Vitek термопот коды ошибок

Эта статья посвящена диагностики неисправностей термопотов, связанных с нагреванием и подачей воды, на примере моделей Elenberg ТН-6030, Vitek VT-1188 и Vitek-1191 описанных ранее [1]. В статье даны советы по подключению электропитания к «сухому чайнику», т.е. чайнику без воды и к отдельным платам, необходимого для проведения измерений и диагностики отказов, что облегчает их ремонт.

В Интернете выложено много материалов по разборке термопотов. Проводить измерения удобнее, когда чайник устойчиво стоит в положении вверх дном. Для этого нужно снять его верхнюю, выпуклую крышку для залива воды. Отвёрткой отжимают защёлку на петле крышки и снимают её с оси, на которой она крепится. Подставкой для перевёрнутого термопота может служить пластиковое ведро, диаметр дна которого немного меньше диаметра ёмкости для кипячения воды. В ходе разборки термопота необходимо прозвонить все ТЭН-ы, термовыключатели и предохранители, которые есть в цепях питания, от одного контакта сетевой вилки до силовых контактов реле К1, и от другого контакта вилки до общего провода основной платы, прозвонить «земляной» контакт вилки с металлическими деталями корпуса чайника и проверить «землю» на замыкание с сетевыми проводами. На этом этапе выявляется большое количество неисправностей.

Вместо Elenberg ТН-6030 (Рис.1[1]) в настоящее время продаются его клоны: модели термопотов BRAND 34300 и KC-2011-B. Их схемы [2] аналогичны ТН-6030. (Рис. 1) Основные платы изделий имеют одинаковый код КС-87-В, они отличаются только типами и номиналами отдельных деталей, и отсутствием разъёма CN1 на общей плате КС-2011-В. Рис. 2. Сетевой провод соединен с ней дополнительным контактом 1.1 разъёма SP1. Маркировка элементов платы КС-2011-В в статье указана по схеме ТН-6030. Подключать к сети 220 В для диагностики неисправные термопоты этих типов нецелесообразно, потому что их источник вторичного питания мощностью до 25 мА служит только для питания схемы управления реле К1. 

Индикатор кипячения HL1 включается при замыкании контактов К1.1 реле К1 или термовыключателя SF1. Индикатор подогрева HL2 и ТЭН подогрева ЕК1 включены постоянно. При отсутствии принудительного кипячения, не снимая платы с её места, с выводов R1 измеряют ёмкость С1 чтобы исключить его обрыв или дефекты пайки выводов. Затем прозванивают омметром диоды VD1 – VD4 выпрямительного моста и стабилитрон VD6, и исключают пробой С2 и С3. Прозвонкой между выводами «+» и коллектором VT2 исключают замыкание катушки реле К1 или пробой диода VD7. Затем к выводам диодов моста VD1 – VD4 подключают зажимами или припаивают два провода и подают на плату напряжение 12 – 16 В от внешнего источника. Его полярность, «+» и «–» указана на Рис. 2 . После чего нажимают кнопку SB1 «Кипячение», если есть щелчок включения реле К1, между контактами разъёмов CN3 и CN4, предварительно отключив от него ТЭН-ы, измеряют сопротивление замкнутых контактов К1.1, в норме оно меньше 0,5 Ом. Если после нажатия на SB1 щелчка нет, подключают вывод R4, отмеченный на Рис. 2 зелёной звёздочкой к «+». Если реле щелкнуло, устраняют обрыв в цепи SB1. Если щелчка нет, соединяют анод VD7 с контактом «–» на плате, при появлении щелчка исключают обрыв с цепях транзисторов VT1 и VT2. Если щелчка по-прежнему нет, неисправно реле К1. Сокращение времени принудительного кипячения менее 1 мин. указывает на высыхание или утечку конденсатора С3.

Если не работает помпа нужно исключить обрыв ТЭН-а подоргрева ЕК1, пробой VD9, обрыв или пробой VD10. Затем электромотор отключают от разъёма SP2 – SP3 и подают на него постоянное напряжение 10 – 12 В. Если мотор исправен, проверяют кнопки SB2 – SB3 на плате управления, они коммутируют пульсирующее напряжение амплитудой более 300 В, поэтому их контакты искрят и со временем могут подгорать. На контакты разъёмов CN2 и CN4 подают напряжение 10 – 12 В, в полярности обратной проводимости диода VD9. Если при нажатии кнопок SB2 или SB3 электромотор работает хуже, чем при его прямом включении, эти кнопки заменяют.

В схеме термопота VT-1188, Рис. 3, уточнено положение силовых разъёмов на основной плате по сравнению с Рис. 4 [1]. Расположение разъёмов показано на Рис. 4. В этом разделе описаны отказы, связанные с функцией самодиагностики процессора ic1, который управляет работой термопота. Если у чайника не включаются кипячение, подача воды и не светится ни один индикатор, скорее всего отсутствует вторичное напряжение питания. Для проверки трансформатора Т1 надо прозвонить обе его обмотки на обрыв или замыкание, первичную с разъёмов JP6 — JP9, контакты, обозначенные на Рис. 4 «к Т1» не отключают. Вторичную обмотку – отключив разъём AC-IN. Сопротивление обмоток Т1 – 1 кОм и 4 Ома. Потом прозванивают диоды моста VD1 – VD4 и исключают замыкание на его выходе. От разъёмов платы JP1 и JP2 отключают ТЭН ЕК1, его отключенные контакты обматывают липкой лентой (изолентой) и фиксируют выводы на корпусе чайника чтобы не болтались. Потом термопот без воды включают в сеть. На холостом ходу Т1 должен работать не менее 10 мин. Если он быстро нагревается и напряжение вторичной обмотки на разъёме AC-IN меньше 10 В его заменяют. Исправный Т1 подключают к разъёмам и чайник включают в сеть. В VT-1188 цепи вторичного питания изолированы от напряжения сети, но сетевое напряжение присутствует на всех разъёмах «JP…» платы. При соблюдении мер техники безопасности работа с термопотом, включённым в сеть таким образом, не опаснее работы с сетевым блоком питания. В норме переменное напряжение вторичной обмотки трансформатора Т1 на входе выпрямительного моста VD1 – VD4 равно 12 В, на его выходе постоянное напряжение равно 14 – 16 В, полярность «+» и «–» показана на Рис. 3 и 4. С выхода стабилизатора ic2 напряжение +5 В поступает на выводы 11, 12 процессора ic1. Если +5 В есть на выводах 11 – 12 ic1 и светится индикация, проверяют исправность процессора ic1 и оптопары ic3 на срабатывание блокировок.

1) Отвёрткой с изолированной ручкой на 3 – 5 сек. замыкают выводы 1 и 2 ic3, (они находятся под напряжением сети), если ic1 и ic3 исправны, через 3 сек. замигают светодиоды LED3 и LED5, Рис. 5, (L3 и L5 на Рис. 3) и заблокируются кнопки SW1 – SW4. Свечение индикаторов можно видеть, перевернув включённый в сеть чайник из положения вверх дном в обычное положение. При обычной работе чайника от сети переменное напряжение 220 В между разъёмом JP8 и шиной «N» (разъёмы JP2, JP4, JP6) выпрямляется диодом D8 и через сопротивление R15 пульсирующий постоянный ток 4 мА поступает на выводы 1 и 2 – входы оптопары ic3, она открывается и с её вывода 3, напряжение 5 В подаётся на вывод 6 процессора ic1. Если на вход оптопары ток не поступает, ic3 закрывается, на выводе 6 процессора ic1 появляется «0», и ic1 переходит в режим блокировки. Это происходит при перегорании предохранителя FU1, более чем 3-х секундного размыкания контактов аварийного термовыключателя SF1, при разрыве цепи D8 – R15 или при выходе из строя самой оптопары ic3. Неисправные детали заменяют. Если замены оптопаре ic3 нет, на время работы можно соединить перемычкой её выводы 3 и 4. Данная блокировка не включается при обрывах ТЭН-а и силовых контактов реле К1 [1]. Первичная обмотка Т1 подключена к сети 220 В перед SF1 и FU1, поэтому после срабатывания защиты и включения блокировки вторичное питание от платы не отключается. Эта блокировка отключается только после обесточивания чайника.

2) Шпилькой из одножильного провода замыкают два металлических контакта в верхней половине разъёма CN4 (красный), в которые запрессованы провода идущие от термистора RT. Рис. 6. Через 3 сек. начнут мигать LED1 и LED6. (L1 и L6 на Рис. 3), кнопки SW2, SW3, SW4 блокируются. Термистор RT с отрицательным ТКС подключён к схеме так, что при повышении температуры воды, когда его сопротивление уменьшается, напряжение на выводе 8 ic1 увеличивается. При температуре кипения воды сопротивление RT уменьшается примерно до 7,3 кОм, а напряжение на выводе 8 ic1 повышается примерно до 3,7 В, после чего режим кипячения отключается, индикатор LED1 гаснет и чайник переходит в режим поддержания температуры воды и начинает светиться, а затем мигать один из индикаторов выбранной температуры нагрева воды – LED3, LED4 или LED5. Если сопротивление RT становится меньше 7,3 кОм, а напряжение на выводе 8 iс1 больше 3,7 В, процессор диагностирует замыкание RT и включает блокировку. Отменяется блокировка нажатием кнопки SW1 «Кипячение», но если причина замыкания RT не устранена, то через 3 сек. блокировка включится снова. После кипения вода остывает и сопротивление RT повышается, когда оно увеличится  до 10,5 кОм, а напряжения на выводе 8 ic1 уменьшится до 3,5 В, процессор повторно включит кипячение. Значение выбранной для поддержания температуры воды на эти показатели заметно не влияет. Основные причины отказа и включения этой блокировки – уменьшение сопротивления или замыкание RT, или обрыв R13.

3) Отключить от разъёма CN4 термистор RT, через 3 сек. начнут мигать LED3 и LED6. (L3 и L6 на Рис. 3), кнопки SW2 – SW4 блокируются. В интервале значений сопротивления термистора RT от 10,5 до 550 кОм, в режиме поддержания температуры воды чайник будет включать ТЭН. При повышении сопротивления RT более 560 кОм, когда напряжение на выводе 8 ic1 станет ниже 0,2 В, процессор диагностирует обрыв RT. Блокировка отменяется нажатием кнопки SW1 «Кипячение», если обрыв RT не устранен, через 3 секунды блокировка включится снова. Основные причины включения блокировки – обрыв RT или R11, плохой контакт в разъёме RT или разрушение пайки его выводов на плате. Во всех случаях неисправности термистора RT его нужно заменить. Подключать резисторы параллельно RT нежелательно, они только уменьшат величину его ТКС.

Когда чайник находится в режиме «Остывание», светится только LED2, все блокировки так же срабатывают. 

Если +5 В на выводах 11, 12 процессора ic1 есть, а команды с кнопок SW1 –  SW4 не выполняются и нет индикации, осциллографом или частотомером проверяют наличие генерации на выводах 13 или 14 процессора, её измеряют между выводом 13 или 14 ic1 и «–» платы. Если генерация есть (4 МГц +/– 2 кГц, амплитуда 0,8 – 1 В), причиной неисправности может быть нарушение контактов или паек разъёмов CN1 на обеих платах, или обрыв проводов в жгуте, соединяющим эти разъёмы. При отсутствии генерации – неисправен процессор  ic1.

Не подключая чайник к сети 220 В напряжение на плату можно подать через разъём AC-IN. Для этого, отключив Т1, к разъёму подключают напряжение от внешнего источника питания, переменное 10 – 12 В, или постоянное 14 – 18 В, любой полярности. При таком включении, если процессор ic1 исправен, через 3 сек. сработает блокировка «1» и начнут мигать светодиоды LED3 и LED5, поэтому для нормальной работы ic1 выводы 3 и 4 ic3 нужно на время ремонта замкнуть между собой.

Схема термопота VT-1191 показана на Рис. 7, по сравнению с Рис. 5. [1] на ней уточнено подключение силовых разъёмов и ТЭН-ов. Импульсный безтранформаторный блок питания VT-1191 выполнен на микросхеме VIPer-12A. Его выходное напряжение +18 В поступает на входы стабилизаторов напряжения +12 В и +5 В основной платы. Минусовой выход БП подключён к шине «N», одному из проводов сети 220 В. Неисправный чайник без воды подключают к сети в такой последовательности: от ТЭН-ов ЕК1 и ЕК2 отключают провода, синий «Н» и белый «В», идущие от силовых контактов реле К1. Для этого откручивают гайки крепящие выводы «Н» и «В» к контактам ТЭН-ов на корпусе чайника. Клеммы отключенных проводов соединяют вместе липкой лентой (изолентой), а сами провода отгибают в сторону реле, они жесткие, поэтому их специально не фиксируют. Рис. 8, Рис. 9. 

 

Снятые гайки прикручивают на место. Сдвигают пластиковый чехол с клеммы сетевого провода, подключённого к контакту платы «N». К этой клемме будет подключен зажимом минусовый щуп мультиметра. Рис. 9. После включения чайника в сеть сразу начнёт светиться индикатор HL3 и включится ТЭН подогрева – ЕК2, который подключён к нормально-замкнутому контакту реле К1. Поочерёдно нажимают на кнопки SW3, SW2, SW1, (кипячение, снятие блокировки, подача воды), отмечают выполнение команд и включение индикаторов HL1 – HL2. Для проведения измерений чайник переворачивают вверх дном. Измерения начинают с выхода БП, напряжение 18 – 19 В должно быть на обоих выводах дросселя L2, на «+» конденсатора EL3, на С3, на анодах диодов D4 и D5. Напряжение +12 В проверяют на катодах диодов D2, D6 и D7, в норме оно равно 12 – 15 В. Напряжение +5 В измеряют на эмиттере Q4, выводах С4, R9 и на выводе №1 iс1. Все точки для измерения напряжения питания отмечены красным цветом на Рис. 9. Далее проверяют цепь термовыключателя SF2, которая подключена к сети переменного тока 220 В: R16, D8, R15, транзистор Q2, R10, разъём CN3, SF2, вывод 4 iс1. С неё на iс1 поступает сигналы о закипании – остывании воды. Точки для измерения напряжения в этой цепи отмечены зелёным цветом на Рис. 9.

При комнатной температуре контакты SF2 замкнуты, на базе Q2 и на R15 будет напряжение 0,6 В, на коллекторе Q2, на R10 и на выводе 4 iс1 – 0 В. В этом состоянии iс1 выполняет все  команды. При температуре 88 град.С контакты SF2 разомкнутся и напряжение на базе Q2 станет равно 0 В, на коллекторе Q2, на R10 и на выводе 4 iс1 будет 5 В. При разомкнутом SF2 (из-за гестерезиса его контакты снова замкнутся при понижении t до 75 – 80 град.С), процессор iс1 будет блокировать команду «кипячение». После нажатия и отпускания кнопки SW3 «HEAT» индикатор HL2 должен сразу погаснуть, а ТЭН кипячения ЕК1 отключиться. Он подключён к нормально-разомкнутому контакту реле К1. В случае, описанном в [1], отказ iс1 проявился в том, что он не «видел» напряжения на выводе №4 и не мог в нужное время включать и отключать кипячение воды.

Не подключая чайник к сети 220 В, постоянное напряжение на плату можно подать от внешнего источника питания. Рис. 10. Правда, в этом случае невозможно будет оценить работу блока питания, а цепь термовыключателя SF2 будет отключена от напряжения питания 220 В, поэтому придётся временно подключить между анодом D8 и источником напряжения +12 или +18 В сопротивление 10 кОм. Со стороны деталей напряжение +18 В подключают зажимом или пайкой к аноду диода D6, а минус питания подключают зажимом или клеммой к контакту платы «N». Можно припаять оба провода к плате со стороны проводников – параллельно выводам конденсаторов EL3 или С3.

 Обозначение силовых выводов на платах термопотов «Vitek».  

 L) – сетевой вывод, условно подключён к фазовому проводу сети 220 В после плавкого предохранителя и аварийного термовыключателя. 

 N) – сетевой вывод, условно подключён к нулевому проводу сети 220 В..   

 Н) – вывод силового контакта реле для подключения вывода ТЭН-а кипячения.  

 В) – вывод силового контакта реле для подключения вывода ТЭН-а подогрева воды.  

 Т) – вывод подвижного контакта силового реле К1, переключающего или включающего  ТЭН-ы. Он подключён к выводу L.

