Систематическая ошибка прибора

Систематическая
погрешность
,
в отличие от случайной, сохраняет свою
величину (и знак) во время эксперимента.
Систематические погрешности появляются
вследствие ограниченной точности
приборов, неучета внешних факторов и
т.д.

Обычно
основной вклад в систематическую
погрешность
дает погрешность, определяемая точность
приборов, которыми производят измерения.
Т.е. сколько бы раз мы не повторяли
измерения, точность полученного нами
результата не превысит точности,
обеспеченной характеристиками данного
прибора. Для обычных измерительных
инструментов (линейка, пружинные весы,
секундомер) в качестве абсолютной
систематической погрешности берется
половина шкалы деления прибора. Так в
рассматриваемом нами случае работы N
24 величина h’
может измеряться с точностью =0.05
см,
если линейка имеет миллиметровые
деления, и =0.5
см,
если только сантиметровые.

Систематические
погрешности электроизмерительных
приборов, выпускаемых промышленностью,
определяется их классом точности,
который обычно выражается в процентах.
Электроизмерительные приборы по степени
точности подразделяются на 8 основных
классов точности:0.05, 0.1, 0.2, 0.5, 1, 1.5, 2.5, 4.
Класс
точности
есть
величина, показывающая максимально
допустимую

относительную погрешность в процентах.
Если например прибор имеет класс
точности 2, то это означает, что его
максимальная относительная погрешность
при измерении, например тока, равна 2 %,
т.е.

где

верхний предел шкалы измерений амперметра.
При этом величина
(абсолютная погрешность в измерении
силы тока) будет равна

(6)

для
любых измерений силы тока на данном
амперметре. Так как ,
вычисленное по формуле (6), это максимально
допустимая данным прибором погрешность,
то обычно считают, что для определения
,
погрешность, определяемую классом
точности прибора, нужно разделить на
два. Т.е.

и
при этом
будет так же одинакова для всех измерений
на данном приборе. Однако, относительная
погрешность (в нашем случае

где
I
показания прибора) будет тем меньше,
чем ближе значение измеряемой величины
к максимально возможному на данном
приборе. Следовательно, лучше выбирать
прибор так, чтобы стрелка прибора при
измерениях заходила за середину шкалы.

В
реальных опытах присутствуют как
систематические, так и случайные ошибки.
Пусть они характеризуются абсолютными
погрешностями
и .
Тогда суммарная погрешность опыта
находится по формуле

(7)

Из
формулы (7) видно, что если одна из этих
погрешностей мала, то ей можно пренебречь.
Например, пусть
в 2 раза больше ,
тогда

т.е.
с точностью до 12% =.
Таким образом, меньшая погрешность
почти ничего не добавляет к большей,
даже если она составляет половину от
нее. В том случае, если случайная ошибка
опытов хотя бы вдвое меньше систематической,
нет смысла производить многократные
измерения, так как полная погрешность
опыта при этом практически не уменьшается.
Достаточно произвести 2 — 3 измерения,
чтобы убедиться, что случайная ошибка
действительно мала.

В
случае рассматриваемой нами работы N
24 =0.26
см,
а
равна либо 0.05 см,
либо 0.5 см.
В этом случае

Как
видно, в первом случае можно пренебречь
,
а во втором .

Соседние файлы в папке физика

  • #
  • #

    29.03.201687.04 Кб6mekh1.doc

  • #
  • #
  • #
  • #

Groupthink is a collective set of systematic errors (biases) held by and perpetuated by a group.

From: Paradigms Lost, 2006

Experimental techniques

Yanqiu Huang, … Zhixiang Cao, in Industrial Ventilation Design Guidebook (Second Edition), 2021

4.3.3.2 Measurement errors

The measurement errors are divided into two categories: systematic errors and random errors (OIML, 1978).

Systematic error is an error which, in the course of a number of measurements carried out under the same conditions of a given value and quantity, either remains constant in absolute value and sign, or varies according to definite law with changing conditions.

Random error varies in an unpredictable manner in absolute value and in sign when a large number of measurements of the same value of a quantity are made under essentially identical conditions.

The origins of the above two errors are different in cause and nature. A simple example is when the mass of a weight is less than its nominal value, a systematic error occurs, which is constant in absolute value and sign. This is a pure systematic error. A ventilation-related example is when the instrument factor of a Pitot-static tube, which defines the relationship between the measured pressure difference and the velocity, is incorrect, a systematic error occurs. On the other hand, if a Pitot-static tube is positioned manually in a duct in such a way that the tube tip is randomly on either side of the intended measurement point, a random error occurs. This way, different phenomena create different types of error. The (total) error of measurement usually is a combination of the above two types.

The question may be asked, that is, what is the reason for dividing the errors into two categories? The answer is the totally different way of dealing with these different types. Systematic error can be eliminated to a sufficient degree, whereas random error cannot. The following section shows how to deal with these errors.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128166734000043

EXPERIMENTAL TECHNIQUES

KAI SIREN, … PETER V. NIELSEN, in Industrial Ventilation Design Guidebook, 2001

12.3.3.11 Systematic Errors

Systematic error, as stated above, can be eliminated—not totally, but usually to a sufficient degree. This elimination process is called “calibration.” Calibration is simply a procedure where the result of measurement recorded by an instrument is compared with the measurement result of a standard. A standard is a measuring device intended to define, to represent physically, to conserve, or to reproduce the unit of measurement in order to transmit it to other measuring instruments by comparison.1 There are several categories of standards, but, simplifying a little, a standard is an instrument with a very high accuracy and can for that reason be used as a reference for ordinary measuring instruments. The calibration itself is usually carried out by measuring the quantity over the whole range required and by defining either one correction factor for the whole range, for a constant systematic error, or a correction curve or equation for the whole range. Applying this correction to the measurement result eliminates, more or less, the systematic error and gives the corrected result of measurement.

A primary standard has the highest metrological quality in a given field. Hence, the primary standard is the most accurate way to measure or to reproduce the value of a quantity. Primary standards are usually complicated instruments, which are essentially laboratory instruments and unsuited for site measurement. They require skilled handling and can be expensive. For these reasons it is not practical to calibrate all ordinary meters against a primary standard. To utilize the solid metrological basis of the primary standard, a chain of secondary standards, reference standards, and working standards combine the primary standard and the ordinary instruments. The lower level standard in the chain is calibrated using the next higher level standard. This is called “traceability.” In all calibrations traceability along the chain should exist, up to the instrument with the highest reliability, the primary standard.

The question is often asked, How often should calibration be carried out? Is it sufficient to do it once, or should it be repeated? The answer to this question depends on the instrument type. A very simple instrument that is robust and stable may require calibrating only once during its lifetime. Some fundamental meters do not need calibration at all. A Pitot-static tube or a liquid U-tube manometer are examples of such simple instruments. On the other hand, complicated instruments with many components or sensitive components may need calibration at short intervals. Also fouling and wearing are reasons not only for maintenance but also calibration. Thus the proper calibration interval depends on the instrument itself and its use. The manufacturers recommendations as well as past experience are often the only guidelines.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780122896767500151

Intelligent control and protection in the Russian electric power system

Nikolai Voropai, … Daniil Panasetsky, in Application of Smart Grid Technologies, 2018

3.3.1.2 Systematic errors in PMU measurements

The systematic errors caused by the errors of the instrument transformers that exceed the class of their accuracy are constantly present in the measurements and can be identified by considering some successive snapshots of measurements. The TE linearized at the point of a true measurement, taking into account random and systematic errors, can be written as:

(25)wky¯=∑l∈ωk∂w∂ylξyl+cyl=∑aklξyl+∑aklcyl

where ∑ aklξyl—mathematical expectation of random errors of the TE, equal to zero; ∑ aklcyl—mathematical expectation of systematic error of the TE, ωk—a set of measurements contained in the kth TE.

The author of Ref. [28] suggests an algorithm for the identification of a systematic component of the measurement error on the basis of the current discrepancy of the TE. The algorithm rests on the fact that systematic errors of measurements do not change through a long time interval. In this case, condition (17) will not be met during such an interval of time. Based on the snapshots that arrive at time instants 0, 1, 2, …, t − 1, t…, the sliding average method is used to calculate the mathematical expectation of the TE discrepancy:

(26)Δwkt=1−αΔwkt−1+αwkt

where 0 ≤ α ≤ 1.

Fig. 5 shows the curve of the TE discrepancy (a thin dotted line) calculated by (26) for 100 snapshots of measurements that do not have systematic errors.

Fig. 5

Fig. 5. Detection of a systematic error in the PMU measurements and identification of mathematical expectation of the test equation.

It virtually does not exceed the threshold dk = 0.014 (a light horizontal line). Above the threshold, there is a curve of the TE discrepancy (a bold dotted line) that contains a measurement with a systematic error and a curve of nonzero mathematical expectation Δwk(t) ∈ [0.026; 0.03] (a black-blue thick line). However, the nonzero value of the calculated mathematical expectation of the TE discrepancy can only testify to the presence of a systematic error in the PMU measurements contained in this TE, but cannot be used to locate it.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128031285000039

Measurements

Sankara Papavinasam, in Corrosion Control in the Oil and Gas Industry, 2014

ii Systematic or determinate error

To define systematic error, one needs to understand ‘accuracy’. Accuracy is a measure of the closeness of the data to its true or accepted value. Figure 12.3 illustrates accuracy schematically.4 Determining the accuracy of a measurement is difficult because the true value may never be known, so for this reason an accepted value is commonly used. Systematic error moves the mean or average value of a measurement from the true or accepted value.

FIGURE 12.3. Difference between Accuracy and Precision in a Measurement.4

Reproduced with permission from Brooks/Cole, A Division of Cengage Learning.

Systematic error may be expressed as absolute error or relative error:

The absolute error (EA) is a measure of the difference between the measured value (xi) and true or accepted value (xt) (Eqn. 12.5):

(Eqn. 12.5)EA=xi−xt

Absolute error bears a sign:

A negative sign indicates that the measured value is smaller than true value and

A positive sign indicates that the measured value is higher than true value

The relative error (ER) is the ratio of measured value to true value and it is expressed as (Eqn. 12.6):

(Eqn. 12.6)ER=(xi−xtxt).100

Table 12.2 illustrates the absolute and relative errors for six measurements in determining the concentration of 20 ppm of an ionic species in solution.

