale Setting
Analog speed scale [P2-17]: Set the analog speed command of 10 [V] in the unit of [RPM]. The maximum value is the maximum motor speed.
Analog speed command offset [P2-18]: There are cases where a certain level of voltage remains on the analog signal access circuit, even at the 0 speed command. In this case, you can compensate it by setting the voltage as offset. The unit is [㎷].
Zero speed command clamp setting
Speed
-10 [V]
Zero speed command clamp voltage”
[P2-19] = 0
+10 [V]
Voltage
-10 [V]
-㎷
+㎷
+10 [V]
Zero speed command clamp voltage
[P2-19]
Zero speed command clamp voltage
[P2-19] = Not 0 [mV]
4-59
4. Parameters
(2) Analog Torque Scale Setting
Analog torque command scale [P2-20]: Set the analog torque command of 10 [V] as a percentage of the rated torque. The setting should be within the torque limit [P1-13] and [P-14] of system parameter setting.
Torque command offset [P2-21]: There are cases in which a certain level of voltage remains on the analog circuit, even at the 0 torque command, because of problems with the circuit. You can compensate this by setting the voltage as offset. The unit is [㎷].
Zero torque command clamp
Torque
-10 [V]
Zero torque command clamp voltage
[P2-22] = 0
+10 [V]
Voltage
-10 [V]
-㎷
+㎷
+10 [V]
Zero torque command clamp voltage
[P2-22]
Zero torque command clamp voltage
[P2-22] = Not 0 [mV]
4-60
4. Parameters
4.4.4 Input/Output Contact Point Parameter Setting
(1) Position Operation Parameter Setting
Position reached output range [P2-11]: If the error pulse, which is the difference between the command position pulse and the follow position pulse, reaches this range, a signal is output to indicate that the position has been decided.
Pulse counter
Command pulse counter
Error pulse Follow pulse counter
Position reached output range
[P2-11]
Time
Position decision
Completed output
If you set too great a value, the target position complete output signal might occur during operation depending on the position command pulse. Therefore, it is important to set an appropriate value.
Position operation follow error range [P4-11]
Pulse counter Command pulse counter
Error pulse
Position follow error range
Follow pulse counter
Time
Position follow error alarm
If the error pulse is greater than the position operation tracking error range, the position tracking error alarm [AL-51] triggers.
4-61
4. Parameters
4-62
(2) Speed Operation Parameter Setting
Speed
Range of output for speed reached
[P2-13]
Command speed
Zero speed output range [P2-12]
Zero speed (ZSPD)
Time
Speed reached
(INSPD)
Zero speed output range [P2-12]: When the current speed becomes lower than the set speed, the zero speed signal is output.
Speed-reached output range [P2-13]: The speed-reached signal is output.
(3) Brake Signal Output Parameter Setting
Speed Motor operation speed
Servo OFF or Alarm trigger
Brake signal output
Operation speed [P2-
14]
Time
Servo ON input
Brake
Output signal
Within 50 [msec]
Brake signal output
Delay time [P2-15]
Brake signal output operation speed [P2-14], brake signal output delay time [P2-15]
In the event that an alarm triggers when the servo’s built-in brake is applied to the vertical axis for the operation of the motor by the servo, this feature is activated to prevent the vertical axis from falling to the motor brake.
This may occur as a result of the brake signal’s turning off, which is triggered by first of either the brake signal output operation speed [P2-14] or the brake signal output delay time [P2-15].
4. Parameters
(4) Position Pulse Clear Mode [P2-16]
Set the operation of position pulse clear mode in position operation mode.
Setting
0
1
2
Operation
Operate only on the edge where the contact point turns from off to on.
(Do not operate when it is off or on.)
Operate immediately at contact point on_ Level. Then, maintain torque when contact is “High”.
Operate immediately at contact point on_ Level.
Then, torque is “0” when contact is “High”.
(5) Output Signal Logic Definition Setting [P2-10]
You can change the output condition of the current output contact point to initial status ON or initial status OFF.
4-63
4. Parameters
4.4.5 Speed Operation Parameter Setting
(1) Speed Command [P3-00]-[P3-06]
You can adjust operation speed in [RPM]. Operation speed is determined by speed command input contact points.
SPD1
OFF
ON
OFF
ON
OFF
ON
OFF
ON
SPD2
OFF
OFF
ON
ON
OFF
OFF
ON
ON
SPD3
OFF
OFF
OFF
OFF
ON
ON
ON
ON
Speed Control
Analog speed command
Digital speed command
1
Digital speed command
2
Digital speed command
3
Digital speed command
4
Digital speed command
5
Digital speed command
6
Digital speed command
7
(2) Acceleration/Deceleration Time
Acceleration time [P3-08]: Sets the time required for the motor to reach the rated motor speed from zero speed in [ms] units.
Deceleration time [P3-09]: Sets the time required for the motor to stop after running at the rated motor speed in [ms] units.
(3) S-Curve Operation [P3-11]
You can set acceleration/deceleration operation as an S-curve pattern for smooth acceleration/deceleration.
0: Trapezoidal -> Set acceleration/deceleration time [P3-08] and [P3-09].
1: Sinusoidal -> Set acceleration/deceleration time [P3-08] and [P3-09] + S-curve time [P3-10].
(4) Manual JOG Operation [Cn-00]
Press RIGHT for forward rotation at JOG operation speed [P3-12]. Press LEFT for reverse rotation at JOG operation speed [P3-12]. The contact point input status by CN1 is ignored.
(5) Program JOG Operation [Cn-01]
A test drive repeats from step 1 to step 4.
Set operation speed [P3-13]-[P3-16]) and operation time ([P3-17]-[P3-20]) for each step.
4-64
4. Parameters
4.4.6 Position Operation Parameter Setting
(1) Input Pulse Logic [P4-00]
Set type of the position command input pulse and rotation method per logic.
0: A+B
1: CW+CCW, positive logic
2: Pulse + sign, positive logic
3: A+B
4: CW + CCW, negative logic
5: Pulse + sign, negative logic
PF + PR
Phase
A + B
Positive
Logic
0
Forward rotation
PULS
(CN1-9)
SIGN
(CN1-11)
CW+CCW
Positive
Logic
1
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
Pulse + direction positive logic
2
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
Reverse rotation
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
PULS
(CN1-9)
SIGN
(CN1-11)
L Level
PF + PR
Phase
A + B
Negative
Logic
3
Forward rotation
PULS
(CN1-9)
SIGN
(CN1-11)
CW+CCW
Negative
Logic
4
PULS
(CN1-9)
SIGN
(CN1-11)
Pulse + direction negative logic
5
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
L Level
Reverse rotation
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
PULS
(CN1-9)
SIGN
(CN1-11)
H Level
H Level
4-65
4. Parameters
4-66
(2) Electronic Gear Ratio [P4-01] ~ [P4-08]
The electronic gear ratio is the numerator/denominator form of the relation between the position command input pulse and the motor encoder pulse. It is important to set the ratio so that there is no error during position operation. The following describes how to set it:
* Electronic gear ratio = transmission per input pulse x number of pulses per motor rotation / transmission per motor rotation
e.g.) If deceleration ratio is 1/2, ball screw lead is 10 [㎜], and encoder pulse is 3000 in the unit of commands that control each pulse in 1 [㎛].
1. Transmission per input pulse = 1 × 10 — 3 = 0.001 [㎜]
2. Number of pulses per motor rotation = number of encoder pulses × 4 = 3000 × 4 = 12000
3. Transmission per motor rotation = 10 × 1/2 = 5 [㎜]
4. Electronic gear ratio = 12000 × 10 — 3/5 = 12/5
Therefore, the numerator and denominator of electronic gear ratio are 12 and 5 respectively.
NOTE 1) There are 12,000 pulses per rotation for a 3,000-pulse encoder because the servo drive controls pulses by multiplying them by four in quadrature type encoder signals.
In this case, motor speed ([RPM]) is calculated as follows:
Motor speed = 60 × electronic gear ratio × input pulse frequency / number of pulses per motor rotation
The following is how to calculate error pulse [St-05], the difference between command pulse and tracking pulse during operation. Error pulse = command pulse frequency × electronic gear ratio × {1 —
(0.01 × [P1-05])} / [P1-01]
In the case of serial type encoder, It is 523288 pulses per 1 rotation without X4.
(3) Backlash Compensation [P4-13]
Sets backlash compensation by converting the amount of backlashes into the number of pulses if the position changes because of backlashes caused by position operation.
(4) Electronic Gear Ratio Offset Adjustment: For reasons of wear
and tear on the machine during position pulse command operation
If the operation distance per rotation changes, you can adjust the change caused by wear and tear with offset.
Electronic gear ratio setting mode [P4-09]
0: Use electronic gear ratio 0-3.
1: Use electronic gear ratio 0. Override the value on the electronic gear ratio numerator.
Electronic gear ratio numerator offset setting
In the above example, if you enter 12,000 for the numerator and 5,000 for the denominator and turn on the EGEAR1 contact point, the numerator increases by one. If you turn on the EGEAR2 contact, the numerator decreases by one. The change is saved in the [P4-10] parameter.
If the offset is two, the electronic gear ratio for operation changes from 12000/5000 to 12002/5000.
Also, if the offset is -2, the electronic gear ratio for operation changes from 12000/5000 to
11998/5000.
4. Parameters
4.5 Alarms and Warnings
4.5.1 Servo Alarm Status Summary Display List
Alarm
Code
If an alarm triggers, the malfunction signal output contact point (ALARM) turns off and the dynamic brake stops the motor.
Name
IPM Fault
IPM temperature
Overcurrent
Current offset
Overcurrent (/CL)
Continuous overload
Room temperature
Regen. Overload
Motor cable open
Encoder comm.
Details What to inspect
Overcurrent (H/W)
IPM module overheat
Overcurrent (S/W)
Abnormal current offset
Overcurrent (H/W)
Continuous overload
Drive overheat
Regenerative overload
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID / drive ID / encoder setting.
Check for equipment clash or confinement.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Replace the drive if [St-23] and [St-24] are
10% or higher of the rated current.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Check for equipment clash or confinement.
Check load and brake condition.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check the temperature inside the drive
[St-19].
Install a cooling fan and check load.
Check input voltage, regenerative braking resistance, and wiring.
Replace the drive.
Motor cable disconnection Motor wiring
Serial encoder communication error
Check for incorrect wiring of the serial encoder cable.
4-67
4. Parameters
Alarm
Code
Name Details What to inspect
Encoder cable open
Encoder data error
Motor setting error
Encoder Z PHASE Open
Under voltage
Overvoltage
RST power fail
Control power fail
Over speed limit
Position following
EMG
Over pulse CMD
Parameter checksum
Encoder cable disconnection
Encoder data error
Check whether the encoder cable is disconnected.
Check the [P0-02] setting and encoder wiring.
Check the [P0-00] setting. Motor ID setting error
Encoder Z PHASE cable broken
Check the encoder cable
Low voltage
Overvoltage
Main power failure
Check input voltage and power unit wiring.
Check input voltage and wiring. Check for braking resistance damage.
Check for excessive regenerative operation. Check regenerative resistance.
Check power unit wiring and power.
Control power failure Check power unit wiring and power.
Overspeed
Excessive position error
Check the encoder, encoder setting, encoder wiring, gain setting, motor wiring, motor ID, electronic gear ratio, and speed command scale.
Check the excessive position command pulse setting [P4-11], wiring, limit contact point, gain setting, encoder setting, and electronic gear ratio.
Check for equipment confinement and load.
Emergency stop
Pulse command frequency error
Check the emergency stop contact signal, external 24 V power, and contact points.
Check pulse command frequency from the upper level controller.
Check command pulse type.
Parameter error Factory reset [Cn-21].
Parameter range
Invalid factory setting
GPIO setting
Parameter range error
Factory setting error
Output contact point setting error
Factory reset [Cn-21].
Factory reset [Cn-21].
Factory reset [Cn-21].
4-68
4. Parameters
4.5.2 Servo Warning Status Summary Display List
If a warning code is displayed as the current operation status [St-00], the servo drive is operating abnormally. Check what needs to be inspected for the issue.
Warning
State
(CODE)
Name Cause What to inspect
RST_PFAIL
LOW_BATT
OV_TCMD
OV_VCMD
OV_LOAD
SETUP
UD_VTG
EMG
Main power phase loss
Battery low
Excessive torque command
Overspeed command
Overload warning
Capacity setting
Low voltage warning
EMG contact point
If the [P0-06] DIGIT 2 is set to 1, the main power fails.
More than the maximum torque commands have been entered.
More than the maximum speed commands have been entered.
The maximum overload [P0-13] has been reached.
The electric current capacity of the motor is bigger than that of the drive.
When [P0-06] DIGIT 2 is set to 1, the
DC link voltage is 190 V or below.
Check the I/O wiring and [P2-09] setting
— Warning code is indicated in hexadecimal. If the over 2 warning codes occurs, the sum of warning codes will be displayed. For example, if [W-04] Excessive Toque Command and [W-
08] Excessive Speed Command are occurred at the same time, [W-0C] will be displayed.
—
If warning code 80 occurs, “SV-ON” state changes to “SV-OFF” state automatically.
-To avoid warning code 80, wire EMG contact or change EMG input signal logic definition.
(Refer to 4.1 How to Use the Loader)
4-69
4. Parameters
4.6 Motor Type and ID (to be continued on the next page)
Model Name
SAR3A
SAR5A
SA01A
SA015A
SB01A
SB02A
SB04A
HB02A
HB04A
SC04A
SC06A
SC08A
SC10A
SC03D
SC05D
SC06D
SC07D
SE09A
SE15A
SE22A
SE30A
SE06D
SE11D
SE16D
SE22D
SE03M
SE06M
SE09M
SE12M
SE05G
SE09G
13
15
16
21
22
23
ID
1
2
3
5
11
12
24 1000
25 300
26
27
450
550
28 650
61 900
62 1500
63 2200
64 3000
65 600
66 1100
67 1600
68 2200
69 300
70 600
71 900
72 1200
73
74
450
850
400
200
400
400
600
800
Watt
30
50
100
150
100
200
Notes
Hollow type
Hollow type
ID Watt
75 1300
76 1700
77 900
78 1500
81 3000
82 5000
85 2200
190 3500
87 5500
88 7500
89 1200
90 2000
192 3000
92 4400
93 1800
191 2900
95 4400
96 6000
111 2200
193 3500
113 5500
114 7500
115 11000
121 1200
122 2000
195 3000
124 4400
125 6000
131 1800
194 2900
133 4400
134 6000
Model Name
SE13G
SE17G
HE09A
HE15A
SF30A
SF50A
SF22D
LF35D
SF55D
SF75D
SF12M
SF20M
LF30M
SF44M
SF20G
LF30G
SF44G
SF60G
SG22D
LG35D
SG55D
SG75D
SG110D
SG12M
SG20M
LG30M
SG44M
SG60M
SG20G
LG30G
SG44G
SG60G
Notes
Hollow type
Hollow type
4-70
725 300
726 500
727 600
728 700
761 900
762 1500
763 2200
764 3000
765 600
766 1100
767 1600
768 2200
769 300
ID Watt
135 8500
136 11000
137 15000
711 100
712 200
713 400
721 400
722 600
723 800
724 1000
770 600
771 900
772 1200
773 450
774 850
775 1300
776 1700
FE22A
FE30A
FE06D
FE11D
FE16D
FE22D
FE03M
FC03D
FC05D
FC06D
FC07D
FE09A
FE15A
Model Name
SG85G
SG110G
SG150G
FB01A
FB02A
FB04A
FC04A
FC06A
FC08A
FC10A
FE06M
FE09M
FE12M
FE05G
FE09G
FE13G
FE17G
Notes
4. Parameters
FG12M
FG20M
FG30M
FG44M
FG20G
FG30G
FF60G
FF75G
FG22D
FG35D
FG55D
FG75D
Model Name
FF30A
FF50A
FF22D
FF35D
FF55D
FF75D
FF12M
FF20M
FF30M
FF44M
FF20G
FF30G
FF44G
795 4400
796 6000
804 7500
811 2200
812 3500
813 5500
814 7500
821 1200
822 2000
823 3000
824 4400
831 1800
832 2900
ID Watt
781 3000
782 5000
785 2200
786 3500
787 5500
788 7500
789 1200
790 2000
791 3000
792 4000
793 1800
794 2900
Notes
4-71
4. Parameters
611
612
613
621
ID
601
602
603
622
623
Watt
63
126
188
126
251
377
251
461
712
632 838
633 1257
641 1728
642 2513
Model Name
DB03D
DB06D
DB09D
DC06D
DC12D
DC18D
DD12D
DD22D
DD34D
DE40D
DE60D
DFA1G
DFA6G
Notes ID Model Name Watt Notes
4-72
5. Handling and Operation
5 Handling and Operation
5.1 What to Check Before Operation
Thoroughly check the following lists during test drive to prevent injury or product damage in servo motor.
5.1.1 Wiring Check
1. Is the voltage (AC 200 [V]) appropriate for the power input terminals?
2. Are the power cables (U, V, W, and FG) between the drive and the motor connected correctly?
3. Is the voltage of 24 [V] connected to control signals correctly?
4. Is the regenerative resistance appropriate for the capacity and correctly connected?
5. Are the wiring cables free from bends or dents?
6. Are the grounding and shielding free from defects?
5.1.2 Drive Signal (CN1) Wiring Check
Make sure that the wiring and contact for drive signals are as in the following table:
Pin
Number
18
47
48
Pin Name
EMG
SVON
STOP
State of
Contact
ON
OFF
OFF
Pin
Number
19
20
17
Pin Name
CWLIM
CCWLIM
ALMRST
State of
Contact
ON
ON
OFF
The above is factory-initialized status. Different functions may be allocated according to input signal allocations ([P2-00], [P2-01], [P2-02], [P2-03], and [P2-04]).
5.1.3 Surrounding Environment Check
Is there any metal powder or water around wires?
5.1.4 Machine Status Check
1. Is the coupling of the servo motor in good condition?
2. Are the locking bolts tightly screwed?
3. Are there any obstacles in the machine operation area?
5-1
5. Handling and Operation
5.1.5 System Parameter Check
1. Is the motor ID setting [P0-00] in good condition?
2. Are the encoder type [P0-01] and the encoder pulse [P0-02] in good condition?
3. Is control gain set to an appropriate value?
*Note: Refer to «Appendix 2 Test Drive Procedure.»
5-2
5. Handling and Operation
5.2 Handling
5.2.1 Manual JOG Operation [Cn-00]
The drive performs manual JOG operation by itself.
1. Press [SET] in [Cn-00] and [JoG] is displayed.
2. Press [SET] and [SV-on] is displayed and the servo turns on for operation.
If an alarm triggers, check wiring and other possible causes before restarting.
3. Press and hold [UP] and the motor turns forward (CCW) at the JOG operation speed [P3-12].
4. Press and hold [DOWN] and the motor turns counterclockwise at the JOG operation speed [P3-12].
5. Press [SET] again and the manual JOG operation finishes and the servo turns off.
6. Press [MODE] for a while and then you return to the parameter screen [Cn-00].
Related Parameters
[P3-08]
[P3-09]
[P3-10]
*[P3-11]
[P3-12]
Speed
Speed command acceleration time [ms]
Speed command deceleration time [ms]
Speed command S-curve time [ms]
Speed operation pattern
JOG operation speed [RPM]
The parameter marked with “*” cannot be modified when the servo is on.
Initial
0
0
10
0
500
5-3
5-4
5. Handling and Operation
[Example of handling manual JOG operation]
Order Loader Displays
1
2
3
4
5
6
7
8
Keys to Use What to Do
Displays the speed control mode with main power and control power permitted.
Press [MODE] to move to [Cn-
00].
Press [SET] to enter manual
JOG operation.
Press [SET] to turn on the servo.
Press and hold [UP] when the servo is on and the motor turns forward (CCW). Lift your hand off the key and the motor stops.
