Виды ошибок и способы их определения тестирование

    1. Классификация ошибок

Задача любого
тестировщика заключается в нахождении
наибольшего количества ошибок, поэтому
он должен хорошо знать наиболее часто
допускаемые ошибки и уметь находить их
за минимально короткий период времени.
Остальные ошибки, которые не являются
типовыми, обнаруживаются только тщательно
созданными наборами тестов. Однако из
этого не следует, что для типовых ошибок
не нужно составлять тесты.

Для классификации
ошибок мы должны определить термин
«ошибка».

Ошибка – это
расхождение между вычисленным, наблюдаемым
и истинным, заданным или теоретически
правильным значением.

Итак, по времени
появления ошибки можно разделить на
три вида:

– структурные ошибки
набора;

– ошибки компиляции;

– ошибки периода
выполнения.

Структурные
ошибки
возникают непосредственно при наборе
программы. К данному типу ошибок относятся
такие как: несоответствие числа
открывающих скобок числу закрывающих,
отсутствие парного оператора (например,
try
без catch).

Ошибки
компиляции
возникают из-за ошибок в тексте кода.
Они включают ошибки в синтаксисе,
неверное использование конструкции
языка (оператор else
в операторе for
и т. п.), использование несуществующих
объектов или свойств, методов у объектов,
употребление синтаксических знаков и
т. п.

Ошибки
периода выполнения
возникают, когда программа выполняется
и компилятор (или операционная система,
виртуальная машина) обнаруживает, что
оператор делает попытку выполнить
недопустимое или невозможное действие.
Например, деление на ноль.

Если проанализировать
все типы ошибок согласно первой
классификации, то можно прийти к
заключению, что при тестировании
приходится иметь дело с ошибками периода
выполнения, так как первые два типа
ошибок определяются на этапе кодирования.

В теоретической
информатике программные ошибки
классифицируют по степени нарушения
логики на:

– синтаксические;

–семантические;

– прагматические.

Синтаксические
ошибки
заключаются в нарушении правописания
или пунктуации в записи выражений,
операторов и т. п., т. е. в нарушении
грамматических правил языка. В качестве
примеров синтаксических ошибок можно
назвать:

– пропуск необходимого
знака пунктуации;

– несогласованность
скобок;

– пропуск нужных
скобок;

– неверное написание
зарезервированных слов;

– отсутствие описания
массива.

Все ошибки данного
типа обнаруживаются компилятором.

Семантические
ошибки
заключаются в нарушении порядка
операторов, параметров функций и
употреблении выражений. Например,
параметры у функции add
(на языке Java)
в следующем выражении указаны в
неправильном порядке:

GregorianCalendar.add(1,
Calendar.MONTH).

Параметр, указывающий
изменяемое поле (в примере – месяц),
должен идти первым. Семантические ошибки
также обнаруживаются компилятором.
Надо отметить, что некоторые исследователи
относят семантические ошибки к следующей
группе ошибок.

Прагматические
ошибки (или
логические) заключаются в неправильной
логике алгоритма, нарушении смысла
вычислений и т. п. Они являются самыми
сложными и крайне трудно обнаруживаются.
Компилятор может выявить только следствие
прагматической ошибки.

Таким образом, после
рассмотрения двух классификаций ошибок
можно прийти к выводу, что на этапе
тестирования ищутся прагматические
ошибки периода выполнения, так как
остальные выявляются в процессе
программирования.

На этом можно было
бы закончить рассмотрение классификаций,
но с течением времени накапливался опыт
обнаружения ошибок и сами ошибки,
некоторые из которых образуют характерные
группы, которые могут тоже служить
характерной классификацией.

Ошибка
адресации
– ошибка, состоящая в неправильной
адресации данных (например, выход за
пределы участка памяти).

Ошибка
ввода-вывода
– ошибка, возникающая в процессе обмена
данными между устройствами памяти,
внешними устройствами.

Ошибка
вычисления
– ошибка, возникающая при выполнении
арифметических операций (например,
разнотипные данные, деление на нуль и
др.).

Ошибка
интерфейса
– программная ошибка, вызванная
несовпадением характеристик фактических
и формальных параметров (как правило,
семантическая ошибка периода компиляции,
но может быть и логической ошибкой
периода выполнения).

Ошибка
обращения к данным
– ошибка, возникающая при обращении
программы к данным (например, выход
индекса за пределы массива, не
инициализированные значения переменных
и др.).

