Статистическая ошибка тау

Точность системы автоматического управления Статическая ошибка системы

В системах
автоматического управления часто
приходится решать задачу стабилизации
управляемой величины. Точность поддержания
требуемого значения управляемой величины
в такой системе можно оценить как разницу
между заданным значением управляемой
величины и её установившимся значением
в системе после окончания переходного
процесса:

.

Эта величина
получила название статической ошибки
системы. При вычислении статической
ошибки предполагается, что система
находится в статике и все сигналы в ней
имеют постоянные величины. Статическая
ошибка используется для оценки точности
установления в системе заданной
постоянной выходной величины после
окончания переходного процесса.

Используя
передаточную функцию замкнутой системы
по ошибке, для изображения ошибки в
системе можно записать

,
гдепередаточная
функция замкнутой системы по ошибке,изображение
задающего воздействия.

Для статики,
когда все сигналы в системе неизменны,
выражение для ошибки можно перенести
в область оригиналов

.

Поскольку

,
гдеW(p)
передаточная функция разомкнутой
системы, то статическую ошибку системы
можно вычислить, зная передаточную
функцию разомкнутой системы:

,
где.

Вместо
абсолютного значения статической ошибки
часто используют относительную
статическую ошибку

.

Если система
статическая (т.е. не содержит интегрирующих
звеньев), то передаточную функцию
разомкнутой системы можно представить
в следующем нормированном виде:

,
гдеK– коэффициент
усиления системы,A*(p),B*(p)
– нормированные полиномыA(p)
иB(p).
При этоми.
Тогдаи статическая ошибка в статической
системе

.
Статическая
ошибка в статической системе уменьшается
с увеличением коэффициента усиления
системы. Статическая система всегда
будет иметь некоторую ошибку. Физический
смысл такой ошибки заключается в
необходимости некоторого рассогласования
между задающей и выходной величинами
системы для получения сигнала управления.

Если в системе
управления имеются интегрирующие
звенья, то система будет астатической.
Для астатической системы первого порядка
(содержащей одно интегрирующее звено)
передаточная функция разомкнутой
системы

и передаточная функция замкнутой системы
по ошибке

.

В этом случае всегда
и, следовательно, статическая ошибка
астатической системы будет равна нулю.
Таким образом, статическая ошибка в
астатической системе в принципе
отсутствует, что обуславливает более
высокую точность астатических систем,
по сравнению со статическими системами.
В астатической системе автоматического
управления установившееся значение
управляемой величины равно заданному
значению этой величины.

Вынужденная ошибка системы

Процесс в
системе складывается из свободного
процесса и вынужденного процесса:

.
Для
устойчивой системы свободный процесс
по истечении времениtпзатухает и в системе устанавливается
вынужденный процесс

Точность
поддержания заданного значения
управляемой величины в вынужденном
режиме характеризуется вынужденной
ошибкой системы

.

Вынужденная
ошибка хорошо характеризует работу
системы автоматического управления в
том случае, когда изменения управляющего
воздействия происходят существенно
медленнее собственных переходных
процессов в системе и последними можно
пренебречь.

Рассмотрим
вычисление вынужденной ошибки системы
автоматического управления. Изображение
для вынужденной ошибки

.

В общем случае
является дробно-рациональной функцией
отpи ее можно разложить
в ряд Тейлора по степенямрвблизи, тогда

и
выражение для вынужденной ошибки системы
примет вид

гдепостоянные
коэффициенты.

Для полученного
изображения вынужденной ошибки на
основе свойств преобразования Лапласа
легко находится выражение для оригинала
ошибки

где
,,…коэффициенты
ошибок, полученные выше (C0– коэффициент статической ошибки,C1
– коэффициент скоростной ошибки и
т. д.).

Коэффициенты
ошибки могут быть также получены делением
числителя передаточной функции на ее
знаменатель. Полученное выражение для
вынужденной ошибки позволяет оценить
точность системы автоматического
управления в установившемся режиме.
Вынужденная ошибка, например, хорошо
характеризует точность работы следящих
систем автоматического управления.

Соседние файлы в папке ТАУ

  • #
  • #
  • #

Уровень сложности
Средний

Время на прочтение
6 мин

Количество просмотров 3.5K

7.1 Общие понятия о точности процесса управления

Как отмечалось в разделе 6, интегральная оценка управления складывается из 3-х основных понятий:

  • устойчивость САР;

  • точность САР;

  • качество переходного процесса.

Очевидно, что главным является устойчивость САР (или запас устойчивости). Если САР не устойчива или очень мал запас устойчивости, то говорить о точности (неустойчивая САР) или о качестве переходного процесса (малые запасы устойчивости) не имеет смысла.

Если САР устойчива и запасы устойчивости достаточны по величине, то понятие точность САР является весьма важным показателем.

Точность определяют по отработке САР следующих видов воздействий:

  • ступенчатое внешнее воздействие (управляющее или возмущающее) часто называется постоянным внешним воздействием;

  • линейное внешнее воздействие т.е. линейно изменяющееся внешнее воздействие (управляющее или возмущающее);

  • гармоническое воздействие, т.е. ;

  • медленно меняющееся произвольное внешнее (управляющее или возмущающее) воздействие;

  • другие воздействия (параболическое, импульсное и т.д.).

Наиболее часто для оценки точности САР используются постоянное (ступенчатое) и линейное воздействия.

Различают статические и астатические САР:

Рисунок 7.1.1 Переходные процессы статической и астатической САР

Рисунок 7.1.1 Переходные процессы статической и астатической САР

Данные графики будем относить к следующей структуре САР:

Рисунок 7.1.2 Струкутурная схема САР для анализа устойчивости

Рисунок 7.1.2 Струкутурная схема САР для анализа устойчивости

По установившейся ошибкой понимают:

\varepsilon _{уст.}=\lim_{t\rightarrow\infty}\varepsilon(t)

Если входное воздействие x(t)— ступенчатое, to \varepsilon_{уст.}— «постоянная» ошибка.

