Солевая ошибка титрования

    Измерение pH индикаторным методом также дает погрешности, связанные с выбором стандарта и с солевыми ошибками индикаторов. [c.404]

    А ), то значение ошибки титрования солевая ошибка) вычисляют по формуле  [c.323]

    Присутствие в растворе белковых веществ и коллоидов, а также нейтральных солей обычно тоже влияет на интервал перехода индикаторов и хотя для титрования применяют лишь те индикаторы, у которых так называемые белковая и солевая ошибки невелики, все же при высоких концентрациях белковых веществ или солей в растворах эти ошибки могут стать значительными. Чтобы исключить влияние всех указанных выше факторов на окончательный результат анализа, каждый раз, когда приходится вести титрование при нагревании или в присутствии неэлектролитов, большого количества солей и т. д., следует устанавливать титр рабочего раствора в тех же самых условиях. Это правило является вообще одним из основных в титриметрическом анализе. [c.253]

    На рис. 4.3 изображен элемент с электродными пространствами, разделенными пористым стеклянным диском О. Предположим, что электрод В поляризован током, идущим от электрода О. Капилляр Ь (иногда называемый капилляром Луггина) электрода сравнения Я (или солевого мостика между электродами Я и В) расположен вблизи от поверхности В, что позволяет уменьшить ошибку измерения потенциала, вызванную омическим падением напряжения в электролите. Э. д. с. элемента В—определяют для каждого значения тока, измеряемого амперметром А с периодичностью достаточной для установления стабильного состояния. Поляризацию электрода В (катода или анода) измеряют в вольтах по отношению к электроду сравнения 7 при различных значениях плотности тока. Как правило, значения потенциалов приводят по стандартной водородной шкале. Этот метод назы- [c.49]

    Недостаток хингидронного электрода — заметная солевая ошибка (до 0,1 в). Его легко получить, погрузив кусок платиновой проволоки в раствор, содержащий 50—100 мг хингидрона. [c.501]

    По водородному электроду могут быть калиброваны все другие электроды и буферные растворы. Этот электрод совершенно свободен от солевой ошибки. Солевой ошибкой называется разница между величинами э. д. с. какого-либо электрода в присутствии в растворе посторонней соли заданной концентрации и его электродвижущей силы в присутствии этой соли, измеренных по отношению к водородному электроду, погруженному в тот же раствор. [c.602]

    При выборе индикаторов следует руководствоваться не только подходящими интервалами перехода окраски, но и тем, что индикатор должен давать стойкую окраску и быть по возможности малочувствительным к изменению ионной силы раствора (солевая ошибка) и к содержанию белков н других коллоидов (белковая ошибка). [c.495]

    Область применения индикатора зависит от температуры, природы растворителя и примесей посторонних веществ (белков, солей). Так, в присутствии электролитов изменение окраски происходит в области pH, несколько отличающейся от таковой в отсутствие электролитов (солевая ошибка индикатора). [c.174]

    Определение констант диссоциации в уксусной кислоте осложнено большой солевой ошибкой, связанной с низкой диэлектрической проницаемостью растворителя (см. гл. V). Возникающая ассоциация ионов приводит к аномальной электропроводности и затрудняет получение точных результатов. [c.280]

    При оценке pH следует учитывать свойства измеряемого раствора, так как в противном случае можно получить значения pH, сильно отличающиеся от истинных. Обычно при измерении pH буферных растворов ошибки невелики, но при измерении небуферных и солевых растворов могут возникнуть большие ошибки. [c.403]

    Экспериментальная часть. Цель работы заключается в подготовке стеклянного электрода к работе, его калибровке, измерении pH контрольного раствора и оценке солевой ошибки при определении pH. [c.127]

    Солевой ошибкой называется разность между электродвижущей силой какого-либо электрода в присутствии посторонней соли заданной концентрации и его электродвижущей силой в отсутствие соли, измеряющаяся по отношению к водородному электроду, погруженному в тот же раствор. [c.497]

    Потенциал сурьмяного электрода зависит от способа его приготовления. Электрод может применяться в присутствии сильных окислителей и восстановителей (например, восстановителей — цитратов, боратов, органических веществ и окислителей — разбавленных марганцовой и хромовой кислот). В этих случаях его используют вместо водородного и хингидронного электродов. Для сурьмяного электрода отсутствует солевая, белковая и коллоидная ошибки. Его потенциал зависит от pH зь=а+6-рН (где а — функция качества сурьмяного электрода, состава электролита и электрода сравнения .  [c.498]