Ошибка
описания данных
– ошибка, допущенная в ходе описания
данных.[2]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

7.3.2. Классификация ошибок и тестов

Каждая организация, разрабатывающая ПО общесистемного назначения, сталкивается с проблемами нахождения ошибок. Поэтому приходится классифицировать типы обнаруживаемых ошибок и определять свое отношение к устранению этих ошибок.

На основе многолетней деятельности в области создания ПО разные фирмы создали свою классификацию ошибок, основанную на выявлении причин их появления в процессе разработки, в функциях и в области функциональной деятельности ПО.

Известно много различных подходов к классификации ошибок, рассмотрим некоторые из них.

Фирма IВМ разработала подход к классификации ошибок, называемый ортогональной классификацией дефектов [7.4]. Подход предусматривает разбиение ошибок по категориям с соответствующей ответственностью разработчиков за них.

Схема классификации не зависит от продукта, организации разработки и может применяться ко всем стадиям разработки ПО разного назначения. табл. 7.1 дает список ошибок согласно данной классификации. Используя эту таблицу, разработчик имеет возможность идентифицировать не только типы ошибок, но и места, где пропущены или совершены ошибки. Предусмотрены ситуации, когда найдена неинициализированная переменная или инициализированной переменной присвоено неправильное значение.

Ортогональность схемы классификации заключается в том, что любой ее термин принадлежит только одной категории.

Таблица
7.1.
Ортогональная классификация дефектов IBM

Контекст ошибки Классификация дефектов
Функция Ошибки интерфейсов конечных пользователей ПО, вызванные аппаратурой или связаны с глобальными структурами данных
Интерфейс Ошибки во взаимодействии с другими компонентами, в вызовах, макросах, управляющих блоках или в списке параметров
Логика Ошибки в программной логике, неохваченной валидацией, а также в использовании значений переменных
Присваивание Ошибки в структуре данных или в инициализации
переменных
отдельных частей программы
Зацикливание Ошибки, вызванные ресурсом времени, реальным временем или разделением времени
Среда Ошибки в репозитории, в управлении изменениями или в контролируемых версиях проекта
Алгоритм Ошибки, связанные с обеспечением эффективности, корректности алгоритмов или структур данных системы
Документация Ошибки в записях документов сопровождения или в публикациях

Другими словами, прослеживаемая ошибка в системе должна находиться в одном из классов, что дает возможность разным разработчикам классифицировать ошибки одинаковым способом.

Фирма Hewlett-Packard использовала классификацию Буча, установив процентное соотношение ошибок, обнаруживаемых в ПО на разных стадиях разработки (рис. 7.2) [7.12].

Это соотношение — типичное для многих фирм, производящих ПО, имеет некоторые отклонения.

Исследования фирм IBM показали, чем позже обнаруживается ошибка в программе, тем дороже обходится ее исправление, эта зависимость близка к экспоненциальной. Так военновоздушные силы США оценили стоимость разработки одной инструкции в 75 долларов, а ее стоимость сопровождения составляет около 4000 долларов.

Процентное соотношение ошибок при разработке ПО

Рис.
7.2.
Процентное соотношение ошибок при разработке ПО

Согласно данным [7.6, 7.11] стоимость анализа и формирования требований, внесения в них изменений составляет примерно 10%, аналогично оценивается стоимость спецификации продукта. Стоимость кодирования оценивается более чем 20%, а стоимость тестирования продукта составляет более 45% от его общей стоимости. Значительную часть стоимости составляет сопровождение готового продукта и исправление обнаруженных в нем ошибок.

Определение теста.Для проверки правильности программ специально разрабатываются тесты и тестовые данные. Под тестом понимается некоторая программа, предназначенная для проверки работоспособности другой программы и обнаружения в ней ошибочных ситуаций. Тестовую проверку можно провести также путем введения в проверяемую программу отладочных операторов, которые будут сигнализировать о ходе ее выполнения и получения результатов.

Тестовые данные служат для проверки работы системы и составляются разными способами: генератором тестовых данных, проектной группой на основе внемашинных документов или имеющихся файлов, пользователем по спецификациям требований и др. Очень часто разрабатываются специальные формы входных документов, в которых отображается процесс выполнения программы с помощью тестовых данных [7.11].

Создаются тесты, проверяющие:

  • полноту функций;
  • согласованность интерфейсов;
  • корректность выполнения функций и правильность функционирования системы в заданных условиях;- надежность выполнения системы;
  • защиту от сбоев аппаратуры и не выявленных ошибок и др.

Тестовые данные готовятся как для проверки отдельных программных элементов, так и для групп программ или комплексов на разных стадиях процесса разработки. На рис. 7.3. приведена классификация тестов проверки по объектам тестирования на основных этапах разработки.

