Явление, причины и закон рассеивания
При стрельбе из
одного и того же оружия, при самом
тщательном соблюдении точности и
однообразности производства выстрелов,
каждая пуля вследствие ряда случайных
причин описывает свою траекторию и
имеет свою точку падения (точку встречи),
не совпадающую с другими, вследствие
чего происходит разбрасывание пуль.
Явление разбрасывания
пуль при стрельбе из одного и того же
оружия в практически одинаковых условиях
называется естественным рассеиванием
пуль или рассеиванием траектории.
Совокупность траекторий пуль, полученных
вследствие их естественного рассеивания,
называется снопом траекторий.
Точка
пересечения средней траектории с
поверхностью цели (преграды)
называется средней точкой
попадания или центром рассеивания
Площадь рассеивания
обычно имеет форму эллипса. При стрельбе
из стрелкового оружия на близкие
расстояния площадь рассеивания в
вертикальной плоскости может иметь
форму круга.
Взаимноперпендикулярные
линии, проведенные через центр рассеивания
(среднюю точку попадания) так, чтобы
одна из них совпала с направлением
стрельбы, называются осями рассеивания.
Кратчайшие
расстояния от точек встречи (пробоин)
до осей рассеивания называются
отклонениями.
Сноп
траектории, площадь рассеивания, оси
рассеивания:
а –
на вертикальной плоскости, б – на
горизонтальной плоскости, средняя траектория
обозначена красной линией, С –
средняя точка попадания, ВВ1 –
ось рассеивания по высоте, ББ1,
– ось рассеивания по боковому
направлению, dd1, – ось рассеивания
по дальности попадания. Площадь, на
которой располагаются точки встречи
(пробоины) пуль, полученные при пересечении
снопа траекторий с какой-либо плоскостью,
называется площадью рассеивания.
Причины рассеивания.
Причины, вызывающие
рассеивание пуль, могут быть сведены
в три группы:
причины,
вызывающие разнообразие начальных
скоростей;
причины,
вызывающие разнообразие углов бросания
и направления стрельбы;
причины,
вызывающие разнообразие условий полета
пули.
Причинами,
вызывающими разнообразие начальных
скоростей пуль, являются:
разнообразие
в весе пороховых зарядов и пуль, в форме
и размерах пуль и гильз, в качестве
пороха, плотности заряжания и т. д. как
результат неточностей (допусков) при
их изготовлении;
разнообразие
температур зарядов, зависящее от
температуры воздуха и неодинакового
времени нахождения патрона в нагретом
при стрельбе стволе;
разнообразие
в степени нагрева и качественном
состоянии ствола.
Эти причины ведут
к колебанию в начальных скоростях, а,
следовательно, и в дальностях полета
пуль, т. е. приводят к рассеиванию пуль
по дальности (высоте) и зависят, в
основном, от боеприпасов и оружия.
Причинами,
вызывающими разнообразие углов
бросания и направления стрельбы, являются:
разнообразие
в горизонтальной и вертикальной наводке
оружия (ошибки в прицеливании);
разнообразие
углов вылета и боковых смещений оружия,
получаемое в результате неоднообразной
изготовки к стрельбе, неустойчивого и
неоднообразного удержания автоматического
оружия, особенно во время стрельбы
очередями, неправильного использования
упоров и неплавного спуска курка;
угловые
колебания ствола при стрельбе
автоматическим огнем, возникающие
вследствие движения и ударов подвижных
частей оружия.
Эти причины приводят
к рассеиванию пуль по боковому направлению
и по дальности (высоте), оказывают
наибольшее влияние на величину площади
рассеивания и, в основном, зависят от
выучки стреляющего.
Причинами,
вызывающими разнообразие условий полета
пуль, являются:
разнообразие
в атмосферных условиях, особенно в
направлении и скорости ветра между
выстрелами (очередями);
разнообразие
в весе, форме и размерах пуль (гранат),
приводящее к изменению величины
сопротивления воздуха,
Эти
причины приводят к увеличению рассеивания
пуль по боковому направлению и по
дальности (высоте) и, в основном, зависят
от внешних условий стрельбы и боеприпасов.
При
каждом выстреле в разном сочетании
действуют все три группы причин.
Это
приводит к тому, что полет каждой пули
происходит по траектории отличной от
траектории других пуль. Полностью
устранить причины, вызывающие рассеивание,
следовательно, устранить и само
рассеивание – невозможно. Однако зная
причины, от которых зависит рассеивание,
можно уменьшить влияние каждой из них
и тем самым уменьшить рассеивание, или,
как принято говорить, повысить кучность
стрельбы.
Уменьшение
рассеивания пуль достигается отличной
выучкой стреляющего, тщательной
подготовкой оружия и боеприпасов к
стрельбе, умелым применением правил
стрельбы, правильной изготовкой к
стрельбе, однообразной прикладкой,
точной наводкой (прицеливанием), плавным
спуском курка, устойчивым и однообразным
удержанием оружия при стрельбе, а также
надлежащим уходом за оружием и
боеприпасами.
Закон
рассеивания.
При большом числе
выстрелов (более 20) в расположении точек
встречи на площади рассеивания наблюдается
определенная закономерность. Рассеивание
пуль подчиняется нормальному закону
случайных ошибок, который в отношении
к рассеиванию пуль называется законом
рассеивания.
Этот
закон характеризуется следующими тремя
положениями:
1.
Точки встречи (пробоины) на площади
рассеивания располагаются неравномерно
– гуще к центру рассеивания и реже
к краям площади рассеивания.
2.
На площади рассеивания можно определить
точку, являющуюся центром рассеивания
(среднюю точку попадания), относительно
которой распределение точек встречи
(пробоин) симметрично: число точек
встречи по обе стороны от осей рассеивания,
заключающихся в равных по абсолютной
величине пределах (полосах), одинаково,
и каждому отклонению от оси рассеивания
в одну сторону отвечает такое же по
величине отклонение в противоположную
сторону.
3.
Точки встречи (пробоины) в каждом частном
случае занимают не беспредельную, а
ограниченную площадь.
Таким образом,
закон рассеивания в общем виде можно
сформулировать следующим образом: при
достаточно большом числе выстрелов,
произведенных в практически одинаковых
условиях, рассеивание пуль (гранат)
неравномерно, симметрично и небеспредельно.
Прицеливание и
определение средней точки попадания.
Количество выстрелов при проверке
боя оружия должно обеспечивать
достаточность определения характеристик
рассеивания СТП и наименьший расход
боеприпасов.
Точность
определения положения СТП зависит от
количества выстрелов. Чем больше будет
произведено выстрелов, тем точнее можно
определить положение СТП.
Опытным путем и
расчетами установлено, что для достаточной
точности в определении положения СТП
при стрельбе одиночными выстрелами
требуется 4 пробоины, увеличение числа
выстрелов незначительно повышает
точность определения СТП, но в то же
время приводит к увеличенному расходу
боеприпасов.
При приведении
оружия к нормальному бою очередями
ошибка в прицеливании влияет на отклонение
всей очереди и одна очередь может дать
неверное представление о положении
СТП. Поэтому для определения СТП с
достаточной точностью необходимо
производить две-три очереди установленной
длины, на что потребуется 8-10 патронов.
Такое
количество патронов при стрельбе
очередями более полно выявляет
рассеивание.
Для
определения СТП при стрельбе из различных
пулеметов установлено по 8 выстрелов и
10 выстрелов для станковых и крупнокалиберных
пулеметов.
Средняя точка
попадания (СТП) может быть определена
несколькими способами. По трем-четырем
пробоинам СТП определяется следующим
способом.
Ближайшие друг к
другу пробоины соединяют прямой линией
и делят её пополам. Полученную точку
соединяют с третьей пробоиной. А
расстояние между ними делят на три
равные части. Точку деления, ближайшую
к двум первым пробоинам, соединяют с
четвертой пробоиной и расстояние делят
на четыре равные части. Точка деления,
ближайшая к трем первым пробоинам, и
будет СТП.
Можно пробоины
соединить попарно, середины полученных
прямых снова соединить, точка деления
полученной прямой пополам и будет СТП.
Если одна из пробоин
явно оторвалась от остальных, то ее
следует отбросить как случайную и
определить СТП по трем пробоинам.
Явно
оторвавшейся пробоиной является такая,
расстояние до которой от СТП остальных
пробоин более 2,5 радиусов наименьшего
круга, вмещающего эти остальные пробоины.
При большом числе
(6-10) пробоин СТП определяется несколько
иначе. Отбросив явно оторвавшиеся
пробоины, остальные последовательно
разделяют пополам вертикально и
горизонтально проведенными линиями.
Линии проводятся на равном удалении от
двух ближайших пробоин, лежащих в
плоскости деления. Точка пересечения
линий деления принимается за СТП.
В настоящее время
для проверки боя стрелкового оружия
применяется проверочная мишень.
Точку прицеливания
на проверочной мишени выбирают на
пересечении белой вертикальной линии
с нижним обрезом мишени, обозначенным
цифрой:
1
– для 7,62 мм АКМ, РПК и самозарядного
карабина под патрон образца 1943 г.;
2
– для 7,62 мм СВД;
3
– для 7,62 мм ПК, ротного пулемета и ручных
пулеметов под винтовочный патрон;
4
– для станковых пулеметов при стрельбе
патронами с пулей образца 1930 г.;
5
– для станковых пулеметов при стрельбе
патронами образца 1980 г. и 5,45 мм АК-74;
6
– для пистолетов и револьверов;
7
– для 5,45 мм РПК-74;
8
– для 12,7-мм крупнокалиберного пулемета.
Примечание: СТП
при нормальном бое оружия не должна
выходить за пределы малого круга.
При отсутствии
мишени размеры последней можно определить
расчетным путем.
Пример: определить
ширину мишени Х для приведения к
нормальному бою АКМ, если дальность
стрельбы АС равна 100 м, среднее расстояние
от глаза стреляющего до мушки АЕ 0,8 м,
диаметр (толщина) мушки ДЕ – 0,002м.
Решение: Из
подобия треугольников АВС и АДЕ имеем:
Наиболее выгодной
формой мишени для приведения оружия к
нормальному бою является прямоугольник
или круг черного цвета. Ширина мишени
должна быть равна видимой ширине мушки.
При прицеливании по такой мишени мушка
своими боковыми гранями сливается с
краями прямоугольника что позволяет
пристрельщику замечать незначительные
отклонения по боковому направлению.
Для каждого образца
оружия выбирается определенная дальность
стрельбы.
Например,
для автоматов, винтовок, карабинов и
пулеметов берется дальность 100м, для
пистолета АПС – 50м, для пистолетов и
револьверов – 25м.
Эти
дальности дают возможность избежать
влияния метеорологических условий на
полет пули и иметь хорошую точность
прицеливания.
Для многих образцов
стрелкового оружия при проверке боя
стрельба ведется с прицела «3». В
соответствии с этой установкой прицела
на пристрелочной мишени отмечается
положение контрольной точки (КТ), которая
означает пересечение средней табличной
траектории с мишенью. Это объясняет
расположение пробоин в центре мишени
и облегчает обработку результатов
стрельбы.
Соседние файлы в папке ОГП
- #
- #
- #
- #
- #
- #
- #
- #
- #
Тема 3. Сведения из внутренней и внешней баллистики.
Сущность явления выстрела и его период
Выстрелом называется выбрасывание пули (гранаты) из канала ствола оружия энергией газов, образующихся при сгорании порохового заряда.
При выстреле из стрелкового оружия происходят следующие явления.