    В формулу (VII. 23) входит кинематическая вязкость. Эта величина с повышением концентрации раствора увеличивается по крутой гиперболе, поэтому расчет коэффициента теплоотдачи по средней концентрации приводит часто к грубым ошибкам. При сгущении солевых и щелочных растворов происходит кристаллизация, но при сгущении пищевых продуктов с увеличением концентрации сухих веществ раствор становится тягучим. Ниже на примерах дадим анализ изменения коэффициента теплоотдачи с увеличением концентрации растворов. [c.232]

    Серьезным недостатком метода градуировочного графика является погрешность, обусловленная предположением, что Е» после градуировки электрода остается постоянной. Это предположение редко бывает правильным, поскольку состав анализируемого раствора почти всегда отличается от состава растворов, применяемых для градуировки. Вследствие этого диффузионный потенциал, входящий в °, будет слегка изменяться, если даже применяется солевой мостик. Обычно эта погрешность составляет величину порядка 1 мВ, что приводит к ошибке 4% при прямом потенциометрическом определении концентрации однозарядного иона, + 8% при определении двухзарядных ионов и 12% при определении трехзарядных ионов. Такой точности во многих случаях оказывается достаточно для практических целей. В погрешность прямых потенциометрических измерений существенный вклад вносят также флуктуация значений S во времени и зависимость крутизны наклона электродной функции от концентрации и температуры анализируемого раствора. Говорят, что отклик электрода нернстовский, если наклон зависимости Е — Ig отличается от теоретической величины не более чем на 1-2 мВ. Ниже этой величины зависимость называется суб-нернстовской, выше — гипер-нернстовской. [c.225]

    Четкое изменение окраски комплексона в кислой среде, сохранение индикаторного перехода при повышении температуры от 20 до 60 °С, отсутствие солевой ошибки в присутствии солей калия и натрия обусловливают возможность применения 2 3.29 в качестве колориметрического рН-индикатора [c.252]

    Гидрон I реагирует с кальцием с большей чувствительностью (0,012 мкг С 1мл), чем эриохром черный Т и кислотный хром темно-синий, что позволяет успешно титровать кальций в отсутствие магния, с которым индикатор реагирует с такой же высокой чувствительностью. По специфичности гидрон I мало отличается от эриохром черного Т и кислотного хром темно-синего. Недостаток этого индикатора —наличие существенной солевой ошибки. Свойства гидрона I свидетельствуют о том, что его целесообразно применять для определения жесткости слабоминерализованных вод. [c.42]

    Четкость перехода окраски оптимальна в довольно узком интервале значений pH (10,5—11,2) [511]. С другой стороны, преимуществом бериллона II сравнительно с эриохром черным Т, кислотным хром темно-синим и другими индикаторами является его более высокая специфичность [369, 516]. Бериллон II не образует окрашенных комплексов с Ге +, АР+, Т1 +. Поэтому присутствие небольших количеств этих ионов, а также не мешает титрованию кальция и магния [521]. Определению с бериллоном II не мешают высокие содержания хлоридов, сульфатов, а также присутствие некоторых органических веществ солевая ошибка этого индикатора невелика. [c.43]

    Солевая ошибка гидрона II незначительна, и можно проводить титрование даже в 10%-ном растворе хлорида натрия, хотя контрастность перехода при этом несколько уменьшается. Предложено использовать гидрон II для комплексонометрического определения кальция в пищевой соли [6 . [c.65]

    Солевая ошибка возникает вследствие одинакового изменения Коэффициентов активности гидрохинона и хинона, когда к насыщенному раствору хингидрона добавляется соль или другое вещество. Отношение концентраций в последнем члене уравнения (IX. 8 ) при добавлении соли остается неизменным. Однако потенциал электрода зависит от отношения активностей, а оно меняется с ионной силой. [c.223]

    Пренебрежение в прошлом солевым эффектом или эффектом электролитов поставило под сомнение пригодность многих индикаторов. Кларк по этому поводу писал в 1928 г. Некритическое применение разнообразных индикаторов может привести к значительным ошибкам или, по крайней мере, к такой противоречивости в получаемых данных, что их сопоставление в ближайшее время явится сложной задачей, если учесть, что свойства и солевые эффекты отдельных индикаторов еще определяются [9, стр. 70]. [c.133]

