Систематические ошибки эксперимента возникают

Статьи
Главная страница

 

Из графика
видно, что существует вероятность, пусть и очень маленькая, что наше единичное
измерение покажет результат, сколь угодно далеко отстоящий от истинного
значения. Выходом из положения является проведение серии измерений. Если на
разброс данных действительно влияет случай, то в результате нескольких
измерений мы скорее всего получим следующее (рис 2):

Будет ли
рассчитанное среднее значение нескольких измерений совпадать с истинным? Как
правило – нет. Но по теории вероятности, чем больше сделано измерений, тем
ближе найденное среднее значение к истинному. На языке математики это можно
записать так:

Но с бесконечностью у всех дело обстоит неважно. Поэтому на практике мы имеем дело
не со всеми возможными результатами измерений, а с некоторой выборкой из этого
бесконечного множества. Сколько же реально следует делать измерений? Наверное,
до тех пор, пока полученное среднее значение не будет отличаться от истинного
меньше чем точность отдельного измерения.


Следовательно,
когда наше среднее значение (рис. 2) отличается от истинного меньше чем
погрешность измерений, дальнейшее увеличение числа опытов бессмысленно. Однако
на практике мы не знаем истинного значения! Значит, получив среднее по
результатам серии опытов, мы должны определить, какова вероятность того, что
истинное значение находится внутри заданного интервала ошибки. Или каков тот
доверительный интервал, в который с заданной надежностью попадет истинное
значение (рис 3).

Рассмотрим
некоторый условный эксперимент, где в серии измерений получены некоторые
значения величины Х (см. табл. 1).  Рассчитаем среднее значение и, чтобы  оценить
разброс данных найдем величины DХ = Х –
Хср

Таблица
1. Данные измерений и их обработка

Х

Х ср

DХ

DХ2

s2

s

1

130

143,5 »

 144

-13,5

182,3

420

20,5

2

162

18,5

342,3

3

160

16,5

272,3

s2ср

sср

4

122

-21,5

462,3

105

10,2

Ясно, что
величины DХ  как-то характеризуют
разброс данных. На практике для усредненной характеристики разброса серии измерений используется
дисперсия выборки:

и среднеквадратичное или стандартное отклонение выборки:

Последнее
показывает, что каждое измерение в данной серии (в данной выборке) отличается
от другого в среднем на ± s.

Понятно, что каждое отдельное
значение оказывает влияние на средний результат. Но это влияние тем меньше, чем
больше измерений в нашей выборке. Поэтому дисперсия и стандартное отклонение
среднего значения, будет определяться по формулам:

Можем ли мы теперь определить вероятность того, что
истинное значение попадет в указанный интервал среднего? Или наоборот,
рассчитать тот доверительный интервал в который истинное значение
попадет с заданной вероятностью (95%)? Поскольку кривая на наших графиках это
распределение вероятностей, то площадь под кривой, попадающая в указанный
интервал и будет равна этой вероятности (доля площади, в процентах). А площади
математики научились рассчитывать хорошо, знать бы только уравнение этой
кривой.


И здесь мы сталкиваемся еще с одной сложностью. Кривая, которая описывает распределение
вероятности для выборки, для ограниченного числа измерений, уже не будет кривой нормального
распределения. Ее форма будет зависеть
не только от дисперсии (разброса данных) но и от степени свободы для выборки
(от числа независимых измерений) (рис 4):

Уравнения этих кривых впервые были предложены в 1908
году английским математиком и химиком Госсетом, который опубликовал их под
псевдонимом Student (студент), откуда пошло хорошо известные термины
«коэффициент Стьюдента» и аналогичные. Коэффициенты Стьюдента получены на
основе обсчета этих кривых для разных степеней свободы (f = n-1) и уровней
надежности (Р) и сведены в специальные таблицы. Для получения доверительного интервала необходимо
умножить уже найденное стандартное отклонение среднего на соответствующий
коэффициент Стьюдента. ДИ = sср*tf, P

Проанализируем, как меняется доверительный интервал
при изменении требований к надежности результата и числа измерений в серии.
Данные в таблице 2 показывают, что чем больше требование к надежности, тем
больше будет коэффициент Стьюдента и, следовательно, доверительный интервал. В большинстве случаев, приемлемым считают значение Р=95%

Таблица
2. Коэффициент Стьюдента для различных уровней надежности.

P

0,9

0,95

0,99

0,999

t5,
P

2,02

2,57

4,03

6,87

Таблица
3. Коэффициент Стьюдента для различных степеней свободы.

f=
n-1

1

2

3

4

5

16

30

tf,
0,95

12,7

4,3

3,18

2,78

2,57

2,23

2,04

Из таблицы 3 и графика
видно, что чем больше число измерений, тем меньше коэффициент и доверительный
интервал для данного уровня надежности. Особенно значительное падение
происходит при переходе от степени свободы 1 (два измерения) к 2 (три
измерения). Отсюда следует, что имеет смысл ставить не менее трех параллельных
опытов, проводить не менее трех измерений.

Окончательно
для измеряемой величины Х получаем значение Хсред±sср*tf,P. В
нашем случае получаем: f=3; t=3,18;
ДИ = 3,18*10,2 = 32,6; X = 143,5 ±32,6

Как правило,
значение доверительного интервала округляется до одной значащей цифры, а
значение измеряемой величины – в соответствии с округлением доверительного
интервала. Поэтому для нашей серии окончательно имеем: X = 140 ±30

Найденная
нами погрешность является абсолютной погрешностью и ничего не говорит еще о
точности измерений. Она свидетельствует о точности измерений только в сравнении
с измеряемой величиной. Отсюда представление об относительной ошибке:

           

Косвенные определения.

Исследуемая величина рассчитывается в этом случае с помощью
математических формул по другим величинам, которые были измерены
непосредственно. В этом случае для расчета ошибок можно использовать
соотношения, приведенные в таблице 4.

Таблица
4. Формулы для расчета абсолютных и относительных ошибок.

Формула

Абсолютная

Относительная

x = a ± b

Dx = Da+Db

e =
(Da+Db) /(a±b )

x = a* b; x = a* k

Dx = bDa+aDb; Dx = kDa

e = Da/a+Db/b = ea + e b

x = a / b

Dx = (bDa+aDb) / b2

e = Da/a+Db/b = ea + e b

x = a*k; (x = a / k)

Dx = Da*k; (Dx = Da/k )

e = ea

x = a2

Dx = 2aDa

e = 2Da/a = 2ea

x = Öa

Dx = Da/(2Öa)

e = Da/2a = ea/2

Из таблицы видно, что относительная ошибка и точность определения не изменяются при умножении (делении) на некоторый постоянный коэффициент. Особенно сильно относительная ошибка может возрасти при вычитании
близких величин, так как при этом абсолютные ошибки суммируются, а значение Х
может уменьшиться на порядки.

Пусть например, нам необходимо определить
объем проволочки.
Если диаметр проволочки измерен с погрешностью 0,01 мм (микрометром) и равен 4 мм, то относительная погрешность составит 0,25% (приборная). Если
длину проволочки (200 мм) мы измерим линейкой с погрешностью 0,5 мм, то относительная погрешность также составит 0,25%. Объем можно рассчитать по формуле: V=(pd2/4)*L. Посмотрим, как будут меняться ошибки
по мере проведения расчетов (табл. 5):

Таблица 5. Расчет абсолютных и относительных ошибок.

Величина

Значение

Абсолютная

Относительная

d2

16

Dx = 2*4*0,01=0,08

e = 0,5%

pd2 *)

50,27

Dx = 0,08*3,14+0,0016*16
=0,28

e = 0,55%

pd2/4

12,57

Dx = 0,28/4 = 0,07

e = 0,55%

(pd2/4)*L

2513

Dx = 12,57*0,5+200*0,07=20

e = 0,8%

*) Если мы возьмем привычное p=3,14, то Dp=0,0016
то ep = 0,05%, но если используем более
точное значение, то Dp и ep можно будет пренебречь

Окончательный
результат V=2510±20 (мм3) e
=0,8%. Чтобы повысить точность косвенного определения, нужно в первую очередь
повышать точность измерения той величины, которая вносит больший вклад в ошибку
(в данном случае – точность измерения диаметра проволочки).

План проведения измерений:

[1]

1.   Знакомство
с методикой, подготовка прибора, оценка приборной погрешности d. Оценка возможных причин
систематических ошибок, их исключение.

2.   
Проведение серии измерений. Если получены совпадающие результаты, можно
считать что случайная ошибка равна 0, DХ
= d. Переходим к пункту 7.

3.   
Исключение промахов – результатов значительно отличающихся по своей
величине от остальных.

4.   
Расчет
среднего значения Хср, и стандартного отклонение среднего
значения scp

5.   
Задание значения уровня надежности P,
определение коэффициента Стьюдента t и
нахождение доверительного интервала ДИ= t*scp

6.   
Сравнение случайной и приборной погрешности, при этом возможны варианты:

—    
ДИ << d, можно
считать, что DХ = d, повысить точность измерения
можно, применив более точный прибор

—    
ДИ >> d, можно
считать, что DХ = ДИ,
повысить точность можно, уменьшая случайную ошибку, повышая число измерений в
серии, снижая требования к надежности.

—    
ДИ » d, в этом
случае расчитываем ошибку по формуле DХ
=

7.   
Записывается окончательный результат Х = Хср ± DХ.
Оценивается относительная ошибка
измерения e = DХ/Хср

Если
проводится несколько однотипных измерений (один прибор, исследователь, порядок
измеряемой величины, условия) то подобную работу можно проводить один раз. В
дальнейшем можно считать DХ
постоянной и ограничиться минимальным числом измерений (два-три измерения
должны отличаться не более, чем на DХ)

Для косвенных
измерений необходимо провести обработку данных измерения каждой величины. При
этом желательно использовать приборы, имеющие близкие относительные погрешности
и задавать одинаковую надежность для расчета доверительного интервала. На
основании полученных значений Da, Db, определяется DХ
для результирующей величины (см табл. 4). Для повышения точности надо
совершенствовать  измерение той величины, вклад ошибки которой в DХ наиболее существенен.

Изучение зависимостей.

Частым вариантом экспериментальной работы является
измерение различных величин с целью установления зависимостей. Характер этих
зависимостей может быть различен: линейный, квадратичный, экспоненциальный,
логарифмический, гиперболический. Для выявления зависимостей широко
используется построение графиков.

При построении графиков вручную важно правильно
выбрать оси, величины, масштаб, шкалы. Следует предупредить школьников, что
шкалы должны иметь равномерный характер, нежелательна как слишком детальная,
так и слишком грубая их разметка. Точки должны заполнять всю площадь графика,
их расположение в одном углу, или «прижатыми» к одной из осей, говорит о
неправильно выбранном масштабе и затрудняет определение характера зависимости.
При проведении линии по точкам надо использовать теоретические представление о
характере зависимости: является она непрерывной или прерывистой, возможно ли ее
прохождение через начало координат, отрицательные значения, максимумы и
минимумы.

Наиболее легко проводится и анализируется прямая
линия. Поэтому часто при изучении более сложных зависимостей часто используется
линеаризация зависимостей, которая достигается подходящей заменой переменных.
Например:

Зависимость . Вводя новую переменную
, получаем уравнение
a = bx, которое
будет изображаться на графике прямой линией. Наклон этой прямой позволяет
рассчитать константу диссоциации.

Разумеется и в этом случае полученные в эксперименте данные включают в себя различные ошибки, и точки редко лежат строго на прямой. Возникает
вопрос, как с наибольшей точностью провести прямую по экспериментальным точкам, каковы ошибки в определении
параметров.

Математическая статистика показывает, что наилучшим
приближением будет такая линия, для которой дисперсия (разброс) точек
относительно ее будет минимальным. А дисперсия определяется как средний квадрат
отклонений наблюдаемого положения точки от расчитанного:

Отсюда название этого метода – метод наименьших
квадратов. Задавая условие, чтобы величина s2
принимала минимальное значение, получают формулы для коэффициентов а и b в уравнении прямой у = а + bx:

и формулы для расчета соответствующих ошибок
[2].

Если
делать расчеты, используя калькулятор, то лучше оформлять их в виде таблицы:

x

x2

y

y2

xy

Sx =

Sx2
=

Sy =

Sy2
=

Sxy =

Подводя
итог, следует сказать, что обработка данных эксперимента достаточно сложный
этап работы ученого. Необходимость проведения большого числа измерений требует
большой затраты времени и материальных ресурсов. Громоздкость формул,  необходимость
использования большого числа значащих цифр затрудняют вычисления. Поэтому, возможно,
не все рекомендации этой статьи применимы в рамках школьного исследования. Но
понимать их сущность, значимость, необходимость, и в соответствии с этим
адекватно оценивать свои результаты, должен любой исследователь.

В настоящее время обработку экспериментальных данных
существенно облегчают современные компьютерные технологии, современное
программное обеспечение. Об том, как их можно использовать –  в следующей
статье.

Литература:


[1]
Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений, М., «Наука»,
1970, 194 с.

[2]
Петерс Д., Хайес Дж., Хифтье Г. Химическое разделение и измерение – М.,: Химия,
1978, 816 с.


Изучение
всех влияющих на исследуемый объект
факторов одновременно провести
невозможно, поэтому в эксперименте
рассматривается их ограниченное число.
Остальные активные факторы стабилизируются,
т.е. устанавливаются на каких-то одинаковых
для всех опытов уровнях.

Некоторые
факторы не могут быть обеспечены
системами стабилизации (например,
погодные условия, самочувствие оператора
и т.д.), другие же стабилизируются с
какой-то погрешностью (например,
содержание какого-либо компонента в
среде зависит от ошибки при взятии
навески и приготовления раствора).
Учитывая также, что измерение
параметра у осуществляется
прибором, обладающим какой-то погрешностью,
зависящей от класса точности прибора,
можно прийти к выводу, что результаты
повторностей одного и того же опыта ук будут
приближенными и должны отличаться один
от другого и от истинного значения
выхода процесса. Неконтролируемое,
случайное изменение и множества других
влияющих на процесс факторов
вызывает случайныеотклонения
измеряемой величины ук от
ее истинного значения — ошибку опыта.

Каждый
эксперимент содержит элемент
неопределенности вследствие ограниченности
экспериментального материала. Постановка
повторных (или параллельных) опытов не
дает полностью совпадающих результатов,
потому что всегда существует ошибка
опыта (ошибка воспроизводимости). Эту
ошибку и нужно оценить по параллельным
опытам. Для этого опыт воспроизводится
по возможности в одинаковых условиях
несколько раз и затем берется среднее
арифметическое всех результатов. Среднее
арифметическое у равно сумме всех n
отдельных результатов, деленной на
количество параллельных опытов n:

Отклонение
результата любого опыта от среднего
арифметического можно представить как
разность y2— ,
где y2 —
результат отдельного опыта. Наличие
отклонения свидетельствует об
изменчивости, вариации значений повторных
опытов. Для измерения этой изменчивости
чаще всего используют дисперсию.

Дисперсией
называется среднее значение квадрата
отклонений величины от ее среднего
значения. Дисперсия обозначается s2 и
выражается формулой:

где
(n-1) — число степеней свободы, равное
количеству опытов минус единица. Одна
степень свободы использована для
вычисления среднего.

Корень
квадратный из дисперсии, взятый с
положительным знаком, называется средним
квадратическим отклонением, стандартом
или квадратичной ошибкой:

Ошибка
опыта является суммарной величиной,
результатом многих ошибок: ошибок
измерений факторов, ошибок измерений
параметра оптимизации и др. Каждую из
этих ошибок можно, в свою очередь,
разделить на составляющие.

Все
ошибки принято разделять на два класса:
систематические и случайные (рисунок
1).

Систематические
ошибки порождаются причинами, действующими
регулярно, в определенном направлении.
Чаще всего эти ошибки можно изучить и
определить количественно. Систематическая
ошибка
 
это ошибка, которая остаётся постоянно
или закономерно изменяется при повторных
измерениях одной и той же величины. Эти
ошибки появляются вследствие неисправности
приборов, неточности метода измерения,
какого либо упущения экспериментатора,
либо использования для вычисления
неточных данных. Обнаружить систематические
ошибки, а также устранить их во многих
случаях нелегко. Требуется тщательный
разбор методов анализа, строгая проверка
всех измерительных приборов и безусловное
выполнение выработанных практикой
правил экспериментальных работ. Если
систематические ошибки вызваны известными
причинами, то их можно определить.
Подобные погрешности можно устранить
введением поправок.

Систематические
ошибки находят, калибруя измерительные
приборы и сопоставляя опытные данные
с изменяющимися внешними условиями
(например, при градуировке термопары
по реперным точкам, при сравнении с
эталонным прибором). Если систематические
ошибки вызываются внешними условиями
(переменной температуры, сырья и т.д.),
следует компенсировать их влияние.

Случайными ошибками
называются те, которые появляются
нерегулярно, причины, возникновения
которых неизвестны и которые невозможно
учесть заранее. Случайные ошибки
вызываются и объективными причинами и
субъективными. Например, несовершенством
приборов, их освещением, расположением,
изменением температуры в процессе
измерений, загрязнением реактивов,
изменением электрического тока в цепи.
Когда случайная ошибка больше величины
погрешности прибора, необходимо
многократно повторить одно и тоже
измерение. Это позволяет сделать
случайную ошибку сравнимой с погрешностью
вносимой прибором. Если же она меньше
погрешности прибора, то уменьшать её
нет смысла. Такие ошибки имеют значение,
которое отличается в отдельных измерениях.
Т.е. их значения могут быть неодинаковыми
для измерений сделанных даже в одинаковых
условиях. Поскольку причины, приводящие
к случайным ошибкам неодинаковы в каждом
эксперименте, и не могут быть учтены,
поэтому исключить случайные ошибки
нельзя, можно лишь оценить их значения.
При многократном определении какого-либо
показателя могут встречаться результаты,
которые значительно отличаются от
других результатов той же серии. Они
могут быть следствием грубой ошибки,
которая вызвана невнимательностью
экспериментатора.

Систематические
и случайные ошибки состоят из множества
элементарных ошибок. Для того чтобы
исключать инструментальные ошибки,
следует проверять приборы перед опытом,
иногда в течение опыта и обязательно
после опыта. Ошибки при проведении
самого опыта возникают вследствие
неравномерного нагрева реакционной
среды, разного способа перемешивания
и т.п.

При
повторении опытов такие ошибки могут
вызвать большой разброс экспериментальных
результатов.

Очень
важно исключить из экспериментальных
данных грубые ошибки, так называемый
брак при повторных опытах. Грубые
ошибки
 легко
обнаружить. Для выявления ошибок
необходимо произвести измерения в
других условиях или повторить измерения
через некоторое время. Для предотвращения
грубых ошибок нужно соблюдать аккуратность
в записях, тщательность в работе и записи
результатов эксперимента. Грубая ошибка
должна быть исключена из экспериментальных
данных. Для отброса ошибочных данных
существуют определённые правила.

Например,
используют критерий Стьюдента t (Р; f):
Опыт считается бракованным, если
экспериментальное значение критерия
t по модулю больше табличного значения
t (Р; f).

Если
в распоряжении исследователя имеется
экспериментальная оценка дисперсии
S2(yk)
с небольшим конечным числом степеней
свободы, то доверительные ошибки
рассчитываются с помощью критерий
Стьюдента t (Р; f):

?()
= t (Р; f)* S(yk)/=
t (Р; f)* S()

?(yk)
= t (Р; f)* S(yk)

6.
Результат прямого измерения
  случайная
величина, подчиняющаяся нормальному
закону распределения

Результаты,
которые получаются при экспериментальном
исследовании какого-либо технологического
процесса, зависят от целого ряда факторов.
Поэтому результат исследования является
случайной величиной, распределённой
по нормальному закону распределения.
Оно названо нормальным, т. к. именно
это распределение для случайной величины
является обычным и
называется гаусовским или лапласским. Под распределением
случайной величины
понимают
совокупность всех возможных значений
случайной величины и соответствующих
им вероятностей.

Законом
распределения случайной величины
 называется
всякое соотношение, устанавливающее
связь между возможными значениями
случайной величины и соответствующим
им вероятностям.

При
экспериментальном исследовании
какого-либо технологического процесса
измеряемый результат последнего является
случайной величиной, на которую оказывает
влияние огромное число факторов
(изменение погодных условий, самочувствие
оператора, неоднородность сырья, влияние
износа измерительной и стабилизирующей
аппаратуры и т.д. и т.п.). Именно поэтому
результат исследования является
случайной величиной, распределенной
по нормальному закону. Однако если
исследователь какой-либо активный
фактор не заметил или отнес его к
неактивным, а неконтролируемое изменение
этого фактора может вызвать несоразмерно
большое изменение эффективности процесса
и параметра, характеризующего эту
эффективность, то распределение
вероятности последнего может нормальному
закону не подчиниться.

Точно
так же приведет к нарушению нормальности
закона распределения наличие в массиве
экспериментальных данных грубых ошибок.
Именно поэтому в первую очередь проводят
анализ на наличие в экспериментальных
данных грубых ошибок с принятой
доверительной вероятностью.

Случайная
величина будет распределена по нормальному
закону, если она представляет собой
сумму очень большого числа взаимно
зависимых случайных величин, влияния
каждой из которых ничтожно мало. Если
измерения искомой величины y проведены
много раз, то результат можно наглядно
представить, построив диаграмму, которая
показывала бы, как часто получались те
или иные значения. Такая диаграмма
называется гистограммой. Что
бы построить гистограмму нужно разбить
весь диапазон измеренных значений на
равные интервалы. И посчитать сколько
раз каждая величина попадает в каждый
интервал.

Если
измерения продолжать до тех пор, пока
число измеренных значений n не станет
очень большим, то ширину интервала можно
сделать очень малой. Гистограмма перейдёт
в непрерывную прямую, которая
называется кривой
распределения
.

В
основе теории случайных ошибок лежат
два предположения:

1.
при большом числе измерений случайные
погрешности одинаково велики, но с
разными знаками встречаются одинаково
часто;

2.
большие (по абсолютной величине)
погрешности встречаются реже, чем малые.
Т. е. вероятность появления погрешности
уменьшается с ростом её величины.

Согласно
закону больших чисел при бесконечно
большом числе измерений n, истинное
значение измеряемой величины y равно
среднеарифметическому значению всех
результатов измерений ?

Для
всех m-повторностей можно записать:

Разделив
это уравнение на число повторностей m,
получим после подстановки:

За
экспериментальную оценку истинного
значения (математического ожидания)
критерия оптимальности у принимается среднеарифметическая
оценка
результатов
всех т повторностей:

Если
число m велико (m>?), то будет справедливо
равенство:

Таким
образом, при бесконечно большом числе
измерений истинное значение измеряемой
величины y равно среднеарифметическому
значению ? всех результатов произведённых
измерений: y=?, при m>?.

При
ограниченном числе измерений (m??)
среднеарифметическое значение y будет
отличаться от истинного значения, т.е.
равенство y=? будет неточным, а приближённым:
y?? и величину этого расхождения необходимо
оценить.

Если
в распоряжении исследователя имеется
только единичный результат измерения
yk,
то оценка истинного значения измеряемой
величины будет менее точной. чем
среднеарифметическая оценка при любом
числе повторностей: |y-?|<|y-yk|.

Появление
того или иного значения yk в процессе
измерения является случайным событием.
Функция плотности нормального
распределения случайной величины
характеризуется двумя параметрами:

·
истинным значением y;

·
среднеквадратичным отклонением ?.

а)
б)

Рисунок
— 1а — кривая плотности нормального
распределения; 1б — кривая плотности
вероятности нормально распределенной
случайной величины при различных
дисперсиях

Плотность
нормального распределения (рис. 1а)
симметрична относительно y и достигает
максимального значения при yk= y, стремится
к 0 при увеличении.

Квадрат
среднеквадратичного отклонения
называется дисперсией случайной величины
и является количественной характеристикой
разброса результатов вокруг истинного
значения y. Мера рассеяния результатов
отдельных измерений yk от среднего
значения ? должна выражаться в тех же
единицах, то и значения измеряемой
величины. В связи с этим в качестве
показателя разброса гораздо чаще
используют величину ?:

Значения
этой величины определяют форму кривой
распределения py. Площади под тремя
кривыми одинаковы, но при малых значения
? кривые идут более круто и имеют большее
значение py. С увеличением ? значение py
уменьшается и кривая распределения
растягивается вдоль оси y. Т.о. кривая 1
характеризует плотность распределения
случайной величины, воспроизводимость
которой в повторных измерениях лучше,
чем воспроизводимость случайных величин
имеющих плотность распределения 2, 4. На
практике не возможно произвести слишком
много замеров. Поэтому нельзя построить
нормальное распределение, чтобы точно
определить истинное значение y. В этом
случае хорошим приближением к истинному
значению можно считать ?, а достаточно
точной оценкой ошибки выборочную
дисперсию ??n, вытекающую из закона
распределения, но относящуюся к конечному
числу измерения. Такое название величины
??n объясняется тем, что из всего множества
возможных значений yk, т.е. из генеральной
совокупности выбирают лишь конечное
число значений равное m, называемых
выборкой, которая характеризуется
выборочным средним значением и выборочной
дисперсией.

Соседние файлы в папке planirovanie

  • #
  • #
  • #
  • #
  • #
  • #

Проведение
эксперимента

Познакомимся с
вычислением ошибки опыта, или, как ее часто называют, ошибки воспроизводимости.

Ошибки параллельных
опытов

Каждый
эксперимент содержит элемент неопределен­ности вследствие ограниченности
экспериментального ма­териала. Постановка повторных (или параллельных) опытов
не дает полностью совпадающих результатов, потому что всегда существует ошибка
опыта (ошибка воспроиз­водимости). Эту ошибку и нужно оценить по параллель­ным
опытам. Для этого опыт воспроизводится по возмож­ности в одинаковых условиях
несколько раз и затем бе­рется среднее арифметическое всех результатов. Среднее
арифметическое
 равно сумме всех п отдельных резуль­татов, деленной на количество
параллельных опытов п

.

Отклонение
результата любого опыта от среднего арифметического можно представить как
разность
 где  – результат отдельного опыта. Наличие
откло­нения свидетельствует об изменчивости, вариации значе­ний повторных
опытов. Для измерения этой изменчи­вости чаще всего используют дисперсию.
Диспер­сией называется среднее значение квадрата отклонений величины от ее
среднего значения. Дисперсия обозна­чается
s2 и
выражается формулой

.

где (n 1) – число
степеней свободы, равное количе­ству опытов минус единица. Одна степень свободы
исполь­зована для вычисления среднего.

Корень квадратный из
дисперсии, взятый с положи­тельным знаком, называется средним квадратическим от­клонением,
стандартом или квадратичной ошибкой

Стандарт имеет
размерность той величины, для кото­рой он вычислен. Дисперсия и стандарт – это
меры рассеяния, изменчивости. Чем больше дисперсия и стан­дарт, тем больше
рассеяны значения параллельных опы­тов около среднего значения.

Ошибка опыта являемся
суммарной величиной, результатом многих ошибок: ошибок измерений факторов,
ошибок измерений параметра оптимизации и др. Каждую из этих ошибок можно, в свою
очередь, разделить на состав­ляющие.

Вопрос о классификации ошибок
довольно сложный и вызывает много дискуссий. В качестве примера одной из
возможных схем классификации мы приведем схему из книги Ю. В. Кельница «Теория
ошибок измере­ний» (М., изд-во «Недра», 1967).

Все ошибки принято разделять
на два класса: система­тические и случайные.

Систематические ошибки
порождаются причинами, действующими регулярно, в определенном направлении. Чаще
всего эти ошибки можно изучить и определить количественно.

Систематические ошибки
находят, калибруя измери­тельные приборы и сопоставляя опытные данные с изме­няющимися
внешними условиями (например, при градуи­ровке термопары по реперным точкам,
при сравнении с эта­лонным прибором).

Если систематические ошибки
вызываются внешними условиями (переменной температуры, сырья и т. д.), следу­ет
компенсировать их влияние. Как это делать, будет показано ниже.

Случайными ошибками называются
те, которые появ­ляются нерегулярно, причины возникновения которых неизвестны и
которые невозможно учесть заранее.

Систематические и случайные
ошибки состоят из мно­жества элементарных ошибок. Для того, чтобы исключать инструментальные
ошибки, следует проверять приборы перед опытом, иногда в течение опыта и обязательно
после опыта. Ошибки при проведении самого опыта возникают вследствие неравномерного
нагрева реакционной среды, раз­ного способа перемешивания и т.п. При повторении
опытов такие ошибки могут вызвать большой разброс эксперимен­тальных
результатов.

Очень важно исключить из экспе­риментальных
данных грубые ошибки, так называемый брак при повторных опытах. Для отброса оши­бочных
опытов существуют правила. Для определения брака используют, например, кри­терий
Стьюдента

.

Значение t берут из таблицы t-распределения Стьюдента. Опыт считается
бракованным, если эксперименталь­ное значение критерия
t по модулю больше табличного значения.

Дисперсия параметра
оптимизации

Дисперсия всего эксперимента
получается в результате усреднения дисперсий всех опытов. По терми­нологии,
принятой в планировании эксперимента, речь идет о подсчете дисперсии параметра
оптимизации
 или, что то же самое, дисперсии воспроизводимости эксперимента

При подсчете дисперсии
параметра оптимизации квад­рат разности между значением
yq в каждом опыте и средним значением из n повторных наблюдений y нужно просумми­ровать по числу опытов в
матрице
N, а затем разделить на N(n1):

,

Где i = 1, 2, …, N;      q = 1, 2, …, n.

Такой формулой можно
пользоваться в случаях, когда число повторных опытов одинаково во всей матрице.

Дисперсию воспроизводимости
проще всего рассчиты­вать, когда соблюдается равенство числа повторных опы­тов
во всех экспериментальных точках. На практике весь­ма часто приходится
сталкиваться со случаями, когда число повторных опытов различно. Это происходит
вследствие отброса грубых наблюдений, неуверенности экспе­риментатора в
правильности некоторых результатов (в таких случаях возникает желание еще и еще
раз повторить опыт) и т.п.

