Стандартная ошибка предсказания это

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Когда мы подгоняем регрессионную модель к набору данных, нас часто интересует, насколько хорошо регрессионная модель «подходит» к набору данных. Две метрики, обычно используемые для измерения согласия, включают R -квадрат (R2) и стандартную ошибку регрессии , часто обозначаемую как S.

В этом руководстве объясняется, как интерпретировать стандартную ошибку регрессии (S), а также почему она может предоставить более полезную информацию, чем R 2 .

Стандартная ошибка по сравнению с R-квадратом в регрессии

Предположим, у нас есть простой набор данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их баллы за экзамен:

Пример интерпретации стандартной ошибки регрессии

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии в Excel

R-квадрат — это доля дисперсии переменной отклика, которая может быть объяснена предикторной переменной. При этом 65,76% дисперсии экзаменационных баллов можно объяснить количеством часов, потраченных на учебу.

Стандартная ошибка регрессии — это среднее расстояние, на которое наблюдаемые значения отклоняются от линии регрессии. В этом случае наблюдаемые значения отклоняются от линии регрессии в среднем на 4,89 единицы.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Обратите внимание, что некоторые наблюдения попадают очень близко к линии регрессии, в то время как другие не так близки. Но в среднем наблюдаемые значения отклоняются от линии регрессии на 4,19 единицы .

Стандартная ошибка регрессии особенно полезна, поскольку ее можно использовать для оценки точности прогнозов. Примерно 95% наблюдений должны находиться в пределах +/- двух стандартных ошибок регрессии, что является быстрым приближением к 95% интервалу прогнозирования.

Если мы заинтересованы в прогнозировании с использованием модели регрессии, стандартная ошибка регрессии может быть более полезной метрикой, чем R-квадрат, потому что она дает нам представление о том, насколько точными будут наши прогнозы в единицах измерения.

Чтобы проиллюстрировать, почему стандартная ошибка регрессии может быть более полезной метрикой для оценки «соответствия» модели, рассмотрим другой пример набора данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их экзаменационная оценка:

Обратите внимание, что это точно такой же набор данных, как и раньше, за исключением того, что все значения s сокращены вдвое.Таким образом, студенты из этого набора данных учились ровно в два раза дольше, чем студенты из предыдущего набора данных, и получили ровно половину экзаменационного балла.

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии из простой линейной модели в Excel

Обратите внимание, что R-квадрат 65,76% точно такой же, как и в предыдущем примере.

Однако стандартная ошибка регрессии составляет 2,095 , что ровно вдвое меньше стандартной ошибки регрессии в предыдущем примере.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Диаграмма рассеяния для простой линейной регрессии

Обратите внимание на то, что наблюдения располагаются гораздо плотнее вокруг линии регрессии. В среднем наблюдаемые значения отклоняются от линии регрессии на 2,095 единицы .

Таким образом, несмотря на то, что обе модели регрессии имеют R-квадрат 65,76% , мы знаем, что вторая модель будет давать более точные прогнозы, поскольку она имеет более низкую стандартную ошибку регрессии.

Преимущества использования стандартной ошибки

Стандартную ошибку регрессии (S) часто бывает полезнее знать, чем R-квадрат модели, потому что она дает нам фактические единицы измерения. Если мы заинтересованы в использовании регрессионной модели для получения прогнозов, S может очень легко сказать нам, достаточно ли точна модель для прогнозирования.

Например, предположим, что мы хотим создать 95-процентный интервал прогнозирования, в котором мы можем прогнозировать результаты экзаменов с точностью до 6 баллов от фактической оценки.

Наша первая модель имеет R-квадрат 65,76%, но это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. К счастью, мы также знаем, что у первой модели показатель S равен 4,19. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*4,19 = +/- 8,38 единиц, что слишком велико для нашего интервала прогнозирования.

Наша вторая модель также имеет R-квадрат 65,76%, но опять же это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. Однако мы знаем, что вторая модель имеет S 2,095. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*2,095= +/- 4,19 единиц, что меньше 6 и, следовательно, будет достаточно точным для использования для создания интервалов прогнозирования.

Дальнейшее чтение

Введение в простую линейную регрессию
Что такое хорошее значение R-квадрата?

From Wikipedia, the free encyclopedia

For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

The standard error (SE)[1] of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution[2] or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM).[1]

The sampling distribution of a mean is generated by repeated sampling from the same population and recording of the sample means obtained. This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

Therefore, the relationship between the standard error of the mean and the standard deviation is such that, for a given sample size, the standard error of the mean equals the standard deviation divided by the square root of the sample size.[1] In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean.

In regression analysis, the term «standard error» refers either to the square root of the reduced chi-squared statistic or the standard error for a particular regression coefficient (as used in, say, confidence intervals).