Если входное воздействие x(t)— линейное, to \varepsilon_{уст.}— «скоростная» ошибка.

Различают астатизм по управляющему воздействию, а также астатизм по возмущающему воздействию, причем наличие того или иного астатизма определяется по-разному (см. следующие подразделы).

Главной задачей системы автоматического регулирования является точная и быстрая (но плавная) отработка управляющих воздействий, причем учитывая требования качества САР – точность очень важная «характеристика».

Наиболее часто точность САР оценивают по отработке управляющих воздействий. Рассмотрим последовательно различные виды управляющих (задающих) воздействий.

7.2 Точность при постоянном задающем воздействии. Постоянные ошибки

Для упрощения дальнейших преобразований будем считать, что структура САР приведена к стандартному виду (см. п.5 Передаточные функции и уравнения динамики система автоматического регулирования):

Рисунок 7.2.1 САР общего вида

Рисунок 7.2.1 САР общего вида

Примем, что отсутствует возмущающее воздействие  f(t)=0

Рассмотрим единичное ступенчатое воздействие x(t)=x_0\cdot1(t);

Считая, что замкнутая САР устойчива, найдем  \varepsilon_{уст}=\lim_{t\rightarrow\infty}\varepsilon(t)

Примем, что свободные коэффициенты в полиномах N(s)иL(s) передаточной функции разомкнутой САР равны 1.

W(s)=\frac{k\cdot N(s)}{L(s)} — передаточная функция замкнутой САР.

Используя передаточную функцию замкнутой САР (см. раздел 5) для ошибки можно записать выражение:

\Phi_\varepsilon(s)=\frac{E(s)}{X(s)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.2.1)}

где: \Phi(s)= \frac{k\cdot N(s)}{L(s)+k\cdot N(s)} — главная передаточная функция (см. раздел 5).

согласно 1-й предельной теореме (см. раздел 2)

\lim_{t\rightarrow\infty}\varepsilon(t)= \lim_{s\rightarrow 0}s\cdot E(s) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.2.2)}

Учитывая, что единичное ступенчатое воздействие в отображениях: x(t)=x_0\cdot1(t)\rightarrow X(s)=\frac{x_0}{s}:

\lim_{t\rightarrow\infty}\varepsilon(t)=\lim_{s\rightarrow0}s\cdot \Phi_\varepsilon(s)\cdot X(s)=\lim_{s\rightarrow 0}\cdot s\cdot\frac{L(s)}{L(s)+k\cdot N(s)}\cdot\frac{x_0}{s}\Rightarrow\varepsilon_{уст}=\lim_{t\rightarrow\infty}\varepsilon(t)=\frac{x_0}{k+1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.2.3)}

Т.е. если полином L(s)  имеет свободный член, равный единице, то САР не может точно «отработать» постоянное воздействие, т.е. она статична.

Величина \varepsilon_{уст}=\frac{x_0}{1+k}— называют постоянной или статической ошибкой.

Рисунок 7.2.2 Переходной процесс после ступенчатого воздействия для статичной САР

Рисунок 7.2.2 Переходной процесс после ступенчатого воздействия для статичной САР

В случае если полином L(s)не имеет свободных членов, то его можно представить как L(s)=s\cdot L_1(s)где L_1(s)— полином который имеет свободный член равный единицы. В этом случае установившаяся погрешность:

\varepsilon_{уст}=\lim_{s\rightarrow0}s\cdot\frac{s\cdot L_1(s)}{s\cdot L_1+k\cdot N(s)}\cdot\frac{x_0}{s}=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \  \mathbf{(7.2.4)}

Если L(s)=s^{v} \cdot L_1(s), где v— порядок астатизьма, то при постоянном (ступенчатом) воздействии установившаяся ошибка равна нулю.

\Rightarrow \varepsilon_{уст}=\lim_{t\rightarrow\infty}\varepsilon(t)=\left\{ \begin{align} &\frac{x_0}{k+1}, если \ \ САР - статическая \\ &0, если \ \ САР - астатическая \end{align} \right.

Из соотношения 7.2.3 очевидно, чем выше k — коэффициент усиления, тем меньше ошибка (для статических САР). Выводы: необходимо повышать общий коэффициент усиления разомкнутой САР, для сокращения ошибки. 

Однако увеличение k может привести к резкому уменьшению запасов устойчивости (что ухудшит качество переходного процесса) вплоть до потери устойчивости (см. раздел 6).

Цитата:

«Необходимо отметить, что для разомкнутой САР, имеющей W(i\cdot\omega)годограф похожий на рис. 6.5.5 левый вариант, устойчивость системы (замкнутой) нарушится только с увеличением общего коэффициента усиления К. (Дейстивительно при увеличении коэффициента K увеличится длинна вектора и он может охватить точку -1). «

Поэтому при проектировании САР необходимо «решать» «оптимальную» задачу, т.е. выбрать оптимальное значение , обеспечивающее удовлетворительную точность и неплохое качество переходного процесса.

В последнее время практически все САР проектируются как астатические, что легко достигается за счет использования астатических регуляторов (например ПИ-регуляторов (пропорционально-интегрирующих).