Автор: Паньшин Андрей. Москва.

Список литературы

  1. Схемы и ремонт электрочайников – термопотов
  2. Сайт https://msk.au.ru/8030049/

Теги:

Эта статья посвящена диагностики неисправностей термопотов, связанных с нагреванием и подачей воды, на примере моделей Elenberg ТН-6030, Vitek VT-1188 и Vitek-1191 описанных ранее [1]. В статье даны советы по подключению электропитания к «сухому чайнику», т.е. чайнику без воды и к отдельным платам, необходимого для проведения измерений и диагностики отказов, что облегчает их ремонт.

В Интернете выложено много материалов по разборке термопотов. Проводить измерения удобнее, когда чайник устойчиво стоит в положении вверх дном. Для этого нужно снять его верхнюю, выпуклую крышку для залива воды. Отвёрткой отжимают защёлку на петле крышки и снимают её с оси, на которой она крепится. Подставкой для перевёрнутого термопота может служить пластиковое ведро, диаметр дна которого немного меньше диаметра ёмкости для кипячения воды. В ходе разборки термопота необходимо прозвонить все ТЭН-ы, термовыключатели и предохранители, которые есть в цепях питания, от одного контакта сетевой вилки до силовых контактов реле К1, и от другого контакта вилки до общего провода основной платы, прозвонить «земляной» контакт вилки с металлическими деталями корпуса чайника и проверить «землю» на замыкание с сетевыми проводами. На этом этапе выявляется большое количество неисправностей.

Вместо Elenberg ТН-6030 (Рис.1[1]) в настоящее время продаются его клоны: модели термопотов BRAND 34300 и KC-2011-B. Их схемы [2] аналогичны ТН-6030. (Рис. 1) Основные платы изделий имеют одинаковый код КС-87-В, они отличаются только типами и номиналами отдельных деталей, и отсутствием разъёма CN1 на общей плате КС-2011-В. Рис. 2. Сетевой провод соединен с ней дополнительным контактом 1.1 разъёма SP1. Маркировка элементов платы КС-2011-В в статье указана по схеме ТН-6030. Подключать к сети 220 В для диагностики неисправные термопоты этих типов нецелесообразно, потому что их источник вторичного питания мощностью до 25 мА служит только для питания схемы управления реле К1. 

Индикатор кипячения HL1 включается при замыкании контактов К1.1 реле К1 или термовыключателя SF1. Индикатор подогрева HL2 и ТЭН подогрева ЕК1 включены постоянно. При отсутствии принудительного кипячения, не снимая платы с её места, с выводов R1 измеряют ёмкость С1 чтобы исключить его обрыв или дефекты пайки выводов. Затем прозванивают омметром диоды VD1 – VD4 выпрямительного моста и стабилитрон VD6, и исключают пробой С2 и С3. Прозвонкой между выводами «+» и коллектором VT2 исключают замыкание катушки реле К1 или пробой диода VD7. Затем к выводам диодов моста VD1 – VD4 подключают зажимами или припаивают два провода и подают на плату напряжение 12 – 16 В от внешнего источника. Его полярность, «+» и «–» указана на Рис. 2 . После чего нажимают кнопку SB1 «Кипячение», если есть щелчок включения реле К1, между контактами разъёмов CN3 и CN4, предварительно отключив от него ТЭН-ы, измеряют сопротивление замкнутых контактов К1.1, в норме оно меньше 0,5 Ом. Если после нажатия на SB1 щелчка нет, подключают вывод R4, отмеченный на Рис. 2 зелёной звёздочкой к «+». Если реле щелкнуло, устраняют обрыв в цепи SB1. Если щелчка нет, соединяют анод VD7 с контактом «–» на плате, при появлении щелчка исключают обрыв с цепях транзисторов VT1 и VT2. Если щелчка по-прежнему нет, неисправно реле К1. Сокращение времени принудительного кипячения менее 1 мин. указывает на высыхание или утечку конденсатора С3.

Если не работает помпа нужно исключить обрыв ТЭН-а подоргрева ЕК1, пробой VD9, обрыв или пробой VD10. Затем электромотор отключают от разъёма SP2 – SP3 и подают на него постоянное напряжение 10 – 12 В. Если мотор исправен, проверяют кнопки SB2 – SB3 на плате управления, они коммутируют пульсирующее напряжение амплитудой более 300 В, поэтому их контакты искрят и со временем могут подгорать. На контакты разъёмов CN2 и CN4 подают напряжение 10 – 12 В, в полярности обратной проводимости диода VD9. Если при нажатии кнопок SB2 или SB3 электромотор работает хуже, чем при его прямом включении, эти кнопки заменяют.

В схеме термопота VT-1188, Рис. 3, уточнено положение силовых разъёмов на основной плате по сравнению с Рис. 4 [1]. Расположение разъёмов показано на Рис. 4. В этом разделе описаны отказы, связанные с функцией самодиагностики процессора ic1, который управляет работой термопота. Если у чайника не включаются кипячение, подача воды и не светится ни один индикатор, скорее всего отсутствует вторичное напряжение питания. Для проверки трансформатора Т1 надо прозвонить обе его обмотки на обрыв или замыкание, первичную с разъёмов JP6 — JP9, контакты, обозначенные на Рис. 4 «к Т1» не отключают. Вторичную обмотку – отключив разъём AC-IN. Сопротивление обмоток Т1 – 1 кОм и 4 Ома. Потом прозванивают диоды моста VD1 – VD4 и исключают замыкание на его выходе. От разъёмов платы JP1 и JP2 отключают ТЭН ЕК1, его отключенные контакты обматывают липкой лентой (изолентой) и фиксируют выводы на корпусе чайника чтобы не болтались. Потом термопот без воды включают в сеть. На холостом ходу Т1 должен работать не менее 10 мин. Если он быстро нагревается и напряжение вторичной обмотки на разъёме AC-IN меньше 10 В его заменяют. Исправный Т1 подключают к разъёмам и чайник включают в сеть. В VT-1188 цепи вторичного питания изолированы от напряжения сети, но сетевое напряжение присутствует на всех разъёмах «JP…» платы. При соблюдении мер техники безопасности работа с термопотом, включённым в сеть таким образом, не опаснее работы с сетевым блоком питания. В норме переменное напряжение вторичной обмотки трансформатора Т1 на входе выпрямительного моста VD1 – VD4 равно 12 В, на его выходе постоянное напряжение равно 14 – 16 В, полярность «+» и «–» показана на Рис. 3 и 4. С выхода стабилизатора ic2 напряжение +5 В поступает на выводы 11, 12 процессора ic1. Если +5 В есть на выводах 11 – 12 ic1 и светится индикация, проверяют исправность процессора ic1 и оптопары ic3 на срабатывание блокировок.

1) Отвёрткой с изолированной ручкой на 3 – 5 сек. замыкают выводы 1 и 2 ic3, (они находятся под напряжением сети), если ic1 и ic3 исправны, через 3 сек. замигают светодиоды LED3 и LED5, Рис. 5, (L3 и L5 на Рис. 3) и заблокируются кнопки SW1 – SW4. Свечение индикаторов можно видеть, перевернув включённый в сеть чайник из положения вверх дном в обычное положение. При обычной работе чайника от сети переменное напряжение 220 В между разъёмом JP8 и шиной «N» (разъёмы JP2, JP4, JP6) выпрямляется диодом D8 и через сопротивление R15 пульсирующий постоянный ток 4 мА поступает на выводы 1 и 2 – входы оптопары ic3, она открывается и с её вывода 3, напряжение 5 В подаётся на вывод 6 процессора ic1. Если на вход оптопары ток не поступает, ic3 закрывается, на выводе 6 процессора ic1 появляется «0», и ic1 переходит в режим блокировки. Это происходит при перегорании предохранителя FU1, более чем 3-х секундного размыкания контактов аварийного термовыключателя SF1, при разрыве цепи D8 – R15 или при выходе из строя самой оптопары ic3. Неисправные детали заменяют. Если замены оптопаре ic3 нет, на время работы можно соединить перемычкой её выводы 3 и 4. Данная блокировка не включается при обрывах ТЭН-а и силовых контактов реле К1 [1]. Первичная обмотка Т1 подключена к сети 220 В перед SF1 и FU1, поэтому после срабатывания защиты и включения блокировки вторичное питание от платы не отключается. Эта блокировка отключается только после обесточивания чайника.

2) Шпилькой из одножильного провода замыкают два металлических контакта в верхней половине разъёма CN4 (красный), в которые запрессованы провода идущие от термистора RT. Рис. 6. Через 3 сек. начнут мигать LED1 и LED6. (L1 и L6 на Рис. 3), кнопки SW2, SW3, SW4 блокируются. Термистор RT с отрицательным ТКС подключён к схеме так, что при повышении температуры воды, когда его сопротивление уменьшается, напряжение на выводе 8 ic1 увеличивается. При температуре кипения воды сопротивление RT уменьшается примерно до 7,3 кОм, а напряжение на выводе 8 ic1 повышается примерно до 3,7 В, после чего режим кипячения отключается, индикатор LED1 гаснет и чайник переходит в режим поддержания температуры воды и начинает светиться, а затем мигать один из индикаторов выбранной температуры нагрева воды – LED3, LED4 или LED5. Если сопротивление RT становится меньше 7,3 кОм, а напряжение на выводе 8 iс1 больше 3,7 В, процессор диагностирует замыкание RT и включает блокировку. Отменяется блокировка нажатием кнопки SW1 «Кипячение», но если причина замыкания RT не устранена, то через 3 сек. блокировка включится снова. После кипения вода остывает и сопротивление RT повышается, когда оно увеличится  до 10,5 кОм, а напряжения на выводе 8 ic1 уменьшится до 3,5 В, процессор повторно включит кипячение. Значение выбранной для поддержания температуры воды на эти показатели заметно не влияет. Основные причины отказа и включения этой блокировки – уменьшение сопротивления или замыкание RT, или обрыв R13.

3) Отключить от разъёма CN4 термистор RT, через 3 сек. начнут мигать LED3 и LED6. (L3 и L6 на Рис. 3), кнопки SW2 – SW4 блокируются. В интервале значений сопротивления термистора RT от 10,5 до 550 кОм, в режиме поддержания температуры воды чайник будет включать ТЭН. При повышении сопротивления RT более 560 кОм, когда напряжение на выводе 8 ic1 станет ниже 0,2 В, процессор диагностирует обрыв RT. Блокировка отменяется нажатием кнопки SW1 «Кипячение», если обрыв RT не устранен, через 3 секунды блокировка включится снова. Основные причины включения блокировки – обрыв RT или R11, плохой контакт в разъёме RT или разрушение пайки его выводов на плате. Во всех случаях неисправности термистора RT его нужно заменить. Подключать резисторы параллельно RT нежелательно, они только уменьшат величину его ТКС.

Когда чайник находится в режиме «Остывание», светится только LED2, все блокировки так же срабатывают. 

Если +5 В на выводах 11, 12 процессора ic1 есть, а команды с кнопок SW1 –  SW4 не выполняются и нет индикации, осциллографом или частотомером проверяют наличие генерации на выводах 13 или 14 процессора, её измеряют между выводом 13 или 14 ic1 и «–» платы. Если генерация есть (4 МГц +/– 2 кГц, амплитуда 0,8 – 1 В), причиной неисправности может быть нарушение контактов или паек разъёмов CN1 на обеих платах, или обрыв проводов в жгуте, соединяющим эти разъёмы. При отсутствии генерации – неисправен процессор  ic1.

Не подключая чайник к сети 220 В напряжение на плату можно подать через разъём AC-IN. Для этого, отключив Т1, к разъёму подключают напряжение от внешнего источника питания, переменное 10 – 12 В, или постоянное 14 – 18 В, любой полярности. При таком включении, если процессор ic1 исправен, через 3 сек. сработает блокировка «1» и начнут мигать светодиоды LED3 и LED5, поэтому для нормальной работы ic1 выводы 3 и 4 ic3 нужно на время ремонта замкнуть между собой.

Схема термопота VT-1191 показана на Рис. 7, по сравнению с Рис. 5. [1] на ней уточнено подключение силовых разъёмов и ТЭН-ов. Импульсный безтранформаторный блок питания VT-1191 выполнен на микросхеме VIPer-12A. Его выходное напряжение +18 В поступает на входы стабилизаторов напряжения +12 В и +5 В основной платы. Минусовой выход БП подключён к шине «N», одному из проводов сети 220 В. Неисправный чайник без воды подключают к сети в такой последовательности: от ТЭН-ов ЕК1 и ЕК2 отключают провода, синий «Н» и белый «В», идущие от силовых контактов реле К1. Для этого откручивают гайки крепящие выводы «Н» и «В» к контактам ТЭН-ов на корпусе чайника. Клеммы отключенных проводов соединяют вместе липкой лентой (изолентой), а сами провода отгибают в сторону реле, они жесткие, поэтому их специально не фиксируют. Рис. 8, Рис. 9. 

 

Снятые гайки прикручивают на место. Сдвигают пластиковый чехол с клеммы сетевого провода, подключённого к контакту платы «N». К этой клемме будет подключен зажимом минусовый щуп мультиметра. Рис. 9. После включения чайника в сеть сразу начнёт светиться индикатор HL3 и включится ТЭН подогрева – ЕК2, который подключён к нормально-замкнутому контакту реле К1. Поочерёдно нажимают на кнопки SW3, SW2, SW1, (кипячение, снятие блокировки, подача воды), отмечают выполнение команд и включение индикаторов HL1 – HL2. Для проведения измерений чайник переворачивают вверх дном. Измерения начинают с выхода БП, напряжение 18 – 19 В должно быть на обоих выводах дросселя L2, на «+» конденсатора EL3, на С3, на анодах диодов D4 и D5. Напряжение +12 В проверяют на катодах диодов D2, D6 и D7, в норме оно равно 12 – 15 В. Напряжение +5 В измеряют на эмиттере Q4, выводах С4, R9 и на выводе №1 iс1. Все точки для измерения напряжения питания отмечены красным цветом на Рис. 9. Далее проверяют цепь термовыключателя SF2, которая подключена к сети переменного тока 220 В: R16, D8, R15, транзистор Q2, R10, разъём CN3, SF2, вывод 4 iс1. С неё на iс1 поступает сигналы о закипании – остывании воды. Точки для измерения напряжения в этой цепи отмечены зелёным цветом на Рис. 9.

При комнатной температуре контакты SF2 замкнуты, на базе Q2 и на R15 будет напряжение 0,6 В, на коллекторе Q2, на R10 и на выводе 4 iс1 – 0 В. В этом состоянии iс1 выполняет все  команды. При температуре 88 град.С контакты SF2 разомкнутся и напряжение на базе Q2 станет равно 0 В, на коллекторе Q2, на R10 и на выводе 4 iс1 будет 5 В. При разомкнутом SF2 (из-за гестерезиса его контакты снова замкнутся при понижении t до 75 – 80 град.С), процессор iс1 будет блокировать команду «кипячение». После нажатия и отпускания кнопки SW3 «HEAT» индикатор HL2 должен сразу погаснуть, а ТЭН кипячения ЕК1 отключиться. Он подключён к нормально-разомкнутому контакту реле К1. В случае, описанном в [1], отказ iс1 проявился в том, что он не «видел» напряжения на выводе №4 и не мог в нужное время включать и отключать кипячение воды.

Не подключая чайник к сети 220 В, постоянное напряжение на плату можно подать от внешнего источника питания. Рис. 10. Правда, в этом случае невозможно будет оценить работу блока питания, а цепь термовыключателя SF2 будет отключена от напряжения питания 220 В, поэтому придётся временно подключить между анодом D8 и источником напряжения +12 или +18 В сопротивление 10 кОм. Со стороны деталей напряжение +18 В подключают зажимом или пайкой к аноду диода D6, а минус питания подключают зажимом или клеммой к контакту платы «N». Можно припаять оба провода к плате со стороны проводников – параллельно выводам конденсаторов EL3 или С3.

 Обозначение силовых выводов на платах термопотов «Vitek».  

 L) – сетевой вывод, условно подключён к фазовому проводу сети 220 В после плавкого предохранителя и аварийного термовыключателя. 

 N) – сетевой вывод, условно подключён к нулевому проводу сети 220 В..   

 Н) – вывод силового контакта реле для подключения вывода ТЭН-а кипячения.  

 В) – вывод силового контакта реле для подключения вывода ТЭН-а подогрева воды.  