Standard error of the sample mean[edit]

Exact value[edit]

Suppose a statistically independent sample of n observations {\displaystyle x_{1},x_{2},\ldots ,x_{n}} is taken from a statistical population with a standard deviation of \sigma . The mean value calculated from the sample, {\bar {x}}, will have an associated standard error on the mean, {\displaystyle {\sigma }_{\bar {x}}}, given by:[1]

{\displaystyle {\sigma }_{\bar {x}}={\frac {\sigma }{\sqrt {n}}}.}

Practically this tells us that when trying to estimate the value of a population mean, due to the factor 1/{\sqrt {n}}, reducing the error on the estimate by a factor of two requires acquiring four times as many observations in the sample; reducing it by a factor of ten requires a hundred times as many observations.

Estimate[edit]

The standard deviation \sigma of the population being sampled is seldom known. Therefore, the standard error of the mean is usually estimated by replacing \sigma with the sample standard deviation \sigma _{x} instead:

{\displaystyle {\sigma }_{\bar {x}}\ \approx {\frac {\sigma _{x}}{\sqrt {n}}}.}

As this is only an estimator for the true «standard error», it is common to see other notations here such as:

{\displaystyle {\widehat {\sigma }}_{\bar {x}}:={\frac {\sigma _{x}}{\sqrt {n}}}\qquad {\text{ or }}\qquad {s}_{\bar {x}}\ :={\frac {s}{\sqrt {n}}}.}

A common source of confusion occurs when failing to distinguish clearly between:

Accuracy of the estimator[edit]

When the sample size is small, using the standard deviation of the sample instead of the true standard deviation of the population will tend to systematically underestimate the population standard deviation, and therefore also the standard error. With n = 2, the underestimate is about 25%, but for n = 6, the underestimate is only 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect.[3] Sokal and Rohlf (1981) give an equation of the correction factor for small samples of n < 20.[4] See unbiased estimation of standard deviation for further discussion.

Derivation[edit]

The standard error on the mean may be derived from the variance of a sum of independent random variables,[5] given the definition of variance and some simple properties thereof. If {\displaystyle x_{1},x_{2},\ldots ,x_{n}} is a sample of n independent observations from a population with mean {\bar {x}} and standard deviation \sigma , then we can define the total

{\displaystyle T=(x_{1}+x_{2}+\cdots +x_{n})}

which due to the Bienaymé formula, will have variance

{\displaystyle \operatorname {Var} (T)={\big (}\operatorname {Var} (x_{1})+\operatorname {Var} (x_{2})+\cdots +\operatorname {Var} (x_{n}){\big )}=n\sigma ^{2}.}

where we’ve approximated the standard deviations, i.e., the uncertainties, of the measurements themselves with the best value for the standard deviation of the population. The mean of these measurements {\bar {x}} is simply given by

{\displaystyle {\bar {x}}=T/n.}

The variance of the mean is then

{\displaystyle \operatorname {Var} ({\bar {x}})=\operatorname {Var} \left({\frac {T}{n}}\right)={\frac {1}{n^{2}}}\operatorname {Var} (T)={\frac {1}{n^{2}}}n\sigma ^{2}={\frac {\sigma ^{2}}{n}}.}

The standard error is, by definition, the standard deviation of {\bar {x}} which is simply the square root of the variance:

{\displaystyle \sigma _{\bar {x}}={\sqrt {\frac {\sigma ^{2}}{n}}}={\frac {\sigma }{\sqrt {n}}}.}

For correlated random variables the sample variance needs to be computed according to the Markov chain central limit theorem.

Independent and identically distributed random variables with random sample size[edit]

There are cases when a sample is taken without knowing, in advance, how many observations will be acceptable according to some criterion. In such cases, the sample size N is a random variable whose variation adds to the variation of X such that,

{\displaystyle \operatorname {Var} (T)=\operatorname {E} (N)\operatorname {Var} (X)+\operatorname {Var} (N){\big (}\operatorname {E} (X){\big )}^{2}}

[6]
which follows from the law of total variance.

If N has a Poisson distribution, then {\displaystyle \operatorname {E} (N)=\operatorname {Var} (N)} with estimator {\displaystyle n=N}. Hence the estimator of {\displaystyle \operatorname {Var} (T)} becomes {\displaystyle nS_{X}^{2}+n{\bar {X}}^{2}}, leading the following formula for standard error:

{\displaystyle \operatorname {Standard~Error} ({\bar {X}})={\sqrt {\frac {S_{X}^{2}+{\bar {X}}^{2}}{n}}}}

(since the standard deviation is the square root of the variance).

Student approximation when σ value is unknown[edit]

In many practical applications, the true value of σ is unknown. As a result, we need to use a distribution that takes into account that spread of possible σ’s.
When the true underlying distribution is known to be Gaussian, although with unknown σ, then the resulting estimated distribution follows the Student t-distribution. The standard error is the standard deviation of the Student t-distribution. T-distributions are slightly different from Gaussian, and vary depending on the size of the sample. Small samples are somewhat more likely to underestimate the population standard deviation and have a mean that differs from the true population mean, and the Student t-distribution accounts for the probability of these events with somewhat heavier tails compared to a Gaussian. To estimate the standard error of a Student t-distribution it is sufficient to use the sample standard deviation «s» instead of σ, and we could use this value to calculate confidence intervals.

Note: The Student’s probability distribution is approximated well by the Gaussian distribution when the sample size is over 100. For such samples one can use the latter distribution, which is much simpler.