Table 12.2. Relative and Absolute Errors in Six Measurements of Aqueous Solution Containing 20 ppm of an Ionic Species

Measured Value Absolute Error Relative Error (Percentage) Remarks
19.4 −0.6 −3.0 Experimental value lower than actual value.
19.5 −0.5 −2.5
19.6 −0.4 −2.0
19.8 −0.2 −1.0
20.1 +0.1 +0.5 Experimental value higher than actual value.
20.3 +0.3 +1.5

Systematic error may occur due to instrument, methodology, and personal error.

Instrument error

Instrument error occurs due to variations that can affect the functionality of the instrument. Some common causes include temperature change, voltage fluctuation, variations in resistance, distortion of the container, error from original calibration, and contamination. Most instrument errors can be detected and corrected by frequently calibrating the instrument using a standard reference material. Standard reference materials may occur in different forms including minerals, gas mixtures, hydrocarbon mixtures, polymers, solutions of known concentration of chemicals, weight, and volume. The standard reference materials may be prepared in the laboratory or may be obtained from standard-making organizations (e.g., ASTM standard reference materials), government agencies (e.g., National Institute of Standards and Technology (NIST) provides about 900 reference materials) and commercial suppliers. If standard materials are not available, a blank test may be performed using a solution without the sample. The value from this test may be used to correct the results from the actual sample. However this methodology may not be applicable for correcting instrumental error in all situations.

Methodology error

Methodology error occurs due to the non-ideal physical or chemical behavior of the method. Some common causes include variation of chemical reaction and its rate, incompleteness of the reaction between analyte and the sensing element due to the presence of other interfering substances, non-specificity of the method, side reactions, and decomposition of the reactant due to the measurement process. Methodology error is often difficult to detect and correct, and is therefore the most serious of the three types of systematic error. Therefore a suitable method free from methodology error should be established for routine analysis.

Personal error

Personal error occurs due to carelessness, lack of detailed knowledge of the measurement, limitation (e.g., color blindness of a person performing color-change titration), judgment, and prejudice of person performing the measurement. Some of these can be overcome by automation, proper training, and making sure that the person overcomes any bias to preserve the integrity of the measurement.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123970220000121

Experimental Design and Sample Size Calculations

Andrew P. King, Robert J. Eckersley, in Statistics for Biomedical Engineers and Scientists, 2019

9.4.2 Blinding

Systematic errors can arise because either the participants or the researchers have particular knowledge about the experiment. Probably the best known example is the placebo effect, in which patients’ symptoms can improve simply because they believe that they have received some treatment even though, in reality, they have been given a treatment of no therapeutic value (e.g. a sugar pill). What is less well known, but nevertheless well established, is that the behavior of researchers can alter in a similar way. For example, a researcher who knows that a participant has received a specific treatment may monitor the participant much more carefully than a participant who he/she knows has received no treatment. Blinding is a method to reduce the chance of these effects causing a bias. There are three levels of blinding:

1.

Single-blind. The participant does not know if he/she is a member of the treatment or control group. This normally requires the control group to receive a placebo. Single-blinding can be easy to achieve in some types of experiments, for example, in drug trials the control group could receive sugar pills. However, it can be more difficult for other types of treatment. For example, in surgery there are ethical issues involved in patients having a placebo (or sham) operation.2

2.

Double-blind. Neither the participant nor the researcher who delivers the treatment knows whether the participant is in the treatment or control group.

3.

Triple-blind. Neither the participant, the researcher who delivers the treatment, nor the researcher who measures the response knows whether the participant is in the treatment or control group.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081029398000189

The pursuit and definition of accuracy

Anthony J. Martyr, David R. Rogers, in Engine Testing (Fifth Edition), 2021

Systematic instrument errors

Typical systematic errors (Fig. 19.2C) include the following:

1.

Zero errors—the instrument does not read zero when the value of the quantity observed is zero.

2.

Scaling errors—the instrument reads systematically high or low.

3.

Nonlinearity—the relation between the true value of the quantity and the indicated value is not exactly in proportion; if the proportion of error is plotted against each measurement over full scale, the graph is nonlinear.

4.

Dimensional errors—for example, the effective length of a dynamometer torque arm may not be precisely correct.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978012821226400019X

Power spectrum and filtering

Andreas Skiadopoulos, Nick Stergiou, in Biomechanics and Gait Analysis, 2020

5.10 Practical implementation

As suggested by Winter (2009), to cancel the phase shift of the output signal relative to the input that is introduced by the second-order filter, the once-filtered data has to filtered again, but this time in the reverse direction. However, at every pass the −3dB cutoff frequency is pushed lower, and a correction is needed to match the original single-pass filter. This correction should be applied once the coefficients of the fourth-order low-pass filter are calculated. Nevertheless, it should be also checked whether functions of closed source software use the correction factor. If they have not used it, the output of the analyzed signal will be distorted. The format of the recursive second-order filter is given by Eq. (5.36) (Winter, 2009):

(5.36)yk=α0χk+α1χk−1+α2χk−2+β1yk−1+β2yk−2

where y are the filtered output data, x are past inputs, and k the kth sample.The coefficients α0,α1,α2,β1, and β2 for a second-order Butterworth low-pass filter are computed from Eq. (5.37) (Winter, 2009):

(5.37)ωc=tanπfcfsCK1=2ωcK2=ωc2K3=α1K2α0=K21+K1+K2α1=2α0α2=α0β1=K3−α1β2=1−α1-K3

where, ωc is the cutoff angular frequency in rad/s, fc is the cutoff frequency in Hz, and fs is the sampling rate in Hz. When the filtered data are filtered again in the reverse direction to cancel phase-shift, the following correction factor to compensate for the introduced error should be used:

(5.38)C=(21n−1)14

where n≥2 is the number of passes. For a single-pass C=1, and no compensation is needed. For a dual pass, (n=2), a compensation is needed, and the correction factor should be applied. Thus, the ωc term from Eq. (5.37) is calculated as follows:

(5.39)ωc=tan(πfcfs)(212−1)14=tan(πfcfs)0.802

A systematic error is introduced to the signal if the correction factor is not applied. Therefore, remember to check any algorithm before using it. Let us check the correctness of the fourth-order low-pass filter that was built previously in R language. Vignette 5.2 contains the code to perform Winter’s (2009) low-pass filter in R programming language. Because the filter needs two past inputs (two data points) to compute a present filtered output (one data point), the time-series data to be filtered (the raw data) should be padded at the beginning and at the end. Additional data are usually collected before and after the period of interest.

Vignette 5.2

The following vignette contains a code in R programming language that performs the fourth-order zero-phase-shift low-pass filter from Eq. (5.37).

1.

The first step is to create a sine (or equally a cosine) wave with known amplitude and known frequency. Vignette 5.3 is used to synthesize periodic digital waves. Let us create a simple periodic sine wave s[n] with the following characteristics:

a.

Amplitude A=1 unit (e.g., 1 m);

b.

Frequency f=2 Hz;

c.

Phase θ=0 rad;

d.

Shift a0=0 unit (e.g., 0 m).

Vignette 5.3

The following vignette contains a code in R programming language that synthesizes periodic waveforms from sinusoids.

Let us choose an arbitrary fundamental period T0=2 seconds, which corresponds to a fundamental frequency of f0=1/T0=0.5 Hz. Now, knowing the fundamental frequency, the fourth harmonic that corresponds to a sine wave with frequency of f=2 Hz will be chosen. The periodic sine wave s[n] will be sampled at Fs=40 Hz (Ts=1/40 seconds) (i.e., 20 times the Nyquist frequency, fN=2 Hz). The sine wave will be recorded for a time interval of t=2 s, which corresponds to N=80 data points. Thus, and because ω0=2πf0, we have:

s[n]=sin(2ω0nTs)

which means that the fourth harmonic has frequency f=2

 

Hz. Fig. 5.14A shows the sine wave created. The first and last 20 data points can be considered as extra points (padded). Additional data at the beginning and end of the signal are needed for the next steps because the filter is does not behave well at the edges. Thus, the signal of interest starts at 0.5

 

seconds and ends at 1.5

 

seconds, which corresponds to N=40 data points.

Figure 5.14. (A) Example of a low-pass filter (cutoff frequency=2 Hz) applied to a sine wave sampled at 40 Hz, with amplitude equal to 1 m, and frequency equal to 2 Hz. (B) The signal interpolated by a factor of 2, and filtered with cutoff frequency equal to the frequency of the sine wave (cutoff frequency=2 Hz). (C) Since the amplitude of the filtered signal has been reduced by a ratio of 0.707, the low-pass filter correctly attenuated the signal. The power spectra of the original and reconstructed signal are shown.

2.

An extra, but not mandatory, step is to interpolate the created sine wave in order to increase the temporal resolution of the created signal (Fig. 5.14B). Of course, when a digital periodic signal is created from scratch, like we are doing using the R code in the vignettes, we can easily sample the signal at higher frequencies. However, if we want to use real biomechanical time series data, that have already been collected, a possible way to increase its temporal resolution is by using the Whittaker–Shannon interpolation formula. With the Whittaker–Shannon interpolation a signal is up-sampled with interpolation using the sinc() function (Yaroslavsky, 1997):

(5.40)s(x)=∑n=0N−1αnsin(π(xΔx−n))Nsin(π(xΔx−n)/N)

The Whittaker–Shannon interpolation formula can be used to increase the temporal resolution after removing the “white” noise from the data. Without filtering, the interpolation results in a noise level equal to that of the original signal before sampling (Marks, 1991). However, the interpolation noise can be reduced by both oversampling and filtering the data before interpolation (Marks, 1991). An alternative, and efficient, method is to run the DFT, zero-pad the signal, and then take the IDFT to reconstruct it. Vignette 5.4 can be used to increase the temporal resolution by a factor of 2, which corresponds to a sampling frequency of 80 Hz.

Vignette 5.4

The following vignette contains a code in R programming language that runs the normalized discrete sinc() function, and the Whittaker–Shannon interpolation function.

3.

The third step is to filter the previously created sine wave with the fourth-order zero-phase-shift low-pass filter, setting the cutoff frequency equal to the sine wave frequency f=2 Hz. Vignette 5.2 is used for step 3. To cancel any shift (i.e., a zero-phase-shift filter) n=2 passes must be chosen. The interpolated signal has a sampling rate of 80 Hz.

4.