Тогда при усреднении
дисперсий приходится пользо­ваться средним взвешенным значением дисперсий,
взятым с учетом числа степеней свободы

,

где

– дисперсия i-го опыта;

 – число степеней свободы i-м опыте, равное числу параллельных опытов
ni минус 1.

Число степеней
свободы средней дисперсии принима­ется равным сумме чисел степеней свободы
дисперсий, из которых она вычислена.

Случай с неравным числом
наблюдений, который мы рассмотрели выше, связан с нарушением ортогональности
матрицы. Поэтому здесь нельзя использовать расчетные формулы для коэффициентов,
приведенные ранее. Этот вопрос будет рассмотрен ниже.

Экспериментатору не следует
забывать о про­верке однородности дисперсий, неоднородные дисперсии усреднять
нельзя. Прежде чем пользоваться приведёнными выше формулами, нужно убедиться в
однородности суммируемых дисперсий.

Проверка
однородности дисперсий

Проверка однородности
дисперсий производится с помощью различных статистических критериев. Простей­шим
из них является критерий Фишера, предназначенный для сравнения двух дисперсий.
Критерий Фишера (
Fкритерий)
представляет собою отношение большей дисперсии к меньшей. Полученная величина
сравнивается с таблич­ной величиной
F-критерия.

Если полученное значение
дисперсионного отно­шения больше приведенного в таблице для соответствую­щих
степеней свободы и выбранного уровня значимости, это означает, что дисперсии
значимо отличаются друг от друга, т. е. что они неоднородны.

Если сравниваемое количество
дисперсий больше двух и одна дисперсия значительно превышает остальные, можно воспользоваться
критерием Кохрена. Этот критерий пригоден для случаев, когда во всех точках
имеется одина­ковое число повторных опытов. При этом подсчитывается дисперсия в
каждой горизонтальной строке матрицы

,

а затем из
всех дисперсий находится наибольшая
 ко­торая делится на сумму всех дисперсий. Критерий Кохрена – это
отношение максимальной дисперсии к сумме всех дисперсий

.

Гипотеза
об однородности дисперсий подтверждается, если экспериментальное значение
критерия Кохрена не превы­шает табличного значения. Тогда можно усреднять дис­персии
и пользоваться формулой

.

Если возникает предположение
о наличии неодно­родности дисперсий для случая, когда число повторных опытов неодина­ково
во всех точках, можно воспользоваться критерием Бартлета. По уже знакомой
формуле подсчитывается дисперсия воспроизводимости

.

Далее
находится величина

,

где

.

Здесь число
степеней свободы равно
N–1, где N – число сравниваемых дисперсий. При планировании экспе­римента типа
2
k это число равно числу опытов в матрице.

Бартлет показал, что величина
 приближенно подчиняется  – распределению с (N–1) степенями свободы. Значимость критерия
Бартлета проверяется обычным способом.

Критерий Бартлета базируется
на нормальном распре­делении. Если имеются отклонения от нормального распре­деления,
то проверка неоднородности дисперсий может привести к ошибочным результатам.

Можно предложить
использование
F-критерия даже в тех случаях, когда число
дисперсий больше двух. Делается это следующим образом. Из всех дисперсий
выделяются наибольшая и наименьшая. По
F-критерию производится проверка, значимо ли они различаются между
собой. Ясно, что если наибольшая и наименьшая дисперсии не отличаются значимо,
то диспер­сии, имеющие промежуточные значения, также не могут значимо
отличаться друг от друга. Тогда всю группу дис­персий можно считать
принадлежащей к единой совокуп­ности. В таких случаях нет надобности применять
кри­терий Бартлета.

Рандомизация

Чтобы исключить влияние
систематических ошибок, вызванных внешними условиями (переменой температуры,
сырья, лаборанта и т. д.), рекомендуется случайная пос­ледовательность при
постановке опытов, запланированных матрицей. Опыты необходимо рандомизировать
во времени. Термин «рандомизация» происходит от английского слова
random – случайный.

Если экспериментатор
располагает сведениями о пред­стоящих изменениях внешней среды, сырья,
аппаратуры и т. п., то целесообразно планировать эксперимент таким образом,
чтобы эффект влияния внешних условий был сме­шан с определенным
взаимодействием, которое не жалко потерять. Так, при наличии двух партий сырья
матрицу 23 можно разбить на два блока таким образом, чтобы эффект
сырья сказался на величине трехфакторного взаимодейст­вия. Тогда все линейные
коэффициенты и парные взаимо­действия будут освобождены от влияния
неоднородности сырья.

№ блока

x0

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

y

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2

+

+

+

+

y5

+

+

+

+

y6

+

+

+

+

y7

+

+

+

+

y8

В этой матрице при
составлении блока 1 отобраны все строки, для которых
, а при составления бло­ка 2 – все строки,
для которых
. Различие в сырье можно рассматривать как
новый фактор
. Тогда матрица 23, разбитая на
два блока, представляет собой полуреплику 24-1 с определяющим
контрастом
.

,                 ;

,                ;

,               ;

,                  ;

,                 ;

,              ;

,              ;

,                ;

Эффект сырья
отразился на подсчете свободного члена
b0 и
эффекта взаимодействия второго порядка
b123.

Аналогично можно разбить на
два блока любой экспе­римент типа 23. Главное – правильно выбрать
взаимодей­ствие, которым можно безболезненно пожертвовать. При отсутствии
априорных сведений выбирают взаимодействие самого высокого порядка:
x1x2x3 для 23, x1x2x3х4 для 24, x1x2x3x4x5 25 и т. д. Но если
экспериментатору известно, что одно из парных взаимодействий лишено, например,
физико-химического смысла, то можно пожертвовать парным взаимодействием.

Матрицу типа 2k можно разбить на количество блоков 2n (n степень
двойки) при
. Так, матрица 23
разбивается на два блока по четыре опыта в каждом и на четыре блока по
два опыта в каждом. Матрица 24 – на два блока по 8 опытов в каждом,
на четыре блока по четыре опыта и на восемь блоков по два опыта и т.д.

Statistical Methods for Physical Science

William R. Leo, in Methods in Experimental Physics, 1994

1.4.1 Systematic Errors

Systematic errors concem the possible biases that may be present in an observation. A common example is the zeroing of a measuring instrument such as a balance or a voltmeter. Clearly, if this is not done properly, all measurements made with the instmment will be offset or biased by some constant amount. However, even if the greatest of care is taken, one can never be certain that the instrument is exactly at the zero point. Indeed, various physical factors such as the thickness of the scale lines, the lighting conditions under which the calibration is pefformed, and the sharpness of the calibrator’s eyesight will ultimately limit the process, so that one can say only that the instmment has been “zeroed” to within some range of values, say 0±δ. This uncertainty in the “zero value’ then introduces the possibility of a bias in all subsequent measurements made with this instmment; i.e., there will be a certain nonzero probability that the measurements are biased by a value as large as ±δ.

More generally, systematic errors arise whenever there is a comparison between two or more measurements. And indeed, some reflection will show that all measurements and observations involve comparisons of some sort. In the preceding case, for example, a measurement is referenced to the zero point (or some other calibration point) of the instmment. Similarly, in detecting the presence of a new particle, the signal must be compared to the background events that could simulate such a particle, etc. Part of the art of experimentation, in fact, is to ensure that systematic errors are sufficiently small for the measurement at hand, and indeed, in some experiments how well this uncertainty is controlled can be the key success factor.

One example of this is the measurement of parity violation in highenergy electron-nucleus scattering. This effect is due to the exchange of a Z0 boson between electron and nucleus and manifests itself as a tiny difference between the scattering cross sections for electrons that are longitudinally polarized parallel (dσR) and antiparallel (dσL) to their line of movement. This difference is expressed as the asymme try parameter, A=(dσR-dσL)/(dσR+dσL). which has an expected value of A≈9×10-5[9].