Assumptions and usage[edit]

An example of how {\displaystyle \operatorname {SE} } is used is to make confidence intervals of the unknown population mean. If the sampling distribution is normally distributed, the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean. The following expressions can be used to calculate the upper and lower 95% confidence limits, where {\bar {x}} is equal to the sample mean, {\displaystyle \operatorname {SE} } is equal to the standard error for the sample mean, and 1.96 is the approximate value of the 97.5 percentile point of the normal distribution:

In particular, the standard error of a sample statistic (such as sample mean) is the actual or estimated standard deviation of the sample mean in the process by which it was generated. In other words, it is the actual or estimated standard deviation of the sampling distribution of the sample statistic. The notation for standard error can be any one of SE, SEM (for standard error of measurement or mean), or SE.

Standard errors provide simple measures of uncertainty in a value and are often used because:

  • in many cases, if the standard error of several individual quantities is known then the standard error of some function of the quantities can be easily calculated;
  • when the probability distribution of the value is known, it can be used to calculate an exact confidence interval;
  • when the probability distribution is unknown, Chebyshev’s or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and
  • as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

Standard error of mean versus standard deviation[edit]

In scientific and technical literature, experimental data are often summarized either using the mean and standard deviation of the sample data or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the standard error of the mean is descriptive of the random sampling process. The standard deviation of the sample data is a description of the variation in measurements, while the standard error of the mean is a probabilistic statement about how the sample size will provide a better bound on estimates of the population mean, in light of the central limit theorem.[7]

Put simply, the standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean, whereas the standard deviation of the sample is the degree to which individuals within the sample differ from the sample mean.[8] If the population standard deviation is finite, the standard error of the mean of the sample will tend to zero with increasing sample size, because the estimate of the population mean will improve, while the standard deviation of the sample will tend to approximate the population standard deviation as the sample size increases.

Extensions[edit]

Finite population correction (FPC)[edit]

The formula given above for the standard error assumes that the population is infinite. Nonetheless, it is often used for finite populations when people are interested in measuring the process that created the existing finite population (this is called an analytic study). Though the above formula is not exactly correct when the population is finite, the difference between the finite- and infinite-population versions will be small when sampling fraction is small (e.g. a small proportion of a finite population is studied). In this case people often do not correct for the finite population, essentially treating it as an «approximately infinite» population.

If one is interested in measuring an existing finite population that will not change over time, then it is necessary to adjust for the population size (called an enumerative study). When the sampling fraction (often termed f) is large (approximately at 5% or more) in an enumerative study, the estimate of the standard error must be corrected by multiplying by a »finite population correction» (a.k.a.: FPC):[9]
[10]

{\displaystyle \operatorname {FPC} ={\sqrt {\frac {N-n}{N-1}}}}

which, for large N:

{\displaystyle \operatorname {FPC} \approx {\sqrt {1-{\frac {n}{N}}}}={\sqrt {1-f}}}

to account for the added precision gained by sampling close to a larger percentage of the population. The effect of the FPC is that the error becomes zero when the sample size n is equal to the population size N.

This happens in survey methodology when sampling without replacement. If sampling with replacement, then FPC does not come into play.

Correction for correlation in the sample[edit]

Expected error in the mean of A for a sample of n data points with sample bias coefficient ρ. The unbiased standard error plots as the ρ = 0 diagonal line with log-log slope −12.

If values of the measured quantity A are not statistically independent but have been obtained from known locations in parameter space x, an unbiased estimate of the true standard error of the mean (actually a correction on the standard deviation part) may be obtained by multiplying the calculated standard error of the sample by the factor f:

{\displaystyle f={\sqrt {\frac {1+\rho }{1-\rho }}},}

where the sample bias coefficient ρ is the widely used Prais–Winsten estimate of the autocorrelation-coefficient (a quantity between −1 and +1) for all sample point pairs. This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike.[11] See also unbiased estimation of standard deviation for more discussion.

See also[edit]

  • Illustration of the central limit theorem
  • Margin of error
  • Probable error
  • Standard error of the weighted mean
  • Sample mean and sample covariance
  • Standard error of the median
  • Variance
  • Variance of the mean and predicted responses

References[edit]