 Т) – вывод подвижного контакта силового реле К1, переключающего или включающего  ТЭН-ы. Он подключён к выводу L.

Автор: Паньшин Андрей. Москва.

Список литературы

  1. Схемы и ремонт электрочайников – термопотов
  2. Сайт https://msk.au.ru/8030049/

Теги:

Мультиварка – современное кухонное устройство, которое в случае появления неисправностей не просто перестаёт функционировать, а может указать на панели управления конкретную причину нарушения алгоритма работы. Электроника идентифицирует сбой и выводит на экран коды ошибок с буквенным обозначением е от 1 до 5. Так, приборы разных брендов могут сигнализировать, в том числе мультиварка Бранд 502: «Ошибка е3». Что делать в таком случае, разъясняется в материале.

Характерные неисправностей для большинства моделей мультиварок

Вне зависимости от фирмы производителя или особенностей конкретной модели кухонного устройства, причины возникновения кодов ошибок е1-е5 на панели управления самых популярных мультиварок во многом схожи. В общем виде неполадки в работе этой бытовой техники возникают из-за:

  • попадания влаги внутрь;
  • попадания посторонних предметов и веществ;
  • короткого замыкания или обрыва датчиков;
  • загрязнённых контактов;
  • срабатывания датчика давления;
  • отсутствия чаши или её деформации;
  • неправильного положения крышки мультиварки;
  • выгорания плат питания и управления.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Современные электронные приборы способны указывать на возможные неполадки в своей работе с помощью буквенно-числовых идентификаторов – кодов ошибки

Если рассматривать конкретные случаи, то ошибка е0 обозначает неправильное  положение крышки прибора – она не закрыта из-за неправильного положения силиконового уплотнителя либо деформирована. Проблема может крыться и в обрыве цепи верхнего термодатчика.

Неисправности е1 и е2 означают либо наличие посторонних элементов между чашей и дном устройства, либо механическое повреждение температурного датчика в нижней части мультиварки. Они также могут указывать на непропаянные гнёзда датчика на плате управления снизу. Ошибка е3 – это чаще всего показатель попадания влаги между чашей прибора и нагревательным элементом.

ВАЖНО. Правильная эксплуатация скороварки, соблюдение её чистоты и сохранности от механического повреждения – залог долгого использования устройства без необходимости ремонта.

Самый сложный ремонт потребуется при высвечивании обозначения е4, означающего наличие проблем с датчиком давления на дне устройства. Если горит индикатор е5, то это сигнал автоматики о проблемах с перегревом изделия или отсутствием внутри мультиварки чаши. Проблема в этом случае может крыться и в том, что засорены паровые клапаны, устройство стоит возле приборов отопления или сгорела проводка.

Коды ошибок в кухонных скороварках фирмы Поларис

Большая часть неисправностей в мультиварках от бренда Поларис связано с неисправностью системы термоконтроля или перегревом устройства. В каждой модели могут появляться свои коды, но в общем виде индицируемые ошибки представлены в таблице.

Е1 Короткое замыкание датчика температуры
Е2 Короткое замыкание верхнего датчика температуры
Обрыв нижнего температурного датчика
Е3 Неполадки с датчиком температуры под чашей
Е4 Обрыв верхнего датчика температуры под крышкой

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Выход из строя термореле – одна из самых частых поломок мультиварок фирмы Поларис

ВАЖНО. Иногда появление кодов ошибки на панели может быть всего лишь сбоем в системе, а не серьёзной неисправностью. Прежде чем диагностировать поломку, следует выключить мультиварку и включить через некоторое время.

В мультиварке Бранд 502 чаще всего сбои возникают с датчиком давления на дне прибора, а также в случае плохого соприкосновения чаши устройства с нагревательной частью.

Е0 Короткое замыкание или обрыв в цепи верхнего датчика
Е1 Короткое замыкание или обрыв в цепи верхнего датчика
Е3 Деформация электрического нагревательного элемента или чаши
Запуск программы устройства при отсутствии чаши в приборе или продуктов в чаше
Неисправность в панели управления
Сторонние элементы попали между чашей и нагревательным элементом

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Самая распространённая неисправность мультиварок производителя Бранд 502 – код ошибки е3, который означает сбои с датчиком давления или деформацией чаши устройства

Починить устройство самостоятельно можно только если причиной были: отсутствие контакта между чашей и нагревательным элементом, посторонние предметы между ними или отсутствие самой чаши в приборе. В остальных случаях отремонтировать мультиварку в домашних условиях не удастся, следует обратиться в сервисный центр.

Как понять, какая неисправность возникла в мультиварке Витек по кодам на панели

Производитель мультиварок фирма Витек в руководствах пользователей по эксплуатации устройств не указывает ни конкретные коды неисправностей, ни возможность появления поломок в целом.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Производитель мультиварок фирма Витек не указывает возможные способы устранения возникших неполадок с оборудованием ни в инструкциях к прибору, ни на внешней упаковке

Исходя из отзывов пользователей, столкнувшихся с проблемами в использовании прибора, можно выделить две часто возникающих ошибки:

  • Е2 – перегрев. Устройство ещё не остыло от предыдущего цикла готовки.
  • Е4 – показывает неисправность датчика температуры в крышке. Связан с ненадёжным контактом в соединителе от датчика в крышке.

Мультиварка Мулинекс – о каких поломках сигнализируют коды е0-е5

Наиболее подробно информацию о неисправностях и их кодовых обозначениях на панели управления предоставляет фирма Мулинекс: неполадки с каждым резистором или платой имеет свой уникальный идентификатор.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Ошибка Е0 на панели управления мультиварок Мулинекс означает, что датчик температуры в верхней части устройства замкнут или разомкнут

Самые часто возникающие коды собраны в таблице.

Е0 Замыкание или размыкание верхнего датчика
Е1 Обрыв или короткое замыкание нижнего термодатчика
Е2 Неисправность в работе платы питания
Е3 Плата управления не функционирует
Е4 Замыкание температурного датчика
Е5 Обрыв терморезистора

Ремонт мультиварки в домашних условиях: как правильно открыть прибор

Устраняя неполадку самостоятельно, необходимо понимать, что устройство лишается заводской гарантии – за полученный результат или его отсутствие несёт только собственник мультиварки. В дальнейшем бесплатное техническое обслуживание, замена бракованных или вышедших из строя комплектующих в сервисном центре будут исключены.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Если мультиварка поломалась в течение гарантийного срока, то её ремонт рациональнее доверить профессиональным мастерам из сервисного центра: это выйдет дешевле и быстрее

Если срок гарантийного обслуживания уже истёк, по причинам поломки нет никаких сомнений и у хозяина прибора есть элементарные технические навыки, можно попробовать починить прибор своими силами.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Главное правило самостоятельного ремонта любых электрических приборов – безопасность: нужно всегда вынимать шнур питания из прибора или из розетки

ВАЖНО. Перед началом любых действий по ремонту оборудования необходимо убедиться, что оно отключено от сети питания.

Чтобы увидеть своими глазами источник неисправности, нужно вскрыть прибор. Для этого нужно соблюдать такие инструкции:

  1. Для доступа к датчикам в верхней части устройства достаточно просто снять пластиковую крышку.
  2. Нижней части мультиварки целостность придают три крепления на дне – их нужно открутить.
  3. Отсоединить кабель, соединяющий две платы: программную и непосредственно нижней части мультиварки.
  4. Снять элемент нагревания, который держится с помощью винтов и монтажной пластины.
  5. Аккуратно снять тэны, внутренний градусник, который призван отслеживать температуру во время работы устройства.
  6. Найти повреждённые контакты и приступить к их зачистке.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

При замене или зачистке датчиков в верхней части кухонного прибора, нужно просто снять пластиковую или металлическую крышку изделия

Замена датчиков – довольно простая операция, но необходимо быть уверенным, что именно их отказ в работе является истинной причиной поломки. Велика вероятность, что провода верхнего датчика переломились на сгибе крышки, они отклеились или не хватает термопасты.

Одной из причин неисправности может быть и сгоревший предохранитель, который имеет вид проволоки, похожей на резистор. Наиболее вероятные причины сгорания – сбои в работе блоков питания и управления, а также резкие перепады напряжения в сети. Проверить, работает элемент или неисправен следует, используя инструмент для измерения сопротивления – мультиметр.

Как самостоятельно устранить ошибки е1, е 2, е3 в кухонных устройствах

Самый простой вариант — ошибки е1, е2 на экране, которые означают, что внутрь прибора попали остатки пищи или механически повреждён термодатчик. Ремонт должен проходить следующим образом:

  1. Удалить чашу из мультиварки.
  2. Убедиться, что на нагревающем элементе и дне чаши нет посторонних предметов и влаги.
  3. Открутить нижнее крепление – в самом центре под чашей найти трубчатую термопару.
  4. Нажать до щелчка на верхнюю пластину с той же стороны, где расположен регулировочный винт.
  5. С помощью наждачной бумаги аккуратно прочистить клеммы при сомкнутых контактах.
  6. Установить комплектующие на место, собрать прибор в исходный вид.

Проверить, произошёл ли внутри прибора обрыв цепи, можно на проводе, ведущем от датчика к дисплею, с помощью прибора для измерения электрических активных сопротивлений — омметра.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Влага внутрь скороварки может попасть во время мытья или заливания жидкости в чашу не отдельно, а прямо в устройстве

В случае попадания влаги (ошибка е3) необходимо:

  1. Вынуть чашу мультиварки, перевернуть прибор.
  2. Открутить крепление нижней части, обеспечив свободную циркуляцию воздуха.
  3. Оставить прибор высыхать естественным образом или ускорить процесс с помощью строительного фена на малой мощности.

Инструкция по устранению неисправностей е4 и е5 в мультиварках

Проблемы с датчиком давления (код е4) на дне прибора можно решить, пропустив между контактами датчика узкую полоску обычной или наждачной бумаги. Делать это нужно осторожно, чтобы не сломать резисторы окончательно.

Также возможен обрыв цепи либо неисправность в микропроцессоре – это самый сложный случай, при котором агрегат нужно проверять полностью и явно не в домашних условиях.

Причины и устранение ошибок в мультиварках, коды ошибок e01-e05

Нагревательный элемент прибора крепится через монтажную пластину тремя болтами

Если панель управления выдаёт ошибку е5 – индикатор перегревания прибора, то ремонт предусматривает выполнение таких шагов:

  1. Выключить прибор с помощью кнопки «Старт».
  2. Отключить мультиварку от источника питания.
  3. Открыть крышку, с помощью защитных перчаток вынуть чашу.
  4. Оставить прибор и чашу остывать в течение 20-30 минут.

Чего делать при ремонте устройства нельзя ни в коем случае

Попытки по устранению неисправностей в электронном механизме недопустимы в следующих случаях:

  • мультиварка перестала включаться и реагировать на любое воздействие;
  • высвечиваются разные коды ошибки либо дисплей выдаёт нечитаемые символы;
  • есть видимое повреждение корпуса прибора или электрического кабеля;
  • нагревательный элемент не выполняет своей функции;
  • отсутствует информация о температуре;
  • невозможно достичь герметичности крышки.

Все коды ошибок и их описание по конкретной модели конкретного производителя должны быть указаны в инструкции, которая входит в комплект мультиварки. Если этой информации в руководстве пользователя нет, можно связаться с официальными представителями бренда или специалистами сертифицированного сервисного центра, которые обязаны проводить гарантийное обслуживание приборов.

Можно попробовать починить мультиварку самостоятельно, однако лучше сразу доверить ремонт этой электронной кухонной утвари квалифицированному мастеру с опытом и запасом необходимых комплектующих. Тогда обновлённый кухонный помощник честно прослужит ещё долгое время.

На чтение 19 мин Просмотров 34 Опубликовано Обновлено

Схемы и ремонт электрочайников — термопотов

Электрочайники – термосы, или термопоты, исправно служат 2 – 3 года, затем обычно выходят из строя. Основные причины этого: перестают кипятить воду, не наливают кипяток и из-за протекания воды. В Интернете много материалов о ремонте термопотов, но почти нет схем. В статье кратко описаны модели термопотов, схемы которых срисованы с изделий, с неисправностями которых автор сталкивался при ремонте. В статье приведены примеры схемных решений, применённых в большинстве моделей современных термопотов, несмотря на большое количество клонов, выпускаемых различными фирмами..

На приведённых схемах обозначения большинства деталей соответствуют указанным на платах. У разных моделей термопотов схемы вторичного электропитания и блоков управления сильно отличаются. Все термопоты имеют емкость для кипячения воды из нержавеющей стали. В её нижней части закреплены термоэлектронагреватели, ТЭН-ы, обычно их два, для кипячения и подогрева воды, в этом случае они находятся в одном блоке, который имеет три вывода. На дне емкости закреплен термовыключатель на температуру 88 – 96 град.С или термодатчик, подающие сигнал для отключения ТЭН-а кипятильника при достижении нужной температуры воды. На боковой стенке емкости закреплены включённые последовательно термовыключатель на температуру 102 – 110 град.С и предохранитель FU на 125 град.С/10А, помещённый в силиконовую трубку. Они отключают электропитание термопота при повышении температуры емкости для кипячения из-за отсутствии воды или в случае короткого замыкания. Для подачи горячей воды в термопотах используют однотипные электродвигатели постоянного тока на напряжение 12 В, с центробежным насосом.

Большинство деталей термопотов размещено на двух платах. Плата управления, на которой расположены кнопки управления и светодиоды находится в верхней части корпуса. Основная плата, на которой находятся большинство силовых разъёмов, блоки управления, реле, источники и стабилизаторы вторичного напряжения находится в нижней части корпуса под ёмкостью для кипячения воды. Обе платы соединяются между собой жгутами проводов с разъёмами.

Схема термопота Elenberg ТН-6030, [1] приведена на Рис. 1. Ранее, в 2014 году автор выкладывал её на сайте go-radio, поэтому дана ссылка на этот сайт. Схема ТН-6030 достаточно простая и полностью аналоговая. Постоянно через ТЭН подогрева воды ЕК1 и диод VD9 течёт пульсирующий ток только в одном направлении, поэтому сопротивление этого ТЭН-а в два раза меньше, чем аналогичного, той же мощности ТЭН-а подогрева в других моделях, где он питается переменным током. При включении электромотора, через него и диод VD10 начинает течь постоянный пульсирующий ток другой полярности, до 150 мА, а через ТЭН ЕК1 идёт переменный ток. Автоматическое включение и выключение ТЭН-а кипячения воды ЕК2, производится термовыключателем SF1. Принудительное включение ТЭН-а ЕК2 длительностью до 2-х минут производится контактами К1.1 реле К1. На транзисторы VT1 – VT2 каскада управления реле К1 постоянное напряжение 14 В, стабилизированное цепочкой R3 и VD6, подаётся с диодного моста VD1 – VD4. Частой неисправностью этой модели термопота является выгорание контактов термовыключателя SF1, потому что через него проходит весь ток ТЭН-а ЕК2. Заменить термовыключатель не сложно, надо отвернут два винта на фланце, и переставить два силовых разъёма. Подробные видеозаписи этой замены есть в Интернете.

Другая неисправность, плохая работы насоса подачи горячей воды. Её причина – увеличение трения оси ротора электромотора, работающего при повышенной температуре из-за ухудшения качества смазки. Магнитная муфта сцепления насоса состоит из магнитного диска, надетого на вал ротора электромотора и крыльчатки насоса, надетую на полуось в крышке корпуса насоса. В основании крыльчатки также закреплён магнитный диск. Между двумя магнитными дисками установлена герметичная прокладка. Рис. 2.

Автор смазывал точки опоры ротора на торцах корпуса электромотора обычным веретенным маслом. Помогало на пару месяцев. Трудно добраться до передней точки опоры, приходилось разбирать насос и заливать масло под магнитный диск, и проворачивать его пальцем, в этот момент электромотор находится в вертикальном положении, чтобы масло затекло в нужное место. Остатки масла сливают через край. Снимать диск с оси ротора не надо, пара съёмов и он не будет держаться на оси ротора. Проще сразу заменить двигатель с насосом.

Протечки воды в термопотах возникают редко, обычно вследствие механических повреждений. Однажды причиной появления воды под чайником оказалась малозаметная трещина в верхней части пластмассового корпуса, под крышкой, проходящая вдоль закраины ёмкости для кипячения воды. В эту щель проникал пар, который затем конденсировался на внутренней поверхности стенок корпуса, пластик вдоль трещины крошился. Тот чайник ремонту не подлежал.

