Систематическая ошибка отбора

Систематическая ошибка отбора

  • Систематическая ошибка отбора — статистическое понятие, показывающее, что выводы, сделанные применительно к какой-либо группе, могут оказаться неточными вследствие неправильного отбора в эту группу.

Источник: Википедия

Связанные понятия

Шкала Ликерта, или (неверно) Лайкерта (англ. Likert scale (/ˈlɪkərt/ ), шкала суммарных оценок) — психометрическая шкала, которая часто используется в опросниках и анкетных исследованиях (разработана в 1932 году Ренсисом Ликертом). При работе со шкалой испытуемый оценивает степень своего согласия или несогласия с каждым суждением, от «полностью согласен» до «полностью не согласен». Сумма оценок каждого отдельного суждения позволяет выявить установку испытуемого по какому-либо вопросу. Предполагается…

Надёжностью называется один из критериев качества теста, его устойчивость по отношению к погрешностям измерения. Различают два вида надёжности — надёжность как устойчивость и надёжность как внутреннюю согласованность.

Подробнее: Надёжность психологического теста

Тест стандартными прогрессивными матрицами Равена (Рейвена) — тест, предназначенный для дифференцировки испытуемых по уровню их интеллектуального развития. Авторы теста Джон Рейвен и Л. Пенроуз. Предложен в 1936 году. Тест Равена известен как один из наиболее «чистых» измерений фактора общего интеллекта g, выделенного Ч.Э. Спирменом. Успешность выполнения теста SPM интерпретируется как показатель способности к научению на основе обобщения собственного опыта и создания схем, позволяющих обрабатывать…

Репрезентати́вность — соответствие характеристик выборки характеристикам популяции или генеральной совокупности в целом. Репрезентативность определяет, насколько возможно обобщать результаты исследования с привлечением определённой выборки на всю генеральную совокупность, из которой она была собрана.

Слепо́й ме́тод — процедура проведения исследования реакции людей на какое-либо воздействие, заключающаяся в том, что испытуемые не посвящаются в важные детали проводимого исследования. Метод применяется для исключения субъективных факторов, которые могут повлиять на результат эксперимента.

Нулевая гипотеза — принимаемое по умолчанию предположение о том, что не существует связи между двумя наблюдаемыми событиями, феноменами. Так, нулевая гипотеза считается верной до того момента, пока нельзя доказать обратное. Опровержение нулевой гипотезы, то есть приход к заключению о том, что связь между двумя событиями, феноменами существует, — главная задача современной науки. Статистика как наука даёт чёткие условия, при наступлении которых нулевая гипотеза может быть отвергнута.

Иллюзорная корреляция (англ. illusory correlation) — когнитивное искажение преувеличенно тесной связи между переменными, которая в реальности или не существует, или значительно меньше, чем предполагается. Типичным примером могут служить приписывание группе этнического меньшинства отрицательных качеств. Иллюзорная корреляция считается одним из способов формирования стереотипов.

Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.

Долгосрочное иссле́дование (англ. Longitudinal study от longitude — долговременный) — научный метод, применяемый, в частности, в социологии и психологии, в котором изучается одна и та же группа объектов (в психологии — людей) в течение времени, за которое эти объекты успевают существенным образом поменять какие-либо свои значимые признаки. В самом широком смысле является синонимом панельного исследования, а в более узком смысле — выборочное панельное исследование любой возрастной или образовательной…

Исследование случай-контроль (ИСК) – это тип обсервационного наблюдения, в котором две исследуемые группы, различающиеся по полученному результату, сравниваются на основе предполагаемого влияющего фактора. Исследования с контрольной группой часто используются для определения факторов, которые могут повлиять на состояние здоровья, путем сравнения участников, у которых есть заболевание («случаи») и участников, у которых оно отсутствует («контроли»).

Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.

Генеральная совокупность (от лат. generis — общий, родовой) — совокупность всех объектов (единиц), относительно которых предполагается делать выводы при изучении конкретной задачи.

Эмпирические исследования – наблюдение и исследование конкретных явлений, эксперимент, а также обобщение, классификация и описание результатов исследования эксперимента, внедрение их в практическую деятельность человека.

Выявление аномалий (также обнаружение выбросов) — это опознавание во время интеллектуального анализа данных редких данных, событий или наблюдений, которые вызывают подозрения ввиду существенного отличия от большей части данных. Обычно аномальные данные превращаются в некоторый вид проблемы, такой как мошенничество в банке, структурный дефект, медицинские проблемы или ошибки в тексте. Аномалии также упоминаются как выбросы, необычности, шум, отклонения или исключения.

Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.

Системати́ческая оши́бка вы́жившего (англ. survivorship bias) — разновидность систематической ошибки отбора, когда по одной группе («выжившим») есть много данных, а по другой («погибшим») — практически нет, в результате чего исследователи пытаются искать общие черты среди «выживших» и упускают из вида, что не менее важная информация скрывается среди «погибших».

Фактор общего интеллекта (англ. general factor, g factor) является распространённым, но противоречивым конструктом, используемым в психологии (см. также психометрию) для выявления общего в различных тестах интеллекта. Словосочетание «теория g» имеет дело с гипотезой и полученными из неё результатами о биологической природе g, постоянством/податливостью, уместностью его применения в реальной жизни и другими исследованиями.

В когнитивной науке под когнити́вными искаже́ниями понимаются систематические ошибки в мышлении или шаблонные отклонения, которые возникают на основе дисфункциональных убеждений, внедрённых в когнитивные схемы, и легко обнаруживаются при анализе автоматических мыслей. Существование большинства когнитивных искажений было описано учёными, а многие были доказаны в психологических экспериментах.

Подробнее: Список когнитивных искажений

Эксперимент Ричарда Лазаруса — известный эксперимент в психологии, проведенный Ричардом Лазарусом и группой исследователей для изучения влияния когнитивной оценки ситуации угрозы на формирование стрессовой реакции. На основе результатов данного исследования Ричардом Лазарусом и его коллегами была разработана теория психологического стресса, которая стоит на одном уровне значимости для науки с концепцией стресса Ганса Селье.

Испыту́емый — участник эксперимента в психологии и других отраслях науки. В психолингвистике, этот термин — в отличие от информанта — предполагает, что собирается ещё и информация о носителе языка как языковой и речевой личности. Испытуемые могут быть специально отобраны для эксперимента, либо же являться имеющимися в наличии представителями изучаемой популяции.

Коэффициент инбридинга может быть вычислен для отдельной персоны и является мерой степени редукции предков в родословии конкретной личности.

Тест Айзенка — тест коэффициента интеллекта (IQ), разработанный английским психологом Гансом Айзенком. Известно восемь различных вариантов теста Айзенка на интеллект.

Статистический вывод (англ. statistical inference), также называемый индуктивной статистикой (англ. inferential statistics, inductive statistics) — обобщение информации из выборки для получения представления о свойствах генеральной совокупности.

Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.

Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.

Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of VAriance).

В психологии фиксирование установки (эффект предшествования, прайминг) (англ. priming) — это явление имплицитной памяти, при котором обработка воздействия заданного стимула определяется предшествующим действием того же самого или подобного стимула. Реакция на действие данного стимула оказывает влияние на реакцию, возникающую в ответ на последующие стимулы. Действие предшествующего стимула может осознаваться человеком, но также фиксирование установки стимула происходит и при неосознаваемом воздействии…

Причинность по Грэнджеру (англ. Granger causality) — понятие, используемое в эконометрике (анализе временных рядов), формализующее понятие причинно-следственной связи между временными рядами. Причинность по Грэнджеру является необходимым, но не достаточным условием причинно-следственной связи.

Системати́ческий обзо́р — научное исследование ряда опубликованных отдельных однородных оригинальных исследований с целью их критического анализа и оценки. Систематический обзор проводится с использованием методологии, позволяющей исключить случайные и систематические ошибки, а также для обеспечения полного отчета о всех имеющихся исследований по данной теме, включая серую литературу с целью избежания предвзятости. В систематическом обзоре используются стандартизированные методы отбора и проверки…

Метод балльных оценок — один из методов одномерного шкалирования, используемых в психологии, процедура которого заключается в построении шкал на основе балльных оценок, получаемых из суждений испытуемых. Из всех методов психологических измерений, использующих оценочные суждения человека, шкалирование, основанное на балльных оценках, является наиболее популярным в виду своей простоты. Метод распространен как в прикладных, так и в академических разделах психологии, например, при психологической оценке…

Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.

Закон Парето (принцип Парето, принцип 80/20) — эмпирическое правило, названное в честь экономиста и социолога Вильфредо Парето, в наиболее общем виде формулируется как «20 % усилий дают 80 % результата, а остальные 80 % усилий — лишь 20 % результата». Может использоваться как базовая установка в анализе факторов эффективности какой-либо деятельности и оптимизации её результатов: правильно выбрав минимум самых важных действий, можно быстро получить значительную часть от планируемого полного результата…

Фа́кторный анализ — многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки.

В математической статистике семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.

Алекситимия (от др.-греч. ἀ- — приставка с отрицательным значением, λέξις — слово, θυμός — чувство, буквально «без слов для чувств») — затруднения в передаче, словесном описании своего состояния.

Приня́тие жела́емого за действи́тельное — формирование убеждений и принятие решений в соответствии с тем, что является приятным человеку, вместо апелляции к имеющимся доказательствам, рациональности или реальности.

Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает…

Независимая переменная — в эксперименте переменная, которая намеренно манипулируется или выбирается экспериментатором с целью выяснить её влияние на зависимую переменную.

Метод анкети́рования — психологический вербально-коммуникативный метод, в котором в качестве средства для сбора сведений от респондента используется специально оформленный список вопросов — анкета. В социологии анкетирование — это метод опроса, используемый для составления статических (однократное анкетирование) или динамических (при многократном анкетировании) статистических представлений о состоянии общества, общественного мнения, состояния политической, социальной и прочей напряжённости с целью…

Выброс (англ. outlier), промах — в статистике результат измерения, выделяющийся из общей выборки.

Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.

Теория обнаружения сигнала (ТОС) — современный психофизический метод, учитывающий вероятностный характер обнаружения стимула, в котором наблюдатель рассматривается как активный субъект принятия решения в ситуации неопределённости. Теория обнаружения сигнала описывает сенсорный процесс как двухступенчатый: процесс отображения физической энергии стимула в интенсивность ощущения и процесс принятия решения субъектом.

Регрессия прошлой жизни (англ. past life regression, PLR) — техника использования гипноза для обнаружения того, что практикующие эту технику считают воспоминаниями людей о прошлых жизнях или реинкарнациях. Используется в парапсихологии в связи с попытками подтвердить гипотезу существования феномена реинкарнации.

Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания…

У́мственный во́зраст — понятие в психологии, предложено Альфредом Бине и Т. Симоном в 1908 году. За основу взят уровень умственного развития человека по сравнению с этим уровнем у людей такого же возраста. То есть возраст, в котором — по среднестатистическим данным, — люди могут решить испытательные задания такого же уровня сложности. Таким образом, основное назначение понятия «умственного возраста» в психологии — характеристика интеллектуального развития личности, в основе которой лежит сравнение…

Эмпирические данные (от др.-греч. εμπειρία «опыт») — данные, полученные через органы чувств, в частности, путём наблюдения или эксперимента. В философии после Канта полученное таким образом знание принято называть апостериорным. Оно противопоставляется априорному, доопытному знанию, доступному через чисто умозрительное мышление.

Групповáя поляризáция — психологический феномен расхождения по разным полюсам мнений участников дискуссии во время принятия группового решения. Величина разброса конечных вариантов напрямую зависит от первоначальных позиций участников. То есть, чем дальше от середины находились их мнения в начале дискуссии, тем сильней будет проявляться феномен. Важно разделять «поляризацию» и «экстремизацию». Поляризация — явление, при котором решение члена группы смещается к ранее выбранному им полюсу; при экстремизации…

Подробнее: Групповая поляризация

То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.

Рандомизированное контролируемое испытание (рандомизированное контролируемое исследование, РКИ) — тип научного (часто медицинского) эксперимента, при котором его участники случайным образом делятся на группы, в одной из которых проводится исследуемое вмешательство, а в другой (контрольной) применяются стандартные методики или плацебо.

Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.

Когда исследователи рассматривают вопросы, представляющие интерес для аналитиков или портфельных менеджеров, они могут исключить из анализа определенные акции, облигации, портфели, или периоды времени, по разным причинам — возможно, из-за недоступности данных.

Когда недоступность данных приводит к исключению из анализа определенных активов, мы называем эту проблему систематической ошибкой или смещением выборки (англ. ‘sample selection bias’ или ‘sampling bias’).

Например, вы можете сделать выборку из базы данных, которая отслеживает только компании, существующие в настоящее время. Например, многие базы данных взаимных фондов предоставляют историческую информацию только о тех фондах, которые существуют в настоящее время.

Базы данных, в которых хранятся балансовые отчеты и отчеты о прибылях и убытках страдают от той же систематической ошибки, что и базы данных фондов: в них нет фондов или компаний, которые прекратили деятельность.

Исследование, которое использует подобные базы данных, подвержено разновидности систематической ошибки выборки, известной как систематическая ошибка выжившего (англ. ‘survivorship bias’).

Исследователи Димсон, Марш и Стонтон (Dimson, Marsh, and Staunton, 2002) подняли вопрос о систематической ошибке выжившего в международных финансовых индексах:

Известной проблемой является влияние выживания рынков на долгосрочную оценку доходности. Рынки могут испытывать не только разочаровывающие результаты, но и полную потерю стоимости за счет конфискации, гиперинфляции, национализации и кризисов.

При оценке результатов рынков, которые выживают в течение длительных интервалов времени, мы сделали выводы о том, чем обусловлено выживание. Тем не менее, как отметили в исследовании Браун, Готцман и Росс (Brown, Goetzmann, и Ross) в 1995 г. и Готцман и Джорион (Goetzmann and Jorion) в 1999 г., человек не способен заранее определить, какие рынки выживут, а какие нет. (стр. 41)

Систематическая ошибка выжившего иногда появляется, когда мы используем совместно цены акций и данные бухгалтерского учета.

Например, многие исследования в области финансов использовали соотношение рыночной стоимости компании к бухгалтерской стоимости компании на одну акцию (т.е. коэффициент котировки акций, англ. P/B, от ‘price-to-book ratio’ или ‘market-to-book ratio’) и обнаружили, что коэффициент P/B обратно пропорционален доходности компании (см. Fama and French 1992, 1993).

Коэффициент P/B также используется для многих популярных индексов стоимости и роста.

Если база данных, которую мы используем для сбора данных бухгалтерского учета, исключает обанкротившиеся компании, это может привести к систематической ошибке выжившего.


Котхари, Шанкен и Слоун (Kothari, Shanken, and Sloan) в 1995 г. исследовали именно этот вопрос, и оспорили то, что акциям обанкротившихся компаний свойственна самая низкая доходность и коэффициент P/B.

Если мы исключаем из выборки акции обанкротившихся компаний, то акции с низким P/B, которые включены в выборку, будут иметь в среднем более высокую доходность, по сравнению со средней доходностью при включении в выборку всех акций с низким P/B. Котхари, Шанкен и Слоун предположили, что эта систематическая ошибка привела к выводу об обратной связи между средней доходностью и P/B.

См. Fama and French (1996, стр. 80) о интеллектуальном анализе данных и систематической ошибке выжившего в их тестах.

Единственный совет, который мы можем предложить в этой ситуации, — это быть в курсе каких-либо смещений, потенциально присущих в выборке. Очевидно, что смещения выборки могут затуманить результаты любого исследования.

Выборка также может быть смещена из-за удаления (или делистинга) акций компании.

Делистинг (англ. ‘delisting’), т.е. исключение акций компании из котировального списка биржи, может происходить по разным причинам: слияние, банкротство, ликвидация, или переход на другую биржу.

Например, Центр исследований котировок ценных бумаг (CRSP, от англ. Center for Research in Security Prices) в Университете Чикаго является основным поставщиком данных о доходности, используемых в научных исследованиях. Когда происходит делистинг, CRSP пытается собрать данные о доходности исключенной компании, но во многих случаях он не может сделать этого из-за связанных с делистингом трудностях. CRSP вынужден просто указать значение доходности исключенной компании как отсутствующее.


Исследование, опубликованное в Финансовом журнале (см. The Journal of Finance) Шумвеем и Вортером (Shumway and Warther) в 1999 году, задокументировало смещение данных доходности NASDAQ в CRSP, вызванное делистингом.

Авторы показали, что делистинг, связанный с плохой работой компании (например, банкротством) исключается из данных чаще, чем делистинг, связанный с хорошей или нейтральной эффективностью компании (например, слиянием или перемещением на другой рынок). Кроме того, делистинг чаще происходит с небольшими компаниями.

Систематическая ошибка выборки встречается даже на рынках, где качество и согласованность данных весьма высоки. Новые классы активов, такие как хедж-фонды могут представлять еще большие проблемы смещения выборки.


Хедж-фонды (англ. ‘hedge funds’) представляют собой гетерогенную группу инвестиционных инструментов, как правило, организованных таким образом, чтобы быть свободными от регулирующего контроля. В целом, хедж-фонды не обязаны публично раскрывать свою эффективность (в отличие, скажем, от взаимных фондов). Хедж-фонды сами решают, нужно ли им включаться в какую-либо базу данных хедж-фондов.

Хедж фонды с плохой репутацией явно не желают, чтобы их результаты публиковались в базе данных, создавая проблему смещения самовыборки (англ. ‘self-selection bias’) в базах данных хедж-фондов.

Кроме того, как отметили Фанг и Хсие (Fung and Hsieh) в исследовании 2002 г., поскольку только хедж-фонды с хорошими показателями добровольно попадают в базу данных, в целом, историческая эффективность отрасли хедж-фондов имеет тенденцию казаться лучше, чем она есть на самом деле.

Кроме того, многие базы данных хедж-фондов исключают фонды, которые выходят из бизнеса, создавая в базе данных систематическую ошибку выжившего. Даже если база данных не удаляет несуществующие хедж-фонды, в попытке устранить ошибку выжившего, остается проблема хедж-фондов, которые перестают отчитываться об эффективности из-за плохих результатов.

См. Fung and Hsieh (2002) и Horst and Verbeek (2007) для более подробной информации о проблемах интерпретации эффективности хедж-фондов.

Обратите внимание, что систематическая ошибка также возможна, когда успешные фонды перестают отчитываться об эффективности, поскольку они больше не нуждаются в новых потоках денежных средств.

Систематическая ошибка опережения.

Процесс тестирования также подвержен систематической ошибке опережения (англ. ‘look-ahead bias’), если он использует информацию, которая не была доступна на момент тестирования.

Например, тесты правил биржевой торговли, которые используют ставки доходности фондового рынка и данные бухгалтерских балансов должны учитывать систематическую ошибку опережения.

В таких тестах, балансовая стоимость компании на акцию обычно используются для расчета коэффициента P/B.

Хотя рыночная цена акции доступна для всех участников рынка на заданный момент времени, балансовая стоимость на акцию на конец финансового года может стать общедоступной только в будущем — когда-то в следующем квартале.

Систематическая ошибка временного периода.

Тесты также подвержены систематической ошибке или смещению временного периода (англ. ‘time-period bias’), если они основаны на временном периоде, для которого результаты тестирования будут специфичными (т.е., характерными только для данного периода).

Ряды коротких временных периодов, скорее всего, дадут результаты, специфичные для определенного периода, которые могут не отражать более длительный период.

Ряды длительных временных периодов могут дать более точную картину истинной эффективности инвестиций. Недостаток длительных периодов заключается в потенциальных структурных изменениях, происходящих в течение периода, что приведет к двум различным распределениям доходности.

В этой ситуации, распределение, отражающее условия до изменений, будет отличаться от распределения, которые описывают условия после изменений.

Пример (7) систематических ошибок в инвестиционных исследованиях.

Финансовый аналитик рассматривает эмпирические данные об исторической доходности акций США.

Она выясняет, что недооцененные акции (то есть, акции с низким P/B) превзошли по эффективности растущие акции (то есть, акции с высоким P/B) в некоторых последних периодах времени.

После изучения американского рынка, аналитик задается вопросом, могут ли недооцененные акции быть привлекательными в Великобритании. Она исследует эффективность недооцененных и растущих акций на британском рынке за 14-летний период с января 2000 года по декабрь 2013 года.

Для проведения этого исследования, аналитик делает следующее:

  • Получает текущий состав компаний Индекса всех акций FTSE (Financial Times Stock Exchange All Share Index), который является взвешенным индексом рыночной капитализации;
  • Исключает несколько компаний, у которых финансовый год не заканчивается в декабре;
  • Использует балансовую и рыночную стоимость компаний на конец года, чтобы ранжировать остальные пространство компаний по коэффициенту P/B на конец года;
  • На основе этих рейтингов, она делит пространство ценных бумаг на 10 портфелей, каждый из которых содержит одинаковое количество акций;
  • Вычисляет равновзвешенную доходность каждого портфеля и доходность FTSE All Share Index за 12 месяцев после даты расчета каждого рейтинга; а также
  • Вычитает доходность FTSE из доходности каждого портфеля, чтобы получить избыточную доходность для каждого портфеля.