  1. ^ a b c d Altman, Douglas G; Bland, J Martin (2005-10-15). «Standard deviations and standard errors». BMJ: British Medical Journal. 331 (7521): 903. doi:10.1136/bmj.331.7521.903. ISSN 0959-8138. PMC 1255808. PMID 16223828.
  2. ^ Everitt, B. S. (2003). The Cambridge Dictionary of Statistics. Cambridge University Press. ISBN 978-0-521-81099-9.
  3. ^ Gurland, J; Tripathi RC (1971). «A simple approximation for unbiased estimation of the standard deviation». American Statistician. 25 (4): 30–32. doi:10.2307/2682923. JSTOR 2682923.
  4. ^ Sokal; Rohlf (1981). Biometry: Principles and Practice of Statistics in Biological Research (2nd ed.). p. 53. ISBN 978-0-7167-1254-1.
  5. ^ Hutchinson, T. P. (1993). Essentials of Statistical Methods, in 41 pages. Adelaide: Rumsby. ISBN 978-0-646-12621-0.
  6. ^ Cornell, J R; Benjamin, C A (1970). Probability, Statistics, and Decisions for Civil Engineers. NY: McGraw-Hill. pp. 178–179. ISBN 0486796094.
  7. ^ Barde, M. (2012). «What to use to express the variability of data: Standard deviation or standard error of mean?». Perspect. Clin. Res. 3 (3): 113–116. doi:10.4103/2229-3485.100662. PMC 3487226. PMID 23125963.
  8. ^ Wassertheil-Smoller, Sylvia (1995). Biostatistics and Epidemiology : A Primer for Health Professionals (Second ed.). New York: Springer. pp. 40–43. ISBN 0-387-94388-9.
  9. ^ Isserlis, L. (1918). «On the value of a mean as calculated from a sample». Journal of the Royal Statistical Society. 81 (1): 75–81. doi:10.2307/2340569. JSTOR 2340569. (Equation 1)
  10. ^ Bondy, Warren; Zlot, William (1976). «The Standard Error of the Mean and the Difference Between Means for Finite Populations». The American Statistician. 30 (2): 96–97. doi:10.1080/00031305.1976.10479149. JSTOR 2683803. (Equation 2)
  11. ^ Bence, James R. (1995). «Analysis of Short Time Series: Correcting for Autocorrelation». Ecology. 76 (2): 628–639. doi:10.2307/1941218. JSTOR 1941218.

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Когда мы подгоняем регрессионную модель к набору данных, нас часто интересует, насколько хорошо регрессионная модель «подходит» к набору данных. Две метрики, обычно используемые для измерения согласия, включают R -квадрат (R2) и стандартную ошибку регрессии , часто обозначаемую как S.

В этом руководстве объясняется, как интерпретировать стандартную ошибку регрессии (S), а также почему она может предоставить более полезную информацию, чем R 2 .

Стандартная ошибка по сравнению с R-квадратом в регрессии

Предположим, у нас есть простой набор данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их баллы за экзамен:

Пример интерпретации стандартной ошибки регрессии

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии в Excel

R-квадрат — это доля дисперсии переменной отклика, которая может быть объяснена предикторной переменной. При этом 65,76% дисперсии экзаменационных баллов можно объяснить количеством часов, потраченных на учебу.

Стандартная ошибка регрессии — это среднее расстояние, на которое наблюдаемые значения отклоняются от линии регрессии. В этом случае наблюдаемые значения отклоняются от линии регрессии в среднем на 4,89 единицы.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Обратите внимание, что некоторые наблюдения попадают очень близко к линии регрессии, в то время как другие не так близки. Но в среднем наблюдаемые значения отклоняются от линии регрессии на 4,19 единицы .

Стандартная ошибка регрессии особенно полезна, поскольку ее можно использовать для оценки точности прогнозов. Примерно 95% наблюдений должны находиться в пределах +/- двух стандартных ошибок регрессии, что является быстрым приближением к 95% интервалу прогнозирования.

Если мы заинтересованы в прогнозировании с использованием модели регрессии, стандартная ошибка регрессии может быть более полезной метрикой, чем R-квадрат, потому что она дает нам представление о том, насколько точными будут наши прогнозы в единицах измерения.

Чтобы проиллюстрировать, почему стандартная ошибка регрессии может быть более полезной метрикой для оценки «соответствия» модели, рассмотрим другой пример набора данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их экзаменационная оценка:

Обратите внимание, что это точно такой же набор данных, как и раньше, за исключением того, что все значения s сокращены вдвое.Таким образом, студенты из этого набора данных учились ровно в два раза дольше, чем студенты из предыдущего набора данных, и получили ровно половину экзаменационного балла.

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии из простой линейной модели в Excel

Обратите внимание, что R-квадрат 65,76% точно такой же, как и в предыдущем примере.

Однако стандартная ошибка регрессии составляет 2,095 , что ровно вдвое меньше стандартной ошибки регрессии в предыдущем примере.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Диаграмма рассеяния для простой линейной регрессии

Обратите внимание на то, что наблюдения располагаются гораздо плотнее вокруг линии регрессии. В среднем наблюдаемые значения отклоняются от линии регрессии на 2,095 единицы .

Таким образом, несмотря на то, что обе модели регрессии имеют R-квадрат 65,76% , мы знаем, что вторая модель будет давать более точные прогнозы, поскольку она имеет более низкую стандартную ошибку регрессии.

Преимущества использования стандартной ошибки

Стандартную ошибку регрессии (S) часто бывает полезнее знать, чем R-квадрат модели, потому что она дает нам фактические единицы измерения. Если мы заинтересованы в использовании регрессионной модели для получения прогнозов, S может очень легко сказать нам, достаточно ли точна модель для прогнозирования.

Например, предположим, что мы хотим создать 95-процентный интервал прогнозирования, в котором мы можем прогнозировать результаты экзаменов с точностью до 6 баллов от фактической оценки.

Наша первая модель имеет R-квадрат 65,76%, но это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. К счастью, мы также знаем, что у первой модели показатель S равен 4,19. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*4,19 = +/- 8,38 единиц, что слишком велико для нашего интервала прогнозирования.