Схема термопота Vitek VT-1188 показана на рис. 3. В этой модели вторичное напряжение 12 — 14 В на блоки управления подаётся с трансформатора Т1, установленного внизу корпуса под ёмкостью для воды, и с выпрямительного моста VD1 – VD4. Напряжение 5 В со стабилизатора ic2 поступает для питания процессора ic1, который управляет всей работой термопота. По команде оптопары ic3 процессор ic1 должен сигнализировать о срабатывании защиты, SF1 или FU1, хотя, непонятно как — зуммер в этой модели не установлен. На дне ёмкости для кипячения установлен термодатчик RT из двух соединённых параллельно термисторов MF58 отрицательным ТКС в корпусах КД-3. Температуру отключения кипятильника устанавливается вручную кнопкой sw2. Термопоты VT-1188 и VT-1187 не имеют ТЭН-а для подогрева воды, из-за чего включение и выключение ТЭН-а для кипячения, ЕК1 происходит чаще, чем в других моделях. Поэтому у VT-1188 чаще сгорают контакты реле и перегорает ТЭН. Случай выгорания крепёжного вывода реле на плате описан в [2]. При возникновении всех этих неисправностей у чайника нормально работают индикация, двигатель насоса, нет только кипячения воды. При пригорании и залипании контактов реле, или пробое транзистора Q1, может не отключаться режим кипячения. При ремонте этих поломок неисправные детали заменяют.

Фотография основной платы VT-1188. Рис. 4.

Схема термопота VT-1191 показана на Рис. 5. Источник вторичного напряжения для блоков управления импульсный, сделан на микросхеме VIPer 12A по бестрансформаторной схеме. Постоянное напряжение 18 В на его выходе фильтруется конденсаторами EL3, C3 и дросселем L2, затем понижается стабилитроном ZD2 до 12 В. Схема управления работает на процессоре ic1, маркировки на его корпусе нет, имеется только этикетка с указанием модели термопота. Напряжение 5 В на ic1 подается со стабилизатора на транзисторе Q4 и стабилитроне ZD3. В термопоте VT-1191 имеется два ТЭН-а: ЕК1 для кипячения и ЕК2 для подогрева воды. Контакты К1,1 реле К1 поочерёдно подключают выводы одного из них к сети в зависимости от напряжения на выводе №5 ic1, которое через разъём CN1, светодиод HL2 и R7 поступает на базу транзистора Q1. Через термовыключатель SF2 протекает небольшой базовый ток транзистора Q2, поэтому SF2 соединён с платой, и выводом № 4 ic1 слаботочным разъёмом. Электромотор включается транзистором Q3 при появлении «+» на выводе №3 ic1. Неисправность термопота проявлялась в том, что он не кипятил и не наливал воду, горел только зелёный индикатор HL3. Причиной поломки был выход из строя процессора ic1.

Рис.6 Фотография основной платы VT-1191, закреплённой в корпусе термопота.

Советов по ремонту термопотов дано уже много, но я добавлю ещё два:

1) Фотографировать весь процесс разборки и ремонта чайника. Это потом облегчит его последующую сборку и особенно, установку силовых разъёмов. (Рис. 6).

2) Если корпуса слаботочных разъёмов, установленных на платах, даже незначительно шатаются на своих местах, эти корпуса надо приклеить к плате и пропаять контакты. Нарушение контактов разъёмов после ремонта и сборки термопота может привести к появлению новых неисправностей.

Источник

Ремонт термопотов, продолжение

Эта статья посвящена диагностики неисправностей термопотов, связанных с нагреванием и подачей воды, на примере моделей Elenberg ТН-6030, Vitek VT-1188 и Vitek-1191 описанных ранее [1]. В статье даны советы по подключению электропитания к «сухому чайнику», т.е. чайнику без воды и к отдельным платам, необходимого для проведения измерений и диагностики отказов, что облегчает их ремонт.

В Интернете выложено много материалов по разборке термопотов. Проводить измерения удобнее, когда чайник устойчиво стоит в положении вверх дном. Для этого нужно снять его верхнюю, выпуклую крышку для залива воды. Отвёрткой отжимают защёлку на петле крышки и снимают её с оси, на которой она крепится. Подставкой для перевёрнутого термопота может служить пластиковое ведро, диаметр дна которого немного меньше диаметра ёмкости для кипячения воды. В ходе разборки термопота необходимо прозвонить все ТЭН-ы, термовыключатели и предохранители, которые есть в цепях питания, от одного контакта сетевой вилки до силовых контактов реле К1, и от другого контакта вилки до общего провода основной платы, прозвонить «земляной» контакт вилки с металлическими деталями корпуса чайника и проверить «землю» на замыкание с сетевыми проводами. На этом этапе выявляется большое количество неисправностей.

Вместо Elenberg ТН-6030 (Рис.1[1]) в настоящее время продаются его клоны: модели термопотов BRAND 34300 и KC-2011-B. Их схемы [2] аналогичны ТН-6030. (Рис. 1) Основные платы изделий имеют одинаковый код КС-87-В, они отличаются только типами и номиналами отдельных деталей, и отсутствием разъёма CN1 на общей плате КС-2011-В. Рис. 2. Сетевой провод соединен с ней дополнительным контактом 1.1 разъёма SP1. Маркировка элементов платы КС-2011-В в статье указана по схеме ТН-6030. Подключать к сети 220 В для диагностики неисправные термопоты этих типов нецелесообразно, потому что их источник вторичного питания мощностью до 25 мА служит только для питания схемы управления реле К1.

Индикатор кипячения HL1 включается при замыкании контактов К1.1 реле К1 или термовыключателя SF1. Индикатор подогрева HL2 и ТЭН подогрева ЕК1 включены постоянно. При отсутствии принудительного кипячения, не снимая платы с её места, с выводов R1 измеряют ёмкость С1 чтобы исключить его обрыв или дефекты пайки выводов. Затем прозванивают омметром диоды VD1 – VD4 выпрямительного моста и стабилитрон VD6, и исключают пробой С2 и С3. Прозвонкой между выводами «+» и коллектором VT2 исключают замыкание катушки реле К1 или пробой диода VD7. Затем к выводам диодов моста VD1 – VD4 подключают зажимами или припаивают два провода и подают на плату напряжение 12 – 16 В от внешнего источника. Его полярность, «+» и «–» указана на Рис. 2 . После чего нажимают кнопку SB1 «Кипячение», если есть щелчок включения реле К1, между контактами разъёмов CN3 и CN4, предварительно отключив от него ТЭН-ы, измеряют сопротивление замкнутых контактов К1.1, в норме оно меньше 0,5 Ом. Если после нажатия на SB1 щелчка нет, подключают вывод R4, отмеченный на Рис. 2 зелёной звёздочкой к «+». Если реле щелкнуло, устраняют обрыв в цепи SB1. Если щелчка нет, соединяют анод VD7 с контактом «–» на плате, при появлении щелчка исключают обрыв с цепях транзисторов VT1 и VT2. Если щелчка по-прежнему нет, неисправно реле К1. Сокращение времени принудительного кипячения менее 1 мин. указывает на высыхание или утечку конденсатора С3.

Если не работает помпа нужно исключить обрыв ТЭН-а подоргрева ЕК1, пробой VD9, обрыв или пробой VD10. Затем электромотор отключают от разъёма SP2 – SP3 и подают на него постоянное напряжение 10 – 12 В. Если мотор исправен, проверяют кнопки SB2 – SB3 на плате управления, они коммутируют пульсирующее напряжение амплитудой более 300 В, поэтому их контакты искрят и со временем могут подгорать. На контакты разъёмов CN2 и CN4 подают напряжение 10 – 12 В, в полярности обратной проводимости диода VD9. Если при нажатии кнопок SB2 или SB3 электромотор работает хуже, чем при его прямом включении, эти кнопки заменяют.

В схеме термопота VT-1188, Рис. 3, уточнено положение силовых разъёмов на основной плате по сравнению с Рис. 4 [1]. Расположение разъёмов показано на Рис. 4. В этом разделе описаны отказы, связанные с функцией самодиагностики процессора ic1, который управляет работой термопота. Если у чайника не включаются кипячение, подача воды и не светится ни один индикатор, скорее всего отсутствует вторичное напряжение питания. Для проверки трансформатора Т1 надо прозвонить обе его обмотки на обрыв или замыкание, первичную с разъёмов JP6 — JP9, контакты, обозначенные на Рис. 4 «к Т1» не отключают. Вторичную обмотку – отключив разъём AC-IN. Сопротивление обмоток Т1 – 1 кОм и 4 Ома. Потом прозванивают диоды моста VD1 – VD4 и исключают замыкание на его выходе. От разъёмов платы JP1 и JP2 отключают ТЭН ЕК1, его отключенные контакты обматывают липкой лентой (изолентой) и фиксируют выводы на корпусе чайника чтобы не болтались. Потом термопот без воды включают в сеть. На холостом ходу Т1 должен работать не менее 10 мин. Если он быстро нагревается и напряжение вторичной обмотки на разъёме AC-IN меньше 10 В его заменяют. Исправный Т1 подключают к разъёмам и чайник включают в сеть. В VT-1188 цепи вторичного питания изолированы от напряжения сети, но сетевое напряжение присутствует на всех разъёмах «JP…» платы. При соблюдении мер техники безопасности работа с термопотом, включённым в сеть таким образом, не опаснее работы с сетевым блоком питания. В норме переменное напряжение вторичной обмотки трансформатора Т1 на входе выпрямительного моста VD1 – VD4 равно 12 В, на его выходе постоянное напряжение равно 14 – 16 В, полярность «+» и «–» показана на Рис. 3 и 4. С выхода стабилизатора ic2 напряжение +5 В поступает на выводы 11, 12 процессора ic1. Если +5 В есть на выводах 11 – 12 ic1 и светится индикация, проверяют исправность процессора ic1 и оптопары ic3 на срабатывание блокировок.

1) Отвёрткой с изолированной ручкой на 3 – 5 сек. замыкают выводы 1 и 2 ic3, (они находятся под напряжением сети), если ic1 и ic3 исправны, через 3 сек. замигают светодиоды LED3 и LED5, Рис. 5, (L3 и L5 на Рис. 3) и заблокируются кнопки SW1 – SW4. Свечение индикаторов можно видеть, перевернув включённый в сеть чайник из положения вверх дном в обычное положение. При обычной работе чайника от сети переменное напряжение 220 В между разъёмом JP8 и шиной «N» (разъёмы JP2, JP4, JP6) выпрямляется диодом D8 и через сопротивление R15 пульсирующий постоянный ток 4 мА поступает на выводы 1 и 2 – входы оптопары ic3, она открывается и с её вывода 3, напряжение 5 В подаётся на вывод 6 процессора ic1. Если на вход оптопары ток не поступает, ic3 закрывается, на выводе 6 процессора ic1 появляется «0», и ic1 переходит в режим блокировки. Это происходит при перегорании предохранителя FU1, более чем 3-х секундного размыкания контактов аварийного термовыключателя SF1, при разрыве цепи D8 – R15 или при выходе из строя самой оптопары ic3. Неисправные детали заменяют. Если замены оптопаре ic3 нет, на время работы можно соединить перемычкой её выводы 3 и 4. Данная блокировка не включается при обрывах ТЭН-а и силовых контактов реле К1 [1]. Первичная обмотка Т1 подключена к сети 220 В перед SF1 и FU1, поэтому после срабатывания защиты и включения блокировки вторичное питание от платы не отключается. Эта блокировка отключается только после обесточивания чайника.

2) Шпилькой из одножильного провода замыкают два металлических контакта в верхней половине разъёма CN4 (красный), в которые запрессованы провода идущие от термистора RT. Рис. 6. Через 3 сек. начнут мигать LED1 и LED6. (L1 и L6 на Рис. 3), кнопки SW2, SW3, SW4 блокируются. Термистор RT с отрицательным ТКС подключён к схеме так, что при повышении температуры воды, когда его сопротивление уменьшается, напряжение на выводе 8 ic1 увеличивается. При температуре кипения воды сопротивление RT уменьшается примерно до 7,3 кОм, а напряжение на выводе 8 ic1 повышается примерно до 3,7 В, после чего режим кипячения отключается, индикатор LED1 гаснет и чайник переходит в режим поддержания температуры воды и начинает светиться, а затем мигать один из индикаторов выбранной температуры нагрева воды – LED3, LED4 или LED5. Если сопротивление RT становится меньше 7,3 кОм, а напряжение на выводе 8 iс1 больше 3,7 В, процессор диагностирует замыкание RT и включает блокировку. Отменяется блокировка нажатием кнопки SW1 «Кипячение», но если причина замыкания RT не устранена, то через 3 сек. блокировка включится снова. После кипения вода остывает и сопротивление RT повышается, когда оно увеличится до 10,5 кОм, а напряжения на выводе 8 ic1 уменьшится до 3,5 В, процессор повторно включит кипячение. Значение выбранной для поддержания температуры воды на эти показатели заметно не влияет. Основные причины отказа и включения этой блокировки – уменьшение сопротивления или замыкание RT, или обрыв R13.

3) Отключить от разъёма CN4 термистор RT, через 3 сек. начнут мигать LED3 и LED6. (L3 и L6 на Рис. 3), кнопки SW2 – SW4 блокируются. В интервале значений сопротивления термистора RT от 10,5 до 550 кОм, в режиме поддержания температуры воды чайник будет включать ТЭН. При повышении сопротивления RT более 560 кОм, когда напряжение на выводе 8 ic1 станет ниже 0,2 В, процессор диагностирует обрыв RT. Блокировка отменяется нажатием кнопки SW1 «Кипячение», если обрыв RT не устранен, через 3 секунды блокировка включится снова. Основные причины включения блокировки – обрыв RT или R11, плохой контакт в разъёме RT или разрушение пайки его выводов на плате. Во всех случаях неисправности термистора RT его нужно заменить. Подключать резисторы параллельно RT нежелательно, они только уменьшат величину его ТКС.

Когда чайник находится в режиме «Остывание», светится только LED2, все блокировки так же срабатывают.

Если +5 В на выводах 11, 12 процессора ic1 есть, а команды с кнопок SW1 – SW4 не выполняются и нет индикации, осциллографом или частотомером проверяют наличие генерации на выводах 13 или 14 процессора, её измеряют между выводом 13 или 14 ic1 и «–» платы. Если генерация есть (4 МГц +/– 2 кГц, амплитуда 0,8 – 1 В), причиной неисправности может быть нарушение контактов или паек разъёмов CN1 на обеих платах, или обрыв проводов в жгуте, соединяющим эти разъёмы. При отсутствии генерации – неисправен процессор ic1.

Не подключая чайник к сети 220 В напряжение на плату можно подать через разъём AC-IN. Для этого, отключив Т1, к разъёму подключают напряжение от внешнего источника питания, переменное 10 – 12 В, или постоянное 14 – 18 В, любой полярности. При таком включении, если процессор ic1 исправен, через 3 сек. сработает блокировка «1» и начнут мигать светодиоды LED3 и LED5, поэтому для нормальной работы ic1 выводы 3 и 4 ic3 нужно на время ремонта замкнуть между собой.

Схема термопота VT-1191 показана на Рис. 7, по сравнению с Рис. 5. [1] на ней уточнено подключение силовых разъёмов и ТЭН-ов. Импульсный безтранформаторный блок питания VT-1191 выполнен на микросхеме VIPer-12A. Его выходное напряжение +18 В поступает на входы стабилизаторов напряжения +12 В и +5 В основной платы. Минусовой выход БП подключён к шине «N», одному из проводов сети 220 В. Неисправный чайник без воды подключают к сети в такой последовательности: от ТЭН-ов ЕК1 и ЕК2 отключают провода, синий «Н» и белый «В», идущие от силовых контактов реле К1. Для этого откручивают гайки крепящие выводы «Н» и «В» к контактам ТЭН-ов на корпусе чайника. Клеммы отключенных проводов соединяют вместе липкой лентой (изолентой), а сами провода отгибают в сторону реле, они жесткие, поэтому их специально не фиксируют. Рис. 8, Рис. 9.

Снятые гайки прикручивают на место. Сдвигают пластиковый чехол с клеммы сетевого провода, подключённого к контакту платы «N». К этой клемме будет подключен зажимом минусовый щуп мультиметра. Рис. 9. После включения чайника в сеть сразу начнёт светиться индикатор HL3 и включится ТЭН подогрева – ЕК2, который подключён к нормально-замкнутому контакту реле К1. Поочерёдно нажимают на кнопки SW3, SW2, SW1, (кипячение, снятие блокировки, подача воды), отмечают выполнение команд и включение индикаторов HL1 – HL2. Для проведения измерений чайник переворачивают вверх дном. Измерения начинают с выхода БП, напряжение 18 – 19 В должно быть на обоих выводах дросселя L2, на «+» конденсатора EL3, на С3, на анодах диодов D4 и D5. Напряжение +12 В проверяют на катодах диодов D2, D6 и D7, в норме оно равно 12 – 15 В. Напряжение +5 В измеряют на эмиттере Q4, выводах С4, R9 и на выводе №1 iс1. Все точки для измерения напряжения питания отмечены красным цветом на Рис. 9. Далее проверяют цепь термовыключателя SF2, которая подключена к сети переменного тока 220 В: R16, D8, R15, транзистор Q2, R10, разъём CN3, SF2, вывод 4 iс1. С неё на iс1 поступает сигналы о закипании – остывании воды. Точки для измерения напряжения в этой цепи отмечены зелёным цветом на Рис. 9.

При комнатной температуре контакты SF2 замкнуты, на базе Q2 и на R15 будет напряжение 0,6 В, на коллекторе Q2, на R10 и на выводе 4 iс1 – 0 В. В этом состоянии iс1 выполняет все команды. При температуре 88 град.С контакты SF2 разомкнутся и напряжение на базе Q2 станет равно 0 В, на коллекторе Q2, на R10 и на выводе 4 iс1 будет 5 В. При разомкнутом SF2 (из-за гестерезиса его контакты снова замкнутся при понижении t до 75 – 80 град.С), процессор iс1 будет блокировать команду «кипячение». После нажатия и отпускания кнопки SW3 «HEAT» индикатор HL2 должен сразу погаснуть, а ТЭН кипячения ЕК1 отключиться. Он подключён к нормально-разомкнутому контакту реле К1. В случае, описанном в [1], отказ iс1 проявился в том, что он не «видел» напряжения на выводе №4 и не мог в нужное время включать и отключать кипячение воды.

Не подключая чайник к сети 220 В, постоянное напряжение на плату можно подать от внешнего источника питания. Рис. 10. Правда, в этом случае невозможно будет оценить работу блока питания, а цепь термовыключателя SF2 будет отключена от напряжения питания 220 В, поэтому придётся временно подключить между анодом D8 и источником напряжения +12 или +18 В сопротивление 10 кОм. Со стороны деталей напряжение +18 В подключают зажимом или пайкой к аноду диода D6, а минус питания подключают зажимом или клеммой к контакту платы «N». Можно припаять оба провода к плате со стороны проводников – параллельно выводам конденсаторов EL3 или С3.

Обозначение силовых выводов на платах термопотов «Vitek».

L) – сетевой вывод, условно подключён к фазовому проводу сети 220 В после плавкого предохранителя и аварийного термовыключателя.

N) – сетевой вывод, условно подключён к нулевому проводу сети 220 В..

Н) – вывод силового контакта реле для подключения вывода ТЭН-а кипячения.

В) – вывод силового контакта реле для подключения вывода ТЭН-а подогрева воды.

Т) – вывод подвижного контакта силового реле К1, переключающего или включающего ТЭН-ы. Он подключён к выводу L.

Источник

Как починить термопот своими руками: причины и их устранение

Термопот – это мелкая бытовая техника, сочетающая в себе свойства сразу двух устройств – электрического чайника и термоса.

Основное преимущество – возможность вскипятить воду и сохранять ее температуру в заданном режиме, а также возможность осуществить ремонт термопота своими руками в случае возникновения такой необходимости.

Как устроен

Отметим, что, несмотря на наличие массы преимуществ, у термопота есть и специфические недостатки, в частности:

Устройство состоит из корпуса, внешних элементов панели управления и внутренних технических устройств.

Корпус изготавливается из различных материалов (в зависимости от модели агрегата):

Также возможно сочетание указанных материалов.

Внешний вид термопота

Форма корпуса также зависит от конкретной модели. Зачастую, это либо полуцилиндр, либо прямоугольник.

Для удобства технического обслуживания и ухода практически все модели снабжаются съемной колбой, в которую наливается вода.

Также устройство снабжается панелью управления с кнопками, позволяющими задать определенные режимы работы.

Поскольку рассматриваемый агрегат сочетает в себе сразу два традиционных устройства – чайник и термос – внутри находятся сразу два тэна:

Из-за того, что термопот достаточно тяжелый и габаритный, производители снабжают его специальной кнопкой для подачи воды. Это очень удобно – достаточно подставить под отверстие слива кружку и нажать на кнопку слива. За подкачку воды отвечает специальный водяной насос – помпа.

Все термопоты также оснащаются электронной начинкой – а именно, микросхемой управления, обрабатывающей команды пользователя, и блоком питания.

Основные принципы функционирования

Устройство работает в следующем порядке:

Принципиальная схема

Если термопот не работает, необходимо ознакомиться с принципиальной схемой.

Схема данного устройства не слишком сложная – “прочитать” ее сможет даже не профессиональный электрик.

Ее можно применять для исследования причин поломки устройств от таких популярных производителей, как:

Расшифровка основных обозначений, применяемых на схеме

Частные неисправности

Как и любой другой предмет бытовой техники, термопот имеет перечень наиболее часто встречающихся проблем.

Приведем частные неисправности термопота и детали, замену или ремонт которых своими руками в таком случае следует осуществить в первую очередь:

В представленном случае, причиной поломки может быть:

Устранить поломку можно, проверив:

Совет только один – проверить все элементы электрической цепи, обратив особое внимание на модуль платы.

Проблема заключается в помпе – необходимо разобрать термопот, следуя нижеуказанной инструкции, и выяснить истинную причину.

Разборка термопота – пошаговая инструкция

Что делать, если устройство не желает включаться, не греет воду, протекает или не осуществляет подогрев? В этом случае рекомендуется выполнить разборку агрегата, следуя данной пошаговой инструкции:

Вид платы со снятой накладкой

Подробный разбор ремонта деталей

Существует определенный перечень внутренних деталей термопота, которые осмотреть рекомендуется в первую очередь.

Сетевой провод

Сетевой провод 220 Вольт может перегнуться или плохо контактировать с трехконтактным разъемом, расположенным внутри корпуса.

Сначала необходимо проверить непосредственно сам провод в режиме “прозвонки” при помощи мультиметра или же подключив кабель к какому-либо другому устройству.

Если же кабель работоспособен, следует проверить наличие напряжения на выводе после трансформатора.

Микросхемы

Большинство моделей оснащаются двумя электронными модулями:

По сути, плата питания – это питающий блок, от которого подходит электрический ток нужных параметров к каждому элементу термопота.

Для ремонта обеих плат необходимо в первую очередь осмотреть их на предмет:

Все поврежденные элементы необходимо заменить на новые, предварительно позаботившись об их покупке на радиорынке. Поврежденные дорожки можно восстановить при помощи лужения бытовым паяльником.

Самая распространенная неполадка здесь – это перегоревший плавкий предохранитель. Определить его можно по порванной нити внутри стеклянного корпуса.

Если же предохранитель в порядке, следует проверить резисторы и диоды тестером.

Ремонт водяного насоса

Что делать, если побежал термопот или, наоборот, при нажатии на кнопку слива воды ничего не происходит? В таком случае, следует добраться до помпы и приступать к тестированию ее работоспособности.

Делается это простой попарной прозвонкой контактов.

Для проверки работоспособности можно также подать штатное напряжение в 12 Вольт, взяв его, к примеру, от мощных батареек или от автомобильного аккумулятора.

Также соответствующее напряжение выдают блоки питания, установленные в системных блоках персональных компьютеров.

Ремонт нагревательных элементов

Если не работает подогрев или основное кипячение, возможно, неисправность заключается в вышедшем из строя нагревательном элементе. Самостоятельный ремонт тэна производить не рекомендуется – легче купить новый. Стоимость нагревательных спиралей начинается от 2000 рублей.

Тэн в разобранном виде

Разбор распространенных ситуаций и способы их решения

Приведем перечень наиболее часто встречающихся проблем – с инструкциями по их решению.

Термопот осуществляет постоянное кипячение

Нередка ситуация, когда термопот постоянно кипятит воду. Возможно и обратное – когда агрегат выключается в то время, когда жидкости еще далеко от начала закипания.

Проблема заключается в неисправности термовыключателей. Находятся они на днище устройства и сбоку корпуса.

Основная проблема их неработоспособности – нанесение производителем малого количества термопасты, из-за чего термореле начинает работать неправильно вследствие плохого контакта.

Проверку работоспособности реле проверяют обычным мультиметром – для этого его подключают к контактам терморегулятора и ставят в режим омметра. Тестер должен показать сопротивление в 0 Ом.

Для дополнительной проверки рекомендуется подсоединить термореле к проводам и опустить к кипящую воду. Если показания омметра будут стремиться к бесконечности, реле исправное, в противном случае – нужно заменить.

Также проверку терморегуляторов рекомендуется осуществить и в случае, если термопот не переходит в режим подогрева. В представленной ситуации дополнительно следует также проверить соединительные провода – они могут окислиться.

Термопот самостоятельно сливает жидкость

Некоторые сталкиваются со следующей проблемой – сразу же после включения в розетку термопот сливает из колбы воду, начинает гудеть, появляется характерный запах гари. Как исправить такой недостаток?

Проблема здесь заключается в водяном насосе. Сначала необходимо разобрать сам термопот (инструкцию см. выше) и добраться до местонахождения помпы. Далее следует приступать к разборке насоса.

После выкручивания двух болтов на самой помпе можно получить доступ к крыльчатке и магниту. Чтобы не покупать новую помпу, можно починить старую – для этого необходимо отсоединить лопасти от магнита и очистить их от накипи ветошью или мягкой тканью. Также следует осмотреть и сам магнит – на нем часто скапливаются мельчайшие металлические частицы, препятствующие нормальной работе.

Если указанные действия были произведены, но агрегат все равно протекает, следует купить новую помпу.

Ремонтируем термопот своими руками

Термопот представляет собой смесь чайника и термоса. Для поддержания определенной температуры жидкости в аппарате предусмотрена функция подогрева. Несмотря на достаточно надежную конструкцию, аппарат со временем выходит из строя, и возникает вопрос: возможен ли ремонт термопота своими руками?

Устройство чайника-термоса

Рассмотрим ключевые элементы термопота.

Термовыключатель выглядит как небольшой бочонок, выполненный из керамики. Внутри корпуса расположены два спаренных металлических контакта. В зависимости от типа прибора контакты или замкнуты, или разъединены.

В первом случае при достижении критичной температуры линия размыкается и спирали отключаются. Когда вода остынет до определённого градуса контакты замыкаются запуская процесс нагрева. Температура отключения и включения, как правило, фиксированная. В бюджетных моделях показатели установлены по умолчанию, тогда как в более дорогих решениях есть возможность ручного выбора.

Если термовыключатель вышел из строя или просто не сработал, то на этот случай есть предохранитель. Температурный предел срабатывания последнего находится в пределах +125-150⁰С. Элемент монтируется рядом термовыключателем и закрывается металлической пластиной. Реже предохранитель располагается на дне бака. Во многом это зависит от конкретной модели чайника.

Часто случается, что причиной выхода из строя термопота является именно предохранитель. Он размыкает цепь и не даёт корректно работать выключателю. Соответственно, чайник не выключается, так же как и индикация. Поэтому при поломке устройства в первую очередь стоит проверить предохранитель.

Следующей причиной выхода из строя чайника – это сам термовыключатель. Если под рукой есть омметр, то исключить его очень просто: он имеет нулевое сопротивление при температуре в +25-30⁰С. В противном случае выключатель нужно заменить.

Принцип работы термопота

После заполнения бака водой и включения устройства ТЭНы начинают нагревать жидкость до кипения. При достижении 100⁰С срабатывает реле и термопот в автоматическом порядке переходит в режим подогрева. На последний затрачивается порядка 70-100 Вт, в то время как на кипячение в десятки раз больше – от 1000 до 2500 Вт, что зависит от конкретной модели.

Важно! Остывание воды в устройстве происходит примерно с такой же скоростью, что и в обычном термосе, благодаря термостойкой колбе, удерживающей тепло. То есть даже в выключенном состоянии жидкость будет оставаться горячей заметно дольше, чем в классическом электрочайнике.

После того как температура воды достигнет минимальных значений, срабатывает термовыключатель, активируя ТЭНы для поддержания определённого градуса. Все устройства такого плана оснащены системой подачи. То есть, наклонять термопот нет необходимости. Достаточно установить стакан на специальную площадку и нажать на соответствующую клавишу. Подача воды будет производиться под давлением, сила которого зависит от выбранной модели.

Бюджетные термопоты имеют, как правило, до 4 режимов, которые нужны для обозначения минимальных и максимальных температурных порогов. У более дорогих устройств возможностей регулировки гораздо больше. К тому же они оснащаются каким-то дополнительным функционалом: включением по таймеру, режим «без пара», самоочистка, расширенная защита, дополнительный резервуар и т. п.

Типичные неисправности

Наиболее часто причинами поломок являются следующие детали устройства:

Сетевой провод

Перед тем, как отремонтировать термопот своими руками, следует отключить его от сети. После этого, чтобы “прозвонить” провод аппарата тестером, его нужно отсоединить. Для этого открутите винты на днище устройства и снимите его. Вы увидите клеммы, к которым прикреплен сетевой шнур. Отсоедините шнур и начните “прозванивать” его тестером. Если шнур в порядке, можно приступать к дальнейшему поиску неисправности.

Микросхемы

Если вы обнаружили, что на устройстве не работает кнопка или все клавиши, то причиной неполадки может быть вышедший из строя блок управления. Самостоятельно ремонтировать его не рекомендуется, поскольку необходимо иметь определенные знания в радиоэлектронике. Лучше будет, если ремонтом чайника термоса займется сервисный центр.

Электрические нагреватели

Если после включения аппарата он не кипятит воду, при этом работают все режимы нагрева, а также автоматика, то эти симптомы указывают на то, что возможно перегорел нагреватель, или вышло из строя термореле. Чтобы выяснить это, потребуется разборка агрегата.

В разных моделях агрегатов вид греющих элементов может отличаться. Также может отличаться и их расположение. Но алгоритм разборки аппарата, в большинстве случаев, схож. Чтобы более подробно ознакомиться с тем, как менять нагреватели, можно посмотреть видео.

Помпа

Если термопот при попытке налить горячую жидкость в чашку не качает воду, то, скорее всего, не работает насос, по причине выхода его из строя. Чтобы добраться до помпы, потребуется разобрать аппарат вышеописанным способом. После снятия всех частей днища, вы увидите помпу.

Помпа термопота

Далее, проделайте следующее.

Если после устранения всех загрязнений насос не включается, и нет подачи воды, то потребуется покупка новой помпы, поскольку эти признаки указывают на перегорание обмотки электродвигателя.

Термовыключатели

Иногда возникает ситуация, когда термопот не отключается и постоянно кипятит воду. Или наоборот: вы залили воду, аппарат ее греет, но выключается, когда жидкость еще не кипит. Почему это происходит? Данная неисправность может возникать, когда неисправны термовыключатели. Их можно обнаружить на дне и стенках бака. Для лучшего их контакта с поверхностью применяется специальная термопаста.

Термовыключатели

Термовыключатель, находящийся на дне бака, крепится к нему двумя винтами. Иногда производитель, особенно китайский, наносит мало термопасты, из-за чего термореле начинает работать неправильно: аппарат может при кипячении воды долго не выключаться.

Для проверки термореле на работоспособность, необходимо отсоединить его от корпуса бака, и снять провода с клемм. В нормальном состоянии (без нагрева) реле находится в положении “включен”. Если проверить его тестером, то прибор покажет сопротивление 0 ОМ.

Далее, следует подсоединить к выключателю 2 провода и опустить его в воду, доведенную до кипения. Теперь снова измерьте сопротивление. Если прибор показывает бесконечность, это значит, что выключатель отключился, и он функционирует нормально. Если датчик не работающий, то следует приобрести новый и заменить его. По поводу замены термовыключателя можно посмотреть следующее видео.

Выше были рассмотрены некоторые поломки чайника-термоса, которые вполне можно устранить без привлечения специалиста. В остальных случаях агрегат следует отнести для ремонта в специализированный сервисный центр. Но перед тем, как сдать аппарат в ремонт, поинтересуйтесь, во сколько он вам обойдется. Чаще всего, с финансовой точки зрения, ремонт не оправдан, так как стоимость его будет в пределах цены нового термопота.

Ремонт термопота

Термопот Elenberg

Среди всевозможной бытовой техники у многих найдётся электрический чайник, да не обычный, а чайник-термос. По-иному, термопот.

Несмотря на довольно добротную конструкцию этих “чудо – чайников” и они выходят из строя по причине неисправности электрических узлов.

Так как стоимость нового чайника-термоса довольно высока (в 3-5 раз выше стоимости обычного электрического чайника), то во многих случаях самостоятельный ремонт термопота не только оправдан, но и необходим.

Рассмотрим конструкцию, типичные неисправности термопотов и методы их устранения на примере ремонта чайника – термоса марки Elenberg TH-6012.

Корпус термопота легко разбирается. Жёсткость конструкции придают два болта или самореза, которыми прикручивается нижняя пластмассовая часть. Болты могут быть скрыты под круглой пластмассовой подставкой, благодаря которой термопот можно поворачивать в горизонтальном направлении. Выкрутив оба болта и сняв пластиковое дно чайника-термоса можно получить доступ к электрической части. Для удобства диагностики можно снять внешний металлический кожух, предварительно отсоединив от него заземляющий провод, идущий от среднего (заземляющего) вывода сетевой розетки.

Большинство чайников-термосов имеет схожую конструкцию вне зависимости от производителя. Отличия заключаются в отсутствии некоторых дополнительных узлов защиты и функциональных дополнений (подсветка уровня воды, звуковое оповещение и т. п).

Из каких частей состоит термопот:

Бак из нержавеющей стали.

Два нагревательных элемента, встроенных в дно металлического бака. Один нагреватель является основным и служит для кипячения воды. Другой нагреватель служит для поддержания подогрева воды. На фотографии показаны выводы этих нагревателей. Вывод 3 является общим для нагревательных спиралей. Для исключения электрического контакта с металлическим баком на выводы надеты керамические бусы.

Выводы нагревательных спиралей

Выводы нагревательных спиралей

Двигатель постоянного тока служащий для подачи воды. Его также называют водяной помпой. Здесь имеется в виду вся конструкция, которая объединяет двигатель и соединительные трубки, по которым подаётся вода, а также нагнетатель, совмещённый с валом двигателя.

Напряжение питания двигателя постоянного тока 8 – 12 Вольт. (в некоторых моделях 24 В.)

Мотор водяной помпы

Мотор водяной помпы

Основная электронная плата.

На основной плате смонтирована схема реле времени, которая включается в режиме принудительного (повторного) кипячения и радиоэлементы, служащие для формирования напряжения питания, как самого реле, так и двигателя постоянного тока.

Основная электронная плата

Основная электронная плата термопота

На плате управления размещены кнопки режима работы чайника-термоса: “Повторное кипячение” и “Подача воды”. Также на плате управления смонтированы индикаторы работы термопота, роль которых выполняют красный (режим “кипячение”) и зелёный (режим “поддержание нагрева”) светодиоды.

Плата управления

Плата управления и индикации

Внешняя панель управления
Внешняя панель

Одной из ключевых деталей любого термопота, от которой зависит работоспособность прибора, является термовыключатель. По-другому данную деталь ещё называют термопрерывателем, термоконтактом, температурным датчиком, а в некоторых случаях и термостатом. Хотя, наверняка, правильнее эту деталь называть всё-таки термовыключателем. Подробнее о них читайте здесь – термовыключатели KSD.

Термовыключатель представляет собой пластиковый либо керамический бочонок, внутри которого два биметаллических контакта. В зависимости от исполнения контакты либо замкнуты, либо разомкнуты. В термовыключателях, которые применяются в термопотах, контакты нормально-замкнуты. При воздействии верхней граничной температуры контакты размыкаются. При остывании контактов до температуры сброса, обычно равной значению на 15 0 –20 0 –25 0 С ниже верхнего порога срабатывания, биметаллические контакты вновь замыкаются. Поэтому термовыключатель является самовосстанавливающимся температурным контактом с фиксированной температурой срабатывания и сброса.

Термовыключатель
Термовыключатель

В рассматриваемом термопоте Elenberg один термовыключатель установлен в донной части бака. Служит он для выключения основного нагревательного элемента при достижении температуры кипения воды. Термовыключатель имеет маркировку KSD 302, температура срабатывания составляет 100 0 С. Максимальный ток через контакты термовыключателя ограничивается значением 10А, допустимое переменное напряжение составляет 250 В.

Термовыключатель имеет вертикальные штампованные выводы для подключения разъёмов и фиксированный фланец для крепления. На корпус термовыключателя в местах теплового контакта, как правило, наносится теплопроводная паста белого цвета. Она улучшает теплообмен между металлическим баком и термовыключателем.

Термовыключатель KSD 302
Термовыключатель KSD 302

Точно такой же термовыключатель установлен на боку нержавеющего бака приблизительно посередине. Он также имеет фиксированный фланец. Выводы горизонтальные. Температура срабатывания данного термовыключателя 105 0 – 110 0 С. Он выполняет роль защитного. Если вдруг по неосторожности термопот был включен без воды, то металлический бак быстро нагревается до критической температуры в 105 0 – 110 0 С, и, следовательно, контакты термовыключателя размыкаются полностью обесточивая электроприбор. На случай, если не сработает защитный термовыключатель, то срабатывает защитный термопредохранитель, температура срабатывания которого может быть в пределах 125 0 – 150 0 С. Термопредохранитель устанавливается рядом с защитным термовыключателем и прижат к корпусу бака металлической планкой (см. фото).

Защитный термовыключатель

Защитный термовыключатель

В некоторых случаях защитный термопредохранитель можно обнаружить и в донной части бака. Всё зависит от модели термопота. Так, например, в термопоте DELTA DL-3003 защитный термопредохранитель закреплён в донной части бака. Температура его срабатывания – 135 0 C. Нередки случаи, что причиной неисправности термопота служит как раз защитный термопредохранитель. Он просто «наглухо» размыкает электрическую цепь. В таком случае, термопот просто полностью отключется от электросети и на передней панели нет никакой индикации (светодиоды не светятся).

В отличие от термовыключателя, контакты термопредохранителя не восстанавливаются при остывании. Поэтому при поиске неисправности следует его проверить.

Термопредохранитель

Термопредохранитель

Стоит отметить то, что зачастую причиной неработоспособности термопота служит как раз один из термовыключателей. Чаще это тот, который закреплён в донной части бака. Проверить его легко. При комнатной температуре исправный термовыключатель является обычным проводником и при проверке омметром имеет практически нулевое сопротивление.

В случае неисправности термовыключателя KSD 302 (или подобного) требуется его замена. Но вот найти подходящий термовыключатель бывает не всегда легко. В таком случае можно купить его в интернете, например на AliExpress. com. В параметрах поиска указываем количество и тип доставки («Free Shipping» или бесплатная). При выборе смотрим на температуру срабатывания и тип выводов термовыключателя. Сроки бесплатной доставки почтой около 1-1,5 месяца, учтите это. О покупках радиодеталей на Ali я уже рассказывал.

На рисунке показана принципиальная схема термопота. Сама схема взята с сайта www. eleczon. ru, но перерисована с несколькими дополнениями. Данная схема практически полностью соответствует схеме электрического чайника – термоса Elenberg TH-6012.

На схеме под обозначением S1 и S2 показаны термовыключатели (серии KSD 302). Термовыключатель S1 – это тот, который установлен посередине бака и включен последовательно с цепью подачи сетевого напряжения 220 вольт на всю электрическую часть термопота. Последовательно с ним включен термопредохранитель F1, который, как уже говорилось, служит защитным.
Второй термовыключатель S2 установлен в донной части бака. Через этот термовыключатель поступает напряжение на спираль кипячения.

P1 – сетевой трёхполюсный разъём со средним заземляющим выводом.

Алгоритм работы термовыключателя S2 прост. Как только термопот включается в электросеть, то S2 находиться в замкнутом состоянии и он пропускает ток через спираль кипячения. Как только температура воды достигнет 100 0 C, то контакты S2 размыкаются. Контакты S2 вновь замкнуться только тогда, когда в бак дольют холодной воды по мере расходования. В таком случае температура воды будет ниже температуры сброса термовыключателя S2, и он вновь включиться.

Если же теплая вода из термопота расходуется неактивно, то подогрева дополнительной спиралью TH2 хватает, чтобы температура воды оставалась выше температуры сброса S2.
В случае если необходимо вновь вскипятить воду без долива, то для этого служит схема принудительного подогрева. Суть её работы в следующем:

Параллельно S2 включены контакты реле S1.1, которые замыкаются при включении схемы повторного кипячения. Спираль основного нагревателя для кипячения обозначена как TH1. На транзисторах VT1, VT2 собрано реле времени. В некоторых моделях используется один транзистор. Здесь использовано два для увеличения коэффициента усиления. Стоит обратить внимание на электролитический конденсатор C3. Кто уже знаком с электроникой уже догадались, зачем нужен этот конденсатор. При кратковременном нажатии на кнопку S4 («Повторное кипячение«), конденсатор C3 успеет зарядиться импульсами тока через диод VD6. Диод нужен для того, чтобы на конденсатор не поступало переменное напряжение. Вспомните про свойства электролитических конденсаторов.

Далее под действием напряжения заряженного конденсатора C3 открываются транзисторы VT1, VT2. При этом через обмотку реле K1 течёт ток, и реле переключает контакты S1.1. Замыкается цепь подачи питания на основную спираль TH1. Приблизительно через 30–40 секунд конденсатор C3 разряжается и транзисторы VT1, VT2 закрываются, обесточивая обмотку реле K1. Следовательно, контакты S1.1 размыкаются и спираль TH1 обесточивается. Так работает схема повторного (принудительного) подогрева.

Элементы C1, VDS1, C2 представляют собой выпрямитель сетевого напряжения для питания схемы реле времени. Конденсатор C1 “гасит” излишки напряжения. Электролитический конденсатор C2 сглаживает пульсации тока после мостового выпрямителя VDS1. Данная схема плоха тем, что электронная схема реле гальванически связанна с электросетью, что уменьшает электробезопасность.

В некоторых моделях термопотов вместо гасящего конденсатора C1 может использоваться небольшой понижающий трансформатор как в сетевых адаптерах. Это повышает электробезопасность конструкции, так как применяется понижающий трансформатор, который служит одновременно и гальванической развязкой от электросети. Кроме того, с этого же трансформатора снимается и напряжение питания для мотора подачи воды.

При работе термопота спираль поддержания нагрева постоянно включена! Она работает всегда, пока термопот включен в сеть. Через эту спираль (TH2) поступает напряжение на двигатель M1 (водяная помпа). Поскольку двигатель M1 постоянного тока, то переменное напряжение выпрямляется диодами VD1, VD2. Спираль TH2 и диод VD1 служат делителем напряжения.
Чтобы включить двигатель подачи воды нужно нажать на кнопку S3 («Подача воды«). Аналогичную функцию выполняет клавиша S4, которая срабатывает при нажатии краем кружки.

Через спираль TH2 течёт пульсирующий ток (одна полуволна сетевого напряжения), поскольку последовательно с ней включен мощный диод VD1.

Схема термопота ELENBERG TH-6030.

Схема чайника-термоса ELENBERG TH-6030

Возможные неисправности термопотов, причины их возникновения и методы ремонта.

Термопот не работает, нет индикации на панели управления.

Проверить целостность соединительных проводов. Проверить исправность термопредохранителя и защитного термовыключателя.

Термопот не кипятит воду при первом включении и доливке холодной воды. Кнопка “Повторное кипячение” работает.

Нужно проверить исправность термовыключателя в донной части бака.

Не работает кнопка “Повторное кипячение”. Термопот кипятит воду при первом включении и доливке холодной воды.

Неисправна электронная схема принудительного кипячения (реле, транзисторы, выпрямитель).

Термопот не кипятит воду ни в одном из режимов. Дежурный подогрев есть.

Перегорела спираль основного нагревательного элемента или нарушен контакт в цепи подключения основного нагревательного элемента.

Не работает кнопка и рычаг “Подача воды”.

Если есть дежурный подогрев воды, то скорее неисправен двигатель подачи воды либо выпрямительные диоды схемы питания двигателя.

Если дежурного подогрева воды нет, то, скорее всего, перегорела спираль дежурного подогрева и на мотор водяной помпы не поступает напряжение питания.

Это основные неисправности, которые встречаются у термопотов, схожих по конструкции с рассмотренной в данной статье моделью чайника – термоса Elenberg TH-6012.

При ремонте не стоит забывать о том, что все основные электрические соединения в термопоте выполнены из провода с теплостойкой изоляцией. Также все соединения, за исключением электронной схемы, выполнены на разъёмах и методом обжатия. Основная печатная плата и плата управления во многих моделях покрыта водостойким лаком.

При перегорании нагревательных спиралей ремонт затрудняется разборкой нагревательной части бака, перемоткой спирали. В таком случае ремонт нерентабелен, так как требует высоких трудозатрат и таких материалов как высокоомный провод и слюда для изоляции.

Не забывайте о правилах электробезопасности! Во включенном состоянии на электрических цепях термопота присутствует опасное для жизни напряжение!

Проверка электробезопасности прибора после сборки.

После того, как ремонт термопота закончен не лишним будет проверить электробезопасность прибора. Для начала необходимо замерить сопротивление между металлическим баком и контактами сетевой вилки. Понятно, что сопротивление в любом случае должно быть очень большим. Также не должно быть никакого электрического контакта между защитным (внешним) металлическим кожухом и выводами сетевой вилки. Исключение составляет центральный заземляющий вывод.

Источники:

https://technosova. ru/dlja-kuhni/kipjatilnik-chajnik-termopot/kak-pochinit-svoimi-rukami/

https://tehnika. expert/dlya-kuxni/elektrochajnik/remont-termopota. html

https://go-radio. ru/remont-termopot. html

Новость

Ремонт термопота Vitek – не греет, не отключается

Содержание:

  • 1. Причины отказа нагрева термопота
  • 2. Проверка ТЭНа
  • 3. Датчик температуры
  • 4. Как работает температурный датчик
  • 5. Что с датчиком температуры
  • 6. Отзыв о термопоте VITEK

  Чайник термос (термопот) Vitek VT-1187GY, объемом 3,3 литра, вдруг перестал нагревать воду. Последний раз термопот вскипятил воду, и выключился в аварийный режим, моргая одновременно всеми светодиодами на блоке кнопок. После остывания и повторного включения, вода в нем не нагревалась, индикатор включения режима кипячения при этом горел…

  Какие основные причины могут вызвать отказ нагрева термопота? Если при включении в сеть моргает индикатор «TEMP DECLINING» (отключение/остывание), то их может быть две – не сработало реле или оборвалась спираль нагревательного элемента. Поскольку при нажатии кнопки «BOILING» (кипячение) слышно щелчок (это говорит о том, что реле включилось), то сразу приступаем к проверке ТЭНа.

Проверка ТЭНа и его замена

  Тэн для нагревания воды находиться снизу термопота, проверить его на обрыв в данной модели достаточно легко и быстро, достаточно открутить и снять нижнюю крышку. Сразу под нижней крышкой расположен блок управления термопотом — BM_RSP11_01 (смотрите фото ниже). Чтобы проверить ТЭН на обрыв, касаемся щупами мультиметра выводы с обозначением «ТЭН», предварительно установив режим измерения сопротивлений. Сопротивление ТЭНа должно быть 75 Ом. Если тестер показывает гораздо большее сопротивление или не показывает вообще никакого сопротивления, то ТЭН в обрыве. Что и произошло с нашим чайником — термосом.

  Замена тэна начинается с отсоединения всех разъемов с контактов блока управления. Важно потом не перепутать где какой разъем должен находиться. На фото видно все разъемы на плате, и обозначено для чего каждый из них нужен.

Блок управления BM_RSP11_01 - термопот Vitek VT-1187GY
Назначение разъемов блока управления BM_RSP11_01 — термопот Vitek VT-1187GY

  Далее откручиваем пластмассовое основание, на котором находиться блок управления, откручиваем помпу, снимаем с нее трубку, идущую на шкалу уровня воды. Убираем основание в сторону и снимаем корпус. Теперь ТЭН можно легко снять, открутив два стягивающих винта. В данной модели термопота установлен нагревательный элемент мощностью 750W и диаметром 160мм, с двумя контактными выводами. Он представляет из себя хомут, плотно затянутый на нижней части колбы термопота. Поднимать его выше предусмотренного места — не желательно, он должен быть затянут в том месте где и был установлен на заводе. Если нет ТЭНа с двумя контактами, то можно заменить на ТЭН с тремя выводами, заизолировав при этом дополнительный вывод, он предназначен для поддержания температуры. В этом термопоте подогрев реализован без дополнительной спирали. При замене ТЭНа на аналог учитываем мощность и диаметр кольца элемента.

ТЭН для термопота с дополнительной спиралью подогрева
ТЭН для термопота с дополнительной спиралью подогрева

  На фото ниже место обрыва спирали. Кто-то пытается восстановить неисправный ТЭН, желая сэкономить на покупке нового. Это абсолютно бессмысленная трата времени, даже если это удастся сделать, то проработает он недолго.

Место обрыва спирали ТЭНа термопота
Место обрыва спирали ТЭНа термопота

  После замены ТЭНа на новый аналог, термопот стал отлично нагревать воду, но после закипания он перестал отключаться. Вода могла кипеть пока чайник не выдернешь из розетки. За отключение и поддержание температуры в термопоте отвечает температурный датчик.

Датчик температуры

  Где находиться датчик температуры? Датчик температуры в термопотах как правило всегда устанавливается на дне емкости для воды. Например, аналогично он установлен и в «умном» электрочайнике Xiaomi. Смотрим что с датчиком температуры, почему он перестал отслеживать температуру и нужна ли замена термодатчика. Роль датчика в данном термопоте выполняет термистор (терморезистор) с отрицательным температурным коэффициентом – NTC и сопротивлением 100 кОм. Внешний вид термистора на фото.

Датчик температуры термопота Vitek
Датчик температуры термопота Vitek

  Проверить работоспособность терморезистора можно двумя способами. Первый способ заключается в его нагревании и отслеживании сопротивления — при нагревании сопротивление NTC термистора должно уменьшаться. Второй способ, более точный, это проследить его работу непосредственно в схеме. Для того чтобы использовать второй способ, нужно знать, как реализована схема отключения, при каких напряжениях происходит отключение и поддержание температуры, какое при этом сопротивление. Мы выбрали второй способ.

Как работает датчик температуры (в схеме)

  Всю работу по управлению термопотом в данной модели выполняет контроллер HT46R47. Это 8-битный однократно-программируемый контроллер (OTP), который применяется во многих бытовых (и не только) устройствах. Рассмотрим фрагмент схемы, отвечающий за функции отключения и поддержания температуры.

Фрагмент схемы отключения и поддержания температуры термопота Vitek
Фрагмент схемы отключения и поддержания температуры

  Напряжение питания 5 вольт, через разъем CN4 поступает на терморезистор и далее через сопротивление R12 идет на порт ввода-вывода PB0/AN0 контроллера HT46R47 (8 контакт). В холодном состоянии сопротивление терморезистора 100 кОм, напряжение питания, поступающее на 8 контакт контроллера, в этот момент составляет чуть ниже 2-ух вольт. По мере нагрева, сопротивление терморезистора постепенно уменьшаться. При достижении температуры кипения воды 98-100 градусов, терморезистор уменьшает сопротивление до ~ 4.7 — 5кОм. Напряжение питания на 8-ом контакте HT46R47 в момент кипения должно быть ровно 2.65V – при таком условии котроллер через реле выключает ТЭН. Затем, кипяток постепенно начинает остывать и когда вода остынет примерно до 70 – 80 градусов, контроллер снова включит ТЭН. Порог срабатывания для включения поддержания температуры равен 2.08V.

Что с датчиком температуры?

  Отследив напряжения необходимые для отключения ТЭНа, выяснили, что в нашем случае оно останавливается на отметке 2.7V, то есть немного не дотягивает до необходимого 2.65V, чтобы термопот выключил кипячение. Откручиваем и вытаскиваем датчик с посадочного места на дне термопота. Термопаста внутри высохла и потеряла свою теплопроводность.

Посадочное место для термодатчика
Посадочное место для термодатчика

  Полностью очищаем остатки старой термопасты в посадочном месте, а также чистим площадку где находиться терморезистор, и тонким слоем наносим свежую. Закручиваем термодатчик на место, включаем и видим, что теперь термопот вовремя отключается и поддерживает температуру.

  В нашем случае была произведена замена нагревательного элемента и небольшая профилактика. Также, пока термопот находился в разобранном виде, мы почистили помпу.

  Данная модель термопота отработала больше четырех лет, исправно наливая горячую воду в течении дня. Объема в 3,3 литра вполне достаточно. Удобная ручка для переноса, информативная шкала уровня воды с подсветкой. Замена неисправных деталей в нашем случае вышла не дорого. Ничего негативного про него сказать не можем. Отличный термопот! Принципиальную электрическую схему термопота Vitek можно скачать на странице загрузки файлов

Была ли статья полезна?

Да
Нет
— Вход для голосования

Статью считают полезной 0% читателей

Если понравилась статья, то поделитесь ей в социальных сетях:

Возможно вас заинтересует:


Как починить термопот своими руками: причины и их устранение

Термопот – это мелкая бытовая техника, сочетающая в себе свойства сразу двух устройств – электрического чайника и термоса.

Основное преимущество – возможность вскипятить воду и сохранять ее температуру в заданном режиме, а также возможность осуществить ремонт термопота своими руками в случае возникновения такой необходимости.

Как устроен

Отметим, что, несмотря на наличие массы преимуществ, у термопота есть и специфические недостатки, в частности:

Устройство состоит из корпуса, внешних элементов панели управления и внутренних технических устройств.

Корпус изготавливается из различных материалов (в зависимости от модели агрегата):

Также возможно сочетание указанных материалов.

Внешний вид термопота

Форма корпуса также зависит от конкретной модели. Зачастую, это либо полуцилиндр, либо прямоугольник.

Для удобства технического обслуживания и ухода практически все модели снабжаются съемной колбой, в которую наливается вода.

Также устройство снабжается панелью управления с кнопками, позволяющими задать определенные режимы работы.

Поскольку рассматриваемый агрегат сочетает в себе сразу два традиционных устройства – чайник и термос – внутри находятся сразу два тэна:

Из-за того, что термопот достаточно тяжелый и габаритный, производители снабжают его специальной кнопкой для подачи воды. Это очень удобно – достаточно подставить под отверстие слива кружку и нажать на кнопку слива. За подкачку воды отвечает специальный водяной насос – помпа.

Все термопоты также оснащаются электронной начинкой – а именно, микросхемой управления, обрабатывающей команды пользователя, и блоком питания.

Основные принципы функционирования

Устройство работает в следующем порядке:

Принципиальная схема

Если термопот не работает, необходимо ознакомиться с принципиальной схемой.

Схема данного устройства не слишком сложная – “прочитать” ее сможет даже не профессиональный электрик.

Ее можно применять для исследования причин поломки устройств от таких популярных производителей, как:

Расшифровка основных обозначений, применяемых на схеме

Частные неисправности

Как и любой другой предмет бытовой техники, термопот имеет перечень наиболее часто встречающихся проблем.

Приведем частные неисправности термопота и детали, замену или ремонт которых своими руками в таком случае следует осуществить в первую очередь:

В представленном случае, причиной поломки может быть:

Устранить поломку можно, проверив:

Совет только один – проверить все элементы электрической цепи, обратив особое внимание на модуль платы.

Проблема заключается в помпе – необходимо разобрать термопот, следуя нижеуказанной инструкции, и выяснить истинную причину.

Разборка термопота – пошаговая инструкция

Что делать, если устройство не желает включаться, не греет воду, протекает или не осуществляет подогрев? В этом случае рекомендуется выполнить разборку агрегата, следуя данной пошаговой инструкции:

Вид платы со снятой накладкой

Подробный разбор ремонта деталей

Существует определенный перечень внутренних деталей термопота, которые осмотреть рекомендуется в первую очередь.

Сетевой провод

Сетевой провод 220 Вольт может перегнуться или плохо контактировать с трехконтактным разъемом, расположенным внутри корпуса.

Сначала необходимо проверить непосредственно сам провод в режиме “прозвонки” при помощи мультиметра или же подключив кабель к какому-либо другому устройству.

Если же кабель работоспособен, следует проверить наличие напряжения на выводе после трансформатора.

Микросхемы

Большинство моделей оснащаются двумя электронными модулями:

По сути, плата питания – это питающий блок, от которого подходит электрический ток нужных параметров к каждому элементу термопота.

Для ремонта обеих плат необходимо в первую очередь осмотреть их на предмет:

Все поврежденные элементы необходимо заменить на новые, предварительно позаботившись об их покупке на радиорынке. Поврежденные дорожки можно восстановить при помощи лужения бытовым паяльником.

Самая распространенная неполадка здесь – это перегоревший плавкий предохранитель. Определить его можно по порванной нити внутри стеклянного корпуса.

Если же предохранитель в порядке, следует проверить резисторы и диоды тестером.

Ремонт водяного насоса

Что делать, если побежал термопот или, наоборот, при нажатии на кнопку слива воды ничего не происходит? В таком случае, следует добраться до помпы и приступать к тестированию ее работоспособности.

Делается это простой попарной прозвонкой контактов.

Для проверки работоспособности можно также подать штатное напряжение в 12 Вольт, взяв его, к примеру, от мощных батареек или от автомобильного аккумулятора.

Также соответствующее напряжение выдают блоки питания, установленные в системных блоках персональных компьютеров.

Ремонт нагревательных элементов

Если не работает подогрев или основное кипячение, возможно, неисправность заключается в вышедшем из строя нагревательном элементе. Самостоятельный ремонт тэна производить не рекомендуется – легче купить новый. Стоимость нагревательных спиралей начинается от 2000 рублей.

Тэн в разобранном виде

Разбор распространенных ситуаций и способы их решения

Приведем перечень наиболее часто встречающихся проблем – с инструкциями по их решению.

Термопот осуществляет постоянное кипячение

Нередка ситуация, когда термопот постоянно кипятит воду. Возможно и обратное – когда агрегат выключается в то время, когда жидкости еще далеко от начала закипания.

Проблема заключается в неисправности термовыключателей. Находятся они на днище устройства и сбоку корпуса.

Основная проблема их неработоспособности – нанесение производителем малого количества термопасты, из-за чего термореле начинает работать неправильно вследствие плохого контакта.

Проверку работоспособности реле проверяют обычным мультиметром – для этого его подключают к контактам терморегулятора и ставят в режим омметра. Тестер должен показать сопротивление в 0 Ом.

Для дополнительной проверки рекомендуется подсоединить термореле к проводам и опустить к кипящую воду. Если показания омметра будут стремиться к бесконечности, реле исправное, в противном случае – нужно заменить.

Также проверку терморегуляторов рекомендуется осуществить и в случае, если термопот не переходит в режим подогрева. В представленной ситуации дополнительно следует также проверить соединительные провода – они могут окислиться.

Термопот самостоятельно сливает жидкость

Некоторые сталкиваются со следующей проблемой – сразу же после включения в розетку термопот сливает из колбы воду, начинает гудеть, появляется характерный запах гари. Как исправить такой недостаток?

Проблема здесь заключается в водяном насосе. Сначала необходимо разобрать сам термопот (инструкцию см. выше) и добраться до местонахождения помпы. Далее следует приступать к разборке насоса.

После выкручивания двух болтов на самой помпе можно получить доступ к крыльчатке и магниту. Чтобы не покупать новую помпу, можно починить старую – для этого необходимо отсоединить лопасти от магнита и очистить их от накипи ветошью или мягкой тканью. Также следует осмотреть и сам магнит – на нем часто скапливаются мельчайшие металлические частицы, препятствующие нормальной работе.

Если указанные действия были произведены, но агрегат все равно протекает, следует купить новую помпу.

Ремонтируем термопот своими руками

Термопот представляет собой смесь чайника и термоса. Для поддержания определенной температуры жидкости в аппарате предусмотрена функция подогрева. Несмотря на достаточно надежную конструкцию, аппарат со временем выходит из строя, и возникает вопрос: возможен ли ремонт термопота своими руками?

Устройство чайника-термоса

Рассмотрим ключевые элементы термопота.

Термовыключатель выглядит как небольшой бочонок, выполненный из керамики. Внутри корпуса расположены два спаренных металлических контакта. В зависимости от типа прибора контакты или замкнуты, или разъединены.

В первом случае при достижении критичной температуры линия размыкается и спирали отключаются. Когда вода остынет до определённого градуса контакты замыкаются запуская процесс нагрева. Температура отключения и включения, как правило, фиксированная. В бюджетных моделях показатели установлены по умолчанию, тогда как в более дорогих решениях есть возможность ручного выбора.

Если термовыключатель вышел из строя или просто не сработал, то на этот случай есть предохранитель. Температурный предел срабатывания последнего находится в пределах +125-150⁰С. Элемент монтируется рядом термовыключателем и закрывается металлической пластиной. Реже предохранитель располагается на дне бака. Во многом это зависит от конкретной модели чайника.

Часто случается, что причиной выхода из строя термопота является именно предохранитель. Он размыкает цепь и не даёт корректно работать выключателю. Соответственно, чайник не выключается, так же как и индикация. Поэтому при поломке устройства в первую очередь стоит проверить предохранитель.

Следующей причиной выхода из строя чайника – это сам термовыключатель. Если под рукой есть омметр, то исключить его очень просто: он имеет нулевое сопротивление при температуре в +25-30⁰С. В противном случае выключатель нужно заменить.

Принцип работы термопота

После заполнения бака водой и включения устройства ТЭНы начинают нагревать жидкость до кипения. При достижении 100⁰С срабатывает реле и термопот в автоматическом порядке переходит в режим подогрева. На последний затрачивается порядка 70-100 Вт, в то время как на кипячение в десятки раз больше – от 1000 до 2500 Вт, что зависит от конкретной модели.

Важно! Остывание воды в устройстве происходит примерно с такой же скоростью, что и в обычном термосе, благодаря термостойкой колбе, удерживающей тепло. То есть даже в выключенном состоянии жидкость будет оставаться горячей заметно дольше, чем в классическом электрочайнике.

После того как температура воды достигнет минимальных значений, срабатывает термовыключатель, активируя ТЭНы для поддержания определённого градуса. Все устройства такого плана оснащены системой подачи. То есть, наклонять термопот нет необходимости. Достаточно установить стакан на специальную площадку и нажать на соответствующую клавишу. Подача воды будет производиться под давлением, сила которого зависит от выбранной модели.

Бюджетные термопоты имеют, как правило, до 4 режимов, которые нужны для обозначения минимальных и максимальных температурных порогов. У более дорогих устройств возможностей регулировки гораздо больше. К тому же они оснащаются каким-то дополнительным функционалом: включением по таймеру, режим «без пара», самоочистка, расширенная защита, дополнительный резервуар и т. п.

Типичные неисправности

Наиболее часто причинами поломок являются следующие детали устройства:

Сетевой провод

Перед тем, как отремонтировать термопот своими руками, следует отключить его от сети. После этого, чтобы “прозвонить” провод аппарата тестером, его нужно отсоединить. Для этого открутите винты на днище устройства и снимите его. Вы увидите клеммы, к которым прикреплен сетевой шнур. Отсоедините шнур и начните “прозванивать” его тестером. Если шнур в порядке, можно приступать к дальнейшему поиску неисправности.

Микросхемы

Если вы обнаружили, что на устройстве не работает кнопка или все клавиши, то причиной неполадки может быть вышедший из строя блок управления. Самостоятельно ремонтировать его не рекомендуется, поскольку необходимо иметь определенные знания в радиоэлектронике. Лучше будет, если ремонтом чайника термоса займется сервисный центр.

Электрические нагреватели

Если после включения аппарата он не кипятит воду, при этом работают все режимы нагрева, а также автоматика, то эти симптомы указывают на то, что возможно перегорел нагреватель, или вышло из строя термореле. Чтобы выяснить это, потребуется разборка агрегата.