От удара бойка по капсюлю боевого патрона, досланного в патронник, взрывается ударный состав капсюля и образуется пламя, которое через затравочные отверстия в дне гильзы проникает к пороховому заряду и воспламеняет его. При сгорании порохового (боевого) заряда образуется большое количество сильно нагретых газов, создающих в канале ствола высокое давление на дно пули, дно и стенки гильзы, а также на стенки ствола и затвор.
В результате давления газов на дно пули она сдвигается с места и врезается в нарезы; вращаясь по ним, продвигается по каналу ствола с непрерывно возрастающей скоростью и выбрасывается наружу, по направлению оси канала ствола. Давление газов на дно гильзы вызывает движение оружия (ствола) назад. От давления газов на стенки гильзы и ствола происходит их растяжение (упругая деформация), и гильза, плотно прижимаясь к патроннику, препятствует прорыву пороховых газов, в сторону затвора. Одновременно при выстреле возникает колебательное движение (вибрация) ствола и происходит его нагревание. Раскаленные газы и частицы несгоревшего пороха, истекающие из канала ствола вслед за пулей, при встрече с воздухом порождают пламя и ударную волну; последняя является источником звука при выстреле.
При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола (например, автомат и пулеметы Калашникова, снайперская винтовка Драгунова, станковый пулемет Горюнова), часть пороховых газов, кроме того, после прохождения пулей газоотводного отверстия устремляется через него в газовую камору, ударяет в поршень и отбрасывает поршень с затворной рамой (толкатель с затвором) назад.
Пока затворная рама (стебель затвора) не пройдет определенное расстояние, обеспечивающее вылет пули из канала ствола, затвор продолжает запирать канал ствола. После вылета пули из канала ствола происходит его отпирание; затворная рама и затвор, двигаясь назад, сжимают возвратную (возвратно-боевую) пружину; затвор при этом извлекает из патронника гильзу. При движении вперед под действием сжатой пружины затвор досылает очередной патрон в патронник и вновь запирает канал ствола.
При выстреле из автоматического оружия, устройство которого основано на принципе использования энергии отдачи (например, пистолет Макарова, автоматический пистолет Стечкина, автомат образца 1941 г.), давление газов через дно гильзы передается на затвор и вызывает движение затвора с гильзой назад. Это движение начинается в момент, когда давление пороховых газов на дно гильзы преодолевает инерцию затвора и усилие возвратно-боевой пружины. Пуля к этому времени уже вылетает из канала ствола. Отходя назад, затвор сжимает возвратно-боевую пружину, затем под действием энергии сжатой пружины затвор движется вперед и досылает очередной патрон в патронник.
В некоторых образцах оружия (например, крупнокалиберный пулемет Владимирова, станковый пулемет образца 1910 г.) под действием давления пороховых газов на дно гильзы вначале движется назад ствол вместе со сцепленным с ним затвором (замком).
Пройдя некоторое расстояние, обеспечивающее вылет пули из канала ствола, ствол и затвор расцепляются, после чего затвор по инерции отходит в крайнее заднее положение и сжимает (растягивает) возвратную пружину, а ствол под действием пружины возвращается в переднее положение.
Иногда после удара бойка по капсюлю выстрела не последует или он произойдет с некоторым запозданием. В первом случае имеет место осечка, а во втором — затяжной выстрел. Причиной осечки чаще всего бывает отсыревание ударного состава капсюля или порохового заряда, а также слабый удар бойка по капсюлю. Поэтому необходимо оберегать боеприпасы от влаги и содержать оружие в исправном состоянии.
Затяжной выстрел является следствием медленного развития процесса зажжения или воспламенения порохового заряда. Поэтому после осечки не следует сразу открывать затвор, так как возможен затяжной выстрел. Если осечка произойдет при стрельбе из станкового гранатомета, то перед его разряжением необходимо выждать не менее одной минуты.
При сгорании порохового заряда примерно 25 — 35% выделяемой энергии затрачивается на сообщение пуле поступательного движения (основная работа);
15 — 25% энергии — на совершение второстепенных работ (врезание и преодоление трения пули при движении по каналу ствола; нагревание стенок ствола, гильзы и пули; перемещение подвижных частей оружия, газообразной и несгоревшей частей пороха); около 40% энергии не используется и теряется после вылета пули из канала ствола.
Выстрел происходит в очень короткий промежуток времени (0,001 0,06 сек). При выстреле различают четыре последовательных периода: предварительный; первый, или основной; второй; третий, или период последействия газов (см. рис. 30).
Предварительный период длится от начала горения порохового заряда до полного врезания оболочки пули в нарезы ствола. В течение этого периода в канале ствола создается давление газов, необходимое, для того чтобы сдвинуть пулю с места и преодолеть сопротивление ее оболочки врезанию в нарезы ствола. Это давление называется давлением форсирования; оно достигает 250 — 500 кг/см2 в зависимости от устройства нарезов, веса пули и твердости ее оболочки (например, у стрелкового оружия под патрон образца 1943 г. давление форсирования равно около 300 кг/см2). Принимают, что горение порохового заряда в этом периоде происходит в постоянном объеме, оболочка врезается в нарезы мгновенно, а движение пули начинается сразу же при достижении в канале ствола давления форсирования.
Первый, или основной период длится от начала движения пули до момента полного сгорания порохового заряда. В этот период горение порохового заряда происходит в быстро изменяющемся объеме. В начале периода, когда скорость движения пули по каналу ствола еще невелика, количество газов растет быстрее, чем объем запульного пространства (пространство между дном пули и дном гильзы), давление газов быстро повышается и достигает наибольшей величины (например, у стрелкового оружия под патрон образца 1943 г. — 2800 кг/см2, а под винтовочный патрон — 2900 кг/см2). Это давление называется максимальным давлением. Оно создается у стрелкового оружия при прохождении пулей 4-6 см пути. Затем, вследствие быстрого увеличения скорости движения пули, объем запульного пространства увеличивается быстрее притока новых газов, и давление начинает падать, к концу периода оно равно примерно 2/3 максимального давления. Скорость движения пули постоянно возрастает и к концу периода достигает примерно 3/4 начальной скорости. Пороховой заряд полностью сгорает незадолго до того, как пуля вылетит из канала ствола.
Второй период длится от момента полного сгорания порохового заряда до момента вылета пули из канала ствола. С началом этого периода приток пороховых газов прекращается, однако сильно сжатые и нагретые газы расширяются и, оказывая давление на пулю, увеличивают скорость ее движения. Спад давления во втором периоде происходит довольно быстро и у дульного среза — дульное давление — составляет у различных образцов оружия 300 — 900 кг/см2 (например, у самозарядного карабина Симонова 390 кг/см2, у станкового пулемета Горюнова — 570 кг/см2). Скорость пули в момент вылета ее из канала ствола (дульная скорость) несколько меньше начальной скорости.
У некоторых видов стрелкового оружия, особенно короткоствольных (например, пистолет Макарова), второй период отсутствует, так как полного сгорания порохового заряда к моменту вылета пули из канала ствола фактически не происходит.
Третий период, или период последействия газов длится от момента вылета пули из канала ствола до момента прекращения действия пороховых газов на пулю. В течение этого периода пороховые газы, истекающие из канала ствола со скоростью 1200 — 2000 м/сек, продолжают воздействовать на пулю и сообщают ей дополнительную скорость. Наибольшей (максимальной) скорости пуля достигает в конце третьего периода на удалении нескольких десятков сантиметров от дульного среза ствола. Этот период заканчивается в тот момент, когда давление пороховых газов на дно пули будет уравновешено сопротивлением воздуха.
Начальная скорость пули
Начальной скоростью (v0) называется скорость движения пули у дульного среза ствола.
За начальную скорость принимается условная скорость, которая несколько больше дульной и меньше максимальной. Она определяется опытным путем с последующими расчетами. Величина начальной скорости пули указывается в таблицах стрельбы и в боевых характеристиках оружия.
Начальная скорость является одной из важнейших характеристик боевых свойств оружия. При увеличении начальной скорости увеличивается дальность полета пули, дальность прямого выстрела, убойное и пробивное действие пули, а также уменьшается влияние внешних условий на ее полет.
Величина начальной скорости пули зависит от длины ствола; веса пули; веса, температуры и влажности порохового заряда, формы и размеров зерен пороха и плотности заряжения.
Чем длиннее ствол, тем большее время на пулю действуют пороховые газы и тем больше начальная скорость.
При постоянной длине ствола и постоянном весе порохового заряда начальная скорость тем больше, чем меньше вес пули.
Изменение веса порохового заряда приводит к изменению количества пороховых газов, а, следовательно, и к изменению величины максимального давления в канале ствола и начальной скорости пули. Чем больше вес порохового заряда, тем больше максимальное давление и начальная скорость пули.
Длина ствола и вес порохового заряда увеличиваются при конструировании, оружия до наиболее рациональных размеров.
С повышением температуры порохового заряда увеличивается скорость горения пороха, а поэтому увеличивается максимальное давление и начальная скорость. При понижении температуры заряда начальная скорость уменьшается. Увеличение (уменьшение) начальной скорости вызывает увеличение (уменьшение) дальности полета пули. В связи с этим необходимо учитывать поправки дальности на температуру воздуха и заряда (температура заряда примерно равна температуре воздуха).
С повышением влажности порохового заряда уменьшается скорость его горения и начальная скорость пули. Форма и размеры пороха оказывают существенное влияние на скорость горения порохового заряда, а, следовательно, и на начальную скорость пули. Они подбираются соответствующим образом при конструировании оружия.
Плотностью заряжения называется отношение веса заряда к объему гильзы при вставленной пуле (каморы сгорания заряда). При глубокой посадке пули значительно увеличивается плотность заряжения, что может привести при выстреле к резкому скачку давления и вследствие этого к разрыву ствола, поэтому такие патроны нельзя использовать для стрельбы. При уменьшении (увеличении) плотности заряжения увеличивается (уменьшается) начальная скорость пули.
Отдача оружия и угол вылета
Отдачей называется движение оружия (ствола) назад во время выстрела. Отдача ощущается в виде толчка в плечо, руку или грунт.
Действие отдачи оружия характеризуется величиной скорости и энергией, которой оно обладает при движении назад. Скорость отдачи оружия примерно во столько раз меньше начальной скорости пули, во сколько раз пуля легче оружия. Энергия отдачи у ручного стрелкового оружия обычно не превышает 2 кг/м и воспринимается стреляющим безболезненно.
При стрельбе из автоматического оружия, устройство которого основано на принципе использования энергии отдачи, часть ее расходуется на сообщение движения подвижным частям и на перезаряжание оружия. Поэтому энергия отдачи при выстреле из такого оружия меньше, чем при стрельбе из неавтоматического оружия или из автоматического оружия, устройство которого основано на принципе использования энергии пороховых газов, отводимых через отверстие в стенке ствола.
Сила давления пороховых газов (сила отдачи) и сила сопротивления отдаче (упор приклада, рукоятки, центр тяжести оружия и т. д.) расположены не на одной прямой и направлены в противоположные стороны. Они образуют пару сил, под действием которой дульная часть ствола оружия отклоняется кверху (см. рис. 31).
Рис. 31. Отдача оружия
Подбрасывание дульной части ствола оружия вверх при выстреле в результате действия отдачи.
Величина отклонения дульной части ствола данного оружия тем больше, чем больше плечо этой пары сил.
Кроме того, при выстреле ствол оружия совершает колебательные движения — вибрирует. В результате вибрации дульная часть ствола в момент вылета пули может также отклониться от первоначального положения в любую сторону (вверх, вниз, вправо, влево). Величина этого отклонения увеличивается при неправильном использовании упора для стрельбы, загрязнении оружия и т. п.