Многие типы тестов готовятся заказчиком для проверки работы программной системы. Структура и содержание тестов зависят от вида тестируемого элемента, которым может быть модуль, компонент, группа компонентов, подсистема или система. Некоторые тесты зависят от цели и необходимости знать: работает ли система в соответствии с ее проектом, удовлетворены ли требования и участвует ли заказчик в проверке работы тестов и т.п.

В зависимости от задач, которые ставятся перед тестированием программ, составляются тесты проверки промежуточных результатов проектирования элементов на этапах ЖЦ, а также создаются тесты испытаний окончательного кода системы.

Тесты интегрированной системы.Тесты для проверки отдельных элементов системы и тесты интегрированной системы имеют общие и отличительные черты. Так, на рис. 7.4 в качестве примера приведена схема интеграции готовых оттестированных элементов. В ней заданы связи между разными уровнями тестирования интегрируемой ПС.

Интегрированное тестирование компонент

Рис.
7.4.
Интегрированное тестирование компонент

Рассмотрим этот процесс более подробно. Каждый компонент этой схемы тестируется отдельно от других компонентов с помощью тестов, включающих наборы данных и сценарии, составленные в соответствии с их типами и функциями, специфицированные в проекте системы. Тестирование проводится в контрольной операционной среде на предопределенном множестве тестовых данных и операциях, производимых над ними.

Тесты обеспечивают проверку внутренней структуры, логики и граничных условий выполнения для каждого компонента.

Согласно приведенной схеме сначала тестируются компоненты А, В, D независимо друг от друга и каждый с отдельным тестом. После их проверки выполняется проверка интерфейсов для последующей их интеграции, суть которой заключается в анализе выполнения операторов вызова А -> E, B -> C, D -> G, на нижних уровнях графа: компоненты Е, С, G. При этом предполагается, что указанные вызываемые компоненты, так же должны быть отлажены отдельно. Аналогично проверяются все обращения к компоненту F, являющемуся связывающим звеном с вышележащими элементами.

При этом могут возникать ошибки, в случае неправильного задания параметров в операторах вызова или при вычислениях процедур или функций. Возникающие ошибки в связях устраняются, а затем повторно проверяется связь с компонентом F в виде троек: компонентинтерфейскомпонент.Следующим шагом тестирования комплексной системы является проверка функционирования системы с помощью тестов проверки функций и требований к ним. После проверки системы на функциональных тестах происходит проверка на исполнительных и испытательных тестах, подготовленных согласно требованиям к ПО, аппаратуре и выполняемым функциям. Испытательному тесту предшествует верификация и валидация ПО.

Тест испытаний системы в соответствии с требованиями заказчика проверяется в реальной среде, в которой система будет в дальнейшем функционировать.

Error Guessing in Software Testing

Software application is a part of our daily life. May be in laptop or may be in our mobile phone, or it may be any digital device/interface our day starts with the use of various software applications and also ends with the use of various software applications. That’s why software companies are also trying their best to develop good quality error free software applications to the users.

So when a company develops any software application software testing plays a major role in that. Testers not only test the product with a set of specified test cases they also test the software by coming out of the testing documents. There the term error guessing comes which is not specified in any testing instruction manual still it is performed. So in this article we will discuss about that error then error guessing, where and how it is performed. The benefits that we get by performing it. So let’s start the topic.

Actually an error appears when there is any logical mistake in code by developer. And It’s very hard for a developer to find an error in large system. To solve this problem Error guessing technique is used. Error guessing technique is a software technique where test engineer guesses and try to break the software code. Error Guessing technique is also applied to all of the other testing techniques to produce more effective and workable tests.

What is the use of Error Guessing ?

In software testing error guessing is a method in which experience and skill plays an important role. As here possible bugs and defects are guessed in the areas where formal testing would not work. That’s why it is also called as experience based testing which has no specific method of testing. This is not a formal way of performing testing still it has importance as it sometimes solves many unresolved issues also.

Where or how to use it ?

Error guessing in software testing approach which is a sort of black box testing technique and also error guessing is best used as a part of the conditions where other black box testing techniques are performed, for instance, boundary value analysis and equivalence split are not prepared to cover all of the condition which are slanted to error in the application.

Advantages and Disadvantages of Error Guessing Technique :

Advantages :

  • It is effective when used with other testing approaches.
  • It is helpful to solve some complex and problematic areas of application.
  • It figures out errors which may not be identified through other formal testing techniques.
  • It helps in reducing testing times.