Press and hold [DOWN] when the servo is on and the motor turns reverse (CW). Lift your hand off the key and the motor stops.
Press [SET] and the servo changes to OFF.
Press [MODE] for a second and you return to the parameter screen [Cn-00].
※
“ ” indicates flickering.
5. Handling and Operation
5.2.2 Program JOG Operation [Cn-01]
Continuously operates according to the program already set.
1. Press [SET] in [Cn-01] and [P-JoG] is displayed.
2. Press [SET] and [run] is displayed. The program JOG operation starts after the servo is turned on.
(If an alarm triggers at this moment, check the wiring of the servo and other possible causes before restarting.)
3. Press [SET] again and the program JOG operation finishes and the servo is turned off.
4. Press [MODE] for a while and then you return to the parameter screen [Cn-00].
5. Four operation steps repeat continuously from 0 to 3. Operation speed and time can be set in the following parameter:
Related Parameters
[P3-08]
[P3-09]
[P3-10]
[P3-11]
Speed
Speed command acceleration time [ms]
Speed command deceleration time [ms]
Speed command S-curve time [ms]
Speed operation pattern
Initial
100
100
10
0
Step
0
1
2
3
Program Operation Speed
[P3-13]
[P3-14]
[P3-15]
[P3-16]
Program Operation Time
[P3-17]
[P3-18]
[P3-19]
[P3-20]
[Example of handling program JOG operation]
Order Loader Displays
1
2
3
4
5
6
7
Keys to Use What to Do
Displays the speed control mode with main power and control power permitted.
Press [MODE] to move to [Cn-
00].
Press [UP] or [DOWN] to move to
[Cn-01].
Press [SET] to enter program
Jog operation.
Press [SET] and the motor starts operating according to the predefined program.
Press [SET] again and the operation ends. [done] is displayed.
Press [MODE] for approximately one second to return to [Cn-01].
※
“ ” indicates flickering.
5-5
5. Handling and Operation
5.2.3 Alarm Reset [Cn-02]
Reset the alarm that went off.
1. Contact alarm reset: If you turn on ALMRST among input contacts, the alarm is reset and becomes normal.
2. Operation alarm reset: If you press [SET] in the alarm reset [Cn-02] parameter among operation handling parameters, [ALrst] is displayed. If you press [SET] again, the alarm is reset and becomes normal.
※ If the alarm keeps ringing after the reset, check and remove possible causes and then repeat the process.
[Example of alarm reset]
Order
1
Loader Displays Keys to Use What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
6
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-02].
Press [SET] to enter alarm reset mode.
Press [SET] to reset the alarm.
[done] is displayed.
Press [MODE] for a second to return to [Cn-02].
※ “ ” indicates flickering.
5-6
5. Handling and Operation
5.2.4 Reading Alarm History [Cn-03]
Check the saved alarm history.
[Example of getting alarm history]
Order Loader Displays Keys to Use
1
What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
6
7
8
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-03].
Press [SET] to start reading alarm history.
Press [SET] and the most recent alarm code is displayed.
Example: Recent first history [AL-
42]: Main power failure occurred.
01: Latest alarm
20: 20th previous alarm
Press [UP] or [DOWN] to read alarm history.
Example: The second previous history [AL-10]: Over current (HW) occurred.
01: Latest alarm
20: 20th previous alarm
Press [SET] to finish reading alarm history.
[done] is displayed.
Press [MODE] for a second to return to [Cn-03].
※ “ ” indicates flickering.
5-7
5. Handling and Operation
5.2.5 Alarm History Reset [Cn-04]
Delete all currently stored alarm history.
[Example of alarm history reset]
Order Loader Displays Keys to Use
1
What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
6
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-04].
Press [SET] to enter alarm history reset.
Press [SET] to delete alarm history.
[done] is displayed.
Press [MODE] for a second to return to [Cn-04].
※
“ ” indicates flickering.
5-8
5. Handling and Operation
5.2.6 Auto Gain Tuning [Cn-05]
Perform automatic tuning operation.
1. Press [SET] from the [Cn-05] parameter and [Auto] is displayed.
2. Press [SET] and [run] is displayed and automatic gain tuning starts.
If an alarm triggers at this moment, check the wiring of the servo and other possible causes before restarting.
3. When gain adjustment is completed, inertia ratio [%] is displayed, and [P1-00], [P1-06] and [P1-08] is automatically changed and saved.
Related Parameters
[P1-20]
[P1-21]
Name
Auto gain tuning speed [100 RPM]
Auto gain tuning distance
Initial
8
3
[Example of handling auto gain tuning]
Order Loader Displays Keys to Use
1
What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
6
7
—
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-05].
Press [SET] to enter automatic gain tuning.
Press [SET] to start three cycles of forward rotation and reverse rotation.
Upon completion of automatic tuning, the tuning result will be displayed on the loader.
Press [SET] for retuning.
Press [MODE] for a second to return to [Cn-05].
※
“ ” indicates flickering.
5-9
5. Handling and Operation
5.2.7 Phase Z Search Operation [Cn-06]
Perform phase Z search operation.
1. Press [SET] in [Cn-06] and [Z-rtn] is displayed.
2. Press [SET] and [run] is displayed and the servo turns on.
3. While you hold down UP, the motor keeps turning forward (CCW) until it finds the phase Z position of the encoder.
4. While you hold down DOWN, the motor keeps turning counterclockwise until it finds the phase Z position of the encoder.
5. Press [SET] and [done] is played and the phase Z search ends.
※ This function is useful for finding the Z position and assembling it by a specific standard.
Related Parameters
[P3-07]
Name
Phase Z search operation speed setting [RPM]
Initial
10
[Example of handling phase Z search operation]
Ord er
Loader Displays Keys to Use
1
What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
6
7
8
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-06].
Press [SET] to enter phase Z search operation.
Press [SET] to turn on the servo.
Press [UP] and the motor turns forward (CCW) until it finds phase Z.
Press [DOWN] and the motor turns reverse (CW) until it finds phase Z.
Press [SET] to end the phase Z search operation mode.
The servo turns off and [done] is displayed.
Press [MODE] for a second to return to the parameter screen [Cn-06].
※ “ ” indicates flickering.
5-10
5. Handling and Operation
5.2.8 Input Contact Forced ON/OFF [Cn-07]
The drive forcibly turns on/off the input contact without an upper level controller or I/O jig.
(1) Input Contact Forced ON/OFF Setting
The positions of the seven segment LEDs and CN1 contacts correspond as follows.
If an LED that corresponds to a contact is turned on/off, it indicates ON/OFF accordingly.
[Input Contact Setting]
(A) (9) Number
CN1 pin number
Allocated default signal name
48
STOP
18
EMG
(8)
19
CWLIM
(7)
20
CCWLIM
(6)
46
DIR
(5)
17
ALMRST
(4)
21
SPD3
(3)
22
SPD2
(2)
23
SPD1
(1)
47
SVON
Press [UP] on each digit and the (A), (8), (6), (4), and (2) signals turn on or off forcibly.
Press [DOWN] on each digit and the (9), (7), (5), (3), and (1) signals turn on or off forcibly.
Press [MODE] to move to another digit.
5-11
5. Handling and Operation
5-12
(2) Example of Input Contact Forced ON/OFF
(SVON ON → EMG ON → EMG OFF → SVON OFF)
[Example of handling input contact forced ON/OFF]
Order Loader Displays Keys to Use
1
2
3
4
5
6
7
8
9
10
11
12
What to Do
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-07].
Press [SET] to enter input forced
ON/OFF mode.
Press [SET] to enter forced input bit setting.
Press [DOWN] to turn on the servo forcibly.
Press [MODE] at the blinking cursor to move to the desired digit, DIGIT
5.
Press [DOWN] to turn on EMG forcibly.
Press [DOWN] to turn off EMG forcibly.
Press [MODE] at the cursor to move to the desired digit, DIGIT 1.
Press [DOWN] to turn off the servo forcibly.
Press [SET] to end input forced
ON/OFF mode.
[done] is displayed.
Press [MODE] for a second to return to [Cn-07].
※
“ ” indicates flickering.
5. Handling and Operation
5.2.9 Output Contact Forced ON/OFF [Cn-08]
Without an upper level controller or I/O jig, the drive forcibly turns on/off the output contact.
(1) Output Contact Forced ON/OFF Setting
The positions of the seven segment LEDs and CN1 contact correspond as follows.
If an LED that corresponds to a contact is turned on/off, it indicates ON/OFF accordingly.
[Output Contact Setting]
Number
CN1 — pin number
Allocated default signal name
(5)
45
(4)
44
(3)
43
(2) (1)
40 /41 38 / 39
INPOS BRAKE ZSPD READY ALARM
Press [UP] on each digit and the (4) and (2) signals are turned on or off for forced output.
Press [Down] on each digit and the (5), (3) and (1) signals are turned on or off for forced output.
Press [MODE] to move to another digit.
5-13
5. Handling and Operation
(2) Example of Output Contact Forced ON/OFF
(BRAKE OFF)
[Example of handling output contact forced ON/OFF]
Order Loader Displays Keys to Use What to Do
1
2
3
4
5
6
7
8
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-08].
Press [SET] to enter input forced
ON/OFF setting.
Press [SET] to enter forced output bit setting.
Press [MODE] at the blinking cursor to move to the desired digit, DIGIT 2, and it rotates.
Press [UP] to turn off the brake signal.
Press [SET] to end input forced
ON/OFF mode.
[done] is displayed.
Press [MODE] for a second to return to [Cn-08].
※
“ ” indicates flickering.
5-14
5. Handling and Operation
5.2.10 Parameter Reset [Cn-09]
Reset parameter data.
[Example of initializing parameters]
Order Loader Displays Keys to Use
1
What to Do
Displays the speed control mode with main power and control power permitted.
2
3
4
5
Press [MODE] to move to [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-09].
Press [SET] to enter parameter reset.
Press [SET] to reset data.
[done] is displayed.
Press [MODE] for a second to return to [Cn-09].
※
“ ” indicates flickering.
5-15
5. Handling and Operation
5.2.11 Automatic Speed Command Offset Correction
[Cn-10]
This calibrates the offset of analog speed commands automatically.
The range of adjustable speed command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.
You can check the corrected offset value in the analog speed offset [P2-18].
[Example of handling automatic speed command offset calibration]
Order Loader Displays Keys to Use What to Do
1
2
3
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-10].
Press [SET] to enter offset correction.
4 or
Press [SET] to compensate offset.
[done] is displayed.
If the value exceeds the allowed range, [oVrnG] is displayed.
5
Press [MODE] for a second to return to [Cn-10].
※ “ ” indicates flickering.
5-16
5. Handling and Operation
5.2.12 Automatic Torque Command Offset Correction
[Cn-11]
This calibrates the offset of analog torque commands automatically.
The range of adjustable torque command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.
You can check the corrected offset value in the analog torque offset [P2-21].
[Example of handling automatic torque command offset correction]
Order Loader Displays Keys to Use What to Do
1
2
3
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-11].
Press [SET] to enter offset correction.
4 or
Press [SET] to compensate offset.
[Done] is displayed.
If the value exceeds the allowed range, [oVrnG] is displayed.
5
Press [MODE] for a second to return to [Cn-11].
※ “ ” indicates flickering.
5-17
5. Handling and Operation
5-18
5.2.13 Manual Speed Command Offset Correction
[Cn-12]
This calibrates the offset value of analog speed commands manually. Example: -10
The range of adjustable speed command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.
You can check the corrected offset value in the analog speed offset [P2-18].
[Example of handling manual speed command offset correction]
Order Loader Displays Keys to Use What to Do
1
2
3
4
5
6
7 or
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-12].
Press [SET] to enter offset correction.
Press [SET] to enter offset correction setting.
The current offset value displayed.
Press [UP] or [DOWN] to adjust the value.
Press [SET] to save the adjusted offset value.
[Done] is displayed.
If you press [MODE] and it will not be saved.
Press [MODE] for a second to return to [Cn-12].
※ “ ” indicates flickering.
5. Handling and Operation
5.2.14 Manual Torque Command Offset Correction
[Cn-13]
This calibrates the offset value of analog torque commands manually.
The range of adjustable torque command analog voltage is from +1 V to -1 V. If offset voltage exceeds this range, [oVrnG] is displayed and calibration is not allowed.
You can check the corrected offset value in the analog torque command offset [P2-21].
[Example of handling manual torque command offset correction]
Order Loader Displays Keys to Use What to Do
1
2
3
4
5
6
7 or
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-13].
Press [SET] to enter offset correction.
Press [SET] to enter offset correction setting.
The current offset value displayed.
Press [UP] or [DOWN] to adjust the value.
Press [SET] to save the adjusted offset value.
[Done] is displayed.
If you press [MODE] and it will not be saved.
Press [MODE] for a second to return to the parameter screen [Cn-13].
※ “ ” indicates flickering.
5-19
5. Handling and Operation
5.2.15 Absolute Encoder Reset [Cn-14]
Initialize values of [St-16], [St-17],[St-
18] to “0” when It is connected with Multi turn Motor.
[Example of how to use Absolute Encoder Reset]
Orde r
Loader Displays Keys to Use What to Do
1
2
3
4 or
Press [MODE] key to display [Cn-00].
Move to [Cn-14] by Pressing [UP] or
[DOWN] key.
When pressing [SET] key, the value of absolute encoder data will be initialized to “0”. Then, it will be displayed [donE].
When pressing [MODE] key, it will be returned to [Cn-14] without initialization.
Press [MODE] for a second to return to the parameter screen [Cn-14].
※
“ ” indicates flickering.
5-20
5. Handling and Operation
5.2.16 Instantaneous Maximum Load Factor
Initialization [Cn-15]
Reset the instantaneous maximum load factor to 0.
[Example of initializing the instantaneous maximum load factor]
Order Loader Displays Keys to Use What to Do
1
2
3
4
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-15].
Press [SET] to enter instantaneous maximum load factor initialization.
Press [SET] and the current maximum load factor is displayed.
5 or
Press [UP] and the forward direction maximum load factor is displayed.
Press [DOWN] and the reverse direction maximum load factor is displayed.
6
7 or
Press [SET] and the instantaneous maximum load factor is reset.
[Done] is displayed.
If you press [MODE] and will not reset.
Press [MODE] for a second to return to [Cn-15].
※ “ ” indicates flickering.
5-21
5. Handling and Operation
5.2.17 Parameter Lock [Cn-16]
Lock or Unlock whole parameter.
[Example of locking or unlocking parameter]
Order Loader Displays Keys to Use
1
2
3
4 or
What to Do
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-16].
Press [SET] to enter parameter lock setting.
Press [UP] to unlock whole parameter.
Press [DOWN] to lock whole parameter.
5
Hold down [MODE] for a second to return to [Cn-16].
※
“ ” indicates flickering.
5-22
5. Handling and Operation
5.2.18 Current Offset[Cn-17]
Store existing current offset value into [P0-27] ~ [P0-28] parameter.
[Example of setting current offset value]
Order Loader Displays Keys to Use
1
2
3
6
7
What to Do
Press [MODE] to display [Cn-00].
Press [UP] or [DOWN] to move to
[Cn-17].
Press [SET] to enter current offset value setting.
Press [SET] to store U phase current offset value into [P0-27] and V phase current offset value into [P0-28].
Hold down [MODE] for a second to return to [Cn-17].
※
“ ” indicates flickering.
5-23
6. Communication Protocol
6 Communication Protocol
6.1 Overview and Communication
Specifications
6.1.1 Overview
The L7 servo drive uses RS-422 serial communication. By connecting it to a PC or an upper level controller, you can test drive it or change gain tuning and parameters.
You can also operate or handle communication of up to 32 axes by connecting multiple L7 servo drives via a multi-drop method.
(1) Serial Communication Access through RS422
PC
Servo
Drive
Serial Port
RS-232C/422
Communication
Converter
CN4
CN3
(2) Multi-Drop Access through RS422 (up to 32 machines)
PC
Servo
Drive
Servo
Drive
Servo
Drive
CN4
CN3
CN4
CN3
CN4
CN3
Serial Port
RS-232C/422
Communication
Converter
NOTE 1) When using a PC as the upper level controller, you have to use the RS232/RS485 communication converter.
The CN3 and the CN4 connector pins of the servo drive are connected on a one-to-one basis internally, making multi-drop wiring easy.
6-1
6. Communication Protocol
6.1.2 Communication Specifications and Cable
Access Rate
(1) Communication Specifications
Item Specifications
Communication standard ANSI/TIA/EIA-422 standard
Communication protocol
Data bit
Data
Type
Stop bit
Parity
Synchronous method
Transmission speed
Transmission distance
Current consumption
MODBUS-RTU
8 bit
1 bit
None
Asynchronous
9600 /19200/38400/57600 [bps]
[P0-04] can be selected.
Up to 200 [m]
100 [㎃] or below
(2) Connection of CN3 and CN4 Connector Pins
1
8
1
8
CN 3
Pin Number
1
2
3
4
5
6
7
8
CN 4
Pin Function
Not for use.
Terminating resistance connection note 1)
RXD+
TXD-
TXD+
RXD-
Not for use.
GND
NOTE 1) In case of multi access connection, apply terminating resistance by connecting Pin 2 of the last drive to Pin 6 (RXD-).
NOTE 2) Connect TXD+ and TXD-, and RXD+ and RXD- in twisted pairs.
NOTE 3) The TXD and RXD in the above table are based on the servo drive.
6-2
6. Communication Protocol
6.2 Communication Protocol Base Structure
The communication of the L7 servo drive complies with the international standard MODBUS-
RTU protocol. For information about items not covered in this manual, refer to the following standard. (Related standard: Mudbugs application protocol specification 1.1b, 2006.12.28)
Also, the concept of sending and receiving in this manual is based on the host.
6.2.1 Sending/Receiving Packet Structure
The maximum sending/receiving packet length of the MODBUS-RTU protocol is 256 bytes.
Make sure that the total length of the sending/receiving packet does not exceed 256 bytes.
The MODBUS-RTU communication mode requires space of at least 3.5 char between the end of the previous packet and the beginning of the next packet as show in the following image to distinguish packets.
Packet1 Packet2 Packet3 to at least 3.5 char at least 3.5 char 4.5 char
(1) Sending Packet Structure
Bytes
Details
Additional
Address
0
Node ID
Functio n Code
1
Function
2
Data
(2) Receiving Packet Structure
[Normal Response]
Additional
Address
Function
Code
Bytes
Details
0
Node ID
1
Function
2
Data
Data
.
.
Data
.
.
[Abnormal Response]
Additiona l Address
Functio n Code
0 Bytes
Descripti on
Node ID
1
Function+
0x80
Data
2
Exception code
.
.
.
.
Error Check n-1 n
CRC (MSB) CRC (LSB)
Error Check n-1 n
CRC (MSB) CRC (LSB)
Error Check
3 4
CRC (MSB) CRC (LSB)
6-3
6. Communication Protocol
(3) Protocol Packet Code
Node ID
Indicates the exchange number of the servo drive to send.
Set the exchange number of the servo drive to [P0-05].
Function Code
The following are the Modbus-RTU standard function codes supported by the L7 servo drive.
D a t a
Category i d n g] e n
[
S
Public function code
User defined function code
Comman d Code
0x03
0x03
0x06
0x10
0x6A
Details
Read single register
Read multi register
Write single register
Write multi register
Read each block register
Read
○
○
Purpose
Write
○
○
○
For read register commands, the Modbus address, the number of registers, and the number of bytes will be set. For write register commands, the Modbus address, the number of bytes, and other necessary values will be set.
[Receiving]
In the case of read register commands, normal responses are received with the same node ID and function code as they are sent. In terms of data, registers are received according to the order of sent registers.
In the case of write single register commands, the same data as those sent are received. In the case of write multi registers, the start address of the register, whose data were to be used with the write multi register command, and the number of registers are received.
(4) CRC
Abnormal responses consist of node ID, error code, and exception code. The packet structure is the same for all abnormal responses regardless of their function codes.
Enter the 16-bit CRC check sum. Send 1 byte of MSB and LSB each.
(5) Exception Code
The followings are the exception codes for all abnormal responses of all function codes supported in the L7 servo drive.
Exception Code
0x01
0x02
0x03
0x04
0x05
0x06
Description
Unsupported function codes
Invalid register address
Non-matching node IDs or CRC check errors
Command handling failure
Waiting(state of preparing data)
Locking(state of locking parameter)
6-4
6. Communication Protocol
6.2.2 Protocol Command Codes
(1) Read Single Register (0x03)
Read the single register (16-bit data) value.
Sending Packet
Byte
0
Node ID
Content
1 Function
2 Starting Address Hi
3 Starting Address Lo
4 Quantity of Register Hi
5 Quantity of Register Lo
6 CRC Hi
7 CRC Lo
Example)
Value
0x00
0x03
0x00
0x6B
0x00
0x01
Byte
0
1
2
3
4
5
6
Byte
0
1
2
3
4
Normal Receiving Packet
Content
Node ID
Value
0x00
Function
Byte Count
0x03
0x02
Register Value Hi
Register Value Lo
CRC Hi
CRC Lo
0x02
0x2B
Error Receiving Packet
Content Value
Node ID
Error Code
0x00
0x03 + 0x80
Exception Code
CRC Hi
CRC Lo
0x01 ~ 0x04
Slave Address(Node-ID)
Function Code
Staring Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
CRC Hi
CRC Lo
Node-ID
03
00
6B
00
01
CRC Hi
CRC Lo
Request
Response
Slave Address(Node-ID)
Function Code
Byte Count
Register Value Hi (108)
Register Value Lo (108)
CRC Hi
CRC Lo
Node-ID
03
06
02
2B
CRC Hi
CRC Lo
6-5
6. Communication Protocol
Sending Packet
Content Byte
4
5
6
7
0
1
2
3
Node ID
Function
Starting Address Hi
Starting Address Lo
Quantity of Register Hi
Quantity of Register Lo
CRC Hi
CRC Lo
Example)
(2) Read Multi Register (0x03)
Read the continuous register block (16-bit data) value.
Value
0x00
0x03
0x00
0x6B
0x00
0x03
Byte
8
9
10
Byte
2
3
0
1
4
4
5
6
7
0
1
2
3
Normal Receiving Packet
Content Value
Node ID
Function
Byte Count
Register Value Hi
Register Value Lo
Register Value Hi
Register Value Lo
Register Value Hi
0x00
0x03
0x06
0x02
0x2B
0x00
0x00
0x00
Register Value Lo
CRC Hi
CRC Lo
Error Receiving Packet
0x64
.
Content
Node ID
Error Code
Value
0x00
0x03 + 0x80
Exception Code
CRC Hi
CRC Lo
0x01 ~ 0x04
Slave Address(Node-ID)
Function Code
Staring Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
CRC Hi
CRC Lo
Node-ID
03
00
6B
00
01
CRC Hi
CRC Lo
Request
Response
Slave Address(Node-ID)
Function Code
Byte Count
Register Value Hi (108)
Register Value Lo (108)
CRC Hi
CRC Lo
Node-ID
03
06
02
2B
CRC Hi
CRC Lo
6-6
6. Communication Protocol
(3) Write Single Register (0x06)
Write values on the single register (16-bit data).
5
6
7
Sending Packet
Content Byte
2
3
0
1
4
Node ID
Function
Register Address Hi
Register Address Lo
Register Value Hi
Register Value Lo
CRC Hi
CRC Lo
0x03
Value
0x00
0x06
0x00
0x01
0x00
Byte
Normal Receiving Packet
Content
Node ID
Value
0x00
0
1 Function
Register Address Hi
0x06
0x00 2
3
4
Register Address Lo
Register Value Hi
0x01
0x00
5
6
7
Register Value Lo
CRC Hi
CRC Lo
0x03
Byte
0
Error Receiving Packet
Content
Node ID
Value
0x00
1
2
3
4
Error Code
Exception Code
CRC Hi
CRC Lo
0x06 + 0x80
0x01 ~ 0x06
Example)
Slave Address (Node-ID)
Function Code
Register Address Hi
Register Address Lo
Register Value Hi (1)
Register Value Lo (1)
CRC Hi
CRC Lo
Node-ID
06
00
01
00
03
CRC Hi
CRC Lo
Request
Response
Slave Address (Node-ID)
Function Code
Register Address Hi
Register Address Lo
Register Value Hi (1)
Register Value Lo (1)
CRC Hi
CRC Lo
Node-ID
06
00
01
00
00
CRC Hi
CRC Lo
6-7
6. Communication Protocol
(4) Write Multi Register (0x10)
Writes values on the continuous register block (16-bit data).
4
5
6
7
Byte
0 Node ID
Sending Packet
Content
1
2
3
Function
Starting Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
Byte Count
Register Value Hi
8
9
Register Value Lo
Register Value Hi
10 Register Value Lo
11 CRC Hi
12 CRC Lo
Example)
0x0A
0x01
0x02
Value
0x00
0x10
0x00
0x01
0x00
0x02
0x04
0x00
Byte
0
1
2
3
Byte
0
1
6
7
4
5
2
3
4
Normal Receiving Packet
Content
Node ID
Value
0x00
Function
Starting Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
0x10
0x00
0x01
0x00
0x02
CRC Hi
CRC Lo
Error Receiving Packet
Content
Node ID
Error Code
Value
0x00
0x10 + 0x80
Exception Code
CRC Hi
CRC Lo
0x01 ~ 0x04
Slave Address (Node-ID)
Function Code
Starting Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
Byte Count
Registers Values Hi
Registers Values Lo
Registers Values Hi
Registers Values Lo
CRC Hi
CRC Lo
Node-ID
10
00
01
00
02
04
00
0A
01
02
CRC Hi
CRC Lo
Request
Response
Slave Address (Node-ID)
Function Code
Starting Address Hi
Starting Address Lo
Quantity of Registers Hi
Quantity of Registers Lo
CRC Hi
CRC Lo
Node-ID
10
00
01
00
02
CRC Hi
CRC Lo
6-8
6. Communication Protocol
(5) Read Each Block Register (0x6A)
Read values on the discontinuous register block (16-bit data).
4
5
6
7
Byte
0
1
2
3
Node ID
Function
Sending Packet
Content
Byte Count
Address Hi
Address Lo
Address Hi
Address Lo
Address Hi
8
9
Address Lo
CRC Hi
10 CRC Lo
0x01
0x00
0x04
0x00
0x08
Value
0x00
0x6A
0x06
0x00
Byte
0
1
2
3
4
5
6
7
Normal Receiving Packet
Node ID
Function
Content
Byte Count
Register Value Hi
Register Value Lo
Register Value Hi
Register Value Lo
Register Value Hi
8
9
Register Value Lo
CRC Hi
10 CRC Lo
Value
0x00
0x6A
0x06
0x02
0x2B
0x00
0x00
0x00
0x64
.
Byte
0
1
2
3
4
Error Receiving Packet
Content
Node ID
Value
0x00
Error Code
Exception Code
CRC Hi
CRC Lo
0x6A + 0x80
0x01 ~ 0x04
Example)
Slave Address (Node-ID)
Function Code
Byte Count
Address Hi (First)
Address Lo
Address Hi (Second)
Address Lo
Address Hi (Third)
Address Lo
CRC Hi
CRC Lo
Node-ID
6A
06
01
00
02
04
00
0A
CRC Hi
CRC Lo
Request
Response
Slave Address (Node-ID)
Function Code
Byte Count
Address’s Value Hi (First)
Address’s Value Lo
Address’s Value Hi (Second)
Address’s Value Lo
Address’s Value Hi (Third)
Address’s Value Lo
CRC Hi
CRC Lo
Node-ID
6A
06
02
2B
00
00
00
05
CRC Hi
CRC Lo
6-9
6. Communication Protocol
6.3 L7 Servo Drive Communication Address
Table
6.3.1 Operation Status Parameter Communication
Address Table
16
18
20
22
24
26
28
30
32
34
2
4
6
8
10
12
14
Communicatio n Address
(Decimal
Number)
0
Parameter Name
Parameter
Number
Operation Status Display Parameter
Current operation status
Current operation speed
Current command speed
Tracking position pulse — L
Tracking position pulse — H
Position command pulse — L
Position command pulse — H
Remaining position pulse —
L
Remaining position pulse —
H
Input pulse frequency
– L
Input pulse frequency — H
Current operation torque
Current command torque
Accumulated overload rate
Instantaneous maximum load factor
Torque limit value
DC Link Voltage
Regenerative overload
St — 00
St — 01
St — 02
St — 03
St — 04
St — 05
St — 06
St — 07
St — 08
St — 09
St — 10
St — 11
St — 12
St — 13
INT32
INT16
INT16
INT16
INT16
INT16
UINT16
UINT16
Material Type
INT16
BIT0: Alarm
BIT1: Servo on
BIT2: Warning
BIT3: CCW limit
BIT4: CW limit
BIT5: Zero speed
BIT6: In speed
BIT7: In position
BIT8: Power ready
BIT9: Analog command active
BIT10 — BIT13: Control mode
(0: Trq, 1: Spd, 2: Pos, 3: Spd/Pos,
4: Trq/Spd, 5: Trq/Pos)
INT16
INT16
INT32
INT32
INT32
6-10
6. Communication Protocol
Communicatio n Address
(Decimal
Number)
36
38
40
42
44
46
48
50
52
54
56
58
60
Parameter Name
Parameter
Number
Operation Status Display Parameter
Input contact status
Output contact status
Single-turn data — L
Single-turn data — H
Single-turn data (degree)
Multi-turn data — L
Multi-turn data — H
Temperature in the servo drive
Rated motor speed
Maximum motor speed
Rated motor current
Phase U current offset
Phase V current offset
St — 14
St — 15
St — 16
St — 17
St — 18
St — 19
St — 20
St — 21
St — 22
St — 23
St — 24
62
64
66
68
Software version
FPGA version
Analog torque command
Reserved
St — 25
St — 26
St-27
UINT16
UINT16
INT32
UINT16
INT32
Material Type
INT16
UINT16
UINT16
UINT16
INT16
INT16
UINT16
BIT0-BIT4: Drive capacity
(1: 100W, 2: 200W, 3: 400W, 4: 750W, 5:
1kW, 6: 3.5kW)
BIT5-BIT14: Version number
BIT 15: Encoder type
(0: Quadrature, 1: Serial)
UINT16
INT16
6-11
6. Communication Protocol
6.3.2 System Parameter Communication Address
Table
The following table lists Modbus communication addresses for the system parameter group
[P0-xx].
Communicatio n Address
(Decimal
Number)
70
72
74
76
78
80
82
84
86
88
90
92
94
96
114
116
118
120
122
124
126
128
98
100
102
104
106
108
110
112
Parameter Name
Parameter
Number
System Parameter Parameter
Motor ID
Encoder Type
Encoder pulse
Select operation mode
RS-422 communication speed
System ID
Main power input mode
RST checking time
Start-up display parameter
Regenerative overload derating
Regenerative resistance value
Regenerative resistance capacity
Overload detection base load factor
Continuous overload warning level
Encoder output pre-scale — L
Encoder output pre-scale — H
PWM OFF delay time
Dynamic brake control mode
Function setting bit
DAC output mode
DAC output offset 1
DAC output offset 2
Reserved
Reserved
DAC output scale 1
DAC output scale 2
Reserved
Reserved
U Phase Current Offset
V Phase Current Offset
P0 — 11
P0 — 12
P0 — 13
P0 — 00
P0 — 01
P0 — 02
P0 — 03
P0 — 04
P0 — 05
P0 — 06
P0 — 07
P0 — 08
P0 — 09
P0 — 10
P0 — 14
P0 — 15
P0
– 16
P0 — 17
P0
– 18
P0 — 19
P0 — 20
P0
– 21
P0
– 22
P0
– 23
P0
– 24
P0
– 25
P0 — 26
P0 — 27
P0 — 28
Material Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
INT16
INT16
INT32
UINT16
UINT16
UINT16
UINT16
INT16
INT16
6-12
Communicatio n Address
(Decimal
Number)
130
132
134
136
138
Parameter Name
Parameter
Number
System Parameter Parameter
W Phase Current Offset
Reserved
Reserved
Reserved
Reserved
P0 — 29
6. Communication Protocol
Material Type
INT16
6-13
6. Communication Protocol
6.3.3 Control Parameter Communication Address
Table
The following table lists Modbus communication addresses for the control parameter group
[P1-xx].
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
Communicatio n Address
(Decimal
Number)
140
142
144
146
148
150
152
154
156
158
160
162
164
Parameter Name
Control Parameter Parameter
Inertia ratio
Position proportional gain 1
Position proportional gain 2
Position command filter time constant
Position feedforward gain
Position feedforward filter time constant
Speed proportional gain 1
Speed proportional gain 2
Speed integral time constant 1
Speed integral time constant 2
Speed command filter time constant
Speed feedback filter time constant
Torque command filter time constant
Forward rotation torque limit
Reverse rotation torque limit
Gain transfer mode
Gain transfer time
Resonance avoidance operation
Resonance avoidance frequency
Resonance avoidance range
Auto gain tuning speed
Auto gain tuning distance
Torque control speed limiting mode
Speed limit
Control P transfer torque
Control P transfer speed
Control P transfer acceleration
Control P transfer position error
Parameter
Number
P1 — 00
P1 — 01
P1 — 02
P1 — 03
P1 — 04
P1 — 05
P1 — 06
P1 — 07
P1 — 08
P1 — 09
P1 — 10
P1 — 11
P1 — 12
P1 — 13
P1 — 14
P1 — 15
P1 — 16
P1 — 17
P1 — 18
P1 — 19
P1 — 20
P1 — 21
P1 — 22
P1 — 23
P1 — 24
P1 — 25
P1 — 26
P1 — 27
Material Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
6-14
Communicatio n Address
(Decimal
Number)
196
212
214
216
218
198
200
202
204
206
208
210
Parameter Name
Parameter
Number
Control Parameter Parameter
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
6. Communication Protocol
Material Type
6-15
6. Communication Protocol
6.3.4 Input/Output Parameter Communication
Address Table
The following table lists Modbus communication addresses for the input/output parameter
(analog and digital) parameter group [P2-xx].
Communicatio n Address
(Decimal
Number)
220
222
268
270
272
274
276
278
254
256
258
260
262
264
266
240
242
244
246
248
250
252
224
226
228
230
232
234
236
238
Parameter Name
Parameter
Number
Input/Output Parameter Parameter
Input signal definition 1
Input signal definition 2
Input signal definition 3
Input signal definition 4
Input signal definition 5
Output signal definition 1
Output signal definition 2
Output signal definition 3
Input signal logic definition 1
Input signal logic definition 2
Output signal logic definition
Range of output for position reached
Zero speed output range
Range of output for speed reached
Brake output operation speed
Brake output delay time
Position pulse clear mode
Analog speed command scale
Analog speed command offset
Zero speed clamp speed
Analog torque command scale
Analog torque command offset
Zero speed clamp voltage
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
P2 — 17
P2 — 18
P2 — 19
P2 — 20
P2 — 21
P2 — 22
P2 — 10
P2 — 11
P2 — 12
P2 — 13
P2 — 14
P2 — 15
P2 — 16
P2 — 00
P2 — 01
P2 — 02
P2 — 03
P2 — 04
P2 — 05
P2 — 06
P2 — 07
P2 — 08
P2 — 09
Material Type
UINT16
INT16
UINT16
UINT16
INT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
6-16
6. Communication Protocol
6.3.5 Speed Operation Parameter Communication
Address Table
The following table lists Modbus communication addresses for the speed operation parameter group [P3-xx].
Communicatio n Address
(Decimal
Number)
280
282
300
302
304
306
308
310
312
284
286
288
290
292
294
296
298
314
316
318
320
322
324
326
328
Parameter Name
Parameter
Number
Input/Output Parameter Parameter
Digital speed command 1
Digital speed command 2
Digital speed command 3
Digital speed command 4
Digital speed command 5
Digital speed command 6
Digital speed command 7
Z search operation speed setting
Speed command acceleration time
Speed command deceleration time
Speed command S-Curve time
Speed operation pattern
Manual JOG operation speed
Program JOG operation speed 1
Program JOG operation speed 2
Program JOG operation speed 3
Program JOG operation speed 4
Program JOG operation time 1
Program JOG operation time 2
Program JOG operation time 3
Program JOG operation time 4
Reserved
Reserved
Reserved
Reserved
P3 — 17
P3 — 18
P3 — 19
P3 — 20
P3 — 10
P3 — 11
P3 — 12
P3 — 13
P3 — 14
P3 — 15
P3 — 16
P3 — 00
P3 — 01
P3 — 02
P3 — 03
P3 — 04
P3 — 05
P3 — 06
P3 — 07
P3 — 08
P3 — 09
Material Type
UINT16
UINT16
UINT16
UINT16
INT16
INT16
INT16
INT16
INT16
INT16
INT16
UINT16
UINT16
UINT16
UINT16
UINT16
INT16
INT16
INT16
INT16
INT16
6-17
6. Communication Protocol
6.3.6 Position Operation Parameter Communication
Address Table
The following table lists Modbus communication addresses for the position operation parameter group [P4-xx].
Communicatio n Address
(Decimal
Number)
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
Parameter Name
Position input pulse logic
Electronic gear ratio numerator
1
– L
Electronic gear ratio numerator
1
– H
Electronic gear ratio numerator
2
– L
Electronic gear ratio numerator
2
– H
Electronic gear ratio numerator
3
– L
Electronic gear ratio numerator
3
– H
Electronic gear ratio numerator
4
– L
Electronic gear ratio numerator
4 — H
Electronic gear ratio denominator 1
Electronic gear ratio denominator 2
Electronic gear ratio denominator 3
Electronic gear ratio denominator 4
Electronic gear ratio mode
Electronic gear ratio numerator offset
Position error range — L
Position error range- H
Limit contact function
Backlash compensation
Pulse input filter
Parameter
Number
Position operation Parameter
P4 — 00
P4 — 01
P4 — 02
P4 — 03
P4 — 04
P4 — 05
P4 — 06
P4
– 07
P4 — 08
P4
– 09
P4 — 10
P4 — 11
P4
– 12
P4 — 13
P4
– 14
Material Type
UINT16
INT32
INT32
INT32
INT32
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
INT32
UINT16
UINT16
UINT16
6-18
7. Product Specifications
7 Product Specifications
7.1 Servo Motor
■ Heat Sink Specifications
Type
AP04
AP06
AP08
AP13
AP18
AP22
Dimensions(mm)
250x250x6
250x250x6
250x250x12
350x350x20
550x550x30
650x650x35
Materials
Aluminum
NOTE 1) The data on the product features is measured when those heat sinks are applied.
7-1
7. Product Specifications
7.1.1 Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
SAR3A SAR5A
L7□A001
SA01A SA015A
L7□A002
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Speed and position detector
Specifications and features
Standard
Option
Protection method
Time rating
Ambient temperature
Ambient humidity
Weight
0.03
0.10
0.97
0.29
2.92
0.0164
0.0167
5.56
0.05
0.16
1.62
0.48
4.87
0.02
3000
5000
0.10
0.32
3.25
0.96
9.74
0.05
0.02
Motor inertia x 30
0.05
10.55 23.78
Quad. Type Incremental 2048[P/R]
Serial Type(coming soon)
Continuous
0~40[°C]
20~80[%]RH (no condensation)
0.15
0.48
4.87
1.43
14.62
0.06
0.07
Motor inertia x 20
35.34
Fully closed
self-cooling IP55(excluding axis penetration)
Atmosphere
Anti-vibration
[kg]
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration of 49[m/s2](5G)
0.3 0.4
Rotation Speed
– Torque Characteristics
0.5 0.7
APM-SAR3A APM-SAR5A
APM-SA01A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SA015A
Repeatedly used area
Continuously used area
7-2
7. Product Specifications
■ Product Features
Servo Drive Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
Rated rotation speed
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Specifications and features
Time rating
Ambient temperature
Ambient humidity
Atmosphere
SB01A
0.10
0.32
3.25
0.96
9.74
L7□A002
SB02A
0.20
0.64
6.49
1.91
19.48
3000
5000
0.11 0.18 0.32
0.12 0.19
Motor inertia x 20
0.33
8.89 22.26 50.49
Quad. Type Incremental 3000[P/R]
Serial Type 19[Bit]
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
0~40[°C]
SB04A
L7□A004
0.40
1.27
12.99
3.82
20~80[%]RH (no condensation)
38.96
No direct sunlight, corrosive gas, or combustible gas
Weight
Anti-vibration
[kg]
Vibration acceleration 49[m/s2](5G)
0.8 1.1
Rotation speed
– Torque Characteristics
1.6
APM-SB01A
APM-SB02A APM-SB04A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
7-3
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
SBN01A
Applicable drive (L7□A□□)
SBN02A
L7□A002
Rated output 0.1 0.2
Rated torque
Maximum instantaneous torque
Rated rotation speed
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
0.32
3.25
0.95
9.74
0.64
6.49
1.91
19.48
SBN04A
3000
0.4
1.27
12.99
3.82
38.96
SBN04A-BK
L7□A004
0.4
1.27
12.99
3.82
38.96
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
0.11
0.12
8.91
Fully closed
0.18
0.19
5000
0.32
0.33
Motor inertia x 20
0.25
22.22 50.41
Quad. Type Incremental 3000[P/R]
63.84
Serial Type 19[Bit]
0.26 self-cooling IP55(excluding axis penetration)
Specifications and features
Time rating
Ambient temperature
Ambient humidity
Atmosphere
Continuous
0~40[°C]
20~80[%]RH (no condensation)
No direct sunlight, corrosive gas, or combustible gas
Weight
Anti-vibration
[kg] 0.8
Vibration acceleration of 49[m/s2](5G)
1.1 1.6 1.6
Rotation speed
– Torque Characteristics
APM-SBN01A APM-SBN02A APM-SBN04A
Repeatedly used area
Continuously used area
APM-SBN04A-BK
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
7-4
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Ambient temperature
Ambient humidity
Weight
SC04A
L7
□A004
0.4
1.27
12.99
3.82
38.96
0.67
SC06A SC08A
L7
□A008
0.6 0.8
1.91
19.49
5.73
58.47
1.09
3000
5000
2.55
25.98
7.64
77.95
1.51
0.69 1.11 1.54
Motor inertia x 15
1.97
24.05 33.39 43.02 52.57
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
Continuous
0~40[°C]
20~80[%]RH (no condensation)
SC10A
L7
□A010
1.0
3.19
32.48
9.56
97.43
1.93
Fully closed
self-cooling IP65(excluding axis penetration)
Atmosphere
Anti-vibration
[kg]
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
1.9 2.5 3.2
Rotation speed
– Torque Characteristics
3.8
APM-SC04A
APM-SC06A
APM-SC08A
Repeatedly used area
Continuously used area
APM-SC10A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
7-5
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
SC03D
Applicable drive (L7□A□□)
L7
□
A004
0.30 Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
1.43
14.61
4.30
43.84
0.67
SC05D
0.45
2.15
21.92
6.45
65.77
1.09
SC06D
L7
2000
3000
□A008
0.55
2.63
26.79
7.88
80.38
1.51
SC07D
0.65
3.10
31.66
9.31
94.99
1.93
0.69 1.11 1.54
Motor inertia x 15
1.97
30.43 42.27 45.69 49.97
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
0~40[°C]
20~80[%]RH (no condensation)
No direct sunlight, corrosive gas, or combustible gas.
Vibration acceleration 49[m/s2](5G)
1.9 2.5 3.2
Rotation speed
– Torque Characteristics
3.9
APM-SC03D APM-SC05D APM-SC06D
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SC07D
Repeatedly used area
Continuously used area
7-6
7. Product Specifications
■
Product Features
Servo Motor Type (APM-
)
Applicable drive (L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
Rated rotation speed
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Specifications and features
Weight
Time rating
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
SE09A
L7□A008
0.9
2.86
29.23
8.59
87.69
6.66
6.80
12.32
SE15A SE22A
L7□A020
1.5 2.2
4.77
48.72
14.32
7.00
71.45
21.01
146.15
3000
5000
214.35
SE30A
L7□A035
3.0
9.55
97.43
28.64
292.29
SE06D
L7□A008
0.6
2.86
29.23
8.59
12.00
12.24
17.34
17.69
22.68
23.14
18.99
Motor inertia x 10
28.28 40.20 12.32
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
6.66
6.80
Continuous
0~40[°C]
20~80[%]RH(no condensation)
87.69
2000
3000
Fully closed
self-cooling IP65(excluding axis penetration)
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
5.5 7.5 9.7 11.8
Rotation speed
– Torque Characteristics
5.5
SE11D
L7□A010
1.1
5.25
53.59
15.75
160.76
12.00
12.24
22.98
7.5
APM-SE09A
APM-SE15A APM-SE22A
Repeatedly used area
Continuously used area
APM-SE30A
Repeatedly used area
Continuously used area
APM-SE06D
Repeatedly used area
Continuously used area
APM-SE11D
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
7-7
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
SE16D
Applicable drive (L7□A□□)
SE22D
L7□A020
Rated output 1.6 2.2
Rated torque
Maximum instantaneous torque
Rated rotation speed
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
7.64
77.94
22.92
233.83
2000
10.50
107.17
31.51
321.52
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection
Method
Time rating
17.34
17.69
33.65
3000
22.68
23.14
Fully closed
SE03M
L7□A004
0.3
2.86
29.23
8.59
87.69
6.66
SE06M
L7□A008
0.6
5.73
58.46
17.19
175.30
12.00
6.80 12.24
Motor inertia x 10
17.69
48.64 12.32 27.35 42.59
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
Continuous
1000
2000
SE09M
L7□A010
0.9
8.59
87.69
25.78
263.06
17.34 self-cooling IP65(excluding axis penetration)
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg] 9.7
0~40[°C]
20~80[%]RH(no condensation)
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
11.8 5.5 7.5
Rotation speed
– Torque Characteristics
9.7
SE12M
L7□A020
1.2
11.46
116.92
34.37
350.75
22.68
23.14
57.89
11.8
APM-SE16D
APM-SE22D
APM-SE03M
Repeatedly used area
Continuously used area
APM-SE06M
7-8
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SE09M
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SE12M
Repeatedly used area
Continuously used area
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable drive
(L7□A□□)
SE05G
L7□A008
SE09G
L7□A010
SE13G SE17G
L7□A020
SF30A SF50A
L7□A035 L7□A050
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Speed and position detector
Standard
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
0.45
2.86
29.23
8.59
87.69
6.66
6.80
12.32
0.85
5.41
55.21
16.23
165.63
1500
3000
1.3
8.28
84.44
24.83
253.32
10.82
110.42
32.46
331.26
Continuous
0~40[°C]
1.7
20~80[%]RH(no condensation)
3.0
9.55
97.43
28.64
292.29
5.5
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
7.5 9.7
Rotation speed
– Torque Characteristics
11.8 12.4
3000
5000
Fully closed
self-cooling IP65(excluding axis penetration)
5.0
15.91
162.38
47.74
487.15
12.00 17.34 22.68 30.74 52.13
12.24 17.69
Motor inertia x 10
24.40 39.49
23.14
51.63
Quadrature Type Incremental 3000[P/R]
31.37 53.19
Motor inertia x 5
29.66 48.58
Serial Type 19[bit]
17.7
APM-SE05G
APM-SE09G APM-SE13G
Repeatedly used area
Continuously used area
APM-SE17G
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SF30A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SF50A
Repeatedly used area
Continuously used area
7-9
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Rated power rate
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
[kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
SF22D
L7□A020
2.2
10.50
107.17
31.51
321.52
30.74
31.35
35.88
LF35D
L7□A035
2000
3000
3.5
16.71
170.50
50.13
511.51
SF12M
L7□A020
1.2
11.46
116.92
34.37
350.75
2000
SF20M LF30M
2.0
L7□A035
3.0
19.10
194.86
57.29
584.58
52.13 30.74 52.13 83.60
53.16 31.37 53.19
Motor inertia x 5
85.31
53.56 42.71 69.95 98.15
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
Continuous
0~40[°C]
1000
20~80[%]RH(no condensation)
28.64
292.29
85.93
876.88
1700
Fully closed
self-cooling IP65(excluding axis penetration)
12.4
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
17.7 12.4
Rotation speed
– Torque Characteristics
17.7 26.3
SF44M
L7□A050
4.4
42.01
428.69
126.04
1286.08
2000
121.35
123.83
145.45
35.6
APM-SF22D
APM-LF35D
APM-SF12M
Repeatedly used area
Continuously used area
APM-SF20M
Repeatedly used area
Continuously used area
7-10
Repeatedly used area
Continuously used area
APM-LF30M
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SF44M
Repeatedly used area
Continuously used area
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Specifications and features
Weight
SF20G LF30G
L7□A035
1.8 2.9
11.46
116.92
34.37
18.46
188.37
55.38
350.75
3000
30.74
31.37
565.10
2700
52.13
53.19
SF44G
L7□A050
4.4
28.01
285.80
84.02
857.39
3000
83.60
85.31
SG20G
L7□A020
1.8
11.46
116.92
34.47
1500
350.80
3000
51.42
52.47
LG30G
L7□A035
2.9
18.46
188.37
55.38
565.10
2700
80.35
81.99
42.71
Motor inertia x 5
65.37 93.83 25.53 42.41
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
Protection method
Time rating
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
0~40[°C]
20~80[%]RH(no condensation)
12.4
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
17.7 26.3
Rotation speed
– Torque Characteristics
17.0 22.0
SG44G
L7□A050
4.4
28.01
285.80
84.02
857.39
3000
132.41
135.11
59.24
30.8
APM-SF44G
APM-SF20G APM-LF30G
Repeatedly used area
Continuously used area
APMa-SG20G
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-LG30G
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SG44G
Repeatedly used area
Continuously used area
7-11
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
SG12M
Applicable Drive
(L7□A□□)
L7□A020
Rated output 1.2
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
11.46
116.92
34.37
350.75
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Specifications and features
Time rating
Ambient temperature
51.42
52.47
25.53
2000
SG20M
2.0
19.10
194.86
57.29
584.58
80.35
81.99
45.39
LG30M
L7□A035
Fully closed
1000
3.0
28.64
292.29
85.93
876.88
1700
132.41
135.11
61.97
SG44M
L7
Continuous
0~40[°C]
□A050
4.4
42.01
428.69
126.04
1286.08
2000
172.91
176.44
Motor inertia x 5
102.08
SG22D
L7□A020
2.2
10.50
107.20
31.51
321.52
21.45
Quadrature Type Incremental 3000[P/R]
Serial Type 19[bit]
51.42
52.47
2000
3000 self-cooling IP65(excluding axis penetration)
LG35D
L7□A035
3.5
16.71
170.52
50.13
511.51
80.35
81.99
34.75
Weight
Ambient humidity
Atmosphere
Anti-vibration
[kg]
20~80[%]RH(no condensation)
17.0
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
22.0 30.8 37.5
Rotation speed
– Torque Characteristics
17.0 22.0
APM-SG12M APM-SG20M APM-LG30M
Repeatedly used area
7-12
Continuously used area
APM-SG44M
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-SG22D
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-LG35D
Repeatedly used area
Continuously used area
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
HB01A
Applicable Drive
(L7□A□□)
HB02A
L7□A002
Rated output 0.1 0.2
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
0.32
3.25
0.96
9.74
0.64
6.49
1.91
19.48
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Speed and position detector
Standard
Option
Protection method
Time rating
0.27
0.27
0.33
0.34
Motor inertia x 20
0.47
3.34 11.98 34.47
Quadrature Type Incremental 1024P/R
Fully closed
HB04A
L7□A004
0.4
1.27
12.99
3.82
38.96
3000
3500
0.46 x
Continuous
HE09A
L7□A010
0.9
2.86
29.23
8.59
87.69
19.56
19.96
HE15A
L7□A020
1.5
4.77
48.72
14.32
146.15
22.27
22.72
Motor inertia x 10
4.10
2048 P/R
10.01 self-cooling IP55(excluding axis penetration)
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg] 0.9
0~40°C
20~80[%]RH(no condensation)
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
1.2 1.7 5.8
Rotation speed
– Torque Characteristics
7.4
APM-HB04A
APM-HB01A
APM-HB02A
Repeatedly used area
Continuously used area
APM-HE09A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-HE15A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
7-13
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate
Speed and position detector
Specifications and features
Weight
[kW/s]
Standard
Option
Protection method
Time rating
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FB01A
L7□A001
0.10
0.32
3.25
0.96
9.74
0.09
0.09
11.38
0.7
FB02A
L7□A002
0.20
0.64
6.50
1.91
19.49
0.15
FB04A FC04A
L7□A004
0.40 0.40
1.27
12.99
1.27
13.00
3.82 3.82
38.98 38.98
0.25
3000
5000
0~40[°C]
0.50
Continuous
20~80[%]RH(no condensation)
No direct sunlight, corrosive gas, or combustible gas
0.9
Vibration acceleration 49[m/s2](5G)
1.3 1.6 2.2
Rotation speed
– Torque Characteristics
FC06A FC08A
L7□A008
0.60 0.75
1.91
19.50
5.73
2.39
24.36
7.16
58.47 73.08
0.88
0.15
Motor inertia x 20
27.95
0.25 0.51
65.90 32.62
Serial Type 19[bit]
X
0.89
Motor inertia x 15
41.69
Fully closed
self-cooling IP65(excluding axis penetration)
1.25
1.27
45.78
2.7
APM-FB01A
APM-FB02A
APM-FB04A
Repeatedly used area
Continuously used area
APM-FC04A
Repeatedly used area
Continuously used area
7-14
Repeatedly used area
Repeatedly used area
Continuously used area
APM-FC06A
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
APM-FC08A
Repeatedly used area
Continuously used area
1.0
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output [kW]
Rated torque
Maximum instantaneous torque
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
Maximum rotation speed
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Speed and position detector
Specifications and features
Weight
Standard
Option
Protection method
Time rating
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FC10A FC03D
L7□A010 L7□A004
1.00 0.30
3.18 1.43
32.50
9.55
97.44
14.60
4.30
43.80
3000
4500
FC05D
0.45
2.15
21.90
6.45
65.80
1.62
1.65
62.74
0.50
0.51
41.28
0.88
1.25
0.89
Motor inertia x 15
1.27
52.76
Serial Type 19[bit]
55.39
X
1.62
1.65
59.64
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
0~40[°C]
FC06D
L7□A008
0.55
2.60
26.80
7.88
80.40
2000
3000
20~80[%]RH(no condensation)
FC07D
0.65
3.10
31.70
9.31
95.00
3.8
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
1.6 2.2 2.7 3.8
Rotation speed
– Torque Characteristics
APM-FC10A
APM-FC03D
APM-FC05D
Repeatedly used area
Continuously used area
APM-FC06D
Repeatedly used area
Repeatedly used area
Repeatedly used area
Continuously used area
APM-FC07D
Repeatedly used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
7-15
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
FE09A FE15A
L7□A010 L7□A020
0.9 1.5 Rated output
Rated torque
Maximum instantaneous torque
Rated rotation speed
Specifications and features
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Ambient temperature
Ambient humidity
Weight
Atmosphere
Anti-vibration
[kg]
2.86
29.20
8.59
87.70
5.66
5.77
14.47
4.77
48.70
14.32
146.10
10.18
10.39
22.38
3000
5000
FE22A
L7□A035
2.2
7.00
71.40
21.01
214.30
14.62
FE30A
L7□A035
3.0
9.55
97.40
28.65
292.20
19.04
14.92 19.43
Motor inertia x 10
33.59 47.85
Serial Type 19 [bit]
X
FE06D
L7□A008
0.6
2.86
29.2 0
8.59
87.70
5.66
5.77
14.49
5.0
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
6.7 8.5
Rotation speed
– Torque Characteristics
10.1 5.0
2000
3000
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
0~40[°C]
20~80[%]RH(no condensation)
FE11D
L7□A010
1.1
5.25
53.60
15.75
160.70
10.18
10.39
27.08
6.7
Repeatedly used area
7-16
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Repeatedly used area
7. Product Specifications
■ Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FE16D
L7□A020
1.6
7.63
77.90
22.92
233.80
14.62
14.92
39.89
2000
3000
FE22D
L7□A035
2.2
10.5
107.10
31.51
321.40
19.04
19.43
57.90
FE03M
L7□A004
0.3
2.86
29.22
8.59
87.66
FE06M
L7□A008
0.6
5.72
58.4
17.18
0~40[°C]
175.3
5.66 10.18
5.77 10.39
Motor inertia x 10
14.49 32.22
Serial Type 19 [bit]
X
Continuous
1000
2000
20~80[%]RH(no condensation_
FE09M
L7□A010
0.9
8.59
87.7
25.77
262.9
14.62
14.92
50.48
Fully closed
self-cooling IP65(excluding axis penetration)
8.5
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
10.1 5.0
Rotation speed
– Torque Characteristics
6.7 8.5
FE12M
L7□A020
1.2
11.46
116.9
34.22
349.1
19.04
19.43
68.91
10.1
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
7-17
Repeatedly used area
7. Product Specifications
■Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FE05G
L7□A008
0.45
2.86
29.22
8.59
87.66
5.66
5.77
14.49
FE09G
L7□A010
0.85
5.41
55.19
16.23
165.57
1500
3000
FE13G FE17G
L7□A020
1.3 1.7
8.27
84.41
24.82
10.82
110.38
32.46
253.23 331.14
10.18 14.62 19.04
10.39 14.92
Motor inertia x 10
28.74 46.81
19.43
61.46
Serial Type 19 [bit]
X
Continuous
0~40[°C]
20~80[%]RH(no condensation)
FF30A
L7□A035
3.0
9.55
97.40
28.65
292.3
5.0
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
6.7 8.5
Rotation speed
– Torque Characteristics
10.1 12.5
3000
5000
Fully closed
self-cooling IP65(excluding axis penetration)
FF50A
L7□A050
5.0
15.91
162.30
47.74
487.00
27.96 46.56
28.53 47.51
Motor inertia x 5
32.59 54.33
17.4
Repeatedly used area
Continuously used area
7-18
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
7. Product Specifications
■Protect Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FF22D
L7□A020
2.2
10.50
107.1
31.50
321.30
27.96
28.53
39.43
2000
3000
FF35D
L7□A035
3.5
16.70
170.4
50.10
511.40
46.56
47.51
59.89
FF20G
L7□A020
1.8
11.45
116.9
34.35
350.60
3000
FF30G
L7□A035
2.9
18.46
188.3
55.38
564.90
0~40[°C]
1500
2700
27.96 46.56
28.53 47.51
Motor inertia x 5
46.92 73.14
Serial Type 19 [bit]
X
Continuous
20~80[%]RH(no condensation)
FF44G
L7□A050
4.4
28.00
285.7
84.03
857.10
3000
73.85
75.36
106.15
Fully closed
self-cooling IP65(excluding axis penetration)
12.5
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
17.4 12.5
Rotation speed
– Torque Characteristics
17.4 25.2
FF12M
L7□A020
1.2
11.46
116.9
34.38
350.70
1000
2000
27.96
28.53
46.94
12.5
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
7-19
7. Product Specifications
■Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
Rated output
Rated torque
Maximum instantaneous torque
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
Rated rotation speed
[r/min]
Maximum rotation speed
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Standard
Speed and position detector
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
FF20M
L7□A020
2.0
19.09
194.8
57.29
584.40
2000
46.56
47.51
78.27
1000
FF30M
L7□A035
3.0
28.64
292.2
85.94
876.60
1700
73.85
75.36
111.04
FF44M
L7□A050
4.4
42.02
428.7
126.1
128.60
1000
2000
FG22D
L7□A020
2.2
10.50
107.1
31.51
321.30
0~40[°C]
3000
106.7 41.13
108.9 41.97
Motor inertia x 5
165.38 26.78
Serial Type 19 [bit]
X
Continuous
2000
20~80[%]RH(no condensation)
FG35D
L7□A035
3.5
16.71
170.4
50.12
511.30
2700
71.53
72.99
38.99
Fully closed
self-cooling IP65(excluding axis penetration)
17.4
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
25.2 33.8
Rotation speed
– Torque Characteristics
15.4 20.2
FG20G
L7□A020
1.8
11.50
116.9
34.40
350.80
1500
3000
14.13
41.97
31.91
15.4
Repeatedly used area
Continuously used area
Repeatedly used area
7-20
Repeatedly used area
Continuously used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
7. Product Specifications
■Product Features
Servo Motor Type (APM-
)
Applicable Drive
(L7□A□□)
FG30G
L7□A035
2.9 Rated output
Rated torque
Maximum instantaneous torque
Rated rotation speed
Maximum rotation speed
[kW]
[N
m]
[kgf
cm]
[N
m]
[kgf
cm]
[r/min]
[r/min]
Inertia moment
[kg
m2x10-4]
[gf
cm
s2]
Allowed load inertia
Rated power rate [kW/s]
Speed and position detector
Standard
Option
Protection method
Time rating
Specifications and features
Weight
Ambient temperature
Ambient humidity
Atmosphere
Anti-vibration
[kg]
18.50
188.4
55.40
565.1
2700
71.53
72.99
47.66
1500
FG44G
L7□A050
4.4
28.00
285.8
84.00
857.4
3000
117.72
120.12
66.64
FG12M FG20M
L7□A020
1.2
11.50
116.9
34.40
350.8
41.13
41.97
2000
Fully closed
self-cooling IP65(excluding axis penetration)
Continuous
2.0
19.10
194.9
57.30
584.6
71.53
72.99
Motor inertia x 5
31.91 51.00
Serial Type 19 [bit]
X
0~40[°C]
1000
20~80[%]RH(no condensation)
FG30M
L7□A035
3.0
28.60
292.3
85.90
876.9
1700
117.72
120.12
69.70
No direct sunlight, corrosive gas, or combustible gas
Vibration acceleration 49[m/s2](5G)
28.0 20.2 28.0 15.4
Rotation speed
– Torque Characteristics
20.2
FG44M
L7□A050
4.4
42.00
428.7
126.00
128.61
2000
149.40
152.45
118.14
33.5
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Repeatedly used area
Continuously used area
Repeatedly used area
Reapetedly used area
7-21
7. Product Specifications
■ Electric Brake Specifications
Applicable Motor
Series
Purpose
Input voltage [V]
Static friction torque
[N•m]
Capacity [W]
Coil resistance [Ω]
Rated current [A]
Braking mechanism
Insulation grade
Applicable Motor
Series
Purpose
Input voltage [V]
Static friction torque
[N•m]
Capacity [W]
Coil resistance [Ω]
Rated current [A]
Braking mechanism
Insulation grade
APM-SA
DC 24V
0.32
6
96
0.25
APM-FB
Maintenance
DC 24V
1.47
6.5
89
0.27
Spring brake
Grade F
APM-SB
1.47
6.5
89
0.27
APM-FC
Maintenance
DC 24V
APM-SC
9
64
0.38
Spring brake
GraDde F
APM-SE
Maintenance
DC 24V
3.23 10.4
19.4
29.6
0.81
3.23
9
64
0.38
Spring brake
Grade F
APM-SF
40
25
23
1.04
APM-SG
NOTE 1) The same specifications apply to all electric brakes installed in our servo motors.
NOTE 2) Electric brakes are designed to maintain a stop. Never use them for absolute braking.
NOTE 3) The characteristics of the electric brakes were measured at 20°C.
NOTE 4) These brake specifications are subject to change. Check the voltage specifications on your specific motor.
DC 90V
74
32
327
0.28
7-22
7. Product Specifications
7.1.2 Outline Drawing
SA Series | APM-SAR3A, APM-SAR5A, APM-SA01A, APM-
SA015A
Name
SAR3A
SAR5A
SA01A
SA015A
L
101.3(137.6)
External Dimensions
LM
76.3(112.6)
108.3(144.6) 83.3(119.5)
125.3(161.6) 100.3(136.5)
145.3 120.3
LC
42.5(42.4)
49.5(49.4)
66.5(66.4)
86.5
CB
66.3(102.3)
73.3(109.3)
90.3(126.3)
110.3
NOTE 1) The standard shaft end for 40 flange is straight.
NOTE 2) Use DC 24 [V] for brake-opening power.
NOTE 3) The sizes in parentheses apply when attached to brakes.(Except SA015A)
Weight (kg)
0.32(0.67)
0.38(0.73)
0.5(0.85)
0.7
7-23
7. Product Specifications
SB Series | APM-SB01A, APM-SB02A, APM-SB04A
7-24
Name
SB01A
SB02A
SB04A
L
122(162)
136(176)
164(199)
External Dimensions
LM LC
92(132) 52.5(52.3)
106(146)
134(169)
66.5(66.3)
94.5(94.3)
NOTE 1) Use DC 24 [V] for brake-opening power.
NOTE 2) The sizes in parentheses apply when attached to brakes.
CB
59.5(99.5)
73.5(113.5)
101.5(141.5)
Weight (kg)
0.82(1.4)
1.08(1.66)
1.58(2.16)
7. Product Specifications
SC Series | APM-SC04A,SC03D, APM-SC06A,SC05D,
APM-SC08A,SC06D, APM-SC10A,SC07D
Name
L
External Dimensions
LM LC
158.5(198.8) 118.5(158.8) 79(78.8)
CB
86(126.3)
SC04A,
SC03D
SC06A,
SC05D
SC08A,
SC06D
SC10A,
SC07D
178.5(218.8) 138.5(178.8)
198.5(238.8) 158.5(198.8)
218.5(258.8) 178.5(218.8)
99(98.8)
119(118.8)
139(138.8)
NOTE 1) Use DC 24 [V] for brake-opening power
NOTE 2) The sizes in parentheses apply when attached to brakes
.
106(146.3)
126(166.3)
146(186.3)
S
14
16
16
16
Weight
(kg)
1.88(2.92)
2.52(3.56)
3.15(4.22)
3.80(4.94)
7-25
7. Product Specifications
SE Series | APM-SE09A, SE06D, SE05G, SE03M, APM-SE15A,
SE11D,SE09G,SE06M, APM-SE22A, SE16D, SE13G, SE09M,
APM-SE30A, SE22D, SE17G, SE12M
7-26
Name
L
External Dimensions
LM LC
Key
Dimensions
S T W U
Weight
(kg)
SE09A, SE06D,
SE05G, SE03M
SE15A, SE11D,
SE09G, SE06M
SE22A, SE16D,
SE13G, SE09M
SE30A, SE22D,
SE17G, SE12M
201.3(239.3) 143.3(181.3) 93.8(93.6) 19 5 5
225.3(263.3) 167.3(205.3) 117.8(117.6) 19 5 5
3
3
5.5(7.04)
7.54(9.08)
249.3(287.3) 191.3(229.3) 141.8(141.6) 22 6 6 3.5 9.68(11.22)
273.3(311.3) 215.3(253.3) 165.8(165.6) 22 6 6 3.5 11.78(13.32)
NOTE 1) Use DC 24 [V] for brake-opening power
NOTE 2) . The sizes in parentheses apply when attached to brakes
.
7. Product Specifications
SF Series | APM-SF30A, SF22D, SF20G, SF12M, SF50A, LF35D,
LF30G, SF20M, SF30M, LF30M,SF44G, SF44M
Name
SF30A,
SF22D,
SF20G, SF12M
SF50A,LF35D,
LF30G,SF20M
LF30M,SF44G
SF44M
L
External Dimensions
LM LC LR
261.5
(312.9)
182.5
(233.9)
133
(132.7)
295.5
(346.9)
345.5
(396.9)
405.5
(456.9)
216.5
(267.9)
266.5
(317.9)
326.5
(377.9)
167
(166.7)
217
(216.7)
277
(276.7)
S
Key Dimensions
QK T W U
79 35
(0~+0.01)
60 8 10 5
NOTE 1) Eye bolts apply to LF30M or higher models
NOTE 2) Use DC 24 [V] for brake-opening power.
NOTE 3) The sizes in parentheses apply when attached to brakes.
Weight
(kg)
12.4(19.2)
17.7(24.9)
26.3(33.4)
35.6(42.8)
7-27
7. Product Specifications
SG Series | APM-SG22D, SG20G, SG12M, LG35D, LG30G,
SG20M, LG30M
7-28
Name
SG22D, SG20G,
SG12M
LG35D,LG30G,
SG20M
SG44G,
LG30M
SG44M
L
236.5
(302.7)
256.5
(322.7)
292.5
(358.7)
320.5
(386.7)
External Dimensions
LM
171.5
(237.7)
191.5
(257.7)
227.5
(293.7)
255.5
(321.7)
LC
122
(121.2)
142
(142.2)
178
(177.2)
206
(205.2)
LF LQ S
Shaft, Key
Dimensions
T W U
19 56.4 35 8 10 5
Weight
(Kg)
16.95
(30.76)
21.95
(35.7)
30.8
(44.94)
37.52
(50.94)
NOTE 1) Use DC 90 [V] for brake-opening power.
NOTE 2) The sizes in parentheses apply when attached to brakes.
7. Product Specifications
APM-HB01A (Hollow Shaft), APM-HB02A (Hollow Shaft),
APM-HB04A (Hollow Shaft)
External Dimensions
Name
HB01A
HB02A
HB04A
L
140.5
154.5
182.5
LM
98.5
112.5
140.5
LC
63.5
82.5
105.5
CB
24
38
66
Hollow
Shaft
Diameter
15
15
15
Weight (Kg)
0.89
1.16
1.69
APM-HE09A (Hollow Shaft), APM-HE15A (Hollow Shaft)
Name
HE09A
HE15A
L
207
231
External Dimensions
LM LC
150
174
111.5
135.5
Hollow
Shaft
Diameter
40
40
Weight (Kg)
5.82
7.43
7-29
7. Product Specifications
FB Series : APM-FB01A, APM-FB02A, APM-FB04A
7-30
Name
FB01A
FB02A
FB04A
L
109(149.2)
External Dimensions
LM
79(119.2)
LC
43.5(43)
120(160.2)
140(180.2)
90(130.2)
110(150.2)
54.5(54)
74.5(74)
NOTE 1) Use DC power (24V) to operate the brake.
NOTE 2) The sizes in parentheses apply when attached to the brakes.
Weight(kg)
0.72(1.3)
0.94(1.49)
1.32(1.87)
7. Product Specifications
FC Series | APM-FC04A,FC03D, APM-FC06A,FC05D,
APM-FC08A,FC06D, APM-FC10A,FC07D
Name
L
External Dimensions
LM
FC04A,FC03D 136.5(177) 96.5(137)
LC
Shaft, Key Dimensions
S H T W U
61(60.5) 14 -0.018 5 5 3
FC06A,FC05D 154.5(195) 114.5(155) 79(78.5) 19 -0.021 6 6 3.5
FC08A,FC06D 172.5(213) 132.5(173) 97(96.5) 19 -0.021 6 6 3.5
FC10A,FC07D 190.5(231) 150.5(191) 115(114.5) 19 -0.021 6 6 3.5
Weight(kg)
1.56(2.6)
2.18(3.22)
2.72(3.76)
3.30(4.34)
NOTE 3) Use DC power (24V) to operate the brake.
NOTE 4) The sizes in parentheses apply when attached to the brakes.
7-31
7. Product Specifications
FE Series | APM-FE09A, FE15A, FE22A, FE30A, FE06D, FE11D,
FE16D, FE22D, FE03M, FE06M, FE09M, FE12M, FE05G, FE09G,
FE13G, FE17G
Name
FE09A,FE06D,FE05G,FE03M
FE15A,FE11D,FE09G,FE06M
FE22A,FE16D,FE13G,FE09M
FE30A,FE22D,FE17G,FE12M
<Standard>
External Dimensions
L LM LC S
Key Dimensions
QW T W U
197 139 90 19 25 5 5 3
Weight(kg)
5.04
217 159 110 19 25 5 5 3 6.74
237 179 130 22 25 6 6 3.5 8.48
255 197 148 24 36 7 8 4 10.05
7-32
Name
FE09A,FE06D,FE05G,FE03M
FE15A,FE11D,FE09G,FE06M
FE22A,FE16D,FE13G,FE09M
FE30A,FE22D,FE17G,FE12M
<Brake>
External Dimensions
L LM
Key Dimensions
Weight(kg)
LC S QW T W U
236 178 90 19 25 5 5 3 6.58
256
276
294
198
218
236
110 19 25 5 5 3
130 22 25 6 6 3.5
148 24 36 7 8 4
NOTE 1) Use DC power (24V) to operate the brake.
8.28
10.02
11.59
7. Product Specifications
FF Series | APM-FF30A, FF50A, FF22D, FF35D, FF20G, FF30G,
FF44G, FF12M, FF20M, FF30M, FF44M
Name
FF30A,22D,20G,12M
FF50A,35D,30G,20M
44G,30M
44M
<Standard>
External Dimensions
L LM LC LR S
Key Dimensions
QK T W U
258
288
179
209
129
159 35 60 8 10 5
79
332 253 203
385 306 256 42 60 8 12 5
Weight(kg)
12.5
17.4
25.2
33.8
<Brake>
Name
FF30A,22D,20G,12M
FF50A,35D,30G,20M
44G,30M
44M
External Dimensions
L
310
LM
231
LC LR
129
343
384
437
261
305
358
159
203
256
79
NOTE 1) Eye bolts apply to FF30M or higher models.
NOTE 2) Use DC power (24V) to operate the brake.
S
Key Dimensions
QK T W U
Weight(kg)
35
42
60 8 10 5
60 8 12 5
19.7
24.6
32.4
41.0
7-33
7. Product Specifications
FG Series | APM-FG22D FG35D FG20G, FG30G, FG44G, FG12M,
FG20M, FG30M, FG44M
Name
FG22D,FG20G,FG12M
FG35D,FG30G,FG20M
FG44G,FG30M
FG44M
<Standard>
External Dimensions
L LM LC LR
230 165 115
S
Key Dimensions
QK T W U
251
283
305
186
218
240
135
168
190
65
35
42
60 50 8 10
60 50 8 12
Weight(kg)
15.42
20.22
28.02
33.45
7-34
<Brake>
Name
FG22D,FG20G,FG12M
FG35D,FG30G,FG20M
FG44G,FG30M
FG44M
External Dimensions
L LM LC LR
296 231 115
317
349
371
252
284
306
136
168
190
65
NOTE 1) Use DC power (90V) to operate the brake.
S
Key Dimensions
QK T W U
Weight(kg)
35
42
60 50 8 10
60 50 8 12
29.23
34.03
41.83
47.26
7. Product Specifications
7.2 Servo Drive
7.2.1 Product Features
Item
Input power
Type Name
Main power
L7□A
001□
L7□A
002□
L7□A
004□
L7□A
008□
L7□A
010□
3-phase AC 200-230 [V] (-15~10[%]), 50-60 [Hz]
L7□A
020□
L7□A
035□
Control power Single-phase AC 200-230 [V] (-15~10[%]), 50-60 [Hz]
Rated current [A] 1.4 1.7 3.0 5.2 6.75 13.5 16.7
L7□A
050□
32
Peak current [A] 4.2 5.1 9.0 15.6 20.25 40.5 50.1 96
Encoder Type
Quad. Type incremental line driver 2000-10000 [P/R]
Serial 17 / 19 bit / 21 bit
Control performan ce
Speed control range
Maximum 1: 5000
Speed
Control
Frequency response
Maximum 1 [kHz] or above (when the 19-bit serial encoder is applied).
Speed command
DC
–10 [V]~+10 [V] (Reverse rotation in case of negative voltage)
Acceleration/d eceleration time
Straight or S-curve acceleration/deceleration (0-10,000 [ms], possible to be set by one [ms] unit)
Speed change rate
±0.01 [%] or lower [when load changes between 0 and 100%]
±0.1[%] or lower [temperature 25 ±10℃]
Position
Control
Input frequency
Input pulse
Method
1 [Mpps], line driver / 200 [kbps], open collector
Symbol + pulse series, CW+CCW, A/B phase
Electric Gear
Ratio
Four digital gear ratios can be set, selected and tuned.
Torque command
DC
–10~+10 [V] (Reverse direction torque in case of negative voltage)
Torque
Control
Speed limit DC 0~10 [V], internal speed command within ±1[%]
Repetition accuracy
Within ±1[%]
Analog
Input
Input range DC 0~10 [V]
Angular resolution
12 [bit]*
Input/outp ut signal
Analog
Output
Output range DC 0~10 [V]
Angular resolution
12 [bit]
7-35
7. Product Specifications
Item
Type Name
L7□A
001□
L7□A
002□
L7□A
004□
L7□A
008□
L7□A
010□
L7□A
020□
L7□A
035□
L7□A
050□
Digital input
A total of 10 input channels (allocable)
SVON, SPD1, SPD2, SPD3, ALMRST, DIR, CCWLIM, CWLIM, EMG, STOP, EGEAR1, EGEAR2,
PCON, GAIN2, P_CLR, T_LMT, MODE, ABS_RQ, ZCLAMP
You can selectively allocate a total of 19 functions.
You can set the positive/negative logic of the selected signal.
Digital output
A total of 5 channels (allocable), 3 channels (fixed with alarm codes)
ALARM, READY, ZSPD, BRAKE, INPOS, TLMT, VLMT, INSPD, WARN
You can selectively allocate a total of nine kinds of output.
You can set the positive/negative logic of the selected signal.
Communic ation
RS422 Accessible to PC software and the RS422 server
USB
Status monitoring through PC software, JOG operation, and parameter uploading/downloading are possible.
Encoder Serial BiSS encoder and quadrature encoder supported
Encoder output method
Random pre-scale output through FPGA (maximum 6.4 Mpps)
Dynamic braking
Regenerati ve braking
Standard built-in (activated when the servo alarm goes off or when the servo is off)
Both default built-in and external installation possible
Displaying Seven segments (5 DIGIT)
Built-in functions
Selfsetting
Add-on functions
Loader (SET, MODE, UP, and [DOWN] keys)
Auto gain tuning, phase Z detection, manual JOG operation, program JOG operation, automatic analog input calibration
Protection function
Overcurrent, overload, overvoltage, voltage lack, main power input error, control power input error, overspeed, motor cable, heating error (power module heating, drive temperature error), encoder error, excessive regeneration, sensor error, communication error
Environment
Temperature 0 ~ 50[℃]
Humidity 90[%] RH or lower (no condensation)
Environment
Indoors, a place free from corrosive gas or combustible gas, or a place without liquid or conductive dust.