У автоматического оружия, имеющего газоотводное отверстие в стволе, в результате давления газов на переднюю стенку газовой каморы дульная часть ствола оружия при выстреле несколько отклоняется в сторону, противоположную расположению газоотводного отверстия.
Сочетание влияния вибрации ствола, отдачи оружия и других причин приводит к образованию угла между направлением оси канала ствола до выстрела и ее направлением в момент вылета пули из канала ствола; этот угол называется углом вылета (у). Угол вылета считается положительным, когда ось канала ствола в момент вылета пули выше ее положения до выстрела, и отрицательным, когда она ниже. Величина угла вылета дается в таблицах стрельбы.
Влияние угла вылета на стрельбу у каждого экземпляра оружия устраняется при приведении его к нормальному бою. Однако при нарушении правил прикладки оружия, использования упора, а также правил ухода за оружием и его сбережения изменяются величина угла вылета и бой оружия. Для обеспечения однообразия угла вылета и уменьшения влияния отдачи на результаты стрельбы необходимо точно соблюдать приемы стрельбы и правила ухода за оружием, указанные в наставлениях по стрелковому делу.
С целью уменьшения вредного влияния отдачи на результаты стрельбы в некоторых образцах стрелкового оружия (например, автомат Калашникова) применяются специальные устройства — компенсаторы. Истекающие из канала ствола газы, ударяясь о стенки компенсатора, несколько опускают дульную часть ствола влево и вниз.
Особенности выстрела из ручных противотанковых гранатометов
Ручные противотанковые гранатометы относятся к динамореактивному оружию. При выстреле из гранатомета часть пороховых газов выбрасывается назад через открытую казенную часть ствола, возникающая при этом реактивная сила, уравновешивает силу отдачи; другая часть пороховых газов оказывает давление на гранату, как в обычном оружии (динамическое действие), и сообщает ей необходимую начальную скорость.
Реактивная сила при выстреле из гранатомета образуется в результате истечения пороховых газов через казенную часть ствола. В связи с этим, что площадь дна гранаты, являющегося как бы передней стенкой ствола, больше площади сопла, преграждающего путь газам назад, появляется избыточная сила давления пороховых газов (реактивная сила), направленная в сторону, обратную истечения газов. Эта сила компенсирует отдачу гранатомета (она практически отсутствует) и придает гранате начальную скорость.
При действии реактивного двигателя гранаты на полете в связи с разностью площадей его передней стенки и задней, имеющей одно или несколько сопел, давление на переднюю стенку больше и образующая реактивная сила увеличивает скорость полета гранаты.
Величина реактивной силы пропорциональна количеству истекающих газов и скорости их истечения. Скорость истечения газов при выстреле из гранатомета увеличивается с помощью сопла (сужающегося, а затем расширяющегося отверстия).
Приближенно величина реактивной силы равна одной десятой количества истекающих газов за одну секунду, умноженных на скорость их истечения.
На характер изменения давления газов в канале ствола гранатомета оказывают влияния малые плотности заряжания и истечения пороховых газов, поэтому величина максимального давления газов в стволе гранатомета в 3-5 раз меньше, чем в стволе стрелкового оружия. Пороховой заряд гранаты сгорает к моменту вылета ее из канала ствола. Заряд реактивного двигателя воспламеняется и сгорает при полете гранаты в воздухе на некотором удалении от гранатомета.
Под действием реактивной силы реактивного двигателя скорость движения гранаты все время увеличивается и достигает наибольшего значения на траектории в конце истечения пороховых газов из реактивного двигателя. Наибольшая скорость полета гранаты называется максимальной скоростью.
Износ канала ствола
В процессе стрельбы ствол подвергается износу. Причины, вызывающие износ ствола, можно разбить на три основные группы — химического, механического и термического характера.
В результате причин химического характера в канале ствола образуется нагар, который оказывает большое влияние на износ канала ствола.
Примечание. Нагар состоит из растворимых и нерастворимых веществ. Растворимые вещества представляют собой соли, образующиеся при взрыве ударного состава капсюля (в основном — хлористый калий). Нерастворимыми веществами нагара являются: зола, образовавшаяся при сгорании порохового заряда; томпак, сорванный с оболочки пули; медь, латунь, оплавленные из гильзы; свинец, выплавленный из дна пули; железо, оплавленное из ствола и сорванное с пули, и т. п. Растворимые соли, впитывая влагу из воздуха, образуют раствор, вызывающий ржавление. Нерастворимые вещества в присутствии солей усиливают ржавление.
Если после стрельбы не удалить весь пороховой нагар, то канал ствола в течение короткого времени в местах скола хрома покроется ржавчиной, после удаления которой остаются следы. При повторении таких случаев степень поражения ствола будет повышаться и может дойти до появления раковин, т. е. значительных углублений в стенках канала ствола. Немедленная чистка и смазка канала ствола после стрельбы предохраняют его от поражения ржавчиной.
Причины механического характера — удары и трение пули о нарезы, неправильная чистка (чистка ствола без применения дульной накладки или чистка с казенной части без вставленной в патронник гильзы с просверленным в ее дне отверстием) и т. п. — приводят к стиранию полей нарезов или округлению углов полей нарезов, особенно их левой грани, выкрашиванию и сколу хрома в местах сетки разгара.
Причины термического характера — высокая температура пороховых газов, периодическое расширение канала ствола, и возвращение его в первоначальное состояние — приводят к образованию сетки разгара и оглавлению поверхностей стенок канала ствола в местах скола хрома.
Под действием всех этих причин канал ствола расширяется и изменяется его поверхность, вследствие чего увеличивается прорыв пороховых газов между пулей и стенками канала ствола, уменьшается начальная скорость пули и увеличивается разброс пуль. Для увеличения срока пригодности ствола к стрельбе необходимо соблюдать установленные правила чистки и осмотра оружия и боеприпасов, принимать меры к уменьшению нагрева ствола во время стрельбы.
Прочностью ствола называется способность его стенок выдерживать определенное давление пороховых газов в канале ствола. Так как давление газов в канале ствола при выстреле не одинаково на всем его протяжении, стенки ствола делаются разной толщины — толще в казенной части и тоньше к дульной. При этом стволы изготавливаются такой толщины, чтобы они могли выдержать давление, в 1,3 — 1,5 раза превышающее наибольшее.
Рис 32. Раздутие ствола
Если давление газов почему-либо превысит величину, на которую рассчитана прочность ствола, то может произойти раздутие или разрыв ствола.
Раздутие ствола может произойти в большинстве случаев от попадания в ствол посторонних предметов (пакля, ветошь, песок) (см. рис. 32). При движении по каналу ствола пуля, встретив посторонний предмет, замедляет движение и поэтому запульное пространство увеличивается медленнее, чем при нормальном выстреле. Но так как горение порохового заряда продолжается и приток газов интенсивно увеличивается, в месте замедления движения пули создается повышенное давление; когда давление превзойдет величину, на которую рассчитана прочность ствола, получается раздутие, а иногда и разрыв ствола.
Меры по предотвращению износа ствола
Чтобы не допустить раздутия или разрыва ствола, следует всегда оберегать канал ствола от попадания в него посторонних предметов, перед стрельбой обязательно осмотреть и, если необходимо, вычистить его.
При длительной эксплуатации оружия, а также при недостаточно тщательной подготовке его к стрельбе может образоваться увеличенный зазор между затвором и стволом, который позволяет при выстреле двигаться гильзе назад. Но так как стенки гильзы под давлением газов плотно прижаты к патроннику и сила трения препятствует движению гильзы, она растягивается и, если зазор велик, рвется; происходит так называемый поперечный разрыв гильзы.
Для того чтобы избежать разрывов гильз, необходимо при подготовке оружия к стрельбе проверить величину зазора (у оружия, имеющего регуляторы зазора), содержать патронник в чистоте и не применять для стрельбы загрязненные патроны.
Живучестью ствола называется способность ствола выдержать определенное количество выстрелов, после которого он изнашивается и теряет свои качества (значительно увеличивается разброс пуль, уменьшается начальная скорость и устойчивость полета пуль). Живучесть хромированных стволов стрелкового оружия достигает 20 — 30 тыс. выстрелов.
Увеличение живучести ствола достигается правильным уходом за оружием и соблюдением режима огня.
Режимом огня называется наибольшее количество выстрелов, которое может быть произведено за определенный промежуток времени без ущерба для материальной части оружия, безопасности и без ухудшения результатов стрельбы. Каждый вид оружия имеет свой режим огня. В целях соблюдения режима огня необходимо производить смену ствола или охлаждение его через определенное количество выстрелов. Несоблюдение режима огня приводит к чрезмерному нагреву ствола и, следовательно, к преждевременному его износу, а также к резкому снижению результатов стрельбы.
Влияние условий стрельбы на полет пули (гранаты)
Внешняя баллистика — это наука, изучающая движение пули (гранаты) после прекращения действия на нее пороховых газов.
Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.
Образование траектории полёта пули (гранаты)
Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете (см. рис. 33).
Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.
Рис. 33. Траектория пули (вид сбоку)
Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).
Рис. 34. Образование силы сопротивления
Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны (см. рис. 34).
Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).
Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.
За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.
Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых волн друг на друга создается волна сильно уплотненного воздуха — баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии на создание этой волны.
Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.
Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 150 и начальной скорости 800 м/сек. в безвоздушном пространстве полетела бы на дальность 32620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.
Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха. Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.
При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью.
При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.
Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха (см. рис. 35).
Рис. 35. Действие силы сопротивления воздуха на полет пули:
ЦТ — центр тяжести; ЦС — центр сопротивления воздуха
Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.
Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.
Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение. Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.
При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивления воздуха стремится повернуть пулю головной частью вверх и назад. Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклонится не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивления воздуха, т.е. вправо.
Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха — она стремится повернуть головную часть пули вправо и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д.
Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось — конус с вершиной в центре тяжести.
Происходит так называемое медленное коническое, или прецессионное движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории.
Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией. Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней) (см. рис. 36).
Рис. 36. Медленное коническое движение пули
Следовательно, пуля с потоком воздуха сталкивается больше нижней частью, и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола) (см. рис. 37).
Рис. 37. Деривация (вид траектории сверху)
Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.
В таблицах стрельбы деривация дается как поправка направления в тысячных. Однако при стрельбе из стрелкового оружия величина деривации незначительная (например, на дальности 500 м она не превышает 0,1 тысячной) и ее влияние на результаты стрельбы практически не учитывается.
Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.
Рис. 38. Действие силы сопротивления воздуха на полет гранаты
Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед (см. рис. 38).
Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому кучность стрельбы улучшается.
Для изучения траектории пули (гранаты) приняты следующие определения (см. рис. 39).
Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.
Горизонтальная плоскость, проходящая через точку вылета, называется горизонтом оружия. На чертежах, изображающих оружие и траекторию сбоку, горизонт оружия имеет вид горизонтальной линии. Траектория дважды пересекает горизонт оружия: в точке вылета и в точке падения.
Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия, называется линией возвышения.
Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.
Угол, заключенный между линией возвышения и горизонтом оружия, называется углом возвышения. Если этот угол отрицательный, то он называется углом склонения (снижения).
Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.
Рис. 39. Элементы траектории
Угол, заключенный между линией бросания и горизонтом оружия, называется углом бросания (6).
Угол, заключенный между линией возвышения и линией бросания, называется углом вылета (у).
Точка пересечения траектории с горизонтом оружия называется точкой падения.
Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия, называется углом падения (6).
Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью (Х).
Скорость пули (гранаты) в точке падения называется окончательной скоростью (v).
Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета (Т).
Наивысшая точка траектории называется вершиной траектории. Кратчайшее расстояние от вершины траектории до горизонта оружия называется высотой траектории (У).
Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.
Точка на цели или вне ее, в которую наводится оружие, называется точкой прицеливания (наводки).
Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.
Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания (а).
Угол, заключенный между линией прицеливания и горизонтом оружия, называется углом места цели (Е). Угол места цели считается положительным (+), когда цель выше горизонта оружия, и отрицательным (-), когда цель ниже горизонта оружия. Угол места цели может быть определен с помощью приборов или по формуле тысячной
где е — угол места цели в тысячных;
В — превышение цели над горизонтом оружия в метрах; Д- дальность стрельбы в метрах.
Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью (д).
Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.
Прямая, соединяющая точку вылета с целью, называется линией цели.
Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.
Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи. Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90 градусов.
Траектория пули в воздухе имеет следующие свойства: нисходящая ветвь короче и круче восходящей;
угол падения больше угла бросания;
окончательная скорость пули меньше начальной;
наименьшая скорость полета пули при стрельбе под большими углами бросания — на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания — в точке падения;
время движения пули по восходящей ветви траектория меньше, чем по нисходящей;
траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.
Траекторию гранаты в воздухе можно разделить на два участка (см. рис. 40): активный — полет гранаты под действием реактивной силы (от точки вылета до точки, где действие реактивной силы прекращается) и пассивный — полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.
Рис. 40. Траектория гранаты (вид сбоку)
Форма траектории и ее практическое значение
Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться (см. рис. 40).
Угол возвышения, при котором полная горизонтальная дальность полета пули (гранаты) становится наибольшей, называется углом наибольшей дальности. Величина угла наибольшей дальности для пули различных видов оружия составляет около 35 градусов.
Траектории (см. рис. 41), получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.
При стрельбе из одного и того же оружия (при одинаковых начальных скоростях) можно получить две траектории с одинаковой горизонтальной дальностью: настильную и навесную. Траектории, имеющие одинаковую горизонтальную дальность при разных углах возвышения, называются сопряженными.
Рис. 41. Угол наибольшей дальности, настильные, навесные и сопряженные траектории
При стрельбе из стрелкового оружия и гранатометов используются только настильные траектории. Чем настильнее траектория, тем на большем протяжении местности цель может быть поражена с одной установкой прицела (тем меньшее влияние на результаты стрельбы оказывают ошибки в определении установки прицела); в этом заключается практическое значение настильной траектории.
Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.
Пример. Сравнить настильность траектории при стрельбе из станкового пулемета Горюнова и ручного пулемета Калашникова с прицелом 5 на расстояние 500 м.
Решение: Из таблицы превышения средних траекторий над линией прицеливания и основной таблицы находим, что при стрельбе из станкового пулемета на 500 м с прицелом 5 наибольшее превышение траектории над линией прицеливания равно 66 см и угол падения 6,1 тысячной; при стрельбе из ручного пулемета — соответственно 121 см и 12 тысячных. Следовательно, траектория пули при стрельбе из станкового пулемета более настильна, чем траектория пули при стрельбе из ручного пулемета.
Прямой выстрел
Настильность траектории влияет на величину дальности прямого выстрела, поражаемого, прикрытого и мертвого пространства.
Выстрел, при котором траектория не поднимается над линией прицеливания выше цели на всем своем протяжении, называется прямым выстрелом (см. рис. 42).
В пределах дальности прямого выстрела в напряженные моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте, как правило, выбирается на нижнем краю цели.
Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и чем настильнее траектория, тем больше дальность прямого выстрела и тем на большем протяжении местности цель может быть поражена с одной установкой прицела.
Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения траектории над линией прицеливания или с высотой траектории.
При стрельбе по целям, находящимся на расстоянии, большем дальности прямого выстрела, траектория вблизи ее вершины поднимается выше цели и цель на каком-то участке не будет поражаться при той же установке прицела. Однако около цели будет такое пространство (расстояние), на котором траектория не поднимается выше цели и цель будет поражаться ею.
Рис. 42. Прямой выстрел
Поражаемое, прикрытое и мёртвое пространство Расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели, называется поражаемым пространством (глубиной поражаемого пространства).
Рис. 43. Зависимость глубины поражаемого пространства от высоты цели и настильности траектории (угла падения)
Глубина поражаемого пространства зависит от высоты цели (она будет тем больше, чем выше цель), от настильности траектории (она будет тем больше, чем настильнее траектория) и от угла наклона местности (на переднем скате она уменьшается, на обратном скате — увеличивается) (см. рис. 43).
Глубину поражаемого пространства (Ппр) можно определить по таблицам превышения траекторий над линией прицеливания путем сравнения превышения нисходящей ветви траектории на соответствующую дальность стрельбы с высотой цели, а в том случае, если высота цели меньше 1/3 высоты траектории — по формуле тысячной:
где Ппр — глубина поражаемого пространства в метрах;
Вц — высота цели в метрах;
Ос — угол падения в тысячных.
Пример. Определить глубину поражаемого пространства при стрельбе из станкового пулемета Горюнова по пехоте противника (высота цели 0=1,5 м) на расстояние 1000 м.
Решение. По таблице превышений средних траекторий над линией прицеливания находим: на 1000 м превышение траектории равно 0, а на 900 м — 2,5 м (больше высоты цели). Следовательно, глубина поражаемого пространства меньше 100 м. Для определения глубины поражаемого пространства составим пропорцию: 100 м соответствует превышение траектории 2,5 м; Х м соответствует превышение траектории 1,5 м:
Так как высота цели меньше высоты траектории, то глубину поражаемого пространства можно определить и по формуле тысячной. Из таблиц находим угол падения Ос =29 тысячным.
В том случае, когда цель расположена на скате или имеется угол места цели, глубину поражаемого пространства определять вышеуказанными способами, при этом полученный результат необходимо умножить на отношение угла падения к углу встречи.
Величина угла встречи зависит от направления ската: на встречном скате угол встречи равен сумме углов падения и ската, на обратном скате — разности этих углов. При этом величина утла встречи зависит также от угла места цели: при отрицательном угле места цели угол встречи увеличивается на величину угла места цели, при положительном угле места цели уменьшается на его величину.
Поражаемое пространство в некоторой степени компенсирует ошибки, допускаемые при выборе прицела, и позволяет округлять измеренное расстояние до цели в большую сторону.
Для увеличения глубины поражаемого пространства на наклонной местности огневую позицию нужно выбирать так, чтобы местность в расположении противника по возможности совпадала с продолжением линии прицеливания.
Пространство за укрытием, не пробиваемым пулей, от его гребня до точки встречи называется прикрытым пространством (см. рис. 44). Прикрытое пространство будет тем больше, чем больше высота укрытия и чем настильнее траектория.
Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством.
Рис. 44. Прикрытое, мертвое и поражаемое пространство
Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства, на которой цель может быть поражена, составляет поражаемое пространство.
Глубину прикрытого пространства (Пп) можно определить по таблицам превышения траекторий над линией прицеливания. Путем подбора отыскивается превышение, соответствующее высоте укрытия и дальности до него. После нахождения превышения определяется соответствующая ему установка прицела и дальность стрельбы. Разность между определенной дальностью стрельбы и дальностью до укрытия представляет собой величину глубины прикрытого пространства.
Влияние условий стрельбы на полет пули (гранаты)
Табличные данные траектории соответствуют нормальным условиям стрельбы.
За нормальные (табличные) условия приняты следующие.
а) Метеорологические условия:
атмосферное (барометрическое) давление на горизонте оружия 750 мм рт. ст.;
температура воздуха на горизонте оружия + 15 С;
относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре);
ветер отсутствует (атмосфера неподвижна).
б) Баллистические условия:
вес пули (гранаты), начальная скорость и угол вылета равны значениям, указанным в таблицах стрельбы;
температура заряда +15С; форма пули (гранаты) соответствует установленному чертежу; высота мушки установлена по данным приведения оружия к нормальному бою;
высоты (деления) прицела соответствуют табличным углам прицеливания.
в) Топографические условия:
цель находится на горизонте оружия;
боковой наклон оружия отсутствует. При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.
С увеличением атмосферного давления плотность воздуха увеличивается, а вследствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули (гранаты). Наоборот, с уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается. При повышении местности на каждые 100 м атмосферное давление понижается в среднем на 9 мм.
При стрельбе из стрелкового оружия на равнинной местности поправки дальности на изменение атмосферного давления незначительные и не учитываются. В горных условиях при высоте местности над уровнем моря 2000 м и более эти поправки необходимо учитывать при стрельбе, руководствуясь правилами, указанными в наставлениях по стрелковому делу.
При повышении температуры плотность воздуха уменьшается, а вследствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули (гранаты). Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличиваются и дальность полета пули (гранаты) уменьшается.
При повышении температуры порохового заряда увеличиваются скорость горения пороха, начальная скорость и дальность полета пули (гранаты).
При стрельбе в летних условиях поправки на изменение температуры воздуха и порохового заряда незначительные и практически не учитываются; при стрельбе зимой (в условиях низких температур) эти поправки необходимо учитывать, руководствуясь правилами, указанными в наставлениях по стрелковому делу.
При попутном ветре уменьшается скорость полета пули (гранаты) относительно воздуха. Например, если скорость пули относительно земли равна 800 м/сек, а скорость попутного ветра 10 м/сек, то скорость пули относительно воздуха будет равна 790 м/сек (800-10).
С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается. Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.
При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится и дальность полета пули уменьшится.
Продольный (попутный, встречный) ветер на полет пули оказывает незначительное влияние, и в практике стрельбы из стрелкового оружия поправки на такой ветер не вводятся. При стрельбе из гранатометов поправки на сильный продольный ветер следует учитывать.
Боковой ветер оказывает давление на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления: ветер справа отклоняет пулю в левую сторону, ветер слева — в правую сторону.
Граната на активном участке полета (при работе реактивного двигателя) отклоняется в сторону, откуда дует ветер: при ветре справа — вправо, при ветре слева — влево. Такое явление объясняется тем, что боковой ветер поворачивает хвостовую часть гранаты в направлении ветра, а головную часть против ветра и под действием реактивной силы, направленной вдоль оси, граната отклоняется от плоскости стрельбы в ту сторону, откуда дует ветер. На пассивном участке траектории граната отклоняется в сторону, куда дует ветер.
Боковой ветер оказывает значительное влияние, особенно на полет гранаты (см. рис. 45), и его необходимо учитывать при стрельбе из гранатометов и стрелкового оружия.
Ветер, дующий под острым углом к плоскости стрельбы, оказывает одновременно влияние и на изменение дальности полета пули и на боковое ее отклонение. Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули (гранаты), поэтому оно не учитывается при стрельбе.
При стрельбе с одной установкой прицела (с одним углом прицеливания), но под различными углами места цели, в результате ряда причин, в том числе изменения плотности воздуха на разных высотах, следовательно, и силы сопротивления воздуха/изменяется величина наклонной (прицельной) дальности полета пули (гранаты).
При стрельбе под небольшими углами места цели (до ±150) эта дальность полета пули (гранаты) изменяется весьма незначительно, поэтому допускается равенство наклонной и полной горизонтальной дальностей полета пули, т. е. неизменность формы (жесткость) траектории (см. рис. 46).
Рис. 45. Влияние бокового ветра на полет гранаты при работе реактивного двигателя
Рис.46. Жесткость траектории
При стрельбе под большими углами места цели наклонная дальность полета пули изменяется значительно (увеличивается), поэтому при стрельбе в горах и по воздушным целям необходимо учитывать поправку на угол места цели, руководствуясь правилами, указанными в наставлениях по стрелковому делу.
Явление рассеивания
При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрела каждая пуля (граната) вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль (гранат).
Явление разбрасывания пуль (гранат) при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль (гранат) и также рассеиванием траекторий.