The fourth step is to investigate the frequency response of the filtered sine wave. The frequency response of the Butterworth filter is given by Eq. (5.41)

(5.41)|AoutAin|=1(1+fsf3dB)2n

where the point at which the amplitude response, Aout, of the input signal, s[n], with frequency, f, and amplitude, Ain, drops off by 3dB and is known as the cutoff frequency, f3dB. When the cutoff frequency is set equal to the frequency of the signal (f3dB=f), the ratio should be equal to 0.707, since:

(5.42)|AoutAin|=12≈0.707

Fig. 5.14C shows the plots of the filtered and interpolated sine wave. Since the ratio of the maximum value of the filtered sine wave to the original sine wave ratio=0.707, the created fourth-order zero-phase-shift low-pass filter works properly. Without the correction factor the amplitude reduces nearly to half (0.51), indicating that the coefficients of the filter needed correction. Fig. 5.15 also shows an erroneously filtered signal. You can try to create Fig. 5.15 by yourself.

Figure 5.15. Example of a recursive low-pass filter applied to a sine wave with amplitude equal to 1 m and cutoff frequency equal to the frequency of the sine wave. Since the amplitude of the filtered signal has been reduced by a ratio of 0.707, the low-pass filter correctly attenuated the signal. However, the function without the correction factor reduced the amplitude by nearly one-half (0.51), indicating that the coefficients need correction.

The same procedure should be applied to check whether the output of the functions from closed source software used the correction factor or not. For example, using the library(signal) of the R computational software, if x is the vector that contains the raw data, then using butter() the Butterworth coefficients can be generated.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128133729000051

Introduction to coal sampling

Wes B. Membrey, in The Coal Handbook (Second Edition), 2023

4.1.1 Definitions

The following definitions have been adapted from definitions given in the sampling standards.

Accuracy. A measure of the closeness of agreement between an analytical result and the true value or a reference value.

Cut. An increment taken by a sampling device typically from a conveyor belt, screen discharge, or other streams of coal.

Bias. Systematic error which leads to the average value of a series of analytical results being persistently higher or lower than the true value or a reference sample result.

Error. Difference between the measured value and the true value or a value from a reference sample result.

Increment. An amount of coal taken from a body of coal (a truck or barge, etc.) or from a stream of coal (coal on a conveyor, sizing screen or a chute, etc.) in a single operation of the sampling device.

Lot. Defined quantity of coal for which the quality is to be determined.

Particle top size is the nominal top size and is the square aperture size of the smallest sieve through which 95% of the sample passes.

Precision. A statistical term that quantifies how closely repeated experimental values agree. It usually has the value of the 95% confidence level, or 2 standard deviations from the mean of the experimental values.

Representative. A sample is representative when the sampling error, a combination of precision and accuracy, is of an acceptable level.

Sample. Quantity of coal with qualities that are representative of a larger mass (lot) for which the quality is to be determined.

Standard deviation. A measure of the spread of a set of values, equal to the square root of the variance of the results.

Sub lot. A part of a lot that is sampled and tested separately to the entire lot.

Tolerance. The maximum acceptable difference between measurement values or analytical results.

Variance. A measure of the spread of a set of values expressed as the square of the differences between the values and their mean.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128243282000169

Sensors

Andrea Colagrossi, … Matteo Battilana, in Modern Spacecraft Guidance, Navigation, and Control, 2023

Quantization errors

Quantization error is a systematic error resulting from the difference between the continuous input value and its quantized output, and it is like round-off and truncation errors. This error is intrinsically associated with the AD conversion that maps the input values from a continuous set to the output values in a countable set, often with a finite number of elements. The quantization error is linked to the resolution of the sensor. Namely, a high-resolution sensor has a small quantization error. Indeed, the maximum quantization error is smaller than the resolution interval of the output, which is associated to the least significant bit representing the smallest variation that can be represented digitally:

LSB=FSR2NBIT

where FSR is the full-scale range of the sensor, and NBIT is the number of bits (i.e., the resolution) used in the AD converter to represent the sensor’s output. Quantization errors are typically not corrected, and the discrete values of the output are directly elaborated by the GNC system, which is designed to operate on digital values.

Fig. 6.9 shows a convenient model block to simulate quantization errors.

Figure 6.9. Quantization error model.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780323909167000068

The Systems Approach to Control and Instrumentation

William B. Ribbens, in Understanding Automotive Electronics (Seventh Edition), 2013

Systematic Errors

One example of a systematic error is known as loading errors, which are due to the energy extracted by an instrument when making a measurement. Whenever the energy extracted from a system under measurement is not negligible, the extracted energy causes a change in the quantity being measured. Wherever possible, an instrument is designed to minimize such loading effects. The idea of loading error can be illustrated by the simple example of an electrical measurement, as illustrated in Figure 1.17. A voltmeter M having resistance Rm measures the voltage across resistance R. The correct voltage (vc) is given by

Figure 1.17. Illustration of loading error-volt meter.

(71)vc=V(RR+R1)

However, the measured voltage vm is given by

(72)vm=V(RpRp+R1)

where Rp is the parallel combination of R and Rm:

(73)Rp=RRmR+Rm

Loading is minimized by increasing the meter resistance Rm to the largest possible value. For conditions where Rm approaches infinite resistance, Rp approaches resistance R and vm approaches the correct voltage. Loading is similarly minimized in measurement of any quantity by minimizing extracted energy. Normally, loading is negligible in modern instrumentation.

Another significant systematic error source is the dynamic response of the instrument. Any instrument has a limited response rate to very rapidly changing input, as illustrated in Figure 1.18. In this illustration, an input quantity to the instrument changes abruptly at some time. The instrument begins responding, but cannot instantaneously change and produce the new value. After a transient period, the indicated value approaches the correct reading (presuming correct instrument calibration). The dynamic response of an instrument to rapidly changing input quantity varies inversely with its bandwidth as explained earlier in this chapter.

Figure 1.18. Illustration of instrument dynamic response error.

In many automotive instrumentation applications, the bandwidth is purposely reduced to avoid rapid fluctuations in readings. For example, the type of sensor used for fuel-quantity measurements actually measures the height of fuel in the tank with a small float. As the car moves, the fuel sloshes in the tank, causing the sensor reading to fluctuate randomly about its mean value. The signal processing associated with this sensor is actually a low-pass filter such as is explained later in this chapter and has an extremely low bandwidth so that only the average reading of the fuel quantity is displayed, thereby eliminating the undesirable fluctuations in fuel quantity measurements that would occur if the bandwidth were not restricted.

The reliability of an instrumentation system refers to its ability to perform its designed function accurately and continuously whenever required, under unfavorable conditions, and for a reasonable amount of time. Reliability must be designed into the system by using adequate design margins and quality components that operate both over the desired temperature range and under the applicable environmental conditions.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780080970974000011

Систематическая ошибка — прибор

Cтраница 1

Систематическая ошибка прибора отсутствует.
 [1]

Если систематические ошибки приборов не одинаковы, то мы должны ожидать повышенного рассеивания выборочных средних.
 [3]

Итак, систематические ошибки приборов могут быть исключены при условии внесения необходимых поправок по данным калибровки.
 [4]

Так, например, систематическая ошибка прибора / i fG, никогда не бывает известна точно, а всегда с некоторой ненадежностью. Известная систематическая ошибка / г, вызванная отклонением температуры от 20 С, может быть вычислена только с известной ненадежностью. Систематическая ошибка / 3, вызванная измерительным усилием, определена также с ненадежностью меньшей, чем наименьшее колебание усилия, так как измерительное усилие никогда не бывает точно известно.
 [5]

Ранее было сказано, что систематические ошибки прибора могут быть устранены и тем самым можно в значительной мере повысить точность прибора. На практике эти погрешности в силоизмерителях устраняются при тарировании их непосредственным нагружением ( с помощью образцовых гирь) или сверкой их показаний с показаниями образцовых динамометров.
 [6]

Эта причина является основным и характерным источником систематических ошибок прибора, например при использовании в них шкал с равными интервалами между штрихами, при совмещении процесса измерений с вычислительными операциями ( контроль суммы, разности размеров), использовании пневматических средств активного контроля с целью получения управляющего импульса, пропорционального отклонению регулируемой величины.
 [7]

Отклонение действительного значения цены деления лимба от номинального, составляющее — 0 0065, является систематической ошибкой прибора.
 [8]

Причиной этого являются случайные ошибки, зависящие от конструкции прибора и условий измерения, а также систематические ошибки прибора.
 [9]

Систематическая ошибка прибора ( например, неправильность разбивки шкалы линейки или амперметра) является вполне определенной величиной, которая в принципе всегда может быть измерена путем сравнения с эталоном и учтена в виде поправки.
 [10]

Такой калибровкой устраняются систематические ошибки, связанные с недостатками конструкции прибора. Следует, однако, иметь в виду, что систематические ошибки прибора могут происходить и вследствие его неисправности, например, если катушка калибруемого амперметра где-либо заедает.
 [11]

При соприкосновении ножек против нулевого деления горизонтальной шкалы должно стоять нулевое деление цилиндрической шкалы. Если нулевые деления не совпадают, то следует учесть систематическую ошибку прибора.
 [12]

Оценивать математическое ожидание при известной дисперсии приходится при измерении какой-либо величины прибором, точность которого известна. В этом случае математическое ожидание результатов измерений равно сумме измеряемой величины и систематической ошибки прибора, а дисперсия равна известной дисперсии ошибки прибора.
 [13]

Страницы:  

   1

Руслан Зарипов

Руслан Зарипов

С таблицами функции Лапласа лень возиться… Ну, ладно, как не помочь такой красавице…
Р (попадание в интервал)=Ф(7,5/40)=Ф(0,1875)=(используем линейную интерполяцию между табличными значениями приведенной функции Лапласа для 0,18 и 0,19)=0,14873
P (непопадание в интервал)=1-0,14873=0,85127
N — искомое число измерений. Нужно найти такое N, при котором вероятность последовательного непопадания N измерений в заданный интервал станет меньше 1-0,9=0,1. Пишем неравенство:
(0,85217)^N < 0,1
Логарифмируя, решаем:
N*ln(0,85217) < ln(0,1)
N*(-0,16) < -2,3
Не забываем поменять знак неравенства при умножении обеих его частей на -1:
N > 2,3/0,16
N > 14,4
Поскольку N — целое число, то N=15
Всего и делов!

Для t p =1 доверительная вероятность составляет приблизительно 62 %,

поэтому итог измерений можно представить также в виде

Lист =15,785 ±0,005 мм; Р=62 % или

Lист =15,785 ±0,015 мм; Р=96 % .

Ответ: Р=88,38 %.