    Если константа диссоциации индикатора известна, то измерение глубины окраски, отвечающей отношению а/(1—а), позволяет определить pH раствора. Этот метод часто называют методом Михаэлиса. Чтобы уменьшить солевую ошибку, следует пользоваться формальной константой диссоциации индикаторной кислоты, соответствующей ионной силе исследуемого раствора. При определении значений формальных констант диссоциации индикаторов полезно применять буферные растворы, pH которых измерено электрометрическим методом (стр. 134). [c.144]

    В относительно разбавленных растворах в случае, когда известен тип заряда индикатора, возможно до известной степени предсказать солевую ошибку. Для этого с помощью уравнения Дебая — Хюккеля или других полуэмпирических форм этого [c.133]

    Правая часть уравнения (VI.13) представляет разность логарифмов отношения коэффициентов активности двух форм индикатора при ионной силе исследуемого раствора и ионной силе буферного раствора, взятого для сравнения, в котором солевая ошибка отградуирована . [c.137]

    При пользовании литературными данными по солевым ошибкам индикаторов необходимо установить, отвечает ли поправка только влиянию соли на равновесие индикатора или включает также влияние на pH буферной системы. Солевые поправки, найденные экспериментально, путем сравнения результатов измерений pH с помощью индикатора и электрометрических определений в том же растворе, обычно включают оба эффекта. К сожалению, точные значения этих поправок известны только для некоторых буферных систем. При вычислении солевых поправок оба эффекта учитываются раздельно при этом следует принять во внимание присущие им ограничения. [c.138]

    Ошибки хингидронного электрода. Любой фактор, который вызывает отклонение от нулевого значения последнего члена в уравнении (IX. 8 ), явится причиной ошибки в показаниях хингидронного электрода. Щелочная и солевая ошибки могут быть объяснены изменениями в отношениях концентраций или коэффициентов активности, которые входят в этот член. Отклонения в щелочных растворах, которые проявляются при pH, больших 7—8, можно отнести к окислению гидрохинона и кислотной его диссоциации. Обе эти реакции приводят к увеличению отношения в резуль- [c.223]

    Другой вид солевой ошибки связан с тем, что иногда большие концентрации соли приводят к изменению окраски индикатора, вследствие длинноволнового или коротковолнового сдвига полосы поглощения [27] . Вероятно, это смещение обусловлено изменением электростатического поля добавленных ионов и влиянием последнего на сольватационное равновесие. В некоторых случаях индикатор химически взаимодействует с одним из ионов соли. [c.139]

    Солевой эффект и эффект среды. Как мы уже видели, изменения ионной силы и состава растворителя могут привести к большой неопределенности в значениях pH, найденных с помощью индикатора. Если бы можно было иметь больше информации о кислотно-основных равновесиях, то эффекты, вызываемые указанными выше причинами, могли бы быть в значительной степени поняты и учтены. Соответствующая неопределенность возникает не только из-за чрезмерного упрощения при количественном описании кислотно-основных равновесий и не является следствием случайных ошибок. Все это существенно снижает полезность колориметрического метода определения pH. Чтобы ошибки были минимальными, буферные и исследуемые растворы должны, насколько это возможно, иметь одинаковую ионную силу и состав растворителя. [c.152]

    Водородный электрод служит первичным стандартом для определения величины pH. Однако вследствие экспериментальных трудностей, возникающих при его применении, для обычных определений пользуются другими обратимыми к ионам водорода электродами. Показания этих вторичных электродов, среди которых наибольшее распространение получили стеклянный, хингидронный и сурьмяный электроды, всегда пересчитывают на водородную шкалу нуль соответствует потенциалу стандартного водородного электрода. Недостатки вторичных электродов — солевая ошибка хингидронного электрода, натриевая ошибка стеклянного и нелинейность сурьмяного электродов — обнаруживаются при непосредственном сравнении показаний вторичных и водородного электродов. Водородный электрод образуется продуванием газообразного водорода через раствор с погруженной в него проволокой или небольшой пластинкой, поверхность которых может катализировать реакцию [c.210]

    Разность потенциалов на концах электрохимической цепи с переносом содержит Дфдифф и, следовательно, отличается от э. д. с., которая используется для расчета ДО химической реакции. Введение поправок на диффузионный потенциал по формуле (VI.28), естественно, приводит к ошибкам в АО. При этом следует учитывать, что ошибка в Дфд ФФ, равная 1 мВ, эквивалентна ошибке в АО, равной 0,1 кДж/моль. Существует способ резкого уменьшения диффузионного потенциала, который заключается в том, что между двумя растворами включают солевой мостик, т. е. концентрированный раствор соли, у которой Такими свойствами обладают, например, водные растворы КС1 и NH4NO3. При включении солевого мостика одна граница между двумя растворами I и II заменяется двумя, например I — КС1 и КС1 — И. Но на каждой из новых границ в согласии с формулой (VI.28) Афд фф меньше, чем на первоначальной, и, кроме того, диффузионные потенциалы на новых границах обычно обратны по знаку, так что общий их вклад в измеряемую разность потенциалов резко снижается. Таким образом, изменение измеряемой разности потенциалов при включении солевого мостика А в первом приближении может служить мерой первоначального диффузионного потенциала . Если величина S.E хорошо согласуется со значением Афд фф, рассчитанным по формуле (VI.28), то дис узионный потенциал можно элиминировать и по исправленным значениям Е проводить приближенные термодинамические расчеты. Так, например, на границе 0,1 н. растворов НС1 и Na l А = =33,1 мВ, а формула (VI.28) дает Дфд фф=33,4 мВ. Электрохимическую цепь с переносом и с элиминированным диффузионным потенциалом схематически изображают следующим образом  [c.112]

    При титровании в уксусной кислоте (вследствие ее низкой диэлектрической проницаемости) возникают большие солевые ошибки, даже при небольшой концентрации солей они достигают нескольких единиц рЛГ. Поэтому значительный интерес представляет применение кислых растворителей с высокой диэлектрической проницаемостью. В работе совместно со Шкодиным и Дзюбой мы показали большие преимущества муравьиной кис лоты (8 = 57) как среды для титрования по сравнению с уксусной кислотой. В этой среде значительно лучше, чем в уксусной кислоте, титруются амфотерные основания, константы основности которых в воде имеют порядок Ю —10 1 (например, кофеина, теобромина, мочевийы). [c.452]

    Возможные ошибки при определении pH колориметрическим методом. Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора от белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.) от индикаторной ошибки, так как белки, обладающие амфотерными свойствами, взаимодействуют с кислотными и основными индикаторами, а также адсорбируют индикатор при этом происходит изменение общей концентрации его в испытуемом растворе таким образо.м, добавление значительных количеств индикаторов, которые, являясь слабыми кислотами и основаниями, могут, особенно в незабуференных растворах, изменять значение pH от температурной ошибки, зависящей от изменения константы диссоциации индикатора при колебаниях температуры так, -нитрофенол имеет при 0 С р/С = 7,30, а при 50° С рК = 6,81 с изменением температуры изменяется и pH стандартных растворов. [c.67]

    Для определения солевой ошибки готовится буферный раствор (табл. 10, 13 приложения) с определенным значением pH. Он делится на 3—4 части и к каждой из них добавляется нейтральная соль (например, ЫаС1), чтобы общая ионная концентрация раствора возрастала в 2, 4, 6… раз. Стеклянным электродом измеряется pH полученных растворов и оценивается отклонение pH раствора от первоначального значения для чистого буферного раствора. [c.128]

    Наиболее вероятными представляются систематические ошибки, связанные с чистотой реагентов, в особенности комплексонов, обратимостью электродов, временем установления равновесия при титровании, степенью учета ионных форм, находящихся в равновесии с комплексонатом, в частности, таких, как H5edta+ или Heedta +j и т. д. Довольно распространенным источником ошибок является превышение концентрации переменной компоненты обычно рекомендуемого уровня в 15—20% от общего значения ионной силы [191]. Встречаются работы, в которых проводится почти полная замена солевого фона на компонент реакции при сохранении неизменной ионной силы, что в свою очередь может повлечь неконтролируемые погреш- [c.104]

    Потенциометрический метод имеет преимущества по сравнению с колориметрическим, он более точен и имеет меньше ограничений, связанных с присутствием в растворе окислителей или восстановителей, с белковой или солевой ошибками. Потенциометрический метод в отличие от колориметри- [c.115]

    Экстрагируют фосфаты смесью н.бутанол — СНС1з в виде фос-форомолибдатов [334]. Анионообменную хроматографию используют также для выделения кальция при определении его в рудах, спеках и шлаках [1172]. Присутствие нефти, декстрина, тростникового сахара и формалина не мешает определению кальция с калредом [224]. Предлагают определять кальций в поваренной соли с применением этого индикатора, что позволяет сделать вывод о его небольшой солевой ошибке [1309]. [c.63]