Наша вторая модель также имеет R-квадрат 65,76%, но опять же это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. Однако мы знаем, что вторая модель имеет S 2,095. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*2,095= +/- 4,19 единиц, что меньше 6 и, следовательно, будет достаточно точным для использования для создания интервалов прогнозирования.

Дальнейшее чтение

Введение в простую линейную регрессию
Что такое хорошее значение R-квадрата?

Очень наивный способ оценки модели — рассматривать значение R-Squared. Предположим, что если я получу 95% R-Squared, этого будет достаточно? В этом блоге давайте попробуем понять способы оценки вашей регрессионной модели.

Метрики оценки;

  1. Среднее / Медиана прогноза
  2. Стандартное отклонение прогноза
  3. Диапазон предсказания
  4. Коэффициент детерминации (R2)
  5. Относительное стандартное отклонение / коэффициент вариации (RSD)
  6. Относительная квадратная ошибка (RSE)
  7. Средняя абсолютная ошибка (MAE)
  8. Относительная абсолютная ошибка (RAE)
  9. Среднеквадратичная ошибка (MSE)
  10. Среднеквадратичная ошибка прогноза (RMSE / RMSEP)
  11. Нормализованная среднеквадратическая ошибка (Норма RMSEP)
  12. Относительная среднеквадратическая ошибка (RRMSEP)

Давайте рассмотрим пример прогнозирования концентрации активных фармацевтических ингредиентов (API) в таблетке. Используя единицы поглощения из NIR-спектроскопии, мы прогнозируем уровень API в таблетке. Концентрация API в таблетке может составлять 0,0, 0,1, 0,3, 0,5, 1,0, 1,5, 2,0, 2,5, 3,0. Мы применяем PLS (частичный наименьший квадрат) и SVR (регрессор вектора поддержки) для прогнозирования уровня API.

ПРИМЕЧАНИЕ: метрики можно использовать для сравнения нескольких моделей или одной модели с разными моделями.

Среднее / Медиана прогноза

Мы можем понять смещение прогнозов между двумя моделями, используя среднее арифметическое предсказанных значений.

Например, среднее значение прогнозируемых значений 0,5 API рассчитывается путем деления суммы прогнозируемых значений для 0,5 API на общее количество выборок, имеющих 0,5 API.

np.mean(predictedArray)

На рисунке 1 мы можем понять, как PLS и SVR работали относительно среднего. SVR предсказал API 0.0 намного лучше, чем PLS, тогда как PLS предсказал API 3.0 лучше, чем SVR. Мы можем выбирать модели исходя из интересов уровня API.

Недостаток: на среднее значение влияют выбросы. Используйте «Медиана», если у вас есть выбросы в прогнозируемых значениях

Стандартное отклонение прогноза

Стандартное отклонение (SD) — это мера степени вариации или разброса набора значений. Низкое стандартное отклонение указывает на то, что значения имеют тенденцию быть близкими к среднему (также называемому ожидаемым значением) набора. Напротив, высокое стандартное отклонение указывает на то, что значения разбросаны в более широком диапазоне. Стандартное отклонение предсказанных значений помогает понять разброс значений в различных моделях.

np.std(predictedArray)

На рисунке 2 разброс предсказанных значений меньше в SVR по сравнению с PLS. Таким образом, SVR работает лучше, если мы учитываем показатели SD.

Диапазон предсказания

Диапазон прогноза — это максимальное и минимальное значение в прогнозируемых значениях. Равный диапазон помогает нам понять разницу между моделями.

Коэффициент детерминации (R2)

R-квадрат (R2) — это статистическая мера, которая представляет собой долю дисперсии для зависимой переменной, которая объясняется независимой переменной или переменными в регрессионной модели. В то время как корреляция объясняет силу взаимосвязи между независимой и зависимой переменной, R-квадрат объясняет, в какой степени дисперсия одной переменной объясняет дисперсию второй переменной. Таким образом, если R2 модели составляет 0,50, то примерно половина наблюдаемой вариации может быть объяснена входными данными модели.

from sklearn.metrics import r2_score
r2_score(Actual, Predicted)

Недостаток: R2 не учитывает переоснащение. Подробнее.

Относительное стандартное отклонение (RSD) / коэффициент вариации (CV)

Есть пословица, что яблоки не следует сравнивать с апельсинами или, другими словами, не сравнивать два предмета или группу предметов, которые практически не сравниваются. Но недостаток сопоставимости можно преодолеть, если эти два предмета или группы каким-то образом стандартизировать или привести к одной и той же шкале. Например, при сравнении дисперсий двух групп, которые в целом сильно различаются, таких как дисперсия в размере синего тунца и синего кита, коэффициент вариации (CV) является методом выбора: CV просто представляет собой дисперсию каждая группа стандартизирована по среднему значению группы

Коэффициент вариации (CV), также известный как относительное стандартное отклонение (RSD), является стандартизированной мерой дисперсии распределения вероятностей или частотного распределения. Это помогает нам понять, как распределяются данные в двух разных тестах.