Задача 5. В условиях предыдущей задачи найти доверительную границу погрешности результата измерений для доверительной вероятности Р=99,0 %.

Решение: По данным значений коэффициента Стьюдента при k = 4 находим t p = 4,604 , и, следовательно, доверительная граница составляет:

ε99,0% = ±t99,0%Sx = ±4,604 0,005 = ±0,023 мм.

Итог измерений Lист =15,785 ±0,023 мм; Р=99,0 % .

Ответ: ε = ±0,023 мм.

13

Примеры заданий для практических занятий

Задача 1. В результате пяти измерений физической величины х одним прибором, не имеющим систематической погрешности, получены следующие результаты: 92; 94; 103; 105; 106. Определите:

1)выборочное среднее М*х измеряемой величины;

2)выборочную D*х и исправленное S2 дисперсии погрешностей прибора.

Задача 2. Случайная величина х – погрешность измерительного прибора распределена по нормальному закону с дисперсией 16 мВ2. Систематическая погрешность прибора отсутствует. Вычислите вероятность того, что в пяти независимых измерениях погрешность х:

1)превзойдет по модулю 6 мВ не более трех раз;

2)хотя бы один раз окажется в интервале 0,5 мВ 3,5 мВ.

Задача 3. Обработка наблюдений, полученных при калибровке образцовой многогранной призмы, дала следующие результаты для отклонения одного из углов (α ) призмы от номинального значения: x =1,98′′; Sx = 0,05′′; Θ = 0,03′′;

п = 20. Представьте запись результата измерения.

Задача 4. Проведены три группы измерений сопротивления одной и той же образцовой катушки и получены следующие результаты, Ом: x1 = 100,145 ± 0,005; x2 =100,115 ± 0,20; x3 =100,165 ± 0,010. Путем дальнейшей обработки результатов найдите погрешность среднего взвешенного.

Задача 5. Показания счётчика Гейгера, регистрирующего количество пролетевших сквозь него за 1 секунду элементарных частиц, подчиняются

( N 1000)2

распределению ϕ(N ) 0,00127e

5000

. Найдите математическое ожидание

показаний счётчика.

Задача 6. Произведя 10 измерений длины li металлического стержня, получили

следующие результаты, см: 30,45; 30,52; 30,43; 30,49; 30,48; 30,50; 30,46; 30,51; 30,47; 30,49. Проведите обработку результатов измерений и приведите значение длины стержня, наиболееприближенноекистинному.

Задача 7. Найдите математическое ожидание и дисперсию для случайной величины, распределенной по биномиальному закону, если n = 100, р=0,8.

Задача 8. Ошибка измерителя дальности подчинена нормальному закону с систематической ошибкой µ = 20 м и σ = 60 м. Найти вероятность того, что измеренное значение дальности будет отклоняться от истинного не более, чем на 30 м.

14

Задача 9. Монета подбрасывается n = 1000 раз. Пусть X – число выпавших гербов – случайная величина. Определить интервал возможных значений X, симметричный относительно математического ожидания, внутри которого X находится с вероятностью Р = 0,997.

Задача 10. Случайная величина 4 распределена равномерно на отрезке [-3;7]. Найдите математическое ожидание и дисперсию.

Задача 11. Найти математическое ожидание М[ех] и дисперсию D[ех], если X имеет нормальное распределение с параметрами (а, σ2).

Задача 12. На сборку попадают детали из трех автоматов. Известно, что первый автомат дает брака 0,3%, второй – 0,2% и третий – 0,4%. Найти вероятность попадания на сборку бракованной детали, если из первого автомата поступило 1000 деталей, из второго – 2000, из третьего – 2500.

Задача 13. Случайная величина X имеет нормальное распределение с mх = 0 и σх2 = 1. Найти М[соsХ] и D[соsХ].

Задача 14. По результатам 2-х выборок объемами n1 = 25 и n2 = 30 были вычислены оценки дисперсий S12 = 63,68 и S22 = 32,60. Для уровня

значимости α = 0,05 (доверительная вероятность 95%) решить, одинаковы ли дисперсии, соответствующие выборкам?

Задача 15. Среднее квадратическое отклонение радиовысотомера δ =15м. Сколько потребуется таких высотомеров, чтобы с надежностью 0,99 погрешность средней высоты M * x была не больше 30 м, если погрешности радиовысотомеров имеют нормальное распределение, а систематические погрешности отсутствуют?

15

Решение задач по теме «Интервальные оценки результатов измерений.

Доверительные границы погрешности. Исключение грубых погрешностей»

Задача 1. Даны результаты двадцати измерений длины li , мм, детали:

18,305;

18,306;

18,306; 18,309; 18,308; 18,309; 18,313; 18,308; 18,312 18,310;

18,305;

18,307;

18,309, 18,303; 18,307; 18,309; 18,304, 18,308; 18,308; 18,310.

Определить

границы

доверительного

интервала

для

среднего

квадратического отклонения СКО результатов наблюдений.

Решение: В

качестве

оценки математического

ожидания

длины детали

1

20

принимаем ее среднее арифметическое L =

l

=10,3078 мм.

20 i =1 i

Точечная оценка среднего квадратического отклонения результатов

наблюдений составляет S

=

1 20 (l

)2

= 0,0025 мм.

L

l

2 i =1

i

Приняв уровень доверительной вероятности Р =1q =90 % = 0,90, находим

для числа степеней свободы k = n 1 = 20 1 =19 по таблице распределения Пирсона:

χ2

1

= χ2

=10,117;

χ

= 3,18;

k

;

q

19; 0,05

19; 0,05

2

χ2

1

= χ2

= 30,144;

χ

= 5,49.

k

;1

q

19 ; 0,95

19; 0,95

2

Границы доверительного интервала для среднего квадратического отклонения результатов наблюдений находим по формуле (5.5):

Sl

=

20 1 0,0025

= 0,0034 мм ;

1

3,18

Sl

=

20 1 0,0025

= 0,0034 мм.

2

5,49

Полученные результаты говорят о том, что истинное значение среднего квадратического отклонения СКО результатов наблюдений с вероятностью

90 % лежит в интервале (0,0020 – 0, 0034) мм. Ответ: Sl1 = 0,0034 мм ; Sl 2 = 0,0020 мм.

Задача 2. После обработки результатов 25-ти наблюдений получена точечная оценка СКО результатов наблюдений Sx = 0,0025 мм. Приняв уровень

доверительной вероятности P =1q = 90 % , найти границы доверительного

интервала для СКО.

Решение: По таблице распределения Пирсона найдем границы доверительного интервала для k = n 1 = 24; q = 0,10 :

16

χ2

1

= χ242

; 0,05 =13,848;

χ24 ; 0,05 3,72;

k

;

q

2

χ2

1

= χ242

; 0,95 = 36,415;

χ24; 0,95 6,03.

k

;1

q

2

По формуле (5.5) найдем границы доверительного интервала для СКО результатов наблюдений:

Sx

=

25 1

6,25 106

0,0033 мм ;

3,72

1

Sx

=

25 1

6,25 106

0,0020 мм.

6,03

2

Полученные результаты говорят о том, что истинное значение СКО с

вероятностью 90 % лежит в интервале (0,0020 – 0,0033) мм.

Ответ: Sx1 0,0033 мм ; Sx 2 0,0020 мм.

Задача 3. При определении напряжения были получены следующие результаты: 180 В; 182 В; 183 В; 184 В; 196 В. Оценить пригодность последнего результата при заданной вероятности 0,95.

Решение: Число измерений n = 5, следовательно для выявления грубых погрешностей можно применить критерий Романовского. Рассчитаем

отношение

xi

X

= υ и сравним

его

с критерием

υP , найденным по

Sx

таблице (см. Приложение 3).

Результаты измерений и расчетов

xi

180

182

183

184

196

xi

–5

–3

–2

–1

+11

X

(x

)2

25

9

4

1

121

X

i

Находим среднее арифметическое и среднее квадратическое отклонение результатов наблюдений:

=

1 n (x )

=185 В; S

=

1

n (x

)2 =

160

6,32 .

X

X

4

n i =1

i

x

n 1 i 1

i

Рассчитаем критерий υ: υ =

185 196

=1,74 .

6,32

При

уровне

значимости

q = 0,05

критерий

Романовского для n = 5 по

таблице (Приложение 3) будет равен: υP =1,869 .

17

Тогда υ =1,74 < υP =1,869 , следовательно последний результат не содержит

грубую погрешность.

Ответ: Последний результат при заданной вероятности пригоден.

Задача 4. При измерении температуры были получены результаты,

представленные во второй графе таблицы.

Результаты измерений и расчетов

i

ti , oC

(ti

t

), oC

(ti

t

)2 104

(ti

t

), oC

(ti

)

2

104

t

1

20,42

+0,016

2,56

–0,009

0,81

2

20,43

+0,026

2,75

–0,019

3,61

3

20,40

–0,004

0,16

–0,011

1,21

4

20,43

+0,026

6,76

+0,019

3,61

5

20,42

+0,016

2,56

+0,009

0,81

6

20,43

+0,026

6,76

+0,019

3,61

7

20,39

–0,014

1,96

–0,021

4,41

8

20,30

–0,104

108,16

9

20,40

–0,004

0,16

–0,011

1,21

10

20,43

+0,026

6,76

+0,019

3,61

11

20,42

+0,016

2,56

+0,009

0,81

12

20,41

+0,006

0,36

–0,001

0,01

13

20,39

–0,014

1,96

–0,021

4,41

14

20,39

–0,014

1,96

–0,021

4,41

15

20,40

–0,004

0,16

–0,011

1,21

= 20,404oC

St = 0,033oC

St′ = 0,016oC

t

= 20,411oC

t

Требуется определить, не содержит ли результат восьмого наблюдения t8 = 20,30oC грубой погрешности.

Решение: Вначале обычными способами находим среднее арифметическое и среднее квадратическое отклонение результатов наблюдений:

t

= 20,404oC ;

St

= 0,033oC .

Если

принять

доверительную вероятность P = 0,95 ,то

при n =15 ,

υ0,95 = 2,493 и, поскольку

tmin

t8

=

20,30 20,404

υ =

t

=

t

= 3,16; υ > υ0,95 ,

то

результат

St

St

0,033

t8 = 20,30oC содержит грубую погрешность.

18

Если отбросить этот результат и повторить вычисления, то среднее арифметическое окажется равным t′ = 20,411oC , а среднее квадратическое отклонение уменьшится до St′ = 0,016oC . Расчет приведен в последних двух

графах таблицы.