Совокупность траекторий пуль (гранат, полученных вследствие их естественного рассеивания) называется снопом траекторий (см. рис. 47). Траектория, проходящая в середине снопа траекторий, называется средней траекторией. Табличные и расчетные данные относятся к средней траектории.
Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания.
Площадь, на которой располагаются точки встречи (пробоины) пуль (гранат), полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания.
Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга.
Взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания.
Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями
Причины рассеивания
Причины, вызывающие рассеивание пуль (гранат), могут быть сведены в три группы:
причины, вызывающие разнообразие начальных скоростей;
причины, вызывающие разнообразие углов бросания и направления стрельбы;
причины, вызывающие разнообразие условий полета пули (гранаты). Причинами, вызывающими разнообразие начальных скоростей, являются:
разнообразие в весе пороховых зарядов и пуль (гранат), в форме и размерах пуль (гранат) и гильз, в качестве пороха, в плотности заряжения и т. д., как результат неточностей (допусков) при их изготовлении; разнообразие температур, зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона (гранаты) в нагретом при стрельбе стволе;
разнообразие в степени нагрева и в качественном состоянии ствола. Эти причины ведут к колебанию в начальных скоростях, следовательно, и в дальностях полета пуль (гранат), т. е. приводят к рассеиванию пуль (гранат) по дальности (высоте) и зависят в основном от боеприпасов и оружия.
Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:
разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);
разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;
угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия.
Эти причины приводят к рассеиванию пуль (гранат) по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.
Причинами, вызывающими разнообразие условий полета пули (гранаты), являются:
разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);
разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины силы сопротивления воздуха.
Эти причины приводят к увеличению рассеивания по боковому направлению и по дальности (высоте) и в основном зависят от внешних условий стрельбы и от боеприпасов.
При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит К тому, что полет каждой пули (гранаты) происходит по траектории, отличной от траекторий других пуль (гранат).
Устранить полностью причины, вызывающие рассеивание, следовательно, устранить и само рассеивание невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание, или, как принято говорить, повысить кучность стрельбы.
Уменьшение рассеивания пуль (гранат) достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, точной наводкой (прицеливанием), плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе, а также надлежащим уходом за оружием и боеприпасами.
Закон рассеивания
При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль (гранат) подчиняется нормальному закону случайных ошибок, который в отношении к рассеиванию пуль (гранат) называется законом рассеивания. Этот закон характеризуется следующими тремя положениями (см. рис. 48):
1) Точки встречи (пробоины) на площади рассеивания располагаются неравномерно гуще к центру рассеивания и реже к краям площади рассеивания.
2) На площади рассеивания можно определить точку, являющуюся центром рассеивания (средней точкой попадания). Относительно которой распределение точек встречи (пробоин) симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.
3) Точки встречи (пробоины) в каждом частном случае занимают не беспредельную, а ограниченную площадь.
Таким образом, закон рассеивания в общем виде можно сформулировать так: при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравномерно, симметрично и небеспредельно.
Рис. 48. Закономерность рассеивания
Определение средней точки попадания
При малом числе пробоин (до 5) положение средней точки попадания определяется способом последовательного деления отрезков (см. рис. 49). Для этого необходимо:
Рис. 49. Определение положения средней точки попадания способом последовательного деления отрезков: а) По 4-ем пробоинам, б) По 5-ти пробоинам.
соединить прямой две пробоины (точки встречи) и расстояние между ними разделить пополам;
полученную точку соединить с третьей пробоиной (точкой встречи) и расстояние между ними разделить натри равные части;
так как к центру рассеивания пробоины (точки встречи) располагаются гуще, то за среднюю точку попадания трех пробоин (точек встречи) принимается деление, ближайшее к двум первым пробоинам (точкам встречи); найденную среднюю точку попадания для трех пробоин (точек встречи) соединить с четвертой пробоиной (точкой встречи) и расстояние между ними разделить на четыре равные части;
деление, ближайшее к первым трем пробоинам (точкам встречи), принимается за среднюю точку попадания четырех пробоин (точек встречи).
По четырем пробоинам (точкам встречи) среднюю точку попадания можно определить еще так: рядом лежащие пробоины (точки встречи) соединить попарно, середины обеих прямых снова соединить и полученную линию разделить пополам; точка деления и будет средней точкой попадания. При наличии пяти пробоин (точек встречи) средняя точка попадания для них определяется подобным же образом.
Рис. 50. Определение положения средней точки попадания способом про ведения осей рассеивания. BBi — ось рассеивания по высоте; BBi — ось рассеивания по боковому направлению
При большом числе пробоин (точек встречи) на основании симметричности рассеивания средняя точка попадания определяется способом про ведения осей рассеивания (см. рис. 50). Для этого нужно:
отсчитать нижнюю (ближнюю) половину пробоин (точек встречи) и отделить ее осью рассеивания по высоте (дальности);
отсчитать таким же порядком правую или левую половину пробои и (точек встречи) и отделить ее осью рассеивания по боковому направлению; пересечение осей рассеивания является средней точкой попадания. Среднюю точку попадания можно также определить способом вычисления (расчета). для этого необходимо:
провести через левую (правую) пробоину (точку встречи) вертикальную линию, измерить кратчайшее расстояние от каждой пробоины (точки встречи) до этой линии, сложить все расстояния от вертикальной линии и разделить сумму на число пробоин (точек встречи);
провести через нижнюю (верхнюю) пробоину (точку встречи) горизонтальную линию, измерить кратчайшее расстояние от каждой пробоины (точки встречи) до этой линии, сложить все расстояния от горизонтальной линии и разделить сумму на число пробоин (точек встречи).
Полученные числа определяют удаление средней точки попадания от указанных линий.
Вероятность попадания и поражения цели. Понятие о действительности стрельбы. Действительность стрельбы
В условиях скоротечного танкового огневого боя, как уже говорилось, очень важно нанести противнику наибольшие потери в кратчайший срок и с минимальным расходом боеприпасов.
Существует понятие — действительность стрельбы, характеризующее результаты стрельбы и их соответствие поставленной огневой задаче. В боевых условиях признаком высокой действительности стрельбы служит либо видимое поражение цели, либо ослабление огня противника, либо нарушение его боевого порядка, либо уход живой силы в укрытие. Однако ожидаемую действительность стрельбы можно оценить еще до открытия огня. Для этого определяется вероятность попадания в цель, ожидаемый расход боеприпасов для получения требуемого числа попаданий и время, необходимое на решение огневой задачи.
Вероятность попадания — это величина, характеризующая возможность попадания в цель при определенных условиях стрельбы и зависящая от размеров цели, размеров эллипса рассеивания, положения средней траектории относительно цели и, наконец, направления стрельбы относительно фронта цели. Выражается она либо дробным числом, либо в процентах.
Несовершенство человеческого зрения и прицельных приспособлений не позволяет после каждого выстрела идеально точно восстановить в прежнее положение ствол оружия. Мертвые ходы и люфты в механизмах наведения также вызывают смещение ствола оружия в момент выстрела в вертикальной и горизонтальной плоскостях.
В результате различия в баллистической форме снарядов и состояния его поверхности, а также изменения атмосферы за время от выстрела до выстрела снаряд может изменить направление полета. И это приводит к рассеиванию и по дальности и по направлению.
При одном и том же рассеивании вероятность попадания, если центр цели совпадает с центром рассеивания, тем больше, чем больше размер цели. Если же стрельба ведется по целям одного и того же размера и средняя траектория проходит через цель, вероятность попадания тем больше, чем меньше площадь рассеивания. Вероятность попадания тем выше, чем ближе центр рассеивания расположен к центру цели. При стрельбе по целям, имеющим большую протяженность, вероятность попадания выше в том случае, если продольная ось эллипса рассеивания совпадает с линией наибольшей протяженности цели.
В количественном отношении вероятность попадания можно рассчитать различными способами, в том числе и по сердцевине рассеивания, если площадь цели не выходит за ее пределы. Как уже отмечалось, сердцевина рассеивания вмещает в себя лучшую (по кучности) половину всех пробоин. Очевидно, что вероятность попадания в цель будет меньше 50 проц. во столько раз, во сколько площадь цели меньше площади сердцевины.
Площадь же сердцевины рассеивания легко определить по специальным таблицам стрельбы, имеющимся для каждого вида оружия.
Количество попаданий, необходимое для надежного поражения той или иной цели, величина, как правило, известная. Так, для поражения бронетранспортера достаточно одного прямого попадания, для разрушения пулеметного окопа — два-три попадания и т. д.
Зная вероятность поражения той или иной цели и потребное количество попаданий, можно рассчитать ожидаемый расход снарядов на поражение цели. Так, если вероятность попадания равна 25 проц., или 0,25, а для надежного поражения цели необходимо три прямых попадания, то чтобы узнать расход снарядов, вторую величину делят на первую.
Баланс времени, в течение которого выполняется огневая задача, включает в себя время на подготовку стрельбы и время на саму стрельбу. Время на подготовку стрельбы определяется практически и зависит не только от конструктивных особенностей вооружения, но и натренированности стрелка или членов экипажа. Чтобы определить время на стрельбу, величину ожидаемого расхода боеприпасов делят на скорострельность, т. е. на количество пуль, снарядов, выпускаемых в единицу времени. К полученной таким образом цифре прибавляют время на подготовку к стрельбе.
Закон рассеивания
63. При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль (гранат) подчиняется нормальному закону случайных ошибок, который в отношении к рассеиванию пуль (гранат) называется законом рассеивания. Этот закон характеризуется следующими тремя положениями (рис. 22):
1) Точки встречи (пробоины) на площади рассеивания располагаются неравномерно — гуще к центру рассеивания и реже к краям площади рассеивания.
2) На площади рассеивания можно определить точку, являющуюся центром рассеивания (средней точкой попадания), относительно которой распределение точек встречи (пробоин) симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.
3) Точки встречи (пробоины) в каждом частном случае занимают не беспредельную, а ограниченную площадь.
Таким образом, закон рассеивания в общем виде можно сформулировать так: при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль (гранат) неравномерно, симметрично и небеспредельно.
Рис. 22. Закон рассеивания
Закон рассеивания
При большом числе выстрелов (более 20) в расположении точек встречи на площади рассеивания наблюдается определенная закономерность. Рассеивание пуль подчиняется нормальному закону случайных ошибок, который отношении к рассеиванию пуль называется законом рассеивания.
Этот закон характеризуется следующими тремя положениями:
1. Точки встречи (пробоины) на площади рассеивания располагаются неравномерно — гуще к центру рассеивания и реже к краям площади рассеивания.
2. На площади рассеивания можно определить точку, являющуюся центром рассеивания (средней точкой попадания), относительно которой распределение точек встречи (пробоин) симметрично: число точек встречи по обе стороны от осей рассеивания, заключающихся в равных по абсолютной величине пределах (полосах), одинаково, и каждому отклонению от оси рассеивания в одну сторону отвечает такое же по величине отклонение в противоположную сторону.
3. Точки встречи (пробоины) в каждом частном случае занимают не беспредельную, а ограниченную площадь.
Таким образом, закон рассеивания в общем виде можно сформулировать так: при достаточно большом числе выстрелов, произведенных в практически одинаковых условиях, рассеивание пуль неравномерно, симметрично и небеспредельно.
Причины рассеивания
Причины, вызывающие рассеивание пуль, могут быть сведены в три группы:
— вызывающие разнообразие начальных скоростей;
— вызывающие разнообразие углов бросания и направления стрельбы;
— вызывающие разнообразие условий полета пули.
