Возможные причины вычислительных ошибок

Библиографическое описание:


Смородинова, Л. В. Причины вычислительных ошибок младших школьников / Л. В. Смородинова. — Текст : непосредственный // Молодой ученый. — 2016. — № 5.6 (109.6). — С. 93-94. — URL: https://moluch.ru/archive/109/27017/ (дата обращения: 22.09.2023).



В статье рассматриваются различные аспекты возникновения вычислительных ошибок младших школьников. Перечислены типы вычислительных ошибок, приведены возможные пути устранения вычислительных ошибок.

Ключевые слова: вычислительные ошибки, содержание ошибок, причины ошибок.

При формировании способов вычислений у младших школьников часто возникают типичные ошибки, поскольку процесс формирования является сложным и длительным. Под типичной вычислительной ошибкой в литературе понимают полученный несколькими учениками результат вычислений, неадекватный объективному (А.К. Артемов, П.Я. Шеварев). Успех обучения зависит от своевременного предупреждения таких ошибок [2]. Это возможно лишь в случае выявления их причин возникновения.

Различные аспекты причин ошибок, допускаемых школьниками, были исследованы в диссертациях Г. А. Асанова, Д.И. Икрамова, И.М. Кирилецкого [4], А.Г. Муханова, В.Г. Прочухаева, Д.А. Скрыпника, А.Ф. Сычикова и др. В этих работах перечислены типы допускаемых ошибок [1]. Приведено большое количество примеров ошибочных рассуждений и связанных с ними неверных решений [2].

Достаточно подробно исследованы отклонения действий учащихся от верных.

В то же время, можно констатировать, что в приведенных источниках предлагается анализ ошибок, проведенный с позиций их содержания. Однако он не гарантирует исчезновения типичных ошибок при дальнейшей работе [3].

Многие исследователи единодушны в том, что чаще всего причина появления ошибки имеет методический характер. Для анализа причин появления типичных ошибок в процессе вычислений воспользуемся методикой, разработанной А.К. Артемовым.

Будем различать содержание ошибки и причину ее возникновения. Содержание ошибки составляет то, что объективно неверно, неадекватно выполнено в действиях учащихся. Причиной ошибки называется некоторое обстоятельство (или их совокупность), повлекшие выполнение неадекватного действия. Например, если учащийся выполняет сложение чисел следующим образом: 54 + 3 = 84, то содержание ошибки составляет нарушение алгоритма сложения двузначного и однозначного чисел (вместо прибавления второго слагаемого к единицам первого слагаемого ученик прибавляет второе слагаемое к десяткам первого слагаемого). Причина ошибки остается пока неясной.

Методика выявления причин ошибок, предложенная названными авторами, предусматривает сопоставление двух ситуаций: той, в которой ученик допустил ошибку, и той, в которой он выполнил верное действие. В качестве последней может быть взят процесс объективно выполненного действия. Эти ситуации должны быть сходны (или различаться) по одному существенному компоненту. При сопоставлении ситуаций сначала устанавливается, какие условия необходимы и достаточны для верно выполненного действия. Затем путем анализа условий обучения выявляются обстоятельства, благоприятствующие зарождению ошибки. Для приведенного примера процесс объективно верного выполнения сложения будет таким: 54+3=(50+4)+3=50+(4+3)=50+7=57. При сопоставлении ошибочно и верно выполненных действий возникают следующие предположения:

− Ученик не заменил двузначное число суммой разрядных слагаемых (причиной этого может служить неполная ориентировочная основа действия сложения двузначного и однозначного чисел).

− Ученик не включил в обобщенную ориентировочную основу действия существенный для сложения признак «можно складывать только величины, измеренные в одних мерках».

Оба предположения указывают на то, что у ученика, совершившего ошибку, сформирована неполная частная ориентировочная основа действия сложения двузначного и однозначного чисел. В этом заключается ближайшая причина возникновения ошибки.

Сформированная неполная частная ориентировочная основа действия может быть причиной слишком узких и слишком широких обобщений. Поясним это утверждение.

Ориентировочная основа действия – это набор ориентиров, необходимый и достаточный для верного выполнения действия или распознавания понятия. Если хотя бы один из ориентиров отсутствует в ООД, действие становится другим и ведет к неверному результату. Если ученик не достраивает самостоятельно сформированную ООД, то будем говорить, что в этом случае ученик владеет слишком широкой ООД.

Сформированная неполная ориентировочная основа действия, в свою очередь, является следствием неверного методического подхода к обучению, рассогласованности методики обучения с закономерностями процесса усвоения знаний и умений. В частности, возможно, что неполнота ориентировочная основа действия, сформированной у детей, обусловлена игнорированием закономерности получения обобщений (Н.Ф.Талызина): «Обобщение идет только по тем признакам, которые включены в ориентировочную основу действия, направленного на анализ изучаемого объекта». Это означает, что методические ошибки являются отдаленными причинами возникновения массовых ошибок [4] .

Таким образом, для предупреждения появления ошибок необходимо не только выявить их содержание, но и определить ближайшие и отдаленные причины возникновения. Результатом этого анализа может быт разработка специальных упражнений с учетом психологических закономерностей процесса усвоения знаний и умений. [6]

Литература:

  1. Брадис В.М. Ошибки в математических рассуждениях: Пособие для учителей. М.: Просвещение, 1967. 191 с.
  2. Далингер В.А. Начала математического анализа. Типичные ошибки, их причины и пути их предупреждения. Омск: ООО «Издатель-полиграфист», 2002. 158 с.
  3. Зубова С.П., Лысогорова Л.В. Математические олимпиады в современных условиях. Самарский научный вестник. 2013. № 3 (4). С. 61-63.
  4. Зубова С.П., Лысогорова Л.В. Причины вычислительных ошибок младших школьников и пути их предупреждения. Педагогика городского пространства: теория, методология, практика. Сборник трудов по материалам Всероссийской научно-практической конференции. Самара, 2015. С. 284-288
  5. Кочетова Н.Г., Севенюк С.А., Лысогорова Л.В. Юбилею факультета начального образования Поволжской государственной социально-гуманитарной академии посвящается//Поволжский педагогический вестник. 2014. № 4 (5). С. 5-7.
  6. Лысогорова Л.В. Педагогические условия развития математических способностей младших школьников. Сибирский педагогический журнал. 2007. № 9. С. 228-233

Основные термины (генерируются автоматически): ошибка, однозначное число, ориентировочная основа действия, содержание ошибки, ученик, выполненное действие, действие, действие сложения, отдаленная причина возникновения, причина ошибки.

Ключевые слова

вычислительные ошибки,

содержание ошибок,

причины ошибок

вычислительные ошибки, содержание ошибок, причины ошибок

Похожие статьи

Как не допускать типичных вычислительных ошибок, используя…

— вычислительными ошибками в элементарном действии

Только осознанные действия ученика помогут избежать ошибок в выполнении заданий.

Способы предупреждения возникновения коллективных трудовых споров.

Теория ошибки в свете различных подходов | Статья в журнале…

Понятие ошибки связывается с «любой ситуацией, при которой некая цепочка ментальных или физических действий не достигает желанной цели, и эта неудача не может быть приписана случаю» [5, с. 31], что позволяет обобщенно выделить три вида ошибочной деятельности [ibid.

Теоретическое значение определения понятия «счётная ошибка»…

ошибку, допущенную в арифметических действиях, и подтвердил, что «технические ошибки, в том числе технические ошибки, совершенные

Итак, счётная ошибка — это математическая ошибка, результат неверного применения правил арифметики (при сложении/вычитании…

Обучение решению арифметических задач | Статья в журнале…

Анализ контрольных работ учащихся, наблюдения и исследования показывают, что ошибки, которые учащиеся допускают при решении задач, можно классифицировать так: Привнесение лишнего вопроса и действия.

Типичные ошибки в бухгалтерском учёте и их исправление

Для того чтобы выявить ошибку, нужно выполнять два действия. Первое, нужно определить ошибку, установить время возникновения ошибки и перечень документов, в которых она возможно будет обнаружена.

Нормы оценки знаний обучающихся по математике

Ключевые слова:оценка знаний по математике, математические ошибки. Математика одна из основных фундаментальных наук, которая лежит в основе многих

— работа полностью вся выполнена; — в решении все рассужено логически и без ошибок, не допущено никаких пробелов

Педагогические условия устранения характерных текстовых…

Известно, что неточные действия учащихся, их ошибки, зачастую следствие внутренней несобранности, недостаточной концентрации внимания, неспособности сосредоточиться на задании.

Самостоятельная работа учащегося над ошибками как…

Это побуждает детей выполнять работу не наугад, а вдумчиво, на основе анализа материала.