Ответ: Результат восьмого наблюдения содержит грубую погрешность.

Задача 5. По десяти наблюдениям было вычислено значение массы эталона

килограмма.

Результаты

вычисления

следующие:

= 999,998721 г,

σ =17 106 г, Sx

= 5 106 г.

Найти

границы

X

доверительного интервала, если уровень значимости в процентах q =1 % .

Решение: Доверительная вероятность

P =1

q

=10,01 = 0,99 .

100 %

Число степеней свободы k = n 1 =10 1 = 9 .

k и Р

Из таблицы значений коэффициента Стьюдента для указанных

находим t p = 3,25 .

Следовательно, ε = t p Sx = 3,25 5 106 =16 106 г.

Истинное значение измеряемой величины с доверительной вероятностью P=0,99 лежит в интервале X t p Sx < Q < X +t p Sx ;

999,998705 г <Q <999,998737 г.

Ответ: Границы доверительного интервала: ε = ±16 106 г.

19

Примеры заданий для практических занятий

Задача 1. Произведена выборка объемом n =100 из большой партии радиоламп. Средний срок службы радиоламп оказался равным 5000 ч. Найдите с надежностью 0,95 доверительный интервал для среднего срока службы радиолампы во всей партии, если среднее квадратическое отклонение срока службы составляет 40 ч.

Задача 2. Произведено 10 независимых измерений случайной величины х, подчиненной нормальному закону с неизвестными параметрами Мх и δx .

Результаты измерений

Номер измерения

1

2

3

4

5

6

7

8

9

10

Результат

2,5

2

–2,3

1,9

–2,1

2,4

2,3

–2,5

1,5

измерения

1,7

Найдите оценку М*х для математического ожидания и постройте доверительный интервал, соответствующийдоверительнойвероятности β = 0.95 .

Задача 3. Произведено 12 измерений напряжения радиосигнала одним и тем же прибором, не имеющим систематической погрешности, причем выборочное среднее квадратическое отклонение S случайных погрешностей оказалось равным 0.6 В. Найдите границы погрешности этого прибора с вероятностью

0,99.

Задача 4. Определить границы доверительного интервала, если задана соответствующая ему доверительная вероятность Р = 0,99 и среднее квадратическое отклонение σ = 0,015.

Задача 5. При изготовлении измерительного прибора, исходя из конкретных условий производства, было признано удовлетворительным иметь значение доверительной вероятности того, что метрологические характеристики прибора не выйдут за пределы допуска, равным 0,995. На сколько выпущенных приборовприходится один забракованный?

Задача 6. Искомое сопротивление было измерено 8 раз, при этом получены результаты: R1 =116,2 Ом, R2 =118,2 Ом, R3 =118,5 Ом, R4 =117,0 Ом,

R5 =118,2 Ом, R6 =118,4 Ом, R7 =117,8 Ом, R8 =118,1 Ом. Определите

интервал, в котором находится значение измеряемого сопротивления, с доверительной вероятностью Р = 0,99.

Задача 7. Найти вероятность того, что случайная величина х с центром распределения mх=6,0 и σ=1,6 не находится в пределах 3,2≤х≤8. Ответ выразите в процентах.

20

Задача 8. Cреднее квадратическое отклонение σ =0,004. Определить вероятность того, что случайная погрешность выйдет за пределы доверительного интервала с границами ±0,012. Ответ выразить в процентах. Задача 9. Фабрика выпускает 75% продукции первого сорта. Чему равна вероятность того, что из 300 изделий число первосортных заключено между

219 и 234?

Задача 10. При определении твёрдости образца получены следующие результаты: 23,6; 23,9; 24,0; 24,2; 24,3; 24,3; 23,8; 24,3; 23,8; 23,7 HRC.

Определить доверительный интервал, в котором с доверительной вероятностью Pc =0,95 истинное значение твёрдости образца.

Задача 11. Сколько измерений надо сделать, чтобы их среднее арифметическое дало измеряемую величину с точностью до 0,05 и надежностью 90%, если дисперсия результатов измерений не превосходит 0,2?

Задача 12. Оцените годность пружинного манометра класса точности 1,0 на 60 кПа, если при его поверке методом сличения с образцовым манометром класса точности 0,2 в точке 50 кПа при повышении давления было зафиксировано 49,5 кПа, а при понижении 50,2 кПа.

Задача 13. При измерении напряжения в сети получены следующие результаты: 126,1 В; 126,2 В; 125,9 В; 126,7 В. Определить, есть ли среди них результат, содержащий грубую погрешность?

Задача 14. После проведения 5-ти кратных измерений физической величины были получены следующие результаты: 203; 205; 205; 209; 204. Оценить пригодность четвертого результата.

Задача 15. В момент времени ti измеряется дальность Ri до ИСЗ. Результаты измерения: Qn = {t1 =1, R1 =1200; t2 =3, R2 =1191; t3 =5, R3 =1279 }. Найти

вероятность р того, что скорость ИСЗ лежит в интервале (18.36; 21.14), если дисперсия ошибки измерения σ2 = 4.

Задача 16. Вероятность р появления события в опыте неизвестна. Проведено n =100 опытов, в которых событие появилось 64 раза. Определить доверительный интервал для р с доверительной вероятностью 0,9.

21

Решение задач по теме «Методы и методики измерений. Расчёт надёжности приборов»

Задача 1. Определить пригодность к дальнейшему применению рабочего вольтметра класса точности 1,0 с диапазоном измерений от 0 В до 300 В, если при непосредственном сравнении его показаний с показаниями образцового вольтметра были получены следующие данные:

Рабочий вольтметр, В

60

120

180

240

300

Образцовый вольтметр, В

60,5

119,7

183,5

238,7

298,8

Решение: По условию приведенная погрешность γ =1% .

max =183,5 180 = 3,5 В

γ =

100% =

3,5 В 100 %

=1,17 % .

xN

300 В

Ответ: Рабочий вольтметр не пригоден.

Задача 2. Вольтметр типа Д566/107, класса точности 0,2, имеет диапазон измерений от 0 В до 50 В. Определить допускаемую абсолютную и относительную погрешности, если стрелка вольтметра остановилась на делении шкалы против цифры 20 В.

Решение: По условию приведенная погрешность γ = 0,2% .

γ =

100 %

=

γ xN

=

0,2% 50 В

= 0,1В,

xN

100 %

100 %

δ =

100 %

=

0,1В 100 % = 0,5% .

x

20 В

Ответ: 0,1 В; 0,5 %.

Задача 3. Класс точности приборов Б и В одинаков, а верхний предел измерения прибора Б больше. В каком соотношении будут находиться

максимальные

значения

абсолютных

погрешностей

измерений:

max Б и

max В ? Класс точности характеризовать приведенной погрешностью.

Решение:

=

γ xN

. Так как по условию задачи

100%

xN Б > xN В

max Б

Ответ:

max Б >

max В

Задача 4. Для измерения напряжения от 80 В до 120 В с относительной погрешностью, не превышающей 4 %, был заказан вольтметр, имеющий класс точности 0,5 и верхний предел измерений 150 В Удовлетворяет ли от поставленным условиям?

Решение: δ =

100%

; γ =

100 %

=

γ xN

;

x

100 %

xN

22

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дискретная СВ Х имеет геометрическое распределение, принимает значения 0, 1, … , с вероятностями

p( X = i) = pi = qi p ,

где p – параметр распределения (0 ≤ p ≤ 1), q = 1 – p.

Числовые характеристики геометрического распределения:

Дискретная значения 0, 1, … ,

m X = q / p , D X = q / p 2 .

СВ X имеет биномиальное распределение, если она принимает n со следующими вероятностями:

p(X =i) = p =

n!

piqni

(7.2)

i

i!(n i)!

,

где n, p – параметры распределения (0 ≤ p ≤1), q=1 – p. Числовые характеристики биномиального распределения:

m X = n p , D X = n q p .

Дискретная СВ Х имеет распределение Пуассона, если она принимает значения 0, 1, … , со следующими вероятностями:

p(X =i) = p = ai

ea

(7.3)

i

i!

,

где a – параметр распределения (a > 0).

Числовые характеристики пуассоновской СВ:

m X = a , D X

= a .

Непрерывная СВ Х имеет равномерное распределение, если ее плотность вероятности в некотором интервале [а; b] постоянна, т.е. если все значения X в этом интервале равновероятны:

0, x <

f ( x ) = 1

b a

0, x >

a ,

0 , x

< a ,

a

, a x b , F ( x ) =

x

, a

x

b ,

(7.4)

a

b.

b

1, x

> b .

Числовые характеристики равномерно распределенной СВ:

m X =

a + b

, D X

=

( b a ) 2

.

2

1 2

Непрерывная СВ T, принимающая только положительные значения, имеет экспоненциальное распределение, если ее плотность вероятности и функция распределения равны

λ e

λ t

, t

0 ,

e

λt

, t 0,

f (t ) =

1

(7.5)

0 , t < 0 ,

F(t) =

0, t < 0,

где λ – параметр распределения (λ > 0).

Числовые характеристики экспоненциальной СВ:

m T = 1 / λ , D T = 1 / λ 2 .

Непрерывная СВ Х имеет нормальное распределение, если ее плотность вероятности и функция распределения равны

f (x ) =

1

exp

(x m)2

F ( x ) =

0 .5 + Φ

x m

,

2

,

(7.6)

σ 2π

2σ

σ

где m, σ – параметры распределения ( σ >0),

1

x

t2

Φ(x) =

e

dt — функция Лапласа.

2

2π

0

Значения функции Лапласа приведены в приложении. При использовании таблицы значений функции Лапласа следует учитывать, что Φ(–x) = –Φ(x),

Φ(0) = 0, Φ() = 0,5.

Числовые характеристики нормальной СВ:

m X = m , D X = σ 2 ,

I [ k / 2 ]

m

k 2 i

(σ

/ 2)

i

αk ( x) = k !

,

(k 2i)!i !

i =0

0 , k нечетное,

µ

( x ) =

2 k / 2

k

k !

σ

, k четное.

( k / 2 ) !

2

Пример 7.1. Время безотказной работы аппаратуры является случайной величиной Х, распределенной по экспоненциальному закону. Среднее время безотказной работы 100 ч. Найти вероятность того, что аппаратура проработает больше среднего времени.

Решение. Так как среднее время безотказной работы, т.е. математическое ожидание, равно 100 ч, то параметр λ экспоненциального закона будет равен λ = 1 / m X = 1 / 100 = 0, 01 . Искомая вероятность

p(X > mX ) = p(100 < X < ∞) =1F(100) = e1 0,368.