    Смесь кислотного однохром синего 3 с красителем нафтоловым желтым носит название гидрона 1и применяется как высокочувствительный индикатор для комплексонометрического титрования магния [203а, 255]. Окраска раствора в эквивалентной точке при использовании гидрона I меняется от красной к зеленой переход окраски очень четкий. Недостатком гидрона I является значительная солевая ошибка. Наличие солей затрудняет фиксирование эквивалентной точки так, при содержании 3 г Na l в 100 мл титруемого раствора значительно уменьшается контрастность перехода окраски. [c.73]

    Солевая ошибка индикатора может быть найдена путем сравнения значений pH, полученных с помощью индикатора ( индикаторное pH ) для серии растворов с различной ионной силой, со значениями pH, найденными посредством электрометрических измерений в тех же растворах с водородным электродом. Этим путем были определены солевые поправки для многих индикаторов [18]. В ряде случаев удобно объединить первый и третий члены в правой части уравнения (VI. 3), как это сделали Сендрой и Гастингс [19], и ввести кажущуюся иш формальную копст ту дмс-социации/<Гн1п, которой можно пользоваться в растворах данной ионной силы. Необходимо помнить, что формальная константа диссоциации при средних и высоких ионных силах зависит от индивидуальных свойств присутствующих электролитов. [c.133]

    При обсуждении следует принять во внимание, что добавление нейтральной соли к буферному раствору, содержащему индикатор, вызывает не только солевую ошибку, связанную со сдви-Г0Л1 равновесия индикатора, но также воздействует на равновесие между буферной кислотой и ее солью, приводя к действительному изменению рац. Табл. VI. 6 иллюстрирует эти эффекты [24, 25]. Наряду с истинным изменением ран ( истинный pH) при добавлении нейтральной соли приводятся кажущиеся изменения pH в случае индикаторов, отличающихся типом заряда. [c.136]


Аналитическая химия (1973) — [

c.497

]

Физическая и коллоидная химия (1964) — [

c.93

]


1.

Индикаторные ошибки
кислотно-основного титрования
1

2.

Водородная ошибка возникает, когда
недотитрована сильная кислота,
перетитровано сильное или слабое основание
Водородная ошибка – отношение количества
ионов водорода n(H+) в конце титрования к
первоначально взятому количеству вещества
n(X)
n
(H+)к.т.
X(H+) = ———— · 100%
n(X)
2

3.

n(X) = Сэкв(Х) · V(X)
Сэкв(Х) – молярная концентрация эквивалента
первоначально взятого вещества
V(X) – объем первоначально взятого вещества
n(H+)к.т. = [H+]к.т.· Vк.т.
Vк.т. – объем в конце титрования
Vк.т. = V(X) + V(Т)
3

4.

+] · (V(X) + V(Т))
[H
к.т.
+
X(H ) = ——————————— · 100%
С(1/z Х) · V(X)
рНк.т. = рТInd
[H+]к.т = 10–рН = 10–рТ
–рТ · (V(X) + V(Т))
10
X(H+) = ————————— · 100%
Сэкв(Х) · V(X)
4

5.

Гидроксильная ошибка обусловлена наличием
гидроксид-ионов в конце титрования и возникает, когда недотитровано сильное основание,
перетитрована сильная или слабая кислота
n(OH–)к.т.
X(OH–) = ———— · 100%
n(X)
n(OH–)к.т = [OH–]к.т. · (V(X) + V(Т))
n(X) = Сэкв(Х) · V(X)
–]
[OH
·
(V
(X) + V(Т))
к.т.
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
5

6.

рНк.т. = рТInd
т.к. рН + рОН = 14
рОН = 14 – рН = 14 – рТ
[OH–] = 10–(14 – рТ) = 10рТ–14
рТ–14 · (V(X) + V(Т))
10
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
6

7.

Кислотная ошибка возникает, когда остается
недотитрованной слабая кислота
Кислотная ошибка – отношение концентрации
недотитрованной кислоты в конце титрования
к ее оттитрованной части
HA + KOH H2O + KA
[HA]к.т.
X(HA) = ———— · 100%
[A–]к.т.
Оттитрованная часть кислоты будет
определяться анионами соли
7

8.

HAк.т. H+к.т. + A–к.т.
[H+]к.т. · [A–]к.т.
Kк-ты = ———————
[HA]к.т.
[HA]к.т. [H+]к.т.
———=
———
[A–]к.т.
Kк-ты
[H+]к.т.
X(HA) = ———— · 100%
Kк-ты
8

9.

рНк.т. = рТInd
[H+]к.т = 10–рН = 10–рТ
Kк-ты = 10–рК
10–рТ
X(HA) = ———— · 100%
10–рКк-ты
X(HA) =10рКк-ты–рТ · 100%
9

10.

Основная ошибка возникает, когда остается
недотитрованным слабое основание
Основная ошибка – отношение концентрации
неоттитрованного основания в конце
титрования к его оттитрованной части
[BOH]к.т.
X(BOH) = ———— · 100%
[B+]к.т.
10

11.

Аналогично с кислотной ошибкой можно
показать
[BOH]к.т.
[OH–]к.т.
—————
=
—————
[B+]к.т.
Kосн
[OH–]к.т.
X(BOH) = ———— · 100%
Kосн
Т.к. [OH–]к.т. = 10рТ–14
Kосн = 10–рКосн
11

12.

10рТ–14
X(BOH) = ———— · 100%
10–рКосн
X(BOH) =10рКосн + рТ–14 · 100%
12

13.

Вычислить ошибку титрования 0,2 н. раствора
HCl 0,2 н. раствором NaOH с индикатором
метиловым оранжевым.
рТ(м/о) = 4
ошибка водородная
–рТ · (V(X) + V(Т))
10
X(H+) = ————————— · 100%
Сэкв(Х) · V(X)
–4 · (10 + 10)
10
X(H+) = ——————— · 100 = 0,1%
0,2 · 10
Индикаторная ошибка должна быть 0,1%
13

14.

Вычислить индикаторную ошибку титрования
0,2 н. раствора HCl 0,2 н. раствором NaOH с
индикатором фенолфталеином
рТ(ф/ф) = 9
ошибка гидроксильная
рТ–14 · (V(X) + V(Т))
10
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
9–14 · (10 + 10)
10
X(OH–) = ——————— · 100 = 0,01 %
0,2 · 10
14

15.

Вычислить ошибку титрования 0,1 н. раствора
муравьиной кислоты 0,1 н. раствором сильного основания с индикатором метиловым
красным
рТ(м/к) = 5
рК(HCOOH) = 3,76
рНт.э. = 7 + ½ рКк-ты + ½ lg Cсоли = 8,38
Раствор недотитрован ошибка кислотная
15

16.

X(HA) =10рКк-ты–рТ · 100%
X(HA) =103,76–5 · 100 = 5,7 %
Индикатор использовать нельзя.
16

17.

Чему равна ошибка титрования 0,1 н. раствора
аммиака 0,1 н. раствором HCl с индикатором
крезоловым пурпуровым
рТ(к/п) = 8
рК(NH4OH) = 4,75
рНт.э. = 7 – ½ рКосн – ½ lg Cсоли = 5,10
Раствор недотитрован ошибка основная
X(BOH) =10рКосн + рТ–14 · 100%
X(BOH) =104,75 + 8–14 · 100 = 5,6%
17

Индикаторные ошибки относятся к систематическим ошибкам и возникают тогда, когда изменение окраски индикатора не соответствует точке эквивалентности реагирующих веществ.

При титровании по методу нейтрализации индикаторные ошибки обусловлены несовпадением рН в точке эквивалентности с показателем титрования (рТ) применяющегося индикатора. Различают водородную, гидроксильную, кислотную, щелочную и солевую ошибки титрования.

Водородная ошибка определяется наличием в системе в момент изменения окраски индикатора неоттитрованной сильной кислоты и рассчитывается по уравнению

,

где С1  –  нормальность титруемой кислоты; V1 – объем титруемой кислоты; V2  –  объем раствора в конце титрования.

Гидроксильная ошибка определяется наличием в системе в момент изменения окраски индикатора неоттитрованного сильного основания, которое полностью диссоциирует на ионы. Ошибка рассчитывается по уравнению:

.

Кислотная ошибка определяется наличием в системе в момент изменения окраски индикатора неоттитрованной слабой кислоты, и рассчитывается по уравнению:

.

Щелочная ошибка имеет тот же смысл, что и кислотная, и рассчитывается по уравнению:

.

При титровании многоосновных кислот и их солей в зависимости от рТ применяемого индикатора возможны так называемые солевые ошибки титрования, которые учитываются по схеме:

1) рассчитывают рН в точке эквивалентности;

2) сопоставляют значение рН в точке эквивалентности с рТ применяемого индикатора;

3) выражают ошибку в виде отношения соответствующих концентраций ионов, находящихся в системе в конце титрования, и вычисляют ошибку.

Понравилась статья? Поделить с друзьями:
  • Солдатов какая ошибка
  • Сокращение ошибок синоним
  • Сокиа линк ошибка 433
  • Созн вать ошибку
  • Сокет ошибка 10038