В этом случае говорить о постоянной ошибке нет смысла, т.к. \varepsilon_{уст}=0

Пример 1:

Определить установившуюся ошибку, если входное воздействие x(t)=0.2\cdot1(t), а структура САР имеет вид:

Рисунок 7.2.3 Структура САР для анализа

Рисунок 7.2.3 Структура САР для анализа

Необходимо заметить, что прямое использование формулы (7.2.3) в данном случае не проходит, т.к. статическая ошибка \varepsilon_{уст} в исходной САР не соответствует  статической ошибке в эквивалентной САР:

Рисунок 7.2.4 Эквивалентная струкутура

Рисунок 7.2.4 Эквивалентная струкутура

Прежде чем определять статическую ошибку \varepsilon_{уст} необходимо удостовериться в том, что исходная замкнутая САР устойчива. Выполеним преобразование:

\Rightarrow \Phi(s)=\frac{W_1(s)}{1+W_1(s)\cdot W_{oc}(s)}=\frac{200\cdot(s+1)\cdot(3\cdot s+1)}{(s+s+1)\cdot(3\cdot s+1)+400\cdot(s+1)}\Rightarrow

Характерестический полином эквивалентной передаточной функции: D(s)=3\cdot s^3+4\cdot s^2+404\cdot s+401

Для определение устойчивости критерий Гурвица (см. раздел 6):

Г =\left | \begin{matrix}4 \ \ 401 \ \ 0\\ 3 \ \ 404 \ \ 0 \\ 0 \ \ 4 \ \ 401 \end{matrix} \right |=\left\{ \begin{align} &\Delta_1=4>0;\\ &\Delta_2 =\left | \begin{matrix} 4 \ \ 401\\ 3 \ \ 404 \end{matrix} \right |=4\cdot 404-3\cdot401>0; \\ &\Delta_3 =\Delta_2\cdot 401>0; \end{align} \right.

Все главные определители матрицы Гурвица больше нуля \RightarrowСАР устойчива.

Перейдя к изображению x(t)=0.2\cdot 1(t)\rightarrow X(s)= \frac{0.2}{s}Найдем выражения для отклонение в изображениях:

E(s)=X(s)-Y_1(s)=X(s)-W_{ос}(s)\cdot Y(s)=X(s)-W_{ос}(s)\cdot W_1(s)\cdot E(s)\RightarrowE(s)=\frac{X(s)}{1+W_{oc}(s)\cdot W_1(s)}

Подставляем значения W_1и W_{oc}, имеем:

E(s)=\frac{0.2}{s\cdot [1+\frac{200(s+1)}{s^2+s+1}\cdot\frac{2}{3\cdot s+1}]}=\frac{0.2\cdot(s^2+s+1)\cdot(3\cdot s+1)}{s\cdot[(s^2+s+1)\cdot(3\cdot s+1)+400\cdot(s+1)]}\varepsilon_{уст}=\lim_{s\rightarrow 0} s\cdot E(s) = \lim_{s\rightarrow0}s\cdot\frac{0.2\cdot(s^2+s+1)\cdot(3\cdot s+1)}{s\cdot[(s^2+s+1)\cdot(3\cdot s+1)+400\cdot(s+1)]}=\frac{0.2}{401}\varepsilon_{уст}\approx5\cdot10^{-4}

7.3 Точность при линейном воздействии. Скоростные ошибки

В данном подразделе рассмотрим САР замкнутую единичной обратной связью (если обратная связь не единична, то с помощью структурных преобразований ее можно привести к единичной, подробнее об этом смотри раздел 4 Структурные преобразования систем автоматического регулирования)

Рисунок 7.3.1 САР с единичной обратной связи

Рисунок 7.3.1 САР с единичной обратной связи

где x(t)=a_0\cdot1(t)+a_1\cdot t— входное воздействие.

Рисунок 7.3.2 Линейное входное воздействие

Рисунок 7.3.2 Линейное входное воздействие

В соответствии со своим назначением устойчивая САР обязана «отслеживать» (с какой-то степенью точности) управляющее воздействие.

Воспользуемся первой предельной теоремой:

\varepsilon_{уст}=\lim_{t\rightarrow\infty}\varepsilon(t)=\lim_{s\rightarrow0}s\cdot E (s)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.3.1)}

Рассмотрим различные варианты САР: статическую и астатическую (1-го и 2-го порядка)

Статическая САР

Передаточная функция  W(s) соответствует статической САР:

W(s)=\frac{k\cdot N(s)}{L(s)}

где полниномы N(s)и L(s)имеют свободный член равный 1. 

Отклонение в отображениях:

E(s)=X(s)\cdot\Phi(s)

Где X(s)— изображение входного воздействия; \Phi_\varepsilon(s) — передаточная функция по возмущению:

\Phi_\varepsilon(s)=\frac{L(s)}{(L(s)+k\cdot N(s))}

Изображение входного воздействия x(t)\rightarrow X(s):

X(s)=\frac{a_0}{s}+\frac{a_1}{s^2}=\frac{a_0\cdot s+a_1}{s^2}\varepsilon_{уст}=\lim_{s\rightarrow 0}s\cdot E(s)=\lim_{s\rightarrow0}s\cdot\Phi_\varepsilon \cdot X(s)=\frac{L(s)}{L(s)+k\cdot N(s)}\cdot\frac{a_0\cdot s+a_1}{s^2}=\infty\varepsilon_{уст}=\infty \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.3.2)}

Вывод: Cтатическая САР не способна «отслеживать» линейное воздействие.

Астатическая САР со степенью астатизма 1

Для САР со степенью астатизма 1 полином L(s)не содержит совбодного члена равного 1, но его можно представит в виде произведения s\cdot L_1(s)где L_1(s)— полином содержащий свободный член равный 1. 

Примечание: Степень астатизма равна количеству нулевых полюсов полинома L(s) (см. раздел 5)

В этом случае установившиеся статистическая ошибка:

\varepsilon_{уст}=\lim_{s\rightarrow 0}s\cdot E(s)=\lim_{s\rightarrow0}s\cdot\frac{s\cdot L_1(s)}{s\cdot L_1(s)+k\cdot N(s)}\cdot\frac{a_0\cdot s+a_1}{s^2}=\frac{a_1}{k}\varepsilon_{уст}=\frac{a_1}{k} \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.3.3)}

Вывод: Если разомкнутая САР имеет астатизм первого порядка (имеет один нулевой полюс), то установившияся ошибка для замкнутой САР \varepsilon_{уст}={a_1}/{k}

Рисунок 7.3.3 Реакция на линейное воздействие САР с астатизьмом 1-го порядка

Рисунок 7.3.3 Реакция на линейное воздействие САР с астатизьмом 1-го порядка

Ошибка в астатической САР (1-го порядка) называется скоростной ошибкой, а общий коэффициент k часто называют коэффициентом добротности или просто добротностью.