Стандартное отклонение — наиболее распространенная мера изменчивости для одного набора данных. Но зачем нам еще один показатель, например коэффициент вариации? Что ж, сравнивать стандартные отклонения двух разных наборов данных бессмысленно, а сравнивать коэффициенты вариации — нет.

from scipy.stats import variation
variation(data)

Например, если мы рассмотрим два разных данных;

Данные 1: Среднее1 = 120000: SD1 = 2000

Данные 2: Среднее2 = 900000: SD2 = 10000

Давайте рассчитаем CV для обоих наборов данных

CV1 = SD1 / Среднее1 = 1,6%

CV2 = SD2 / Среднее2 = 1,1%

Мы можем заключить, что данные 1 более распространены, чем данные 2.

Относительная квадратная ошибка (RSE)

Относительная квадратная ошибка (RSE) относится к тому, что было бы, если бы использовался простой предиктор. В частности, этот простой предсказатель представляет собой просто среднее значение фактических значений. Таким образом, относительная ошибка в квадрате берет общую ошибку в квадрате и нормализует ее путем деления на общую ошибку в квадрате простого предсказателя. Его можно сравнивать между моделями, ошибки которых измеряются в разных единицах.

Математически относительная квадратная ошибка Ei отдельной модели i вычисляется по формуле:

где P (ij) — это значение, предсказанное отдельной моделью i для записи j (из n записей); Tj — это целевое значение для записи j, а Tbar задается формулой:

Для идеального соответствия числитель равен 0 и Ei = 0. Таким образом, индекс Ei находится в диапазоне от 0 до бесконечности, где 0 соответствует идеалу.

Средняя абсолютная ошибка (MAE)

В статистике средняя абсолютная ошибка (MAE) — это мера ошибок между парными наблюдениями, выражающими одно и то же явление. Примеры Y по сравнению с X включают сравнения прогнозируемого и наблюдаемого, последующего времени и начального времени, а также один метод измерения по сравнению с альтернативным методом измерения. Он имеет ту же единицу, что и исходные данные, и его можно сравнивать только между моделями, ошибки которых измеряются в тех же единицах. Обычно он по величине похож на RMSE, но немного меньше. MAE рассчитывается как:

from sklearn.metrics import mean_absolute_error
mean_absolute_error(actual, predicted)

Таким образом, это среднее арифметическое абсолютных ошибок, где yi — прогноз, а xi — фактическое значение. Обратите внимание, что альтернативные составы могут включать относительные частоты в качестве весовых коэффициентов. Средняя абсолютная ошибка использует ту же шкалу, что и измеряемые данные. Это известно как мера точности, зависящая от масштаба, и поэтому не может использоваться для сравнения серий с использованием разных шкал.

Примечание. Как видите, все статистические данные сравнивают истинные значения со своими оценками, но делают это немного по-другому. Все они говорят вам, насколько далеко ваши оценочные значения от истинного значения. Иногда используются квадратные корни, а иногда и абсолютные значения — это связано с тем, что при использовании квадратных корней экстремальные значения имеют большее влияние на результат (см. Зачем возводить разницу в квадрат вместо того, чтобы брать абсолютное значение в стандартном отклонении? Или в Mathoverflow. »).

В MAE и RMSE вы просто смотрите на «среднюю разницу» между этими двумя значениями. Таким образом, вы интерпретируете их в сравнении со шкалой вашей переменной (т.е. MSE в 1 балл представляет собой разницу в 1 балл между прогнозируемым и фактическим).

В RAE и Relative RSE эти различия делятся на изменение фактических значений, поэтому они имеют шкалу от 0 до 1, и если вы умножите это значение на 100, вы получите сходство по шкале от 0 до 100 (т. е. в процентах). .

Значения ∑ (MeanofActual — фактический) ² или ∑ | MeanofActual — фактический | сказать вам, насколько фактическое значение отличается от своего среднего значения — чтобы вы могли понять, насколько фактическое значение отличается от самого себя (сравните с дисперсией). Из-за этого меры названы относительными — они дают вам результаты, относящиеся к фактическому масштабу.

Относительная абсолютная ошибка (RAE)

Относительная абсолютная ошибка (RAE) — это способ измерения производительности прогнозной модели. RAE не следует путать с относительной погрешностью, которая является общей мерой точности или точности для таких инструментов, как часы, линейки или весы. Он выражается в виде отношения, сравнивающего среднюю ошибку (невязку) с ошибками, произведенными тривиальной или наивной моделью. Хорошая модель прогнозирования даст коэффициент, близкий к нулю; Плохая модель (хуже, чем наивная модель) даст отношение больше единицы.

Он очень похож на относительную квадратичную ошибку в том смысле, что он также относится к простому предиктору, который представляет собой просто среднее значение фактических значений. Однако в этом случае ошибка — это просто полная абсолютная ошибка, а не общая ошибка в квадрате. Таким образом, относительная абсолютная ошибка берет полную абсолютную ошибку и нормализует ее путем деления на полную абсолютную ошибку простого предсказателя.