Опишите и обсудите каждую из следующих систематических ошибок, которым подвержен план исследований аналитика:

  • систематическую ошибку выжившего;
  • систематическую ошибку опережения; а также
  • систематическую ошибку временного периода.

Систематическая ошибка выжившего.

План тестирования подвержен систематической ошибке выжившего, если он не принимает в расчет обанкротившиеся компании, слившиеся компании, а также компании, иным образом покинувшие базу.

В этом примере, аналитик использовала текущий список акций FTSE, а не фактический список акций на начало каждого года. В той степени, в которой расчет доходности не учитывает компании, исключенные из индекса, эффективность портфелей с наименьшим P/B подвершена систематической ошибке выжившего и, соответственно, может быть завышена.

В какой-то момент периода тестирования, эти ныне не существующие компании, были исключены из тестирования. У них, вероятно, были низкие цены на акции (и низкий P/ B) и плохая доходность.

Систематическая ошибка опережения.

План тестирования подвержен систематической ошибке опережения, если он использует информацию, недоступную на момент тестирования.

В этом примере, аналитик провела тест, сделав допущение о том, что необходимая бухгалтерская информация была доступна в конце финансового года.

Например, аналитик предположила, что балансовая стоимость на акцию за 2 000 финансовый года был известна на 31 декабря 2000 года. Поскольку эта информация, как правило, не публикуется в течение нескольких месяцев после завершения финансового года, тест, возможно, содержал систематическую ошибку опережения.

Эта ошибка может привести к стратегии, которая окажется успешной, но при этом потребуется идеальная способность прогнозировать бухгалтерские результаты.

Систематическая ошибка временного периода.

План тестирования подвержен систематической ошибке временного периода, если он основан на периоде, для которого результаты будут специфичны.

Хотя тестирование охватывает период более 10 лет, этот период может оказаться слишком коротким для тестирования аномалии.

В идеале, аналитик должна протестировать рыночные аномалии в течение нескольких бизнес-циклов, чтобы гарантировать, что результаты не являются специфичными для рассматриваемого периода.

Эта систематическая ошибка может способствовать предлагаемой стратегии, если выбрать временной период, благоприятный для стратегии.

Расхождения
между величиной какого-либо показателя,
найденного посредством статистического
наблюдения, и действительными его
размерами называются ошибками
наблюдения
.В зависимости от
причин возникновения различают ошибки
регистрации и ошибки репрезентативности.

Ошибки
регистрации
возникают в результате
неправильного установления фактов или
ошибочной записи в процессе наблюдения
или опроса. Они бывают случайными или
систематическими. Случайные ошибки
регистрации могут быть допущены как
опрашиваемыми в их ответах, так и
регистраторами. Систематические ошибки
могут быть и преднамеренными, и
непреднамеренными. Преднамеренные –
сознательные, тенденциозные искажения
действительного положения дела.
Непреднамеренные вызываются различными
случайными причинами (небрежность,
невнимательность).

Ошибки
репрезентативности
(представительности)
возникают в результате неполного
обследования и в случае, если обследуемая
совокупность недостаточно полно
воспроизводит генеральную совокупность.
Они могут быть случайными и систематическими.
Случайные ошибки репрезентативности
– это отклонения, возникающие при
несплошном наблюдении из-за того, что
совокупность отобранных единиц наблюдения
(выборка) неполно воспроизводит всю
совокупность в целом. Систематические
ошибки репрезентативности – это
отклонения, возникающие вследствие
нарушения принципов случайного отбора
единиц. Ошибки репрезентативности
органически присущи выборочному
наблюдению и возникают в силу того, что
выборочная совокупность не полностью
воспроизводит генеральную. Избежать
ошибок репрезентативности нельзя,
однако, пользуясь методами теории
вероятностей, основанными на использовании
предельных теорем закона больших чисел,
эти ошибки можно свести к минимальным
значениям, границы которых устанавливаются
с достаточно большой точностью.

Ошибки
выборки –
разность между
характеристиками выборочной и генеральной
совокупности. Для среднего значения
ошибка будет определяться по формуле


(7.1)

где

Величина
называетсяпредельной ошибкойвыборки.

Предельная
ошибка выборки – величина случайная.
Исследованию закономерностей случайных
ошибок выборки посвящены предельные
теоремы закона больших чисел. Наиболее
полно эти закономерности раскрыты в
теоремах П. Л. Чебышева и А. М. Ляпунова.

Теорему П.
Л. Чебышева
применительно к
рассматриваемому методу можно
сформулировать следующим образом: при
достаточно большом числе независимых
наблюдений можно с вероятностью, близкой
к единице (т. е. почти с достоверностью),
утверждать, что отклонение выборочной
средней от генеральной будет сколько
угодно малым. В теореме П. Л. Чебышева
доказано, что величина ошибки не должна
превышать.
В свою очередь величина,
выражающая среднее квадратическое
отклонение выборочной средней от
генеральной средней, зависит от
колеблемости признака в генеральной
совокупностии числа отобранных единицn. Эта
зависимость выражается формулой

,
(7.2)

где
зависит также от способа производства
выборки.

Величину
=называютсредней ошибкой выборки. В
этом выражении– генеральная дисперсия,n– объем
выборочной совокупности.

Рассмотрим, как
влияет на величину средней ошибки число
отбираемых единиц n. Логически
нетрудно убедиться, что при отборе
большого числа единиц расхождения между
средними будут меньше, т. е. существует
обратная связь между средней ошибкой
выборки и числом отобранных единиц. При
этом здесь образуется не просто обратная
математическая зависимость, а такая
зависимость, которая показывает, что
квадрат расхождения между средними
обратно пропорционален числу отобранных
единиц.

Увеличение
колеблемости признака влечет за собой
увеличение среднего квадратического
отклонения, а следовательно, и ошибки.
Если предположить, что все единицы будут
иметь одинаковую величину признака, то
среднее квадратическое отклонение
станет равно нулю и ошибка выборки
также исчезнет. Тогда нет необходимости
применять выборку. Однако следует иметь
в виду, что величина колеблемости
признака в генеральной совокупности
неизвестна, поскольку неизвестны размеры
единиц в ней. Можно рассчитать лишь
колеблемость признака в выборочной
совокупности. Соотношение между
дисперсиями генеральной и выборочной
совокупности выражается формулой

Поскольку
величина
при достаточно большихnблизка к
единице, можно приближенно считать, что
выборочная дисперсия равна генеральной
дисперсии, т. е.

Следовательно,
средняя ошибка выборки показывает,
какие возможны отклонения характеристик
выборочной совокупности от соответствующих
характеристик генеральной совокупности.
Однако о величине этой ошибки можно
судить с определенной вероятностью. На
величину вероятности указывает множитель

Теорема А.
М. Ляпунова
. А. М. Ляпунов доказал,
что распределение выборочных средних
(следовательно, и их отклонений от
генеральной средней) при достаточно
большом числе независимых наблюдений
приближенно нормально при условии, что
генеральная совокупность обладает
конечной средней и ограниченной
дисперсией.

Математически
теорему Ляпуноваможно записать
так:

(7.3)

где

,
(7.4)

где – математическая постоянная;

предельная ошибка выборки,которая дает возможность выяснить, в
каких пределах находится величина
генеральной средней.

Значения этого
интеграла для различных значений
коэффициента доверия tвычислены и
приводятся в специальных математических
таблицах. В частности, при:

Поскольку tуказывает на вероятность расхождения,
т. е. на вероятность того, на какую
величину генеральная средняя будет
отличаться от выборочной средней, то
это может быть прочитано так: с вероятностью
0,683 можно утверждать, что разность между
выборочной и генеральной средними не
превышает одной величины средней ошибки
выборки. Другими словами, в 68,3 % случаев
ошибка репрезентативности не выйдет
за пределыС вероятностью 0,954 можно утверждать,
что ошибка репрезентативности не
превышает(т. е. в 95 % случаев). С вероятностью
0,997, т. е. довольно близкой к единице,
можно ожидать, что разность между
выборочной и генеральной средней не
превзойдет трехкратной средней ошибки
выборки и т. д.

Логически связь
здесь выглядит довольно ясно: чем больше
пределы, в которых допускается
возможная ошибка, тем с большей
вероятностью судят о ее величине.

Зная выборочную
среднюю величину признака
и предельную ошибку выборки,
можно определить границы (пределы),
в которых заключена генеральная
средняя

(7.5)

1.
Собственно-случайная выборка

этот способ ориентирован на выборку
единиц из генеральной совокупности без
всякого расчленения на части или группы.
При этом для соблюдения основного
принципа выборки – равной возможности
всем единицам генеральной совокупности
быть отобранным – используются схема
случайного извлечения единиц путем
жеребьевки (лотереи) или таблицы случайных
чисел. Возможен повторный и бесповторный
отбор единиц

Средняя ошибка
собственно-случайной выборки
представляет собой среднеквадратическое
отклонение возможных значений выборочной
средней от генеральной средней. Средние
ошибки выборки при собственно-случайном
методе отбора представлены в табл. 7.2.

Таблица 7.2

Средняя ошибка
выборки μ

При отборе

повторном

бесповторном

Для средней

Для доли

В таблице
использованы следующие обозначения:

– дисперсия выборочной совокупности;

– численность выборки;

– численность генеральной совокупности;

– выборочная доля единиц, обладающих
изучаемым признаком;

– число единиц, обладающих изучаемым
признаком;

– численность выборки.

Для увеличения
точности вместо множителя
следует
брать множитель
,
но при большой численностиNразличие
между этими выражениями практического
значения не имеет.

Предельная
ошибка собственно-случайной выборки
рассчитывается по формуле

,
(7.6)

где t
– коэффициент доверия зависит от
значения вероятности.

Пример.При
обследовании ста образцов изделий,
отобранных из партии в случайном порядке,
20 оказалось нестандартными. С вероятностью
0,954 определите пределы, в которых
находится доля нестандартной продукции
в партии.

Решение.
Вычислим генеральную долю (Р):
.

Доля нестандартной
продукции:
.

Предельная
ошибка выборочной доли с вероятностью
0,954 рассчитывается по формуле (7.6) с
применением формулы табл. 7.2 для доли:

С вероятностью
0,954 можно утверждать, что доля нестандартной
продукции в партии товара находится в
пределах 12 % ≤ P≤ 28 %.

В практике
проектирования выборочного наблюдения
возникает потребность определения
численности выборки, которая необходима
для обеспечения определенной точности
расчета генеральных средних. Предельная
ошибка выборки и ее вероятность при
этом являются заданными. Из формулы
и формул средних ошибок выборки
устанавливается необходимая численность
выборки. Формулы для определения
численности выборки (n) зависят от
способа отбора. Расчет численности
выборки для собственно-случайной выборки
приведен в табл. 7.3.

Таблица 7.3

Предполагаемый
отбор

Формулы

для средней

для доли

Повторный

Бесповторный

2.
Механическая выборка
– при этом
методе исходят из учета некоторых
особенностей расположения объектов в
генеральной совокупности, их упорядоченности
(по списку, номеру, алфавиту). Механическая
выборка осуществляется путем отбора
отдельных объектов генеральной
совокупности через определенный интервал
(каждый 10-й или 20-й). Интервал рассчитывается
по отношению,
гдеn– численность выборки,N
численность генеральной совокупности.
Так, если из совокупности в 500 000 единиц
предполагается получить 2 %-ную выборку,
т. е. отобрать 10 000
единиц, то пропорция отбора составитОтбор
единиц осуществляется в соответствии
с установленной пропорцией через равные
интервалы. Если расположение объектов
в генеральной совокупности носит
случайный характер, то механическая
выборка по содержанию аналогична
случайному отбору. При механическом
отборе применяется только бесповторная
выборка [1, 5–10].

Средняя ошибка
и численность выборки при механическом
отборе подсчитывается по формулам
собственно-случайной выборки (см.
табл. 7.2 и 7.3).

3.
Типическая выборка
, при котрой
генеральная совокупность делится по
некоторым существенным признакам на
типические группы; отбор единиц
производится из типических групп. При
этом способе отбора генеральная
совокупность расчленяется на однородные
в некотором отношении группы, которые
имеют свои характеристики, и вопрос
сводится к определению объема выборок
из каждой группы. Может бытьравномерная
выборка
– при этом способе из каждой
типической группы отбирается одинаковое
число единицТакой подход оправдан лишь при равенстве
численностей исходных типических групп.
При типическом отборе, непропорциональном
объему групп, общее число отбираемых
единиц делится на число типических
групп, полученная величина дает
численность отбора из каждой типической
группы.

Более совершенной
формой отбора является пропорциональная
выборка
. Пропорциональной называется
такая схема формирования выборочной
совокупности, когда численность выборок,
взятых из каждой типической группы в
генеральной совокупности, пропорциональна
численностям, дисперсиям (или комбинированно
и численностям, и дисперсиям). Условно
определяем численность выборки в 100
единиц и отбираем единицы из групп:

пропорционально
численности их генеральной совокупности

(табл. 7.4). В таблице
обозначено:

Ni– численность типической группы;

dj
– доля (Ni/N);

N– численность
генеральной совокупности;

ni– численность выборки из типической
группы вычисляется:

, (7.7)

n – численность выборки из генеральной
совокупности.

Таблица
7.4

Группы

Ni

dj

ni

1

300

0,3

30

2

500

0,5

50

3

200

0,2

20

1000

1,0

100


пропорционально среднему квадратическому
отклонению
(табл. 7.5).

здесь
i– среднее
квадратическое отклонение типических
групп;

ni
– численность выборки из типической
группы вычисляется по формуле


(7.8)

Таблица
7.5

Ni

i

ni

300

5

0,25

25

500

7

0,35

35

200

8

0,40

40

1000

20

1,0

100


комбинированно (табл. 7.6).

Численность
выборки вычисляется по формуле

. (7.9)

Таблица 7.6

i

iNi

300

5

1500

0,23

23

500

7

2100

0,53

53

200

8

1600

0.24

24

1000

20

6600

1,0

100

При проведении
типической выборки непосредственный
отбор из каждой группы проводится
методом случайного отбора.

Средние ошибки
выборки рассчитываются по формулам
табл. 7.7 в зависимости от способа отбора
из типических групп.

Таблица 7.7

Способ
отбора

Повторный

Бесповторный

для
средней

для
доли

для
средней

для
доли

Непропорциональный
объему групп

Пропорциональный

объему групп

Пропорциональный
колеблемости в группах (является
наивыгоднейшим)

здесь
– средняя из внутригрупповых дисперсий
типических групп;

– доля единиц, обладающих изучаемым
признаком;

– средняя из внутригрупповых дисперсий
для доли;

– среднее квадратическое отклонение
в выборке изi-й типической группы;

– объем выборки из типической группы;

– общий объем выборки;


объем типической группы;

– объем генеральной совокупности.

Численность
выборки из каждой типической группы
должна быть пропорциональна среднему
квадратическому отклонению в этой
группе
.Расчет численности
производится по формулам, приведенным
в табл. 7.8.

Таблица 7.8

Повторный

Бесповторный

Для определения
средней

Для определения
доли

4. Серийная
выборка
– удобена в тех случаях,
когда единицы совокупности объединены
в небольшие группы или серии. При серийной
выборке генеральную совокупность делят
на одинаковые по объему группы – серии.
В выборочную совокупность отбираются
серии. Сущность серийной выборки
заключается в случайном или механическом
отборе серий, внутри которых производится
сплошное обследование единиц. Средняя
ошибка серийной выборки с равновеликими
сериями зависит от величины только
межгрупповой дисперсии. Средние ошибки
сведены в табл. 7.9.

Таблица 7.9

Способ
отбора серии

Формулы

для
средней

для
доли

Повторный

Бесповторный

Здесь
R– число серий в генеральной
совокупности;

r – число
отобранных серий;

– межсерийная (межгрупповая) дисперсия
средних;

– межсерийная (межгрупповая) дисперсия
доли.

При серийном
отборе необходимую численность отбираемых
серий определяют так же, как и при
собственно-случайном методе отбора.

Расчет численности
серийной выборки производится по
формулам, приведенным в табл. 7.10.

Таблица 7.10

Повторный

Бесповторный

Для
определения среднего признака

Для
определения доли

Пример.В
механическом цехе завода в десяти
бригадах работает 100 рабочих. В целях
изучения квалификации рабочих была
произведена 20 %-ная серийная бесповторная
выборка, в которую вошли две бригады.
Получено следующее распределение
обследованных рабочих по разрядам:

Рабочие

Разряды

рабочих
в бригаде 1

Разряды

рабочих
в бригаде 2

Рабочие

Разряды
рабочих
в бригаде 1

Разряды
рабочих
в бригаде 2

1

2

3

4

5

2

4

5

2

5

3

6

1

5

3

6

7

8

9

10

6

5

8

4

5

4

2

1

3

2

Необходимо
определить с вероятностью 0,997 пределы,
в которых находится средний разряд
рабочих механического цеха.

Решение.
Определим выборочные средние по
бригадам и общую среднюю как среднюю
взвешенную из групповых средних:

Определим
межсерийную дисперсию по формулам
(5.25):

Рассчитаем
среднюю ошибку выборки по формуле табл.
7.9:

Вычислим
предельную ошибку выборки с вероятностью
0,997:

С вероятностью
0,997 можно утверждать, что средний разряд
рабочих механического цеха находится
в пределах

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Систематическая ошибка отбора — статистическое понятие, показывающее, что выводы, сделанные применительно к какой либо

Систематическая ошибка отбора — статистическое понятие, показывающее, что выводы, сделанные применительно к какой либо выборке, могут оказаться неточными вследствие неслучайного неправильного отбора объектов в эту выборку. Типы систематических ошибок Пространство: – Выбор первой и последней точки в серии. К примеру, для того, чтобы максимизировать заявленный тренд, можно начать серию с года с необычно низкими показателями и закончить годом с самыми высокими показателями. – «Своевременное» окончание, то есть тогда, когда результаты укладываются в желаемую теорию. – Отделение части данных на основе знаний обо всей выборке и затем применение математического аппарата к этой части как к слепой (случайной) выборке (т. н. «районированная выборка» , или «ошибка меткого стрелка» ).

– Изучение процесса на интервале (во времени или пространстве), заведомо меньшем, чем требуется для

– Изучение процесса на интервале (во времени или пространстве), заведомо меньшем, чем требуется для полного представления о явлении. Данные: – Вычёркивание неких «плохих» данных в соответствии с придуманными правилами, хотя бы эти правила и шли вразрез с предварительно объявленными правилами для этой выборки. Участники: – Пристрастный предварительный отбор участников. К примеру, для доказательства, что курение никак не вредит результатам фитнес тренировок, можно разместить в местном фитнесцентре объявление для набора добровольцев, но курящих набирать в среди тренеров и опытных участников, а некурящих – среди начинающих или желающих сбросить вес.

– Выбрасывание из выборки участников, не дошедших до конца теста (т. н. «систематическая ошибка

– Выбрасывание из выборки участников, не дошедших до конца теста (т. н. «систематическая ошибка выжившего» ). Во время Второй мировой войны математику Абрахаму Вальду поручили найти варианты бронирования бомбардировщиков: не все они возвращались на базу, а на тех, что возвращались, оставалось множество пробоин от зениток и истребителей на крыльях и хвосте. Значило ли это, что в этих местах нужно было больше брони? Вальд ответил: нет, эти места достаточно защищены. Самолёт, которому попали в кабину или топливный бак, выходит из строя и не возвращается. Поэтому укреплять надо те места, которые наиболее «чистые» . «Слухи об уме и доброте дельфинов основаны на рассказах пловцов, которых они толкали к берегу, а не в открытое море» . Из старых зданий остаются только самые красивые и прочные — остальные подвергаются сносу, и на их месте строят новые. Классическое искусство — это то, что проверено временем, но плохими работами того времени большинство людей не интересуется.

Когортные исследования

Когортные исследования

Данные исследования обладают большой доказательной силой и широко используются исследователями США и стран Западной

Данные исследования обладают большой доказательной силой и широко используются исследователями США и стран Западной Европы. Эти исследования основаны на наблюдении и не предполагают активного вмешательства исследователей в естественное течение изучаемого процесса; они также всегда являются «продольными» , и почти всегда – проспективными (бывают и ретроспективные когортные исследования). Основная цель когортных исследований – установить, влияет ли определенное воздействие (или несколько) на последующее развитие определенного исхода (например, клинически манифестного заболевания).