Анализ формулы (7.3.3) показывает, что чем выше k тем меньше \varepsilon_{уст}. Однако необходимо помнить, что повышение k может привести к потери устойчивости САР (или уменьшению запасов устойчивости с соответствующим ухудшением качества переходного процесса).(см. раздел 6).

Астатическая САР со степенью астатизма 2

Для САР со степенью астатизма 2 полином L(s)не содержит не только совбодного члена равного 1, и члена у которого степень sравна 1. Такой полином можно представит в виде произведения s^2\cdot L_1(s)где L_1(s)— полином содержащий свободный член равный 1. 

В этом случае установившиеся статистическая ошибка:

\varepsilon_{уст}=\lim_{s\rightarrow0}s\cdot\frac{s^2\cdot L(s)}{s^2\cdot L_1(s)+k\cdot N(s)}\cdot\frac{a_0\cdot s+a_1}{s^2}=0\varepsilon_{уст}=0  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathbf{(7.3.6)}

Рисунок 7.3.4 Реакция на линейное воздействие системы с астатизьмом 2-го порядка

Рисунок 7.3.4 Реакция на линейное воздействие системы с астатизьмом 2-го порядка

Очевидно, что если степень астатизма v>2, то установившаяся статическая ошибка, тем более будет равна 0. Т.е. чем выше астатизм САР, тем лучше точность. Хотя повышение астатизма ухудшает устойчивость (запас устойчивости).

Модели из статьи можно взять здесь…

В предыдущих сериях:

1. Введение в теорию автоматического управления.2. Математическое описание систем автоматического управления 2.1 — 2.3, 2.3 — 2.8, 2.9 — 2.13. 

3. Частотные характеристики звеньев и систем автоматического управления регулирования. 3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ. 3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья. 3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора. 3.4. Апериодическое звено 2-го порядка. 3.5. Колебательное звено. 3.6. Инерционно-дифференцирующее звено. 3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением). 3.9. Изодромное звено (изодром). 3.10 Минимально-фазовые и не минимально-фазовые звенья. 3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. 

4. Структурные преобразования систем автоматического регулирования.

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).

6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица. 6.4 Частотный критерий устойчивости Михайлова. 6.5 Критерий Найквиста.

Точность системы автоматического управления Статическая ошибка системы

В системах
автоматического управления часто
приходится решать задачу стабилизации
управляемой величины. Точность поддержания
требуемого значения управляемой величины
в такой системе можно оценить как разницу
между заданным значением управляемой
величины и её установившимся значением
в системе после окончания переходного
процесса:

.

Эта величина
получила название статической ошибки
системы. При вычислении статической
ошибки предполагается, что система
находится в статике и все сигналы в ней
имеют постоянные величины. Статическая
ошибка используется для оценки точности
установления в системе заданной
постоянной выходной величины после
окончания переходного процесса.

Используя
передаточную функцию замкнутой системы
по ошибке, для изображения ошибки в
системе можно записать

,
гдепередаточная
функция замкнутой системы по ошибке,изображение
задающего воздействия.

Для статики,
когда все сигналы в системе неизменны,
выражение для ошибки можно перенести
в область оригиналов

.

Поскольку

,
гдеW(p)
передаточная функция разомкнутой
системы, то статическую ошибку системы
можно вычислить, зная передаточную
функцию разомкнутой системы:

,
где.

Вместо
абсолютного значения статической ошибки
часто используют относительную
статическую ошибку

.

Если система
статическая (т.е. не содержит интегрирующих
звеньев), то передаточную функцию
разомкнутой системы можно представить
в следующем нормированном виде:

,
гдеK– коэффициент
усиления системы,A*(p),B*(p)
– нормированные полиномыA(p)
иB(p).
При этоми.
Тогдаи статическая ошибка в статической
системе

.
Статическая
ошибка в статической системе уменьшается
с увеличением коэффициента усиления
системы. Статическая система всегда
будет иметь некоторую ошибку. Физический
смысл такой ошибки заключается в
необходимости некоторого рассогласования
между задающей и выходной величинами
системы для получения сигнала управления.

Если в системе
управления имеются интегрирующие
звенья, то система будет астатической.
Для астатической системы первого порядка
(содержащей одно интегрирующее звено)
передаточная функция разомкнутой
системы

и передаточная функция замкнутой системы
по ошибке

.

В этом случае всегда
и, следовательно, статическая ошибка
астатической системы будет равна нулю.
Таким образом, статическая ошибка в
астатической системе в принципе
отсутствует, что обуславливает более
высокую точность астатических систем,
по сравнению со статическими системами.
В астатической системе автоматического
управления установившееся значение
управляемой величины равно заданному
значению этой величины.

Вынужденная ошибка системы

Процесс в
системе складывается из свободного
процесса и вынужденного процесса:

.
Для
устойчивой системы свободный процесс
по истечении времениtпзатухает и в системе устанавливается
вынужденный процесс

Точность
поддержания заданного значения
управляемой величины в вынужденном
режиме характеризуется вынужденной
ошибкой системы

.

Вынужденная
ошибка хорошо характеризует работу
системы автоматического управления в
том случае, когда изменения управляющего
воздействия происходят существенно
медленнее собственных переходных
процессов в системе и последними можно
пренебречь.

Рассмотрим
вычисление вынужденной ошибки системы
автоматического управления. Изображение
для вынужденной ошибки

.

В общем случае
является дробно-рациональной функцией
отpи ее можно разложить
в ряд Тейлора по степенямрвблизи, тогда

и
выражение для вынужденной ошибки системы
примет вид

гдепостоянные
коэффициенты.

Для полученного
изображения вынужденной ошибки на
основе свойств преобразования Лапласа
легко находится выражение для оригинала
ошибки

где
,,…коэффициенты
ошибок, полученные выше (C0– коэффициент статической ошибки,C1
– коэффициент скоростной ошибки и
т. д.).