Математически относительная абсолютная ошибка Ei отдельной модели i оценивается по уравнению:

где P (ij) — это значение, предсказанное отдельной моделью i для записи j (из n записей); Tj — это целевое значение для записи j, а Tbar задается формулой:

Для идеального соответствия числитель равен 0 и Ei = 0. Таким образом, индекс Ei находится в диапазоне от 0 до бесконечности, где 0 соответствует идеалу.

Среднеквадратичная ошибка (MSE)

Среднеквадратичная ошибка (MSE) или среднеквадратическое отклонение (MSD) оценщика (процедуры оценки ненаблюдаемой величины) измеряет среднее квадратов ошибок, то есть среднеквадратичную разницу между оцененными значениями и фактическими значениями. ценить. MSE — это функция риска, соответствующая ожидаемому значению квадрата потери ошибок. Тот факт, что MSE почти всегда строго положительна (а не равна нулю), объясняется случайностью или тем, что оценщик не учитывает информацию, которая могла бы дать более точную оценку.

MSE оценивает качество предсказателя (т. Е. Функция, отображающая произвольные входные данные в выборку значений некоторой случайной переменной) или оценщика (т. Е. Математическая функция, отображающая выборку данных в оценку параметра совокупности из которого берутся данные). Определение MSE различается в зависимости от того, описывается ли предсказатель или оценщик.

MSE — это мера качества оценки — она ​​всегда неотрицательна, а значения, близкие к нулю, лучше.

from sklearn.metrics import mean_squared_error
mean_squared_error(actual, predicted)

Давайте проанализируем, что на самом деле означает это уравнение.

  • В математике символ, который выглядит как странный E, называется суммированием (греческая сигма). Это сумма последовательности чисел от i = 1 до n. Представим это как массив точек, в котором мы перебираем все точки, от первой (i = 1) до последней (i = n).
  • Для каждой точки мы берем координату y точки и координату y’. Мы вычитаем значение координаты y из значения координаты y и вычисляем квадрат результата.
  • Третья часть — взять сумму всех значений (y-y ’) ² и разделить ее на n, что даст среднее значение.

Наша цель — минимизировать это среднее, чтобы получить лучшую линию, проходящую через все точки. «Для дополнительной информации».

Среднеквадратичная ошибка прогноза (RMSE / RMSEP)

В статистическом моделировании и, в частности, регрессионном анализе, обычным способом измерения качества соответствия модели является RMSE (также называемое среднеквадратичным отклонением), определяемое выражением

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(actual, predicted)
rmse = sqrt(mse)

где yi — i-е наблюдение y, а ŷ — прогнозируемое значение y для данной модели. Если предсказанные ответы очень близки к истинным ответам, RMSE будет небольшим. Если предсказанные и истинные ответы существенно различаются — по крайней мере, для некоторых наблюдений — RMSE будет большим. Нулевое значение указывает на полное соответствие данным. Поскольку RMSE измеряется в той же шкале, с теми же единицами измерения, что и y, можно ожидать, что 68% значений y будут в пределах 1 RMSE — при условии, что данные распределены нормально.

ПРИМЕЧАНИЕ: RMSE касается отклонений от истинного значения, тогда как S касается отклонений от среднего.

Таким образом, вычисление MSE помогает сравнивать разные модели, основанные на одних и тех же наблюдениях y. Но что, если

  1. кто-то хочет сравнить соответствие модели для разных переменных отклика?
  2. переменная ответа y изменяется в некоторых моделях, например стандартизированный или преобразованный в sqrt или логарифм?
  3. И влияет ли разделение данных на обучающий и тестовый набор данных (после модификации) и вычисление RMSE на основе тестовых данных на точки 1. и 2.?

Первые два пункта являются типичными проблемами при сравнении эффективности экологических индикаторов, а последний, так называемый подход с использованием набора проверки, довольно распространен в статистике и машинном обучении. Одним из способов преодоления этих препятствий является вычисление нормализованного RMSE.

Нормализованная среднеквадратическая ошибка (Норма RMSEP)

Нормализация RMSE облегчает сравнение наборов данных или моделей с разными масштабами. Однако в литературе вы найдете различные методы нормализации RMSE:

Вы можете нормализовать

Если переменные отклика имеют несколько экстремальных значений, выбор межквартильного диапазона является хорошим вариантом, поскольку он менее чувствителен к выбросам.

RMSEP / стандартное отклонение называется относительной среднеквадратичной ошибкой (RRMSEP).

1 / RRMSEP также является показателем. Значение больше 2 считается хорошим.

Существуют также такие термины, как стандартная ошибка прогноза (SEP) и отношение стандартной ошибки прогноза к стандартному отклонению (RPD), которые в основном используются в хемометрике.

Я надеюсь, что этот блог помог вам понять различные метрики для оценки вашей регрессионной модели. Я использовал несколько источников, чтобы понять и написать эту статью. Спасибо за уделенное время.