Кроме того, исследования подобного типа предпринимаются для точного описания типичного течения и характерных осложнений

Кроме того, исследования подобного типа предпринимаются для точного описания типичного течения и характерных осложнений различных заболеваний, частоты встречаемости каких либо событий, интересующих ученых, изучения побочных эффектов и взаимодействия лекарственных препаратов, выявления факторов риска различных заболеваний и состояний и оценки степени их вклада в развитие изучаемого исхода и т. п. Это лучший вид клинических исследований для тех случаев, когда эксперимент невозможен.

Принцип когортных исследований – в продолжительном наблюдении за одной (реже – несколькими) группами исследуемых

Принцип когортных исследований – в продолжительном наблюдении за одной (реже – несколькими) группами исследуемых лиц ( «когортами» ). Срок наблюдения варьирует от нескольких месяцев до десятков лет и оговаривается заранее (хотя в дальнейшем может быть увеличен в соответствии с результатами промежуточных анализов полученных данных). Размер когорты обычно стараются сделать как можно большим; в идеале когорта совпадает по численности с исследуемой генеральной совокупностью. В случае, если исследуется широко распространенное заболевание или состояние, представляющее большую социальную значимость, и все случаи таких заболеваний тщательно регистрируются на государственном уровне, описанный выше идеальный вариант достижим; так, ученые ряда стран исследуют национальные когорты ВИЧ инфицированных или больных атеросклерозом. При согласованном объединении когорт нескольких стран образуются огромные интернациональные когорты; так поступают при организации международных мультицентровых исследований.

Когортное исследование отчасти похоже на исследование вида «случай-контроль» : – когорта формируется из лиц,

Когортное исследование отчасти похоже на исследование вида «случай-контроль» : – когорта формируется из лиц, имеющих риск развития какоголибо состояния, интересующего исследователей (например, ВИЧ-инфекции – у взрослых социально и сексуально активных лиц, ОНМК – у пациентов с артериальной гипертензией, обострения/хронизации – у пациентов с вирусными гепатитами, побочных эффектов АРТ – у получающих АРТ и т. п. ); – в дальнейшем в ходе наблюдения регистрируются случаи развития искомого состояния (т. н. «исходы» ). По завершении исследования когорта разделяется на группу, где действовал интересующий исследователей фактор ( «опытная группа» ), и группу, где указанный фактор не действовал ( «контрольная группа» ), после чего в указанных группах сравниваются показатели, характеризующие вероятность развития исхода.

– если в ходе когортного исследования стоит цель просто описать частоту развития некоего явления

– если в ходе когортного исследования стоит цель просто описать частоту развития некоего явления в определённой группе лиц, подвергающихся воздействию какого-либо фактора (например, рака лёгких либо ХОБЛ у курильщиков, ВИЧ-инфекции – у парентеральных наркоманов и т. п. ), то когорта формируется из лиц, находящихся под воздействием соответствующего фактора (например, из парентеральных наркоманов), а контрольная группа не нужна; – всё вышеперечисленное должно учитываться в критериях включения/исключения в исследование; – перед проведением когортного исследования желательно выполнение «пилотного» исследования с менее доказательным типом дизайна для получения начальной информации о структуре изучаемого явления – это необходимо для процедуры определения должного размера выборки (sample size calculation). Репрезентативность!!

Категории критериев включения/исключения (исходя из контекста исследования) Коморбидность Сопутствующие заболевания (в настоящее время или

Категории критериев включения/исключения (исходя из контекста исследования) Коморбидность Сопутствующие заболевания (в настоящее время или ранее), не изучаемые в исследовании. Могут быть критериями исключения. Лечение Медикаментозная терапия, проводимая ранее или в настоящее время, хирургические вмешательства, участие в другом исследовании. Форма или степень тяжести заболевания Клиническая форма и степень тяжести изучаемого заболевания Критерии, связанные с беременностью Беременность, лактация, методы контрацепции Персональные критерии Например: возраст, пол, национальность (раса)

Диагностические процедуры Касается выполнения обследований (не их результата!) диагностических процедур, необходимых для включения в

Диагностические процедуры Касается выполнения обследований (не их результата!) диагностических процедур, необходимых для включения в исследование (например, измерение кровяного давления, любые специфические лабораторные тесты и т. д. ) Прочее Например, такие специфические индивидуальные критерии, как исключение при беременности партнёра, либо включение в зависимости от места жительства, наличия информированного согласия, грамотности/способности изъясняться на государственном языке и т. д. Также могут использоваться в качестве дополнительных критериев исключения (например, ожидаемая низкая приверженность рекомендациям и т. п. )

Примером является Euro. SIDA, согласованно проводимая на 6 когортах ВИЧ инфицированных, проживающих во многих

Примером является Euro. SIDA, согласованно проводимая на 6 когортах ВИЧ инфицированных, проживающих во многих странах Евросоюза, включая Польшу и страны Балтии, а также в России, Белоруссии и на Украине; общий размер объединенной когорты – более 11. 200 больных. Другим примером мультицентрового когортного исследования является D: A: D (сбор данных о побочных эффектах АРТ). Объединенная когорта данного исследования включает 11 национальных когорт ВИЧ инфицированных лиц, проживающих в 21 европейской стране, а также в США и Австралии и наблюдающихся в 188 клиниках; суммарный размер данной когорты составляет 23. 468 больных. Если в когорту удалось (или планируется) включить всех зарегистрированных больных с изучаемой патологией, она называется регистром. Регистр может быть региональный, национальный и (для редких заболеваний) – международный; регистр больных с острым коронарным синдромом Global Registry of Acute Coronary Events (GRACE), его приблизительным аналогом в России является регистр ОКС РЕКОРД.

Чем больше размер когорты, тем точнее получаемые данные и тем ближе они приближаются к

Чем больше размер когорты, тем точнее получаемые данные и тем ближе они приближаются к таковым в генеральной совокупности; при этом пропорционально возрастает стоимость исследования и сложность его организации. Большие мультицентровые когортные исследования по силам только большим интернациональным научным коллективам при поддержке влиятельных спонсоров, как правило – фармацевтических компаний. Когортные исследования бывают фиксированные (после достижения определенного размера когорты включение в исследование новых пациентов прекращается) и динамические (возможно пополнение когорты новыми участниками в ходе наблюдения).

Лица, включенные в когорту, находятся под наблюдением до проявления у них изучаемого исхода (outcome,

Лица, включенные в когорту, находятся под наблюдением до проявления у них изучаемого исхода (outcome, endpoint). Исходом может быть, например, развитие какого либо заболевания либо его осложнения, выздоровление или смерть больного, неудача лечения, появление побочного эффекта терапии; такие исходы называют истинными, поскольку они отражают реальные клинически значимые события в жизни исследуемого лица. Кроме того, бывают суррогатные исходы – обычно достижение определенного уровня каким либо показателем, полученным при лабораторных либо инструментальных исследованиях (например, уровня CD 4+ лимфоцитов, вирус нагрузки плазмы крови, холестерина и т. п. ). Суррогатные исходы косвенно указывают на развитие тех или иных истинных исходов (например, неудачи лечения или обострения заболевания), но сами таковыми не являются. Два или более независимых события, последователь ного или одновременного наступления которых ждет исследователь, могут объединяться в т. н. составной (composite) исход (например,

При анализе результатов когортных исследований наиболее часто используется метод анализа времени до наступления исхода

При анализе результатов когортных исследований наиболее часто используется метод анализа времени до наступления исхода (также называется «анализ вероятности наступления изучаемого исхода в определенный период времени» или «анализ дожития» ). Корректные результаты могут быть получены только при анализе синхронизированной когорты, т. е. такой когорты, каждый из членов которой был включен в исследование в строго определенный и одинаковый для всех момент развития своего заболевания / состояния (наступление определенной стадии заболевания, первичное проявление симптомов заболевания или его обострение, госпитализация, начало лечения, оперативное вмешательство и т. п. Данное условия требует тщательной формулировки критериев включения участников в исследование; в дальнейшем эти критерии должны неукоснительно соблюдаться.

Пациенты, включенные в исследование в разное время, могут быть несопоставимы по ряду признаков. Например,

Пациенты, включенные в исследование в разное время, могут быть несопоставимы по ряду признаков. Например, в случае хронических инфекционных заболеваний (вирусные гепатиты В, С, ВИЧ инфекция и т. п. ) методы диагностики и лечения достаточно быстро улучшаются с течением времени; если сравнить больных, включенных в исследование 15 лет назад и в настоящий момент, то окажется, что у современных больных заболевание было выявлено на более ранней стадии, а прогноз существенно лучше, чем 15 лет назад, из за радикального улучшения терапевтических подходов. Систематическая ошибка данного рода, связанная с улучшением методов диагностики и лечения по ходу продолжительного исследования, называется «ошибка временного сдвига» (leadtime bias); примером такой ошибки является исследование выживаемости ВИЧ инфицированных больных, заболевание у которых было выявлено до и после 1985 г. , из которого ожидаемо следует, что у больных, выявленных до 1985 г. , выживаемость ниже.

Аналогично, при исследовании выживаемости ВИЧ инфицированных лиц на фоне ВААРТ, начатой при различных уровнях

Аналогично, при исследовании выживаемости ВИЧ инфицированных лиц на фоне ВААРТ, начатой при различных уровнях CD 4+ лимфоцитов (50 клеток/мм 3 и 350 клеток/мм 3, соответственно) оказалось, что при начале ВААРТ на фоне выраженной иммуносупрессии (50 клеток/мм 3) выживаемость больных существенно ниже по сравнению с исходно высоким уровнем CD 4+ лимфоцитов. При этом исследователи не учли, что процесс снижения уровня Тh лимфоцитов с 350 до 50 клеток/мкл занимает несколько (2 7) лет, которые стоило бы приплюсовать к выживаемости лиц с глубоким иммунодефицитом. Данный пример также подчеркивает необходимость синхронизации формируемой когорты по ключевым показателям, способным оказать критическое влияние на ожидаемый результат исследования.

Другой систематической ошибкой является т. н. ошибка выжившего (survivorship bias). Данная ошибка возникает в

Другой систематической ошибкой является т. н. ошибка выжившего (survivorship bias). Данная ошибка возникает в случае, если сравнивается выживаемость больных, получавших или не получавших определенную терапию, причем анализируемый метод лечения стал доступен для использования на определенном этапе уже проводимого когортного исследования. В этом случае для того, чтобы подвергнуться определенному лечению, больные должны были дожить до его введения в клиническую практику, а все больные, умершие до этого момента, не имели шанса получить указанную терапию. Соответственно, оказывается, что лечение получили больные, у которых прогноз заболевания исходно был наиболее благоприятным, и в результате эффективность оцениваемой терапии может быть существенно завышена.

В целом, для обеспечения корректности анализа выживаемости необходимо соблюдение следующих условий: 1) выборка лиц,

В целом, для обеспечения корректности анализа выживаемости необходимо соблюдение следующих условий: 1) выборка лиц, вошедших в когорту, случайна и репрезентативна; 2) наблюдения независимы; 3) в период исследования не происходило изменений в методах диагностики, лечения и процедурах наблюдения (т. е. критерии включения не изменялись); 4) в период исследования для всех больных, входящих в когорту, вероятность наступления изучаемого исхода не изменялась; 5) случаи смерти, выбывания из исследования и включения новых больных в когорту происходили более или менее равномерно на всем периоде наблюдения.

Для оценки влияния каких либо факторов на развитие изучаемого исхода определяют следующие численные показатели:

Для оценки влияния каких либо факторов на развитие изучаемого исхода определяют следующие численные показатели: 1) Риск наступления исхода к моменту Х (risk of event by time t) – некоторое число в интервале между 0 и 1. 2) Шанс наступления исхода к моменту Х (odds of event by time t) – некоторое число между 0 и бесконечностью, приблизитель но равен риску, если частота исследуемого исхода невелика.

3) Частота (наступления) исхода – incidence rate (также просто incidence или просто rate) Определение

3) Частота (наступления) исхода – incidence rate (также просто incidence или просто rate) Определение частоты исхода предпочтительнее, чем оценка риска или шанса, поскольку при этом учитывается тот факт, что не все члены когорты находятся под наблюдением в течение одинакового временного интервала.

Если какой либо из наблюдаемых индивидуумов вышел из исследования до его завершения по любым

Если какой либо из наблюдаемых индивидуумов вышел из исследования до его завершения по любым причинам (кроме наступления ожидаемого исхода), считается, что время наблюдения в данном случае цензурировано моментом последнего планового осмотра данного лица. Такое наблюдение называется неполным, незавершенным или цензурированным. К неполным относятся также те наблюдения, в которых изучаемый исход не наступил на момент окончания исследования. Полным, завершенным или нецензурированным считается такое наблюдение, в котором изучаемый исход наступил до окончания исследования, и при этом точно известен интервал времени между включением больного в исследование и наступлением исхода.

Сумма человеко-лет под наблюдением (person years at risk) – это сумма времени, проведенного всеми

Сумма человеко-лет под наблюдением (person years at risk) – это сумма времени, проведенного всеми участниками исследования под наблюдением в ожидании наступления изучаемого события.

Частота исхода – величина постоянная для всего периода исследования, т. к. вычисляется на основании

Частота исхода – величина постоянная для всего периода исследования, т. к. вычисляется на основании суммарных данных за весь период (так, для ситуации, изображенной на рисунке, частота исхода составляет 5 ÷ 34, 7 = 0, 14 на 1 человеко год). В то же время ясно, что вероятность появления ожидаемого исхода на разных временных отрезках неодинакова и с течением времени может закономерно изменяться (например, вероятность умереть возрастает пропорционально возрасту, начиная приблизительно с 40 лет). Вероятность развития интересующего нас исхода в данный момент времени характеризуется показателем, называемым «вероятность опасности исхода» (event hazard rate). Она вычисляется как отношение числа лиц с ожидаемым исходом, развившимся за интересующий нас отрезок времени (определенный день, неделю, месяц, год) к количеству человеко лет (месяцев, недель, дней), проведенных под наблюдением за это время всеми наличными участниками исследования.

Собственно сравнение частоты развития исхода в различных группах внутри когорты, выделенных по наличию или

Собственно сравнение частоты развития исхода в различных группах внутри когорты, выделенных по наличию или отсутствию воздействия факторов, влияние которых на исход изучается в данном исследовании, производится при помощи вычисления относительных характеристик – отношения рисков (risk ratio), отношения шансов (odds ratio) и отношения частот (rate ratio). Для всех указанных величин рассчитывается 95% доверительный интервал (95% CI).

Результатам когортных исследований о влиянии каких-либо факторов на частоту появления определенного события можно доверять,

Результатам когортных исследований о влиянии каких-либо факторов на частоту появления определенного события можно доверять, если: 1) выявленное влияние изучаемого фактора на регистрируемый исход велико (относительный риск, отношение частот, отношение шансов >2 или <0, 5); 2) аналогичные результаты получены более чем в двух независимых исследованиях; 3) систематические ошибки и явление «смешивания эффектов» при наборе когорт, наблюдении за участниками исследования и анализе результатов отсутствуют, либо систематические ошибки имеются, но в разных исследованиях они имеют различную направленность (т. е. неодинаковы).

Оценка времени до наступления ожидаемого исхода также называется «анализ дожития» (методика Каплана-Мейера). Вначале строится

Оценка времени до наступления ожидаемого исхода также называется «анализ дожития» (методика Каплана-Мейера). Вначале строится таблица следующего вида:

Из таблицы видно, что число лиц под наблюдением без исхода (см. колонку № 2)

Из таблицы видно, что число лиц под наблюдением без исхода (см. колонку № 2) уменьшается всякий раз после регистрации очередного исхода или выхода члена когорты из исследования (регистрации неполного, или цензурированного, наблюдения) на суммарное число лиц, покинувших исследование за рассматриваемый временной интервал (исходы + неполные наблюдения), причем указанное уменьшение регистрируется начиная со следующего за текущим временного интервала. Размер временного интервала выбирается произвольно, исходя из цели исследования. Обычно его продолжительность устанавливается равной промежутку времени между плановыми обследованиями членов когорты, причем собственно момент обследования разграничивает соседние интервалы. Именно поэтому лица, выбывшие из исследования по разным причинам, учитываются начиная с отрезка времени, следующего за тем, во время которого состоялся выход данных лиц из состава когорты

Все наблюдения, в которых ожидаемый исход не был зафиксирован к моменту окончания исследования, считаются

Все наблюдения, в которых ожидаемый исход не был зафиксирован к моменту окончания исследования, считаются цензурированными, что и отражено в последней ячейке колонки № 4 ( «количество неполных наблюдений…» ). Если участник исследования по каким либо причинам (кроме регистрации ожидаемого исхода) покинул когорту до окончания исследования, такое наблюдение считается цензурированным по времени последнего планового осмотра указанного лица (т. е. последним эпизодом наблюдения за данным членом когорты считается момент последнего планового осмотра, во время которого не было зафиксировано ожидаемого исхода).

После расчета вероятности отсутствия исхода вплоть до момента завершения исследования производится построение графика Каплана-Мейера,

После расчета вероятности отсутствия исхода вплоть до момента завершения исследования производится построение графика Каплана-Мейера, который отражает вероятность отсутствия изучаемого исхода у членов когорты с момента начала исследования до момента его окончания.

График Каплана Мейера представляет собой серию «ступенек» , где снижение кумулятивной вероятности отсутствия исхода

График Каплана Мейера представляет собой серию «ступенек» , где снижение кумулятивной вероятности отсутствия исхода происходит скачкообразно после регистрации очередного случая (случаев) ожидаемого исхода; регистрация цензурированных наблюдений не приводит к снижению вероятности отсутствия исхода, вследствие чего «ступенька» на графике не образуется, но сам факт регистрации неполного наблюдения отмечается на графике специальным значком. Данная особенность построения графиков Каплана Мейера напрямую вытекает из принципа организации когортных исследований, который подразумевает не непрерывный, а периодический учет изменений в состоянии членов когорты во время регулярных контрольных осмотров, вследствие чего изменение вероятности наличия либо отсутствия искомого состояния происходит не плавно, а скачками.

Изображенная на графике Каплана Мейера кривая называется кривой дожития. Две кривые дожития, полученные при

Изображенная на графике Каплана Мейера кривая называется кривой дожития. Две кривые дожития, полученные при анализе независимых групп, можно сравнивать, используя лог-ранговый тест (log rank test); если в результате вероятность нулевой гипотезы (р) оказывается равна или менее 0, 05, то кривые дожития отличаются друг от друга с вероятностью 95% и более. Кривую дожития можно представить и в альтернативном виде – как кривую вероятности появления ожидаемого исхода с течением времени.

Следует обратить внимание на то, что вероятность развития исхода к моменту окончания исследования составляет

Следует обратить внимание на то, что вероятность развития исхода к моменту окончания исследования составляет примерно 26% (1 − 0, 742), при этом риск наступления исхода к тому же моменту, рассчитанный по приведенной ранее формуле и имеющий тот же смысл, равен 5 ÷ 22 = 22, 7%. Величина риска получилась заниженной, поскольку формула для его вычисления не предусматривает постепенное уменьшение размера когорты в ходе исследования (ввиду наступления исхода у части наблюдаемых лиц, а также вследствие выхода больных из состава когорты по другим причинам). Таким образом, применение методики Каплана-Мейера дает более точные результаты, чем просто расчет риска наступления события к интересующему моменту, ввиду чего данная методика является предпочтительной для обработки результатов когортных исследований.

Помимо построения графика Каплана Мейера, анализ дожития подразумевает определение следующих показателей: 1) дожитие (доля

Помимо построения графика Каплана Мейера, анализ дожития подразумевает определение следующих показателей: 1) дожитие (доля участников исследования, у которых искомый исход не наступил) для интересующего срока наблюдения; 2) стандартная ошибка кумулятивного дожития – рассчитывается при помощи соответствующей функции программы для статистического анализа (standard error of cumulative survival), в нашем примере – 0, 0996; 3) суммарное число членов когорты для интересующего срока наблюдения; 4) медиана времени дожития (median survival time) – период времени, в течение которого изучаемый исход наступит у 50% участников исследования. Указанная величина соответствует медиане времени до наступления исхода (median time to event) в случае выбора альтернативного представления графика Каплана Мейера. Кроме того, указываются 25 й и 75 й процентили кривой дожития (т. е. первый и третий квартили).

В нашем примере медиану времени дожития указать невозможно, поскольку на момент окончания наблюдения более

В нашем примере медиану времени дожития указать невозможно, поскольку на момент окончания наблюдения более половины членов когорты не имели изучаемого исхода. Тем не менее, можно указать первый квартиль (25 й процентиль) кривой дожития – он равен 1, 57 лет; к этому сроку изучаемое состояние разовьется у 25% испытуемых лиц.

Анализируя данные когортных исследований, необходимо помнить о возможности смешивания эффектов (confounding). Указанное явление наблюдается

Анализируя данные когортных исследований, необходимо помнить о возможности смешивания эффектов (confounding). Указанное явление наблюдается в случае, если некий фактор А, учет и анализ которого в исследовании не производился, влияет как на развитие изучаемого исхода И, так и на проявление одного или нескольких факторов (Б, В, Г), учитываемых в данном исследовании. Внешне это выглядит, как если бы факторы Б, В, Г влияли на развитие исхода И, хотя на самом деле они с ним непосредственно не связаны. Например, употребление парентеральных наркотиков увеличивает риск смерти; при этом может иметь место смешивание эффектов – наркоманы почти всегда заболевают хроническим вирусным гепатитом С (неучтенный фактор), который тоже увеличивает риск смерти. Факт наркомании как таковой может увеличивать риск смерти индивидуума, но наличие неучтенного фактора (ХВГС) приводит к завышению степени данного увеличения.

Возможность смешивания эффектов нельзя полностью учесть на этапе планирования исследования, поскольку невозможно учесть вообще

Возможность смешивания эффектов нельзя полностью учесть на этапе планирования исследования, поскольку невозможно учесть вообще все факторы, могущие представлять какую либо значимость. До некоторой степени возможное смешивание эффектов можно нейтрализовать на этапе анализа данных исследования посредством проведения стратификации. Например, мы анализируем сравнительную эффективность схем антиретровирусной терапии А и В. Каждой из схем было пролечено по 1000 ВИЧ инфицированных; отсутствие вирусологического ответа было отмечено у 300 человек, получавших схему А (30%), и у 450 человек, получавших схему В (45%), относительный риск неудачи лечения составил в данном случае 30÷ 45=0, 67. Можно ли вести речь о том, что схема лечения А достоверно более эффективна, чем терапевтическая схема В? На самом деле в обеих группах имеется неучтенный фактор – количество лиц, впервые получающих антиретровирусную терапию (т. е. «АРТ наивных» ). Известно, что у лиц, ранее получавших АРТ, эффективность последующих схем существенно снижается с каждой очередной сменой терапии. Ввиду этого, учет указанного фактора критически важен для анализа результатов данного исследования.

Оказывается, в группе, пролеченной по схеме А, АРТ наивных лиц было 800 (80%), а

Оказывается, в группе, пролеченной по схеме А, АРТ наивных лиц было 800 (80%), а в группе, пролеченной по схеме В – 200 (20%), т. е. при формировании исследуемых групп рандомизация по этому признаку не проводилась. Для «подгонки» (adjustment) результатов статистических выкладок по данному фактору необходимо обратиться к базе данных исследования и выяснить частоту вирусологической неудачи лечения отдельно для АРТ наивных лиц и больных, получавших АРТ более одного раза, для каждой из двух анализируемых групп: В обеих группах пропорция лиц с вирусологической неудачей лечения одинакова как среди АРТ наивных лиц, так и среди ВИЧ инфицированных, ранее уже получавших АРТ; в обоих случаях относительный риск равен 1, 0. В итоге приходится признать, что на самом деле схемы лечения А и В обладают одинаковой эффективностью, а полученная в исследовании разница обусловлена только лишь ошибкой при формировании изучаемых групп, которые не были рандомизированы по фактору, оказывающему существенное влияние на результат интересующего нас вмешательства. Важно помнить, что при стратификации уменьшается размер сравниваемых групп, что ведет к существенному снижению статистической значимости исследования.

В качестве типичного примера когортного дизайна можно привести исследование, выполненное на когорте больных гемофилией

В качестве типичного примера когортного дизайна можно привести исследование, выполненное на когорте больных гемофилией Бесплатного Королевского Госпиталя (Royal Free Hospital). В гематологическом отделении вышеупомянутой больницы наблюдалось 111 ВИЧ инфицированных мужчин гемофиликов, заразившихся в период с 1979 по 1985 гг. , на предмет особенностей течения ВИЧ инфекции у данной категории больных. Продолжительность наблюдения составила 25 лет. Учитывались демографические факторы, клиническая симптоматика, лабораторные данные, а также информация об эффективности лечения. На момент окончания исследования в живых остались 39 его участников, в том числе 28 – под непосредственным наблюдением в составе когорты.

Другим примером «классического» когортного исследования является мультицентровое исследование когорты лиц со СПИДом. В течение

Другим примером «классического» когортного исследования является мультицентровое исследование когорты лиц со СПИДом. В течение двух вербовочных периодов (с апреля 1984 г. по март 1985 г. и с 1987 г. по 1991 г. ) было рекрутировано несколько сотен ВИЧ инфицированных гомосексуалистов, проживающих в 4 столичных областях США; в дальнейшем они проходили амбулаторное обследование каждые 6 месяцев. В процессе обследования собиралась демографическая информация (дата рождения, национальность), клинические данные (обследование на наличие признаков СПИДа при каждом осмотре, регистрация даты и причины смерти), лабораторные данные (подсчет уровня CD 4+ лимфоцитов и количества копий РНК ВИЧ в плазме крови), сведения о проводимой терапии (даты начала и прекращения назначения всех антиретровирусных препаратов), а также некоторые другие данные (дата первого положительного обследования на ВИЧ инфекцию, проводилась ли профилактика пневмоцистной пневмонии и т. п. ).

Еще одним образцом когортного дизайна является исследование частоты коинфекции ВИЧ и туберкулеза, проведенное в

Еще одним образцом когортного дизайна является исследование частоты коинфекции ВИЧ и туберкулеза, проведенное в одном из госпиталей Нью Йорка. Первоначально 513 внутривенных наркоманов были обследованы на ВИЧ инфекцию; 215 из них оказались ВИЧ позитивными. Затем вся указанная когорта наблюдалась в течение 2 лет, при этом регистрировались любые признаки активного туберкулеза. Были получены следующие результаты: среди серопозитивных лиц (215) туберкулез развился у 8, среди серонегативных (298) – ни у одного из наблюдавшихся наркоманов, включенных в когорту. Риск развития туберкулеза в группе ВИЧ позитивных лиц был оценен как 0, 037 (в группе ВИЧ негатив ных лиц риск развития туберкулеза оказался равен нулю).

Когортный дизайн имеет следующие преимущества: 1. Можно оценить временную взаимосвязь между воздействием какого либо

Когортный дизайн имеет следующие преимущества: 1. Можно оценить временную взаимосвязь между воздействием какого либо фактора и развитием исхода (например, заболевания), поскольку всегда известен порядок следования регистрируемых событий; 2. На основании анализа данных, полученных в когортных исследованиях, можно попытаться установить причинно следственные взаимосвязи между воздействиями и исходами (хотя рандомизированные контролируемые исследования в этом смысле предпочтительнее). Недостатки когортного дизайна следующие: 1. Если исследуемый исход относится к редким явлениям, то размер когорты должен быть очень большим, а период наблюдения за ней – весьма продолжительным, что приводит к удорожанию всего исследования;

2. Когортные исследования занимают много времени и требуют вложения значительно бóльших средств, чем ранее

2. Когортные исследования занимают много времени и требуют вложения значительно бóльших средств, чем ранее описанные типы дизайна, что накладывает определенные ограничения как на максимальные размеры когорт, так и на продолжительность исследования; это особенно актуально для стран с невысоким уровнем ассигнований на науку; 3. Высокая вероятность систематических ошибок (biases) при сборе и анализе данных из за «смешивания эффектов» (confounding) – ведь невозможно заранее знать, какие факторы являются существенными для развития интересующего исследователей исхода, и включить их регистрацию в план исследования; соответственно, оставшийся неучтенным фактор (факторы) может как обусловливать развитие изучаемого явления, так и взаимодействовать с регистрируемыми воздействиями, что приводит к эффектам, описанным выше;

4. Возможны проблемы с уменьшением статистической надежности исследования ввиду неизбежного уменьшения размера когорт в

4. Возможны проблемы с уменьшением статистической надежности исследования ввиду неизбежного уменьшения размера когорт в ходе исследования по неустановленным причинам (т. н. loss to follow up). Поскольку когортные исследования длятся годами и десятилетиями, члены когорты могут сменить место жительства, семейный статус, умереть, а также отказаться от наблюдения и выйти из исследования, не уточняя причин. При этом всякий раз желательно проверять, не связан ли выход конкретного лица из научного проекта с развитием интересующего исследователей исхода; особенно данное положение касается исследований т. н. «психотравмирующих» (scaring) заболеваний, в частности, ВИЧ инфекции, парентеральных гепатитов и заболеваний, передающихся половым путем (ЗППП).

ОПРЕДЕЛЕНИЕ ОШИБОК ИЗМЕРЕНИЙ

Ошибки (погрешности), возникающие при измерениях, делятся на два больших класса: погрешности случайные и погрешности систематические. Для уяснения разницы между ними обратимся к конкретному примеру. Допустим, вы определяете массу тела взвешиванием его на рычажных весах. Обычно тело кладется на левую чашку весов, а разновесы – на правую. Плечи весов, разумеется, не могут быть абсолютно одинаковыми. Разница в их длине искажает результаты измерений и, притом, всегда одинаковым образом. Ошибки, сохраняющие величину и знак от опыта к опыту, носят название систематических. К систематическим относятся ошибки, связанные с неравноплечностью весов, неправильным весом гирь, неточной разбивкой шкалы измерительных приборов и т.д.

Однако, систематические ошибки не единственные причины погрешностей измерений. В том же опыте со взвешиванием тела есть ошибки, которые могут изменяться от опыта к опыту. В самом деле, коромысло весов качается с некоторым трением. Поэтому, даже при постоянной нагрузке весов, оно останавливается не всегда в одном и том же месте а в разных местах, лежащих в области, размер которой определяется силами трения. Ошибки в этом случае от опыта к опыту не повторяются.

Случайными ошибками называются ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту.

Бывают случаи, когда случайные ошибки не связаны с дефектами аппаратуры, а лежат в сущности изучаемого явления.

Так, например, если вы изучаете радиоактивный распад какого-либо радиоактивного элемента, то число зарегистрированных распадов, скажем, в 1 минуту, не будет оставаться постоянным. В одних измерениях вы зарегистрируете, например, 18,15,12,17 распадов в минуту, в других – 23, 25, 17, 22 распадов. В среднем вы получите 20 распадов в минуту. Отклонение измеренного числа распадов от среднего значения 20 распадов в минуту носит чисто случайный характер. И связано с самой природой изучаемого явления.

Влияние случайных ошибок может быть уменьшено при многократном повторении опыта, т.к. опыты, результаты которых превышают среднее значение будут встречаться столь же часто, как и опыты с результатами меньшими среднего значения.

Уменьшить же вклад систематических ошибок таким способом нельзя. Главной причиной этих погрешностей является несовершенство измерительных приборов. Поэтому для их уменьшения необходимо воспользоваться более совершенными средствами измерений, погрешность которых меньше. Качество измерительных приборов характеризуется их классом точности, т.е. той максимальной погрешностью, которую могут вносить эти приборы в измеряемую величину. Чем выше класс точности прибора тем эта погрешность ниже. Помимо необходимости совершенствовать приборы, можно изменить методику опыта. Например, в опыте со взвешиванием нужно либо уменьшить неравноплечность весов, либо взвешивать тело дважды, один раз на левой чашке весов, другой – на правой и усреднить полученные результаты.

1) Кислотно-основного титриметрического определения уксусной кислоты в уксусной эссенции;

2) Гравиметрического определения хроматов в электролите для хромирования.

Абсолютная погрешность
аналитических
весов 0,1мг

Абсолютная

погрешность (ошибка)

x
=
x
i

x
ист.
X i -измеренное
значениеX ист -истинное
значение (если истинное значение не
известно – берется среднее)

Абсолютная погрешность не может ясно
охарактеризовать точность измерения,
так как она не связана с измеренным
значением.

Относительная погрешность (ошибка)

·
100%

Систематические погрешности (ошибки)

– возникают при действии постоянных
причин, их можно выявить устранить или
учесть изменяются по постоянно
действующему закону.

    Инструментальные

    погрешности
    –связанные с инструментами для измерения
    аналитического сигнала (весы, посуда)
    уменьшить можно периодической проверкой
    аналитических приборов. Обычно составляют
    небольшую долю.

    Методические

    ошибки

    обусловлены методом анализа (например
    погрешности пробоотбора и пробоподготовки.)
    вносят основной вклад в общую погрешность.

    Реактивные

    – связаны с чистотой
    используемых реактивов.

    Оперативные ошибки


    зависят
    от правильности и точности выполнения
    аналитических операций (например,
    недостаточное или излишнее промывание
    или прокаливания осадков, недостаточное
    тщательное перемещение осадка из одной
    посуды в другую, неправильный способ
    выливания раствора из пипетки и т.д.)

    Индивидуальные

    ошибки
    (личные) – это результат некоторых
    физических недостатков экспериментатора,
    которые мешают ему правильно проводить
    известные операции.

Способы выявления систематических
погрешностей

1)варьирование величин пробы

Увеличив размер в кратное число раз
можно обнаружить по изменению найденного
содержания постоянную систематическую
погрешность

2)способ «введено найдено»

Добавить точно известное количество
компонента в той же форме, в которой
находится аналитический объект. Введенная
добавка проводится через все стадии
анализа. Если на конечной стадии
определяется добавка с точностью, то
систематической ошибки нет.

3) сравнение результата анализа с
результатом, полученным другим независимым
методом

4)анализ стандартного образца

Проведение всех стадий анализа, на
стадии обработки сравнивается с
паспортом, если все совпадает, то
систематической ошибки нет.

Типы погрешностей

    Погрешности известной природы, могут
    быть рассчитаны и учтены введение
    соответствующей поправки

    Погрешности известной природы, значение
    которых может быть оценены в ходе
    химического анализа

Релятивизация — способ устранения
систематической погрешности, когда в
идентичных условиях проводят отдельные
аналитические операции таким образом,
что происходит нивелирование
систематической ошибки

    Погрешность невыясненной природы,
    значение который неизвестно, их сложно
    выявить и устранить, используют прием
    рандомизации

Рандомизация – переведение систематической
ошибки в разряд случайной

Случайные ошибки

– обрабатываются
по правилам матемтической статистики,
связаны с влиянием неконтролируемых
параметров, непредвиденны и неучтимы.

Промахи

– грубые ошибки, сильно
искажающие результаты анализа (ошибки
при расчётах, неправильный отчёт по
шкале, проливание раствора или просыпание
осадка). Результат с промахом отбрасывается
при выводе среднего значения.

6. Случайные
ошибки. Метрологические характеристики,
отражающие случайные ошибки. Оценка и
критерии воспроизводимости и правильности.
Рассмотрите на примере титриметрического
комплексонометрического определения
меди (II).

Случайные ошибки

–отражают
неопределенность результата, присущую
любому измерению, обрабатываются по
правилам матемтической статистики,
связаны с влиянием неконтролируемых
параметров, непредвиденны и неучтимы.

Причины таких погрешностей:

Изменение температуры во время измерения,
ослабление внимания при работе, случайные
потери, загрязнение, использование
разной посуды, весов и тд.

метрологические характеристики:

Правильность
— характеризует степень
близости измеренного результата
некоторой величины к её истинному
значению

Воспроизводимость
— характеризует
степень близости друг к другу единичный
определений (рассеяние единичных
результатов относительно среднего
значения

Точность
— собирательная характеристика
метода или методики, включающая их
правильность и воспроизводимость.

Чувствительность
— величина,
определяемая минимальным количеством
вещества, которое можно обнаружить
данным методом

Чувствительность – собирательное
понятие, включающее три характеристики:

1)Коэффициент чувствительности

коэффициент чувствительности sхарактеризует отклик аналитического
сигналаyна содержание
компонентаc,s-
это значение первой производной
градуировочной функции при определенном
содержании компонента, для прямолинейных
градуировочных графиковs– это тангенс угла наклона прямойy=Sc+b

s=

чем больше s, тем меньшие
количества компонента можно обнаружить, используя один и тот же аналитический
сигнал, чем большеs, тем
точнее можно определить одно и то же
количество вещества

2)предел обнаружения С min наименьшее содержание при котором по
данной методике можно обнаружить
присутствие компонента с заданной
доверительной вероятностью, относится
к области качественного анализа и
определяет минимальное содержание
компонента

3)нижняя граница определяемого содержания
С н

В количественном анализе обычно приводят
интервал определяемых содержаний-
область значений определяемых содержаний,
предусмотренная данной методикой и
ограниченная нижней и верхней границами.

Верхняя граница С в наибольшее
значение количества или концентрации
компонента, определяемое по данной
методике.

нижняя граница С н -наименьшее
содержание компонента, определяемое
по данной методике. З нижнюю границу
обычно принимают то минимальное
количество или концентрацию, которые
можно определить с относительным
стандартным отклонением Ϭ r ≤0,33

Оценка и критерии воспроизводимости

1)Среднее арифметическое

=

2)Отклонение

d
i
=
x
i

3)Медиана
— тот единичный результат, относительно которого число результатов
с большими и меньшими значениями
одинаковое, если количество значений
нечетное, то медиана совпадает с
центральным результатом ранжированной
выборки, если количество значений
четное, то медиана есть среднее
арифметическое между двумя центральными
значениями ранжированной выборки

4)среднее отклонение-
среднее
арифметическое единичных отклонений,
без учет знака

=

5)Дисперсия

Ϭ 2 =
еслиn>10

Ϭ 2 =
еслиn≤10

6)стандартное отклонение
Ϭ x =

7)
Ϭ r =

Титриметрическое комплексонометрическое
определения меди (II).

Выполнение определениея

1)Титрование исследуемого раствора
стандартным раствором ЭДТА

2)расчет граммового содержания меди

Ход анализа:

Титрование исследуемого
раствора стандартным раствором ЭДТА.
Анализируемый раствор помещают в мерную
колбу на 100 мл, довдят водой до метки,
тщательно перемешивают. В коническую
колбу дл титрования берут аликвоту,
добавляют индикатор мурексид на кончике
шпателя и титруют раствором ЭДТА сначала
до грязно-розового цвета, натем добавляют
несколько капель 10%-ного раствора аммиака
до появления изумрудной или желтой
окраски раствора и дотитровывают
раствором ЭДТА до перехода окраски в
фиолетовую.

Формула для расчета граммового содержания
меди:

m Cu ,г=C(ЭДТА)· ЭДТА ·K
ЭДТА ·M экв (Cu)·P·10 -3

Формула для расчета процентного
содержания меди:

ω Cu =·100%

Возможные причины возникновения
случайных ошибок

в комплексонометрическом
титровании меди возникают в процессе
измерения объемов: неточное доведение
до метки мерной колбы, использование
разных пипеток, потеря титранта (капнуло
мимо), использование непромытой посуды.
Так же могут возникать ошибки из-за
неточного определения перехода окраски, но эти ошибки будут относиться к
категории систематических индивидуальных
ошибок.

7. Гравиметрическое
определение бария в минерале альстонит:
этапы определения, возможные формулы
осадителей, осаждаемой и гравиметрической
формы, механизм образования осадка,
возможные варианты загрязнения осадка,
приемы повышения чистоты осадка,
погрешности определения. Условия
аналитического выделения осадков бария.

Минерал альстонит минерал, безводный
двойной карбонат бария и кальция
BaCa(CO 3) 2

Этапы определения:

1)взятие навески и её растворение

2)расчет количества осадителя

3)приготовление раствора осадителя

4)осаждение

5)фильтрование и промывание

6)высушивание и прокаливание осадка

7)взвешивание осадка, расчёт содержания
бария

Для количественного определения бария
его осаждают в виде сульфата BaSO

4


(осаждаемая форма)

BaCO 3 +H 2 SO 4 =
BaSO
4
+H 2 CO 3

В качестве осадителя, посташика
сульфат-ионов используют серную кислоту

H

2

SO

4

(осадитель)

После прокаливания осадка его формула
не меняется и остается так же в виде
сульфата бария BaSO

4


(гравиметрическая форма)

Механизм образования осадка:

2)рост кристаллов

Насыщение=>пересыщение=>ПКИ>ПР=>

V 1 >> <

Загрязнение осадков

Зависят от типа соосаждения

Выбор промывочной жидкости:

Для аморфных-переосаждение

Общая погрешность анализа

Погрешность
измерений

Случайные ошибки

Относительное стандартное отклонение

Масса
гравиметрической формы

Суммарная ошибка

n-число проб

m-число измерений

Погрешность
прибора

Погрешность
измерения

8. Гравиметрическое
определение алюминия в каолине: этапы
определения, возможные формулы осадителей,
осаждаемой и гравиметрической формы,
механизм образования осадка, возможные
варианты загрязнения осадка, приемы
повышения чистоты осадка, погрешности
определения. Преимущества органических
осадителей. Условия аналитического
выделения осадков алюминия.

Механизм образования осадка:

В процессе образования осадка различают
три стадии:

1)образование зародышей кристаллов

2)рост кристаллов

3)объединение (агрегация) хаотично
ориентированных кристаллов

Насыщение=>пересыщение=>ПКИ>ПР=>
образование мельчайших зародышей
кристаллов

Осаждение происходит при определенной
степени пересыщения раствора

P==s-растворимость,-относительное
пересыщение,Q-концентрация
кристаллизующегося вещества в растворе

Центром кристалла может служить твердая
частица этого вещества или любая другая
твердая частица, которую мы вносим в
раствор, твердые частицы могут изначально
присутствовать в растворе как примесь.

Если осаждение происходи из разбавленных
растворов, то появление осадка занимает
время-индукцинный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш дотиг определенного
размера выпадает осадок

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий

V 1 — скорость образования
зародышейV 2 -скорость
роста кристаллов

V 1 >>V 2 -мелкодисперсный
осадокV 1 <

Лимитирующую стадию определяет скорость
осаждения и концентрации ионов

При медленном осаждении лимитирующей
стадией является кристаллизация,
частица окружена однородным слоем
осаждаемый ионов в результате получается
кристалл правильной форм

При высокой концентрации ионов
лимитирующей стадией становится диффузия, образуются кристаллы не правильной
формы с большой площадью поверхности

Следует отметить, что на скорость
процесса кристаллизации влияет
,
влияниеразлично на скорость образования
зародышей и на скорость роста кристаллов

В случае образования зародышей
V 1 =k·(экспоненциальный
закон

В случае роста кристаллов V 2 =k·

При высокой степени
образуются
мелкодисперсные осадки, при уменьшении,
образуются крупнокристаллические
осадки

Агрегация происходит в гетерогенной
системе, в значительной степени
определяется числом центров кристаллизации.

Чем больше центров кристаллизации, тем
в меньшей степени они укрупняются на
второй стадии, тем хуже структура и тем
выше дисперсность осадков.

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.

Лучшими свойствами обладают
крупнокристаллические осадки.

Загрязнение осадков

В гарвиметрическом определении часто
возникают ошибки, вызванные переходом
осадка в раствор или веществ из раствора
в осадок-соосождение

Соосаждение происходит в процессе
образования осадка

Отрицательная роль: загрязнение осадка

Положительная роль:используется для
концентрирования микропримесей

Существует три типа соосаждения:

1)Адсорбция- соосаждение примесей на
поверхности уже сформированного осадка,
происходит в результате нескомпенсированности
зарядов внутри и на поверхности.

Характеризуется ярко выраженной
избирательность, преимущественно
адсорбируются те ионы, которые входят
в структуру осадка, противоионы-примеси

Адсорбция противоионов подчиняется
правилам Панета-Фаянса-Гана

А)при одинаковых концентрациях
адсорбируются многозарядные ионы

Б)при одинаковых зарядах адсорбируются
те, концентрация которых выше

В)при одинаковых концентрациях и
зарядах-те, которые образуют с ионами
решетки менее растворимое соединение

Г)в кислой среде соосаждение ионов
уменьшается в следствии конкурентной
адсорбции H 3 O +

Количество адсорбируемой примеси
зависит от величины поверхности осадка,
концентрации адсорбируемой примеси и
температуры (с поверхности и
концентрации- адсорбция ; с температуры
адсорбция ↓)

2)Окклюзия- загрязнение осадка в результате
захвата примеси внутрь растущего
кристалла, происходит в процессе
формирования осадка.

Различают 2-х видов: абсорбционная и
механическая

Механическа- случайный захват частиц
маточного раствора внутрь твердой фазы
вследствие нарушения механической
структуры

Характерна при выделении аморфных
осадков.

Окклюзированные примеси равномерно
распределены внутри, но не принимают
участие в построении решетки кристалла.

Адсорбционная-возникает при быстром
росте кристалла, когда ионы на поверхности
обратают кристаллизованным веществом.
Протекает вследствии адсорбции примесей
по микротрещинам кристаллической
структуры.

Окклюзия подчиняется тем же правилам,
что и адсорбция

Общие правила понижения окклюзии

–замедление процесса выделения твердой
фазы-осаждение при малом пересыщении, работают с разбавленными растворами, осадитель добавляют по каплям, при
постоянном перемешивании.

3)изоморфное соосаждение характерно
для изоморфно кристаллизующегося
веществ, которые могут образовывать
смешанные кристаллы, примесь участвует
в построении кристаллической решетки,
наблюдается лишь в тех случаях, когда
вещества сходны по химическим свойствам
или ионы имеют одинаковые кч и радиус.

Совместное осаждение-выделение в твердую
фазу нескольких веществ, для которых в
услових осаждения достигнуты величины
их K s t

Последовательное осаждение- веделение
примеси на поверхности уже сформированного
осадка

Приемы и методы повышения чистоты
осадка

Зависят от типа соосаждения

1)адсорбционные примеси хорошо удаляются
промыванием осадка, более эффективно
многократное промывание малыми порциями

Выбор промывочной жидкости:

Не увеличивает растворимость осадка и
не ухудшает его фильтруемость, водой
промывают осадки с k~10 -11/-12 ,
не подвергаемых пептизации, кристаллические
осадки с конст, растворимости 10 -9/-11 промывают разбавленным раствором
осадителя, аморфные осадки промывают
разбавленными растворами электролитов
коагуляторов, чтобы избежать пептизации

Промывние кристаллических осадков
проводят холодной промывочной жидкостью,
чтоб не увеличивать растворимость,
аморфные наоборот горячими

2)окклюзированные примеси, для избавления
от них:

Для кристаллических осадков-старение

Для аморфных-переосаждение

Погрешность гравиметрического
метода анализа

Общая погрешность анализа

Погрешность
пробоотбораm-число пробn-число параллельных
определений

Погрешность
измерений

Результат находится по формуле

Методическая ошибка, обусловлена
неколичественным выпадением осадка,
её устранить нельзя

Q об =s-растворимость осадка
г/100мл воды,-объём
фильтрата,-
масса гравиметрической формы

Случайные ошибки

Относительное стандартное отклонение

Дисперсия
массы гравиметрической формы

Масса
гравиметрической формы

Ϭ a 1 -погрешность
взвешивания тары

Ϭ a 2 -погрешность
взвешивания тары с навеской

0,0003
г Ϭ a 1 = Ϭ a 2 =0,0002г

Суммарная ошибка

n-число проб

m-число измерений

Погрешность
прибора

Погрешность
измерения

9. Гравиметрическое
определение железа в руде: этапы
определения, возможные формулы осадителя,
осаждаемой и гравиметрической формулы,
механизм образования коллоидной частицы,
процессы, приводящие к образованию
осадка, осадка, приемы повышения чистоты осадка,
погрешности. Условия аналитического
выделения осадков железа.

Гравиметрическое определение железа(III)
основано на его осаждении в виде
гидроксида железа(III)Fe(OH) 3 .
Трехвалентное железо осаждают раствором
аммиака, осаждаемой формой являетсяFe(OH) 3 .
Реакция:Fe(NO 3) 3 +3NH 3 ·H 2 O=Fe(OH) 3 +3NH 4 NO 3 .
При прокаливании гидроксид железа(III)
превращается в оксид железа(III),
который является гравиметрической
формой:Fe(OH) 3 =(t°)Fe 2 O 3 +3H 2 O.

Этапы определения
:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание и прокаливание; 6) взвешивание
осадка, расчет содержания железа.

Расчет ведут по формулам

ω Fe 2 O 3 =
,
ω Fe
=

Механизм образования коллоидной
частицы
:

Fe(NO 3) 3 +3NH 4 OH(изб.)=Fe(OH) 3 ↓+3NH 4 NO 3

{ m
· nOH —
·(n-x)NH 4 + } -x
·xNH 4 +

агрегат плотный слой
диффузный слой Мицелла

Коллоидная частица

Вещество в коллоидной системе имеет
большую развитую поверхность и
нескомпенсированный заряд на границе
разлела фаз. Существование
нескомпенсированного силового поля
ведет к адсорбции из раствора молекул
или ионов. Если коллоидная система
возникла в результате проведения
химической реакции осаждения, то частицы
адсорбируют в первую очередь те ионы,
которые могут достраивать кристаллическую
решетку. Адсорбированные ионы сообщают
частице «+» или «-« заряд. Слой
адсорбированных ионов на ядре – это
первичный адсорбционный слой. Заряд,
созданный таким слоем, достаточно высок
и обуславливает электростатическое
взаимодействие с иоами противоположного
знака. В результате образуется слой
противоионов, который выравнивает заряд
первичного слоя. Слой противоионов
имеет диффузный характер. Часть
противоионов, прочно связанных с
первичным слоем – это плотный слой,
остальные противоионы составляют
диффузный слой.

Образование осадка
происходит
тогда, когда раствор становится
пересыщенным, т.е. m n >K s (ПКИ>

Возможные варианты загрязнения
:
1)Путем адсорбции (для конкретного
примера хлорид-ионов на поверхности
осадка); 2)Окклюзия; 3)Изоморфное
соосаждение; 4) Совместное осаждение;
5) Последующее осаждение.

:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10 -11 -10 -12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10 -9 -10 -11 и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH 4 +),
чтобы избежать пептизации(в опыте с
железом осадок промывали растворомNH 4 NO 3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:

5) Относительное стандартное
отклонение с учетом стадий пробоотбора
и пробоподготовки=, гдеn– число проб;m– число параллельных измерений; σ пр 2 – погрешность пробоотбора; σ изм 2 – погрешность измерения.

Fe(OH) 3 – типичный пример осадка в аморфном
состоянии, легко дающий коллоидный
раствор.

10. Гравиметрическое определение никеля
в нихромовом сплаве: этапы определения,
возможные формулы осадителей, осаждаемой
и гравиметрической формулы, механизм
образования осадка, возможные варианты
загрязнения осадка, приемы повышения
чистоты осадка, погрешности. Условия
аналитического выделения осадков
никеля.

Гравиметрическое определение никеля
в нихромовом сплаве основано на его
осаждении в виде диметилглиоксимата
никеля Ni(HDMG) 2 .
Никель осаждают 1 %-ным спиртовым раствором
диметикглиоксимаH 2 DMG,
осаждаемой формой являетсяNi(HDMG) 2 .
Реакция:Ni 2+ +2H 2 DMG=Ni(HDMG) 2 +2H + .
После высушивания осадка остается сухойNi(HDMG) 2 ,
который является гравиметрической
формой.

Этапы определения
:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание; 6) взвешивание осадка,
расчет содержания никеля.

Расчет ведут по формуле ω Ni =

Механизм образования осадка:
в
процессе образования осадка различают
3 параллельных процесса: 1) образование
зародышей кристалла (центров
кристаллизации); 2) рост кристаллов; 3)
объединение (агрегация) хаотично
ориентированных мелких кристаллов. В
начальный момент происходит насыщение
раствора, а затем его пересыщение. В
момент определенной пересыщенности
раствора, начинается выпадение
осадка.Центром кристалла может служить
твердая частица этого вещества или
любая другая твердая частица, которую
мы вносим в раствор, твердые частицы
могут изначально присутствовать в
растворе как примесь.

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий (V 1 — скорость
образования зародышей,V 2 -скорость
роста кристаллов):V 1 >> <

Возможные варианты загрязнения

Приемы повышения чистоты осадка

Погрешности:
1) Общая погрешность
анализа σ 2 =,
где σ пр 2 – погрешность
пробоотбора, σ изм 2 –
погрешность измерения,m– число проб,n– число
параллельных определений.

2) Методическая ошибка O об O об =
-,
гдеs– растворимость
осадка, г/100 мл воды;V ф
– объем фильтрата и промывных вод,
мл;m гр – масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσ гр – дисперсия
массы гравиметрической формы;m гр – масса гравиметрической формы; σ a – дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σ a 1 и тары с навескойσ a 2 σ a 1 =σ a 2 =0,0002
г, σ гр == 0,0003 г.

Ni(HDMG) 2 – кристаллический осадок.

Условия его осаждения следующие
:

11. Гравиметрическое определение меди:
этапы определения, возможные формулы
осадителей, осаждаемой и гравиметрической
формулы, механизм образования осадка,
возможные варианты загрязнения осадка,
приемы повышения чистоты осадка,
погрешности. Преимущества органических
осадителей. Условия выделения осадков.

При гравиметрическом определении меди
медь из раствора осаждают различными
осадителями: 1) раствор аммиака осаждает
из нагретого раствора осадок Cu(OH) 2 ;
2) Тиокарбонат калияK 2 CS 3 осаждает из нагретого раствора осадокCuS, который сушат при
100-110;
3) В виде оксалата медь осаждается в
присутствиеCH 3 COOH;
4) При определении меди в виде
тетророданомеркуриатамедиCu
медь осаждают из нагретого до кипения
раствора содержащего серную или азотную
кислоту, действиемK 2 .
Метод рекомендован для определения
меди в медных рудах; 5) Соль Рейнеке
(тетрароданодиаминохромат аммония)
NH 4
является избирательным реагентом для
определения меди в присутствие многих
посторонних ионов. Осаждение проводят
как в кислом, так и в аммиачном растворе
в виде 2
после предварительного восстановления
меди до одновалентного состояния
оловом(II). Для осаждения меди используются
также различные органические реагенты:
1) 8- оксихинолин осаждает медь в
уксуснокислом, аммиачном и щелочном
растворах при pH=5.33 — 14.55. Осадок, высушенный
при 105-110°С, соответствует составу
Cu(C 9 H 6 ON) 2 ; 2) Медь осаждается
спиртовым раствором β-бензоиноксима в
слабощелочной среде в виде хлопьевидного
зеленого осадка составаCu(C 6 H 5 CHOCNOC 6 H 5) 2 .
Осадок высушивают при 105-110;

3) Салицилальдиоксим осаждает Cu (II) в
виде внутрикомплексного соединения
Cu(C 7 H 6 O 2 N) 2 в
уксуснокислой среде, среде ацетатного
буфера или ацетата аммония; 4) При действии
купферона наCu(II)
образуется купферонат меди (II)
с формулой Cu(C 6 H 5 N(NO)O) 2 ;
5) При действии глицина на медь образуется
кристаллический осадок глицината меди
(II)Cu(NH 2 CH 2 COO) 2 .

Рассмотрим гравиметрическое определение
меди на примере осаждения ее
глицином.Реакция:
CuO+2NH 2 CH 2 COOH=Cu(NH 2 CH 2 COO) 2 +H 2 O В данном случае глицинNH 2 CH 2 COOHявляется
осадителем, глицинат меди (II)Cu(NH 2 CH 2 COO) 2 – осаждаемой формой. При высушивании
получается гравиметрическая форма
сухогоCu(NH 2 CH 2 COO) 2 .

Этапы определения:
1) взятие навески
и её растворение;2) приготовление раствора
осадителя;3) осаждение;4) фильтрование
и промывание;5) высушивание осадка;6)
взвешивание осадка, расчёт содержания
меди.

Механизм образования осадка:
в
процессе образования осадка различают
3 параллельных процесса: 1) образование
зародышей кристалла (центров
кристаллизации); 2) рост кристаллов; 3)
объединение (агрегация) хаотично
ориентированных мелких кристаллов. В
начальный момент происходит насыщение
раствора, а затем его пересыщение. В
момент определенной пересыщенности
раствора, начинается выпадение осадка.
Центром кристалла может служить твердая
частица этого вещества или любая другая
твердая частица, которую мы вносим в
раствор, твердые частицы могут изначально
присутствовать в растворе как примесь.

Если осаждение происходит из разбавленных
растворов, то появление осадка занимает
время-индукционный период.

В процессе добавления каждой новой
порции осадителя происходит мгновенное
пересыщение раствора, зародыши растут
быстро за счет окружающих их ионов, как
только зародыш достиг определенного
размера выпадает осадок.

Рост кристаллов идет параллельно 1-ой
стадии, происходит за счет диффузии
ионов к поверхности растущего кристалла.

Число и размер частиц осадка (дисперсность
системы кол-во в единицы объёма) зависит
от соотношения скоростей 1-ой и 2-ой
стадий (V 1 — скорость
образования зародышей,V 2 -скорость
роста кристаллов):V 1 >>V 2 -мелкодисперсный
осадок,V 1 <

К аналитическим свойствам осадка
относятся: растворимость, чистота,
фильтруемость.Лучшими свойствами
обладают крупнокристаллические осадки.

Возможные варианты загрязнения
: 1)
Путем адсорбции (для конкретного примера
хлорид-ионов на поверхности осадка); 2)
Окклюзия; 3) Изоморфное соосаждение; 4)
Совместное осаждение; 5) Последующее
осаждение.

Приемы повышения чистоты осадка
:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10 -11 -10 -12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10 -9 -10 -11 и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH 4 +),
чтобы избежать пептизации (в опыте с
железом осадок промывали растворомNH 4 NO 3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:
1) Общая погрешность
анализа σ 2 =,
где σ пр 2 – погрешность
пробоотбора, σ изм 2 –
погрешность измерения,m– число проб,n– число
параллельных определений

2) Методическая ошибка O об O об =
-,
гдеs– растворимость
осадка, г/100 мл воды;V ф
– объем фильтрата и промывных вод,
мл;m гр – масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσ гр – дисперсия
массы гравиметрической формы;m гр – масса гравиметрической формы; σ a – дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σ a 1 и тары с навескойσ a 2 σ a 1 =σ a 2 =0,0002
г, σ гр == 0,0003 г.

5) Относительное стандартное отклонение
с учетом стадий пробоотбора и
пробоподготовки
=, гдеn– число проб;m– число параллельных измерений; σ пр 2 – погрешность пробоотбора; σ изм 2 – погрешность измерения.

Преимущества органических осадителей:

1. Пользуясь органическими осадителями,
можно осаждать и разделять различные
элементы из очень сложных смесей.
Например, при помощи диметилглиоксима
возможно количественное осаждение
катионов никеля в присутствии многих
других катионов.

2. Осадки, получающиеся с органическими
осадителями, хорошо отфильтровываются
и промываются (например, осадки комплексных
соединений катионов, содержащих в
качестве лигандов пиридин или другие
органические соединения). Это дает
возможность легко отмывать от осадков
примеси, содержащиеся в анализируемом
растворе.

3. Осадки, получающиеся при действии на
катионы или анионы органических
осадителей, отличаются большим
молекулярным весом. Вследствие этого
точность анализа повышается. Например,
определение магния, алюминия и других
катионов проводится с большой точностью
осаждением их в виде оксихинолятов,
обладающих большим молекулярным весом.

4. В составе осадков, являющихся
соединениями неорганических веществ
с органическими компонентами, обычно
содержится мало соосаждающихся пиримесей.

Cu(NH 2 CH 2 COO) 2 – кристаллический осадок, поэтому

условия его выделения следующие:

1) осаждение ведут из достаточно
разбавленного исследуемого раствора
разбавленным раствором осадителя
(концентрации исследуемого раствора и
раствора осадителя должны быть примерно
одинаковыми);

2) раствор осадителя прибавляют медленно,
по каплям, при постоянном перемешивании
стеклянной палочкой (это предотвращает
явление окклюзии);

3) осаждение ведут из подогретого
исследуемого раствора горячим раствором
осадителя (для предотвращения пептизации);

4) к раствору прибавляют вещества,
способствующие повышению растворимости
осадка (увеличивают Iраствора), а затем понижают его
растворимость путем прибавления избытка
осадителя;

5) осадок оставляют на «созревание».

12. Гравиметрическое определение
кремния в силикатных породах: этапы
определения, возможные формулы осадителя,
осаждаемой и гравиметрической формулы,
механизм образования коллоидной частицы,
процессы, приводящие к образованию
осадка, возможные варианты загрязнения
осадка, приемы повышения чистоты осадка,
погрешности. Классификация коллоидных
систем. Условия аналитического выделения
кремнекислоты.

При гравиметрическом определении
кремния растворимый силикат натрия
Na 2 SiO 3 ,
полученный в результате сплавления не
разлагаемой кремниевой кислоты с содойNa 2 CO 3 ,
обрабатывается сильной кислотойHCl.
Реакция:Na 2 SiO 3 +2HCl=H 2 SiO 3 ↓+2NaCl.
Осадителем в данном случае являетсяHCl, осаждаемой формой –H 2 SiO 3 .
При высушивании и прокаливании получается
гравиметрическая формаSiO 2 .

Этапы определения
:1) взятие навески
и ее растворение; 2) приготовление
раствора осадителя; 3) осаждение; 4)
фильтрование и промывание осадка; 5)
высушивание и прокаливание осадка;; 6)
взвешивание осадка, расчет содержания
кремния.

Механизм образования коллоидной
частицы:
Вещество в коллоидной системе
имеет большую развитую поверхность и
нескомпенсированный заряд на границе
разлела фаз. Существование
нескомпенсированного силового поля
ведет к адсорбции из раствора молекул
или ионов. Если коллоидная система
возникла в результате проведения
химической реакции осаждения, то частицы
адсорбируют в первую очередь те ионы,
которые могут достраивать кристаллическую
решетку. Адсорбированные ионы сообщают
частице “+» или “-“ заряд. Слой
адсорбированных ионов на ядре – это
первичный адсорбционный слой. Заряд,
созданный таким слоем, достаточно высок
и обуславливает электростатическое
взаимодействие с иоами противоположного
знака. В результате образуется слой
противоионов, который выравнивает заряд
первичного слоя. Слой противоионов
имеет диффузный характер. Часть
противоионов, прочно связанных с
первичным слоем – это плотный слой,
остальные противоионы составляют
диффузный слой.

Образование осадка
происходит
тогда, когда раствор становится
пересыщенным, т.е. m n >K s (ПКИ>ПР). Образование осадков связано
с процессом укрупнения частиц, с
образованием кристаллической решетки
вещества. Этот процесс определяется
числом центров кристаллизации: чем
больше центров, тем в меньшей степени
они укрупняются и тем хуже структура и
выше дисперсность осадка.

Возможные варианты загрязнения
:1)
Путем адсорбции (для конкретного примера
хлорид-ионов на поверхности осадка); 2)
Окклюзия; 3) Изоморфное соосаждение; 4)
Совместное осаждение; 5) Последующее
осаждение.

Приемы повышения чистоты осадка
:
1) Адсорбированные на поверхности примеси
хорошо удаляются при промывании осадков
на фильтре при помощи промывных жидкостей,
т.к. примеси переходят в промывную
жидкость и уходят через поры фильтра.
Эффективно многократное промывание
небольшими порциями промывной жидкости.
Промывную жидкость выбирают максимально
тщательно, чтобы не увеличивать
растворимость осадка и не ухудшать его
фильтрацию. Кристаллические осадки
промывают холодными промывными
жидкостями, чтобы не увеличить
растворимость осадка, а аморфные –
наоборот горячими. Водой промывают
осадки с низкими константами растворимости
(ниже 10 -11 -10 -12), а также те,
которые не подвергаются пептизации.
Если константа растворимости осадка
10 -9 -10 -11 и он кристаллический,
то его промывают разбавленным раствором
осадителя. Аморфные осадки промывают
разбавленными растворами
электролитов-коагулянтов (солиNH 4 +),
чтобы избежать пептизации (в опыте с
железом осадок промывали растворомNH 4 NO 3).
Повышение температуры также способствует
уменьшению адсорбции (на конкретном
примере горячий раствор, содержащий
10% аммиак разбавляют горячей водой для
уменьшения адсорбции хлорид-ионов на
поверхности осадка). 2) Для очищения
окклюдированных примесей в случае
кристаллических осадков используют
старение, в случае аморфных осадков –
переосаждение.Степень окклюзии в
процессе осаждения можно уменьшить
медленным добавлением осадителя по
каплям, при перемешивании.

Погрешности:

1) Общая погрешность анализа σ 2 =,
где σ пр 2 – погрешность
пробоотбора, σ изм 2 –
погрешность измерения,m– число проб,n– число
параллельных определений.

2) Методическая ошибка O об O об =
-,
гдеs– растворимость
осадка, г/100 мл воды;V ф
– объем фильтрата и промывных вод,
мл;m гр – масса
полученного осадка, г.

3) Относительное стандартное отклонение
=, гдеσ гр – дисперсия
массы гравиметрической формы;m гр – масса гравиметрической формы; σ a – дисперсия массы исходной навески;a– масса исходной навески;p– процентное содержание вещества в
исследуемой пробе;n–число
измерений.

4) Погрешность взвешивания тары σ a 1 и тары с навескойσ a 2 σ a 1 =σ a 2 =0,0002
г, σ гр == 0,0003 г.

5) Относительное стандартное отклонение
с учетом стадий пробоотбора и
пробоподготовки
=, гдеn– число проб;m– число параллельных измерений; σ пр 2 – погрешность пробоотбора; σ изм 2 – погрешность измерения.

Классификация коллоидных систем.
В
зависимости от характера межмолекулярных
сил, которые действуют на границе раздела
фаз коллоидные растворы делят на
лиофильные и лиофобные. Вокруг лиофильной
частицы располагается прочная сольватная
оболочка. В этих оболочках молекулы
ориентированы определенным образом и
образуют более или менее правильные
структуры. Вокруг лиофобной частицы
раствора также имеются сольватные
оболочки, но они непрочные и не предохраняют
молекулы от слипания.

H 2 SiO 3 – аморфный осадок, поэтому

условия его осаждения следующие
:

1)осаждение проводят из горячего раствора
анализируемого вещества горячим
раствором осадителя при перемешивании;

2)осаждение проводят из достаточно
концентрированного исследуемого
раствора концентрированным раствором
осадителя с последующим разбавлением(при
разбавлении устанавливается адсорбционное
равновесие, часть адсорбированных ионов
переходи в раствор, и осадок становится
более чистым); 3)осаждение проводят в
присутствии подходящего
электролита-коагулятора;

4)аморфные осадки почти не требуют
времени для созревания, их необходимо
фильтровать сразу после разбавления
раствора. Аморфные осадки нельзя
оставлять более, чем на несколько минут,
т.к. сильное уплотнение их затрудняет
последующее отмывание примесей, а также
при стоянии увеличивается количество
примесей, адсорбированных поверхностью
осадка.

Систематическая ошибка — это систематическое (неслучайное, однонаправленное) отклонение результатов исследований от истинных значений. Выделяют несколько основных видов систематических ошибок.

Систематическая ошибка, обусловленная нарушением правил подбора пациентов
(selection bias). Она чаще всего возникает на этапе формирования исследуемых групп в результате отбора для включения в исследование лиц, которые не являются репрезентативными
для общей совокупности больных. Эта систематическая ошибка создаётся в результате того, что сравниваемые группы испытуемых различаются не только по основным признакам, но и по другим факторам, влияющим на результат исследования, т.е. участники фактически отбираются из разных популяций.

Пример:
в том случае, когда в качестве группы контроля используются ранее набранные больные, а методика их обследования с течением времени претерпела изменения, наступает хронологическое смещение.

Пример:
в исследование включаются добровольцы, сами откликнувшиеся на объявление об исследовании.

Систематическая ошибка отбора может приводить в ИСК к формированию контрольной группы, плохо сопоставимой с основной группой. Например, при формировании контрольной группы из больных с другим заболеванием вмешиваются привходящие факторы, связанные с этой болезнью. С другой стороны, если контрольная группа формируется из общей популяции, то результаты могут оказаться несопоставимыми с основной группой, например, по возрасту и полу. Для предотвращения этой ошибки нужно подбирать пациентов попарно в контрольную и основную группы по нескольким признакам, потенциально влияющим на изучаемые показатели. Другой вариант предотвратить ошибку — использовать несколько контрольных групп.

Ошибка подбора, более характерная для ИСК, может возникать и в РКИ, если, например, из контрольной группы теряются самые тяжелые пациенты.

Систематическая ошибка, возникающая при измерении, вследствие неудачно выбранного метода оценки результатов


исследования.
Подобная ошибка появляется тогда, когда пациенты в сравниваемых группах обследуются неодинаково (разные методы диагностики, частота обследований) или используются нестандартизованные схемы получения данных и субъективные оценки.

Субъективная оценка в большинстве случаев даёт завышенный результат по сравнению с оценкой независимого эксперта и/или объективными методами.

Пример:
ошибка вследствие различия в степени подробности сбора анамнеза в группах больных и здоровых.

Пример:
рентгенологи, если проводят оценку рентгенограмм, зная дополнительную информацию о пациенте, могут более пристально и критически оценивать «контрольных» пациентов, по сравнению с «получающими активное лечение».

Систематическая ошибка, обусловленная действием вмешивающихся факторов (confounding),
проявляется тогда, когда изучаемые факторы взаимосвязаны, и одни из них искажают эффекты других. Это может произойти из-за систематической ошибки при отборе, под действием случайности или из-за реального взаимодействия факторов, что должно учитываться при анализе результатов исследования.

Пример:
при проведении исследования влияния потребления овощей на возникновение заболевания, не была учтена разная распространенность второго фактора риска (например, курения) в сравниваемых группах.

Систематическая ошибка, обусловленная эффектом плацебо
.

«Эффект пустышки» — систематическое улучшение состояния пациентов при имитации лечения. Если в контрольной группе проводится лечение, внешне не отличимое от активного в группе вмешательства, то разница между этими группами исключает эффект плацебо.

В ходе наблюдения за больными у них наблюдается улучшение состояния. Часть этого эффекта объясняется естественным течением болезни, часть — неспецифическим влиянием лечения (эффект плацебо), а разница между группами соответствует дополнительной пользе, приносимой активным лечением. РКИ специально планируются так, чтобы отсеять все эффекты, за исключением собственно эффекта активного лечения.

Рисунок 1. Выявление эффекта активного лечения по сравнению с плацебо

Способы устранения систематических ошибок

Наиболее частыми источниками погрешностей при проведении КИ являются ожидания исследователей и испытуемых, влияние которых можно уменьшить путём использования стандартных способов контроля с использованием: анамнез лечение плацебо

грамотного отбора испытуемых в контрольные группы;

метода «ослепления» (маскирование вмешательства);

рандомизации (со стратификацией или без неё) при формировании различных групп испытуемых;

методов статистического моделирования.

Испытания с самоконтролем
— для экспериментальной и контрольной групп привлекается один объект, например, пациент в отдельные дни получает лечение, в другие — плацебо.

Перекрестное испытание
— одни пациенты выбираются для экспериментальной группы, другие — для контрольной; после остановки лечения в новом периоде группа лечения становится контрольной, а контрольная — группой лечения. При обобщенном рассмотрении результатов получается, что каждый пациент был сам себе контролем.

Рисунок 2. Источники систематических ошибок и методы борьбы с ними

Испытания с подобранным контролем
— проводятся путём подбора контроля к каждому случаю так, чтобы они не отличались ни по одному из подозреваемых факторов. Это позволяет избежать различий между группами, связанных с известными факторами, которые не интересны в данном исследовании. Например, при изучении связи болезни с особенностями питания путем подбора контрольных лиц можно исключить влияние на здоровье дохода и курения. При подборе сравниваются различия не между всеми случаями и контролем, а совокупность различий внутри отдельных пар.

Метод маскирования вмешательств
(«слепое» исследование, ослепление)

Немаскируемый (открытый) метод выполнения РКИ — испытуемый и исследователь знают о лечении, которое получает испытуемый. При этом, например, испытуемый в контрольной группе может начать лечиться другими средствами и разница между группами исчезнет.

Простой слепой метод — испытуемый не знает, какое лечение он получает. Метод чреват ошибками, связанными с тем, что врач и другие медицинские работники будут относиться по-разному к ведению пациентов, получающих активное лечение и плацебо (старое и новое вмешательство).

Двойной слепой метод — исследователь и пациент не знают, какое лечение получает он или группа.

Тройной слепой метод — исследователь, пациент и руководители КИ, организующие исследование и анализирующие его результаты, не знают, какое лечение получает группа.

Рандомизация
— способ распределения испытуемых в группы в случайной последовательности — с использованием таблицы случайных чисел или иного правильного метода. Рандомизация — обязательное свойство правильного проведения КИ, которое в таком случае называется рандомизированным. Использование случайных чисел гарантирует, что вероятность попадания в конкретную группу лечения одинакова для всех испытуемых. Рандомизация используется не только при проведении КИ, но и при проведении исследований на экспериментальных животных.

В настоящее время РКИ стали стандартом клинических испытаний. Разработаны разные методы рандомизации -рандомизация пациентов по группам, парная рандомизация, факторная, адаптивная и ряд других.

Рисунок 3. Схематическое изображение РКИ

Правильными методами рандомизации являются использование таблиц случайных чисел и компьютерных программ, а также иногда бросание монеты, т.е. методы, которые генерируют случайную последовательность распределения пациентов по группам.

Однако надо отметить, что, несмотря на всеобщее признание, суть рандомизации нередко понимают неверно и вместо случайного распределения испытуемых прибегают к упрощенным способам (по алфавиту, датам рождения, дням недели и т.д.) и даже допускают произвольное распределение в группы. Подобная «псевдорандомизация»
не даёт ожидаемых результатов.

Стратификация
— используется с целью обеспечения равного распределения испытуемых по группам лечения с учетом факторов, существенно влияющих на исход, например, возраста, длительности болезни и т.д. Иными словами, например, пациенты-мужчины рандомизируются независимо от женщин. Стратификация гарантирует одинаковое распределение указанных факторов в группах лечения.

Статистическое моделирование
— применяется для оценки силы связи и эффекта воздействия с одновременным учётом действия множества переменных. Наиболее распространенным методом статистического моделирования вероятности качественных событий (госпитализация, смерть) является множественная логистическая регрессия.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Систематическая ошибка

2. Ошибки выборки

3. Ошибки измерения

4. Ошибки дизайна и анализа

5. Ошибки в обнародовании результатов исследований

6. Методы контроля над систематическими ошибками

Литература

Введение

Часто исследование проводится с использованием не самого точного из существующих метода, позволяющего получить наиболее близкое к истинному значение измеряемой величины, поскольку такие референтные методы (дающие эталонное по точности измерение) обычно трудоемки, опасны, болезненны или дороги. Отклонения результатов измерения от истинного значения являются ошибками (погрешностями) измерения независимо от причины отклонения. Случайная ошибка — отклонения от истинной величины, которые в среднем равны нулю, т.е. не изменяют измеряемой величины. Случайная ошибка затрудняет выявление закономерностей, но ее наличие не сказывается на направлении и величине сдвигов (различий, связей), выявляемых в исследовании, конечно, при условии, что проведено множество измерений.

ОШИБКА СИСТЕМАТИЧЕСКАЯ — син. смещение (BIAS) — отклонение выводов от истины или процесс, приводящий к подобному отклонению. Любое уклонение (искажение) в сборе, анализе, интерпретации, публикации или обзоре данных, ведущее к выводам, которые систематически отличаются от истины. Среди путей, ведущих к отклонениям от истины, можно выделить: систематический ошибка исследование выборка

Систематическое (одностороннее) отклонение результатов измерений от истинных величин (систематическая ошибка в узком смысле).

Отклонение суммарных статистических оценок (средних, частот, мер связи и т.д.) от их истинных значений в результате систематического отклонения результатов измерений, других погрешностей в сборе данных или погрешностей в дизайне исследования или анализе данных.

Отклонение выводов от истины в связи с недостатками дизайна исследования, сбора данных, анализа или интерпретации результатов.

Тенденция процедур (в дизайне исследования, при сборе данных, анализе, интерпретации, обзоре или публикации результатов) давать результаты или выводы, отклоняющиеся от истины.

Предубеждения, вызывающие сознательный или неосознанный отбор процедур исследования, ведущих к отклонению от истины в определенном направлении или к односторонней интерпретации результатов.

Термин систематическая ошибка не обязательно предполагает обвинения в предубежденности или наличии другого субъективного фактора, такого, как желание получить определенный результат. Это отличает данный термин (bias) от его традиционного значения — пристрастная точка зрения. Описано множество разновидностей систематических ошибок.

1.
Систематическая ошибка

Систематическая ошибка может быть обусловлена:

назначением препаратов с учетом прогноза врачи по-разному подходят к назначению терапии при различном прогнозе В таких случаях сравнение результатов в основной и контрольной группах приведет к неправильной оценке эффекта лечения

методами регистрации данных, возникает при использовании в сравниваемых группах различных подходов к регистрации данных (с помощью компьютера и вручную)

выявлением определенного исхода, возникает при более тщательном выявлении изучаемого клинического исхода в одной из сравниваемых групп

использованием изучаемого диагностического метода в комплексном обследовании, результаты которого рассматриваются как «золотой стандарт» для оценки этого метода

более тщательным опросом участников одной из сравниваемых групп;

предпочтительной публикацией положительных результатов, возникает, если вероятность публикации полученных данных зависит от того, выявляют ли они клиническую и статистическую значимость эффекта вмешательства

влиянием клинического исхода на воспоминания о воздействии, возникает вследствие того, что участники, у которых возникли изучаемые клинические исходы, чаще вспоминают о соответствующем вредном воздействии, чем участники из контрольной группы; независимо от реальных наличия, длительности и интенсивности воздействия;

влиянием ожидаемого исхода на особенности исследования, синоним систематической ошибки, связанной с выявлением определенного исхода; возникает при более тщательном выявлении клинического исхода в одной из сравниваемых групп;

подтверждением диагноза, возникает, если результаты диагностического теста влияют на включение участника в группу вмешательства.

СИСТЕМАТИЧЕСКАЯ ОШИБКА ОТБОРА (SELECTION BIAS) — ошибка, вызванная систематическими различиями характеристик у тех, кто принимает участие в исследовании, и тех, кто в нем не участвует. Пример: систематическая ошибка отбора возникает, когда участники исследования ограничены добровольцами или людьми, находящимися в конкретном месте в конкретное время, или больничными пациентами, находящиеся под наблюдением врача, и из их числа исключены те, кто умер до госпитализации из-за острого течения их заболевания; кто еще не достаточно болен для того, чтобы нуждаться в госпитализации, и те, кто был исключен из соображений стоимости, расстояния или других факторов. Систематическая ошибка отбора делает несостоятельными выводы и обобщения, которые в противном случае могли быть сделаны в результате таких исследований. Это часто возникающая и нередко игнорируемая проблема.

2.
Ошибки выборки

СО выборки (sampling bias) — СО, возникающая в результате изучения неслучайной выборки. Ее не следует путать с ошибкой выборки (sampling error), которая является частью общей ошибки оценки параметра, возникающей из-за случайного характера выборки. Ошибка выборки случайна, она возникает как проявление того, что каждая случайная выборка из популяции отличается (вариабельность выборочных результатов, sampling variation).

Ошибка обращаемости (ascertainment bias) — СО, связанная с включением в исследуемую выборку лиц или случаев, не представляющих равным образом все классы (подгруппы) популяции. Причины этой СО разнообразны. Это может быть особенность источника, откуда поступают обследуемые лица, например, поликлиника завода (в результате выборка не будет отражать состояние здоровья населения).Это может быть способ выявления людей, их особенностей, в частности диагнозов, на который могут влиять обычаи и культура.

СО отбора (selection bias) — ошибка, вызванная систематическими различиями характеристик у тех, кто принимает участие в исследовании и теми, кто в нем не участвует. Такая ошибка возникает в исследовании, в которое включают только добровольцев (они отличны от тех, кто не пожелал участвовать) или только госпитализированных пациентов, находящихся под наблюдением врача (исключены те, кто умер до госпитализации из-за тяжелого течения заболевания, и те, кто еще недостаточно болен для того, чтобы нуждаться в госпитализации, и те, кто из-за стоимости лечения или расстояния не был госпитализирован). В результате СО отбора могут возникать ложные связи и замаскировываться реально существующие. СО отбора — очень частая проблема, многообразная в своих проявлениях.

СО отклика (response bias) — СО, вызванная различиями в характеристиках тех, кто добровольно вызвался принять участие в исследовании, и тех, кто отказался.

СО вследствие выбывания из исследования (bias due to withdrawals) — СО, возникающая вследствие различия между величинами истинными и величинами, полученными в исследовании, в результате особенных характеристик участников, вышедших из исследования. Например, при изучении катамнеза не удается найти часть больных. Изучение характеристик только тех, кого удалось найти, может давать искаженное представление даже о таких показателях, как смертность.

СО серии вскрытий (bias in autopsy series) — СО в оценке патологоанатомической картины, возникающая в результате того, что вскрытые умершие являются нерандомизированной выборкой из всех смертных случаев. Например, при анализе текущих результатов патологоанатомических вскрытий нельзя не учитывать, что патологоанатомы изучают только половину умерших. Лекции по математической статистике. Возможно, что в «невидимой» половине и структура причин смерти, и частота расхождений с клиническим диагнозом иные.

СО распределения пациентов (allocation bias) — в экспериментальных исследованиях методов лечения возможно неравное распределение пациентов между сравниваемыми группами, в результате, например, сравнивается частота или скорость выздоровления у «легких» больных, получающих новое вмешательство, с аналогичными признаками у более тяжелых больных, получающих стандартное лечение.

3.
Ошибки измерения

СО инструментального измерения (bias due to instrumental error) — СО, возникающая вследствие недостатка измерительного прибора, дефектов его калибровки, использования недоброкачественных реактивов, неправильных технологий измерения и т.д.

Феномен предпочтения чисел (digit preference) — предпочтение определенных чисел, обычно приводящее к округлению измерений. Округление может производиться до ближайшего целого числа, дробного числа, кратного 5 или 10, а при других единицах измерения — соответственно им, например, при измерении неделями — 7, 14 дней, при оценке интенсивности курения — до 20 (пачки, Рис. 2) и т.д. Предпочтение чисел может быть свойством лица, отвечающего на вопросы в обследовании, или формой ошибки наблюдателя. Например, курильщики на вопрос о количестве выкуриваемых сигарет бессознательно округляют до 5, так же поступают обычно врачи, регистрируя результаты измерения артериального давления.

СО представления данных (bias in the presentation of data) — ошибка в результате неоднородностей, вызванных предпочтением чисел, неполнотой данных, некачественными лабораторными процессами, плохими методами измерения.

СО информации (information bias, син.: observational bias — СО наблюдения) — в результате погрешностей в процедуре наблюдения или оценки в сравниваемых группах могут возникать разные ошибки, и, соответственно, может возникнуть (или быть скрыто) различие между группами или зависимость. Э. Васильева. Выборочный метод в социально-экономической статистике.

СО интервьюера (interviewer bias) — СО, возникающая, когда человек, проводящий опрос, подсознательно или сознательно избирательно регистрирует неполную или искаженную информацию. Это может быть следствием того, что интервьюер не владеет языком опрашиваемых, имеет предрассудки, а также иными причинами.

СО наблюдателя (observer bias) — систематическое различие истинных значений и наблюдаемых результатов, из-за ошибки наблюдателя. Человек не только использует инструменты, но и сам в жизни и в исследовании выступает как инструмент в оценке времени, определении момента возникновения явления, наличия явления (например, тени, осадка, кристаллов). В этом качестве человек дает результаты, в которых обязательно присутствует случайная ошибка. Последнюю называют ошибкой наблюдателя (observer variation, observer error). Наличие ошибки наблюдателя часто недооценивается. Между тем, общее правило гласит, что все наблюдения подвержены вариациям, и всегда следует ожидать, что будут иметься расхождения между повторными наблюдениями одного исследователя и расхождения между исследователями.

Вариации можно уменьшить, но полностью их избежать невозможно. Причины ошибок наблюдателя бесконечны. Исследователь может не заметить отклонение или думать, что обнаруженного не существует; измерение или тест могут дать неверные результаты из-за ошибочного метода или неверного прочтения и записи данных; исследователь может неверно интерпретировать образ или наблюдение. Выделяют две разновидности ошибки наблюдателя: вариации результатов исследователей (interobserver variation, т.е., различия результатов измерений разными исследователями) и вариация результатов одного исследователя (intraobserver variation, т.е. различия результатов в серии измерений одного и того же объекта, проделанной одним исследователем).

Всю совокупность ошибок наблюдателя (случайную и систематическую ошибки) можно в значительной степени устранить, если измерения проводить параллельно и независимо двумя или более исследователями. Поскольку ошибки исследователей в основном независимы, то расхождения измерений (оценок) укажут на такие ошибки. Эти ошибки станет возможным устранить, для чего существуют разные методы, из которых простейший — вычисление средней оценки. Возможно возникновение специфической СО наблюдателя (или СО измерения) в оценке методов лечения. Если при тяжелом заболевании испытывается новый способ лечения в открытом эксперименте, пациенты, получающие новое (дорогое или недоступное другим) вмешательство, могут выше оценивать результаты лечения в сравнении с пациентами контрольной группы, получающими стандартное вмешательство.

СО памяти (recall bias) — СО, возникающая вследствие различия в точности или полноте воспоминаний о прошлых событиях или жизненном опыте. Например, больной человек лучше, чем здоровый, может вспомнить события, потенциально связанные с возникновением заболевания .

СО сообщения информации пациентом (reporting bias) — СО вследствие выборочного сообщения или сокрытия информации о прошлой истории болезни, например, о деталях половой жизни. Обычно эта СО проявляется в сокрытии общественно осуждаемых форм поведения и может возникать не только при изучении пациентов, людей в популяции, но и при изучении поведения врачей.

СО в обращении с выпадающими величинами (bias in the handling outliers) — СО, возникающая вследствие включением в анализ необычных (выпадающих из общего ряда) значений в маленькой выборке или же вследствие исключения из анализа необычных значений, которые следовало включить.

4.
Ошибки дизайна и анализа

СО опережения (lead time bias, син. zero time shift — сдвиг точки отсчета). Обычным в медицинской практике является стремление к выявлению заболевания ранее обычного (интервал опережения, lead time), например, до возникновения симптомов. Б. Миркин. Группировки в социально-экономических исследованиях Предполагается, что лечение в этом случае будет более успешным, и это увеличит выживание. Если выживание измеряется временем от выявления болезни до смерти, то ранняя диагностика может создавать иллюзию увеличения выживания за счет того, что болезнь будет просто выявляться раньше, т.е. возникает переоценка времени выживания из-за сдвига назад точки отсчета выживания. Для надежного выявления истинного характера увеличения длительности выживания после диагностики необходимы сравнительные экспериментальные исследования. В более общем случае СО опережения возникает, когда наблюдения за группами пациентов начинаются на несравниваемых стадиях естественного развития заболевания. Например, вмешательства у женщин, страдающих раком молочной железы, который выявляется путем скрининга, нельзя сравнивать с вмешательствами у женщин, болезнь которых выявляется клиническим осмотром при обращении на более поздней стадии болезни.

СО продолжительности (length bias) — СО, возникающая при изучении болезни на выборке преваленсных случаев (всех случаев, найденных в популяции или в регистре. В такой выборке оказываются преимущественно представлены длительно текущие случаи. СО продолжительности может возникать не только в поперечном исследовании, но и в когортном по ретроспективно собранным данным, в исследовании типа сравнения с контролем и других.

СО дизайна (design bias) — различие между истинной величиной, например, величиной эффекта ЛС, и величиной, полученной в результате неправильного дизайна исследования. Например, в неконтролируемом исследовании терапевтического эффекта ЛС может быть невозможно отличить влияние на исход болезни ЛС и более высокого дохода у тех, кто мог оплатить это ЛС. В некоторых случаях, применительно к отдельным особенностям дизайна их влияние на оценку исхода известно (это называют «эффект дизайна»). Например, если требуется изучить влияние правил ведения больных врачом на исходы, то не совсем правильно предложить врачу вести больных разными способами (опытную группу — так, а контрольную — иначе). При этом все больные неизбежно начинают получать некое «усредненное» лечение.

Правильнее рандомизировать врачей, и тогда больные одного врача будут получать одно лечение, а больные другого — другое. Это называется кластерным дизайном. При кластерном дизайне выявляемый эффект (разница в исходах при двух вмешательствах) больше, но для достижения статистической значимости эффекта необходимо больше пациентов, чем было бы необходимо при обычном дизайне (параллельном, простая случайная выборка) и равной величине эффекта. Это отличие в результатах исследования, зависящее от особенностей дизайна, называют эффектом дизайна. Отдельные дизайны более, чем другие, подвержены ВВФ. Так, в исследованиях сравнения с контролем и обсервационных исследованиях ВВФ больше и спектр возможных смещений шире, чем в экспериментальных исследованиях типа двойных слепых контролируемых испытаний. СО дизайна не следует путать с подверженностью отдельных дизайнов разным систематическим ошибкам. Например, описания серии случаев и исследования типа сравнения с контролем, сравнения с историческим контролем и с географическим (внешним) контролем подвержены широкой гамме СО. В сравнении с этими дизайнами проспективные контролируемые испытания, в особенности рандомизированные слепые испытания, лучше защищены от возникновения СО, поскольку в этот дизайн встроены несколько механизмов защиты от возможных СО.

Ошибка Берксона (Berkson»s bias, Berkson»s fallacy) — разновидность СО отбора, которая возникает из-за того, что в исследовании типа случай-контроль исследуемые и контрольные лица систематически отличаются друг от друга. Например, так происходит случаях, когда изучаемая экспозиция (воздействие) повышает риск госпитализации при данной болезни, а не риск болезни. Это систематически приводит к повышению частоты экспозиции у госпитализированных больных по сравнению с пациентами контрольной группы, также находящимися в стационаре; в свою очередь, это увеличивает отношение шансов. Елисеева И. Теория статистики с оновами теории вероятностей Например, если у летчиков обнаружение изменений позвоночника приводит к обязательной госпитализации, а у других авиационных специалистов — обычно к амбулаторному обследованию, тогда сравнение летчиков в стационаре с другими пациентами выявит связь профессии с изменениями позвоночника.

СО выявления (detection bias) — СО в результате систематической погрешности в методах выявления, диагностики или верификации случаев в исследовании. Например, больные, отобранные для исследования в первичной практике, отличаются от отобранных в больнице, поскольку в последней доступны специальные лабораторные тесты. Вариант: СО спектра патологии . При исследовании нового диагностического теста его точность в выявлении патологии может выглядеть высокой. В действительности это успешное выявление больных, например, раком простаты, может быть связано с тем, что контрольную группу составляли студенты-медики, а группу больных — больные с диагнозом, верифицированным на операции. Как только метод будет применен в группе пожилых мужчин для выявления относительно ранних случаев рака, может оказаться, что его возможности в выявлении больных невелики.

СО диагностической проработки (workup bias) — СО, вызванная неверным или неполным выявлением случаев, более частым в одной группе исследования. Обычно это происходит потому, что пациенты с положительным результатом первого теста, используемого вначале, получают более тщательное обследование при дальнейшей диагностике, чем те пациенты, у которых результат первого теста был отрицательным. При сопоставлении заболеваемости в профессиональных группах эти группы могут иметь различный доступ к диагностическим технологиям.

СО предположения (bias in the assumption, cин. conceptual bias — концептуальная ошибка) — ошибка в результате неверной логики. Ложные выводы об объяснениях ассоциации между переменными. Неоднократно документировано, как исследователь переносит на новый объект концепции, оказавшиеся плодотворными в предыдущем исследовании.

СО интерпретации (bias of interpretation) — СО в выводе и толковании. Возникает вследствие ограниченной возможности исследователя рассмотреть все возможные интерпретации, соответствующие фактам, и оценить достоинства каждого из них или вследствие пренебрежение случаями, которые представляют собой исключения из общего вывода.

Феномен регрессии к средней,который проявляется во всех продольных исследованиях. Вследствие действия случайных факторов аналитического происхождения и вследствие временных изменений в состоянии людей (например, легкое инфекционое заболевание), получаемые при измерении величины могут быть завышены, занижены, или соответствовать долговременным (постоянным) индивидуальным особенностям. Происхождение регрессии к средней следующее. Если величина, измеренная в первый раз, не была существенно смещена вследствие аналитических или внутрииндивидуальных вариаций, то при следующем изменении она изменится непредсказуемо, в среднем для таких субъектов не изменится никак. Если же величина была завышена, то она в следующий раз будет примерно средней, т.е. приблизится к средней относительно первого значения. Чем более она была завышена (например, вследствие большой аналитической ошибки), тем больше она сдвинется к средней, типичной для популяции величине. В случаях, где наблюдалась заниженная вследствие аналитических и внутрииндивидуальных колебаний величина, тоже будет сдвиг к средней — повышение. Если бы имели место только аналитические вариации, то регрессия к средней полностью реализовывалась бы при втором измерении. Поскольку внутрииндивидуальные вариации могут быть долгосрочными, постольку возврат к средней, например, после болезни или после изменения образа жизни в связи со сменой работы, может занимать месяцы и годы.

Экологическая ошибка (ecological fallacy). Для выявления связи экспозиции и заболевания можно сопоставлять экспозицию у отдельных людей с возникновением у них болезней, а можно сопоставлять экспозицию популяций (стран) с заболеваемостью в этих странах. Исследования второго типа называют экологическими. На основании связи между национальным потреблением соли и распространенностью язвенной болезни желудка и двенадцатиперстной кишки в большом числе стран можно предположить наличие между этими явлениями причинной связи. Можно далее сделать выводы относительно необходимых мер профилактики. Это было бы типичной экологической ошибкой — перенесением на возникновение болезней у отдельных людей закономерностей, полученных в экологических исследованиях. Множество связей, найденных в экологических исследованиях, не были подтверждены на индивидуальном уровне. Противоположная ошибка — перенос на уровень популяции закономерностей, изученных на отдельных людях (атомистическая СО).

Ошибки в обнародовании результатов исследований

Специалисты и публика, использующие медицинскую и иную научную литературу, склонны рассматривать ее как совокупность относительно объективных научных сообщений, которые в большей или меньшей степени точно отвечают на поставленные вопросы. M. Barnes. Bioinformatics for Geneticists. Это расхожее представление соответствует предположению о том, что научные статьи могут содержать ошибочную информацию с элементом случайной ошибки. В действительности истина, открывающаяся в научных исследованиях, отражается в публикациях не только со случайно ошибкой, но и с рядом СО. Эти ошибки в совокупности называют СО обнародования (по-английски используется термин reporting bias, который относится также к ошибке сообщения информации пациентом). В целом СО обнародования создают медицинским научным журналам специфический облик витрины непрекращающихся сообщений об успехах в диагностике и лечении.

Главная из ошибок обнародования — публикационная СО (publication bias) . В основном она состоит в том, что не все результаты исследований публикуются (обнародуются). Публикуются чаще те исследования, которые принесли положительные результаты, т.е., в выгодном свете представляют новое лечение. ЭСО обнародования присуща не только результатам экспериментальных исследований, но и всех других. Везде, где есть хоть какой-то стимул для разного отношения исследователя или спонсора к разным результатам исследования, возникают систематические ошибки. Исследователь работает, в той или иной мере отдавая предпочтение рабочей гипотезе. Если она не подтверждается, то это ведет к разочарованию, потере интереса к опубликованию. Опубликование статьи — это трудный процесс, и нужно хотеть, чтобы оно состоялось . Неопубликование данных исследования — не просто нарушение принципов научного поиска. Это может быть опасным. Так, в 80-х годах ХХ века группа авторов исследовали антиаритмическое ЛС. В группе пациентов, которые его получали, обнаружилась высокая летальность. Авторы расценили это как случайность, и, поскольку разработка этого антиаритмического ЛС была прекращена, то публиковать материалы не стали. Позднее подобное антиаритмическое ЛС — флекаинид — стало причиной гибели множества людей

Система, в которой работает исследователь, может подталкивать к обнародованию только положительных результатов. Например, русская диссертационная система не принимает «отрицательных» результатов. В 2004 г. МЖМП опубликовал призыв сообщить о прецеденте защиты диссертации с отрицательным выводом по основному положению, но, несмотря на обещание премии, так ни одного сообщения и не получил. Но самый важный фактор, определяющий отказ от обнародования — интересы спонсора. Классический пример — отказ от опубликования результатов фармацевтическими компаниями в случае, когда исследование приносит отрицательный результат. Наоборот, положительный результат, хорошо отражающийся на продажах, может многократно повторно публиковаться . Этот механизм, конечно же, характерен не только для фармацевтических компаний. Производители оборудования ведут себя таким же образом. Производители табака точно так же финансируют исследования и публикуют избирательно то, что им выгодно . СО обнародования не относится только к контролируемым испытаниям. Она присутствует в исследованиях всех дизайнов.

Для отдельно взятого читателя, знакомящегося с отдельно взятой статьей или несколькими статьями, наличие публикационной СО незаметно, как незаметны микроорганизмы на коже. Трудно представить, что статья, на чтение которой ты нашел время, оказалась перед твоими глазами не потому, что она важна, а потому, что спонсор потратил средства на ее повторное опубликование, на напечатание отдельных оттисков, раздаваемых на конференции бесплатно, на гонорар профессору, который эту статью упомянул в лекции. Именно поэтому на первом месте у врача должен быть поиск защищенной от СО информации, прежде всего — систематических обзоров. Точно так же у исследователя на первом месте должна быть не работа с «образцом» какого-то предшествующего исследования, а работа с совокупностью предшествующих данных. Поэтому каждый исследователь на этапе планирования работы должен выполнить систематический обзор предшествующих исследований по изучаемому вопросу.

Помимо основного фактора — результата исследования — на вероятность опубликования влияют и иные факторы.

Языковое смещение. По понятным причинам исследования, исходящие из англоязычных стран Запада, легче находят путь на страницы ведущих международных англоязычных журналов. С этой СО тесно связана СО финансирования — исследования, имеющие существенное финансирование, публикуются чаще, чем исследования инициативные, не финансируемые извне. D. Wilks. Statistical Methods in the Atmospheric Sciences. Здесь имеет значение не только фактор обязательств исследователя перед спонсором, но и ограниченность собственных средств исследователя. Последний может найти время для инициативного исследования, но, получив «отрицательный» результат, не найти более времени для того, чтобы трудиться над его опубликованием. Близка к языковой и «СО развивающихся стран» — известная трудность для исследователей из развивающихся стран опубликоваться в международных журналах. Интересно, что в основе этой СО лежит недоверие редакторов к исследованиям из развивающихся стран. Это не мешает периодической публикации в лучших журналах одиозных фальсифицированных исследований из этих стран.

Сами авторы оказывают влияние на то, какие исследования, будучи обнародованными, присутствуют в обороте. Например, статья из провинциального русского журнала, будучи процитированной в другой статье, опубликованной в международном журнале, включается в научный оборот. Если этого не произойдет, то статьи из журнала, не индексируемого в международных базах данных, останутся вне мирового научного оборота.

Исследователь, выполняющий систематический обзор, также может внести СО в его результаты. Поэтому систематические обзоры также должны оцениваться читателями критически. Прежде всего, такая ошибка возникает за счет манипулирования критериями включения и исключения исследований из обзора. Этим широко пользуются сегодня производители ЛС, оборудования, предметов ухода для того, чтобы с помощью систематического обзора показать преимущество своего продукта. Самый известный пример — спонсирование производителями альбумина обзора с результатами, отличающимися от обзора, показавшего неэффективность инфузий альбумина при тяжелой травме.

СО отсрочки публикации. Все исследования, имеющие меньшие шансы на опубликование, одновременно еще и позднее публикуются. В целом, чем менее «поразителен» результат, чем меньше он нужен спонсору и самому исследователю, тем позднее он публикуется. Для инициативных исследований отсрочка в опубликовании может составлять многие годы.

СО сообщаемого исхода (outcome variable selection bias). В зависимости от интересов исследователя и по иным причинам в опубликованных отчетах могут фигурировать в первую очередь те изученные признаки, которые наиболее привлекательны, лучше приемлемы для «передового» журнала, или лучше подтверждают интересы спонсора. Например, в медицине вполне обычно опубликование результатов исследования с позитивной оценкой некоего вмешательства на основании только измерения толщины интимы артерии или изменения концентрации отдельных липопротеидов, в то время, как клинически важные исходы могут не сообщаться, сообщаться не полностью, или сообщаться в более поздних публикациях. Обычно это связано с тем, что в значительной части исследований удается обнаружить «интересные» изменения в биохимических параметрах, но не в смертности, качестве жизни, инвалидности больных.Методы контроля над систематическими ошибками

На этапе дизайна исследования

Выбор популяции исследования первый и важнейший этап создания исследования. Этот выбор определяет прежде всего то, насколько актуален будет его результат. Выбор неверной популяции, редкой, с особенными свойствами, может привести к тому, что результат даже правильный, будет никому не нужен (не обладать внешней валидностью). Выбор популяции, в которой заболевание встречается редко, может привести к тому, что исследование, направленное на выяснение вреда загрязнения питьевой воды, вреда этого не обнаружит — удвоение частоты от 2/100 000 до 4/100 000 окажется статистически незначимым. Д. Перкус. Математический анализ генома. Выбор источников информации в значительной степени определяет, что удастся найти. Например, если государственная статистика не регистрирует внезапную смерть новорожденных, то нелепо ориентироваться на нее в изучении этой и подобных патологий. Если статистика смертности от рака не предусматривает возможности исправления причин смерти задним числом, по мере установления окончательной причины смерти, то использование такой государственной статистики дает лишь ориентировочные представления об онкологической заболеваемости и смертности.На этапе дизайна исследования, составления его протокола должны уточняться все детали выполнения работ на каждом из последующих этапов. Здесь лишь для удобства приемы повышения надежности исследования разнесены по этапам.

5.
Ошибки в обнародовании результатов исследований

Стандартизация методов сбора информации. Лишь на первый взгляд измерение выполняется просто. В действительности для получения не высококлассных, но даже обычных по точности и воспроизводимости результатов необходимо предпринимать значительные усилия для выработки правильного метода измерения и обеспечения правильного измерения всеми участниками исследования. Это относится не только к приборным измерениям, но и к измерениям, выполняемым с помощью опроса. Даже отлично разработанный и проверенный набор вопросов должен предъявляться опрашиваемым в стандартной обстановке, со стандартными вводными словами, поскольку отсутствие атмосферы приватности или выражение отношения к содержанию или форме вопросника способны изменить существенно отношение опрашиваемого к заданным вопросам. Невинная прибаутка, добавляемая интервьюером может улучшить отношение опрашиваемого к процессу, но радикально изменить его отношение ко всем или отдельным вопросам вопросника.

Поскольку обобщение результатов проведенных исследований (систематический обзор) представляет собою технологию дескриптивного исследования, в котором в качестве единиц анализа выступают не люди, а отдельные исследования, постольку систематический обзор весьма сильно подвержен всем смещениям, характерным для дескриптивных исследований. Основными приемами, которые позволяют минимизировать смещения в систематическом обзоре, являются получение максимально полного набора выполненных исследований. Поскольку никогда не известно, сколько исследований выполнено в действительности, единственное приемлемое решение — искать все исследования и получать данные из всех исследований. Как упоминалось выше, получить несмещенную выборку все равно невозможно, но минимизировать смещения — возможно.

Для того, чтобы избежать субъективности в оценках, выносимых по рентгенограммам, оценке текстов или собеседованиям (интервью), традиционно применяется прием повторной оценки одного и того же объекта разными людьми. Если это проводится без обеспечения независимости, то результаты таких повторных оценок будут искусственно согласованы. Например, если психиатр-консультант знаком с мнением коллег, уже исследовавших пациента, то мнение консультанта будет находиться под влиянием этого мнения и, в обычных обстоятельствах, согласовано с ним. Для обеспечения независимости всякая параллельная оценка должна проводиться без знания оценивающим результатов работы других специалистов. Например, независимая оценка рентгенограммы очень часто приводит к несогласию врачей, настолько часто, что врачи, никогда не принимавшие участия в такой работе, не могут этого себе представить — примерно в половине случаев.Это справедливо для оценок ЭКГ и всех других измерений.При изучении опубликованных статей обычно кажется ясным, что в них написано. Однако при выписывании из статей их результатов в таблицы для обобщения в систематическом обзоре оказывается, что два врача при чтении статей выписывают разные результаты! Существенные расхождения в извлечении содержания статьи возникают в каждом третьем случае. Лишь при целенаправленной тренировке — оценке статей и затем сравнении результатов — можно добиться того, что частота расхождений снижается примерно до 1/10.

Метод ослепления (маскирование). Для того, чтобы сравниваемые результаты измерения были по-настоящему независимыми, специалисты, проводящие измерение, должны работать, не зная результатов работы друг друга до момента завершения каждого случая. По его завершении результаты должны сравниваться, и в случае обнаружения расхождения это расхождение преодолеваться. Для этого существуют специальные процедуры. Простейшая состоит в ознакомлении с результатами параллельной оценки и обсуждении расхождения. Если расхождение связано с тем, что один из участников процесса упустил некую информацию, деталь, то легко возникает согласованное мнение. В некоторых случаях этого недостаточно и разрабатывается процедура с приглашением третьего специалиста, который, например, знакомится со всеми результатами и выносит свое решение, или, в свою очередь, принимает участие в голосовании. Иногда эти правила принятия согласованного мнения могут быть более сложными.

Метод ослепления — основной метод создания одинаковых групп для сравнения и обеспечения одинакового ведения пациентов. Всякий раз, когда о пациентах известно хоть что-нибудь, то отношение к ним становится соответствующим. Это вытекает из самой природы человеческих отношений. С. Кункин. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ Мужчина и женщина, бедный и богатый, здоровый и больной не могут и не должны рассчитывать на то, что к ним будет совершенно одинаковое отношение. Эти особенности отношений не только создают «атмосферу», но и влияют на то, что делают медицинские и немедицинские специалисты. В изучении медицинских вмешательств идея о том, что сравнивать два вмешательства можно только в том случае, когда их применяли к одинаковым пациентам, уходит в прошлое по крайней мере на 200 лет. Беда заключалась в том, что в эти давние времена было неизвестно, что делать, если сравниваемые группы несравнимы. И сегодня врач, собрав данные о лечении пациентов одной болезнью разными методами, например, рентгеновским излучением и протонным, обнаруживает, что группа пациентов, которых облучали пучком протонов, отличается от тех, кого облучали рентгеновскими лучами меньшим размером опухоли.Можно ли по исходам лечения сделать вывод о том, какое облучение эффективнее? Конечно же — нет. Исключение составляют случаи, когда эффект в сравниваемых группах различается многократно (см. выше — влияние вмешивающихся факторов обычно не очень велико) или когда можно внести поправку на обнаруженное различие. К сожалению, в большинстве случаев внесение поправки, например, на тяжесть болезни или возраст, невозможно по причине малого числа пациентов. С другой стороны, внесение поправки на известный признак, по которому обнаружено различие, совсем не исключает наличия других, невидимых исследователю различий между группами. Например, можно внести поправку на длительность болезни до начала лечения, но одновременно группы могут различаться еще и по особенностям раковых клеток, неизвестному исследователю. Только рандомизация пациентов при включении их в проспективное исследование позволяет сделать сравниваемые группы сопоставимыми по всем, в том числе неизвестным признакам.

До той поры, пока исследователь не может создать для своего собственного исследования с одинаковые (в пределах случайных колебаний!) группы помощью рандомизации, и в тех случаях, когда проведение проспективного исследования невозможно, что нередко имеет место, например, у медицинских аспирантов, которые стеснены как во времени, так и в средствах, у исследователя остаются возможности наличными средствами сравнивать группы и изучать величину возможного смещения в результате неравенства групп.

6. Методы контроля над систематическими ошибками

Стандартизация — наиболее известный и достаточно эффективный способ внесения поправок на величину отдельного признака. Самый распространенный вид применения стандартизации — по возрасту. Можно, однако, стандартизовать, например, сравниваемые стационары по структуре коек и так далее. Недостатком прямой и непрямой стандартизации является ограниченная возможность использования одновременно нескольких признаков. Например, если известно, что сравниваемые группы различаются одновременно по полу, возрасту и тяжести болезни, то весьма соблазнительно вычислительными средствами внести поправки на эти признаки и оценить, какова же разница в исходах при устранении влияния этих признаков. Этим целям служит ряд методов, основанных на регрессионном анализе. Подчеркнём, что при внесении поправок на несколько признаков одновременно, в особенности при изучении небольших групп пациентов, легко возникают ситуации «перепоправки» и ложные результаты, не всегда очевидные. Кроме того, внесение поправок на известные различия между группами не исключает действия возможных неизвестных различий. Поэтому сравнение изучаемых групп по ряду доступных признаков — обязательная процедура для выявления возможных различий между группами, т.е. признаков СО отбора, но внесение поправок на обнаруженные различия не исключает наличия других существенных различий.

Тем не менее, анализ серий случаев из практики имеет право на существование применительно к получению предварительных результатов, в особенности в тех областях, где проведение контролируемого эксперимента затруднено. Еще одним вариантом сравнения серий случаев или групп проспективного исследования, составленных без использования правильной рандомизации и ослепления является стратификационный анализ. Это — принципиально простая процедура, но очень полезная тем, что помогает исследователю лучше «увидеть и почувствовать» полученные данные. Она состоит в стратификации (разделении на страты — слои, группы) полученных данных. Например, в случае сравнения результатов лечения с использованием двух разновидностей оперативного вмешательства, длительное время сосуществующих в практике, такими стратами могут быть больны, оперированные в последние пять лет и по отдельности в предшествующие пятилетия. При таком сравнении может выясниться, например, что лучшие результаты у метода А обнаруживаются потому, что в течение 15 лет исходы при данном заболевании улучшаются (по каким-то причинам), и одновременно метод Б применяется реже; может быть видно, что для больных, оперированных в одно время, результаты двух методов лечения не различаются существенно.

Литература

1 A dictionary of epidemiology. 4 edn. IEA, Oxford University Press: Oxford, 2001:196.

2 Sackett DL, Oxman AD. HARLOT plc: an amalgamation of the world»s two oldest professions. Brit Med J 2003;327(7429):1442-1445.

3 Kolstad HA, Olsen J. Why Do Short Term Workers Have High Mortality? Am J Epidemiol -352.

4 Власов ВВ. Явления непреднамеренного отбора в клинических исследованиях. Клинич мед

5 Coughlin SS. Recall bias in epidemiologic studies. J Clin Epid 1990;43(1):87-91.

6 Hosek RS, Flanders WD, Sasco AJ. Bias in case-control studies of screening effectiveness. Am J Epidemiol 1996;143(2):193-201.

7 Grimes DA, Schulz KF. Bias and causal associations in observational research. L 2002;359:248-252.

8 Lachs MS, Nachamkin I, Edelstein PH et al. Spectrum bias in the evaluation of diagnostic tests: Lessons from the rapid dipstick test for urinary tract infection. Ann Intern Med 1992;117.- # 2:135-140.

9 Dickersin K, Min Y-I. Publication bias: The problem that won»t go away. Ann N Y Acad Sci 1993;703:135-148.

10 Berlin JA, Begg CB, Louis TA. An assessment of publication bias using a sample of published clinical trials. J Amer Statist Assoc 1989;84:381-392.

Размещено на Allbest.ru

Подобные документы

    Сущность понятий выборки и выборочного наблюдения, основные виды и категории отбора. Определение объема и численности выборки. Практическое применение статистического анализа выборочного наблюдения. Расчет ошибок выборочной доли и выборочной средней.

    курсовая работа , добавлен 17.02.2015

    Классификация ошибок наблюдения в зависимости от причин возникновения. Особенности ошибок регистрации и репрезентативности. Преимущества выборочного наблюдения перед сплошным. Допустимый уровень ошибки. Понятие ряда динамики в статистической науке.

    контрольная работа , добавлен 22.06.2015

    Понятие выборочного наблюдения. Определение объема и численности выборки. Практическое применение в статистическом анализе выборочного наблюдения. Формулы предельных ошибок выборочной доли и среднего показателя. Значения гарантийного коэффициента.

    курсовая работа , добавлен 11.02.2015

    Схема собственно-случайной бесповторной выборки. Определение средней ошибки выборки для среднего значения, среднего квадратического отклонения и предельной ошибки выборки. Определение эмпирического распределения. Расчетное значение критерия Пирсона.

    контрольная работа , добавлен 05.03.2012

    История происхождения статистики как научной дисциплины. Сущности и свойства статистической совокупности. Понятие, формы организации, виды и документальное сопровождение статистического наблюдения. Описание ошибок регистрации и репрезентативности.

    реферат , добавлен 13.11.2010

    Понятие о выборочном методе наблюдения, его цель и основные статистические показатели. Способы отбора в выборочную совокупность. Определение средних и предельных ошибок, возникающих при исследовании. Определение необходимости численности выборки.

    презентация , добавлен 25.05.2016

    Сущность несплошного наблюдения в математической статистике, предоставление формул определения его средней и предельной ошибок. Содержание и параметры механического, типического и серийного видов отбора элементов совокупности выборочного обследования.

    курсовая работа , добавлен 15.01.2011

    Изучение выполнения плана. Десятипроцентное выборочное обследование по методу случайного бесповторного отбора. Себестоимость продукции завода. Предельная ошибка выборки. Динамика средних цен и объема продажи продукта. Индекс цен переменного состава.

    контрольная работа , добавлен 09.02.2009

    Дескриптивная статистика и статистический вывод. Способы отбора, обеспечивающие репрезентативность выборки. Влияние вида выборки на величину ошибки. Задачи при применении выборочного метода. Распространение данных наблюдения на генеральную совокупность.

    контрольная работа , добавлен 27.02.2011

    Теоретическая основа выборочного метода математической статистики, его роль в экономике. Описание характера ошибок регистрации и репрезентативности. Приведение формул расчета финансовых, производственных и трудовых показателей деятельности предприятия.

Анализа необходимо по затраченному объему раствора H I и его концентрации вычислить из уравнения реакции соответствующее количество определяемой щелочи. Если концентрация раствора H I была в свое время определена неверно, то эта ошибка в качестве постоянной систематической ошибки отразится на всех результатах отдельных определений и, несмотря на хорошую воспроизводимость, полученные результаты будут совершенно неправильными. 


    По своему характеру ошибки анализа подразделяются на 1) систематические ошибки 2) случайные ошибки 3) промахи. 

Систематические ошибки. Систематическими ошибками называют погрешности, одинаковые по знаку, происходящие от определенных причин, влияющих на результат либо в сторону увеличения, либо в сторону уменьшения его. Систематические ошибки можно обычно предусмотреть и устранить их или же ввести соответствующие поправки. Отметим следующие виды систематических ошибок. 

Действительно, при этом условии все систематические ошибки определения будут совершенно одинаковыми в обоих случаях и на результате определения не отразятся. 

Т — истинное значение II — среднее значение III — систематическая ошибка IV — область случайных колебаний. 

Ошибки оперативные. Оперативные ошибки происходят от неправильного или недостаточно тщательного выполнения аналитических операций . Сюда относится, например, недостаточное промывание осадков , приводящее к постоянному завышению результатов, иногда — излишнее промывание осадков , приводящее к систематическим потерям. Систематические ошибки появляются также в результате недостаточной или чрезмерной продолжительности прокаливания осадков , недостаточно тщательного перенесения осадков из стакана в тигель, неправильного способа выливания растворов из пипеток и т. п. 

Систематическая ошибка обусловлена погрешностями измерительных устройств (что становится причиной получения слишком больших или малых значений измеряемой величины) либо неправильной методикой проведения измерений (например, пренебрежением влияния температуры окружающей среды , колебания атмосферного давления и т. п.). Систематическую ошибку можно компенсировать, вводя в расчет результата измерения соответствующие поправки. 

Как же надо обрабатывать результаты отдельных измерений (каждое из которых содержит случайную ошибку) для того, чтобы получить величину, более всего приближающуюся к точному значению Приступая к решению этой задачи, мы предполагаем, что систематические ошибки исключены. 

Систематические ошибки зависят от используемого метода или прибора иногда их называют методическими ошибками . Они связаны как с допущениями, принятыми при разработке метода измерения, так и с возможными смещениями показаний приборов (сдвиг пулевой точки и т. п.). Отличительной чертой таких ошибок является смещение измеряемых величин в одну сторону от

Очевидно, что применение математических методов не может дать ответ на вопрос, насколько у отличается от (х, если имеют место систематические ошибки физического метода . Математическая статистика в этом случае позволит лишь оценить область вокруг у, в которой могут находиться величины у[. Величина у будет хорошей оценкой х, если возможны только случайные ошибки только при этом условии справедлива левая часть соотношения (И-2). 

Случайными называются погрешности непостоянные по знаку и величине, вызываемые большим количеством случайных причин, которые приводят к рассеиванию размеров деталей относительно систематической ошибки. Появление случайных ошибок незакономерно, поэтому величину их нельзя определить заранее. 

Функциональные погрешности разделяются на определенные и неопределенные. Функционально определенные — это такие ошибки, величина и закономерность изменения которых может быть определена аналитически, т. е. они являются систематическими ошибками, изменяющимися по определенному закону. 

Выявляются и суммируются систематические ошибки (координаты середины полей допусков) для групп составляющих размеров, имеющих только скалярные ошибки — по формуле (39) векторные ошибки — по формуле (53) функционально связанные ошибки — по формуле (56) коррелятивно связанные ошибки- по формуле (59) силовые и температурные деформации — по формуле (60) зазоры -по формуле (70). 

Пример 3. Поле рассеивания отклонений непараллельности осей шатунных и коренных шеек коленчатого вала компрессора 4АУ-15 (фиг. 16) равно по величине допуску на изготовление, т. е. выбранный круглошлифовальный станок соответствует требуемой точности, но имеется значительная погрешность базирования валов в приспособлении (систематическая ошибка). 

Установлено, что нри определении концентраций веществ без систематической ошибки оценки констант , минимизирующие квадратичную форму Фз, будут несмещенными. Вычисление концентраций J производится или на основе интегральной формы кинетического уравнения , или численным интегрированием системы кинетических уравнений. 

Точки плана для построения полинома степени п выбирают таким образом, чтобы получить минимальную величину систематической ошибки, связанной с тем, что функция отклика есть полином степени Лг> . Принципы, используемые при выборе подходящих планов, были предложены ранее Боксом и Дрепером . 

Успех подобного подхода свидетельствует о том, что обсуждаемая поправка (на которую, вообще говоря, могут влиять и другие, не учитываемые здесь систематические ошибки) достаточно устойчива в пределах одного титрования. Такую устойчивость отмечали также Гордиенко и Сидоренко , применявшие поправки к pH при определении констант кислотно -основных равновесий. 

Все приведенные планы построены в предположении, что существует только систематическое смещение. На практике обычно кроме систематической ошибки экспериментальные данные содержат также и случайную ошибку. 

Основанное иа этих приемах планирование существенно снижает влияние не только случайных, но и систематических ошибок в первичных данных. Роль последних часто игнорируется без каких-либо оснований. Вместе с тем систематические ошибки могут приводить к полному обесцениванию конечны. результатов. 

Систематическая ошибка при измерении pH компенсируется соответствующим изменением коэффициента активности (подбором эффективного коэффициента активности). Пусть в нашем распоряжении есть алгоритм и программа для определения нескольких неизвестных констант ЗДМ по потенциометрическим (например, рН-метрическим) измерениям. Тогда никто не мешает включить в число неизвестных констант и константу формальной реакции получения отнесенной к базису частицы, активность которой мы измеряем. В логарифм этой константы войдет поправка, компенсирующая систематическую ошибку потенциометрических измерений. 

Оценку для систематической ошибки сдвига аналитического состава раствора Ах1. можно получить из уравнений материального баланса для закрытой системы с учетом изменения состава паровой фазы  

Загружаемые угли сушили в промышленных условиях с доведением остаточной влажности до 1-3%. Для получения индекса производительности на сухую массу /о экспериментальные величины корректировали, принимая относительное изменение индекса производительности равным 2,5% на каждый процент влажности. Выше говорилось, что этот коэффициент вариации , по-видимому, зависит от природы угля, поэтому получается систематическая ошибка в определении /ц, но она не превышает 1%. Напомним, что случайная ошибка средней загрузки (из шести) обычно составляет 2%, тогда общая ошибка — порядка 3%. 

Внутренние возмущения, систематические ошибки измерения Отказ отдельных подсистем, аварии 

Итак, величины / — содержат как ошибки измерений (будем считать их случайными), так и систематические ошибки, вызванные неадекватностью модели. 

Еще раз напомним, что величины е, вычисляемые описанным выше способом, характеризуют только влияние случайных, но не систематических ошибок анализа. Анализ может оказаться совершенно неправильным, несмотря на хорошую точность, т, е, на малую величину е, если при анализе были какие-либо систе матические ошибки. Отсутствие систематических ошибок может быть установлено сопоставлением разницы между полученным при анализе средним арифметическим () и истинным содержанием (а) определяемого элемента , т, е. ошибки А=х — а с е. Если Д

Систематические ошибки иногда можно установить по наличию некоторой постоянной тенденции. Так, если отклонение экспериментальных данных от средних величин распределено не случайно, а имеет в условиях эксперимента постоянную тенденцию, то можно ожидать систематической ошибки. Такое отклонение имеет значение, если оно больше ожидаемой ошибки в определении Предварительное обнаружение систематических ошибок требует некоторых навыков, так как для этого необходимо знание природы шаучаемой системы. 

Таким образом, небольшое значение е свидетельствует лишь о высокой точности измерений , но не об их правильности, так как все измерения могут содержать одну и ту же, и при этом значительную систематическую ошибку (например, вследствие неисправности прибора). Экспериментатор должен заранее позаботиться о том, чтобы такая ошибка была бы исключена (папример, устранением разрыва нити термометра Бекмапа). 

Рассмотрим причины, влияющие на ошибку измерения на примере с объемом газа, который упоминался выше. Ошибка измеряемого объема слагается из систематической ошибки и случайной ошибки измерения . Систематическая ошибка характеризует методическую правильность измерения , тогда как случайная ошибка определяется конкретными условиями отдельного измерения. Допустим, например, что объем газа измерялся при помощи 50-миллиметровой газовой бюретки . Указанный вьшде объем 

Систематические ошибки постоянны во всей серпи измерений или изменяются по определенному закону. Выявление их требует специальных исследований, но как только систематические ошибки обнаружены, они могут быть легко устранены введением соответствующих поправок в результаты измерения. 

Дри исследовании одноосновной кислоты средней силы последнюю реакцию в матрице (1) можно не учитывать. Напротив, опуская

Понравилась статья? Поделить с друзьями:
  • Систематическая ошибка внимания когнитивное искажение
  • Система ошибка экстренного вызова бмв f30
  • Систематическая ошибка нормальное распределение
  • Система отслеживания ошибок jira
  • Систематическая ошибка восприятия