Причинами, вызывающими разнообразие начальных скоростей, являются:
— разнообразие в весе пороховых зарядов и пуль, в форме и размерах пуль и гильз, в качестве пороха, в плотности заряжания и т.д., как результат неточностей (допусков) при их изготовлении;
— разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона в нагретом при стрельбе стволе;
— разнообразие в степени нагрева и в качественном состоянии ствола.
Эти причины ведут к изменению начальных скоростей, а следовательно, и дальностей полета пуль, т.е. приводят к рассеиванию пуль по дальности (высоте) и зависят в основном от боеприпасов и оружия.
Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:
— разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);
— разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания оружия, особенно во время стрельбы из автоматического оружия, неправильного использования упоров и неплавного спуска курка;
— угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия.
Эти причины приводят к рассеиванию пуль по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.
Явление рассеивания
При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрелов каждая пуля вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль.
Явление разбрасывания пуль при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль, или рассеиванием траекторий.
Совокупность траекторий пуль, полученных вследствие их естественного рассеивания, называется снопом траекторий. Траектория, проходящая в середине снопа траекторий, называется средней траекторией. Табличные и расчетные данные относятся к средней траектории.
Точка пересечения средней траектории с поверхностью цели (преградой) называется средней точкой попадания (или центром рассеивания).
Площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания.
Площадь рассеивания обычно имеет форму эллипса. При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга.
Взаимно перпендикулярные линии, проведенные через среднюю точку попадания (СТП) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания.
Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.
Обновлено: 22.09.2023
Если бы можно было произвести серию выстрелов в совершенно одинаковых условиях, то пули, описав в воздухе одну и ту же траекторию, попали бы в одну и ту же точку. Однако на практике соблюсти абсолютное однообразие всех условий стрельбы невозможно, так как всегда существуют незначительные, практически неуловимые колебания в размерах зерен пороха, массе заряда и пули, форме пули; различная воспламеняющая способность капсюля; различные условия движения пули в стволе и вне его – постепенное загрязнение канала ствола и его нагревание, порывы ветра и изменяющаяся температура воздуха; погрешности, допускаемые стрелком при наводке, в прикладке и т.д. Поэтому даже при самых благоприятных условиях стрельбы каждая из выпущенных пуль опишет свою траекторию, несколько отличающуюся от траектории других пуль. Это явление называется естественным рассеиванием выстрелов.
При значительном количестве выстрелов траектории в своей совокупности образуют сноп траекторий, который дает при встрече с поражаемой поверхностью (мишенью) ряд пробоин, более или менее удаленных друг от друга. Площадь, которую они занимают, называется площадью рассеивания (рис. 17).
Рис. 17. Сноп траекторий, средняя траектория, площадь рассеивания
Все пробоины располагаются на площади рассеивания вокруг некоторой точки, называемой центром рассеивания, или средней точкой попадания (СТП). Траектория, находящаяся в середине снопа и проходящая через СТП, называется средней траекторией. При составлении табличных данных для внесения поправок в установку прицела в процессе стрельбы всегда подразумевается именно эта средняя траектория.
Для разных образцов оружия и патронов существуют определенные табличные нормы рассеивания выстрелов. Существуют также нормы рассеивания выстрелов по заводским техническим условиям и допускам при выпуске определенных образцов оружия и партий патронов.
При большом количестве выстрелов рассеивание пуль подчиняется определенному закону рассеивания(рис. 18), сущность которого заключается в следующем:
— пробоины располагаются на площади рассеивания неравномерно, наиболее густо группируясь вокруг СТП;
— пробоины располагаются относительно СТП симметрично, так как вероятность отклонения пули в любую сторону от СТП одинакова;
— площадь рассеивания всегда ограничена некоторым пределом и имеет форму эллипса (овала), вытянутого на вертикальной плоскости по высоте.
Причины, вызывающие рассеивание пуль, могут быть сведены в три группы:
— вызывающие разнообразие начальных скоростей;
— вызывающие разнообразие условий полета пули;
Рис. 18. Закономерность рассеивания
— вызывающие разнообразие углов бросания и направления стрельбы.
Причинами, вызывающими разнообразие начальных скоростей, являются:
— разнообразие в массе пороховых зарядов и пуль, в форме и размерах пуль и гильз, в качестве пороха, в плотности заряжания и т.д. – как результат неточностей (технологических допусков) при их изготовлении;
— разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона в нагретом при стрельбе стволе;
— разнообразие в степени нагрева и в качественном состоянии ствола.
Влияние начальной скорости. Если под одним и тем же углом бросания выпустить две одинаковые пули с различными начальными скоростями, то траектория пули, обладающей большей начальной скоростью, будет находиться выше траектории пули, обладающей меньшей начальной скоростью.
Пуле, летящей с меньшей начальной скоростью, потребуется больше времени, чтобы долететь до мишени, в связи с чем она успеет и значительно больше опуститься вниз под действием силы тяжести. Очевидно также, что с увеличением скорости увеличивается и дальность полета пули.
Влияние формы пули. Стремление увеличить дальность и точность стрельбы потребовало придать пуле такую форму, которая позволяла бы ей как можно дольше сохранять скорость и устойчивость в полете.
Как уже было сказано, сгущение частиц воздуха перед головной частью пули и зона разреженного пространства позади нее являются основными факторами силы сопротивления воздуха. Головная волна, резко увеличивающая торможение пули, возникает при ее скорости, равной скорости звука или превышающей ее (свыше 340 м/с).
Если скорость пули меньше скорости звука, то она летит у самого гребня звуковой волны. В этом случае пуля не испытывает большого сопротивления воздуха. Если же ее скорость больше скорости звука, то пуля обгоняет все звуковые волны, образующиеся перед ее головной частью. В этом случае возникает головная баллистическая волна, которая очень тормозит полет пули, отчего она быстро теряет скорость.
Если взглянуть на характер очертаний головной волны и завихрений воздуха, которые возникают при движении различных по форме пуль (рис. 19), то видно, что давление на головную часть пули тем меньше, чем пуля острее. Зона разреженного пространства позади пули будет тем меньше, чем больше скошена хвостовая часть пули. В этом случае завихрений позади летящей пули будет также меньше. И теория, и тщательное практическое изучение полностью подтвердили, что наиболее обтекаемая форма пули такая, которая очерчена по так называемой кривой наименьшего сопротивления, сигаровидной формы. Опыты показывают, что коэффициент сопротивления воздуха в зависимости только от головной части пули может изменяться в 1,5-2 раза.
Рис. 19. Характер очертаний головной волны, возникающей при движении различных по форме пуль
Более подробное изучение вопроса влияния формы пули на ее полет показало, что каждой скорости полета соответствует своя, наиболее выгодная форма пули.
При стрельбе на небольшие расстояния пулями, имеющими небольшую начальную скорость, форма их не очень влияет на фигуру траектории. Поэтому револьверные, пистолетные и малокалиберные патроны снаряжаются тупоконечными пулями. Такая форма значительно удобнее для перезарядки оружия.
Учитывая большую зависимость точности стрельбы от формы пули, стрелку необходимо оберегать пулю от деформации, следить, чтобы на ее поверхности не появились царапины, забоины, вмятины и т.п.
Причинами, вызывающими разнообразие углов бросания и направлений стрельбы, являются:
– разнообразие в вертикальной и горизонтальной наводке оружия (ошибки в прицеливании);
– разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;
– угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия.
Причинами, вызывающими разнообразие условий полета пули, являются:
– разнообразие атмосферных условий, особенно направлений и скорости ветра во время выстрелов;
– разнообразие в форме и размерах пуль, приводящее к изменению величины силы сопротивления воздуха.
Поскольку сотрудники органов внутренних дел применяют оружие на небольших расстояниях до 100 м (исключение — стрельба в условиях боевых действий) и пуля пролетает их за очень малый промежуток времени, некоторые атмосферные факторы, например плотность воздуха, не успевают оказать существенного влияния на полет пули. Поэтому при стрельбе приходится учитывать главным образом влияние ветра и в известной степени температуру воздуха.
Влияние ветра. Встречный и попутный ветры незначительно влияют на стрельбу, поэтому их действием можно пренебречь. Так, при дальности стрельбы 600 м сильный (10 м/с) встречный или попутный ветер изменяет СТП по высоте всего лишь на 4 см. Однако боковой ветер значительно отклоняет пули в сторону, причем даже при стрельбе на близкие расстояния.
Силу и направление ветра стрелки определяют по различным местным признакам – с помощью флага, по движению дыма, колебанию травы, кустов и деревьев и т.д.
В зависимости от силы и направления ветра во время стрельбы следует либо производить боковую поправку прицела, либо выносить точку прицеливания в сторону с учетом отклонения пуль под действием ветра.
Косой ветер (под углом к плоскости стрельбы 45°, 135°, 225° и 315°) отклоняет пулю в 2 раза меньше, чем боковой.
Влияние температуры воздуха. При низких температурах канал ствола оружия сужается и значительная часть энергии пороховых газов тратится на преодоление силы трения. Кроме того, температура влияет на процесс горения порохового заряда в стволе оружия. Как известно, с увеличением температуры скорость горения порохового заряда повышается, так как уменьшается расход тепла, необходимый для нагревания и зажжения пороховых зерен. Следовательно, чем ниже температура воздуха, тем медленнее идет процесс нарастания давления газов, в связи с чем уменьшается и начальная скорость пули.
Так, опытами установлено, что изменение температуры воздуха на 1° приводит к изменению начальной скорости на 1 м/с. А так как нашему климату свойственны значительные температурные колебания между летом и зимой, то изменение начальной скорости может происходить до 50-60 м/с.
Учитывая все это, для пристрелки оружия и составления соответствующих таблиц принимают во внимание определенную температуру. Такой “нормальной” температурой является +15°С.
При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит к тому, что полет каждой пули происходит по траектории, отличной от траекторий других пуль.
Полностью устранить причины, вызывающие рассеивание, а следовательно, и само рассеивание, невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание или, как принято говорить, повысить кучность стрельбы.
Рассеивание — явление разброса точек падения снарядов, пуль, на некоторой площади (в некотором пространстве) при стрельбе из одного и того же оружия в практически одинаковых условиях. Рассеивание, как правило, подчиняется закону нормального распределения случайных величин
При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрелов каждая пуля вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль.
Явление разбрасывания пуль при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль или рассеиванием траекторий.
Совокупность траекторий пуль, полученных вследствие их естественного рассеивания, называется снопом траекторий
Траектория, проходящая в середине снопа траекторий, называется средней траекторией.Табличные и расчетные данные относятся к средней траектории.
Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания.
Площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания. Площадь рассеивания обычно имеет форму эллипса.
При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга. Взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания.
Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.
Причины, вызывающие рассеивание пуль (гранат), могут быть сведены в три группы:
Ø причины, вызывающие разнообразие начальных скоростей;
Ø причины, вызывающие разнообразие углов бросания и направления стрельбы;
Ø причины, вызывающие разнообразие условий полета пули.
Причинами, вызывающими разнообразие начальных скоростей, являются:
Ø разнообразие в весе пороховых зарядов и пуль (гранат), в форме и размерах пуль (гранат) и гильз, в качестве пороха, в плотности заряжания и т. д., т. е. результат неточностей (допусков) при их изготовлении;
Ø разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона (гранаты) в нагретом при стрельбе стволе;
Ø разнообразие в степени нагрева и в качественном состоянии канала ствола.
Эти причины ведут к колебанию в начальных скоростях, а, следовательно, и в дальностях полета пуль (гранат), т. е. приводят к рассеиванию пуль по дальности (высоте) и зависят в основном от боеприпасов и оружия.
Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:
Ø разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);
Ø разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;
Ø угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия. Эти причины приводят к рассеиванию пуль по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.