Коэффициенты
ошибки могут быть также получены делением
числителя передаточной функции на ее
знаменатель. Полученное выражение для
вынужденной ошибки позволяет оценить
точность системы автоматического
управления в установившемся режиме.
Вынужденная ошибка, например, хорошо
характеризует точность работы следящих
систем автоматического управления.

Соседние файлы в папке ТАУ

  • #
  • #
  • #

Лекция 17. Расчет установившейся ошибки в системах управления.
Структурные признаки астатизма

Установившейся (статической) ошибкой называют
постоянное значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании переходного процесса: , рисунок 116.

Очевидно, установившаяся ошибка зависит от законов
изменения и численных характеристик входных сигналов системы. Поэтому при ее
определении принято рассматривать так называемые типовые входные сигналы,
законы изменения которых составляют степенной ряд относительно времени.
Например, для задающего воздействия:

 и так
далее.

При наличии нескольких воздействий на линейную систему
для определения xуст используется
принцип суперпозиции – реакция линейной системы на совокупность входных
сигналов совпадает с алгебраической суммой ее реакций на каждый из сигналов в
отдельности:

, где
каждое слагаемое, или составляющая сигнала ошибки, определяется
для i-го входного сигнала при условии, что остальные
тождественно равны нулю. Такой подход полностью соответствует определению
передаточной функции и позволяет выполнять расчет установившейся ошибки на
основе структурной схемы системы.

Рассмотрим порядок расчета установившейся ошибки на
следующем достаточно общем примере (рисунок 117).

В соответствии с принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде суммы трех составляющих .

Изображение по Лапласу ошибки от задающего воздействия
получают через передаточную функцию замкнутой системы по ошибке  при известном изображении задающего
воздействия G(s):

, где
F(s) – основная передаточная функция замкнутой системы.
Для структурной схемы на рисунке 117

, где  — передаточная функция
разомкнутой системы, или прямой цепи системы, для рассматриваемого примера.

Непосредственно для расчета
установившегося значения ошибки от задающего воздействия используют теорему о
конечном значении для преобразования Лапласа:

В результате:

.

Изображение по Лапласу ошибки от возмущающего
воздействия получают через передаточную функцию замкнутой системы по ошибке от
возмущения  при известном изображении возмущающего
воздействия F(s):

, где
Ff(s) –передаточная функция замкнутой системы по
возмущающему воздействию,

;

Wf(s)
– передаточная функция разомкнутой системы по возмущению (передаточная функция
участка прямой цепи системы от точки приложения возмущающего воздействия до
выхода системы).

Для структурной схемы на рисунке 8 необходимо
учитывать два возмущающих воздействия, приложенные в различные точки системы.

Для f1:                             
,

,

.

Для f2:                                
,

,

.

Расчет упрощается для
системы с единичной отрицательной обратной связью (рисунок 118):

,

, где k=k1k2k3 – коэффициент передачи
разомкнутой системы.

Найдем установившуюся ошибку
для некоторых типовых вариантов задающего воздействия.

При  получим:

.

При  получим:

.

При  получим:

.

Если установившаяся ошибка
тождественно равна нулю при каком-либо типовом варианте входного сигнала,
независимо от его численных характеристик, систему называют астатической по
рассматриваемому входному сигналу.

Количество типовых вариантов
входного сигнала – членов степенного ряда, при которых установившаяся ошибка
тождественно равна нулю, определяет порядок астатизма.

Рассматриваемая система
обладает свойством астатизма второго порядка по задающему воздействию.

Рассмотрим установившуюся
ошибку от возмущения f1:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f1.

При  получим:

.

При  получим:

.

При  получим
тот же результат.

Отметим, что по возмущению f1 рассматриваемая система
не является астатической. Кроме того, она не в состоянии отработать два последних
варианта входного сигнала.

Рассмотрим установившуюся
ошибку от возмущения f2:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f2.

При  получим:

.

При  получим:

.

При  получим:

.

По возмущению f2 рассматриваемая система имеет
астатизм первого порядка. Она не в состоянии отработать возмущающее
воздействие, изменяющееся во времени с постоянным ускорением.

Подведем некоторые итоги:

1. Наличие и глубина
свойства астатизма зависят от точки приложения входного сигнала.

2. Постоянные времени
звеньев системы не влияют на ее точность.

3. Увеличение значения
коэффициента передачи разомкнутой системы приводит к снижению величины
установившейся ошибки.

Для систем с единичной
отрицательной обратной связью существуют достаточно простые структурные
признаки астатизма.

Рассмотрим структуру,
показанную на рисунке 119.

В общем случае передаточная
функция разомкнутой системы может быть представлена в следующей форме:

, где l³0.

Тогда получим:

и для общего вида задающего воздействия , которому соответствует изображение ,

.

Результат нахождения этого
предела зависит от соотношения показателей степени:

— при l>v установившаяся
ошибка равна нулю независимо от остальных параметров, то есть имеет место
астатизм;

— при l=v получаем
константу;

— при l<v установившаяся
ошибка стремится к бесконечности, то есть система не в состоянии отработать
входной сигнал.

Учитывая, что минимальное
значение v нулевое,
получаем условие астатизма по задающему воздействию: l>0.

Таким образом, структурный
признак астатизма по задающему воздействию в системе с единичной отрицательной
обратной связью состоит в наличии нулевых корней в знаменателе передаточной
функции разомкнутой системы, или интегрирующих звеньев в прямой цепи системы.

Нетрудно также убедиться,
что положительное значение l совпадает
с порядком астатизма.

Для получения признака
астатизма по возмущающему воздействию представим передаточные функции на
рисунке 10 в форме:

,

, где l1+l2=l,
k1k2=k, m1+m2=m,
n1+n2=n,
причем  и .