Disadvantages :

  • Only capable and skilled tests can perform.
  • Dependent on testers experience and skills.
  • Fails in providing guarantee the quality standard of the application.
  • Not an efficient way of error detection as compared to effort.
  • Drawbacks of Error Guessing technique:
  • Not sure that the software has reached the expected quality.
  • Never provide full coverage of an application.

Factors used in error guessing :

  1. Lessons learned from past releases.
  2. Experience of testers.
  3. Historical learning.
  4. Test execution report.
  5. Earlier defects.
  6. Production tickets.
  7. Normal testing rules.
  8. Application UI.
  9. Previous test results.

Error Guessing is one of the popular techniques of testing, even if it is not an accurate approach of performing testing still it makes the testing work simple and saves a lots of time. But when it is combined with other testing techniques we get better results. In this testing, it is essential to have skilled and experienced testers. 

Last Updated :
21 Sep, 2023

Like Article

Save Article

    1. Классификация ошибок

Задача любого
тестировщика заключается в нахождении
наибольшего количества ошибок, поэтому
он должен хорошо знать наиболее часто
допускаемые ошибки и уметь находить их
за минимально короткий период времени.
Остальные ошибки, которые не являются
типовыми, обнаруживаются только тщательно
созданными наборами тестов. Однако из
этого не следует, что для типовых ошибок
не нужно составлять тесты.

Для классификации
ошибок мы должны определить термин
«ошибка».

Ошибка – это
расхождение между вычисленным, наблюдаемым
и истинным, заданным или теоретически
правильным значением.

Итак, по времени
появления ошибки можно разделить на
три вида:

– структурные ошибки
набора;

– ошибки компиляции;

– ошибки периода
выполнения.

Структурные
ошибки
возникают непосредственно при наборе
программы. К данному типу ошибок относятся
такие как: несоответствие числа
открывающих скобок числу закрывающих,
отсутствие парного оператора (например,
try
без catch).

Ошибки
компиляции
возникают из-за ошибок в тексте кода.
Они включают ошибки в синтаксисе,
неверное использование конструкции
языка (оператор else
в операторе for
и т. п.), использование несуществующих
объектов или свойств, методов у объектов,
употребление синтаксических знаков и
т. п.

Ошибки
периода выполнения
возникают, когда программа выполняется
и компилятор (или операционная система,
виртуальная машина) обнаруживает, что
оператор делает попытку выполнить
недопустимое или невозможное действие.
Например, деление на ноль.

Если проанализировать
все типы ошибок согласно первой
классификации, то можно прийти к
заключению, что при тестировании
приходится иметь дело с ошибками периода
выполнения, так как первые два типа
ошибок определяются на этапе кодирования.

В теоретической
информатике программные ошибки
классифицируют по степени нарушения
логики на:

– синтаксические;

–семантические;

– прагматические.

Синтаксические
ошибки
заключаются в нарушении правописания
или пунктуации в записи выражений,
операторов и т. п., т. е. в нарушении
грамматических правил языка. В качестве
примеров синтаксических ошибок можно
назвать:

– пропуск необходимого
знака пунктуации;

– несогласованность
скобок;

– пропуск нужных
скобок;

– неверное написание
зарезервированных слов;

– отсутствие описания
массива.

Все ошибки данного
типа обнаруживаются компилятором.

Семантические
ошибки
заключаются в нарушении порядка
операторов, параметров функций и
употреблении выражений. Например,
параметры у функции add
(на языке Java)
в следующем выражении указаны в
неправильном порядке:

GregorianCalendar.add(1,
Calendar.MONTH).

Параметр, указывающий
изменяемое поле (в примере – месяц),
должен идти первым. Семантические ошибки
также обнаруживаются компилятором.
Надо отметить, что некоторые исследователи
относят семантические ошибки к следующей
группе ошибок.

Прагматические
ошибки (или
логические) заключаются в неправильной
логике алгоритма, нарушении смысла
вычислений и т. п. Они являются самыми
сложными и крайне трудно обнаруживаются.
Компилятор может выявить только следствие
прагматической ошибки.

Таким образом, после
рассмотрения двух классификаций ошибок
можно прийти к выводу, что на этапе
тестирования ищутся прагматические
ошибки периода выполнения, так как
остальные выявляются в процессе
программирования.

На этом можно было
бы закончить рассмотрение классификаций,
но с течением времени накапливался опыт
обнаружения ошибок и сами ошибки,
некоторые из которых образуют характерные
группы, которые могут тоже служить
характерной классификацией.

Ошибка
адресации
– ошибка, состоящая в неправильной
адресации данных (например, выход за
пределы участка памяти).

Ошибка
ввода-вывода
– ошибка, возникающая в процессе обмена
данными между устройствами памяти,
внешними устройствами.

Ошибка
вычисления
– ошибка, возникающая при выполнении
арифметических операций (например,
разнотипные данные, деление на нуль и
др.).

Ошибка
интерфейса
– программная ошибка, вызванная
несовпадением характеристик фактических
и формальных параметров (как правило,
семантическая ошибка периода компиляции,
но может быть и логической ошибкой
периода выполнения).

Ошибка
обращения к данным
– ошибка, возникающая при обращении
программы к данным (например, выход
индекса за пределы массива, не
инициализированные значения переменных
и др.).

Ошибка
описания данных
– ошибка, допущенная в ходе описания
данных.[2]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

7.3.2. Классификация ошибок и тестов

Каждая организация, разрабатывающая ПО общесистемного назначения, сталкивается с проблемами нахождения ошибок. Поэтому приходится классифицировать типы обнаруживаемых ошибок и определять свое отношение к устранению этих ошибок.

На основе многолетней деятельности в области создания ПО разные фирмы создали свою классификацию ошибок, основанную на выявлении причин их появления в процессе разработки, в функциях и в области функциональной деятельности ПО.

Известно много различных подходов к классификации ошибок, рассмотрим некоторые из них.

Фирма IВМ разработала подход к классификации ошибок, называемый ортогональной классификацией дефектов [7.4]. Подход предусматривает разбиение ошибок по категориям с соответствующей ответственностью разработчиков за них.

Схема классификации не зависит от продукта, организации разработки и может применяться ко всем стадиям разработки ПО разного назначения. табл. 7.1 дает список ошибок согласно данной классификации. Используя эту таблицу, разработчик имеет возможность идентифицировать не только типы ошибок, но и места, где пропущены или совершены ошибки. Предусмотрены ситуации, когда найдена неинициализированная переменная или инициализированной переменной присвоено неправильное значение.

Ортогональность схемы классификации заключается в том, что любой ее термин принадлежит только одной категории.

Таблица
7.1.
Ортогональная классификация дефектов IBM

Контекст ошибки Классификация дефектов
Функция Ошибки интерфейсов конечных пользователей ПО, вызванные аппаратурой или связаны с глобальными структурами данных
Интерфейс Ошибки во взаимодействии с другими компонентами, в вызовах, макросах, управляющих блоках или в списке параметров
Логика Ошибки в программной логике, неохваченной валидацией, а также в использовании значений переменных
Присваивание Ошибки в структуре данных или в инициализации
переменных
отдельных частей программы
Зацикливание Ошибки, вызванные ресурсом времени, реальным временем или разделением времени
Среда Ошибки в репозитории, в управлении изменениями или в контролируемых версиях проекта
Алгоритм Ошибки, связанные с обеспечением эффективности, корректности алгоритмов или структур данных системы
Документация Ошибки в записях документов сопровождения или в публикациях

Другими словами, прослеживаемая ошибка в системе должна находиться в одном из классов, что дает возможность разным разработчикам классифицировать ошибки одинаковым способом.

Фирма Hewlett-Packard использовала классификацию Буча, установив процентное соотношение ошибок, обнаруживаемых в ПО на разных стадиях разработки (рис. 7.2) [7.12].

Это соотношение — типичное для многих фирм, производящих ПО, имеет некоторые отклонения.

Исследования фирм IBM показали, чем позже обнаруживается ошибка в программе, тем дороже обходится ее исправление, эта зависимость близка к экспоненциальной. Так военновоздушные силы США оценили стоимость разработки одной инструкции в 75 долларов, а ее стоимость сопровождения составляет около 4000 долларов.

Процентное соотношение ошибок при разработке ПО

Рис.
7.2.
Процентное соотношение ошибок при разработке ПО

Согласно данным [7.6, 7.11] стоимость анализа и формирования требований, внесения в них изменений составляет примерно 10%, аналогично оценивается стоимость спецификации продукта. Стоимость кодирования оценивается более чем 20%, а стоимость тестирования продукта составляет более 45% от его общей стоимости. Значительную часть стоимости составляет сопровождение готового продукта и исправление обнаруженных в нем ошибок.

Определение теста.Для проверки правильности программ специально разрабатываются тесты и тестовые данные. Под тестом понимается некоторая программа, предназначенная для проверки работоспособности другой программы и обнаружения в ней ошибочных ситуаций. Тестовую проверку можно провести также путем введения в проверяемую программу отладочных операторов, которые будут сигнализировать о ходе ее выполнения и получения результатов.

Тестовые данные служат для проверки работы системы и составляются разными способами: генератором тестовых данных, проектной группой на основе внемашинных документов или имеющихся файлов, пользователем по спецификациям требований и др. Очень часто разрабатываются специальные формы входных документов, в которых отображается процесс выполнения программы с помощью тестовых данных [7.11].

Создаются тесты, проверяющие:

  • полноту функций;
  • согласованность интерфейсов;
  • корректность выполнения функций и правильность функционирования системы в заданных условиях;- надежность выполнения системы;
  • защиту от сбоев аппаратуры и не выявленных ошибок и др.

Тестовые данные готовятся как для проверки отдельных программных элементов, так и для групп программ или комплексов на разных стадиях процесса разработки. На рис. 7.3. приведена классификация тестов проверки по объектам тестирования на основных этапах разработки.

Многие типы тестов готовятся заказчиком для проверки работы программной системы. Структура и содержание тестов зависят от вида тестируемого элемента, которым может быть модуль, компонент, группа компонентов, подсистема или система. Некоторые тесты зависят от цели и необходимости знать: работает ли система в соответствии с ее проектом, удовлетворены ли требования и участвует ли заказчик в проверке работы тестов и т.п.

В зависимости от задач, которые ставятся перед тестированием программ, составляются тесты проверки промежуточных результатов проектирования элементов на этапах ЖЦ, а также создаются тесты испытаний окончательного кода системы.

Тесты интегрированной системы.Тесты для проверки отдельных элементов системы и тесты интегрированной системы имеют общие и отличительные черты. Так, на рис. 7.4 в качестве примера приведена схема интеграции готовых оттестированных элементов. В ней заданы связи между разными уровнями тестирования интегрируемой ПС.

Интегрированное тестирование компонент

Рис.
7.4.
Интегрированное тестирование компонент

Рассмотрим этот процесс более подробно. Каждый компонент этой схемы тестируется отдельно от других компонентов с помощью тестов, включающих наборы данных и сценарии, составленные в соответствии с их типами и функциями, специфицированные в проекте системы. Тестирование проводится в контрольной операционной среде на предопределенном множестве тестовых данных и операциях, производимых над ними.

Тесты обеспечивают проверку внутренней структуры, логики и граничных условий выполнения для каждого компонента.

Согласно приведенной схеме сначала тестируются компоненты А, В, D независимо друг от друга и каждый с отдельным тестом. После их проверки выполняется проверка интерфейсов для последующей их интеграции, суть которой заключается в анализе выполнения операторов вызова А -> E, B -> C, D -> G, на нижних уровнях графа: компоненты Е, С, G. При этом предполагается, что указанные вызываемые компоненты, так же должны быть отлажены отдельно. Аналогично проверяются все обращения к компоненту F, являющемуся связывающим звеном с вышележащими элементами.

При этом могут возникать ошибки, в случае неправильного задания параметров в операторах вызова или при вычислениях процедур или функций. Возникающие ошибки в связях устраняются, а затем повторно проверяется связь с компонентом F в виде троек: компонентинтерфейскомпонент.Следующим шагом тестирования комплексной системы является проверка функционирования системы с помощью тестов проверки функций и требований к ним. После проверки системы на функциональных тестах происходит проверка на исполнительных и испытательных тестах, подготовленных согласно требованиям к ПО, аппаратуре и выполняемым функциям. Испытательному тесту предшествует верификация и валидация ПО.

Тест испытаний системы в соответствии с требованиями заказчика проверяется в реальной среде, в которой система будет в дальнейшем функционировать.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Отладка программы — один их самых сложных этапов разработки программного обеспечения, требующий глубокого знания:

специфики управления используемыми техническими средствами,

операционной системы,

среды и языка программирования,

реализуемых процессов,

природы и специфики различных ошибок,

методик отладки и соответствующих программных средств. 

Отладка — это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

Вцелом сложность отладки обусловлена следующими причинами:

требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;

психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;

возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;

отсутствуют четко сформулированные методики отладки.

Всоответствии с этапом обработки, на котором проявляются ошибки, различают (рис. 10.1):


    синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;

    ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых */ 

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами,

обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

    Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

• появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;

появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;

«зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;

несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

неверное определение исходных данных,

логические ошибки,

накопление погрешностей результатов вычислений (рис. 10.2).

Н е в е р н о е о п р е д е л е н и е и с х о д н ы х д а н н ы х происходит, если возникают любые ошибки при выполнении операций ввода-вывода: ошибки передачи, ошибки преобразования, ошибки перезаписи и ошибки данных. Причем использование специальных технических средств и программирование с защитой от ошибок (см.§ 2.7) позволяет обнаружить и предотвратить только часть этих ошибок, о чем безусловно не следует забывать.