To perform the experiment, a longitudinally polarized electron beam is scattered off a suitable target, and the scattering rates are measured for beam polarization parallel and antiparallel. To be able to make a valid comparison of these two rates at the desired level, however, it is essential to maintain identical conditions for the two measurements. Indeed, a tiny change in any number of parameters, for example, the energy of the beam, could easily create an artificial difference between the two scattering rates, thereby masking any real effect. The major part of the effort in this experiment, therefore, is to identify the possible sources of systematic error, design the experiment so as to minimize or eliminate as many of these as possible and monitor those that remain!

Systematic errors are distinguished from random errors by two characteristics. First, in a series of measurements taken with the same instrument and calibration, all measurements will have the same systematic error. In contrast, the random errors in these same data will fluctuate from measurement to measurement in a completely independent fashion. Moreover, the random emrs may be decreased by making repeated measurements as shown by Eq. (1.32). The systematic errors, on the other hand, will remain constant no matter how many measurements are made and can be decreased only by changing the method of measurement. Systematic errors, therefore, cannot be treated using probability theory, and indeed there is no general procedure for this. One must usually resort to a case by case analysis, and as a general mle, systematic errors should be kept separate from the random errors.

A point of confusion, which sometimes occurs, especially when data are analyzed and treated in several different stages, is that a random error at one stage can become a systematic error at a later stage. In the first example, for instance, the uncertainty incurred when zeroing the voltmeter is a random error with respect to the zeroing process. The *experiment here is the positioning of the pointer exactly on the zero marking and one can easily imagine doing this process many times to obtain a distribution of “zero points” with a certain standard deviation. Once a zero calibration is made, however, subsequent measurements made with the instmment will all be referred to that particular zero point and its error. For these measurements, the zero-point error is a systematic error. Another similar example is the least-squares (see Chapter 9) fitted calibration curve. Assuming that the calibration is a straight line, the resulting slope and intercept values for this fit will contain random errors due to the calibration measurements. For all subsequent measurements referred to this calibration curve, however, these errors are not random but systematic.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S0076695X08602513

Data Reduction and the Propagation of Errors

Robert G. Mortimer, in Mathematics for Physical Chemistry (Fourth Edition), 2013

16.1.1 The Combination of Random and Systematic Errors

Random and systematic errors combine in the same way as the errors in Eq. (16.4). If εr is the probable error due to random errors and εs is the probable error due to systematic errors, the total probable error is given by

(16.5)

If you use the 95% confidence level for the random errors, you must use the same confidence level for systematic errors if you make an educated guess at the systematic error. Most people instinctively tend to estimate errors at about the 50% confidence level. To avoid this tendency, you might make a first guess at your systematic error and then double it.

Example 16.2

Assume that a length has been measured as 37.8 cm with an expected random error of 0.35 cm and a systematic error of 0.06 cm. Find the total expected error

εt=(0.35cm)2+(0.06cm)21/2=0.36cm≈0.4cm,l=37.8cm±0.4cm.

If one source of error is much larger than the other, the smaller error makes a much smaller contribution after the errors are squared. In the previous example, the systematic error is nearly negligible, especially since one significant digit is usually sufficient in an expected error.

Exercise 16.2

Assume that you estimate the total systematic error in a melting temperature measurement as 0.20 °C at the 95% confidence level and that the random error has been determined to be 0.06 °C at the same confidence level. Find the total expected error.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780124158092000161

Experimental Design and Sample Size Calculations

Andrew P. King, Robert J. Eckersley, in Statistics for Biomedical Engineers and Scientists, 2019

9.4.2 Blinding

Systematic errors can arise because either the participants or the researchers have particular knowledge about the experiment. Probably the best known example is the placebo effect, in which patients’ symptoms can improve simply because they believe that they have received some treatment even though, in reality, they have been given a treatment of no therapeutic value (e.g. a sugar pill). What is less well known, but nevertheless well established, is that the behavior of researchers can alter in a similar way. For example, a researcher who knows that a participant has received a specific treatment may monitor the participant much more carefully than a participant who he/she knows has received no treatment. Blinding is a method to reduce the chance of these effects causing a bias. There are three levels of blinding:

1.

Single-blind. The participant does not know if he/she is a member of the treatment or control group. This normally requires the control group to receive a placebo. Single-blinding can be easy to achieve in some types of experiments, for example, in drug trials the control group could receive sugar pills. However, it can be more difficult for other types of treatment. For example, in surgery there are ethical issues involved in patients having a placebo (or sham) operation.2

2.

Double-blind. Neither the participant nor the researcher who delivers the treatment knows whether the participant is in the treatment or control group.

3.

Triple-blind. Neither the participant, the researcher who delivers the treatment, nor the researcher who measures the response knows whether the participant is in the treatment or control group.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081029398000189

Thermoluminescence Dating

L. Musílek, M. Kubelík, in Radiation in Art and Archeometry, 2000

8.2 Systematic errors

The uncertainties contributing to the systematic error originate from various sources. The first source of the systematic error is the calibration of the α source, the β source, the α counter, the potassium content measurement, the β measurement and the γ measurement. Assuming that each of these uncertainties is ±5 %, then, for the various versions of dosimetry, the error terms are:

(16a)(σ4)a2=25{fα2+(1−fα)2+(fα+fβ,Th,U+fγ,Th,U)2+(fβ,K+fγ,K)2},

(16b)(σ4)b2=25{fα2+(1−fα−fβ)2+(fα+fγ,Th,U)2+fγ,K2+fβ2},

(16c)(σ4)c2=25{fα2+(1−fα−fβ)2+(fα+fβ,Th,U)2+fβγ,K2+fγ2},

(16d)(σ4)d2=25{2fα2+fβ2+fγ2}.

Due to the observed discrepancy between the calculated (from radioactive analysis) and measured (by TLD) γ dose rates, which is estimated to ±10 %, an additional error term needs to be added:

The second source of the systematic error arises from the uncertainty of the ratio between the uranium and thorium series. The measurement by α counting gives no information about this ratio, and converting the α count-rates to dose rates depends on it, as the energy of β and γ radiation emitted per α particle differs between both series. For the uncertainty in this ratio ±50 % is assumed and it is used for various options of dosimetry:

(18a)(σ6)a2=15fβ,Th,U2+10fγ,Th,U2,

Another problem is given by the fact, that both uranium and thorium series contain one of the isotopes of radon as a member. Possible escape of this gas can influence the dose rate and can be evaluated by the measurement in a gas cell, where only particles from escaped radon are detected by a scintillator. This technique is described in [37]. However, the estimate of the escape measured in the laboratory does not necessarily correspond to the real escape rate at the sampling location. Assuming that the uncertainty of the value gs, which expresses the lost α counts for the conditions of the sample, is ±25 %, then we obtain the error term:

(19)(σ7)2=(gs/4αB)2(fα+fβ,Th,U)2+(gw/2α′)2fγ,Th,U2,

where αB is the α count rate corrected for radon escape and the second term refers to radon escape in the soil, α’ being the corrected α count rate from the soil and gw the lost counts for the soil sample (having the same wetness as in the ground).

The last important source of the systematic error is given by the uncertainty δF of the fractional water uptake F. The value of δF must be estimated from the knowledge about the conditions (rainfall, drainage, etc.) on site. This error can be approximated by:

(20)σ8=(δF/F){W(1,5fα+1,25fβ)+W′(1,15fγ)}.

W and W’ is the saturation wetness of the sample and the soil, respectively, expressed as the ratio of the saturation weight minus the dry weight and the dry weight in percent.