Тогда получим:

и для общего вида возмущающего воздействия , которому соответствует изображение ,

.

Все вышеприведенные выводы
можно повторить для показателя степени l1.

Таким образом, структурный
признак астатизма по возмущающему воздействию в системе с единичной
отрицательной обратной связью состоит в наличии нулевых корней в знаменателе
передаточной функции участка системы до точки приложения воздействия, или
интегрирующих звеньев на том же участке.

Величина — статическая ошибка

Cтраница 1

Величина статической ошибки зависит как от настройки регулятора, так и от характеристики и режима работы объекта.
 [1]

Стремление уменьшить величину статической ошибки иногда неизбежно приводит к увеличению перерегулирования и времени регулирования. Уменьшение перерегулирования иногда приводит к увеличению статической ошибки.
 [2]

В статических системах величина статической ошибки зависит от величины ступенчатой нагрузки. Эта зависимость, называемая статической характеристикой, имеет большое значение для анализа работы САР.
 [3]

В астатических системах величина статической ошибки определяется значением нечувствительности регулятора.
 [4]

При большом числе компрессоров величина статической ошибки может выйти за допустимые пределы.
 [5]

Статическая точность передачи характеризуется величиной статической ошибки, определяемой углом рассогласования между осями датчика и приемника при отсутствии вращения. Величина статической ошибки зависит от нагрузки или момента на валу приемника, а также от собственной погрешности сельсинов.
 [6]

Статическая точность передачи характеризуется величиной статической ошибки, определяемой углом пяссогласования между осями датчика и приемника при отсутствии вращения. Величина статической ошибки зависит от нагрузки или момента на валу приемника, а также от собственной погрешности сельсинов.
 [7]

По мере увеличения коэффициента усиления величина статической ошибки уменьшается. В то же время степень колебания повышается и соответственно увеличивается динамическая ошибка регулирования. Оптимальная величина должна выбираться как с учетом статической, так и динамической ошибки. Причем статическая ошибка регулирования может быть исключена за счет введения интегральной составляющей в закон регулирования.
 [8]

Нужно иметь в виду, что величина статической ошибки зависит как от настройки регулятора, так и от характеристики и режима работы объекта.
 [9]

Получается противоречие между требованиями обеспечения устойчивости и величиной статической ошибки.
 [10]

Определим границу ОНР, исходя из предположения, что величина статической ошибки не должна превышать величины 0 5 % от входного сигнала при полном перемещении исполнительного механизма.
 [11]

Таким образом, давление в приемном канале 2 с точностью до величины статической ошибки, определяемой коэффициентом усиления струйного усилителя, поддерживается постоянным. При постоянном сечении потока этим способом измеряют расход вещества, определяемого как произведение скорости на площадь поперечного сечения потока.
 [13]

По оси ординат откладывается отношение максимальной динамической ошибки в переходном процессе к величине статической ошибки, которая имела бы место, если бы в системе использовался пропорциональный регулятор, и была бы равна KLI ( K) при единичном ступенчатом изменении нагрузки. Это значение принято считать наилучшим. Нижняя кривая соответствует декременту затухания, равному 0 46, который получается, если коэффициент усиления выбрать близким к максимальному.
 [15]

Страницы:  

   1

   2

   3

   4

В автоматической системе с симметричной нелинейностью могут иметь место несимметричные автоколебания с некоторой постоянной составляющей при приложении постоянного внешнего воздействия. При этом величина амплитуды и частота автоколебаний, существовавших до приложения внешнего воздействия, во многом определяют величину постоянной составляющей. Но, наличие постоянного внешнего воздействия изменяет величину амплитуды и частоты автоколебаний.

Величина в случае статической системы определяет собой статическую ошибку, в астатической системе — установившуюся ошибку при постоянной скорости, а в дважды астатической — установившуюся ошибку при постоянном ускорении. Основная задача, таким образом, сводится к определению зависимости между величинами постоянного внешнего воздействия (или постоянной скорости его изменения) и установившейся ошибки, или же к такому выбору параметров системы, например, коэффициента усиления при котором величина статической ошибки не превышает заданного значения.

Практический интерес представляет также определение зависимости амплитуды и частоты автоколебаний от величины постоянного внешнего воздействия.

Уравнение нелинейной автоматической системы

где — приложенное в любой точке ее внешнее воздействие в данном случае может быть записано в виде

В статической системе будет , где , а в астатической, когда имеем , где (постоянная скорость изменения внешнего воздействия). В дважды астатической системе и при будет

Решение уравнения вследствие несимметричности автоколебаний необходимо искать в виде [16], [13]

где — постоянная составляющая автоколебаний, х — периодическая (колебательная) составляющая.

Вследствие наличия смещения при разложении нелинейной функции в ряд Фурье добавится член, характеризующий

постоянную составляющую; при этом выражение для гармонической линеаризации нелинейности приобретает вид

здесь — соответственно постоянная составляющая и коэффициенты гармонической линеаризации, определяемые по формулам

где

В частном случае, когда нелинейность является однозначной (не петлевой) то формула (Х.59) принимает вид

Определив по формулам коэффициенты гармонической линеаризации и подставив в уравнение вместо выражение получим гармонически линеаризованное уравнение системы

Это уравнение можно представить в виде системы двух уравнений соответственно для постоянной и колебательной составляющих решения:

Уравнение описывает смещение центра колебаний системы в зависимости от величины постоянного внешнего воздействия М. Уравнение (Х.64) описывает периодическое движение системы по координате х относительно центра колебаний, определяемого величиной смещения Однако оба уравнения линейно взаимосвязаны, так как коэффициенты уравнения зависят от величины смещения а величина в уравнении зависит от амплитуды автоколебаний А.