Л о г и ч е с к и е о ш и б к и имеют разную природу. Так они могут следовать из ошибок, допущенных при проектировании, например, при выборе методов, разработке алгоритмов или определении структуры классов, а могут быть непосредственно внесены при кодировании модуля.

Кпоследней группе относят:

ошибки некорректного использования переменных, например, неудачный выбор типов данных, использование переменных до их инициализации, использование индексов, выходящих за границы определения массивов, нарушения соответствия типов данных при использовании явного или неявного переопределения типа данных, расположенных в памяти при использовании нетипизированных переменных, открытых массивов, объединений, динамической памяти, адресной арифметики и т. п.;

ошибки вычислений, например, некорректные вычисления над неарифметическими переменными, некорректное использование целочисленной арифметики, некорректное преобразование типов данных в процессе вычислений, ошибки, связанные с незнанием приоритетов выполнения операций для арифметических и логических выражений, и т. п.;

ошибки межмодульного интерфейса, например, игнорирование системных соглашений, нарушение типов и последовательности при передачи параметров, несоблюдение единства единиц измерения формальных и фактических параметров, нарушение области действия локальных и глобальных переменных;

другие ошибки кодирования, например, неправильная реализация логики программы при кодировании, игнорирование особенностей или ограничений конкретного языка программирования.

На к о п л е н и е п о г р е ш н о с т е й результатов числовых вычислений возникает, например, при некорректном отбрасывании дробных цифр чисел, некорректном использовании приближенных методов вычислений, игнорировании ограничения разрядной сетки представления вещественных чисел в ЭВМ и т. п.

Все указанные выше причины возникновения ошибок следует иметь в виду в процессе отладки. Кроме того, сложность отладки увеличивается также вследствие влияния следующих факторов:

опосредованного проявления ошибок;

возможности взаимовлияния ошибок;

возможности получения внешне одинаковых проявлений разных ошибок;

отсутствия повторяемости проявлений некоторых ошибок от запуска к запуску – так называемые стохастические ошибки;

возможности устранения внешних проявлений ошибок в исследуемой ситуации при внесении некоторых изменений в программу, например, при включении в программу диагностических фрагментов может аннулироваться или измениться внешнее проявление ошибок;

написания отдельных частей программы разными программистами.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

ручного тестирования;

индукции;

дедукции;

обратного прослеживания.

Метод ручного тестирования. Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которым была обнаружена ошибка.

Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций.

Данный метод часто используют как составную часть других методов отладки.

Метод индукции. Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рис. 10.3 в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о ее проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов.

В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции. По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину (рис. 10.4).

Метод обратного прослеживания. Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

Классификация ошибок

Отладка – это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

В целом сложность отладки обусловлена следующими причинами:

  • требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;
  • психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;
  • возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;
  • отсутствуют четко сформулированные методики отладки.

В соответствии с этапом обработки, на котором проявляются ошибки, различают:

  • синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; 
  • логические ошибки — …; 
  • ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;
  • ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых.

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами, обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

  • появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;
  • появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;
  • «зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;
  • несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

  • неверное определение исходных данных,
  • логические ошибки,
  • накопление погрешностей результатов вычислений.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

  • ручного тестирования;
  • индукции;
  • дедукции;
  • обратного прослеживания.

Метод ручного тестирования

Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которыми была обнаружена ошибка. Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций. Данный метод часто используют как составную часть других методов отладки.

Метод индукции

Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рисунке в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о её проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов. В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции

По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину.

Метод обратного прослеживания

Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

Методы и средства получения дополнительной информации

Для получения дополнительной информации об ошибке можно выполнить добавочные тесты или использовать специальные методы и средства:

  • отладочный вывод;
  • интегрированные средства отладки;
  • независимые отладчики.

Отладочный вывод. Метод требует включения в программу дополнительного отладочного вывода в узловых точках. Узловыми считают точки алгоритма, в которых основные переменные программы меняют свои значения. Например, отладочный вывод следует предусмотреть до и после завершения цикла изменения некоторого массива значений. (Если отладочный вывод предусмотреть в цикле, то будет выведено слишком много значений, в которых, как правило, сложно разбираться.) При этом предполагается, что, выполнив анализ выведенных значений, программист уточнит момент, когда были получены неправильные значения, и сможет сделать вывод о причине ошибки.

Данный метод не очень эффективен и в настоящее время практически не используется, так как в сложных случаях в процессе отладки может потребоваться вывод большого количества — «трассы» значений многих переменных, которые выводятся при каждом изменении. Кроме того, внесение в программы дополнительных операторов может привести к изменению проявления ошибки, что нежелательно, хотя и позволяет сделать определенный вывод о ее природе.

Примечание. Ошибки, исчезающие при включении в программу или удалению из нее каких-либо «безобидных» операторов, как правило, связаны с «затиранием» памяти. В результате добавления или удаления операторов область затирания может сместиться в другое место и ошибка либо перестанет проявляться, либо будет проявляться по-другому.

Интегрированные средства отладки. Большинство современных сред программирования (Delphi, Builder C++, Visual Studio и т. д.) включают средства отладки, которые обеспечивают максимально эффективную отладку. Они позволяют:

  • выполнять программу по шагам, причем как с заходом в подпрограммы, так и выполняя их целиком;
  • предусматривать точки останова;
  • выполнять программу до оператора, указанного курсором; 
  • отображать содержимое любых переменных при пошаговом выполнении;
  • отслеживать поток сообщений и т. п.

Отладка с использованием независимых отладчиков. 

При отладке программ иногда используют специальные программы — отладчики, которые позволяют выполнить любой фрагмент программы в пошаговом режиме и проверить содержимое интересующих программиста переменных. Как правило такие отладчики позволяют отлаживать программу только в машинных командах, представленных в 16-ричном коде.

Общая методика отладки программного обеспечения

Суммируя все сказанное выше, можно предложить следующую методику отладки программного обеспечения:

1 этап — изучение проявления ошибки — если выдано какое-либо сообщение или выданы неправильные или неполные результаты, то необходимо их изучить и попытаться понять, какая ошибка могла так проявиться. При этом используют индуктивные и дедуктивные методы отладки. В результате выдвигают версии о характере ошибки, которые необходимо проверить. Для этого можно применить методы и средства получения дополнительной информации об ошибке. Если ошибка не найдена или система просто «зависла», переходят ко второму этапу.

2 этап — локализация ошибки — определение конкретного фрагмента, при выполнении которого произошло отклонение от предполагаемого вычислительного процесса. Локализация может выполняться:

  • путем отсечения частей программы, причем, если при отсечении некоторой части программы ошибка пропадает, то это может означать как то, что ошибка связана с этой частью, так и то, что внесенное изменение изменило проявление ошибки;
  • с использованием отладочных средств, позволяющих выполнить интересующих нас фрагмент программы в пошаговом режиме и получить дополнительную информацию о месте проявления и характере ошибки, например, уточнить содержимое указанных переменных.

При этом если были получены неправильные результаты, то в пошаговом режиме проверяют ключевые точки процесса формирования данного результата. Как подчеркивалось выше, ошибка не обязательно допущена в том месте, где она проявилась. Если в конкретном случае это так, то переходят к следующему этапу.

3 этап — определение причины ошибки — изучение результатов второго этапа и формирование версий возможных причин ошибки. Эти версии необходимо проверить, возможно, используя отладочные средства для просмотра последовательности операторов или значений переменных.

4 этап — исправление ошибки — внесение соответствующих изменений во все операторы, совместное выполнение которых привело к ошибке.

5 этап — повторное тестирование — повторение всех тестов с начала, так как при исправлении обнаруженных ошибок часто вносят в программу новые.

Следует иметь в виду, что процесс отладки можно существенно упростить, если следовать основным рекомендациям структурного подхода к программированию:

  • программу наращивать «сверху-вниз», от интерфейса к обрабатывающим подпрограммам, тестируя ее по ходу добавления подпрограмм;
  • выводить пользователю вводимые им данные для контроля и проверять их на допустимость сразу после ввода;
  • предусматривать вывод основных данных во всех узловых точках алгоритма (ветвлениях, вызовах подпрограмм).

Кроме того, следует более тщательно проверять фрагменты программного обеспечения, где уже были обнаружены ошибки, так как вероятность ошибок в этих местах по статистике выше. Это вызвано следующими причинами. Во-первых, ошибки чаще допускают в сложных местах или в тех случаях, если спецификации на реализуемые операции недостаточно проработаны. Во-вторых, ошибки могут быть результатом того, что программист устал, отвлекся или плохо себя чувствует. В-третьих, как уже упоминалось выше, ошибки часто появляются в результате исправления уже найденных ошибок.

Источник:

Понравилась статья? Поделить с друзьями:
  • Виды ошибок python
  • Виды ошибок при проверке гипотез
  • Виды ошибок php
  • Виды ошибок при переводе
  • Виды ошибок http