Пример 7.2. Для замера напряжения используются специальные датчики. Определить среднюю квадратическую ошибку датчика, если он не имеет систематических ошибок, а случайные распределены по нормальному закону и с вероятностью 0,8 не выходят за пределы ±0,2.

Решение. Из условия задачи следует, что p(-0,2<X<0,2) = 0,8. Так как распределение ошибок нормальное, а математическое ожидание m равно 0 (систематические ошибки отсутствуют), то

р{–0,2 < X < 0,2} = Ф(–0,2 / σ) – Ф(0,2 / σ) = 2Ф(0,2 / σ) = 0,8.

По таблице функции Лапласа находим аргумент 0,2/ σ =1,28, откуда

σ = 0,2 / 1,28 = 1,0156.

ЗАДАЧИ

7.1. По каналу связи пересылается пакет информации до тех пор, пока он не будет передан без ошибок. Вероятность искажения пакета равна 0,1, найти среднее количество попыток передать пакет.

Ответ: 1,11.

7.2. При работе прибора в случайные моменты времени возникают неисправности. Количество неисправностей, возникающих за определенный промежуток времени, подчиняется закону Пуассона. Среднее число неисправностей за сутки равно двум. Определить вероятность того, что: а) за двое суток не будет ни одной неисправности; б) в течение суток возникнет хотя бы одна неисправность; в) за неделю работы прибора возникнет не более трех неисправностей.

Ответ: а) 0,018; б) 0,865; в) 0,004.

7.3. Шкала рычажных весов имеет цену деления 1 г. При измерении массы отсчет делается с точностью до целого деления с округлением в ближайшую сторону. Какова вероятность того, что абсолютная ошибка определения массы: а) не превысит величины среднего квадратического отклонения возможных ошибок определения массы; б) будет заключена между

значениями σX и2σX .

Ответ: а)

1

; б) 1

1

.

3

3

7.4. Среднее время работы электронного модуля равно 700 ч. Определить время безотказной работы модуля с надежностью 0,8.

Ответ: 140 ч.

7.5. Сообщение передается последовательностью амплитудномодулированных импульсов с заданным шагом квантования ∆ (∆ – наименьшая разность амплитуд импульсов). На сообщение накладываются шумы, распределенные по нормальному закону N(0, σ). Если мгновенное значение шума превышает половину шага квантования, то при передаче сообщения возникает ошибка. Определить, при каком минимально допустимом шаге квантования ∆ вероятность ошибки из-за шумов не превысит 0,1.

Ответ: 3,4 σ.

7.6. СВ X – ошибка измерительного прибора – распределена нормально с дисперсией 16 мВ2. Систематическая ошибка прибора отсутствует. Вычислить вероятность того, что в пяти независимых измерениях ошибка: а) превысит по модулю 6 мВ не более трех раз; б) хотя бы один раз окажется в интервале

(0,5; 3,5) мВ.

Ответ: а) 0,999; б) 0,776.

8. ФУНКЦИИ ОДНОГО СЛУЧАЙНОГО АРГУМЕНТА

Рассмотрим функцию одного случайного аргумента Y = ϕ(X). Если X – непрерывная случайная величина, то плотность вероятности g(y) величины Y определяется по формуле

k

g( y) = f (ψ j ( y))

ψj ( y)

,

(8.1)

j=1

где f(х) – плотность вероятности величины X; ψj(y) – функции, обратные функции ϕ(x);

k – число обратных функций для данного y.

Весь диапазон значений Y необходимо разбить на интервалы, в которых число k обратных функций постоянно, и определить вид g(y) по формуле (8.1) для каждого интервала.

Если X – дискретная случайная величина, принимающая значения xi, то величина Y будет принимать дискретные значения yi = ϕ(xi) с вероятностями

p(yi) = p(xi).

Числовые характеристики функции Y = ϕ(X) одного случайного аргумента

Xопределяются по формулам:

начальные моменты

n

ϕ k ( xi ) pi

для ДСВ

i =1

;

(8.2)

α k ( y ) = M [Y k ] = M [ϕ k ( x)] =

ϕ k ( x) f ( x)dx для НСВ

– математическое ожидание

−∞

m y = M [Y ] = M [ϕ (x )] = α1 ( x ) ;

(8.3)

– центральные моменты

n

(ϕ( xi ) m y )k pi

для ДСВ

i=1

;

(8.4)

µk ( y) = M[(Y mY )k ] =

(ϕ( x) my )k f ( x)dx для НСВ

−∞

– дисперсия

DY =µ2(y) =M[(Y mY )2]=α2(y)mY2 .

(8.5)

Пример 8.1. Определить плотность вероятности величины Y = X2, если X – случайная величина, равномерно распределенная на интервале [–1, 2].

Решение. Так как Х равномерно распределена в интервале [–1, 2], то ее

плотность вероятности равна (7.4):

1x 2,

1/3,

f (x) =

x < −1, x > 2.

0,

Построим график величины Y = X2 для x в интервале [–1, 2] и в зависимости от числа k обратных функций выделим следующие интервалы для

Y (рис. 8.1):

k = 0,

[–, 0[

[0, 1]

k = 2,

]1, 4]

k = 1,

]4, +]

k = 0.

Так как на интервалах [–, 0[ и ]4, +]

обратная функция не существует, то для этих

интервалов g(y) = 0.

В интервале [0, 1] две обратные функции:

ψ1(y) = + y и ψ2(y) = – y .

По формуле (8.1) получим

g( y) = fx (ψ1( y))

ψ1( y)

+ fx (ψ2( y))

ψ2( y)

=

= fx ( y )

1

+ fx

(y )

1

=

1

.

2

y

2

y

3

y

В интервале ]1, 4] одна обратная функция

ψ1(y) = +

y , следовательно,

g( y) = fx (ψ1( y))

ψ1( y)

= fx (

y )

1

=

1

.

Рис. 8.1

2

y

6

y

Таким образом, плотность вероятности величины Y равна

0,

y < 0,

1

0 y 1,

y

,

3

g ( y) =

1

,

1 < y 4,

6

y

y > 4.

0,

Пример 8.2 Случайная величина X равномерно распределена от –1 до +1. Определить математическое ожидание и дисперсию величины Y = X2.

Решение. Плотность вероятности СВ X равна

0,5, 1 x 1, f (x) =

0 , x < −1, x >1.

Вычислим математическое ожидание Y по формуле (8.3):

m y = M [X 2 ] = 1

x 2 0, 5dx =

1 .

1

3

Дисперсию Dy рассчитаем по формуле (8.5):

Dy = M[( X 2 )2 ] mY2 = 1

(x2 )2 0,5dx my2 =

4

.

45

1

ЗАДАЧИ

8.1. Определить плотность вероятности величины Y = lnX, если X – случайная величина, равномерно распределенная на интервале (1, 3).

0, 5e

y

, 0

y < ln 3,

Ответ:

g ( y ) =

0 , y < 0, y > ln 3 .

8.2. Определить плотность вероятности величины Y = |X|, если X – случайная равномерно распределенная величина со следующими характеристиками mx = 1, Dx = 1, и вычислить вероятность того, что р{1 ≤ Y < 2}.

0, y < 0, y > 2, 73,

1

Ответ: g( y) =

, 0

y < 0, 73,

3

1

, 0, 73 y 2, 73.

2 3

р{1 ≤ Y < 2} = 0,445.

8.3. Случайная величина X равномерно распределена от 0 до 1. Определить математическое ожидание и дисперсию величины Y = X – 0,2 .

Ответ: mY = 0,34; DY = 0,0574.

8.4. Точка U, изображающая объект на круглом экране радиолокатора, распределена равномерно в пределах круга единичного радиуса. Найти дисперсию расстояния Y от точки U до центра экрана.

Ответ: DY = 1/18.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Тема: Задача по теор веру, определить СКО  (Прочитано 2222 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Ребята, помогите срочно решить задачу по теор веру…
Итоговая работа на сессии :(

Ошибка Х измерительного прибора распределена нормально. Систематической ошибки прибор не имеет (mx=0). Каким должно быть среднее квадратическое отклонение Qx ( сигма), чтобы с вероятностью не меньшей 0,9 ошибка измерения не превышала 20 микрометров по модулю?

« Последнее редактирование: 20 Января 2012, 10:36:38 от Asix »


Всегда пожалуйста, только Вы забыли сообщить, какая помощь нужна. Видимо, кусок сообщения, где Вы рассказываете, как решали задачу и что не получается, куда-то потерялся.


К сожалению, я не могу написать ход решения, т к не понимаю, как можно сделать :(
Поэтому и обращаюсь за помощью к вам.
Знаю только что ответ должен получиться : Qx<12.2(мкм)
натолкните на умные мысли пожалуйста.


Всё просто: изучаете по учебнику, что такое нормальное распределение, как считаются вероятности для него, и задачка сразу решается.


Измерительный прибор работает без систематических ошибок.doc

Зарегистрируйся в два клика и получи неограниченный доступ к материалам, а также
промокод
Эмоджи
на новый заказ в Автор24. Это бесплатно.

Условие

Измерительный прибор работает без систематических ошибок (работа измерительного прибора без систематических ошибок означает, что mx=0). Известно, что вероятность ошибки измерения, превышающей по абсолютной величине 7, равна 0,08. Пусть случайная величина X- это величина ошибки измерения. Предполагается, что случайная величина X нормально распределена, найти:
а) приближенное значение дисперсии;
б) вероятность того, что ошибка измерения не превысит ε=4;
в) вероятность того, что ошибка измерения изменяется от α=-4 до β=6.

Решение

А) Для случайной величины Х имеещей нормальный закон распределения с параметрами mx и  σx справедливо:
Px-mx≤ε=Фε σx, где Фt=12π-∞xe- t22dt-функция Лапласа.
По условию задачи вероятность ошибки измерения, превышающей по абсолютной величине 7, равна 0,08
. Тогда вероятность противоположного события (вероятность того, что случайная величина Х не превышает по абсолютной величине 7, равна 1-0,08=0,92. Имеем:
Px-0≤7=Ф7 σx=0,92⇒7 σx≈5⇒ σx≈7 5=1,4.
Тогда искомая дисперсия приближенно равна: Dx=σx2≈1,96.
б) вероятность того, что ошибка измерения не превысит ε=4:
Px-0≤4=Ф4 1,4≈Ф2,857≈0,4979..
в) вероятность того, что ошибка измерения изменяется от α=-4 до β=6 найдем по формуле:
Pα≤Х≤β=Фβ-mxσx-Фα-mxσx.
P-4≤Х≤6=Ф61,4-Ф-41,4≈Ф4,286-Ф-2,857=
≈0,499997+0,4979≈0,998.
Ответ

50% решения задач недоступно для прочтения

Закажи персональное решение задач. Эксперты
Кампус
напишут качественную работу за 30 минут! ⏱️

Макеты страниц

Ошибки измерений и способ наименьших квадратов

9.1.21. Ошибки измерений и нормальный закон распределения.