The overall systematic error is a combination of the contributions discussed above, i.e.:

(21)σs2=σ42+σ52+σ62+σ72+σ82,

and the overall error for the sample is given by the combination of random and systematic errors as:

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780444504876500523

Total Survey Error

Tom W. Smith, in Encyclopedia of Social Measurement, 2005

Bias, or Systematic Error

Turning to bias, or systematic error, there is also a sampling component. First, the sample frame (i.e., the list or enumeration of elements in the population) may either omit or double count units. For example, the U.S. Census both misses people (especially African-Americans and immigrants) and counts others twice (especially people with more than one residence), and samples based on the census reflect these limitations. Second, certain housing units, such as new dwellings, secondary units (e.g., basement apartments in what appears to be a single-family dwelling), and remote dwellings, tend to be missed in the field. Likewise, within housing units, certain individuals, such as boarders, tend to be underrepresented and some respondent selection methods fail to work in an unbiased manner (e.g., the last/next birthday method overrepresents those who answer the sample-screening questions). Third, various statistical sampling errors occur. Routinely, the power of samples is overestimated because design effects are not taken into consideration. Also, systematic sampling can turn out to be correlated with various attributes of the target population. For example, in one study, both the experimental form and respondent selection were linked by systematic sampling in such a way that older household members were disproportionately assigned to one experimental version of the questionnaire, thus failing to randomize respondents to both experimental forms.

Nonsampling error comes from both nonobservational and observational errors. The first type of nonobservational error is coverage error, in which a distinct segment of the target population is not included in sample. For example, in the United States, preelection random-digit-dialing (RDD) polls want to generalize to the voting population, but systematically exclude all voters not living in households with telephones. Likewise, samples of businesses often underrepresent smaller firms. The second type of nonobservational error consists of nonresponse (units are included in the sample, but are not successfully interviewed). Nonresponse has three main causes: refusal to participate, failure to contact because people are away from home (e.g., working or on vacation), and all other reasons (such as illness and mental and/or physical handicaps).

Observational error includes collection, processing, and analysis errors. As with variable error, collection error is related to mode, instrument, interviewer, and respondent. Mode affects population coverage. Underrepresentation of the deaf and poor occurs in telephone surveys, and of the blind and illiterate, in mail surveys. Mode also affects the volume and quality of information gathered. Open-ended questions get shorter, less complete answers on telephone surveys, compared to in-person interviews. Bias also is associated with the instrument. Content, or the range of information covered, obviously determines what is collected. One example of content error is when questions presenting only one side of an issue are included, such as is commonly done in what is known as advocacy polling. A second example is specification error, in which one or more essential variable is omitted so that models cannot be adequately constructed and are therefore misspecified.

Various problematic aspects of question wordings can distort questions. These include questions that are too long and complex, are double-barreled, include double negatives, use loaded terms, and contain words that are not widely understood. For example, the following item on the Holocaust is both complex and uses a double negative: “As you know, the term ‘holocaust’ usually refers to the killing of millions of Jews in Nazi death camps during World War II. Does it seem possible or does it seem impossible to you that the Nazi extermination of the Jews never happened?” After being presented with this statement in a national U.S. RDD poll in 1992, 22% of respondents said it was possible that the Holocaust never happened, 65% said that it was impossible that it never happened, and 12% were unsure. Subsequent research, however, demonstrated that many people had been confused by the wording and that Holocaust doubters were actually about 2% of the population, not 22%. Error from question wording also occurs when terms are not understood in a consistent manner.

The response scales offered also create problems. Some formats, such as magnitude measurement scaling, are difficult to follow, leaving many, especially the least educated, unable to express an opinion. Even widely used and simple scales can cause error. The 10-point scalometer has no clear midpoint and many people wrongly select point 5 on the 1–10 scale in a failed attempt to place themselves in the middle. Context, or the order of items in a survey, also influences responses in a number of quite different ways. Prior questions may activate certain topics and make them more accessible (and thus more influential) when later questions are asked. Or they may create a contrast effect under which the prior content is excluded from later consideration under a nonrepetition rule. A norm of evenhandedness may be created that makes people answer later questions in a manner consistent with earlier questions. For example, during the Cold War, Americans, after being asked if American reporters should be allowed to report the news in Russia, were much more likely to say that Russian reporters should be allowed to cover stories in the United States, compared to when the questions about Russian reporters were asked first. Even survey introductions can influence the data quality of the subsequent questions.

Although social science scholars hope that interviewers merely collect information, in actuality, interviewers also affect what information is reported. First, the mere presence of an interviewer usually magnifies social desirability effects, so that there is more underreporting of sensitive behaviors to interviewers than when self- completion is used. Second, basic characteristics of interviewers influence responses. For example, Whites express more support for racial equality and integration when interviewed by Blacks than when interviewed by Whites. Third, interviewers may have points of view that they convey to respondents, leading interviewers to interpret responses, especially to open-ended questions, in light of their beliefs.

Much collection error originates from respondents. Some problems are cognitive. Even given the best of intentions, people are fallible sources. Reports of past behaviors may be distorted due to forgetting the incidents or misdating them. Minor events will often be forgotten, and major events will frequently be recalled as occurring more recently than was actually the case. Of course, respondents do not always have the best of intentions. People tend to underreport behaviors that reflect badly on themselves (e.g., drug use and criminal records) and to overreport positive behaviors (e.g., voting and giving to charities).

Systematic error occurs during the processing of data. One source of error relates to the different ways in which data may be coded. A study of social change in Detroit initially found large changes in respondents’ answers to the same open-ended question asked and coded several decades apart. However, when the original open-ended responses from the earlier survey were recoded by the same coders who coded the latter survey, the differences virtually disappeared, indicating that the change had been in coding protocols and execution, not in the attitudes of Detroiters. Although data-entry errors are more often random, they can seriously bias results. For example, at one point in time, no residents of Hartford, Connecticut were being called for jury duty; it was discovered that the new database of residents had been formatted such that the “d” in “Hartford” fell in a field indicating that the listee was dead. Errors can also occur when data are transferred. Examples include incorrect recoding, misnamed variables, and misspecified data field locations. Sometimes loss can occur without any error being introduced. For example, 20 vocabulary items were asked on a Gallup survey in the 1950s and a summary scale was created. The summary scale data still survive, but the 20 individual variables have been lost. Later surveys included 10 of the vocabulary items, but they cannot be compared to the 20-item summary scale.

Wrong or incomplete documentation can lead to error. For example, documentation on the 1967 Political Participation Study (PPS) indicated that one of the group memberships asked about was “church-affiliated groups.” Therefore, when the group membership battery was later used in the General Social Surveys (GSSs), religious groups were one of the 16 groups presented to respondents. However, it was later discovered that church-affiliated groups had not been explicitly asked about on the earlier survey, but that the designation had been pulled out of an “other-specify” item. Because the GSS explicitly asked about religious groups, it got many more mentions than had appeared in the PPS; this was merely an artifact of different data collection procedures that resulted from unclear documentation.