Ученик, пользуясь памяткой, по цифре определяет категорию своей ошибки и выполняет работу над ошибками строго по памятке.

Формирование действия самоконтроля младших школьников

В ходе обучения постоянно возникают вопросы – может ли учащийся самостоятельно проанализировать свою работу, найти и исправить ошибки, контролировать не только соответствие выполненных действий их схеме…

Похожие статьи

Как не допускать типичных вычислительных ошибок, используя…

— вычислительными ошибками в элементарном действии

Только осознанные действия ученика помогут избежать ошибок в выполнении заданий.

Способы предупреждения возникновения коллективных трудовых споров.

Теория ошибки в свете различных подходов | Статья в журнале…

Понятие ошибки связывается с «любой ситуацией, при которой некая цепочка ментальных или физических действий не достигает желанной цели, и эта неудача не может быть приписана случаю» [5, с. 31], что позволяет обобщенно выделить три вида ошибочной деятельности [ibid.

Теоретическое значение определения понятия «счётная ошибка»…

ошибку, допущенную в арифметических действиях, и подтвердил, что «технические ошибки, в том числе технические ошибки, совершенные

Итак, счётная ошибка — это математическая ошибка, результат неверного применения правил арифметики (при сложении/вычитании…

Обучение решению арифметических задач | Статья в журнале…

Анализ контрольных работ учащихся, наблюдения и исследования показывают, что ошибки, которые учащиеся допускают при решении задач, можно классифицировать так: Привнесение лишнего вопроса и действия.

Типичные ошибки в бухгалтерском учёте и их исправление

Для того чтобы выявить ошибку, нужно выполнять два действия. Первое, нужно определить ошибку, установить время возникновения ошибки и перечень документов, в которых она возможно будет обнаружена.

Нормы оценки знаний обучающихся по математике

Ключевые слова:оценка знаний по математике, математические ошибки. Математика одна из основных фундаментальных наук, которая лежит в основе многих

— работа полностью вся выполнена; — в решении все рассужено логически и без ошибок, не допущено никаких пробелов

Педагогические условия устранения характерных текстовых…

Известно, что неточные действия учащихся, их ошибки, зачастую следствие внутренней несобранности, недостаточной концентрации внимания, неспособности сосредоточиться на задании.

Самостоятельная работа учащегося над ошибками как…

Это побуждает детей выполнять работу не наугад, а вдумчиво, на основе анализа материала.

Ученик, пользуясь памяткой, по цифре определяет категорию своей ошибки и выполняет работу над ошибками строго по памятке.

Формирование действия самоконтроля младших школьников

В ходе обучения постоянно возникают вопросы – может ли учащийся самостоятельно проанализировать свою работу, найти и исправить ошибки, контролировать не только соответствие выполненных действий их схеме…

Ошибки учащихся в вычислениях и их предупреждение.

Одной
из главных задач обучения младших
школьников математике является
формированием у них вычислительных
навыков. Процесс овладения вычислительными
навыками довольно сложен: сначала
ученики должны усвоить тот или иной
вычислительный прием, а
затем
в результате тренировки научиться
достаточ­но быстро выполнять вычисления,
а
в
отноше­нии табличных случаев —
запомнить результа­ты наизусть. К
тому же в каждом концентре научается
довольно большее количество прие­мом,
поэтому естественно, что не все ученики
сразу усваивают их часть, допускает
ошибки.

К
предлагаемой статье рассматриваются
ти­пичные ошибки учеников при выполнении
ими арифметических действий в каждом
концентре, а
также
методические приемы предупреж­дения
и устранения таких ошибок.

Десяток

1.
Смешение действий сложения и
вычита­ния
(7+2 = 5, 6—4=10). Такие ошибки воз­никают
по двум причинам. Первая причина: ученики
еще не усвоили самих действий сло­жения
и вычитания или
же
знаков этих действий. Чаще это происходит
потому, что учи­тель рано стал требовать
выполнения арифме­тических действий
без использования счетно­го материала
(палочек, геометрических фигур из набора
и т. п.).

Чтобы
предупредить появление названных
ошибок, не следует запрещать ученикам
поль­зоваться при вычислениях счетным
материа­лом, если они иначе не могут
найти результат сложения или вычитания.
Для устранения уже, появившихся ошибок
надо вернуть учеников к работе со счетным
материалом. При этом важно, чтобы они
сопровождали вычислении словесным
рассуждением и соответствующей записью.
Например, выполняя сложение 5+2, ученик
берет 5 кружков и еще 2, затем, при­двигая
к 5 кружкам 1 кружок, говорит: «К 5 прибавить
1, получится 6». Далее, при­двигая к 6
кружкам еще кружок, он говорит: «К 6
прибавить 1 получится 7. Записываю:
5+2=7».

Вторая
причина ошибок в замене одного
арифметического действия другим — это
недостаточный анализ решаемого примера:
при вычислениях ученики больше обращают
вни­мание на числа, чем на знак действия.

Поэтому
важно с первых уроков обучения вычислениям
приучать учеников к тому, чтобы они
называли,
сначала
вслух, а позднее про
себя,
какое арифметическое действие надо
вы­полнить и над какими числами, и
только после этого вычисляли результат.
Так пусть, решая пример 6—4, они говорят:
«Это
пример
на вычитание (или: «Здесь надо вычитать
»), из 6 вычесть 4, получится 2». Воспитывая
привычку выполнять такой
анализ,
можно, полностью устранить ошибки в
замене одного, арифметического действия
другим.

  1. Получение
    результата на
    единицу
    больше или меньше верного (7+2=8, 9-3=7).
    По­добные ошибки возникают при
    присчитывании и отсчитывании чисел 2,
    3, 4
    по
    единице
    с опорой на
    натуральный
    ряд. Например, прибавляя к 7 число 2,
    ученики должны назвать два числа,
    следующие в ряду за
    числом 7,
    однако бывает, что
    они
    первым называют дан­ное число, а
    не
    следующее за
    ним
    (7,
    8) и ду­мают, что они
    прибавили
    2 и что 7+2=8. Для предупреждения таких
    ошибок полезно, чтобы при присчитывании
    и отсчитывании по единице назывались
    промежуточные результа­ты (7+1=8, 8+1=
    9, значит,
    7+2=9).

  1. Неверный
    результат получается иногда вследствие
    использования нерациональных приемов.
    Например, выполняя сложение в случаях
    вида 3+6, часть учеников вместо приема
    перестановки слагаемых использует
    прием при­считывания по единице (по
    2, по 3), а это трудно, и
    ученики
    часто забывают, сколько единиц они уже
    прибавила и сколько осталось прибавить,
    вследствие чего получают непра­вильный
    результат (3+6=8, 3+6=10 и т. п.). Так же
    объясняются, ошибки вида 9—7=4.

Предупреждению
таких ошибок помогает сравнение
рациональных и нерациональных приемов
вычислений. Так, обнаружив, что некоторые
ученики допускают ошибки при реше­нии
примеров вида 3+6, учитель спрашивает,
как они решали пример (3+1=4, 4+1 = 5 ит.
д.), затем другие ученики объясняют, как
можно решить тот пример быстрее, легче
(надо переставить слагаемые 6+3=9, резуль­тат
помним наизусть). Здесь же ученики
ука­зывают, в каких случаях следует
переставлять слагаемые (когда к меньшему
числу прибав­ляем большее).

4.
Запись или называние, вместо результата
одного из компонентов (3+5=5, 6-4=6). Такие
ошибки возникают преимущественно по
невнимательности. Как правило, ученики
са­ми находят ошибку и
дают
верный ответ. Для предупреждения
подобных ошибок важно научить детей
выполнять проверку решения путем,
прикидки результата: при сложении
ре­зультат должен быть больше каждого
из сла­гаемых (если ни одно из них не
равно нулю); при вычитании результат
доджей быть; меньше — уменьшаемого
(если вычитаемое не равно нулю); если
эти отношения не выполняются, значит,
в вычислениях допущена ошибка. Чтобы
научить детей такой проверке надо
попутно с вычислениями чаще проводить
наблюдения,
сравнивай результат с компонен­тами
действий сложения и вычитания. Устра­нению
названных ошибок помогает анализ и
обсуждение неверно решенных примеров.
Так, учитель спрашивает, верно, ли решен
пример 5+3=5
и
может ли эта сумма равняться 5.
Ученики
сравнивают сумму со слагаемыми и говорят,
что сумма должна быть больше, чем 5,
так
как к пяти еще прибавили 3.

5.
Получение
неверного результата следствие смешения
цифр. Например, ученик пишет: 4+2=9,
хотя
устно называет правильный результат.

Для
устранения подобных ошибок необходима
индивидуальная работа по запоминанию
цифр: пусть ученик нарисует названное
учителем число каких-либо — предметов
рядом напишет цифрой соответствующее
число, пусть

найдет в своем наборе
названные цифры и т.
п.

Сотня

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Обновлено: 21.09.2023

Автор: Зюзина Дарья Станиславовна
Должность: учитель
Учебное заведение: МБОУ Туртапинская ОШ
Населённый пункт: Нижегородская обл.,г.о.г.Выкса, с.Туртапка
Наименование материала: статья
Тема: «Типичные ошибки детей при выполнении вычислений, их устранение и предупреждение в начальном курсе математики по программе Истоминой Н.Б. (3 класс)»
Раздел: начальное образование

Типичные ошибки детей при выполнении вычислений, их

устранение и предупреждение в начальном курсе математики по

В начальной школе изучение математики имеет особое значение в развитии младшего школьника. Приобретённые им знания, первоначальные навыки владения математическим языком помогут ему при обучении в основной школе, а также пригодятся в жизни.

Текстовые задачи в курсе математики в начальной школе занимают значительное место. При решении задачи у школьников развивается произвольное внимание, наблюдательность, логическое мышление, речь, сообразительность. Решение задач способствует развитию таких процессов познавательной деятельности как анализ, синтез, сравнение, обобщение.

При решении текстовых задач дети допускают ошибки разного характера и достаточно сложно установить причину той или иной ошибки. Даже у одного и того же ученика при различных обстоятельствах и на разных этапах обучения причины появления ошибки могут быть разными: невнимательность, несосредоточенность, неуверенность, несформированность вычислительных навыков, неумение анализировать ситуацию, описанную в задаче, отсутствие теоретических знаний и т.п.

Особое значение в связи с этим приобретает предупреждение ошибок. Но это не значит, что учитель должен систематически предупреждать трудности, возникающие у учащихся, и подавать им в готовом виде образцы правильных рассуждений. Там, где возможно, следует использовать эти затруднения для активизации мыслительной деятельности школьников, развития у них интереса к решению задач.

Многие учителя и методисты считают, что главное – не работать над уже допущенной ошибкой, а предупреждать ее. Поэтому анализирую ошибки, пытаюсь соотнести эти ошибки с несформированностью у ученика тех или иных умений, продумываю приемы для предупреждения или для ликвидации данных ошибок, подбираю соответствующие задания.

При переходе к решению составных задач довольно распространенной ошибкой является смешение простых задач с составными. Покажу это на конкретном примере.

М – ?, на 2 больше

Для предупреждения (или для ликвидации) ошибки полезной будет иллюстрация условия задачи, т.е. представление условия задачи на предметной модели:

Более эффективным приемом, на мой взгляд, является представление краткой записи задачи в виде схемы, а так же сравнение пар задач – простой и составной задачи – и их решений.

Сравнение задач и их решений способствует более глубокому осознанию ситуации, описанной в задаче, и взаимосвязей между величинами, входящими в нее, что и помогает преодолеть затруднения и ошибки, возникающие у учащихся при решении.

На мой взгляд, эффективность работы по предупреждению ошибок учащихся при обучении решению текстовых задач зависит от умения учителя предвидеть трудности учащихся и наметить пути их преодоления. Хочу выделить основные проблемы, которые встают перед учащимися при решении задач и приемы, помогающие избежать эти трудности.

Пути их преодоления

2. Составление математических рассказов по предложенному рисунку.

3. Решение задачи по представленному плану (План решения задачи может быть представлен в виде вопросов, или в виде пояснений).

Итак, работа по формированию умения решать задачи не должна сводиться к решению подобных задач, она должна быть частью целостной системы обучения, которая поможет обучающимся набрать опыт решения текстовых задач.

Решение задач всегда вызывает затруднение у многих детей. Очень полезная таблица основных трудностей, возникающих у детей при решении задач. Буду обращаться к ней при анализе контрольных работ. Спасибо, полезная статья.

Сейчас состояние качества знаний и успеваемость по математике в нашей школе оставляют желать лучшего.

Многие школьники, которых мы учим, не видят смысла в образованности. В семьях, где родители не имеют образования и ведут часто асоциальный образ жизни, нет настроя на получение знаний, продолжение учебы.

Математика является движущей силой всех наук. Освоение учениками других точных наук напрямую зависит от качества математического образования. В каком состоянии ум наших школьников говорят мониторинги всех уровней, ГИА, ЕГЭ за прошлые годы, а также и результаты административных контрольных работ за I полугодие этого учебного года. Попытаемся разобраться в главном – в причинах низкой успеваемости по математике.

Каждый из нас может уверенно сказать, что причин неуспеваемости, по большому счету, не так уж и много.

Основные причины низкого качества знаний учащихся, как подсказывает опыт, следующие:

педагогическая запущенность учащихся;

отсутствие должного контроля со стороны родителей;

уровень подготовленности учащихся в начальной школе;

ухудшение здоровья подрастающего поколения, в том числе отрицательного влияния вредных привычек на здоровье, мыслительную деятельность учащихся;

— некачественная работа учителя-предметника из-за плохого знания предмета и методики его преподавания;

недостаточное отслеживание учителем западающих тем по предмету.

Хотя можно сказать, что сколько неуспевающих учащихся, столько и разных причин неуспеваемости. Отдельные из указанных причин неуспеваемости невозможно устранить и вовсе.

Следующая причина – низкие способности многих школьников. У школьников с низкими способностями, как правило, плохая память, они легко возбудимы или, наоборот, слишком пассивны, не могут сосредоточить внимание при восприятии нового материала, долго подключаются к работе.

Слабые учащиеся по сравнению с сильными не умеют учиться и задания в малых группах им непонятны и часто непосильны. Впрочем, когда они сидят в общей группе и не смеют пошевелиться под взглядом строгого учителя, результаты в действительности не лучше – учения не происходит. Если класс состоит из учащихся с разными способностями ( heterogeneous class , mixed ability class ),то там нужно учиться работать и учителю и учащимся. Учителю важно уметь организовывать работу в малых группах и не обязательно для этого бесконечно готовить карточки. Можно работать и по учебнику, только облегчать или усложнять задания. Сильные учащиеся всегда лучше адаптированы, и они могут почти весь урок работать самостоятельно. Слабым учащимся нужно больше внимания и учитель проводит с этой малой группой намного больше времени.

Всем известно, что результаты качественного обучения в средних классах зависят напрямую от их подготовленности в младшем звене, а конкретно, от знания табличного умножения, метрической системы мер, умения считать устно на все действия, решать текстовые задачи. К примеру: как я могу научить ребят десятичным и обыкновенным дробям, выполнять с ними действия, сокращать дроби, если они не знают элементарно таблицу умножения, совершенно не могут подбирать нужные числа при письменном и устном делении, к тому же, отстающие дети ещё и плохо читают.

Если встречаются учащиеся с такими элементарными незнаниями, нужно немедленно приступить к коррекции и строгому отслеживанию отработанных и запущенных тем. Необходимо также спланировать работу с отстающими детьми (план прилагается). Очень эффективно организовать отслеживание западающих тем в специальной тетради коррекции. Одна из действенных мер с отстающими – это индивидуальная, дополнительная работа во внеурочное время. Эффективна мера решения проблемы неуспеваемости – это помощь родителей, а также организация работы консультантов-учащихся на уроках.

Повторение – мать учения. Эта фраза не нова. Понятно, что усвоение любой темы требует неоднократного повторения. В условиях сокращенных часов, отведенных для прохождения программы по математике (до 5 часов в неделю), это очень проблематично.

Если говорить об ухудшении здоровья учащихся как один из факторов снижения успеваемости, то необходимо заботится о его сохранении и планировать урок в соответствии с технологиями здоровьесбережения. Это не только разнообразие форм и методов (главное не переусердствовать с ними), но и дозировка домашних заданий, смена поз учащихся на уроках (работа в статических парах, в четверках), физминутки, движение во время игровых форм, проветривание класса, использование наглядности на уроках. Все эти меры не новы, мы просто должны об этом думать каждый день, каждый урок и беречь здоровье детей.

Результаты обучения во многом зависят от учителя, его профессионализма, творческого дарования.

Одной из очень серьёзных проблем на пути повышения качества математического обучения до сих пор остаётся формирование прочных навыков устного счёта. Вычислительная культура формируется у учащихся на всех этапах изучения курса математики.

Низкий уровень вычислительных навыков затрудняет усвоение ряда разделов курса математики. Значительная часть времени урока затрачивается на проведение вычислений при выполнении заданий, направленных на закрепление нового материала и повторение предыдущего. Недостаточное умение школьников производить вычисления создает дополнительные трудности и при выполнении работ практического содержания.

Рассмотрим, какие акценты надо делать на каждом этапе урока, чтобы все учащиеся усвоили изученный материал:

1) В процессе контроля за подготовленностью учащихся.

Специально контролировать усвоение вопросов, обычно вызывающих у учеников наибольшие затруднения.

Контролировать усвоение материала учениками, пропустившими предыдущие уроки.

По окончании изучении темы или раздела обобщать итоги усвоения основных понятий, правил, умений, навыков школьниками, выявлять причины отставания.

2) При изложении нового материала.

Обязательно проверять в ходе урока степень понимания учащимися основных элементов излагаемого материала

Стимулировать вопросы со стороны учеников при затруднениях в усвоениях в усвоении учебного материала. Применять средства поддержания интереса к усвоению знаний. Обеспечивать разнообразие методов обучения, позволяющих всем учащимся активно усваивать материал.

3) В ходе самостоятельной работы учащихся на уроке.

Включать в содержание работы упражнения по устранению ошибок, допущенных при ответах и в письменных работах.

Стимулировать постановку вопросов к учителю при затруднениях в работе. Умело оказывать помощь ученикам в работе, всемерно развивая их самостоятельность.

Учить умениям планировать работу, выполнять ее в должном темпе и осуществлять контроль.

4 ) При организации самостоятельной работы вне класса.

Обеспечить в ходе работы повторение пройденного материала. Концентрируя внимание на наиболее существенных элементах программы, вызывающих обычно наибольшие затруднения.

Систематически давать домашние задания по работе над типичными ошибками. Четко инструктировать учеников о порядке выполнения работ, проверять степень понимания этих инструкций слабоуспевающими школьниками. Согласовать объем заданий с другими учителями класса, исключая перегрузку, особенно слабоуспевающих учеников.

При выборе дидактических мер группового подхода к неуспевающим школьникам можно использовать следующие приемы работы.

1) В процессе контроля за подготовленностью учащихся можно применить такие меры группового подхода и помощи в учении — снижение темпа опроса, разрешение дольше готовиться у доски. Разрешать использовать наглядные пособия, схемы, плакаты. Стимулировать оценкой, подбадривание похвалой, положительной записью в дневнике.

2) При изложении нового материала

-применять меры поддержания интереса к усвоению темы (связь изучаемого с жизнью, актуальность), привлекать неуспевающих в качестве помощников при подготовке наглядных пособий, плакатов, схем.

3) В ходе самостоятельной работы учащихся на уроке

— разбивать задания на дозы, этапы, выделение в сложных заданиях ряда простых. Можно сослаться на аналогичное задание, вьполненное ранее. Напомнить прием или способ выполнения задания. Указать на необходимость актуализировать то или иное правило, формулу или определение. Инструктировать о рациональных путях выполнения заданий, требованиях к их оформлению. Стимулировать самостоятельные действия слабоуспевающих учеников, указывать на сдвиги в деятельности.

Можно сделать следующие выводы:

Чтобы предотвратить неуспеваемость, надо своевременно выявлять образовавшиеся пробелы в знаниях, умениях и навыках учащихся и организовывать своевременную ликвидацию этих пробелов.

Нужно установить правильность и разумность способов учебной работы, применяемых учащимися, и при необходимости корректировать эти способы. Нужно систематически обучать учащихся общеучебным умениям и навыкам.

Нужно так организовывать учебный процесс, жизнь учащихся в школе и в классе. Чтобы вызвать и развить у учащихся внутреннюю мотивацию учебной деятельности, стойкий познавательный интерес к учению.

В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.

Вложение Размер
rabota_issled_oshibki1.docx 66.99 КБ

Предварительный просмотр:

Ошибки учащихся при изучении математики,

их предупреждение и объяснение

Дука Наталья Ивановна

В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.

В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.

Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.

Объект исследования: процесс обучения математике в основной общеобразовательной школе.

Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.

Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.

Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.

Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.

Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.

Пример неосознанного применения алгоритма: получив уравнение sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.

Иногда ученики используют неверную формулу, не задумываясь над ней.

Например, определяя, является ли число рациональным, ученик пишет: = и получает неверный ответ,

При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу

Пример ошибки на свойство степени: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу .

Встречаются ошибки от непонимания. Большинство учащихся, решая впервые неравенство х 2 4, приводят неверное решение х 2.

Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.

Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.

Причины ошибок, допускаемых учащимися при изучении математики

Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.

Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.

Объект исследования: процесс обучения математике в основной общеобразовательной школе.

Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.

Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.

Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок? Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.

Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.

Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.

Выполняя математические задания, учащиеся допускают типичные ошибки:

  • Незнание правил, определений, формул.
  • Непонимание правил, определений, формул.
  • Неумение применять правила, определения, формулы.
  • Неверное применение формул.
  • Невнимательное чтение условия и вопроса задания.
  • Вычислительные ошибки.
  • Не использование свойств фигур при решении геометрических задач.
  • Логические ошибки при решении текстовых задач.
  • Раскрытие скобок и применение формул сокращенного умножения.

Какие причины ошибок по математике?

Работа над ошибками

В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена

( – х – 5) 2 , теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком они предложены в учебнике. Другой пример неосознанного применения алгоритма: получив уравнение

sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.

  • проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
  • проверка правильности решения задач путём составления и решения задач, обратных к данной;
  • оценка результата решения задачи с точки зрения здравого смысла;
  • проверка аналитического решения графическим способом.

Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.

Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.

Ученик написал = 52, ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .

Объяснение и предупреждение ошибок

Свести ошибки к минимуму способствуют следующие профилактические меры.

  • Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
  • Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
  • При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
  • Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
  • Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.

1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.

А также выполнить задания:

1. Определите четность и нечетность тригонометрической функции:

а) y = – cos x + x 2 ; б) y = sin 2 x; в) y = .
2. Найдите область определения функции y = x 2 – 6x + 10.

3. При каких значениях x функции y = sin x и y = cos x принимают одинаковые значения?

Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение arcsin (sin ).

Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin ) = . Это очень грубая ошибка. По определению . Следовательно, число arcsin(sin ) должно принадлежать промежутку , число этому промежутку не принадлежит. Имеем: arcsin (sin ) = arcsin (sin )) = arcsin (sin ) = arcsin =

х arctg (tg130 о ) = arctg (tg180 о 50 о ) = arctg (tg( 50 о )) = 50 о . Существует второй способ решения. Пусть arctg (tg130 о ) = х, получаем tg х = tg (arctg (tg130 о )), откуда tg х = tg 130 о . По условию равенства тангенсов имеем х = 130 о + k, где k Z. Учитывая область определения функции у = arctg х, где х ( 90 О ; 90 О ), при k = 1 х = 130 о 180 о = 50 о .

Можно предложить учащимся проверить себя, взяв, например, значение х = 2 но ;

При выполнении преобразований со степенями учащиеся не только допускают ошибки, но просто забывают формулы, например формулу

a n a m = a n+m . Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a 3 a 4 =aaa =a 7 =a 3+4 . Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.

Ещё пример ошибки: . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением

= . Здесь же можно предложить другой способ

Необходимо в результате записать формулу .

(х-2)(х+2) 0, . Третий способ графический.

Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.

Анализ работ ГИА и ЕГЭ

Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:

  • преобразовании дробно-рациональных выражений, содержащих корень
  • исследовании функций на наибольшее и наименьшее значения;
  • решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
  • вычислении площади криволинейной трапеции;
  • построении графика функции с модулем;
  • изображении тел вращения в геометрической задаче;
  • теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
  • построении множества точек плоскости, удовлетворяющего заданному условию;
  • решении задач с параметром.

Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:

  • комбинация тел;
  • углы в пространстве;
  • производная и её применение к исследованию функции на отрезке;
  • построение ГМТ, удовлетворяющего заданным условиям;
  • логарифмические и показательные неравенства;
  • тригонометрические функции и их свойства;
  • тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.

Учебный год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.

Ошибки в учебниках и методической литературе

ВD – биссектриса АВС =

∠В DС = ∠С В DС равнобедренный ВD = DС =

Решим задачу вторым способом.

ВЕ – высота АВС. Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:

АВ 2 – АЕ 2 = ВD 2 – DЕ 2 ,

30 2 – (20 + х) 2 = 16 2 – х 2 ,

900 – 400 – 40х – х 2 = 256 – х 2 ,

ВЕ высота и медиана DЕ = СЕ СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.

Проверим, существует ли треугольник, у которого выполнены условия: ∠В DС = ∠С и ∠АВ D = ∠ DВ С. Найдем величины ∠ DВС, ∠В DС, ∠С.

А D 2 = АВ 2 + ВD 2 – 2 cos ∠AВ D

Тогда ∠АВ D 38,5 о . ∠ DВС = ∠АВ D 38,5 о .

Аналогично cos ∠A DВ =

Тогда ∠А DВ = 180 о – 67,59 о ∠В DС 67,59 о . Из ВDС

∠С = 180 о – 38,05 о – 67,59 о = 74,36 о ,

Отсюда следует, что ∠В DС ∠С и треугольник DВС неравнобедренный.

Значит, задача составлена некорректно: треугольник, описанный в условии задачи, не существует.

Возможны два корректных варианта задачи:

  1. Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30, АD = 20, ВD = 16 и ∠В DС = ∠С.

В этом случае В D не является медианой. По второму способу получаем СD = 12,2.

  1. Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30. АD = 20, ВD = 16 .

∠В DС ∠С, в этом случае из треугольника DВС по теореме синусов получаем

В действующем учебнике задача № 536 имеет вид:

Отрезок BD является биссектрисой треугольника АВС. а) Найдите АВ, если ВС = 9 см, АD = 7,5 см, DС = 4,5 см. б) Найдите DС, если АВ = 30. АD = 20, ВD = 16 .

Цитируем: «Прочитай, объясни и проверь записи.

190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)

190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)

4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)

Проверяем 20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.

Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее), т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.

Предлагаем верные записи:

190 : 20 = 190 : 10 : 2 = 9 ( 1 д. остаток)

190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)

4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)

4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).

a f(x) b g(x) = a p b p

Приведенное решение неверное, так как приводит к потере корней. данное уравнение следует решать по схеме:

a f(x) b g(x) = a p b p a f(x )– р b q – g(x)

Вернемся к данном уравнению.

Читайте также:

      

  • Горный мастер краткое содержание
  •   

  • Билокси блюз краткое содержание
  •   

  • Стихи 30 лет после школы
  •   

  • Репетитор по русскому начальная школа 3 класс самый лучший
  •   

  • Рассказ детям о ежике в детском саду

Ошибки учащихся при изучении математики,

их предупреждение и объяснение

Автор работы:

Дука Наталья Ивановна

учитель математики МОУ «СОШ №4 г. Ртищево Саратовской обл.» ____________________________

Аннотация

В данной работе рассматриваются типичные ошибки, которые допускают учащиеся при выполнении математических заданий. Здесь разобраны причины, способы исправления и предупреждения ошибок, разобраны конкретные ошибки из курса алгебры и начал анализа и способы их объяснения и устранения, указаны ошибки в работах государственной итоговой аттестации учащихся 9 и 11 классов. Рассмотрены ошибки по математике в учебниках и методической литературе. Материал, представленный в работе, может заинтересовать учителей математики.

Тезисы

В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная.

Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.

Объект исследования: процесс обучения математике в основной общеобразовательной школе.

Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.

Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.

Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления.

Необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.

          Самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления.

          Пример неосознанного применения алгоритма: получив уравнение  sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x.

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок.

Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =. Это очень грубая ошибка. Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о.  

Иногда ученики используют неверную формулу, не задумываясь  над ней.

Например, определяя, является ли число  рациональным,  ученик пишет:  =   и получает неверный ответ,

При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Должна появиться верная запись .

При выполнении преобразований со степенями учащиеся не только допускают  ошибки,  но просто  забывают  формулы,  например  формулу

an am = an+m.

Пример ошибки на свойство степени:  . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Необходимо в результате записать формулу .

Встречаются  ошибки от непонимания. Большинство учащихся, решая  впервые  неравенство х24, приводят неверное решение х2.

Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x».

Систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого  подходят задания типа «найди ошибку в решении». Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся.

Учебный  год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний.

В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была  приведена некорректно составленная задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС,  если АВ = 30,  АD = 20,  ВD = 16  и  ВDС = С». Треугольник, описанный в  условии задачи, не существует.

Объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких) дается с ошибкой.

В газете «Математика» предлагается уравнение   и к нему ответ:1. Приведенное решение неверное, так как приводит к потере  корней.

Вступление

Вспоминается расхожая истина – умные люди учатся на чужих ошибках. В математике приходится учиться, в основном, на собственных ошибках. Если ученик не ошибается, то он не учится. Ошибка – вещь необходимая и полезная. Нужно лишь правильно относиться к ошибке, правильно ее использовать.

Обидно получать плохие оценки из-за ошибок «на ровном месте». Глупые ошибки – проблема многих учеников: случайная потеря знака, скобки, необоснованное изменение чисел, пропуски переменных и всевозможные ляпы. Сами ученики  не могут объяснить, чем  вызваны эти ошибки.

Причины ошибок, допускаемых учащимися при изучении математики

Проблема исследования состоит в теоретическом обосновании и разработке такой методики обучения математике, которая создавала бы условия для развития рефлексивной деятельности учащихся, способствующей предупреждению типичных ошибок.

Цель исследования: рассмотреть методику предупреждения типичных ошибок учащихся в процессе обучения математике.

Объект исследования: процесс обучения математике в основной общеобразовательной школе.

Предмет исследования: процесс возникновения типичных ошибок и средства их предупреждения.

Гипотеза исследования заключается в следующем: если в процессе обучения математике целенаправленно и систематически организовывать работу учащихся над типичными ошибками, то это будет способствовать повышению качества математической подготовки учащихся.

Большинство ошибок напрямую не связаны с наличием или отсутствием знаний, хотя доведение некоторых вычислительных операций до автоматизма несколько снижает вероятность их появления. Снижает, но не исключает. Можно ли избавиться от таких ошибок?  Ученик знает, что нужно решать внимательно, но ничего не может с собой поделать.

Известно, что осознание правила или определяет действия, или, по крайней мере, их контролирует. Знание правила необходимо и для того, чтобы осуществить проверку решения и дать его обоснование. Но большинство учащихся воспринимают курс алгебры как набор несвязанных между собой правил, которые заучиваются (иногда формально) для применения их к решению задач. Поэтому необходимо осуществлять процесс обучения правилам с помощью специальной модели с использованием приема, активизирующего рефлексивную деятельность учащихся по предупреждению и исправлению ошибок, которые возникают в результате формального усвоения правил.

Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.

Выполняя математические задания, учащиеся допускают типичные ошибки:

  • Незнание правил, определений, формул.
  • Непонимание правил, определений, формул.
  • Неумение применять правила, определения, формулы.
  • Неверное применение формул.
  • Невнимательное чтение условия и вопроса задания.
  • Вычислительные ошибки.
  • Не использование свойств фигур при решении геометрических задач.
  • Логические ошибки при решении текстовых задач.
  • Раскрытие скобок и применение формул сокращенного умножения.

Какие причины ошибок по математике?

  • Пропуски занятий приводят к незнанию материала, пробелам в знаниях.
  • Поверхностное, невдумчивое восприятие нового материала приводят к непониманию его.
  • Недостаточная мозговая деятельность приводит к неумению применять правила, определения и формулы .
  • Неряшливый, неаккуратный почерк ученика приводит к досадным ошибкам. Учащиеся  не всегда сами понимают, что именно они написали.
  • Усталость. Чрезмерная нагрузка и недостаточный сон приводит к снижению внимания, скорости мышления и, как следствие, к многочисленным ошибкам.
  • Кратковременное или полное переключение внимания с одной деятельности на другую (учебную или внеучебную) приводит к утрате только что воспринятого материала, приходится все начинать сначала.
  • Скорость работы. Низкая скорость выполнения мыслительных операций часто мешает ученику контролировать себя и это может стать еще одной причиной ошибки. «Зависание» с какой-нибудь одной частью задания удаляет из «оперативной памяти» информацию о другой, в которой допускается не вынужденная ошибка. Скорость работы определяется физиологией конкретного школьника и навыками выполнения тех или иных операций.
  • Мотивация. Следствие низкой мотивации  – потеря внимания и ошибка.

Работа над ошибками

В приемах работы над ошибками отсутствует диагностика причин ошибок. Не уделяется должного внимания работе по формированию рефлексивной деятельности учащихся и ее использованию в работе по предупреждению и исправлению математических ошибок. При отсутствии должной доли самостоятельности при работе над ошибками, совершаемые учеником действия никак не контролируются, допущенные ошибки не замечаются, причины их появления остаются невыясненными, что приводит к их повторению. Напротив, самостоятельная работа учащихся над ошибками обеспечивает более осознанный их анализ и анализ собственных действий по решению конкретной задачи, что оказывает благоприятное влияние на качество получаемых знаний и стимулирует развитие логического мышления. При этом у школьников постепенно развиваются стремление и умение разобраться в задаче, планировать ее решение, продумывать возможные варианты действий и прогнозировать их результаты. Например, ученик многократно применяет к преобразованию алгебраических выражений формулы квадрата суммы и разности двух чисел, но получив задание представить в виде многочлена

(х5)2, теряется. Следует предложить учащемуся ответить на вопрос что вызывает затруднение? И как преобразовать выражение, чтобы можно было применить одну из формул в том виде, в каком  они предложены в учебнике. Другой  пример неосознанного применения алгоритма: получив уравнение

sin x = 1,2, ученик автоматически ищет его корни по хорошо известной формуле, не обращая внимания на недопустимые значения sin x. Полезно предложить ученику представить наглядное решение на тригонометрическом круге.

Самоконтроль

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; б) умения её объяснить и исправить. В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:

  • проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;
  • проверка правильности решения задач путём составления и решения задач, обратных к данной;
  • оценка результата решения задачи с точки зрения здравого смысла;
  • проверка аналитического решения графическим способом.

Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.

Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.

Ученик написал  = 52,  ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130” .

Объяснение и предупреждение ошибок

Свести ошибки  к минимуму способствуют следующие профилактические меры.

  • Тексты письменных заданий должны быть удобными для восприятия: грамотно сформулированными, хорошо читаемыми.
  • Активная устная отработка основных ЗУН, регулярный разбор типичных ошибок.
  • При объяснении нового материала предугадать ошибку и подобрать систему заданий на отработку правильного усвоения понятия. Акцентировать внимание на каждом элементе формулы, выполнение разнотипных заданий позволит свести ошибочность к минимуму.
  • Подбирать задания, вызывающие интерес, формирующие устойчивое внимание.
  • Прочному усвоению (а значит, отсутствию ошибок) способствуют правила, удобные для запоминания, четкие алгоритмы, следуя которым заведомо придешь к намеченной цели.

Каждый учитель знает, что планомерное и систематическое повторение и есть основной помощник в ликвидации пробелов, а, следовательно, и ошибок. В математике, как ни в какой другой науке, особенно сильна взаимосвязь материала. Изучение и понимание последующего невозможно без знания предыдущего, отсюда неизбежность повторения на каждом уроке. При объяснении нового материала следует использовать ряд определений и теорем, которые были изучены ранее.

Например, перед изучением темы «Теоремы сложения» следует повторить следующие теоретические вопросы:

1. Четные и нечетные функции.
2. Изменение тригонометрических функций при возрастании и убывании аргумента.
3. Знаки тригонометрических функций.
4. Таблицы значений тригонометрических функций.

А также выполнить задания:

1.  Определите четность и нечетность тригонометрической функции:

а)  y  =  – cos x + x2;    б)  y = sin2 x;    в) y = .
2.  Найдите область определения функции   y  =  x
2 – 6x + 10.

3. При каких значениях x функции   y = sin x и  y = cos x принимают одинаковые значения?

Перед прохождением темы «Первообразная и интеграл» повторяем все формулы дифференцирования. Затем предлагается самостоятельная работа (на 10–15 мин), на которой ученики получают карточки-задания, в которых «опущены» один–два компонента из формулы дифференцирования и приведены две функции, производные которых необходимо найти. После проверки самостоятельной работы анализируем допущенные ошибки, определяем пробелы в знаниях и проводим работу по их устранению.

Рассмотрим ошибки, допускаемые в курсе алгебры и начал анализа. Задание. Найти точное значение  arcsin (sin).

Некоторые учащиеся считают, что arcsin(sink)= k при любом k и дают такой ответ: arcsin(sin) =. Это очень грубая ошибка. По определению . Следовательно, число arcsin(sin) должно принадлежать промежутку , число   этому промежутку не принадлежит. Имеем: arcsin (sin) =  arcsin (sin)) = arcsin (sin ) = arcsin =

Аналогичное задание «вычислить arctg(tg130о)» вызывает у учащихся неверный ответ 130о.  Можно исправить ошибку следующим образом: учитывая, что  90о 90о  для  любого   и    arctg (tgх) = х при

х   arctg (tg130о) = arctg (tg180о  50о) = arctg (tg( 50о)) =  50о. Существует второй способ решения.  Пусть  arctg (tg130о) = х, получаем tg х = tg (arctg (tg130о)), откуда tg х = tg 130о.  По условию равенства тангенсов  имеем х = 130о + k,  где kZ. Учитывая область определения функции у = arctg х, где х(90О; 90О),  при  k = 1  х = 130о 180о =  50о.

Рассмотрим еще один пример правильного решения аналогичного задания вычислить arcsin(sin2) при неверном ответе учащихся «2». Решение: arcsin (sink) = k, если , arcsin (sin2) = arcsin (sin() = 2, т. к.  2.

Иногда ученики используют неверную формулу, не задумываясь над ней. Например, определяя, является ли число  рациональным,  ученик пишет:  =   и получает неверный ответ, выполняя преобразование иррационального выражения, учащийся получил  = х+2. Во-первых, учащиеся забывают, что , во-вторых, опять ошибочная аналогия с формулой = , где  Применение «формулы =» в классе обязательно происходит независимо от того, повторяются свойства радикалов на уроках или нет. Ученик проводит аналогию с формулой =  ,  где и не понимает, почему он неправ. Если заставить ученика написать правильно по свойству, то долговременного эффекта не получится. Необходимо, чтобы ученик понял и осознал свою ошибку. Для этой цели пригоден  совет: вычислите по тому алгоритму, который только что применили, имеем =  и по действиям  2 = 1 и определите, какое решение верное. Ученик задумывается и находит ошибку.

Можно предложить учащимся проверить себя, взяв, например,  значение   х = 2   но   ;

при  х = 2   но .

Делаем вывод: преобразование выполнено неверно, формула «=» не существует и  

При работе с «многоэтажными дробями» ученики делают много ошибок. Например: . Нужно посоветовать ученику проверить написанное при конкретных значениях переменных. Так, при a = b = 1, c = 2,  получим  , с другой стороны  , тогда  2= В результате ученик должен сделать вывод, что при работе с «трехэтажными дробями» лучше ставить скобки, чем сравнивать длины дробных «черточек»: . И, разумеется, должна появиться верная запись .

При выполнении преобразований со степенями учащиеся не только допускают  ошибки,  но просто  забывают  формулы,  например  формулу

an am = an+m. Полезно учащимся показать, как они могут вспомнить формулу, пользуясь определением степени, например a3a4=aaa=a 7=a 3+4. Применяя определение степени в подобных ситуациях, учащиеся могут вывести любую формулу действий со степенями. Аналогично можно показать ошибки в действиях со степенями.

Ещё пример ошибки:  . Если при этом объяснить ученику, что дробь только в показателе степени, он это объяснение забудет и следующий раз опять ошибется. Следует привести конкретный пример с удобным вычислением

=. Здесь же можно предложить другой способ

 

Необходимо в результате записать формулу .

Встречаются  ошибки от непонимания. Большинство учащихся, решая  впервые  неравенство х24, приводят неверное решение х2. Полезно в этом случае предложить учащимся проверить число, например. -3, при этом учащиеся убеждаются в неверности ответа. Можно показать три способа решения этого неравенства. 1 способ тот, которым и пользовались учащиеся «», но допустили следующую ошибку «=х». Верное решение Этот способ решения содержит опасный момент – необходимо обратить внимание на возрастание функции у =  при х0, иначе в дальнейшем будут еще ошибки при решении неравенств. Второй способ основан на методе интервалов х24,  х2,

(х-2)(х+2)0, .  Третий  способ графический.

х24 при  .

Выполняя тригонометрические задания, ученик часто «изобретает формулы», например: «sin 2 х = 2 sin x». В этом случае можно поступить двумя способами: подставить х =/6 и получить неверное равенство sin 2sin , /2 = 21/2 или вспомнить определение sin х на тригонометрическом круге.  Наглядно хорошо видно, что sin 2х 2sinх. Обращение к тригонометрическому кругу всегда полезно повторением определения тригонометрических функций и наглядностью определений.

у

Не нужно специально исправлять каждое ошибочное утверждение ученика и предупреждать его об ошибках. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки.  Практика показывает, что систематические проверки чужих записей формируют у ученика привычку критически относиться к своему решению. Для этого  подходят задания типа «найди ошибку в решении»:

Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.

Анализ работ ГИА и ЕГЭ

Анализ работ государственной итоговой аттестации учащихся 11-х классов показал, что типичные ошибки допущены при:

  • преобразовании дробно-рациональных выражений,  содержащих  корень

n-ой степени

  • исследовании функций на наибольшее и наименьшее значения;
  • решении показательных и логарифмических неравенств (отсутствует ссылка на соответствующие свойства функций);
  • вычислении площади криволинейной трапеции;
  • построении графика функции с модулем;
  • изображении тел вращения в геометрической задаче;
  • теоретическом обосновании используемых формул и фактов при решении задачи по стереометрии;
  • построении множества точек плоскости, удовлетворяющего заданному условию;
  • решении задач с параметром.

          Для повышения уровня учебных достижений учащихся на ГИА за курс старшей школы рекомендуется обратить внимание на следующие темы и разделы курса алгебры и начал анализа и геометрии:

  • комбинация тел;
  • углы в пространстве;
  • производная и её применение к исследованию функции на отрезке;
  • построение ГМТ, удовлетворяющего заданным условиям;
  • логарифмические и показательные неравенства;
  • тригонометрические функции и их свойства;
  • тождественные преобразования дробно-рациональных выражений, содержащих корень n-ой степени.

           Учебный  год в 9-х и 11-х классах должен заканчиваться повторением и систематизацией учебного материала. повторение нужно нацелить на закрепление опорных знаний, построение и развитие межпредметных связей и осознание взаимосвязи с ранее выученными темами, на подготовку к итоговому оцениванию знаний, установлению формально-логических подходов к построению курса школьной математики, закрепление необходимости обосновывать и доказывать математические факты.

Ошибки в учебниках и методической литературе

В учебнике Л. С. Атанасяна и других «Геометрия 7-9» была  приведена задача № 536: «Отрезок BD является биссектрисой треугольника АВС. Найдите DС,  если АВ = 30,  АD = 20,  ВD = 16  и  ∠ВDС = ∠С».

Решение.

ВD – биссектриса АВС   =  

∠ВDС = ∠С  ВDС равнобедренный  ВD = DС   =

Отсюда СD  =  

Ответ:  

Решим задачу вторым способом.

ВЕ – высота АВС.  Пусть DЕ = х. Из прямоугольных треугольников АВЕ и DВЕ получаем:  

АВ2  –  АЕ2  =  ВD2 – DЕ2,

302  –  (20 + х)2  = 162 – х2,  

900 – 400 – 40х – х2  = 256 – х2,

40х  = 244,  

х  =  6,1.

  ВЕ высота и медиана DЕ = СЕ  СD = 2х = 12,2. Получили несоответствие с ответом первого способа решения.

Проверим, существует ли треугольник, у которого выполнены условия: ∠ВDС = ∠С  и  ∠АВD = С.  Найдем величины  ∠DВС, ∠ВDС, ∠С.

АD2  =  АВ2 + ВD2 – 2  cos ∠AВD   

cos ∠AВD =

Тогда   ∠АВD 38,5о.    DВС = ∠АВD 38,5о.

Аналогично   cos ∠ADВ =

Тогда    ∠АDВ = 180о  – 67,59о  ∠В 67,59о.     Из  ВDС

∠С = 180о – 38,05о – 67,59о  = 74,36о,

Отсюда следует, что   ∠В ∠С  и  треугольник   DВС неравнобедренный.

Значит, задача составлена некорректно: треугольник, описанный в  условии задачи, не существует.

Возможны два корректных варианта задачи:

  1. Дан треугольник АВС, точка D лежит на стороне ВС. Найдите DС, если АВ = 30,  АD = 20,  ВD = 16  и  ∠ВDС = ∠С.

В этом случае ВD не является медианой. По второму способу получаем СD = 12,2.

  1. Отрезок BD является биссектрисой треугольника АВС. Найдите DС, если АВ = 30.  АD = 20,  ВD = 16.

∠В ∠С, в этом случае из треугольника DВС по теореме синусов получаем

 

В действующем учебнике задача № 536 имеет вид:

Отрезок BD является биссектрисой треугольника АВС. а)  Найдите АВ, если ВС = 9 см,  АD = 7,5 см,  DС = 4,5 см.   б)  Найдите  DС,  если  АВ = 30. АD = 20,  ВD = 16.

        Посмотрим объяснение деления с остатком круглых чисел в теме «Деление круглых чисел» ( урок 66) учебника математики для 4 –ого класса (Т. Е. Демидова, С. А. Козлова, А. П. Тонких).

        Цитируем: «Прочитай, объясни и проверь записи.

190 : 20 = 190 : 10 : 2 = 9 ( 1 остаток)

190 : 20 = 19 д. : 2 д. = 9 ( 1 остаток)

4700 : 500 = 4700 : 100 : 5 = 9 ( 2 остаток)

4700 : 500 = 47 с. : 5 с. = 9 ( 2 остаток)»

        Проверяем    20 ∙ 9 + 1 = 190 – равенство неверное, делаем вывод: ошибка при выполнении деления с остатком. В чем ошибка? Анализируем 1-ое равенство 190 : 20 = 190 : 10 : 2 = 19 : 2, получаем деление числа 19 на число 2 и соответственно остаток от деления 19 на 2, но не от деления 190 на 20, действительно 19 : 2 = 9 ( 1 остаток). В этом случае 19 показывает, сколько десятков содержится  в числе 190, поэтому остаток так же получаем в десятках, но не в единицах.

        Анализируем 2-ое равенство 190 : 20 = 19 д. : 2 д. здесь мы делим десятки, поэтому остаток также будет в десятках 9 о чем сказано ранее),  т, е. получаем 19 д. : 2 д. = 9 (1 д. остаток), проверкой убеждаемся в истинности деления 9 ∙ 2 д. + 1 д. = 19 д. = 190.

        Предлагаем верные записи:

 190 : 20 = 190 : 10 : 2 = 9 ( 1 д.  остаток)

190 : 20 = 19 д. : 2 д. = 9 ( 1 д. остаток)

4700 : 500 = 4700 : 100 : 5 = 9 ( 2 с. остаток)

4700 : 500 = 47 с. : 5 с. = 9 ( 2 с. остаток).

В газете «Математика» предлагается уравнение   и к нему ответ:1. Предложено решение  уравнения  по следующей  схеме:

af(x)bg(x) = apbp

Приведенное решение неверное, так как приводит к потере  корней. данное уравнение следует решать по схеме:

a f(x) b g(x) = a p b p    a  f(x)– р b q  g(x) 

Вернемся к данном уравнению.

 = 40    2 3   

Заключение

Хотя проблемы формирования и развития рефлексивной деятельности в процессе обучения и поиск новых форм работы над математическими ошибками школьников и не являются абсолютно новыми, изучение такого аспекта, как использование рефлексивной деятельности учащихся при работе над типичными ошибками всегда актуальны. В данной работе рассмотрены некоторые типичные ошибки, допускаемые учащимися при  изучении математики, их объяснение, меры их предупреждения. Хорошо организованная учителем работа учащихся над типичными ошибками посредством исследовательского приема  приводит к улучшению результата обучению математики и развитию рядя показателей логического мышления. К тому же предмет «математика» настолько сложен, что даже методисты допускают ошибки.

Литература

  1. Далингер В. А. «Анализ типичных ошибок, допускаемых в курсе алгебры и начала анализа» «Математика в школе» 6-98
  2.  2-98 Ярский А. С, «Что делать с ошибками»
  3.  Хэкало С. П. «Корни терять нельзя» 5-98
  4.  Игнатенко В. З. «Сюрпризы биссектрисы» 5-98

Интернет-ресурсы

  1. http://mat.1september.ru/view_article.php?ID=200900304
  2. http://www.distedu.ru/mirror/_fiz/archive.1september.ru/mat/1998/no38.htm
  3. http://www.ankolpakov.ru/2011/10/03/repetitor-po-matematike-o-durackix-oshibkax/
  4. http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r#ixzz2PJHLl9cJ
  5. http://www.referun.com/n/preduprezhdenie-tipichnyh-oshibok-uchaschihsya-v-protsesse-obucheniya-algebre-posredstvom-formirovaniya-i-ispolzovaniya-r


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Одна из важнейших задач обучения школьников математике – формирование у них устных вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных вычислений. Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. В ФГОС НОО сказано, что, изучая математику, «учащиеся овладевают основами логического мышления, пространственного воображения и математической речи, измерения, пересчета, приобретают необходимые вычислительные навыки» [5].

Проблема формирования у учащихся вычислительных умений и навыков всегда привлекала особое внимание педагогов, методистов, учителей. В методике математики известны исследования М.А. Бантовой [1], Г.В. Бельтюковой [2], А.В. Белошистой [3], Т.И. Фаддейчевой [4] и многих других.

Процесс овладения вычислительными навыками довольно сложен: сначала ученики должны усвоить тот или иной вычислительный прием, а затем в результате тренировки научится достаточно быстро выполнять вычисления, а в отношении табличных случаев – запомнить результаты наизусть. К тому же в каждом концентре изучается довольно большое количество приемов, поэтому естественно, что не все ученики сразу усваивают их, часто допускают ошибки.