Из уравнения можно определить величину статической ошибки в функции от амплитуды автоколебаний А, внешнего воздействия М и параметров системы, например, k:

Подставляя найденное выражение в уравнение полагая и выделяя вещественную и мнимую части, получим два уравнения

Решить аналитически уравнения относительно А и обычно затруднительно. Целесообразно в данном случае применение какого-либо из графических приемов. Часто бывает удобно из уравнений найти выражение для . Приравнивая полученные значения , получим новое уравнение с тремя неизвестными :

Из уравнения как правило, можно определить какую-либо из величин как функцию двух остальных. Например,

Полученное уравнение дает возможность построить семейство кривых при разных значениях М. Затем по одной из формул легко определить при

Если какая-либо из искомых величин входит только в одно из уравнений то описанное решение значительно упрощается.

Поскольку после построения графиков станет известной зависимость амплитуды автоколебаний от значения параметра и величины внешнего воздействия М, то из формулы определяются искомые зависимости при или при

Таким образом определяется величина статической ошибки в зависимости от величины внешнего воздействия М и значения определяемого параметра системы Если полученные значений статической ошибки и амплитуды автоколебаний на входе нелинейного звена не являются непосредственно интересующими проектировщика величинами, то пересчет в любую точку системы производится через передаточные функции соответствующих звеньев системы.

Решение уравнений возможно и другим способом: подставив в уравнение и выделив вещественную и мнимую части, получим два алгебраических уравнения с тремя неизвестными

Эти уравнения дают возможность определить амплитуду А и частоту автоколебаний как функцию постоянной составляющей Подставив значения амплитуды и частоты автоколебаний в выражение для [первая формула (Х.60)], получим функцию смещения

которая является характеристикой данного нелинейного звена по отношению к постоянной составляющей при наличии автоколебаний. Важно отметить, что функция смещения не зависит ни от числа внешних воздействий на систему, ни от характера их изменения (он может быть не постоянной, а медленно меняющейся, что рассматривается ниже в § 5).

После определения функции смещения из уравнения с подстановкой сразу определяется искомая зависимость статической ошибки от величины постоянного внешнего воздействия М.

Возможен случай, когда к нелинейной системе приложено несколько внешних воздействий:

Методика расчетов при этом сохраняется. В отличие от линейных систем в данном случае складывать статические ошибки от отдельных воздействий нельзя. Это обусловлено нелинейной зависимостью от величины внешнего воздействия, как это следует из уравнения которое в данном случае принимает вид

Для облегчения практических расчетов в табл. 1 и 2 приложения IV приведены значения коэффициентов гармонической линеаризации для некоторых типоб нелинейных звеньев. Более полные сведения по гармонической линеаризации при наличии внешнего воздействия приведены в работе [13].

Несимметричные колебания в нелинейных автоматических системах могут возникать не только при наличии внешнего воздействия, но и при несимметричных характеристиках самого нелинейного элемента без внешнего воздействия.

В этом случае правая часть уравнения равна нулю:

При несимметричных характеристиках нелинейного звена возникает постоянная составляющая

Поэтому решение уравнения как и прежде, надо искать в виде суммы постоянной и периодической составляющих:

Уравнения в данном случае имеют вид

Решение уравнений выполняется таким же образом, как это делалось для симметричной характеристики нелинейного звена, при наличии постоянного внешнего воздействия.

Для облегчения использования описанной выше методики в табл. 3 приложения II приведены готовые выражения для некоторых типов несимметричных нелинейностей [13].

Пример 4. Для иллюстрации описанной выше методики определения установившихся ошибок в автоколебательных нелинейных системах рассмотрим систему, блок-схема которой приведена на рис. Х.20.

Рис. Х.20. Блок-схема релейной системы автоматического регулирования

Уравнения этой системы имеют вид:

Нелинейность представляет собой характеристику идеального симметричного реле

Уравнение системы будет

Предположим, что функция является управляющим воздействием, изменяющимся с постоянной скоростью

которое должна воспроизвести система на выходе. Второе внешнее воздействие является возмущающим и имеет постоянную величину (например, постоянная нагрузка на выходном валу системы), т. е.

Необходимо определить установившуюся ошибку на выходе системы. Правая часть характеристического уравнения будет при этом постоянной и установившееся решение для X с учетом автоколебаний следует искать в виде выражений

Тогда уравнения для постоянных и периодических составляющих будут иметь вид:

В соответствии с изложенной выше методикой из уравнений определим

Откуда

или

Для определения амплитуды А периодической составляющей используется уравнение для которого запишем характеристическое уравнение

Подставив и выделив вещественную и мнимую части, получим

Из уравнений найдем

Исключая из уравнений величину определим частоту автоколебаний

Подставив полученные значения в уравнение определим амплитуду автоколебаний

Здесь величина

является амплитудой симметричных автоколебаний при отсутствии внешних воздействий

Подставив полученное значение амплитуды А в формулу определим искомую величину смещения

Из формулы (Х.82) видно, что автоколебания в системе существуют только до тех пор, пока внешние воздействия удовлетворяют условию

причем амплитуда автоколебаний уменьшается с увеличением внешних воздействий.

Так, в результате расчета определена величина смещения на входе реле. Однако практически больший интерес представляет установившаяся ошибка на выходе системы. Поскольку на выходе системы должно воспроизводиться внешнее воздействие то, согласно рис. Х.20, ошибка данной системы выражается величиной Запишем переменную через х, которая уже известна.

Из заданных уравнений системы имеем

Учитывая, что уравнение запишем в виде

В соответствии с характером правой части нужно искать установившееся решение этого линейного уравнения в виде

где — постоянные величины;

— периодическая составляющая.

Подставляя выражение получим три уравнения

Из уравнения (X.87) определим

Затем из уравнения найдем

Наконец, из уравнения получим

где определяются соответственно из формул

Итак, в системе содержатся все три составляющие ошибки зависящие от величины внешних воздействий и от параметров системы. Наиболее нежелательной составляющей ошибки является составляющая возрастающая с течением времени. Для исключения этой ошибки необходимо в системе жесткую обратную связь заменить гибкой

Лекция 17. Расчет установившейся ошибки в системах управления.
Структурные признаки астатизма

Установившейся (статической) ошибкой называют
постоянное значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании переходного процесса: , рисунок 116.