Most discussions of total survey error stop at the data-processing stage. But data do not speak for themselves. Data “speak” when they are analyzed, and the analysis is reported by researchers. Considerable error is often introduced at this final stage. Models may be misspecified, not only by leaving crucial variables out of the survey, but also by omitting such variables from the analysis, even when they are collected. All sorts of statistical and computational errors occur during analysis. For example, in one analysis of a model explaining levels of gun violence, a 1 percentage point increase from a base incidence level of about 1% was misdescribed as a 1% increase, rather than as a 100% increase. Even when a quantitative analysis is done impeccably, distortion can occur in the write-up. Common problems include the use of jargon, unclear writing, the overemphasis and exaggeration of results, inaccurate descriptions, and incomplete documentation. Although each of the many sources of total survey error can be discussed individually, they constantly interact with one another in complex ways. For example, poorly trained interviewers are more likely to make mistakes with complex questionnaires, the race of the interviewer can interact with the race of respondents to create response effects, long, burdensome questionnaires are more likely to create fatigue among elderly respondents, and response scales using full rankings are harder to do over the phone than in person. In fact, no stage of a survey is really separate from the other stages, and most survey error results from, or is shaped by, interactions between the various components of a survey.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B0123693985001262

Part 1

D. DELAUNAY, in Advances in Wind Engineering, 1988

Observations errors

To test the effects of possible systematic errors of observation on ΔP, R, and T, the values of the parameters of observed cyclones have been increased, in succession, by 10% for ΔP and T and 20% for R. Similarly, it may be feared that all the cyclones which have crossed the area in question were not listed. Simulation was therefore carried out with an average value of NC increased by 10%. It appears that these modifications result in an increase of the values of V50 and V1000 not exceeding 1.5 m/s, except for ΔP, for which a systematic over-evaluation of 10% leads to an increase of V50 and V1000 between 2 and 2.5 m/s.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978044487156550014X

Model Evaluation and Enhancement

Robert Nisbet Ph.D., … Ken Yale D.D.S., J.D., in Handbook of Statistical Analysis and Data Mining Applications (Second Edition), 2018

Evaluation of Models According to Random Error

We can express the total of the random error and systematic error mathematically, but it is very difficult to distinguish between them in practice. For example, the general form of a regression model is

(11.2)Y=a+b1X1+b2X2+b3X3+⋯+bnXn+Error

where a is the slope intercept, X-values are the predictor variables, and b-values are the coefficients associated with each X-value.

If the signal in the data set is faint, the error term will be relatively large. If the signal in the data is strong, the error will be relatively small. Unfortunately, the error term in Eq. (11.1) is a combination of random error and model error. Most model performance metrics do not distinguish between random error and model error. But there are some techniques that can be used to measure model error to some extent and correct for it. We will begin by discussing model performance metrics, which express the total combined error. Later in the chapter, we will present some common techniques for assessing model error and show some ways to correct for it (partially).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780124166325000116

Quantum Entanglement and Information Processing

J.A. Jones, in Les Houches, 2004

4.2 Composite rotations

The use of composite rotations to reduce the effects of systematic errors in conventional NMR experiments relies on the fact that any state of a single isolated qubit can be mapped to a point on the Bloch sphere, and any unitary operation on a single isolated qubit corresponds to a rotation on the Bloch sphere. The result of applying any series of rotations (a composite rotation) is itself a rotation, and so there are many apparently equivalent ways of performing a desired rotation. These different methods may, however, show different sensitivity to errors: composite rotations can be designed to be much less error prone than simple rotations!

A rotation can go wrong in two basic ways: the rotation angle can be wrong or the rotation axis can be wrong. In an NMR experiment (viewed in the rotating frame) ideal RF pulses cause rotation of a spin through an angle θ = ω1 t around an axis in the xy-plane. So called pulse length errors occur when the pulse power ω1 is incorrect, so that the flip angle θ is systematically wrong by some fraction. This can be due to experimenter carelessness, but more usually arises from the inhomogeneity in the RF field over a macroscopic sample. The second type of error, off-resonance effects (Fig. 6), occur when the excitation frequency doesn
S⌣t match the transition frequency, so that the Hamiltonian is the sum of RF and off-resonance terms. This results in rotations around a tilted axis, and the rotation angle is also increased.

Fig. 6. Effect of applying an off-resonance 180° pulse to a spin with initial state Iz; the spin rotates around a tilted axis. Trajectories are shown for small, medium and large off-resonance effects.

The first composite rotation [47] was designed to compensate for pulse length errors in an inversion pulse, that is a pulse which takes the state Iz to − Iz. This can be achieved by, for example, a simple 180° pulse, but this is quite sensitive to pulse length errors. The composite rotation 90°x180°y90°x has the same effect in the absence of errors, but will also partly compensate for pulse length errors. This is shown in Fig. 7 which plots the inversion efficiency of the simple and composite 180° pulses as a function of the fractional pulse length error g. (The inversion efficiency of an inversion pulse measures the component of the final spin state along −Iz after the pulse is applied to an initial state of Iz.)

Fig. 7. The inversion efficiency of a simple 180° pulse (dashed line) and of the composite pulse 90°x 180°y 90°x. (solid line) as a function of the fractional pulse length error g. The way in which the composite pulse works can be understood by examining trajectories on the Bloch sphere, which are shown on the right for three values of g.

Composite pulses of this kind are very widely used within conventional NMR, and many different pulses have been developed [48], but most of them are not directly applicable to quantum computing [50]. This is because conventional NMR pulse sequences are designed to perform specific motions on the Bloch sphere (such as inversion), in which case the initial and final spin states are known, while for quantum computing it is necessary to use general rotations, which are accurate whatever the initial state of the system. Perhaps surprisingly composite pules are known which have the desired property, of performing accurate rotations whatever the initial spin state.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S0924809903800343

Probability, Statistics, and Experimental Errors

Robert G. Mortimer, in Mathematics for Physical Chemistry (Fourth Edition), 2013

Abstract

Every measured quantity is subject to experimental error. The two types of experimental error are systematic errors and random errors. Systematic errors must usually be estimated by educated guesswork. Random errors are assumed to be a sample from a population of many imaginary replicas of the experiment. Such a population is assumed to be governed by probability theory. Mathematical statistics is used to infer the properties of a population from a sample. Random errors can be treated statistically if the measurement can be repeated a number of times. The mean of a set of repeated measurements is a better estimate of the correct value of a variable than is a single measurement.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978012415809200015X

The B → D*ℓν Form Factor at Zero Recoil and the Determination of |Vcb|

J.N. Simone, … S.M. Ryan, in Proceedings of the 31st International Conference on High Energy Physics Ichep 2002, 2003

2 DOUBLE RATIO METHOD

We consider three double ratios of hadronic matrix elements for which the bulk of statistical and systematic errors are expected to cancel. From these ratios we extract three zero recoil form factors:

(3)〈D|v0|B〉  〈B|v0|D〉〈D|v0|D〉  〈B|v0|B〉⇒   | h+(1)|2

(4)〈D∗|v0|B∗〉  〈B∗|v0|D∗〉〈D∗|v0|D∗〉  〈B∗|v0|B∗〉⇒   | h1(1)|2

(5)〈D∗|A1|B〉  〈B∗|A1|D〉〈D∗|A1|D〉  〈B∗|A1|B〉⇒   | HA1(1)|2

Form factor h+ is one of two form factors contributing to BDℓν decays[8]. Note that the third ratio yields HA1 and not hA1.

Form factors h+, h1 and HA1 depend, respectively, upon parameters P, ℓV and A and have quark mass dependence:

(6)1−|hX(1)|Δ2=ℓx−ℓx[3](12mc+12mb)+…

where Δ=(12mc−12mb). The bare charm and bottom quark masses are inputs in lattice QCD. We compute double ratios for a range of “charm” and “bottom” quark masses. After matching the lattice theory to HQET, we determine all the x as well as the order 1/mQ3 coefficients ℓx[3] by studying the mass dependence of the form factors. These long-distance coefficients are combined as in Equation 2 to give our determination of hA1(1).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780444513434501484

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)


где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)


то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


Понравилась статья? Поделить с друзьями:
  • Систематические ошибки репрезентативности являются следствием
  • Системе виндовс не удалось исправить ошибки диска
  • Систематические ошибки регистрации при проведении выборочного наблюдения обусловлены
  • Систематические ошибки репрезентативности могут возникать
  • Систематические ошибки регистрации это