Измерения всегда сопровождаются ошибками. Различают ошибки двух основных видов: систематические и случайные. Систематические ошибки имеют определенные причины, которые искажают измерение всегда в одном направлении и часто на постоянную величину. Они возникают за счет неисправности или плохой регулировки приборов, за счет ошибок в эталонах, из-за плохого выполнения технологии и т. д. Во многих случаях можно найти причины таких ошибок и устранить их.

Случайные ошибки неопределенны, и причина их неизвестна. Свое незнание причины ошибок мы обычно маскируем, говоря, что их порождает случай. А это просто означает, что их можно приписать большому количеству причин, действующих в любом направлении и создающих каждая свою погрешность. Такие случайные ошибки можно учитывать статистическими методами.

Существует еще одна категория ошибок, о которой будет кратко сказано в п. 9.1.27; это категория отдельных промахов, происходящих по однократной вине экспериментатора, например, если он по рассеянности один раз неправильно считает показания со шкалы измерительного прибора. В этом случае мы имеем дело с анормальным результатом измерения. Существует простое правилу, позволяющее исключить из таблицы результатов измерений ошибки этой категории.

Мы займемся в основном категорией случайных ошибок. Допустим, что имеется несколько в одинаковой степени надежных измерений физической величины, истинное значение которой равно Ошибки, соответствующие измерениям будут равны

Это чисто случайные ошибки.

Мы не знаем точного значения величины X и не можем определить ее на опыте, так как всякое измерение, сделанное для ее определения, искажается ошибкой. Обозначим через X наиболее вероятное значение величины

Рассмотрим величины

Величины называются отклонениями. Так как речь здесь идет только о случайных ошибках, то величины х и у могут быть а положительными, и отрицательными, а малые значения будут встречаться чаще, чем большие. Примем допущение, что эти величины, следуют нормальному закону распределения

Положим

как известно, называется мерой точности. При этом примет вид

где относительное число ошибок, равных х.

Вычертим кривые Гаусса при двух различных значениях мерь; точности Легко заметить, что чем больше тем кривые острее, тем круче их склоны. Это означает, что чем больше параметр тем реже встречаются большие ошибки. Поэтому величину и называют мерой точности.

Вероятность того, что ошибка будет заключаться между равна

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с (Решение → 16791)

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с вероятностью 0,8 они не превосходят по абсолютной величине 12 мм. Найти среднюю квадратическую ошибку.

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с (Решение → 16791)

Используем нормальный закон и следующую формулу, таблицу значений функции Лапласа Ф(х):
px-a<δ=2Фδσ;
0.8=2Ф12σ;1.62=12σ;σ=7.407 мм.
Ответ: 7,407 мм.

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с (Решение → 16791)

Измерительный прибор не имеет систематической ошибки. Случайные ошибки распределены по нормальному закону, и с (Решение → 16791)

  • Измерительный прибор работает без систематических ошибок (работа измерительного прибора без систематических ошибок означает, что
  • Измерить и записать результат измерения активной мощности Р = U·I·cosφ, рассеиваемой на нагрузке Zнагр.;
  • Измеряется мощность трехфазного тока двумя ваттметрами. Какова наибольшая погрешность измерения, если стрелка первого ваттметра
  • Измеряется напряжение в виде периодической последовательности прямоугольных импульсов с параметрами: длительность импульсов τ, период
  • Измеряется напряжение переменного тока.
    Дано.
    Цифровой вольтметр:
    — предел измерения Uк = 200 B;
    — измеренное
  • Измеряется размер некоторой детали, затем из генеральной совокупности берется выборка объемом n=8. Зная, что
  • Измеряется электрическое сопротивление постоянному току (рисунок).
    Получено:
    UV =(5,00±0,50) мВ; Р=1
    IA=(2,60±0,25) мА; Р=1
    RV=
    Записать результат измерения сопротивления
  • Измерительный канал включает в себя термометр сопротивления типа 150М и вторичный прибор со шкалой
  • Измерительный механизм (ИМ) магнитоэлектрической системы расситан на ток и Iии напряжение Uи и имеет
  • Измерительный механизм (ИМ) магнитоэлектрической системы рассчитан на ток Iи=15 мA и напряжение Uи=75 мB
  • Измерительный механизм (ИМ) магнитоэлектрической системы рассчитан на ток Iи=25 мA и напряжение Uи=100 мB
  • Измерительный механизм (ИМ) магнитоэлектрической системы рассчитан на ток Iи=25 мA и напряжение Uи=75 мB
  • Измерительный механизм (ИМ) магнитоэлектрической системы рассчитан на ток Iи=7,5 мA и напряжение Uи=75 мB
  • Измерительный прибор (ИП) магнитоэлектрической системы рассчитан на ток IП и напряжение UП и имеет

Дискретная СВ Х имеет геометрическое распределение, принимает значения 0, 1, … , с вероятностями

p( X = i) = pi = qi p ,

где p – параметр распределения (0 ≤ p ≤ 1), q = 1 – p.

Числовые характеристики геометрического распределения:

Дискретная значения 0, 1, … ,

m X = q / p , D X = q / p 2 .

СВ X имеет биномиальное распределение, если она принимает n со следующими вероятностями:

p(X =i) = p =

n!

piqni

(7.2)

i

i!(n i)!

,

где n, p – параметры распределения (0 ≤ p ≤1), q=1 – p. Числовые характеристики биномиального распределения:

m X = n p , D X = n q p .

Дискретная СВ Х имеет распределение Пуассона, если она принимает значения 0, 1, … , со следующими вероятностями:

p(X =i) = p = ai

ea

(7.3)

i

i!

,

где a – параметр распределения (a > 0).

Числовые характеристики пуассоновской СВ:

m X = a , D X

= a .

Непрерывная СВ Х имеет равномерное распределение, если ее плотность вероятности в некотором интервале [а; b] постоянна, т.е. если все значения X в этом интервале равновероятны:

0, x <

f ( x ) = 1

b a

0, x >

a ,

0 , x

< a ,

a

, a x b , F ( x ) =

x

, a

x

b ,

(7.4)

a

b.

b

1, x

> b .

Числовые характеристики равномерно распределенной СВ:

m X =

a + b

, D X

=

( b a ) 2

.

2

1 2

Непрерывная СВ T, принимающая только положительные значения, имеет экспоненциальное распределение, если ее плотность вероятности и функция распределения равны

λ e

λ t

, t

0 ,

e

λt

, t 0,

f (t ) =

1

(7.5)

0 , t < 0 ,

F(t) =

0, t < 0,

где λ – параметр распределения (λ > 0).

Числовые характеристики экспоненциальной СВ:

m T = 1 / λ , D T = 1 / λ 2 .

Непрерывная СВ Х имеет нормальное распределение, если ее плотность вероятности и функция распределения равны

f (x ) =

1

exp

(x m)2

F ( x ) =

0 .5 + Φ

x m

,

2

,

(7.6)

σ 2π

2σ

σ

где m, σ – параметры распределения ( σ >0),

1

x

t2

Φ(x) =

e

dt — функция Лапласа.

2

2π

0

Значения функции Лапласа приведены в приложении. При использовании таблицы значений функции Лапласа следует учитывать, что Φ(–x) = –Φ(x),

Φ(0) = 0, Φ() = 0,5.

Числовые характеристики нормальной СВ:

m X = m , D X = σ 2 ,

I [ k / 2 ]

m

k 2 i

(σ

/ 2)

i

αk ( x) = k !

,

(k 2i)!i !

i =0

0 , k нечетное,

µ

( x ) =

2 k / 2

k

k !

σ

, k четное.

( k / 2 ) !

2

Пример 7.1. Время безотказной работы аппаратуры является случайной величиной Х, распределенной по экспоненциальному закону. Среднее время безотказной работы 100 ч. Найти вероятность того, что аппаратура проработает больше среднего времени.

Решение. Так как среднее время безотказной работы, т.е. математическое ожидание, равно 100 ч, то параметр λ экспоненциального закона будет равен λ = 1 / m X = 1 / 100 = 0, 01 . Искомая вероятность

p(X > mX ) = p(100 < X < ∞) =1F(100) = e1 0,368.

Пример 7.2. Для замера напряжения используются специальные датчики. Определить среднюю квадратическую ошибку датчика, если он не имеет систематических ошибок, а случайные распределены по нормальному закону и с вероятностью 0,8 не выходят за пределы ±0,2.

Решение. Из условия задачи следует, что p(-0,2<X<0,2) = 0,8. Так как распределение ошибок нормальное, а математическое ожидание m равно 0 (систематические ошибки отсутствуют), то

р{–0,2 < X < 0,2} = Ф(–0,2 / σ) – Ф(0,2 / σ) = 2Ф(0,2 / σ) = 0,8.

По таблице функции Лапласа находим аргумент 0,2/ σ =1,28, откуда

σ = 0,2 / 1,28 = 1,0156.

ЗАДАЧИ

7.1. По каналу связи пересылается пакет информации до тех пор, пока он не будет передан без ошибок. Вероятность искажения пакета равна 0,1, найти среднее количество попыток передать пакет.

Ответ: 1,11.

7.2. При работе прибора в случайные моменты времени возникают неисправности. Количество неисправностей, возникающих за определенный промежуток времени, подчиняется закону Пуассона. Среднее число неисправностей за сутки равно двум. Определить вероятность того, что: а) за двое суток не будет ни одной неисправности; б) в течение суток возникнет хотя бы одна неисправность; в) за неделю работы прибора возникнет не более трех неисправностей.

Ответ: а) 0,018; б) 0,865; в) 0,004.

7.3. Шкала рычажных весов имеет цену деления 1 г. При измерении массы отсчет делается с точностью до целого деления с округлением в ближайшую сторону. Какова вероятность того, что абсолютная ошибка определения массы: а) не превысит величины среднего квадратического отклонения возможных ошибок определения массы; б) будет заключена между

значениями σX и2σX .