7-36
7.2.2 Outline Drawing
L7□A001□ ~ L7□A004□
7. Product Specifications
L7□A008□ / L7□A010□
★ Weight: 1.0[kg]
★ Weight: 1.5[kg](Cooling fan included)
7-37
7. Product Specifications
L7□A020□ / L7□A035□
L7□A050□
★ Weight: 2.5[kg](Cooling fan included)
7-38
★ Weight: 5.5[kg](Cooling fan included)
7. Product Specifications
7.3 Options and Peripheral Devices
■ Option (incremental encoder cable)
Category
Product
Name
Type
Name
(Note
1)
Applicable
Motors
Motor connection
Specifications
Drive connection (CN2)
For signaling
Quadrature type
Incremental
Encoder cable
(small capacity)
APCS-
E
AS
All models of
APM-SA,
APM-SB,
APM-SC and
APM-HB
Series
1. Motor connection
a. Cap specifications (15 positions): 172163-1 (AMP)
b. Socket specifications: 170361-1 (AMP)
2. Drive connection (CN2)
a. Case specifications: 10314-52A0-008 (3M)
b. Connector specifications: 10114-3000VE (3M)
c. Cable specifications: 7Px0.2SQ (AWG24)
Motor connection Drive connection (CN2)
For signaling
Quadrature type
Incremental
Encoder cable
(medium capacity)
E
APCS-
BS
All models of
APM-SE,
APM-SF,
APM-LF,
APL-LG,
APM-SG and
APM-HE
Series
1. Motor connection (MS: Military Standard)
a. Plug specifications: MS3108B (MS3106B) 20-29S
2. Drive connection (CN2)
a. Case specifications: 10314-52A0-008 (3M)
b. Connector specifications: 10114-3000VE (3M)
c. 3. Cable specifications: 7Px0.2SQ (AWG24)
NOTE 1) The
in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.
Cable length (m)
Robotic cable
General cable
3
F03
N03
5
F05
N05
10
F10
N10
20
F20
N20
7-39
7. Product Specifications
■
Option (serial encoder cable)
Category
Product
Name
Type Name
(Note 1)
Applicable
Motors
Motor connection
Specifications
Drive connection (CN2)
For signaling
Serial type
Encoder cable
(small capacity)
APCS-
E
CS
All models of
APM-SA,
(Will provide)
APM-SB and
APM-SC
Series
1. Motor connection
a. Cap specifications (9 positions): 172161-1 (AMP)
b. Socket specifications: 170361-1 (AMP)
2. Drive connection (CN2)
a. Case specifications: 10314-52A0-008 (3M)
b. Connector specifications: 10114-3000VE (3M)
3. Cable specifications: 4Px0.2SQ (AWG24)
Motor connection Drive connection (CN2)
For signaling
Serial type
Encoder cable
(medium capacity)
APCS-
E
DS
All models of
APM-SE,
APM-SF,
APM-SG,
APM-LF,
APM-LG
APM-FE
APM-FF and
APM-FG
Series
1. Motor connection (MS: Military Standard)
a. Plug specifications: MS3108B (MS3106B) 20-29S
2. Drive connection (CN2)
a. Case specifications: 10314-52A0-008 (3M)
b. Connector specifications: 10114-3000VE (3M)
3. Cable specifications: 4Px0.2SQ (AWG24)
7-40
Motor connection
7. Product Specifications
Drive connection (CN2)
For signaling
Encoder cable for flat type motor
(small capacity)
APCS-
E
ES
*Front :
APCS-
E
ES
* Rear :
APCS-
E
ES-R
All models of
APM-FB and
APM-FC
Series
1. Motor connection
a. Cap specifications: 2201825-1 (Tyco)
b. Socket specifications: 2174065-1(Tyco)
2. Drive connection(CN2)
a. Case specifications: 10314-52A0-008(3M)
b. Connector specifications: 10114-3000VE(3M)
3. Cable specifications: 4Px0.2SQ(AWG24)
Motor Connection
Drive Connection
For signaling
Multi turn
Type
Serial
Encoder
Cable
APCS-
E
CS1
All models of
APM-SB and
APM-SC
Series
APM-SA
(Will provide)
1. Motor connection
a. Cap specifications(9 Position) : 172161-1(AMP)
b. Socket specifications: 170361-1(AMP)
2. Drive connection(CN2)
a. Case specifications: 10314-52A0-008(3M)
b. Connector specifications: 10114-3000VE(3M)
3. Cable specifications: 4Px0.2SQ(AWG24) or
4Px24AWG
7-41
7. Product Specifications
Drive Connection
Motor Connection
7-42
For signaling
Multi turn
Type
Serial
Encoder
Cable
APCS-
E
ES1-
*Front :
APCS-
E
ES1
* Rear :
APCS-
E
ES1-
R
All models of
APM-FB and
APM-FC
Series
1. Motor connection
a. Cap specifications(9 Position): 2201825-
1(Tyco)
b. Socket specifications: 2174065-4(Tyco)
2. Drive connection(CN2)
a. Case specifications: 10314-52A0-008(3M)
b. Connector specifications: 10114-3000VE(3M)
3. Cable specifications : 4Px0.2SQ(AWG24) or
4Px24AWG
Motor Connection
Drive Connection
For signaling
Multi turn
Type
Serial
Encoder
Cable
E
APCS-
DS1
All models of
APM-SE,
APM-SF,
APM-SG,
APM-LF,
APM-LG,
APM-FE,
APM-FF and
APM-FG
Series
1. Motor connection
a. Cap specifications(9Position):MS3108B 20-29S
2. Drive connection(CN2)
a. Case specifications: 10314-52A0-008(3M)
b. Connector specifications: 10114-3000VE(3M)
3. Cable specifications: 4Px0.2SQ(AWG24)
NOTE 1) The
in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.
Cable length (m)
Robotic cable
General cable
3
F03
N03
5
F05
N05
10
F10
N10
20
F20
N20
7. Product Specifications
■ Option (power cable)
Category Product
Name
Type
Name
(Note 1)
Applicable
Motors
Motor connection
Specifications
Drive connection
For power
Standard type
Power cable
APCS-
P
GS
All models of
APM-SA,
APM-SB,
APM-SC and
APM-HB
Series
1. Motor connection
a. Cap specifications (4 positions): 172159-1 (AMP)
b. Socket specifications: 170362-1 (AMP)
2. Drive connection (U, V, W, and FG)
a. U,V and W pin specifications: UA-F1512 (SEOIL)
b. FG pin specifications: 1.5×4 (ring terminal)
3. Cable specifications: 4Cx0.75SQ (AWG18)
(APM-SAR3A, SAR5A, and SA01A use 0.5SQ)
Motor connection
Power Supply (DC24V)
For power
Brake type
Power cable
APC-
P
KB
All models of
APM-SA,
APM-SB and
APM-SC
Series
1. Motor connection
a. Cap specifications (6 positions): 172157-1 (AMP)
b. Socket specifications: 170362-1 (AMP)
2. For brake power
a. Connection terminal specifications: 1.5×3 (KET
GP110012)
b. Cable specifications: 2Cx0.75SQ (AWG18)
7-43
7. Product Specifications
Category Product
Name
Type
Name
(Note 1)
Applicable
Motors
Motor connection
Specifications
Drive connection
For power
Standard type
Power cable
APCS-
P
HS
All models of
APM-SE and
APM-HE
Series
1. Motor connection (MS: Military Standard)
a. Plug specifications: MS3108B (MS3106B) 20-4S
2. Drive connection (U, V, W, and FG)
a. U, V and W pin specifications: UA-F2512
b. FG pin specifications: 2.5×4 (ring terminal)
3. Cable specifications: 4Cx2.0SQ (AWG14)
Note: The drive end connection of the APM-SE03M Series cable uses the UA-F1512 pin.
Motor connection Drive connection
For power
Standard type
Power cable
APCS-
P
IS
All models of
APM-SF
APM-SG
APM-FF
APM-FG
SERIES
Below
3.5KW
1. Motor connection (MS: Military Standard)
a. Plug specifications: MS3108B (MS3106B) 22-22S
2. Drive connection (U, V, W, and FG)
a. U, V and W pin specifications: UA-F4012 (SEOIL)
b. FG pin specifications: 2.5 X 4 (ring terminal)
3. Cable specifications: 4Cx2.5SQ (AWG14)
Drive connection
Motor connection
For power
Power cable for flat type motor(small capacity)
APCS-
P
FS-
*Front :
APCS-
P
FS
* Rear :
APCS-
P
FS-
R
All models of
APM-FB and
APM-FC
Series
1. Motor connection
a. Plug specifications: KN5FT04SJ1 (JAE)
b. Socket specifications: ST-KN-S-C1B-3500(JAE)
2. Drive connections(U,V,W and FG)
a. U,V and W pin specifications: F1512
b. FG pin specifications: 1.5×4 (Ring terminal)
3. Cable specifications: 4Cx0.75SQ(AWG18)
7-44
7. Product Specifications
Category Product
Name
Type
Name
(Note 1)
Applicable
Motors
Motor connection
Specifications
Drive connection
For power
Brake cable for flat type motor(small capacity)
APCS-
B
QS
*Front :
APCS-
B
QS
* Rear :
APCS-
B
QS-
R
All models of
APM-FB and
APM-FC
Series
1. Motor connection
a. Plug specifications: : KN5FT02SJ1 (JAE)
b. Socket specifications: ST-KN-S-C1B-3500 (JAE)
2. Drive connection
a. Connection terminal specifications: 1.5×3(KET
GP110012)
3. Cable specifications: 2Cx0.75SQ or 2Cx18AWG18
Brake Connection
Drive Connection
For power
Brake cable
P
APC-
SB
All models of
APM-SG
APM-LG
APM-FG
Series
1. Motor side connector
a. PLUG : MS3108B14-7S
2. Power side Connector(+,-)
a. Connection terminals : 1.5×3(KET GP110012)
3. Cable
a. 2Cx0.75SQ or 2Cx19AWG
NOTE 1) The
in Type Name indicates the type and length of each cable. Refer to the table below for how to display them.
Cable length (m)
Robotic cable
General cable
3
F03
N03
5
F05
N05
10
F10
N10
20
F20
N20
7-45
7. Product Specifications
■ Option (cable)
Categ ory
Product
Name
For signali ng
CN1 Cable
Type Name
(Note 1)
APC-CN1
A
Applicable
Drive
L7 SERIES
Specifications
[Upper level controller]
Pin number display
[Drive connection CN1]
1. Drive connection (CN1)
a. Case specifications: 10350-52A0-008 (3M)
b. Connector specifications: 10150-3000VE (3M)
c. Cable specifications: ROW-SB0.1Cx50C
(AWG 28)
[PC — USB port] [Servo drive
– CN5]
For signali ng
Communicatio n cable
APCS-
CM5L7U
L7 SERIES
1. PC connection: USB A plug
2. Drive connection (CN5): Mini USB 5P plug
3. Electrical requirements:
Double shielding, twisted pair, EMI filter installation
(similar product: KU-AMB518 by SANWA)
NOTE 1) The
in Type Name indicates the length of each cable. Refer to the table below for how to display them.
Cable length (m)
Written as
1
01
2
02
3
03
5
05
7-46
■ Option (connector)
Categ ory
Product
Name
Type Name Applicable
Drive
7. Product Specifications
Specifications
T/B
Terminal block for CN1
APC-VSCN1T
APC-VPCN1T
L7 SERIES
1. APC-VSCN1T: CN1 T/B expansion of APD-VS
2. APC-VPCN1T: CN1 T/B expansion of APD-VP
3. The cable length can be changed.
4. Standard cable length: 0.5 [m]
26
1
1
CN
CN
CN1
Connector
APC-CN1NNA L7 SERIES
50
25
1. Case specifications: 10350-52A0-008 (3M)
2. Connector specifications: 10150-3000VE (3M)
8
1
CN2
Connector
APC-CN3NNA L7 SERIES
14
7
1. Case specifications: 10314-52A0-008 (3M)
2. Connector specifications: 10114-3000VE (3M)
7-47
7. Product Specifications
■ Option (braking resistance)
Categ ory
Product
Name
Type Name Applicable
Drive
Resist ance
Braking resistance
APC-140R50
L7
□A001□
L7
□A002□
L7
□A004□
Specifications
Resist ance
Braking resistance
APC-300R30
L7□A008□
L7□A010□
Resist ance
Braking resistance
APC-600R30
L7□A020□
(2P)
L7□A035□
(3P)
Resist ance
Braking resistance
APC-600R28
L7□A050□
(4P)
7-48
8. Maintenance and Inspection
8 Maintenance and Inspection
8.1 Maintenance and Inspection
This chapter explains how to conduct basic maintenance and inspection, diagnosis and troubleshooting on the servo motor and drive.
8.1.1 Precautions
1. Measuring motor voltage: The voltage output from the servo amp to the motor is PWM controlled, and, for this reason, its waves take the form of pulses. Use a rectifier voltmeter for accurate measuring because different meters often produce different results.
2. Measuring motor current: Connect a moving-iron-type ampere meter directly for use as the pulse waveform becomes smooth sine waves to some degree because of the motor’s reactance.
3. Measuring electric power: Use an electrodynamometer based on the 3 power meter method.
4. Other gauges: When using an oscilloscope or digital voltmeter, make sure that they do not touch the ground. Use 1 [mA] or lower of gauge input current.
8.1.2 What to Inspect
Be sure to start inspection approximately 10 minutes after power is turned off because the charged voltage left in the internal smoothing condenser may cause an accident.
(1) Servo Motor Inspection
Caution
Be sure to start inspection approximately 10 minutes after power is turned off because the charged voltage left in the internal smoothing condenser may cause an accident.
Inspection
Item
Vibration and sound check
Exterior inspection
Insulation resistance measurement
Oil seal replacement
General inspection
Inspection Period Inspection and Handling Notes
Every month Touch and listen to sound.
The feel and sound should be no more notable than usual.
Depending on the contamination or damage
Clean with cloth or air pressure.
At least once a year
Disconnect from the drive and measure insulation resistance.
Normal resistance is 10 [㏁] or higher. Note 1)
Once every 5,000 hours at the least
Every 20,000 hours or once every 5 years at the least
Remove it from the machine for replacement.
Contact our service center.
—
If resistance is 10[㏁] or lower, contact our service center.
This only applies to motors with an oil seal.
Do not disassemble the servo motor for cleaning yourself.
NOTE 1) Conduct measuring between FG and one of the U, V, and W power lines of the servo motor.
8-1
8. Maintenance and Inspection
(2) Servo Drive Inspection
Inspection Item
Inspection
Period
How to inspect
What to do if abnormality is found
Cleaning of the main body and the board
At least once a year
Check if there is any dust or oil on it.
Loose screws
Defective parts on the main body or the board
At least once a year
At least once a year
Check whether screws on terminals and connectors are loose.
Check whether there is any discoloration, damage, or disconnection caused by heat.
Clean with air pressure or cloth.
Fasten the screws.
Contact our company.
8.1.3 Parts Replacement Cycle
The following parts may experience low performance or malfunction because of mechanical friction and aging. It is therefore important to conduct regular maintenance checks and replace parts.
1. Smoothing condenser: This part ages because of the impact of ripple current and other factors. Its lifespan greatly depends on the surrounding temperature and environment. When continuously used in an air-conditioned ordinary environment, it lasts 10 years on average. Inspect it at least once a year because it ages rapidly over a short period of time once it starts to do so. (Inspect more frequently when it gets closer to its obsolescence.)
※ Criteria for visual inspection:
a. Case’s condition: Expanded sides and bottom of the case
b. Lid’s condition: Notable expansion, severe cracks, or broken parts
c. Explosion valve’s condition: Notable valve expansion and operation
d. Besides, check regularly if there is any crack, broken part, discoloration, or leak on the exterior.
A condenser shall be deemed obsolete when its capacity becomes 85[%] or lower of the rated capacity.
2. Relays: Bad connection occurs because of wear and tear at the contact caused by switching current. A relay is deemed obsolete when its accumulated switching reaches 100,000 times as it depends greatly on power capacity.
3. Motor bearing: Replace when it reaches 20,000 to 30,000 hours of operation at the rated speed under the rated load. Replace if abnormal sound or vibration is detected during inspection, which are dependent on operating conditions.
[Standard Part Replacement Cycle]
Part Name
Smoothing condenser
Relays
Fuses
Aluminum electrolytic condensers on printed boards
Cooling fans
Motor bearings
Motor oil seals
Standard Replacement Cycle
7-8 years
—
10 years
5 years
4-5 years
—
5,000 hours
Method
Replace (decide after inspection).
Decide after inspection.
Replace.
Replace with new boards (decide after inspection).
Replace.
Decide after inspection.
Replace.
8-2
8. Maintenance and Inspection
8.2 Diagnosis of Abnormality and
Troubleshooting
AL-
is displayed if a problem occurs during operation. In this case, try to solve the problem by following this advice. If the problem persists, contact our service center.
8.2.1 Servo Motor
[Cause of abnormality, how to inspect, and troubleshooting]
Symptoms Cause
The input of CCWLIM and
CWLIM is off.
How to inspect
Refer to «1.2 System Configuration.»
Troubleshooting
Turn on the input of CCWLIM and
CWLIM.
The motor does not move.
Parameters are incorrectly set.
Check the parameters of the motor, encoder, and encoder type control mode.
The motor has defects.
Locking screws are loose.
Reset the parameters. (Refer to
“Chapter 4 Parameters.”)
Measure the motor lead terminal with a tester (resistance between phases: several ohms).
Replace the motor.
External wiring is incorrect or cables are disconnected.
Check locking screws. Fasten loose screws.
Check the wiring of the motor and the encoder.
Redo the wiring.
Replace cables.
Motor rotation is unstable.
The encoder has defects.
Connection is bad.
Input voltage is low.
Overload occurs.
The ambient temperature is high.
The surface of the motor is contaminated.
Check output waves.
Replace the encoder.
(Contact our service center.)
Check the connection of the motor lead terminal.
Fix bad connection.
Check the input voltage of the drive. Change power.
Check the condition of the machine.
Check the temperature around the motor. (40[℃] or lower)
Remove foreign substances in the rotating unit and provide lubricants (or grease).
Change heat transfer structure.
Install a cooling fan.
Check whether there is any foreign substance on the surface of the motor.
Clean the surface of the motor.
The motor overheats.
Overload occurs.
Reduce load.
Check the load factor of the drive.
Check acceleration/deceleration time.
Increase acceleration/deceleration time.
Replace with a motor of greater capacity.
The magnetic power of the magnets is reduced.
Coupling is bad.
Check counter voltage and voltage waveforms.
Check the tightness of coupling screws and the concentricity of the connection.
A strange sound occurs.
Bearings are abnormal.
Check the vibration and sound of bearings.
Parameters are incorrectly set.
(Inertia, gain, and time constant)
Check parameters.
Replace the motor.
Readjust the coupling.
Contact us.
Refer to “Chapter 4 Parameters.”
8-3
8. Maintenance and Inspection
8.2.2 Servo Drive
If an alarm triggers, the malfunction signal output contact (ALARM) is turned off and the dynamic brake stops the motor.
Alarm
Code
Name
IPM Fault
IPM temperature
Overcurrent
Current offset
Overcurrent (/CL)
Continuous overload
Room temperature
Regen. Overload
Motor cable open
Encoder comm.
Encoder cable open
Encoder data error
Motor setting error
Encoder Z PHASE Open
Under voltage
Overvoltage
Details What to inspect
Overcurrent (H/W)
IPM module overheat
Overcurrent (S/W)
Abnormal current offset
Overcurrent (H/W)
Continuous overload
Drive overheat
Regenerative overload
Check for incorrect drive output wiring / incorrect encoder wiring.
Check the motor ID / drive ID / encoder setting.
Check for equipment clash or confinement.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Replace the drive if [St-23] and [St-24] are 5% or higher of the rated current.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check for equipment clash or confinement.
Check for equipment clash or confinement.
Check load and brake condition.
Check for incorrect drive output wiring and incorrect encoder wiring.
Check the motor ID, drive ID, and encoder setting.
Check the temperature inside the drive [St-19].
Install a cooling fan and check load.
Check input voltage, regenerative braking resistance, and wiring.
Replace the drive.
Motor cable disconnection Motor wiring
Serial encoder communication error
Encoder cable disconnection
Encoder data error
Check for incorrect wiring of the serial encoder cable.
Check whether the encoder cable is disconnected.
Check the [P0-02] setting and encoder wiring.
Motor ID setting error
Encoder Z PHASE cable broken
Low voltage
Check the [P0-00] setting.
Check the encoder cable
Overvoltage
Check input voltage and power unit wiring.
Check input voltage and wiring. Check for braking resistance damage.
Check for excessive regenerative operation.
8-4
8. Maintenance and Inspection
Alarm
Code
Name
RST power fail
Control power fail
Over speed limit
Position following
EMG
Over pulse CMD
Parameter checksum
Parameter range
Invalid factory setting
GPIO setting
Details What to inspect
Check regenerative resistance.
Check power unit wiring and power. Main power failure
Control power failure
Overspeed
Excessive position error
Emergency stop
Pulse command frequency error
Parameter error
Check power unit wiring and power.
Check the encoder, encoder setting, encoder wiring, gain setting, motor wiring, motor ID, electric gear ratio, and speed command scale.
Check the excessive position command pulse setting [P4-11], wiring, limit contact point, gain setting, encoder setting, and electric gear ratio.
Check for equipment confinement and load.
Check the emergency stop contact signal, external 24 V power, and contact points.
Check pulse command frequency from the upper level controller.
Check command pulse type.
Factory reset [Cn-17].
Parameter range error Factory reset [Cn-17].
Invalid factory setting
Output contact point setting error
Factory reset [Cn-17].
Factory reset [Cn-17].
If a warning code is displayed in the current operation status [St-00], the servo drive is operating abnormally. Check what needs to be inspected for the issue.
Warning
State
(CODE)
Name Details and cause What to inspect
RST_PFAIL
LOW_BATT
OV_TCMD
OV_VCMD
OV_LOAD
SETUP
UD_VTG
Main power phase loss
If the [P0-06] DIGIT 2 is set to 1, the main power fails.
Low battery
Excessive torque command
Overspeed command
Overload warning
Capacity setting
Low voltage warning
EMG contact point
More than the maximum torque commands have been entered.
More than the maximum speed commands have been entered.
The maximum overload [P0-13] has been reached.
The electric current capacity of the motor is bigger than that of the drive.
When [P0-06] DIGIT 2 is set to 1, the DC link voltage is 190 V or below.
Check the I/O wiring and [P2-09] setting
EMG
Warning code is displayed to hexadecimal. If the over 2 warning codes occurs, the sum of warning codes will be displayed. For example, if [W-04] Excessive Toque Command and [W-
08] Excessive Speed Command are occurred at the same time, [W-0C] will be displayed.
—
If warning code 80 occurs, “SV-ON” state changes to “SV-OFF” state automatically.
-To avoid warning code 80, wire EMG contact or change EMG input signal logic definition.
(Refer to 4.1 How to Use the Loader)
8-5
8. Maintenance and Inspection
Servo Drive Overload Graphs (400W or below)
(
1) Graph of Overload during Rotation
Load (%)
AL-21
Occurring
Time (sec)
MAX MIN Load (%)
AL-21
Occurring
Time (sec)
100% or below
110
120
130
140
150
160
170
180
190
200
Infinite
55776.0
13944.0
6197.3
3486.0
1183.0
566.0
318.0
198.0
131.0
92.0
89241.6 33465.6
22310.4 8366.4
9915.7 3718.38
5577.6 2091.6
1892.8
905.6
508.8
316.8
209.6
147.2
709.8
339.6
190.8
118.8
78.6
55.2
210
220
230
240
250
260
270
280
290
300
66.8
50.1
38.5
30.3
24.2
4.2
3.8
3.4
3.0
2.7
MAX
106.9
80.2
61.6
48.5
38.7
6.7
6.1
5.4
4.8
4.3
MIN
40.08
30.06
23.1
18.18
14.52
2.52
2.28
2.04
1.8
1.62
Load Curve During Rotation
8-6
Load Factor (%)
8. Maintenance and Inspection
(2) Graph of Overload during Stop
Load (%)
AL-21
Occurring
Time (sec)
MAX MIN
100% or below
110
120
130
140
150
160
170
180
190
200
Infinite
37937.7 60700.3 22762.62
9483.9
4215.1
15174.2
6744.2
5690.34
2529.06
2371.0
926.0
3793.6
1481.6
1422.6
555.6
470.0
273.0
173.0
117.0
66.0
752.0
436.8
276.8
187.2
105.6
282
163.8
103.8
70.2
39.6
Load (%)
AL-21
Occurring
Time (sec)
260
270
280
290
300
210
220
230
240
250
3.8
3.4
3.1
2.7
2.5
50.1
38.5
30.3
9.7
8.3
MAX MIN
80.2 30.06
61.6 23.1
48.5 18.18
15.5 5.82
13.3 4.98
6.1 2.28
5.4 2.04
5.0 1.86
4.3 1.62
4.0 1.5
Load Curve During Stop
Load Factor (%)
8-7
8. Maintenance and Inspection
Servo Drive Overload Graphs (SA type of 100 W or below)
(1) Graph of Overload during Rotation
Load (%)
AL-21
Occurring
Time (sec)
100% or below
110
120
130
140
150
160
170
180
190
200
Infinite
MAX MIN
1696.0 2713.6 1017.6
424.0 678.4 254.4
188.4
106.0
301.5 113.064
169.6 63.6
70.4
26.8
20.6
16.2
13.0
10.5
112.6
42.9
33.0
25.9
20.8
16.8
42.24
16.08
12.36
9.72
7.8
6.3
Load (%)
210
220
230
240
250
260
270
280
290
300
AL-21
Occurring
Time (sec)
5.2
4.4
3.8
3.3
2.9
2.6
2.3
2.0
1.8
1.6
MAX
8.3
7.0
6.1
5.3
4.6
4.2
3.7
3.2
2.9
2.6
MIN
3.12
2.64
2.28
1.98
1.74
1.56
1.38
1.2
1.08
0.96
Load Curve during Rotation 100 W or Lower SA Type
8-8
Load Factor (%)
8. Maintenance and Inspection
(2) Graph of Overload during Stop
Load (%)
AL-21
Occurrin g Time
(sec)
100% or below
Infinite
110
120
130
140
150
160
170
180
190
200
1372.8
343.2
152.5
85.8
58.6
16.2
13.0
10.5
8.7
7.2
MAX
2196.5
549.1
244.0
137.3
93.8
25.9
20.8
16.8
13.9
11.5
MIN
823.68
205.92
91.518
51.48
35.16
9.72
7.8
6.3
5.22
4.32
Load (%)
AL-21
Occurring
Time
(sec)
MAX
210
220
230
240
250
260
270
280
290
300
3.9
3.4
3.0
2.6
2.3
2.0
1.8
1.6
1.5
1.3
6.2
5.4
4.8
4.2
3.7
3.2
2.9
2.6
2.4
2.1
MIN
2.34
2.04
1.8
1.56
1.38
1.2
1.08
0.96
0.9
0.78
Load Curve during Stop 100 W or Lower SA Type
Load Factor (%)
8-9
8. Maintenance and Inspection
Servo Drive Overload Graphs (750W, 1.0KW)
(1) Graph of Overload during Rotation
Load
(%)
AL-21
Occurri ng Time
(sec)
MAX MIN
100% or below
110
Infinite
105800 169280.0 63480
120 26450 42320.0 15870
170
180
190
200
130
140
150
160
11755 18808.0
6612.5 10580.0
2244.0
1073.6
3590.4
1717.8
603.2
413.6
273.6
201.0
965.1
661.8
437.8
321.6
7053
3967.5
1346.4
644.16
361.92
248.16
164.16
120.6
Load
(%)
270
280
290
300
210
220
230
240
250
260
AL-21
Occurri ng Time
(sec)
119.0
89.2
49.3
38.8
31.0
7.0
6.4
5.7
5.0
4.6
MAX
190.4
142.7
78.9
62.1
49.6
11.2
10.2
9.1
8.0
7.4
MIN
71.4
53.52
29.58
23.28
18.6
4.2
3.84
3.42
3
2.76
Load Curve during Rotation
Load Factor (%)
8-10
8. Maintenance and Inspection
(2) Graph of Overload during Stop
Load (%)
AL-21
Occurrin g Time
(sec)
MAX MIN
100% or below
Infinite
110 37937.7 60700.3 22762.62
120 9483.9 15174.2 5690.34
130 4215.1
140 2371.0
6744.2
3793.6
2529.06
1422.6
150
160
170
180
190
200
926.0
470.0
273.0
173.0
117.0
66.0
1481.6
752.0
436.8
276.8
187.2
105.6
555.6
282
163.8
103.8
70.2
39.6
Load
(%)
250
260
270
280
290
300
210
220
230
240
AL-21
Occurri ng Time
(sec)
50.1
38.5
30.3
9.7
8.3
3.8
3.4
3.1
2.7
2.5
MAX
80.2
61.6
48.5
15.5
13.3
6.1
5.4
5.0
4.3
4.0
MIN
30.06
23.1
18.18
5.82
4.98
2.28
2.04
1.86
1.62
1.5
Load Curve during Stop
Load Factor (%)
8-11
8. Maintenance and Inspection
Servo Drive Overload Graphs (2.0KW, 3.5kW, 5.0kW)
(1) Graph of Overload during Rotation
Load(%)
AL-21
Occurring
Time(sec)
100% or below
110
Infinite
4832.0
120
130
140
150
160
170
180
190
200
1208.0
536.9
302.0
257.0
229.0
200.0
165.0
131.0
103.0
MAX MIN
7731.2
1932.8
2899.2
724.8
859.0 322.1333
483.2 181.2
411.2
366.4
320.0
264.0
209.6
164.8
154.2
137.4
120
99
78.6
61.8
Load(%)
AL-21
Occurring
Time(sec)
210
220
230
240
250
260
270
280
290
300
66.8
50.1
38.5
30.3
24.2
4.2
3.8
3.4
3.0
2.7
MAX
106.9
80.2
61.6
48.5
38.7
6.7
6.1
5.4
4.8
4.3
MIN
40.08
30.06
23.1
18.18
14.52
2.52
2.28
2.04
1.8
1.62
Load Curve During Rotation
8-12
Load Factor (%)
8. Maintenance and Inspection
(2) Graph of Overload during Stop
Load(%)
AL-21
Occurring
Time (sec)
MAX
100% or below
110
120
130
140
150
160
170
180
190
200
Infinite
4832.0
1208.0
536.9
302.0
154.0
110.0
90.0
75.0
61.0
52.0
MIN
7731.2
1932.8
859.0
483.2
246.4
176.0
144.0
120.0
97.6
83.2
2899.2
724.8
322.1333
181.2
92.4
66
54
45
36.6
31.2
Load(%)
AL-21
Occurring
Time
(sec)
MAX
210
220
230
240
250
260
270
280
290
300
44.0
36.0
30.3
9.7
8.3
3.8
3.4
3.1
2.7
2.5
70.4
57.6
48.5
15.5
13.3
6.1
5.4
5.0
4.3
4.0
MIN
26.4
21.6
18.18
5.82
4.98
2.28
2.04
1.86
1.62
1.5
Load Curve During Stop
Load Factor (%)
8-13
9. Appendix
9 Appendix
9.1 Motor Type and ID (to be continued on the next page)
25
26
27
28
61
62 1500
300
450
550
650
900
63 2200
64 3000
65 600
66 1100
67 1600
68 2200
69 300
70
71
600
900
72 1200
73
74
450
850
11
12
13
15
16
ID
1
2
3
5
21
22
400
600
23 800
24 1000
Watt
30
50
100
150
100
200
400
200
400
SC03D
SC05D
SC06D
SC07D
SE09A
SE15A
SE22A
SE30A
SE06D
SE11D
SE16D
SE22D
SE03M
SE06M
SE09M
SE12M
SE05G
SE09G
Model Name
SAR3A
SAR5A
SA01A
SA015A
SB01A
SB02A
SB04A
HB02A
HB04A
SC04A
SC06A
SC08A
SC10A
Hollow type
Hollow type
Notes ID Watt
75 1300
76 1700
77 900
78 1500
81 3000
82 5000
85 2200
190 3500
87 5500
88 7500
89 1200
90 2000
192 3000
92 4400
93 1800
191 2900
95
96
4400
6000
111 2200
193 3500
113 5500
114 7500
115 11000
121 1200
122 2000
195 3000
124 4400
125 6000
131 1800
194 2900
133 4400
134 6000
Model Name
SE13G
SE17G
HE09A
HE15A
SF30A
SF50A
SF22D
LF35D
SF55D
SF75D
SF12M
SF20M
LF30M
SF44M
SF20G
LF30G
SF44G
SF60G
SG22D
LG35D
SG55D
SG75D
SG110D
SG12M
SG20M
LG30M
SG44M
SG60M
SG20G
LG30G
SG44G
SG60G
Notes
Hollow type
Hollow type
9-15
9. Appendix
725 300
726 500
727 600
728 700
761 900
762 1500
763 2200
764 3000
765 600
766 1100
767 1600
768 2200
769 300
ID Watt
135 8500
136 11000
137 15000
711 100
712 200
713 400
721 400
722 600
723 800
724 1000
770 600
771 900
772 1200
773 450
774 850
775 1300
776 1700
FE22A
FE30A
FE06D
FE11D
FE16D
FE22D
FE03M
FC03D
FC05D
FC06D
FC07D
FE09A
FE15A
Model Name
SG85G
SG110G
SG150G
FB01A
FB02A
FB04A
FC04A
FC06A
FC08A
FC10A
FE06M
FE09M
FE12M
FE05G
FE09G
FE13G
FE17G
9-16
Notes
FF60G
FF75G
FG22D
FG35D
FG55D
FG75D
FG12M
FG20M
FG30M
FG44M
FG20G
FG30G
Model Name
FF30A
FF50A
FF22D
FF35D
FF55D
FF75D
FF12M
FF20M
FF30M
FF44M
FF20G
FF30G
FF44G
795 4400
796 6000
804 7500
811 2200
812 3500
813 5500
814 7500
821 1200
822 2000
823 3000
824 4400
831 1800
832 2900
ID Watt
781 3000
782 5000
785 2200
786 3500
787 5500
788 7500
789 1200
790 2000
791 3000
792 4000
793 1800
794 2900
Notes
9. Appendix
611
612
613
621
ID
601
602
603
622
623
Watt
63
126
188
126
251
377
251
461
712
632 838
633 1257
641 1728
642 2513
Model Name
DB03D
DB06D
DB09D
DC06D
DC12D
DC18D
DD12D
DD22D
DD34D
DE40D
DE60D
DFA1G
DFA6G
Notes ID Model Name Watt Notes
9-17
9. Appendix
9.2 Test Drive Procedure
Thank you for purchasing our product. Conduct test drive following the process described as follows:
Caution
In order to prevent accidents, conduct an operation test and test drive in manual JOG operation when there is no load (the motor exists without any coupling or belt) after attaching the servo motor to your equipment. Afterwards, connect the load and conduct the final test drive.
1. Product check: Check the name tag to verify that the product matches the model you ordered.
(Refer to «Chapter 1.1.»)
A name tag is attached to the right side of the product. (For motors, right side of the shaft)
Main check point: Product capacity and main options
2. Power connection: Wire single-phase AC 220 [V] to control power input C1 and C2, and threephase AC 220 [V] to main power input L1, L2, and L3. (Refer to «Chapter 3.2.»)
The product runs even if you input single-phase AC 220 [V] as the main power. However, such wiring reduces torque and the lifespan of the product. Be sure to input three-phase AC
220 [V].
3. Signal cable wiring: Wire CN1 (I/O), CN3, CN4, CN5 (communication), CN2 encoder cable, and motor power cable per operation mode. (Refer to «Chapter 1.2 and Chapter 3.»)
Be sure to use robotic cables if the motor requires movement.
Be sure to use twist shield cables as signal and encoder cables.
Be sure to fasten bolts after locking the connector (drive direction) of the encoder cable.
Be sure not to change the U, V, and W wiring of the motor power cable.
9-18
9. Appendix
4. Control power supply: Supply single-phase AC 220 [V] to C1 and C2.
Be sure to check external input voltage before turning on the servo drive.
Check whether the display is normal. (There should be no break on the seven segments or alarm output.)
5. Motor ID setting: Set motor ID in the parameter [P0-00] and encoder pulse in the parameter [P0-
02] respectively. (Refer to «Appendix 1.»)
(※ The serial encoder is automatically set.)
Easy check: Check the motor ID and encoder pulse on the product name tag attached on the right side of the motor.
Check whether the external control signal input is normal.
For information on how to handle the keys of the servo drive loader, refer to «4.1 Loader
Handling.»
6. Main power supply: Supply three-phase AC 220 [V] to L1, L2, and L3.
Be sure to check external input voltage before turning on the servo drive.
When power is supplied, the red lamp on the charge LED at the bottom of the loader window comes on.
If an alarm is displayed, it indicates that there is an error in the power circuit, wiring of the servo motor, or encoder wiring.
Turn off power and fix the error using the information in «[Alarm Codes and Descriptions].»
9-19
9. Appendix
7. Test drive: Start [Cn-00] by pressing [SET] to conduct test drive manually. (JOG operation speed can be changed in [P3-12].)
* [Up]: Motor forward rotation (CCW) → Only operate while you hold down the key.
* [Down]: Reverse motor rotation (CW) → Only operate while you hold down the key.
During normal operation, the power input of the servo drive and wiring among motors are verified as normal.
If the alarm is displayed, it indicates an error in the power circuit, wiring of the servo motor, or encoder wiring. Turn off power and fix the error using the information in «[Alarm Codes and Descriptions].»
Speed operation setting
9. Operation mode setting: Set operation mode in [P0-03].
0: Torque control operation
1: Speed control operation
2: Position control operation
3: Speed/position control operation
4: Speed/torque control operation
5: Position/torque control operation
Position operation setting
10. Perform speed operation with the upper level controller by adjusting the following parameter data.
a. Speed operation setting parameter: [P3-
01]~[P3-20]
b. Input/output setting parameter: [P2-00]~[P2-
22]
c. Control setting parameter:
[P1-00]~[P1-27]
(Refer to “Appendix 1.”)
9-20
11. Perform position operation with the upper level controller by adjusting the following parameter data.
a. Position operation setting parameter: [P4-
00]~[P4-14]
b. Input/output parameter setting parameter:
[P2-00]~[P2-22]
c. Control parameter setting parameter:
[P1-00]~[P1-27]
(Refer to “Appendix 1.”)
9. Appendix
10-1
How to Set Control Parameters [Gain Tuning]
1) Auto gain tuning
→ Perform automatic gain tuning by pressing [SET] in [Cn-05].
→ If the load condition of the equipment is not directly related to motor shaft, it is hard to perform accurate gain tuning because of characteristics of automatic gain tuning. Therefore, manual gain tuning is recommended.
2) Manual gain tuning
→ Set inertia ratio [P1-00], speed proportional gain [P1-06], and speed integral time constant
[P1-08] as the standard gain.
→ Increase inertia ratio [P1-00] gradually until the motor starts vibrating.
→ For more stable control, increase speed proportional gain [P1-06] a little at a time until the motor vibrates slightly. If you increase speed integral time constant [P1-08], the motor stops vibrating.
→ Increase speed integral time constant [P1-08] in the last stage and the motor will stop vibrating. However, it takes as much time to reach normal state as the time constant set in responsiveness. If you set speed proportional gain [P1-06] too big in an effort to attain satisfying responsiveness, overshoot might occur. The allowed range of overshoot is generally 10 percent or below.
11-1
How to Set Electric Gear Ratio [P4-01]~[P4-05]
→ Electric gear ratio = transmission per input pulse X number of pulses per motor rotation / transmission per motor rotation
9-21
9. Appendix
Quality Assurance
Product Name
Model Name
LS Mecapion Servo Drive
L7 Series
Date of
Installation
Warranty
Period
Customer
Name
Address
Phone
Name
Address Retailer
Phone
This product was produced under strict quality control and test procedures of LS Mecapion technicians.
Its term of warranty is 12 months after the date of installation. If no date of installation is written, the warranty is valid for 18 months after the date of manufacture. However, this term of warranty may change depending on contract terms.
Free Technical Support
If the drive malfunctions while properly used and the product warranty has not expired, contact one of our agencies or designated service centers. We will repair the drive free of charge.
Paid Technical Support
Technical support is not free if:
Malfunction was caused by the intentional or unintentional negligence of the consumer.