На основе чтения учебно-методической литературы и периодических печатных изданий были выявлены и проанализированы типичные ошибки учеников при устных вычислениях. Рассмотрим типичные ошибки учеников при выполнении ими арифметических действий сложения и вычитания, а также методические приемы их предупреждения и устранения. В концентре «Десяток» возможны следующие ошибки:

Смешивание действий сложения и вычитания (7+2=5, 6-4=10). Такие ошибки возникают по двум причинам. Первая причина: ученики еще не усвоили самих действий сложения и вычитания или же знаков этих действий. Чаще это происходит потому, что учитель рано стал требовать выполнения арифметических действий без использования счетного материала (палочек, геометрических фигур из набора и т.п.) Для устранения уже появившихся ошибок надо вернуть учеников к работе со счетным материалом. При этом важно, чтобы они сопровождали вычисления словесным рассуждением и соответствующей записью. Вторая причина ошибок в замене одного арифметического действия другим – это недостаточный анализ решаемого примера: при вычислениях ученики больше обращают внимание на числа, чем на знак действия. Поэтому важно с первых уроков обучения вычислениям приучать учеников к тому, чтобы они называли сначала вслух, а позднее про себя, какое арифметическое действие надо выполнить и над какими числами, и только после этого вычисляли результат.

Получение результата на единицу больше или меньше верного (7+2=8, 9-3=7). Подобные ошибки возникают при присчитывании и отсчитывании чисел 2, 3, 4 по единице с опорой на натуральный ряд. Например, прибавляя к 7 число 2, ученики должны назвать два числа, следующие в ряду за числом 7. Однако бывает, что они первым называют данное число, а не следующее за ним (7, 8) и думают, что они прибавили 2 и что 7+2=8. Для предупреждения таких ошибок полезно, чтобы при присчитывании и отсчитывании по единице назывались промежуточные результаты (7+1=8, 8+1=9, значит, 7+2=9).

Использование нерациональных приемов. Например, выполняя сложение в случаях вида 3+6, часть учеников вместо приема перестановки слагаемых используют прием присчитывания по единице (по 2, по 3). А это трудно, и ученики часто забывают, сколько единиц они уже прибавили, и сколько осталось прибавить, вследствие чего получают неправильный результат (3+6=8, 3+6=10). Также объясняются ошибки вида 9-7=4. Предупреждению таких ошибок помогает сравнение рациональных и нерациональных приемов вычислений. Так, обнаружив, что некоторые ученики допускают ошибки при решении примеров вида 3+6, учитель спрашивает, как они решали пример (3+1=4. 4+1=5). Затем другие ученики объясняют, как можно решить этот пример быстрее, легче (надо переставить слагаемые 6+3=9). Здесь же ученики указывают, в каких случаях следует переставлять слагаемые (когда к меньшему числу прибавляем большее).

Запись или называние вместо результата одного из компонентов. Например, 3+5=5, 6-4=6. Такие ошибки возникают преимущественно по невнимательности. Как правило, ученики сами находят ошибку и дают верный ответ. Для предупреждения подобных ошибок важно научить детей выполнять проверку решения путем прикидки результата: при сложении результат должен быть больше каждого из слагаемых (если ни одно из них не равно нулю). При вычитании результат должен быть меньше уменьшаемого (если вычитаемое не равно нулю). Если эти отношения не выполняются, значит, в вычислениях допущена ошибка. Чтобы научить детей такой проверке надо попутно с вычислениями чаще проводить наблюдения, сравнивая результат с компонентами действий сложения и вычитания. Устранению названных ошибок помогает анализ и обсуждение неверно решенных примеров.

– Смешивания цифр. Например, ученик пишет: 4+2=9, хотя устно называет правильный результат. Для устранения подобных ошибок необходима индивидуальная работа по запоминанию цифр. Пусть ученик нарисует названное учителем число каких-либо предметов и рядом запишет цифрой соответствующее число, пусть найдет в своем наборе названные цифры.

В концентре «Сотня» возможны следующие ошибки:

Смешивание приемов вычитания, основанных на свойствах вычитание суммы из числа и числа из суммы. Например:

50 – 36=2656 – 30 = 14

50 – 30 = 20 50 – 30 = 20

20 + 6 = 26 20 – 6 = 14

Чтобы предупредить появление подобных ошибок. Надо проводить специальную работу по сравнению смешиваемых приемов, выявляя при этом существенное различие. Ученикам предлагаются пары примеров, аналогичные приведенным, решая которые, они сравнивают каждый сделанный шаг:

80 – 27 = 87 – 20=

/ /

20+7 80+7

80 – 20 = 60 80 – 20 = 60

60 – 7 = 53 60 + 7 = 67

В первом примере надо вычитать из 80 сумму чисел 20 и 7, а во втором – вычитать одно число 20 из суммы чисел 80 и 7. В первом примере вычли 20 и вычли 7, а во втором вычли только 20 из 80 и к результату прибавили 7.

Выполнение сложения и вычитания над числами разных разрядов, как над числами одного разряда. Например, ученик складывает число десятков с числом единиц (54+2=74), вычитает из числа единиц число десятков (57-40=53). Для предупреждения названных ошибок полезно обсудить неверные решения примеров. Так, учитель предлагает найти среди данных примеров те, при решении которых допущена ошибка: 42+3=45, 25+4=65, 54+30=57. Затем выясняется, какая допущена ошибка: во втором примере 4 единицы прибавили к 2 десяткам и получили 6 десятков, это неправильно, т.к. единицы надо прибавлять к единицам, получится 29, а не 65. А в третьем примере 3 десятка прибавили к 4 единицам, получили 7 единиц, это неверно, десятки надо прибавлять к десяткам, получится 84, а не 57. После этого еще раз повторяется, что единицы прибавляют к единицам, а десятки – к десяткам. Такую работу следует провести и при рассмотрении примеров на вычитание.

Ошибки в табличных случаях сложения и вычитания, когда они входят в качестве операций в более сложных примерах на сложение и вычитание. Например: 37+28=64, 58-6=53. Предупреждению этих ошибок будет служить постоянное внимание к усвоению учениками табличных случаев сложения и вычитания, особенно к случаям с переходом через десяток. Для устранения ошибок необходима индивидуальная работа с учениками, допускающими их.

Неверный результат вследствие пропуска операций, входящих в прием, или выполнение лишних операций. Например: 64+30=97, 76 – 20=50. Эти ошибки возникают, как правило, в результате невнимательности учеников. Для их устранения необходимо научить и постоянно побуждать учеников выполнять проверку решения примеров. Заметим, что способ проверки путем прикидки результата здесь не подходит, так как получили сумму (97), которая больше каждого из слагаемых (64 и 30). Поэтому в данном случае используется проверка, основанная на связи между компонентами и результатом действий сложения и вычитания.

Смешивание действий сложения и вычитания. Например: 36+20=16, 46-7=53. Эти ошибки обусловлены недостаточным вниманием учеников. Эффективным средством устранения таких ошибок на данном этапе обучения является умение и привычка учеников выполнять проверку решения примеров. Здесь ошибка сразу выявляется, если сравнить результат с компонентами. Например, ученик выполнил сложение так: 36+20=16. Сравнив сумму (16) со слагаемыми (36 и 20), он сразу обнаруживает, что полученная сумма меньше каждого из слагаемых, значит, пример решен неверно.

Ошибки в устных приемах сложения и вычитания чисел, больших ста те же, что и при сложении и вычитании чисел в пределах ста. Для их устранения используются методические приемы, о которых говорилось выше.

Таким образом, предупреждению, а также устранению ошибок в вычислениях учеников помогает использование таких методических приемов, как: прием сравнения, т.е. выявление существенных сходств и различий в смешиваемых приемах для устных вычислений; прием анализа решения примеров для предупреждения смешивания арифметических действий; обсуждение с учениками неверных решений, в результате чего выявляется причина ошибок; учить детей выполнять проверку решения примеров соответствующими способами и постоянно воспитывать у них эту привычку.

Список использованной литературы:

  1. Бантова М.А. Ошибки учащихся в вычислениях и их предупреждение // Начальная школа. – 1989. – № 2.

  2. Бельтюкова Г.В. Методические ошибки при формировании у школьников вычислительных навыков // Начальная школа. – 1980. – №8.

  3. Белошистая А.В. Прием формирования устных вычислительных умений в пределах 100 // Начальная школа. – 2001. – №7.

  4. Фаддейчева Т.И. Обучение устным вычислениям // Начальная школа. – 2003. –№10.

  5. Федеральный государственный образовательный стандарт начального общего образования /Министерство образования и науки Российской Федерации. – М.: Просвещение, 2010. – 41 с.

Понравилась статья? Поделить с друзьями:
  • Возможно я лучшая ошибка которую ты совершал
  • Возможно не использует локатор айфон ошибка как настроить
  • Возможно спотифай заблокирован брандмауэром код ошибки 74
  • Возможно потребуется изменение сетевых параметров соединения ошибка 720
  • Возможно он был священнослужителем имевший большой авторитет ошибка