Ответ: а)

1

; б) 1

1

.

3

3

7.4. Среднее время работы электронного модуля равно 700 ч. Определить время безотказной работы модуля с надежностью 0,8.

Ответ: 140 ч.

7.5. Сообщение передается последовательностью амплитудномодулированных импульсов с заданным шагом квантования ∆ (∆ – наименьшая разность амплитуд импульсов). На сообщение накладываются шумы, распределенные по нормальному закону N(0, σ). Если мгновенное значение шума превышает половину шага квантования, то при передаче сообщения возникает ошибка. Определить, при каком минимально допустимом шаге квантования ∆ вероятность ошибки из-за шумов не превысит 0,1.

Ответ: 3,4 σ.

7.6. СВ X – ошибка измерительного прибора – распределена нормально с дисперсией 16 мВ2. Систематическая ошибка прибора отсутствует. Вычислить вероятность того, что в пяти независимых измерениях ошибка: а) превысит по модулю 6 мВ не более трех раз; б) хотя бы один раз окажется в интервале

(0,5; 3,5) мВ.

Ответ: а) 0,999; б) 0,776.

8. ФУНКЦИИ ОДНОГО СЛУЧАЙНОГО АРГУМЕНТА

Рассмотрим функцию одного случайного аргумента Y = ϕ(X). Если X – непрерывная случайная величина, то плотность вероятности g(y) величины Y определяется по формуле

k

g( y) = f (ψ j ( y))

ψj ( y)

,

(8.1)

j=1

где f(х) – плотность вероятности величины X; ψj(y) – функции, обратные функции ϕ(x);

k – число обратных функций для данного y.

Весь диапазон значений Y необходимо разбить на интервалы, в которых число k обратных функций постоянно, и определить вид g(y) по формуле (8.1) для каждого интервала.

Если X – дискретная случайная величина, принимающая значения xi, то величина Y будет принимать дискретные значения yi = ϕ(xi) с вероятностями

p(yi) = p(xi).

Числовые характеристики функции Y = ϕ(X) одного случайного аргумента

Xопределяются по формулам:

начальные моменты

n

ϕ k ( xi ) pi

для ДСВ

i =1

;

(8.2)

α k ( y ) = M [Y k ] = M [ϕ k ( x)] =

ϕ k ( x) f ( x)dx для НСВ

– математическое ожидание

−∞

m y = M [Y ] = M [ϕ (x )] = α1 ( x ) ;

(8.3)

– центральные моменты

n

(ϕ( xi ) m y )k pi

для ДСВ

i=1

;

(8.4)

µk ( y) = M[(Y mY )k ] =

(ϕ( x) my )k f ( x)dx для НСВ

−∞

– дисперсия

DY =µ2(y) =M[(Y mY )2]=α2(y)mY2 .

(8.5)

Пример 8.1. Определить плотность вероятности величины Y = X2, если X – случайная величина, равномерно распределенная на интервале [–1, 2].

Решение. Так как Х равномерно распределена в интервале [–1, 2], то ее

плотность вероятности равна (7.4):

1x 2,

1/3,

f (x) =

x < −1, x > 2.

0,

Построим график величины Y = X2 для x в интервале [–1, 2] и в зависимости от числа k обратных функций выделим следующие интервалы для

Y (рис. 8.1):

k = 0,

[–, 0[

[0, 1]

k = 2,

]1, 4]

k = 1,

]4, +]

k = 0.

Так как на интервалах [–, 0[ и ]4, +]

обратная функция не существует, то для этих

интервалов g(y) = 0.

В интервале [0, 1] две обратные функции:

ψ1(y) = + y и ψ2(y) = – y .

По формуле (8.1) получим

g( y) = fx (ψ1( y))

ψ1( y)

+ fx (ψ2( y))

ψ2( y)

=

= fx ( y )

1

+ fx

(y )

1

=

1

.

2

y

2

y

3

y

В интервале ]1, 4] одна обратная функция

ψ1(y) = +

y , следовательно,

g( y) = fx (ψ1( y))

ψ1( y)

= fx (

y )

1

=

1

.

Рис. 8.1

2

y

6

y

Таким образом, плотность вероятности величины Y равна

0,

y < 0,

1

0 y 1,

y

,

3

g ( y) =

1

,

1 < y 4,

6

y

y > 4.

0,

Пример 8.2 Случайная величина X равномерно распределена от –1 до +1. Определить математическое ожидание и дисперсию величины Y = X2.

Решение. Плотность вероятности СВ X равна

0,5, 1 x 1, f (x) =

0 , x < −1, x >1.

Вычислим математическое ожидание Y по формуле (8.3):

m y = M [X 2 ] = 1

x 2 0, 5dx =

1 .

1

3

Дисперсию Dy рассчитаем по формуле (8.5):

Dy = M[( X 2 )2 ] mY2 = 1

(x2 )2 0,5dx my2 =

4

.

45

1

ЗАДАЧИ

8.1. Определить плотность вероятности величины Y = lnX, если X – случайная величина, равномерно распределенная на интервале (1, 3).

0, 5e

y

, 0

y < ln 3,

Ответ:

g ( y ) =

0 , y < 0, y > ln 3 .

8.2. Определить плотность вероятности величины Y = |X|, если X – случайная равномерно распределенная величина со следующими характеристиками mx = 1, Dx = 1, и вычислить вероятность того, что р{1 ≤ Y < 2}.

0, y < 0, y > 2, 73,

1

Ответ: g( y) =

, 0

y < 0, 73,

3

1

, 0, 73 y 2, 73.

2 3

р{1 ≤ Y < 2} = 0,445.

8.3. Случайная величина X равномерно распределена от 0 до 1. Определить математическое ожидание и дисперсию величины Y = X – 0,2 .

Ответ: mY = 0,34; DY = 0,0574.

8.4. Точка U, изображающая объект на круглом экране радиолокатора, распределена равномерно в пределах круга единичного радиуса. Найти дисперсию расстояния Y от точки U до центра экрана.

Ответ: DY = 1/18.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Макеты страниц

Ошибки измерений и способ наименьших квадратов

9.1.21. Ошибки измерений и нормальный закон распределения.

Измерения всегда сопровождаются ошибками. Различают ошибки двух основных видов: систематические и случайные. Систематические ошибки имеют определенные причины, которые искажают измерение всегда в одном направлении и часто на постоянную величину. Они возникают за счет неисправности или плохой регулировки приборов, за счет ошибок в эталонах, из-за плохого выполнения технологии и т. д. Во многих случаях можно найти причины таких ошибок и устранить их.

Случайные ошибки неопределенны, и причина их неизвестна. Свое незнание причины ошибок мы обычно маскируем, говоря, что их порождает случай. А это просто означает, что их можно приписать большому количеству причин, действующих в любом направлении и создающих каждая свою погрешность. Такие случайные ошибки можно учитывать статистическими методами.

Существует еще одна категория ошибок, о которой будет кратко сказано в п. 9.1.27; это категория отдельных промахов, происходящих по однократной вине экспериментатора, например, если он по рассеянности один раз неправильно считает показания со шкалы измерительного прибора. В этом случае мы имеем дело с анормальным результатом измерения. Существует простое правилу, позволяющее исключить из таблицы результатов измерений ошибки этой категории.

Мы займемся в основном категорией случайных ошибок. Допустим, что имеется несколько в одинаковой степени надежных измерений физической величины, истинное значение которой равно Ошибки, соответствующие измерениям будут равны

Это чисто случайные ошибки.

Мы не знаем точного значения величины X и не можем определить ее на опыте, так как всякое измерение, сделанное для ее определения, искажается ошибкой. Обозначим через X наиболее вероятное значение величины

Рассмотрим величины

Величины называются отклонениями. Так как речь здесь идет только о случайных ошибках, то величины х и у могут быть а положительными, и отрицательными, а малые значения будут встречаться чаще, чем большие. Примем допущение, что эти величины, следуют нормальному закону распределения

Положим

как известно, называется мерой точности. При этом примет вид

где относительное число ошибок, равных х.

Вычертим кривые Гаусса при двух различных значениях мерь; точности Легко заметить, что чем больше тем кривые острее, тем круче их склоны. Это означает, что чем больше параметр тем реже встречаются большие ошибки. Поэтому величину и называют мерой точности.

Вероятность того, что ошибка будет заключаться между равна

From Wikipedia, the free encyclopedia

Instrument error refers to the error of a measuring instrument, or the difference between the actual value and the value indicated by the instrument. There can be errors of various types, and the overall error is the sum of the individual errors.

Types of errors include

  • systematic errors
  • random errors
  • absolute error
  • other error

Systematic errors[edit]

The size of the systematic error is sometimes referred to as the accuracy. For example the instrument may always indicate a value 5% higher than the actual value; or perhaps the relationship between the indicated and actual values may be more complicated than that. A systematic error may arise because the instrument has been incorrectly calibrated, or perhaps because a defect has arisen in the instrument since it was calibrated. Instruments should be calibrated against a standard instrument that is known to be accurate, and ideally the calibration should be repeated at intervals. The most rigorous standards are those maintained by a standards organization such as NIST in the United States, or the ISO in Europe.

If the users know the amount of the systematic error, they may decide to adjust for it manually rather than having the instrument expensively adjusted to eliminate the error: e.g. in the above example they might manually reduce all the values read by about 4.8%.

Random errors[edit]

The range in amount of possible random errors is sometimes referred to as the precision. Random errors may arise because of the design of the instrument. In particular they may be subdivided between

  • errors in the amount shown on the display, and
  • how accurately the display can actually be read.

Amount shown on the display[edit]

Sometimes the effect of random error can be reduced by repeating the measurement a few times and taking the average result.

How accurately the display can be read[edit]

If the instrument has a needle which points to a scale graduated in steps of 0.1 units, then depending on the design of the instrument it is usually possible to estimate tenths between the successive marks on the scale, so it should be possible to read off the result to an accuracy of about 0.01 units.

Other errors[edit]

The act of taking the measurement may alter the quantity being measured. For example, an ammeter has its own built-in resistance, so if it is connected in series to an electrical circuit, it will slightly reduce the current flowing through the circuit.

References[edit]

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.

Понравилась статья? Поделить с друзьями:
  • Систематическая ошибка погрешность
  • Систематическая ошибка выжившего простыми словами
  • Систематическая ошибка оценивания
  • Система оценивания ошибки оценивания
  • Систематическая ошибка выжившего пример