Использованная литература:

Https://www.gepsoft.com/
https://www.investopedia.com/
https://en.wikipedia.org/wiki
https://scikit-learn.org/
https://www.saedsayad.com/
https://www.marinedatascience.co/blog/2019/01/07/ normalizing-the-rmse /


Загрузить PDF


Загрузить PDF

Стандартная ошибка оценки служит для того, чтобы выяснить, как линия регрессии соответствует набору данных. Если у вас есть набор данных, полученных в результате измерения, эксперимента, опроса или из другого источника, создайте линию регрессии, чтобы оценить дополнительные данные. Стандартная ошибка оценки характеризует, насколько верна линия регрессии.

  1. Изображение с названием Calculate the Standard Error of Estimate Step 1

    1

    Создайте таблицу с данными. Таблица должна состоять из пяти столбцов, и призвана облегчить вашу работу с данными. Чтобы вычислить стандартную ошибку оценки, понадобятся пять величин. Поэтому разделите таблицу на пять столбцов. Обозначьте эти столбцы так:[1]

  2. Изображение с названием Calculate the Standard Error of Estimate Step 2

    2

    Введите данные в таблицу. Когда вы проведете эксперимент или опрос, вы получите пары данных — независимую переменную обозначим как x, а зависимую или конечную переменную как y. Введите эти значения в первые два столбца таблицы.

    • Не перепутайте данные. Помните, что определенному значению независимой переменной должно соответствовать конкретное значение зависимой переменной.
    • Например, рассмотрим следующий набор пар данных:
      • (1,2)
      • (2,4)
      • (3,5)
      • (4,4)
      • (5,5)
  3. Изображение с названием Calculate the Standard Error of Estimate Step 3

    3

    Вычислите линию регрессии. Сделайте это на основе представленных данных. Эта линия также называется линией наилучшего соответствия или линией наименьших квадратов. Расчет можно сделать вручную, но это довольно утомительно. Поэтому рекомендуем воспользоваться графическим калькулятором или онлайн-сервисом, которые быстро вычислят линию регрессии по вашим данным.[2]

    • В этой статье предполагается, что уравнение линии регрессии дано (известно).
    • В нашем примере линия регрессии описывается уравнением y^{{\prime }}=0,6x+2,2.
  4. Изображение с названием Calculate the Standard Error of Estimate Step 4

    4

    Вычислите прогнозируемые значения по линии регрессии. С помощью уравнения линии регрессии можно вычислить прогнозируемые значения «y» для значений «x», которые есть и которых нет в наборе данных.

    Реклама

  1. Изображение с названием Calculate the Standard Error of Estimate Step 5

    1

    Вычислите ошибку каждого прогнозируемого значения. В четвертом столбце таблицы запишите ошибку каждого прогнозируемого значения. В частности, вычтите прогнозируемое значение (y^{{\prime }}) из фактического (наблюдаемого) значения (y).[3]

    • В нашем примере вычисления будут выглядеть так:
  2. Изображение с названием Calculate the Standard Error of Estimate Step 6

    2

    Вычислите квадраты ошибок. Возведите в квадрат каждое значение четвертого столбца, а результаты запишите в последнем (пятом) столбце таблицы.

    • В нашем примере вычисления будут выглядеть так:
  3. Изображение с названием Calculate the Standard Error of Estimate Step 7

    3

    Найдите сумму квадратов ошибок. Она пригодится для вычисления стандартного отклонения, дисперсии и других величин. Чтобы найти сумму квадратов ошибок, сложите все значения пятого столбца. [4]

    • В нашем примере вычисления будут выглядеть так:
      • 0,64+0,36+1,0+0,36+0,04=2,4
  4. Изображение с названием Calculate the Standard Error of Estimate Step 8

    4

    Завершите расчеты. Стандартная ошибка оценки — это квадратный корень из среднего значения суммы квадратов ошибок. Обычно ошибка оценки обозначается греческой буквой \sigma . Поэтому сначала разделите сумму квадратов ошибок на число пар данных. А потом из полученного значения извлеките квадратный корень.[5]

    • Если рассматриваемые данные представляют всю совокупность, среднее значение находится так: сумму нужно разделить на N (количество пар данных). Если же рассматриваемые данные представляют некоторую выборку, вместо N подставьте N-2.
    • В нашем примере, скорее всего, имеет место выборка, потому что мы рассматриваем всего 5 пар данных. Поэтому стандартную ошибку оценки вычислите следующим образом:
  5. Изображение с названием Calculate the Standard Error of Estimate Step 9

    5

    Интерпретируйте полученный результат. Стандартная ошибка оценки — это статистический показатель, которые оценивает, насколько близко измеренные данные лежат к линии регрессии. Ошибка оценка «0» означает, что каждая точка лежит непосредственно на линии. Чем выше ошибка оценки, тем дальше от линии регрессии лежат точки.[6]

    • В нашем примере выборка достаточно маленькая, поэтому стандартная оценка ошибки 0,894 является довольно низкой и характеризует близко расположенные данные.

    Реклама

Об этой статье

Эту страницу просматривали 5003 раза.

Была ли эта статья полезной?

Понравилась статья? Поделить с друзьями:
  • Сталкер золотой шар ошибка при загрузке сейва
  • Стандартная ошибка как рассчитать
  • Стандартная ошибка параметров модели
  • Сталкер чистое небо ошибка различные версии
  • Стандартная ошибка среднего доверительный интервал