В разных моделях агрегатов вид греющих элементов может отличаться. Также может отличаться и их расположение. Но алгоритм разборки аппарата, в большинстве случаев, схож. Чтобы более подробно ознакомиться с тем, как менять нагреватели, можно посмотреть видео.

Помпа

Если термопот при попытке налить горячую жидкость в чашку не качает воду, то, скорее всего, не работает насос, по причине выхода его из строя. Чтобы добраться до помпы, потребуется разобрать аппарат вышеописанным способом. После снятия всех частей днища, вы увидите помпу.

Помпа термопота

Далее, проделайте следующее.

Если после устранения всех загрязнений насос не включается, и нет подачи воды, то потребуется покупка новой помпы, поскольку эти признаки указывают на перегорание обмотки электродвигателя.

Термовыключатели

Иногда возникает ситуация, когда термопот не отключается и постоянно кипятит воду. Или наоборот: вы залили воду, аппарат ее греет, но выключается, когда жидкость еще не кипит. Почему это происходит? Данная неисправность может возникать, когда неисправны термовыключатели. Их можно обнаружить на дне и стенках бака. Для лучшего их контакта с поверхностью применяется специальная термопаста.

Термовыключатели

Термовыключатель, находящийся на дне бака, крепится к нему двумя винтами. Иногда производитель, особенно китайский, наносит мало термопасты, из-за чего термореле начинает работать неправильно: аппарат может при кипячении воды долго не выключаться.

Для проверки термореле на работоспособность, необходимо отсоединить его от корпуса бака, и снять провода с клемм. В нормальном состоянии (без нагрева) реле находится в положении “включен”. Если проверить его тестером, то прибор покажет сопротивление 0 ОМ.

Далее, следует подсоединить к выключателю 2 провода и опустить его в воду, доведенную до кипения. Теперь снова измерьте сопротивление. Если прибор показывает бесконечность, это значит, что выключатель отключился, и он функционирует нормально. Если датчик не работающий, то следует приобрести новый и заменить его. По поводу замены термовыключателя можно посмотреть следующее видео.

Выше были рассмотрены некоторые поломки чайника-термоса, которые вполне можно устранить без привлечения специалиста. В остальных случаях агрегат следует отнести для ремонта в специализированный сервисный центр. Но перед тем, как сдать аппарат в ремонт, поинтересуйтесь, во сколько он вам обойдется. Чаще всего, с финансовой точки зрения, ремонт не оправдан, так как стоимость его будет в пределах цены нового термопота.

Ремонт термопота

Термопот Elenberg

Среди всевозможной бытовой техники у многих найдётся электрический чайник, да не обычный, а чайник-термос. По-иному, термопот.

Несмотря на довольно добротную конструкцию этих “чудо – чайников” и они выходят из строя по причине неисправности электрических узлов.

Так как стоимость нового чайника-термоса довольно высока (в 3-5 раз выше стоимости обычного электрического чайника), то во многих случаях самостоятельный ремонт термопота не только оправдан, но и необходим.

Рассмотрим конструкцию, типичные неисправности термопотов и методы их устранения на примере ремонта чайника – термоса марки Elenberg TH-6012.

Корпус термопота легко разбирается. Жёсткость конструкции придают два болта или самореза, которыми прикручивается нижняя пластмассовая часть. Болты могут быть скрыты под круглой пластмассовой подставкой, благодаря которой термопот можно поворачивать в горизонтальном направлении. Выкрутив оба болта и сняв пластиковое дно чайника-термоса можно получить доступ к электрической части. Для удобства диагностики можно снять внешний металлический кожух, предварительно отсоединив от него заземляющий провод, идущий от среднего (заземляющего) вывода сетевой розетки.

Большинство чайников-термосов имеет схожую конструкцию вне зависимости от производителя. Отличия заключаются в отсутствии некоторых дополнительных узлов защиты и функциональных дополнений (подсветка уровня воды, звуковое оповещение и т. п).

Из каких частей состоит термопот:

Бак из нержавеющей стали.

Два нагревательных элемента, встроенных в дно металлического бака. Один нагреватель является основным и служит для кипячения воды. Другой нагреватель служит для поддержания подогрева воды. На фотографии показаны выводы этих нагревателей. Вывод 3 является общим для нагревательных спиралей. Для исключения электрического контакта с металлическим баком на выводы надеты керамические бусы.

Выводы нагревательных спиралей

Выводы нагревательных спиралей

Двигатель постоянного тока служащий для подачи воды. Его также называют водяной помпой. Здесь имеется в виду вся конструкция, которая объединяет двигатель и соединительные трубки, по которым подаётся вода, а также нагнетатель, совмещённый с валом двигателя.

Напряжение питания двигателя постоянного тока 8 – 12 Вольт. (в некоторых моделях 24 В.)

Мотор водяной помпы

Мотор водяной помпы

Основная электронная плата.

На основной плате смонтирована схема реле времени, которая включается в режиме принудительного (повторного) кипячения и радиоэлементы, служащие для формирования напряжения питания, как самого реле, так и двигателя постоянного тока.

Основная электронная плата

Основная электронная плата термопота

На плате управления размещены кнопки режима работы чайника-термоса: “Повторное кипячение” и “Подача воды”. Также на плате управления смонтированы индикаторы работы термопота, роль которых выполняют красный (режим “кипячение”) и зелёный (режим “поддержание нагрева”) светодиоды.

Плата управления

Плата управления и индикации

Внешняя панель управления
Внешняя панель

Одной из ключевых деталей любого термопота, от которой зависит работоспособность прибора, является термовыключатель. По-другому данную деталь ещё называют термопрерывателем, термоконтактом, температурным датчиком, а в некоторых случаях и термостатом. Хотя, наверняка, правильнее эту деталь называть всё-таки термовыключателем. Подробнее о них читайте здесь – термовыключатели KSD.

Термовыключатель представляет собой пластиковый либо керамический бочонок, внутри которого два биметаллических контакта. В зависимости от исполнения контакты либо замкнуты, либо разомкнуты. В термовыключателях, которые применяются в термопотах, контакты нормально-замкнуты. При воздействии верхней граничной температуры контакты размыкаются. При остывании контактов до температуры сброса, обычно равной значению на 15 0 –20 0 –25 0 С ниже верхнего порога срабатывания, биметаллические контакты вновь замыкаются. Поэтому термовыключатель является самовосстанавливающимся температурным контактом с фиксированной температурой срабатывания и сброса.

Термовыключатель
Термовыключатель

В рассматриваемом термопоте Elenberg один термовыключатель установлен в донной части бака. Служит он для выключения основного нагревательного элемента при достижении температуры кипения воды. Термовыключатель имеет маркировку KSD 302, температура срабатывания составляет 100 0 С. Максимальный ток через контакты термовыключателя ограничивается значением 10А, допустимое переменное напряжение составляет 250 В.

Термовыключатель имеет вертикальные штампованные выводы для подключения разъёмов и фиксированный фланец для крепления. На корпус термовыключателя в местах теплового контакта, как правило, наносится теплопроводная паста белого цвета. Она улучшает теплообмен между металлическим баком и термовыключателем.

Термовыключатель KSD 302
Термовыключатель KSD 302

Точно такой же термовыключатель установлен на боку нержавеющего бака приблизительно посередине. Он также имеет фиксированный фланец. Выводы горизонтальные. Температура срабатывания данного термовыключателя 105 0 – 110 0 С. Он выполняет роль защитного. Если вдруг по неосторожности термопот был включен без воды, то металлический бак быстро нагревается до критической температуры в 105 0 – 110 0 С, и, следовательно, контакты термовыключателя размыкаются полностью обесточивая электроприбор. На случай, если не сработает защитный термовыключатель, то срабатывает защитный термопредохранитель, температура срабатывания которого может быть в пределах 125 0 – 150 0 С. Термопредохранитель устанавливается рядом с защитным термовыключателем и прижат к корпусу бака металлической планкой (см. фото).

Защитный термовыключатель

Защитный термовыключатель

В некоторых случаях защитный термопредохранитель можно обнаружить и в донной части бака. Всё зависит от модели термопота. Так, например, в термопоте DELTA DL-3003 защитный термопредохранитель закреплён в донной части бака. Температура его срабатывания – 135 0 C. Нередки случаи, что причиной неисправности термопота служит как раз защитный термопредохранитель. Он просто «наглухо» размыкает электрическую цепь. В таком случае, термопот просто полностью отключется от электросети и на передней панели нет никакой индикации (светодиоды не светятся).

В отличие от термовыключателя, контакты термопредохранителя не восстанавливаются при остывании. Поэтому при поиске неисправности следует его проверить.

Термопредохранитель

Термопредохранитель

Стоит отметить то, что зачастую причиной неработоспособности термопота служит как раз один из термовыключателей. Чаще это тот, который закреплён в донной части бака. Проверить его легко. При комнатной температуре исправный термовыключатель является обычным проводником и при проверке омметром имеет практически нулевое сопротивление.

В случае неисправности термовыключателя KSD 302 (или подобного) требуется его замена. Но вот найти подходящий термовыключатель бывает не всегда легко. В таком случае можно купить его в интернете, например на AliExpress. com. В параметрах поиска указываем количество и тип доставки («Free Shipping» или бесплатная). При выборе смотрим на температуру срабатывания и тип выводов термовыключателя. Сроки бесплатной доставки почтой около 1-1,5 месяца, учтите это. О покупках радиодеталей на Ali я уже рассказывал.

На рисунке показана принципиальная схема термопота. Сама схема взята с сайта www. eleczon. ru, но перерисована с несколькими дополнениями. Данная схема практически полностью соответствует схеме электрического чайника – термоса Elenberg TH-6012.

На схеме под обозначением S1 и S2 показаны термовыключатели (серии KSD 302). Термовыключатель S1 – это тот, который установлен посередине бака и включен последовательно с цепью подачи сетевого напряжения 220 вольт на всю электрическую часть термопота. Последовательно с ним включен термопредохранитель F1, который, как уже говорилось, служит защитным.
Второй термовыключатель S2 установлен в донной части бака. Через этот термовыключатель поступает напряжение на спираль кипячения.

P1 – сетевой трёхполюсный разъём со средним заземляющим выводом.

Алгоритм работы термовыключателя S2 прост. Как только термопот включается в электросеть, то S2 находиться в замкнутом состоянии и он пропускает ток через спираль кипячения. Как только температура воды достигнет 100 0 C, то контакты S2 размыкаются. Контакты S2 вновь замкнуться только тогда, когда в бак дольют холодной воды по мере расходования. В таком случае температура воды будет ниже температуры сброса термовыключателя S2, и он вновь включиться.

Если же теплая вода из термопота расходуется неактивно, то подогрева дополнительной спиралью TH2 хватает, чтобы температура воды оставалась выше температуры сброса S2.
В случае если необходимо вновь вскипятить воду без долива, то для этого служит схема принудительного подогрева. Суть её работы в следующем:

Параллельно S2 включены контакты реле S1.1, которые замыкаются при включении схемы повторного кипячения. Спираль основного нагревателя для кипячения обозначена как TH1. На транзисторах VT1, VT2 собрано реле времени. В некоторых моделях используется один транзистор. Здесь использовано два для увеличения коэффициента усиления. Стоит обратить внимание на электролитический конденсатор C3. Кто уже знаком с электроникой уже догадались, зачем нужен этот конденсатор. При кратковременном нажатии на кнопку S4 («Повторное кипячение«), конденсатор C3 успеет зарядиться импульсами тока через диод VD6. Диод нужен для того, чтобы на конденсатор не поступало переменное напряжение. Вспомните про свойства электролитических конденсаторов.

Далее под действием напряжения заряженного конденсатора C3 открываются транзисторы VT1, VT2. При этом через обмотку реле K1 течёт ток, и реле переключает контакты S1.1. Замыкается цепь подачи питания на основную спираль TH1. Приблизительно через 30–40 секунд конденсатор C3 разряжается и транзисторы VT1, VT2 закрываются, обесточивая обмотку реле K1. Следовательно, контакты S1.1 размыкаются и спираль TH1 обесточивается. Так работает схема повторного (принудительного) подогрева.

Элементы C1, VDS1, C2 представляют собой выпрямитель сетевого напряжения для питания схемы реле времени. Конденсатор C1 “гасит” излишки напряжения. Электролитический конденсатор C2 сглаживает пульсации тока после мостового выпрямителя VDS1. Данная схема плоха тем, что электронная схема реле гальванически связанна с электросетью, что уменьшает электробезопасность.

В некоторых моделях термопотов вместо гасящего конденсатора C1 может использоваться небольшой понижающий трансформатор как в сетевых адаптерах. Это повышает электробезопасность конструкции, так как применяется понижающий трансформатор, который служит одновременно и гальванической развязкой от электросети. Кроме того, с этого же трансформатора снимается и напряжение питания для мотора подачи воды.

При работе термопота спираль поддержания нагрева постоянно включена! Она работает всегда, пока термопот включен в сеть. Через эту спираль (TH2) поступает напряжение на двигатель M1 (водяная помпа). Поскольку двигатель M1 постоянного тока, то переменное напряжение выпрямляется диодами VD1, VD2. Спираль TH2 и диод VD1 служат делителем напряжения.
Чтобы включить двигатель подачи воды нужно нажать на кнопку S3 («Подача воды«). Аналогичную функцию выполняет клавиша S4, которая срабатывает при нажатии краем кружки.

Через спираль TH2 течёт пульсирующий ток (одна полуволна сетевого напряжения), поскольку последовательно с ней включен мощный диод VD1.

Схема термопота ELENBERG TH-6030.

Схема чайника-термоса ELENBERG TH-6030

Возможные неисправности термопотов, причины их возникновения и методы ремонта.

Термопот не работает, нет индикации на панели управления.

Проверить целостность соединительных проводов. Проверить исправность термопредохранителя и защитного термовыключателя.

Термопот не кипятит воду при первом включении и доливке холодной воды. Кнопка “Повторное кипячение” работает.

Нужно проверить исправность термовыключателя в донной части бака.

Не работает кнопка “Повторное кипячение”. Термопот кипятит воду при первом включении и доливке холодной воды.

Неисправна электронная схема принудительного кипячения (реле, транзисторы, выпрямитель).

Термопот не кипятит воду ни в одном из режимов. Дежурный подогрев есть.

Перегорела спираль основного нагревательного элемента или нарушен контакт в цепи подключения основного нагревательного элемента.

Не работает кнопка и рычаг “Подача воды”.

Если есть дежурный подогрев воды, то скорее неисправен двигатель подачи воды либо выпрямительные диоды схемы питания двигателя.

Если дежурного подогрева воды нет, то, скорее всего, перегорела спираль дежурного подогрева и на мотор водяной помпы не поступает напряжение питания.

Это основные неисправности, которые встречаются у термопотов, схожих по конструкции с рассмотренной в данной статье моделью чайника – термоса Elenberg TH-6012.

При ремонте не стоит забывать о том, что все основные электрические соединения в термопоте выполнены из провода с теплостойкой изоляцией. Также все соединения, за исключением электронной схемы, выполнены на разъёмах и методом обжатия. Основная печатная плата и плата управления во многих моделях покрыта водостойким лаком.

При перегорании нагревательных спиралей ремонт затрудняется разборкой нагревательной части бака, перемоткой спирали. В таком случае ремонт нерентабелен, так как требует высоких трудозатрат и таких материалов как высокоомный провод и слюда для изоляции.

Не забывайте о правилах электробезопасности! Во включенном состоянии на электрических цепях термопота присутствует опасное для жизни напряжение!

Проверка электробезопасности прибора после сборки.

После того, как ремонт термопота закончен не лишним будет проверить электробезопасность прибора. Для начала необходимо замерить сопротивление между металлическим баком и контактами сетевой вилки. Понятно, что сопротивление в любом случае должно быть очень большим. Также не должно быть никакого электрического контакта между защитным (внешним) металлическим кожухом и выводами сетевой вилки. Исключение составляет центральный заземляющий вывод.

Источники:

https://technosova. ru/dlja-kuhni/kipjatilnik-chajnik-termopot/kak-pochinit-svoimi-rukami/

https://tehnika. expert/dlya-kuxni/elektrochajnik/remont-termopota. html

https://go-radio. ru/remont-termopot. html

Понравилась статья? Поделить с друзьями:
  • Vitek vt 4284 ошибка е4
  • Vitodens 200 коды ошибок
  • Visual studio ошибка lnk2019
  • Vitesse vs 520 ошибка е4
  • Vitek vt 4209 bw ошибка eee