Ø разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);
Ø разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины силы сопротивления воздуха. Эти причины приводят к увеличению рассеивания по боковому направлению и по дальности (высоте) и в основном зависят от внешних условий стрельбы и от боеприпасов.
При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит к тому, что полет каждой пули происходит по траектории, отличной от траекторий других пуль.
Устранить полностью причины, вызывающие рассеивание, а, следовательно, устранить и само рассеивание невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание или, как принято говорить, повысить кучность стрельбы.
Уменьшение рассеивания пуль достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе.
Рассеивание — явление разброса точек падения снарядов, пуль, на некоторой площади (в некотором пространстве) при стрельбе из одного и того же оружия в практически одинаковых условиях. Рассеивание, как правило, подчиняется закону нормального распределения случайных величин
При стрельбе из одного и того же оружия при самом тщательном соблюдении точности и однообразия производства выстрелов каждая пуля вследствие ряда случайных причин описывает свою траекторию и имеет свою точку падения (точку встречи), не совпадающую с другими, вследствие чего происходит разбрасывание пуль.
Явление разбрасывания пуль при стрельбе из одного и того же оружия в практически одинаковых условиях называется естественным рассеиванием пуль или рассеиванием траекторий.
Совокупность траекторий пуль, полученных вследствие их естественного рассеивания, называется снопом траекторий
Траектория, проходящая в середине снопа траекторий, называется средней траекторией.Табличные и расчетные данные относятся к средней траектории.
Точка пересечения средней траектории с поверхностью цели (преграды) называется средней точкой попадания или центром рассеивания.
Площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-либо плоскостью, называется площадью рассеивания. Площадь рассеивания обычно имеет форму эллипса.
При стрельбе из стрелкового оружия на близкие расстояния площадь рассеивания в вертикальной плоскости может иметь форму круга. Взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания) так, чтобы одна из них совпадала с направлением стрельбы, называются осями рассеивания.
Кратчайшие расстояния от точек встречи (пробоин) до осей рассеивания называются отклонениями.
Причины, вызывающие рассеивание пуль (гранат), могут быть сведены в три группы:
Ø причины, вызывающие разнообразие начальных скоростей;
Ø причины, вызывающие разнообразие углов бросания и направления стрельбы;
Ø причины, вызывающие разнообразие условий полета пули.
Причинами, вызывающими разнообразие начальных скоростей, являются:
Ø разнообразие в весе пороховых зарядов и пуль (гранат), в форме и размерах пуль (гранат) и гильз, в качестве пороха, в плотности заряжания и т. д., т. е. результат неточностей (допусков) при их изготовлении;
Ø разнообразие температур зарядов, зависящее от температуры воздуха и неодинакового времени нахождения патрона (гранаты) в нагретом при стрельбе стволе;
Ø разнообразие в степени нагрева и в качественном состоянии канала ствола.
Эти причины ведут к колебанию в начальных скоростях, а, следовательно, и в дальностях полета пуль (гранат), т. е. приводят к рассеиванию пуль по дальности (высоте) и зависят в основном от боеприпасов и оружия.
Причинами, вызывающими разнообразие углов бросания и направления стрельбы, являются:
Ø разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);
Ø разнообразие углов вылета и боковых смещений оружия, получаемое в результате неоднообразной изготовки к стрельбе, неустойчивого и неоднообразного удержания автоматического оружия, особенно во время стрельбы очередями, неправильного использования упоров и неплавного спуска курка;
Ø угловые колебания ствола при стрельбе автоматическим огнем, возникающие вследствие движения и ударов подвижных частей и отдачи оружия. Эти причины приводят к рассеиванию пуль по боковому направлению и дальности (высоте), оказывают наибольшее влияние на величину площади рассеивания и в основном зависят от выучки стреляющего.
Ø разнообразие в атмосферных условиях, особенно в направлении и скорости ветра между выстрелами (очередями);
Ø разнообразие в весе, форме и размерах пуль (гранат), приводящее к изменению величины силы сопротивления воздуха. Эти причины приводят к увеличению рассеивания по боковому направлению и по дальности (высоте) и в основном зависят от внешних условий стрельбы и от боеприпасов.
При каждом выстреле в разном сочетании действуют все три группы причин. Это приводит к тому, что полет каждой пули происходит по траектории, отличной от траекторий других пуль.
Устранить полностью причины, вызывающие рассеивание, а, следовательно, устранить и само рассеивание невозможно. Однако, зная причины, от которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание или, как принято говорить, повысить кучность стрельбы.
Уменьшение рассеивания пуль достигается отличной выучкой стреляющего, тщательной подготовкой оружия и боеприпасов к стрельбе, умелым применением правил стрельбы, правильной изготовкой к стрельбе, однообразной прикладкой, плавным спуском курка, устойчивым и однообразным удержанием оружия при стрельбе.
Если мы будем вести огонь по мишени, обеспечив точность и однообразие производства выстрелов, то обнаружим, что каждая пуля, пролетев по своей траектории, будет иметь свою пробоину. Более того, при очень большом числе выстрелов эти пробоины будут располагаться, подчиняясь какой-то закономерности, независимо от того, будем мы стрелять по вертикальной цели или по площади.
Явление разбрасывания пуль при стрельбе из одного и того же оружия в одинаковых условиях называется естественным рассеиванием пуль, или рассеиванием траекторий. Расшифруем некоторую терминологию, которой пользуются в оружейной литературе, в тире и т. п.
Сноп траекторий – это совокупность траекторий пуль, полученных вследствие их естественного рассеивания. Особенность этих траекторий заключается в том, что по мере удаления от точки вылета они все больше расходятся, но при этом могут пересекаться друг с другом.
Средняя траектория – траектория, которая проходит в середине снопа траекторий.
Средняя точка попадания, или центр рассеивания, – это точка пересечения средней траектории с поверхностью цели (преграды).
Площадь рассеивания – площадь, на которой располагаются точки встречи (пробоины) пуль, полученные при пересечении снопа траекторий с какой-нибудь плоскостью.
Как показывают исследования, площадь рассеивания имеет форму эллипса на горизонтальной плоскости и круга на вертикальной.
Оси рассеивания –это взаимно перпендикулярные линии, проведенные через центр рассеивания (среднюю точку попадания).
Отклонение– это расстояние от точки встречи (пробоины) до осей рассеивания.
Причины, вызывающие рассеивание пуль, могут быть сведены в три группы. Первая группа – это причины, вызывающие разнообразие начальных скоростей:
— разнообразие в весе боевых зарядов и пуль, в форме и размерах пуль и гильз, в качестве пороха и т. д. как результат неточностей (допусков) при их изготовлении;
— разнообразие температур зарядов, зависящее от температур воздуха и неодинакового времени нахождения патрона в нагретом при стрельбе стволе;
— разнообразие в степени нагрева и в качественном состоянии ствола.
Совокупность этих причин вызывает колебание начальных скоростей, а
следовательно, и дальностей полета пуль, т. е. приводят к рассеиванию по дальности и зависят в основном от боеприпасов.
Вторая группа – причины, вызывающие разнообразие углов бросания и направления стрельбы:
— разнообразие в горизонтальной и вертикальной наводке оружия (ошибки в прицеливании);
— разнообразие углов вылета и боковых смещений оружия, получаемых в неоднообразной изготовке и использовании упоров, неплавного спуска курка;
— угловые колебания ствола автоматического оружия, возникающие вследствие движения и ударов подвижных частей;
— разнообразие в удержании автоматического оружия, особенно ручного во время стрельбы.
Эти причины связаны с подготовкой стрелка и приводят как к боковому рассеиванию, так и к рассеиванию по дальности. Они оказывают наибольшее влияние на рассеивание.
Третья группа – это причины, вызывающие разнообразие условий полета пули:
— разнообразие в атмосферных условиях, особенно в направлении и скорости ветра;
— разнообразие в весе, форме и размерах пуль, приводящее к колебаниям силы сопротивления воздуха, а отсюда – и дальности полета пули.
Закон рассеивания.При большом количестве выстрелов (более 20) рассеивание пуль подчиняется определенному закону рассеивания, сущность которого заключается в следующем:
— пробоины располагаются на площади рассеивания неравномерно, наиболее густо группируясь вокруг СТП;
— пробоины располагаются вокруг СТП симметрично, т.к. вероятность отклонения пули в любую сторону от СТП одинакова;
— площадь рассеивания всегда ограничена некоторым пределом и имеет форму эллипса (овала), вытянутого на вертикальной плоскости по высоте. При стрельбе на короткие расстояния площадь рассеивания может иметь форму круга.
Все эти причины зависят в основном от внешних условий стрельбы и от боеприпасов. Они приводят к увеличению рассеивания по дальности и по боковому направлению. Рассеивание пуль подчиняется нормальному закону случайных ошибок. В отношении к рассеиванию пуль его называют законом рассеивания, и он гласит: при достаточно большом числе выстрелов, произведенных в возможно одинаковых условиях, рассеивание пуль неравномерно, симметрично и не беспредельно.
В заключение дадим несколько определений, связанных с баллистикой и рассеиванием пуль. Точность стрельбы характеризуется степенью совмещения эллипса рассеивания пуль с системой ровных прицельных приспособлений. Она зависит как от объективного фактора – свойств оружейного комплекса, т. е. оружия и боеприпасов, так и от субъективного, самого стреляющего.
Кучность стрельбы представляет собой свойства оружейного комплекса группировать точки попадания на малой площади. Это объективный фактор, независящий от стрелка.
Устранить полностью причины, вызывающие рассеивание пуль невозможно. Однако, зная причины, от, которых зависит рассеивание, можно уменьшить влияние каждой из них и тем самым уменьшить рассеивание или, как принято говорить, повысить кучность стрельбы.
Факторы, влияющие на меткость в стрельбе.Меткость стрельбы определяется точностью совмещения средней точки попадания с намеченной точкой на цели и величиной рассеивания. При этом, чем ближе и чем меньше рассеивание пуль, тем лучше меткость стрельбы.
Меткость стрельбы обеспечивается точным приведением оружия к нормальному бою, тщательным сбережением оружия и боеприпасов и отличной выучкой стреляющего.
Основными причинами, снижающими меткость стрельбы, являются ошибки стреляющего в выборе точки прицеливания, установки прицела и целика, в изготовке, в наводке оружия и в производстве стрельбы.
При неправильной установке прицела и целика, а также неправильном выборе точки прицеливания пули будут пролетать цель или отклоняться в сторону от нее.
При сваливании оружия средняя точка попадания отклоняется в сторону сваливания оружия и вниз.
При расположении упора впереди центра тяжести оружия (ближе к дульному срезу) средняя точка попадания отклоняется вверх, а при расположении упора сзади центра тяжести оружия (ближе к прикладу) отклоняется вниз; изменение положения упора во время стрельбы приводит к увеличению рассеивания.
Если приклад упирается в плечо нижним углом, то средняя точка попадания отклоняется вверх, а если верхним углом, то она отклоняется вниз.
При крупной мушке (мушка выше краев прорези прицела) средняя точка попадания отклоняется вверх, а при мелкой мушке — вниз; мушка, придержанная к правой стенке прорези прицела, приводит к отклонению средней точки попадания вправо, а мушка, придержанная к левой стенке прорези прицела, приводит к отклонению ее влево.
Неоднообразное прицеливание приводит к увеличению рассеивания пуль.
Неплавный спуск курка (дерганье) влечет за собой, как правило, отклонение средней точки попадания влево и вниз.
На меткость стрельбы оказывают влияние освещение и метеорологические условия. Боковой ветер, дующий справа, отклоняет пулю влево, а ветер слева – в правую сторону.
Влияние условий стрельбы на траекторию пули.На полет пули в воздухе оказывают влияние метеорологические, баллистические и топографические условия. Нормальными условиями считаются следующие.
Метеорологические условия:
— атмосферное давление на горизонте оружия 750мм рт. ст.;
— температура воздуха на горизонте оружия +15°С;
— относительная влажность 50 % (относительной влажностью называется -отношение количества водяных паров, которое может содержаться в воздухе при данной температуре);
— ветер отсутствует (атмосфера неподвижна).
Баллистические условия:
— масса пули, начальная скорость и угол вылета равны значениям, указанным в таблицах стрельбы;
— температура заряда + 15 °С;
— форма пули соответствует установленному чертежу;
— высота мушки установлена по данным приведения оружия к нормальному бою;
— высоты (деления) прицела соответствуют табличным углам прицеливания.
Топографические условия:
— цель находится на горизонте оружия;
— боковой наклон отсутствует.
При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.
Влияние давления. С увеличением атмосферного давления плотность воздуха увеличивается, а вследствие этого увеличивается сила сопротивления воздуха, уменьшается дальность полета пули. Наоборот, с уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшается, а дальность полета пули увеличивается. При стрельбе из стрелкового оружия на равнинной местности поправки дальности на изменение атмосферного давления незначительны и не учитываются. В горных условиях при высоте местности над уровнем моря 2000 метров и более эти поправки необходимо учитывать при стрельбе, руководствуясь правилами, указанными в наставлениях по стрелковому делу.
Влияние температуры. При повышении температуры, плотность воздуха уменьшается, а вследствие этого уменьшается сила сопротивления воздуха, увеличивается дальность полета пули. Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличивается, а дальность полета пули уменьшается.
При повышении температуры порохового заряда увеличивается скорость горения пороха, начальная скорость и дальность полета пули.
Влияние ветра. При попутном ветре сила сопротивления воздуха уменьшается и пуля летит дальше, чем при безветрии.
При встречном ветре наоборот, сила сопротивления воздуха увеличивается, а дальность полета пули уменьшается. Встречный и попутный ветры незначительно влияют на точность стрельбы, поэтому их не учитывают при стрельбе.
Боковой ветер оказывает значительное влияние и его необходимо учитывать при стрельбе из стрелкового оружия. Боковой ветер давит на боковую поверхность пули и отклоняет ее в сторону от плоскости стрельбы в зависимости от его направления: ветер справа отклоняет пулю в левую сторону, ветер слева — в правую сторону.
Боковой ветер при стрельбе из винтовки калибра 7,62мм. Отклонит пулю весом 11,8 гр.; на дистанции 100метров при слабом ветре (2 м/сек.) на 1см. в сторону, при сильном (10 м/сек) на 4см.; на дистанции 300метров соответственно на 10см. и на 41см.; на дистанции 600метров соответственно на 48см. и на 2метра; на дистанции 1000метров соответственно на 1метр 50см. и на 5метров 90см.
Влажность воздуха. Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули, поэтому оно не учитывается при стрельбе.
Полемика в СМИ о направлениях развития нашего стрелкового оружия не прекращается. На «Военном обозрении» на днях опубликована знаковая статья «О концептуальной неопределённости в развитии боевого стрелкового оружия в РФ».
От ответа на этот вопрос зависит соотношение потерь в огневых дуэлях, а от соотношения потерь – поведение солдата в бою и, собственно, победа или поражение в войне. Поэтому этот вопрос требует подробного и обстоятельного рассмотрения.
Да здравствует большое рассеивание?
Во-первых, чем больше рассеивание выстрелов – тем меньше плотность огня, то есть количество пуль на единицу площади рассеивания. Поэтому, чем большую ошибку прицеливания мы хотим компенсировать рассеиванием, тем меньше плотность огня и меньше вероятность попадания в цель (Фиг.1 вариант В).
Во-вторых, даже в том случае, когда ошибки прицеливания нет, и СТП совпадает с центром цели, большое рассеивание приводит к выходу части площади рассеивания за контуры цели (Фиг.2 ~469м). То есть, большое рассеивание при правильном прицеливании снижает вероятность попадания в цель.
Итак, графический метод определения вероятности попадания показывает, что большое рассеивание АК-74 при правильном прицеливании значительно снижает вероятность попадания уже на дальности прямого выстрела.
А какую получаем выгоду от большого рассеивания АК-74?
Для мишени №5а эквивалентным будет прямоугольник шириной 0,22м и высотой 0,29м (ЭП) и расчет производим по ЭП, чтобы избавиться от фигурности мишени №5а.
Находим по таблице значений приведённой функции Лапласа:
Ф(4,75) = 0,99863
Ф(1,125) = 0,552
Ф(2,75) = 0,93638
Вычисляем вероятность:
Р = (Ф+в – Ф-в) / 2 * Фб = (0,99863 – 0,552) / 2 * 0,93638 = 0,209 ~ 0,2.
Итак, одиночным огнём попадаем одну пулю из каждых пяти.
Таким образом, большим рассеванием одиночных выстрелов АК-74 мы снизили вероятность попаданий при правильном прицеливании и не получили возможности опередить врага при ошибке прицеливания.
Стрелять очередью? Но рассеивание последующих выстрелов очереди у АК-74 в разы больше рассеивания первых (одиночных) выстрелов. Это указано в Руководстве по АК-74 [2]. И я в своё время лично проверял это: с дальности 100м по грудной мишени из положения лёжа:
— первые пули всех очередей ложатся кучно — в районе центра цели в круг не более 5 см;
— вторая пуля каждой очереди ложится мимо цели – над левым плечом цели, площадь рассеивания вторых пуль больше площади рассеивания первых пуль;
— третья пуля каждой очереди опять попадает в цель, но рассеиваются третьи пули уже практически по всей цели;
— все последующие пули очереди рассеиваются хаотично в районе цели и их вероятность попадания в цель исключительно мала. Так из целого магазина (30 патронов), выпущенного одной очередью, в цель попадает от 4 до 6 пуль. То есть, за минусом первой и третьей пули из оставшихся 28 попадает всего 2-4 пули.
Аналогичная картина и у М-16. Поэтому американцы давно сделали (а мы до сих пор раскачиваемся) фиксированную очередь 3 выстрела – в этом режиме 2/3 пуль идут в район цели, а на заведомый промах теряется только 1/3.
Но напомню, это результаты на дальности 100м. С ростом дальности рассеивание растёт пропорционально, то есть, уже на дальности 200м рассеивание вдвое больше и немногие из третьих пуль очередей попадут в цель.
Поэтому стрельба очередью заметно повышает вероятность попадания только на малых дальностях – бой в здании, в траншее и т.п.
Сторонники большого рассеивания отвечают, что просто надо выпустить больше пуль и тогда плотность огня возрастёт. Они живут в своём мире, где ёмкость магазинов безгранична, а новые патроны можно доставить на огневую позицию зычным голосом командира. Они не хотят знать о реальных боях на Северном Кавказе, когда при такой стрельбе патроны очень быстро кончались, и тогда нашим командирам рот приходилось вызывать на себя огонь артиллерии, прикрывая отход остатков роты.
А если вспомним закон рассеивания траекторий – 25% возле СТП и резкое падение плотности по мере удаления от СТП:
то станет понятно, что по мере выхода СТП за контуры цели вероятность попадания стремительно падает и для компенсирования ошибки прицеливания количество требуемых выстрелов должно расти по экспоненте от величины выхода СТП за контуры цели.
При таком подходе в принципе не хватит никаких запасов патронов. Кроме того, как показано выше, противник с современным прицелом просто убивает стрелка с АК раньше, чем тот успевает сделать необходимое количество выстрелов.
Вывод: большое рассеивание – негодный способ компенсировать ошибки прицеливания. Большое рассеивание даёт крайне незначительную, бесполезную в бою вероятность попадания в цель при ошибке прицеливания, и снижает вероятность попадания при правильном прицеливании.
Но ведь бывают ситуации, когда надо покрыть рассеиванием большую площадь? Да, бывают. И эти ситуации тоже давно уже описаны в наставлениях по стрелковому делу: стрельба по движущейся цели, по групповой цели и т.п. В этих ситуациях стрелок сам создаёт рассеивание угловым перемещением ствола оружия во время очереди — Руководство по АК-74 [2] ст.ст. 169, 170, 174 и др.
Естественное рассеивание зависит от конструкции прицела и оружия и не зависит от воли стрелка. Избавиться от естественного рассеивания стрелок не может, как ни будет стараться. Именно о таком – естественном – рассеивании шла речь ранее в данной статье, и именно такое большое рассеивание (рассеивание устаревшей конструкции) защищают его сторонники.
При малом естественном рассеивании стрелок сам — по ситуации – выбирает, создавать ли намеренно большую площадь рассеивания, чем снизить плотность огня, или оставить все пули на площади малого естественного рассеивания и получить на ней максимальную плотность огня.
А при большом естественном рассеивании стрелок ничего не может с ним поделать и становится заложником малой плотности огня. Например, на Фиг.2 видно, что начиная с ~313м даже у лучших стрелков часть пуль уходит по бокам от цели. И они никак не могут это предотвратить.
Насколько велико рассеивание нашего оружия?
Опять обратимся к Фиг.2. Видно, что эллипс рассеивания на дальности 625м примерно вдвое шире ростовой фигуры, а на дальности ~313м примерно вдвое шире головы. Поэтому для получения максимальной вероятности попадания при прямом выстреле рассеивание одиночных выстрелов АК-74 необходимо уменьшить как минимум вдвое.
А для максимальной вероятности попадания в цель требуется, чтобы средняя из снопа траекторий проходила посредине цели.
Но ведь в том же Руководстве по АК-74 [2] рекомендуется прямой выстрел?
Да. И для механического прицела АК это оправдано, потому что с таким прицелом:
— сложно измерить дальность до цели, пусть уж стоит постоянная;
— устанавливая точную дальность до цели, придётся переводить взгляд на прицельную планку и потому терять цель и всё поле боя из виду;
— время на перестановку дальности велико, цель успевает скрыться.
То есть, конструкция механического (штатного) прицела АК такова, что уж лучше стрелять прямым выстрелом с небольшой вероятностью попадания, чем вообще не успеть выстрелить.
Так значит, главная помеха для точной стрельбы – наши прицелы?
То есть, совершенствованием прицелов в принципе можно повысить точность стрельбы имеющихся автоматов до 6 (!) раз, а СВД – вдвое. По сравнению с этими перспективами выгоды от улучшения качества патронов, на чём сейчас сосредоточено всеобщее внимание, выглядят малозначительными.
Прицелы! Вот где у нас провал. Производители наших прицелов последние 20 лет проектируют одни баллистические безобразия, Минобороны их закупает, а войска ими не пользуются. Посмотрите кадры хроники войны 2008 года с Героем России майором Ветчиновым. У него в руках АК-74Н на который установлен ПСО-1. Баллистика ПСО-1 рассчитана для СВД, и работать им на АК-74 вообще-то невозможно. Но лучше просто ничего не было тогда, и нет до сих пор!
Негодная политика. Я, как и сторонники большого рассеивания, против такой политики. Надеюсь, эта политика в прошлом.
Но концепцию развития стрелкового оружия в нашей стране придётся вырабатывать нам со сторонниками большого рассеивания. Больше некому.
Если только они готовы работать над уменьшением рассеивания у их продукции.
Читайте также:
- По картосхеме на 2 форзаце учебника определите отрасли экономики кратко
- В 1813 в александровке возле луганска крестьяне убили князя шахматова за жестокость кратко
- Гаэтано моска биография кратко
- Дудь про вич кратко
- Туризм в ирландии кратко