Malfunction was caused by inappropriate voltage or defects of machines connected to the product.
Malfunction was caused by Act of God (fire, flood, gas, earthquake, etc.).
The product was modified or repaired in a place that is not our agency or service center.
The LS Mecapion name tag is not attached to the product.
The warranty has expired.
※ Please fill out this quality assurance form after installing the servo and send the form to our quality
assurance department (the person in charge of technical support).
Send to: LS Mecapion Quality Assurance Service
Phone: +82 53 593-0066 (154) Fax: +82 53 591-8614
Visit the LS Mecapion homepage (http://www. lsmecapion.com) for useful information and services.
9-22
9. Appendix
User Manual Revision History
6
7
8
9
10
11
4
5
Number
1
2
3
Issued Year and
Month
2011.10.19
2011.12.19
2012.01.09
2012.02.05
2012.03.01
2012.04.09
Revised Content
Electronic gear ratio
Option specification name
Add 750W, 2KW
Position command filter time constant,
Warning code description
Brake resistance, Motor specification
Add FLAT Type Motor, Revise communication info correct minor typo
Version
Number
1.0
1.1
1.2
1.3
1.4
1.5
2012.06.19
2012.09.10
2012.11.15
2013.02.13
2013.04.05
Modify electric gear ratio
Refer to history of modification
Add Multi turn encoder and modify parameter
Add 5kW Drive Info
Add motor specific chart and option
1.6
1.7
1.8
1.9
2.0
Green Management
LS Mecapion considers environment protection as a high priority of management, and its employees try their best to protect the Earth.
Notes
Product Disposal
The LS Mecapion servo drive is environmentally friendly.
It can be broken down to iron, aluminum, bronze, and synthetic resin (cover), and separately recycled.
9-23
- Назад
- 1
- 2
- Далее
- Страница 1 из 2
Рекомендуемые сообщения
-
#1
Вышел из строя энкодер(показывал ошибку Al.16), был приобретён точно такой же энкодер, после установки сервопривод показывает Al.1A
Насколько я понимаю это ошибка несоответствия привода и двигателя, при отключении проверки соответствия в параметре 183,стал выкатывать ошибку Al.20
Поделиться сообщением
Ссылка на сообщение
-
#2
Далее вопрос: при установке нового энкодера нужны ли танцы с бубном? Или всё и так должно нормально работать?
Поделиться сообщением
Ссылка на сообщение
-
#3
На Mицубиши MR стоят не просто энкодеры , а интеллектуальные программируемые энкодеры, и то что вы установили такой же по шильдику не значит что он такой же точно как у вас был старый. Его надо программировать на конкретный двигатель и сервопривод. Вот такие вот дела.
Поделиться сообщением
Ссылка на сообщение
-
#4
отключать проверку параметром 183 — плохая идея. в энкодере зашит идентификатор мотора, по которому усилитель определяет все его электрические и механические параметры. если энкодер от другого мотора (а он от другого, т.к. AL.1A) — работать (нормально) не будет. можно попробовать вручную прописать константы мотора в параметры 157-178. но сначала разобраться с ошибкой 20…
Поделиться сообщением
Ссылка на сообщение
-
#5
Добрый день форумчане!
У меня подобная проблема, сервак Mitsubishi S MR-E-40AG-KH00, в определенном месте уходит в ошибку AL.20 до этого уходил в AL.16, думаю кабель где-то переламывается, сейчас будем. звонить.
Если энкодер умрёт, я думаю проблем не возникнет с перенастройкой если двигатель с энкодером + кабель новый установить ?
Изменено пользователем RegEdit
Поделиться сообщением
Ссылка на сообщение
-
#6
27 минут назад, RegEdit сказал:
я думаю проблем не возникнет с перенастройкой если двигатель с энкодером + кабель новый установить ?
Не возникнет.
Поделиться сообщением
Ссылка на сообщение
-
#7
А не проще только кабель перепаять новый, раз на него грешите.
Поделиться сообщением
Ссылка на сообщение
-
#8
21.05.2019 в 17:27, Pavel47 сказал:
А не проще только кабель перепаять новый, раз на него грешите.
Не факт, что кабель, может и энкодер уже совсем плохой стал…А кабель звонится 4 из 4-х контактов..
Поделиться сообщением
Ссылка на сообщение
-
#9
На сколько я помню, там должно быть 6 проводов.
Поделиться сообщением
Ссылка на сообщение
-
#10
28.05.2019 в 13:49, Pavel47 сказал:
На сколько я помню, там должно быть 6 проводов.
Пинов там на сервак приходит 10, на энкодер 9, звонятся 4, из всех этих 10-ти пинов…
Поделиться сообщением
Ссылка на сообщение
-
#11
По другому, более понятно, внутрь энкодера заходит 6 проводов, два питание и четыре связь с усилителем, ну и ещё экран само собой.
Изменено пользователем Pavel47
Поделиться сообщением
Ссылка на сообщение
-
#12
Доброго времени суток форумчане! Вопрос всё по теме, что я писал выше.. Вообщем мой сервак уходит в ошибку, AL16 при пробуждении, либо AL20, либо при движении другой оси, казалось бы кабель т. к они физически рядом… Но произвёл «ракировку» кабелей т. е. на двигателях переставил кабель энкодера и соответственно на серводрайверах сделал ракировку, сервак в ошибку ушёл(тот же, значит проблема в двигателе) . Питание не перекидывал и провода к ЧПУ тоже. Умер энкодер двигателя по логике вещей, верно? Смысла новый энкодер брать нет, так как это танцы с бубном. У минсубиши брать нового образца серво и двигу тоже накладно для предприятия, как вариант на аля Ali… Что кто посоветует. Заранее спасибо!
Изменено пользователем RegEdit
Поделиться сообщением
Ссылка на сообщение
-
#13
4 минуты назад, RegEdit сказал:
Но произвёл «ракировку» кабелей т. е. на двигателях переставил кабель энкодера и соответственно на серводрайверах сделал ракировку, сервак в ошибку ушёл(тот же, значит проблема в двигателе) . Питание не перекидывал и провода к ЧПУ тоже.
Т.е. кабель энкодера от мотора у Вас подключён к одной серве, а провода питания к другой? Я правильно понял или нет?
Поделиться сообщением
Ссылка на сообщение
-
#14
ТЕ кабеля проверили и усилители тоже, всё уперлось в энкодер всё таки. Мы заказывали новый энкодер у официалов года три назад на этот тип серваков, но уже в то время это было трудно так как привод старый и уже не выпускается давно, но у них на складе был старый энкодер, нам его запрограммировали под наш двигатель и продали за очень не гуманную цену. Работает. На Али кот в мешке.
Поделиться сообщением
Ссылка на сообщение
-
#15
если мотор стандартный (HF-KE43?) проще всего поменять мотор. US$250 новый с ebay.
Поделиться сообщением
Ссылка на сообщение
-
#16
12 часов назад, sergeijob сказал:
Т.е. кабель энкодера от мотора у Вас подключён к одной серве, а провода питания к другой? Я правильно понял или нет?
Да по факту поменяли чисто кабель энкодера, то есть перекунули концы там и там… То есть кабель живой, а если на серве концы не перекидывать, то один в AL16, Другой в AL51 уходит..
10 часов назад, Merkwurdigliebe сказал:
если мотор стандартный (HF-KE43?) проще всего поменять мотор. US$250 новый с ebay.
HF-KN43, Да это и хочу сделать, тоже на ebay как-то страшно заряжать, спросить не с кего будет.
Иногда в AL20 проблемная серва уходит при пробуждении, тоже по энкодеру аларм.
Поделиться сообщением
Ссылка на сообщение
-
#17
46 минут назад, RegEdit сказал:
HF-KN43
$170 б/у, пишут, что проверенные. скорее всего так и есть..
вообще, ошибка энкодера — две причины. грязь и/или убитые подшипники. загрязнение часто встречается на моторах, которые прикручены к редукторам. несколько штук попадалось с загаженными какой-то липкой субстанцией экодерами. может они воздух со смазкой из редуктора насасывают при охдаждении, не знаю… если разбиты подшипники или посадочные места в крышках — ротор может начать тереться о статор, ободрать полимерное покрытие и загадить все внутри пылью от разрушающихся магнитов.
если подшипники живые, можно аккуратно снять крышку энкодера и посмотреть внимательно на внутренности не замаслено ли…
Поделиться сообщением
Ссылка на сообщение
-
#18
Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?
1 час назад, Merkwurdigliebe сказал:
если подшипники живые, можно аккуратно снять крышку энкодера и посмотреть внимательно на внутренности не замаслено ли…
Дак если взорвать крышку энкодера это же всё, он более не рабочий будет либо его трудно будет отпозиционировать…
Изменено пользователем RegEdit
Поделиться сообщением
Ссылка на сообщение
-
#19
Только что, RegEdit сказал:
либо его трудно будет отпозиционировать
Если сделаете на корпусе энкодера и мотора метку, скажем шилом, и потом при установке совместите, то есть шанс, что позиционировать его не придётся.
Поделиться сообщением
Ссылка на сообщение
-
#20
2 часа назад, sergeijob сказал:
Если сделаете на корпусе энкодера и мотора метку, скажем шилом, и потом при установке совместите, то есть шанс, что позиционировать его не придётся.
3 часа назад, RegEdit сказал:
Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?
Смотрите, я подключил другой двигатель к драйверу, тот же серводрайвер опять в ошибке, получается он не видит вообще никакой энкодер… Так как я отправляю в референс ось Z(которая давала ошибку), а так как кабель интерфейса тоже подключен к другому серводрайверу едет в референс ось X. Значит что-то с самим серводрайвером всё-таки?
Поделиться сообщением
Ссылка на сообщение
-
#21
Поделиться сообщением
Ссылка на сообщение
-
#22
8 часов назад, RegEdit сказал:
Перекинули полностью кабеля (двигатель, энкодер и ЧПУ (CN1,CN2,CNP2) тоже с одной оси на другую и соответственно и W V U , входные и PE на серводрайверы не меняли. По идее в ошибку должен был уйти второй серво, но этого не случилось и в ошибке всё также первый, хотя двигатель другой к нему подключен, следовательно проблема в самом серводрайвере я полагаю?
тады ой, значит усилок. с таким не встречался. я бы посмотрел наличие 5В питания на разъеме энкодера. если в порядке, даже не знаю — ломаться там особо нечему. на входе в усилке стоит диф приемник rs-422 и все…
а про энкодер — вдруг кому еще пригодится. выглядит он так:
Изменено пользователем Merkwurdigliebe
Поделиться сообщением
Ссылка на сообщение
-
#23
11 часов назад, Merkwurdigliebe сказал:
тады ой, значит усилок. с таким не встречался. я бы посмотрел наличие 5В питания на разъеме энкодера
Вот и Я понять не могу, почему так. Обычно ошибка энкодера на любом серваке это либо кабель, либо уже сам энкодер двигателя.
Поделиться сообщением
Ссылка на сообщение
-
#24
Замерил напряжение от усилителя(серводрайвера) на последних пинах по +2.4~2.6V.
То есть питание на энкодер всё-таки идет…
Поделиться сообщением
Ссылка на сообщение
-
#25
RegEdit, а напряжение питания с рабочей сервой сравнили?
Поделиться сообщением
Ссылка на сообщение
- Назад
- 1
- 2
- Далее
- Страница 1 из 2
Для публикации сообщений создайте учётную запись или авторизуйтесь
Вы должны быть пользователем, чтобы оставить комментарий
Войти
Уже есть аккаунт? Войти в систему.
Войти
-
Последние посетители
0 пользователей онлайн
Ни одного зарегистрированного пользователя не просматривает данную страницу
(Ocr-Read Summary of Contents of some pages of the LSIS XDL-L7SA002X Document (Main Content), UPD: 02 February 2023)
-
37, LSIS XDL-L7SA002X 2. Installation 2-5 2.2.3 Power Wiring Make sure that the input power voltage is within the allowed range. Caution Overvoltage can damage the drive. Connecting commercial power to the U, V and W terminals of the drive may cause damage. Be sure to supply power via L1, L2 and L3 terminals. Connect short-circuit pins to the B and BI terminals. For external regenerative resistance, use standard resistance for the B+ and B terminals after …
-
22, 1. Product Components and Signals 2-10 1.2.2 Wiring Diagram of the Entire CN1 Connector STOP 48 EMG 18 CWLIM 19 CCWL IM 20 MODE ALMRST PCON 17 P-CLR GAIN2 SVON 47 ALARM+38 ALARM-39 READY+40 READY-41 ZSPD43 INSPD INPOS 45 50+24V IN GND2424 ALO016 ALO115 ALO214 GND2425 SPDCOM 27 GND 8 TRQCOM 1 GND 8 DC 24V CN1 -10V ~ +10V -10V ~ +10V ( DIA ) ( DI9 ) ( DI8 ) ( DI 7 ) ( DI6 ) ( DI 5 ) ( DI4 ) ( DI3 ) ( DI2 ) ( DI1 ) ( DO1 ) ( DO2 ) ( DO3 ) ( DO4 ) ( DO5 …
-
40, 3. Wiring Method 3-2 3.1.2 XDL-L7 Drive Block Diagram [XDL-L7SA008□ — XDL-L7SA035□] NOTE 1) If you use a DC reactor, connect to the PO and PI pins. If you use external regenerative resistance, connect to the B+ and B pins after you remove the B and BI short-circuit pins. The XDL-L7SA008 and XDL-L7SA035 models are cooled by a DC 24 [V] cooling fan.
… -
177, 6. Communication Protocol 6-11 Communicatio n Address Parameter Name Parameter Number Material Type (Decimal Number) Operation Status Display Parameter 36 Input contact status St — 14 UINT16 38 Output contact status St — 15 UINT16 40 Single-turn data — L St — 16 INT32 42 Single-turn data — H 44 Single-turn data (degree) St — 17 UINT16 46 Multi-turn data — L St — 18 …
-
39, 3. Wiring Method 3-1 3 Wiring Method 3.1 Internal Block Diagram 3.1.1 XDL-L7 Drive Block Diagram [XDL-L7SA001□ — XDL-L7SA004□] If you use a DC reactor, connect to the PO and PI pins. If you use external regenerative resistance, connect to the B+ and B pins after removing the B and BI short- circuit pins.
… -
91, 4. Parameters 4-23 (3) Output Signal Logic Definition Output signal logic definition: [P2-10] The logic of output signals as shipped from the factory is as follows. Signal Name Input Signal (Initial Name) CN1 Pin Default Allocation Number Contact B Output Signal Logic Definition Default Setting Parameter Allocation 45 44 43 40 /41 38 /39 Alarm [P2-10].Set Digit 1 ALARM 0 [P2-10] 0x10110 Servo Ready [P2-10]. Set Digit…
-
27, 1. Product Components and Signals 2-15 1.2.7 Example of Speed/Torque Operation Mode Wiring STOP 48 EMG 18 CWLIM 19 CCWL IM 20 ALMRST 17 PCON GAIN2 T_LMT SVON 47 ALARM+38 ALARM-39 READY+40 READY-41 50+24V IN GND2424 ALO016 ALO115 ALO214 GND2425 SPDCOM 27 GND 8 TRQCOM 1 GND 8 DC 24V CN1 -10V ~ +10V -10V ~ +10V ( DIA ) ( DI9 ) ( DI8 ) ( DI 7 ) ( DI6 ) ( DI 5 ) ( DI4 ) ( DI3 ) ( DI 2 ) ( DI1 ) ( DO1 ) ( DO2 ) ( DO3…
-
200, LSIS XDL-L7SA002X 7. Product Specifications 7-16 Ambient temperature 0~40°C Ambient humidity 20~80[%]RH(no condensation) Atmosphere No direct sunlight, corrosive gas, or combustible gas Anti-vibration Vibration acceleration 49[m/s2](5G) Weight [kg] 0.9 1.2 1.7 5.8 7.4 Rotation speed – Torque Characteristics ■ Product Features Servo Motor Type (XML-) FB01A FB02A FB04A FC04A FC06A Applicable Drive (XDL-L7A) XDL- L7□A001 XDL- …
-
34, 2. Installation 2-2 2.1.4 Load Device Connection For coupling connection: Make sure that the motor shaft and the load shaft are aligned within the tolerance. For pulley connection: Flange Lateral Load Axial Load Notes N kgf N kgf 40 148 15 39 4 60 206 21 69 7 80 255 26 98 10 130 725 74 362 37 180 1548 158 519 53 220 1850 189 781 90 2.1.5 Cable Installation In case of vertical installation, make sure that no oil or water flows into…
-
174, 6. Communication Protocol 6-8 (4) Write Multi Register (0x10) Writes values on the continuous register block (16-bit data). Sending Packet Normal Receiving Packet Byte Content Value Byte Content Value 0 Node ID 0x00 0 Node ID 0x00 1 Function 0x10 1 Function 0x10 2 Starting Address Hi 0x00 2 Starting Address Hi 0x00 3 Starting Address Lo 0x01 3 Starting Address Lo 0x01 4 Quantity of Registers Hi 0x00 4 Quantity of Registers…
-
4, Table of Contents iv Safety Precautions Safety precautions are categorized as either Danger or Caution, depending on the seriousness of the precaution. Precautions Definition Danger Failure to comply with guidelines may cause death or serious injury. Caution Failure to comply with guidelines may cause injury or property damage. Certain conditions that are listed as Caution may also result in serious injury. Electric Shock Precautions …
-
220, 7. Product Specifications 7-36 SE Series | XML-SE09A, SE06D, SE05G, SE03M, XML-SE15A, SE11D,SE09G,SE06M, XML-SE22A, SE16D, SE13G, SE09M, XML-SE30A, SE22D, SE17G, SE12M Name External Dimensions Key Dimensions Weight (kg) L LM LC S T W U SE09A, SE06D, SE05G, SE03M 201.3(239.3) 143.3(181.3) 93.8(93.6) 19 5 5 3 5.5(7.04) SE15A, SE11D, SE09G, SE06M 225.3(263.3) 167.3(205.3) 117.8(117.6) 19 5 5 3 7.54(9.08) SE22A, SE16D, SE13G, SE09M 249.3(287.3) 191.3(…
-
191, 7. Product Specifications 7-7 Atmosphere No direct sunlight, corrosive gas, or combustible gas. Anti-vibration Vibration acceleration 49[m/s2](5G) Weight [kg] 1.9 2.5 3.2 3.9 Rotation speed – Torque Characteristics Product Features Servo Motor Type (XML-) SE09A SE15A SE22A SE30A SE06D SE11D Applicable drive (XDL-L7A) XDL- …
-
149, LSIS XDL-L7SA002X 5. Handling and Operation 5-7 5.2.4 Reading Alarm History [Cn-03] Check the saved alarm history. [Example of getting alarm history] Order Loader Displays Keys to Use What to Do 1 Displays the speed control mode with main power and control power permitted. 2 Press [MODE] to move to [Cn-00]. 3 Press [UP] or [DOWN] to move to [Cn-03]. 4 Press [SET] to start reading alarm history. 5 Press…
-
105, 4. Parameters 4-37 Parameter Unit Initial Details Applica tion mode Code Name Minimum Maximum P1-22 Torque control speed limiting mode — 0 Sets speed limit mode during torque control. 0: Limit to [P1-23]. 1: Maximum motor speed 2: Analog speed command 3: Limited to the smaller value between the value of [P1-23] and the analog speed command. T Velocity limit switch (torque control) 0 3 P1-23 Speed limit [RPM] 2000 …
-
203, 7. Product Specifications 7-19 [gfcms2] 5.77 10.39 14.92 19.43 5.77 10.39 Allowed load inertia Motor inertia x 10 Rated power rate [kW/s] 14.47 22.38 33.59 47.85 14.49 27.08 Speed and position detector Standard Serial Type 19 [bit] Option X Specifications and features Protection method Fully closedself-cooling IP65(excluding axis penetration) Time rating Continuous Ambient temperature 0~40[°C] Ambient…