Средняя ошибка аппроксимации пределы

Средняя ошибка аппроксимации

Фактические
значения результативного признака
отличаются от теоретических, рассчитанных
по уравнению регрессии. Чем меньше эти
отличия, тем ближе теоретические значения
к эмпирическим данным, тем лучше качество
модели. Величина отклонений фактических
и расчетных значений результативного
признака каждому наблюдению представляет
собой ошибку аппроксимации. В отдельных
случаях ошибка аппроксимации может
оказаться равной нулю. Отклонения (y

)
несравнимы между собой, исключая
величину, равную нулю. Так, если для
одного наблюдения y

= 5, а для другого – 10, то это не означает,
что во втором случае модель дает вдвое
худший результат. Для сравнения
используются величины отклонений,
выраженные в процентах к фактическим
значениям. Например, если для первого
наблюдения y
= 20, а для второго y
= 50, ошибка аппроксимации составит 25 %
для первого наблюдения и 20 % – для
второго.

Поскольку
(y

)
может быть величиной как положительной,
так и отрицательной, ошибки аппроксимации
для каждого наблюдения принято определять
в процентах по модулю.

Отклонения
(y

)
можно рассматривать как абсолютную
ошибку аппроксимации, а

– как
относительную ошибку аппроксимации.
Для того, чтобы иметь общее суждение о
качестве модели из относительных
отклонений по каждому наблюдению,
находят среднюю ошибку аппроксимации
как среднюю арифметическую простую


. (2.38)

По
нашим данным представим расчет средней
ошибки аппроксимации для уравнения Y
= 6,136 
Х0,474
в следующей таблице.

Таблица.
Расчет средней ошибки аппроксимации

y

yx

y

6

6,135947

-0,135946847

0,022658

9

8,524199

0,475801308

0,052867

10

10,33165

-0,331653106

0,033165

12

11,84201

0,157986835

0,013166

13

13,164

-0,163999272

0,012615

Итого

0,134471

A
= (0,1345 / 5) 
100 = 2,69 %, что говорит о хорошем качестве
уравнения регрессии, ибо ошибка
аппроксимации в пределах 5-7 % свидетельствует
о хорошем подборе модели к исходным
данным.

Возможно
и другое определение средней ошибки
аппроксимации:


(2.39)

Для
нашего примера эта величина составит:


.

Для
расчета средней ошибки аппроксимации
в стандартных программах чаще используется
формула (2.39).

Аналогично
определяется средняя ошибка аппроксимации
и для уравнения параболы.

№11

Факторы,
включаемые во множественную регрессию,
должны отвечать следующим требованиям:

1)
быть количественно измеримы. Если
необходимо включить в модель качественный
фактор, не имеющий количественного
измерения, то нужно придать ему
количественную определенность (например,
в модели урожайности качество почвы
задается в виде баллов; в модели стоимости
объектов недвижимости учитывается
место нахождения недвижимости: районы
могут быть проранжированы);

2)
не должны быть коррелированны между
собой и тем более находиться в точной
функциональной связи.

Включение
в модель факторов с высокой интеркорреляцией,
когда ryx1
< rx1x2,
для зависимости y
= a
+ b1

x1
+ b2

x2
+ ,
может привести к нежелательным
последствиям – система нормальных
уравнений может оказаться плохо
обусловленной и повлечь за собой
неустойчивость и ненадежность оценок
коэффициентов регрессии.

Если
между факторами существует высокая
корреляция, то нельзя определить их
изолированное влияние на результативный
показатель, и параметры уравнения
регрессии оказываются неинтерпретируемыми.
Так, в уравнении y
= a
+ b1

x1
+ b2

x2
+ ,
предполагается, что факторы x1
и x2
независимы друг от друга, т.е. rx1x2
= 0. Тогда можно говорить, что параметр
b1
измеряет силу влияния фактора x1
на результат y
при неизменном значении фактора x2.
Если же rx1x2
= 1, то с изменением фактора x1
фактор x2
не может оставаться неизменным. Отсюда
b1
и b2
нельзя интерпретировать как показатели
раздельного влияния x1
и x2
на y.

Пример
3.2
. При
изучении зависимости y
= f(x,
z,
v)
матрица парных коэффициентов корреляции
оказалась следующей:

y

x

z

v

y

1

x

0,8

1

z

0,7

0,8

1

v

0,6

0,5

0,2

1

Очевидно,
что факторы x
и z
дублируют друг друга. В анализ целесообразно
включить фактор z,
а не x,
так как корреляция z,
с результатом y
слабее, чем корреляция фактора x
с y
(ryz
< ryx),
но зато слабее межфакторная корреляция
rzv
< rxv.
Поэтому в данном случае в уравнение
множественной регрессии включаются
факторы z,
и v.

По
величине парных коэффициентов корреляции
обнаруживается лишь явная коллинеарность
факторов. Наибольшие трудности в
использовании аппарата множественной
регрессии возникают при наличии
мультиколлинеарности
факторов, когда более чем два фактора
связаны между собой линейной зависимостью,
т.е. имеет место совокупное воздействие
факторов друг на друга. Наличие
мультиколлинеарности факторов может
означать, что некоторые факторы всегда
будут действовать в унисон. В результате
вариация в исходных данных перестает
быть полностью независимой и нельзя
оценить воздействие каждого фактора в
отдельности. Чем сильнее мультиколлинеарность
факторов, тем менее надежна оценка
распределения суммы объясненной вариации
по отдельным факторам с помощью метода
наименьших квадратов.

Если
рассматривается регрессия y
= a
+ b

x
+ c

z
+ d

v
+ ,
то для расчета параметров с применением
МНК предполагается равенство

S2y
= S2факт
+ S2,

где
S2y
– общая сумма квадратов отклонений

;
S2факт
– факторная (объясненная) сумма квадратов
отклонений

;
S2
– остаточная сумма квадратов отклонений

.

В
свою очередь, при независимости факторов
друг от друга выполнимо равенство

S2факт
= S2x
+ S2z
+ S2v,

где
S2x,
S2z,
S2v
– суммы квадратов отклонений, обусловленные
влиянием соответствующих факторов.

Если
же факторы интеркоррелированы, то данное
равенство нарушается.

Включение
в модель мультиколлинеарных факторов
нежелательно по следующим причинам:

– затрудняется
интерпретация параметров множественной
регрессии как характеристик действия
факторов в «чистом» виде, ибо факторы
коррелированны; параметры линейной
регрессии теряют экономический смысл;

– оценки
параметров ненадежны, обнаруживают
большие стандартные ошибки и меняются
с изменением объема наблюдений (не
только по величина, но и по знаку), что
делает модель непригодной для анализа
и прогнозирования.

Для
оценки факторов может использоваться
определитель матрицы
парных коэффициентов корреляции между
факторами
.

Если
бы факторы не коррелировали между собой,
то матрицы парных коэффициентов
корреляции между ними была бы единичной,
поскольку все недиагональные элементы
rxixj
(xi

xj)
были бы равны нулю. Так, для уравнения,
включающего три объясняющих переменных,

y
= a
+ b1

x1
+ b2

x2
+ b3

x3
+ ,

матрица
коэффициентов корреляции между факторами
имела бы определитель, равный единице


,

поскольку
rx1x1
= rx2x2
= rx3x3
= 1 и rx1x2
= rx1x3
= rx2x3
= 0.

Если
же между факторами существует полная
линейная зависимость и все коэффициенты
корреляции равны единице, то определитель
такой матрицы равен нулю


.

Чем
ближе к нулю определитель матрицы
межфакторной корреляции, тем сильнее
мультиколлинеарность факторов и
ненадежнее результаты множественной
регрессии. И, наоборот, чем ближе к
единице определитель матрицы межфакторной
корреляции, тем меньше мультиколлинеарность
факторов.

Оценка
значимости мультиколлинеарности
факторов может быть проведена методом
испытания гипотезы о независимости
переменных H0:
DetR
= 1. Доказано, что величина

имеет приближенное распределение 2
с df
= m

(m
1)/2 степенями
свободы. Если фактическое значение 2
превосходит табличное (критическое):
2факт
> 2табл(df,)
то гипотеза H0
отклоняется. Это означает, что DetR

1, недиагональные ненулевые коэффициенты
корреляции указывают на коллинеарность
факторов. Мультиколлинеарность считается
доказанной.

Через
коэффициенты множественной детерминации
можно найти переменные, ответственные
за мультиколлинеарность факторов. Для
этого в качестве зависимой переменной
рассматривается каждый из факторов.
Чем ближе значение коэффициента
множественной детерминации к единице,
тем сильна проявляется мультиколлинеарность
факторов. Сравнивая между собой
коэффициенты множественной детерминации
факторов
R2x1x2x3…xp;
R2x2x1x3…xp
и т.п., можно выделить переменные,
ответственные за мультиколлинеарность,
следовательно, можно решать проблему
отбора факторов, оставляя в уравнении
факторы с минимальной величиной
коэффициента множественной детерминации.

Имеется
ряд подходов преодоления сильной
межфакторной корреляции. Самый простой
из них состоит в исключении из модели
одного или нескольких факторов. Другой
путь связан с преобразованием факторов,
при котором уменьшается корреляция
между ними. Например, при построении
модели на основе рядов динамики переходят
от первоначальных данных к первым
разностям уровней y
= yt
yt–1,
чтобы исключить влияние тенденции, или
используются такие методы, которые
сводят к нулю межфакторную корреляцию,
т.е. переходят от исходных переменных
к их линейным комбинациям, не коррелированным
друг с другом (метод главных компонент).

Одним
из путей учета внутренней корреляции
факторов является переход к совмещенным
уравнениям регрессии, т.е. к уравнениям,
которые отражают не только влияние
факторов, но и их взаимодействие. Так,
если y
= f(x1,
x2,
x3).
то можно построить следующее совмещенное
уравнение:

y
= a
+ b1

x1
+ b2

x2
+ b3

x3
+ b12

x1

x2
+ b13

x1

x3
+ b23

x2

x3
+ .

Рассматриваемое
уравнение включает эффект взаимодействия
первого порядка. Можно включать в модель
и взаимодействие более высоких порядков,
если будет доказана его статистическая
значимость, например включение
взаимодействия второго порядка b123

x1
x2

x3
и т.д. Как правила, взаимодействие
третьего и более высоких порядков
оказывается статистически незначимым;
совмещенные уравнения регрессии
ограничиваются взаимодействием первого
и второго порядков. Но и оно может
оказаться несущественным. Тогда
нецелесообразно включать в модель
взаимодействие всех факторов и всех
порядков. Так, если анализ совмещенного
уравнения показал значимость только
взаимодействия факторов x1и
x3,
то уравнение будет иметь вид:

y
= a
+ b1

x1
+ b2

x2
+ b3

x3
+ b13

x1

x3
+ .

Взаимодействие
факторов x1и
x3
означает, что на разных уровнях фактора
x3
влияние фактора x1на
y
будет неодинаково, т.е. оно зависит от
значений фактора x3.
На рис. 3.1 взаимодействие факторов
представляется непараллельными линиями
связи x1с
результатом y.
И, наоборот, параллельные линии влияния
фактора x1на
y
при разных уровнях фактора x3
означают отсутствие взаимодействия
факторов x1и
x3.


Рис.
3.1. Графическая иллюстрация взаимодействия
факторов

Совмещенные
уравнения регрессии строятся, например,
при исследовании эффекта влияния на
урожайность разных видов удобрений
(комбинаций азота и фосфора).

Решению
проблемы устранения мультиколлинеарности
факторов может помочь и переход к
уравнениям приведенной формы. С этой
целью в уравнение регрессии подставляют
рассматриваемый фактор, выраженный из
другого уравнения.

Пусть,
например, рассматривается двухфакторная
регрессия вида yx
= a
+ b1

x1
+ b2

x2,
для которой факторы x1и
x2
обнаруживают высокую корреляцию. Если
исключить один из факторов, то мы придем
к уравнению парной регрессии. Вместе с
тем можно оставить факторы в модели, но
исследовать данное двухфакторное
уравнение регрессии совместно с другим
уравнением, в котором фактор (например,
x2)
рассматривается как зависимая переменная.
Предположим, что x2
= A
+ B
y
+ C

x3.
Подставив это уравнение в искомое вместо
x2,
получим:

yx
= a
+ b1

x1
+ b2

(A
+ B

y
+ C

x3)

или

yx

(1 – b2

B)
= (a
+ b2

A)
+ b1

x1
+ C

b2

x3.

Если
(1 – b2

B)

0, то, разделив обе части равенства на
(1 – b2

B),
получим уравнение вида


,

которое
принято называть приведенной формой
уравнения для определения результативного
признака y.
Это уравнение может быть представлено
в виде

yx
= a
+ b1

x1
+ b3

x3.

К
нему для оценки параметров может быть
применен метод наименьших квадратов.

Отбор
факторов, включаемых в регрессию,
является одним из важнейших этапов
практического использования методов
регрессии. Подходы к отбору факторов
на основе показателей корреляции могут
быть разные. Они приводят построение
уравнения множественной регрессии
соответственно к разным методикам. В
зависимости от того, какая методика
построения уравнения регрессии принята,
меняется алгоритм её решения на
компьютере.

Наиболее
широкое применение получили следующие
методы построения уравнения множественной
регрессии:

– метод
исключения;

– метод
включения;

– шаговый
регрессионный анализ.

Каждый
из этих методов по-своему решает проблему
отбора факторов, давая в целом близкие
результаты – отсев факторов из полного
его набора (метод исключения), дополнительное
введение фактора (метод включения),
исключение ранее введенного фактора
(шаговый регрессионный анализ).

На
первый взгляд может показаться, что
матрица парных коэффициентов корреляции
играет главную роль в отборе факторов.
Вместе с тем вследствие взаимодействия
факторов парные коэффициенты корреляции
не могут в полной мере решать вопрос о
целесообразности включения в модель
того или иного фактора. Эту роль выполняют
показатели частной корреляции, оценивающие
в чистом виде тесноту связи фактора с
результатом. Матрица частных коэффициентов
корреляции наиболее широко используется
в процедуре отсева факторов. Отсев
факторов можно проводить и по t-критерию
Стьюдента для коэффициентов регрессии:
из уравнения исключаются факторы с
величиной t-критерия
меньше табличного. Так, например,
уравнение регрессии составило:

y
= 25 + 5x1
+ 3x2
+ 4x3
+ .

(4,0) (1,3) (6,0)

В
скобках приведены фактические значения
t-критерия
для соответствующих коэффициентов
регрессии, как правило, при t
< 2 коэффициент регрессии незначим и,
следовательно, рассматриваемый фактор
не должен присутствовать в регрессионной
модели. В данном случае – это фактор
x2.

При
отборе факторов рекомендуется пользоваться
следующим правилом: число включаемых
факторов обычно в 6-7 раз меньше объема
совокупности, по которой строится
регрессия. Если это соотношение нарушено,
то число степеней свободы остаточной
вариации очень мало. Это приводит к
тому, что параметры уравнения регрессии
оказываются статистически незначимыми,
а F-критерий
меньше табличного значения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Коэффициент корреляции

Тесноту (силу) связи изучаемых показателей в предмете эконометрика оценивают с помощью коэффициента корреляции Rxy, который может принимать значения от -1 до +1.

Если Rxy > 0,7 — связь между изучаемыми показателями сильная, можно проводить анализ линейной модели

Если 0,3 < Rxy < 0,7 — связь между показателями умеренная, можно использовать нелинейную модель при отсутствии Rxy > 0,7

Если Rxy < 0,3 — связь слабая, модель строить нельзя

коэффициент корреляции

Для нелинейной регрессии используют индекс корреляции (0 < Рху < 1):

индекс корреляции

Средняя ошибка аппроксимации

Для оценки качества однофакторной модели в эконометрике используют коэффициент детерминации и среднюю ошибку аппроксимации.

Средняя ошибка аппроксимации определяется как среднее отклонение полученных значений от фактических

Средняя ошибка аппроксимации

Допустимая ошибка аппроксимации не должна превышать 10%.

В эконометрике существует понятие среднего коэффициента эластичности Э – который говорит о том, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины.

Пример нахождения коэффициента корреляции

Исходные данные:

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

81

124

2

77

131

3

85

146

4

79

139

5

93

143

6

100

159

7

72

135

8

90

152

9

71

127

10

89

154

11

82

127

12

111

162

Рассчитаем параметры парной линейной регрессии, составив таблицу

x

x2

y

xy

y2

1

81

6561

124

10044

15376

2

77

5929

131

10087

17161

3

85

7225

146

12410

21316

4

79

6241

139

10981

19321

5

93

8649

143

13299

20449

6

100

10000

159

15900

25281

7

72

5184

135

9720

18225

8

90

8100

152

13680

23104

9

71

5041

127

9017

16129

10

89

7921

154

13706

23716

11

82

6724

127

10414

16129

12

111

12321

162

17982

26244

Среднее

85,8

7491

141,6

12270,0

20204,3

Сумма

1030,0

89896

1699

147240

242451

σ

11,13

12,59

 σ2

123,97

158,41

формула расчета дисперсии σ2 приведена здесь.

Коэффициенты уравнения y = a + bx определяются по формуле

расчет коэффициентов линейного уравнения регрессии

Получаем уравнение регрессии: y = 0,947x + 60,279.

Коэффициент уравнения b = 0,947 показывает, что при увеличении среднедушевого прожиточного минимума в день одного трудоспособного на 1 руб. среднедневная заработная плата увеличивается на 0,947 руб.
Коэффициент корреляции рассчитывается по формуле:

расчет коэффициента корреляции в эконометрике

Значение коэффициента корреляции более — 0,7, это означает, что связь между среднедушевым прожиточным минимумом в день одного трудоспособного и среднедневной заработной платой сильная.

Коэффициент детерминации равен R2 = 0.838^2 = 0.702
т.е. 70,2% результата объясняется вариацией объясняющей переменной x.

Для построения
доверительной области необходимо
вычислить доверительные пределы для
коэффициента регрессии а1
для среднего
ỹ в следующей последовательности:

— вычисляем средние
квадратические отклонения δх
и
δ
у
:

(20)

— используя квантили
распределения Стьюдента с (n-2)
степенями свободы при заданной
доверительной вероятности (например,
95%), находим значения tp/2
, когда
доверительные пределы для коэффициента
истинной регрессии a1a
равны:

(21)

используя квантили
распределения Стьюдента при доверительной
вероятности p
c
(n-1)
степенью свободы, получаем доверительные
пределы для генерального среднего ȳ:

(22)

Обозначим найденные
доверительные пределы для среднего
через ȳʹ
и ȳʺ,
для коэффициентов регрессии – через
а1ʹ
и а1ʺ.
Через каждую из точек (хср,
ȳʹ) и (хср,
ȳʺ) (рис. 2)
проведём две прямые с угловыми
коэффициентами а1ʹ
и а1ʺ.

Y

=Ymax

=Ymin

хср
X

Рис. 2. Построение
доверительной области уравнения
регрессии

Рис. 3.Доверительная
область уравнения регрессии и теоретическая
линия регрессии

Максимальная
область, охватываемая этими прямыми, и
представляет собой искомую доверительную
область, в которой с вероятностью p2
лежит истинная линия регрессии.

8. Определение средней ошибки аппроксимации

На практике часто
приходится сталкиваться с задачей
сглаживания экспериментальных данных
– задача аппроксимации.

Основная задача
аппроксимации

– построение приближенной (аппроксимирующей)
функции наиболее близко проходящей
около данных точек или около данной
непрерывной функции.

Аппроксимация
– процесс подбора эмпирической функции
f(х)
для установления из опыта функциональной
зависимости y=f(х).
Эмпирические формулы служат для
аналитического представления опытных
данных.

Средняя ошибка
аппроксимации

среднее отклонение расчетных значений
от фактических. Допустимый предел
значений средней ошибки аппроксимации
не более 8-10% Средний коэффициент
эластичности показывает, на сколько
процентов изменится результат
(результативный признак) от своей средней
величины при изменении фактора x
(признак-фактор) на 1% от своего среднего
значения. Для оценки статистической
значимости коэффициентов регрессии и
корреляции рассчитывается t-критерий
Стьюдента. Если между экономическими
явлениями существуют нелинейные
соотношения, то они выражаются с помощью
соответствующих нелинейных функций.

Отклонения можно
рассматривать как абсолютную ошибку
аппроксимации, а — как относительную
ошибку аппроксимации.

Чтобы иметь общее
суждение о качестве модели из относительных
отклонений по каждому наблюдению
определяют среднюю ошибку аппроксимации:

(25)

Фактическое
значение результативного признака y
отличается от теоретических значений,
рассчитанных по уравнению регрессии.
Чем меньше это отличие, тем ближе
теоретические значения подходят к
эмпирическим, и лучше качество модели.

Величина отклонений
фактических и расчетных значений
результативного признака по каждому
наблюдению представляет собой ошибку
аппроксимации.

Поскольку может
быть как величиной положительной, так
и отрицательной, то ошибки аппроксимации
для каждого наблюдения принято определять
в процентах по модулю.

Если А
до 10-12%, то можно говорить о хорошем
качестве модели.

Приложение 1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Коэффициент корреляции

Тесноту (силу) связи изучаемых показателей в предмете эконометрика оценивают с помощью коэффициента корреляции Rxy, который может принимать значения от -1 до +1.

Если Rxy > 0,7 — связь между изучаемыми показателями сильная, можно проводить анализ линейной модели

Если 0,3 < Rxy < 0,7 — связь между показателями умеренная, можно использовать нелинейную модель при отсутствии Rxy > 0,7

Если Rxy < 0,3 — связь слабая, модель строить нельзя

коэффициент корреляции

Для нелинейной регрессии используют индекс корреляции (0 < Рху < 1):

индекс корреляции

Средняя ошибка аппроксимации

Для оценки качества однофакторной модели в эконометрике используют коэффициент детерминации и среднюю ошибку аппроксимации.

Средняя ошибка аппроксимации определяется как среднее отклонение полученных значений от фактических

Средняя ошибка аппроксимации

Допустимая ошибка аппроксимации не должна превышать 10%.

В эконометрике существует понятие среднего коэффициента эластичности Э – который говорит о том, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины.

Пример нахождения коэффициента корреляции

Исходные данные:

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

81

124

2

77

131

3

85

146

4

79

139

5

93

143

6

100

159

7

72

135

8

90

152

9

71

127

10

89

154

11

82

127

12

111

162

Рассчитаем параметры парной линейной регрессии, составив таблицу

x

x2

y

xy

y2

1

81

6561

124

10044

15376

2

77

5929

131

10087

17161

3

85

7225

146

12410

21316

4

79

6241

139

10981

19321

5

93

8649

143

13299

20449

6

100

10000

159

15900

25281

7

72

5184

135

9720

18225

8

90

8100

152

13680

23104

9

71

5041

127

9017

16129

10

89

7921

154

13706

23716

11

82

6724

127

10414

16129

12

111

12321

162

17982

26244

Среднее

85,8

7491

141,6

12270,0

20204,3

Сумма

1030,0

89896

1699

147240

242451

σ

11,13

12,59

 σ2

123,97

158,41

формула расчета дисперсии σ2 приведена здесь.

Коэффициенты уравнения y = a + bx определяются по формуле

расчет коэффициентов линейного уравнения регрессии

Получаем уравнение регрессии: y = 0,947x + 60,279.

Коэффициент уравнения b = 0,947 показывает, что при увеличении среднедушевого прожиточного минимума в день одного трудоспособного на 1 руб. среднедневная заработная плата увеличивается на 0,947 руб.
Коэффициент корреляции рассчитывается по формуле:

расчет коэффициента корреляции в эконометрике

Значение коэффициента корреляции более — 0,7, это означает, что связь между среднедушевым прожиточным минимумом в день одного трудоспособного и среднедневной заработной платой сильная.

Коэффициент детерминации равен R2 = 0.838^2 = 0.702
т.е. 70,2% результата объясняется вариацией объясняющей переменной x.

Тест по предмету «Эконометрика» с ответами

Нет времени или сил пройти тест онлайн? Поможем сдать тест дистанционно для любого учебного заведения: подробности.

Вопрос 1. Статистической зависимостью называется …

  • точная формула, связывающая переменные
  • связь переменных без учета воздействия случайных факторов
  • связь переменных, на которую накладывается воздействие случайных факторов
  • любая связь переменных

Вопрос 2. Универсальным способом задания случайной величины Х является задание ее … распределения

  • функции
  • ряда
  • плотности
  • полигона

Вопрос 3. Дискретной называется случайная величина, …

  • множество значений которой заполняет числовой промежуток
  • которая задается плотностью распределения
  • которая задается полигоном распределения
  • которая принимает отдельные, изолированные друг от друга значения

Вопрос 4. Выборочная средняя является …

  • несмещенной оценкой генеральной дисперсии
  • несмещенной оценкой генеральной средней
  • смещенной оценкой генеральной средней
  • смещенной оценкой генеральной дисперсии

Вопрос 5. Выборочная дисперсия является …

  • смещенной оценкой генеральной дисперсии
  • несмещенной оценкой генеральной дисперсии
  • несмещенной оценкой генеральной средней
  • смещенной оценкой генеральной средней

Вопрос 6. В модели парной линейной регрессии величина У является …

  • неслучайной
  • постоянной
  • случайной
  • положительной

Вопрос 7. В модели парной линейной регрессии величина ? является …

  • случайной
  • неслучайной
  • положительной
  • постоянной

Вопрос 8. Предположение о нормальности распределения случайного члена необходимо для …

  • расчета коэффициента детерминации
  • проверки значимости коэффициента детерминации
  • проверки значимости параметров регрессии и для их интервального оценивания
  • расчета параметров регрессии

Вопрос 9. Эконометрика – наука, изучающая …

  • проверку гипотез о свойствах экономических показателей
  • эмпирический вывод экономических законов
  • построение экономических моделей
  • закономерности и взаимозависимости в экономике методами математической статистики

Вопрос 10. M(X) и D(X) – это …

  • линейные функции
  • числовые характеристики генеральной совокупности (числа)
  • функции
  • нелинейные функции

Вопрос 11. Для разных выборок, взятых из одной и той же генеральной совокупности, выборочные средние …

  • и дисперсии будут одинаковы
  • будут одинаковы, а дисперсии будут различны
  • будут различны, а дисперсии будут одинаковы
  • и дисперсии будут различны

Вопрос 12. Стандартными уровнями значимости являются …% и …% уровни

  • 4 / 3
  • 5 / 1
  • 3 / 2
  • 10 / 0,1

Вопрос 13. Если наблюдаемое значение критерия больше критического значения, то гипотеза …

  • H1 отвергается
  • H1 принимается
  • H0 отвергается
  • H0 принимается

Вопрос 14. Величина var(y) – это дисперсия значений … переменной

  • наблюдаемых зависимой
  • наблюдаемых независимой
  • расчетных зависимой
  • расчетных независимой

Вопрос 15. Коэффициентом детерминации R2 характеризуют долю вариации переменной … с помощью уравнения регрессии

  • зависимой, объясненную
  • зависимой, необъясненную
  • независимой, объясненную
  • независимой, необъясненную

Вопрос 16. Пространственные данные – это данные, полученные от … моменту (ам) времени

  • одного объекта, относящиеся к разным
  • разных однотипных объектов, относящихся к разным
  • разных однотипных объектов, относящихся к одному и тому же
  • одного объекта, относящиеся к одному

Вопрос 17. При идентификации модели производится … модели

  • проверка адекватности
  • оценка параметров
  • статистический анализ и оценка параметров
  • статистический анализ

Вопрос 18. Геометрически, математическое ожидание случайной величины – это … распределения

  • центр
  • мера рассеяния относительно центра
  • мера отклонения симметричного от нормального
  • мера отклонения от симметричного

Вопрос 19. Если случайные величины Х, У независимы, то …

  • M(X+Y) = M(X) + M(Y)
  • D(X+Y) = D(X) + D(Y)
  • D(X+Y) ? D(x) + D(Y)
  • M(X+Y) ? M(x) + M(Y)

Вопрос 20. Если случайные величины независимы, то теоретическая ковариация …

  • положительная
  • отрицательная
  • равна нулю
  • не равна нулю

Вопрос 21. Некоррелированность случайных величин означает …

  • отсутствие линейной связи между ними
  • отсутствие любой связи между ними
  • их независимость
  • отсутствие нелинейной связи между ними

Вопрос 22. Коэффициенты регрессии (а, b) в выборочном уравнении регрессии определяются методом (ами) …

  • наименьших квадратов
  • взвешенных наименьших квадратов
  • моментов
  • градиентными

Вопрос 23. Коэффициент регрессии b показывает …

  • на сколько единиц в среднем изменяется переменная y при увеличении независимой переменной x на единицу
  • прогнозируемое значение зависимой переменной при x = 0
  • прогнозируемое значение зависимой переменной при x > 0
  • прогнозируемое значение зависимой переменной при x < 0

Вопрос 24. Временные ряды – это данные, характеризующие … момент (ы) времени

  • один и тот же объект в различные
  • разные объекты в один и тот же
  • один и тот же объект в один и тот же
  • разные объекты в различные

Вопрос 25. Выборочная совокупность – это …

  • любое множество наблюдений
  • значения случайной величины, удовлетворяющие условиям наблюдения
  • множество наблюдений, составляющих часть генеральной совокупности
  • значения случайной величины, принятые в процессе наблюдения

Вопрос 26. Оценка ? называется состоятельной, если …

  • имеет минимальную дисперсию по сравнению с выборочными оценками
  • дает точное значение для малой выборки
  • её математическое ожидание равно оцениваемому параметру ?0
  • дает точное значение для большой выборки

Вопрос 27. Статистическим критерием называют случайную величину, которая служит для проверки гипотезы …

  • о зависимости случайных величин, вычисленных по данным выборки
  • конкурирующей
  • о независимости случайных величин
  • нулевой

Вопрос 28. Выборочная ковариация является мерой … двух переменных

  • взаимосвязи
  • нелинейной связи
  • рассеяния
  • линейной связи

Вопрос 29. Коэффициент регрессии а показывает …

  • как меняется переменная y при увеличении переменной x на 1%
  • прогнозируемое значение зависимой переменной при x = 0
  • прогнозируемое значение зависимой переменной при x > 0
  • прогнозируемое значение зависимой переменной при x < 0

Вопрос 30. Допустимый предел значений средней ошибки аппроксимации …%

  • не более 8-10
  • более 10-20
  • не более 10-20
  • более 8-10

Сдадим ваш тест на хорошо или отлично

Нужна помощь в написании работы?

Средняя ошибка аппроксимации среднее отклонение расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10% Средний коэффициент эластичности показывает, на сколько процентов изменится результат (результативный признак) от своей средней величины при изменении фактора x (признак-фактор) на 1% от своего среднего значения. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитывается t-критерий Стьюдента. Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций. 
В современной экономике, в бизнесе без прогноза не обойтись. Любое серьезное решение, в особенности связанное с вложением денег, требует прогноза, предвидения развития экономической ситуации. Для того чтобы предвидеть будущее, надо хорошо знать прошлое и присущие ему закономерности. Если в течение достаточно продолжительного времени регулярно фиксировать курсы валют, акций, цены на товары и т.д., то такие данные образуют временные ряды. Временными рядами являются также данные о выпуске или потреблении различных товаров и услуг по месяцам, кварталам, годам. В производстве временные ряды возникают при измерении количества изделий, выпускаемых подразделениями предприятия за час, смену, декаду, при оценках количества брака за те же периоды, при наблюдении за изменениями запасов на складах. В экономике и бизнесе данные типы временных рядов появляются очень часто. 
Во временном ряде содержится информация об особенностях и закономерностях протекания процесса, а статистический анализ позволяет выявить и использовать их для оценки характеристик процесса в будущем, т.е. для прогнозирования. Временной ряд это совокупность значений (чисел) какого-либо показателя за несколько последовательных моментов или периодов времени. Числа, составляющие ряд и получающиеся как результат наблюдения за ходом некоторого процесса, называются элементами, а промежуток времени между наблюдениями шагом квантования по времени (или шагом по времени). Элементы ряда нумеруют в соответствии с номером момента времени, к которому этот элемент относится.

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Понравилась статья? Поделить с друзьями:
  • Средняя квадратичная ошибка mse
  • Средняя квадратическая ошибка коэффициента асимметрии
  • Средняя ошибка выборки меньше предельной ошибки
  • Средняя ошибка относительной величины расчет
  • Средняя квадратическая ошибка калькулятор