Очевидно, установившаяся ошибка зависит от законов
изменения и численных характеристик входных сигналов системы. Поэтому при ее
определении принято рассматривать так называемые типовые входные сигналы,
законы изменения которых составляют степенной ряд относительно времени.
Например, для задающего воздействия:

 и так
далее.

При наличии нескольких воздействий на линейную систему
для определения xуст используется
принцип суперпозиции – реакция линейной системы на совокупность входных
сигналов совпадает с алгебраической суммой ее реакций на каждый из сигналов в
отдельности:

, где
каждое слагаемое, или составляющая сигнала ошибки, определяется
для i-го входного сигнала при условии, что остальные
тождественно равны нулю. Такой подход полностью соответствует определению
передаточной функции и позволяет выполнять расчет установившейся ошибки на
основе структурной схемы системы.

Рассмотрим порядок расчета установившейся ошибки на
следующем достаточно общем примере (рисунок 117).

В соответствии с принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде суммы трех составляющих .

Изображение по Лапласу ошибки от задающего воздействия
получают через передаточную функцию замкнутой системы по ошибке  при известном изображении задающего
воздействия G(s):

, где
F(s) – основная передаточная функция замкнутой системы.
Для структурной схемы на рисунке 117

, где  — передаточная функция
разомкнутой системы, или прямой цепи системы, для рассматриваемого примера.

Непосредственно для расчета
установившегося значения ошибки от задающего воздействия используют теорему о
конечном значении для преобразования Лапласа:

В результате:

.

Изображение по Лапласу ошибки от возмущающего
воздействия получают через передаточную функцию замкнутой системы по ошибке от
возмущения  при известном изображении возмущающего
воздействия F(s):

, где
Ff(s) –передаточная функция замкнутой системы по
возмущающему воздействию,

;

Wf(s)
– передаточная функция разомкнутой системы по возмущению (передаточная функция
участка прямой цепи системы от точки приложения возмущающего воздействия до
выхода системы).

Для структурной схемы на рисунке 8 необходимо
учитывать два возмущающих воздействия, приложенные в различные точки системы.

Для f1:                             
,

,

.

Для f2:                                
,

,

.

Расчет упрощается для
системы с единичной отрицательной обратной связью (рисунок 118):

,

, где k=k1k2k3 – коэффициент передачи
разомкнутой системы.

Найдем установившуюся ошибку
для некоторых типовых вариантов задающего воздействия.

При  получим:

.

При  получим:

.

При  получим:

.

Если установившаяся ошибка
тождественно равна нулю при каком-либо типовом варианте входного сигнала,
независимо от его численных характеристик, систему называют астатической по
рассматриваемому входному сигналу.

Количество типовых вариантов
входного сигнала – членов степенного ряда, при которых установившаяся ошибка
тождественно равна нулю, определяет порядок астатизма.

Рассматриваемая система
обладает свойством астатизма второго порядка по задающему воздействию.

Рассмотрим установившуюся
ошибку от возмущения f1:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f1.

При  получим:

.

При  получим:

.

При  получим
тот же результат.

Отметим, что по возмущению f1 рассматриваемая система
не является астатической. Кроме того, она не в состоянии отработать два последних
варианта входного сигнала.

Рассмотрим установившуюся
ошибку от возмущения f2:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f2.

При  получим:

.

При  получим:

.

При  получим:

.

По возмущению f2 рассматриваемая система имеет
астатизм первого порядка. Она не в состоянии отработать возмущающее
воздействие, изменяющееся во времени с постоянным ускорением.

Подведем некоторые итоги:

1. Наличие и глубина
свойства астатизма зависят от точки приложения входного сигнала.

2. Постоянные времени
звеньев системы не влияют на ее точность.

3. Увеличение значения
коэффициента передачи разомкнутой системы приводит к снижению величины
установившейся ошибки.

Для систем с единичной
отрицательной обратной связью существуют достаточно простые структурные
признаки астатизма.

Рассмотрим структуру,
показанную на рисунке 119.

В общем случае передаточная
функция разомкнутой системы может быть представлена в следующей форме:

, где l³0.

Тогда получим:

и для общего вида задающего воздействия , которому соответствует изображение ,

.

Результат нахождения этого
предела зависит от соотношения показателей степени:

— при l>v установившаяся
ошибка равна нулю независимо от остальных параметров, то есть имеет место
астатизм;

— при l=v получаем
константу;

— при l<v установившаяся
ошибка стремится к бесконечности, то есть система не в состоянии отработать
входной сигнал.

Учитывая, что минимальное
значение v нулевое,
получаем условие астатизма по задающему воздействию: l>0.

Таким образом, структурный
признак астатизма по задающему воздействию в системе с единичной отрицательной
обратной связью состоит в наличии нулевых корней в знаменателе передаточной
функции разомкнутой системы, или интегрирующих звеньев в прямой цепи системы.

Нетрудно также убедиться,
что положительное значение l совпадает
с порядком астатизма.

Для получения признака
астатизма по возмущающему воздействию представим передаточные функции на
рисунке 10 в форме:

,

, где l1+l2=l,
k1k2=k, m1+m2=m,
n1+n2=n,
причем  и .

Тогда получим:

и для общего вида возмущающего воздействия , которому соответствует изображение ,

.

Все вышеприведенные выводы
можно повторить для показателя степени l1.

Таким образом, структурный
признак астатизма по возмущающему воздействию в системе с единичной
отрицательной обратной связью состоит в наличии нулевых корней в знаменателе
передаточной функции участка системы до точки приложения воздействия, или
интегрирующих звеньев на том же участке.

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Статистическая ошибка средней арифметической имеет условное обозначение
  • Статистическая ошибка среднего стандартная ошибка среднего арифметического
  • Статистическая ошибка регулирования
  • Статистическая ошибка пример
  • Статистическая ошибка расчет

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии