Рассчитать среднюю ошибку аппроксимации для однофакторной линейной модели

Коэффициент корреляции

Тесноту (силу) связи изучаемых показателей в предмете эконометрика оценивают с помощью коэффициента корреляции Rxy, который может принимать значения от -1 до +1.

Если Rxy > 0,7 — связь между изучаемыми показателями сильная, можно проводить анализ линейной модели

Если 0,3 < Rxy < 0,7 — связь между показателями умеренная, можно использовать нелинейную модель при отсутствии Rxy > 0,7

Если Rxy < 0,3 — связь слабая, модель строить нельзя

коэффициент корреляции

Для нелинейной регрессии используют индекс корреляции (0 < Рху < 1):

индекс корреляции

Средняя ошибка аппроксимации

Для оценки качества однофакторной модели в эконометрике используют коэффициент детерминации и среднюю ошибку аппроксимации.

Средняя ошибка аппроксимации определяется как среднее отклонение полученных значений от фактических

Средняя ошибка аппроксимации

Допустимая ошибка аппроксимации не должна превышать 10%.

В эконометрике существует понятие среднего коэффициента эластичности Э – который говорит о том, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины.

Пример нахождения коэффициента корреляции

Исходные данные:

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

81

124

2

77

131

3

85

146

4

79

139

5

93

143

6

100

159

7

72

135

8

90

152

9

71

127

10

89

154

11

82

127

12

111

162

Рассчитаем параметры парной линейной регрессии, составив таблицу

x

x2

y

xy

y2

1

81

6561

124

10044

15376

2

77

5929

131

10087

17161

3

85

7225

146

12410

21316

4

79

6241

139

10981

19321

5

93

8649

143

13299

20449

6

100

10000

159

15900

25281

7

72

5184

135

9720

18225

8

90

8100

152

13680

23104

9

71

5041

127

9017

16129

10

89

7921

154

13706

23716

11

82

6724

127

10414

16129

12

111

12321

162

17982

26244

Среднее

85,8

7491

141,6

12270,0

20204,3

Сумма

1030,0

89896

1699

147240

242451

σ

11,13

12,59

 σ2

123,97

158,41

формула расчета дисперсии σ2 приведена здесь.

Коэффициенты уравнения y = a + bx определяются по формуле

расчет коэффициентов линейного уравнения регрессии

Получаем уравнение регрессии: y = 0,947x + 60,279.

Коэффициент уравнения b = 0,947 показывает, что при увеличении среднедушевого прожиточного минимума в день одного трудоспособного на 1 руб. среднедневная заработная плата увеличивается на 0,947 руб.
Коэффициент корреляции рассчитывается по формуле:

расчет коэффициента корреляции в эконометрике

Значение коэффициента корреляции более — 0,7, это означает, что связь между среднедушевым прожиточным минимумом в день одного трудоспособного и среднедневной заработной платой сильная.

Коэффициент детерминации равен R2 = 0.838^2 = 0.702
т.е. 70,2% результата объясняется вариацией объясняющей переменной x.

2.6.1
Коэффициент детерминации.

Для оценки качества построенной модели
регрессии можно использовать коэффициент
детерминации
.
Коэффициент детерминации может быть
вычислен по формуле:

.

С другой стороны,
для парной линейной регрессии верно
равенство:

.

При
близости значения коэффициента
детерминации к 1 говорят, что уравнение
регрессии статистически значимо и
фактор
оказывает сильное воздействие на
результирующий признак.

При анализе модели
парной линейной регрессии по значению
коэффициента детерминации можно сделать
следующие предварительные выводы о
качестве модели:

  • Если
    ,
    то будем считать, что использование
    регрессионной модели для аппроксимации
    зависимости между переменнымиистатистически необоснованно.

  • Если
    ,
    то использование регрессионной модели
    возможно, но после оценивания параметров
    модель подлежит дальнейшему многостороннему
    статистическому анализу.

  • Если
    ,
    то будем. считать, что у нас есть основания
    для использования регрессионной модели
    при анализе поведения переменной.

2.6.2 Средняя ошибка аппроксимации.

Другой
показатель качества построенной модели
–– среднее относительное отклонение
расчетных значений от фактических или
средняя
ошибка аппроксимации
:

.

Построенное
уравнение регрессии считается
удовлетворительным, если значение
не превышает 10% – 12% .

3. Пример.

По
21 региону страны изучается зависимость
розничной продажи телевизоров ()
от среднедушевого денежного дохода в
месяц ().

Номер региона

Среднедушевой
денежный доход в месяц, тыс. руб.,

Объем
розничной продажи телевизоров, тыс.
шт.,

1

2

28

2

2,4

21,3

3

2,1

21

4

2,6

23,3

5

1,7

15,8

6

2,5

21,9

7

2,4

20

8

2,6

22

9

2,8

23,9

10

2,6

26

11

2,6

24,6

12

2,5

21

13

2,9

27

14

2,6

21

15

2,2

24

16

2,6

24

17

3,3

31,9

18

3,9

33

19

4

35,4

20

3,7

34

21

3,4

31

Необходимо
найти зависимость, наилучшим образом
отражающую связь между переменными

и
.

Рассмотрим вопрос
применения модели линейной регрессии
в этой задаче.

Построим
поле корреляции, т.е. нанесем исходные
данные на координатную плоскость. Для
этого воспользуемся, например,
возможностями MS
Excel
2003.

Подготовим таблицу
исходных данных.

Нанесем на
координатную плоскость исходные данные:

Характер
расположения точек на графике дает нам
основание предположить, что искомая
функция регрессии линейная:
.
Для оценки коэффициентов уравнения
регрессии необходимо составить и решить
систему нормальных уравнений ( ).

По исходным данным
рассчитываем необходимые суммы:

Номер региона

1

2

28

56

4

784

2

2,4

21,3

51,12

5,76

453,69

3

2,1

21

44,1

4,41

441

4

2,6

23,3

60,58

6,76

542,89

5

1,7

15,8

26,86

2,89

249,64

6

2,5

21,9

54,75

6,25

479,61

7

2,4

20

48

5,76

400

8

2,6

22

57,2

6,76

484

9

2,8

23,9

66,92

7,84

571,21

10

2,6

26

67,6

6,76

676

11

2,6

24,6

63,96

6,76

605,16

12

2,5

21

52,5

6,25

441

13

2,9

27

78,3

8,41

729

14

2,6

21

54,6

6,76

441

15

2,2

24

52,8

4,84

576

16

2,6

24

62,4

6,76

576

17

3,3

31,9

105,27

10,89

1017,61

18

3,9

33

128,7

15,21

1089

19

4

35,4

141,6

16

1253,16

20

3,7

34

125,8

13,69

1156

21

3,4

31

105,4

11,56

961

Сумма

57,4

530,1

1504,46

164,32

13926,97

Составляем систему
уравнений:

Имеем систему
линейных алгебраических уравнений,
которая может быть решена, например, по
формулам Крамера. Для этого вычислим
следующие определители:

Тогда, согласно
теореме Крамера,

Получаем уравнение
регрессии:

Величина
коэффициента регрессии
означает, что увеличение среднедушевого
месячного дохода на 1 тыс. руб. приведет
к увеличение объема розничной продажи
в среднем на 7 540 телевизоров. Коэффициентв данном случае не имеет содержательной
интерпретации.

Оценим тесноту
линейной связи между переменными и
качество построенной модели в целом.

Для оценки тесноты
линейной зависимости рассчитаем
коэффициент детерминации. Для этого
необходимо провести ряд дополнительных
вычислений.

Прежде
всего, найдем выборочное
среднее

по формуле:

.

Для рассматриваемого
примера имеем:

Теперь произведем
расчет остальных вспомогательных
величин:

Номер региона

1

2

28

19,76

8,24

67,89

2,76

7,60

2

2,4

21,3

22,75

-1,45

2,11

-3,94

15,55

3

2,1

21

20,51

0,49

0,24

-4,24

18,00

4

2,6

23,3

24,25

-0,95

0,90

-1,94

3,77

5

1,7

15,8

17,52

-1,72

2,95

-9,44

89,17

6

2,5

21,9

23,50

-1,60

2,56

-3,34

11,17

7

2,4

20

22,75

-2,75

7,57

-5,24

27,49

8

2,6

22

24,25

-2,25

5,04

-3,24

10,52

9

2,8

23,9

25,74

-1,84

3,39

-1,34

1,80

10

2,6

26

24,25

1,75

3,08

0,76

0,57

11

2,6

24,6

24,25

0,35

0,13

-0,64

0,41

12

2,5

21

23,50

-2,50

6,24

-4,24

18,00

13

2,9

27

26,49

0,51

0,26

1,76

3,09

14

2,6

21

24,25

-3,25

10,54

-4,24

18,00

15

2,2

24

21,26

2,74

7,53

-1,24

1,54

16

2,6

24

24,25

-0,25

0,06

-1,24

1,54

17

3,3

31,9

29,48

2,42

5,86

6,66

44,32

18

3,9

33

33,96

-0,96

0,93

7,76

60,17

19

4

35,4

34,71

0,69

0,47

10,16

103,17

20

3,7

34

32,47

1,53

2,34

8,76

76,69

21

3,4

31

30,23

0,77

0,60

5,76

33,14

Сумма

57,4

530,1

130,68

545,73

Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбцы «»
и– это столбцы, так называемых, «остатков»:
разностей между исходными значениями,и рассчитанными с помощью уравнения
регрессии,
а также их квадратов, а в последних двух
столбцах – разности между исходными
значениями,
выборочным средним,
а также их квадраты.

Для
вычисления коэффициента детерминации
воспользуемся формулой ( ):

Значение
коэффициента детерминации позволяет
сделать предварительный вывод о том,
что у нас имеются основания использовать
модель линейной регрессии в данной
задаче, поскольку
.

Построим
линию регрессии на корреляционном поле,
для чего добавим на координатной
плоскости точки, соответствующие
уравнению регрессии ().

Нанесем
теперь уравнение регрессии на диаграмму,
используя специальные средства Excel.
Для этого необходимо выделить правой
кнопкой мыши исходные точки и выбрать
опцию Добавить
линию тренда.

В
открывшемся меню Параметры
линии тренда

выбрать Линейную
аппроксимацию.
Далее поставить флажок напротив полей
Показывать
уравнение на диаграмме

и Поместить
на диаграмму величину достоверности
аппроксимации
.

Нажав
на ОК, получаем еще одну прямую на
диаграмме, которая совпадает с построенными
ранее точками линии регрессии:

Сплошная
черная линия на диаграмме – это линия
регрессии, рассчитанная средствами
Excel.
Линия регрессии, построенная нами ранее,
совпала с данной линией регрессии.
Нетрудно убедиться, что уравнение
регрессии и коэффициент детерминации
тоже совпадают с полученными ранее
вручную.

Найдем
теперь среднюю ошибку аппроксимации
для оценки погрешности модели. Для этого
нам потребуется вычислить еще ряд
промежуточных величин:

Номер региона

1

2

28

19,76

8,24

0,29

2

2,4

21,3

22,75

-1,45

0,07

3

2,1

21

20,51

0,49

0,02

4

2,6

23,3

24,25

-0,95

0,04

5

1,7

15,8

17,52

-1,72

0,11

6

2,5

21,9

23,50

-1,60

0,07

7

2,4

20

22,75

-2,75

0,14

8

2,6

22

24,25

-2,25

0,10

9

2,8

23,9

25,74

-1,84

0,08

10

2,6

26

24,25

1,75

0,07

11

2,6

24,6

24,25

0,35

0,01

12

2,5

21

23,50

-2,50

0,12

13

2,9

27

26,49

0,51

0,02

14

2,6

21

24,25

-3,25

0,15

15

2,2

24

21,26

2,74

0,11

16

2,6

24

24,25

-0,25

0,01

17

3,3

31,9

29,48

2,42

0,08

18

3,9

33

33,96

-0,97

0,03

19

4

35,4

34,71

0,69

0,02

20

3,7

34

32,47

1,53

0,05

21

3,4

31

30,23

0,77

0,02

Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбец «»
– это столбец так называемых «остатков»:
разностей между исходными значениями,
и рассчитанными с помощью уравнения
регрессии,и, наконец, последний столбец «»
– это вспомогательный столбец для
вычисления элементов суммы по формуле
( ). Просуммируем теперь элементы
последнего столбца и разделим полученную
сумму на 21 – общее количество исходных
данных:

.

Переведем это
число в проценты и запишем окончательное
выражение для средней ошибки аппроксимации:

.

Итак,
средняя ошибка аппроксимации оказалась
около 8%, что говорит о небольшой
погрешности построенной модели. Данную
модель, с учетом неплохих характеристик
ее качества, вполне можно использовать
для прогноза – одной из основных целей
эконометрического анализа. Предположим,
что среднедушевой месячный доход в
одном из регионов составит 4,1 тыс. руб.
Оценим, каков будет уровень продаж
телевизоров в этом регионе согласно
построенной модели? Для этого необходимо
выбранное значение фактора
подставить в уравнение регрессии (
):

(тыс.
руб.),

т.е. при таком
уровне дохода, розничная продажа
телевизоров составит, в среднем, 35 480
телевизоров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

  Индекс розничных цен на продукты питания (х) Индекс промышленного производства (у)
1 100 70
2 105 79
3 108 85
4 113 84
5 118 85
6 118 85
7 110 96
8 115 99
9 119 100
10 118 98
11 120 99
12 124 102
13 129 105
14 132 112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

А) линейной;

Б) степенной;

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение:

1. Для расчёта параметров линейной регрессии

 Линейное уравнение регрессии

Решаем систему нормальных уравнений относительно a и b:

Расчёт параметров линейной регрессии

Построим таблицу расчётных данных, как показано в таблице 1.

Таблица 1 Расчетные данные для оценки линейной регрессии

№ п/п х у ху x2 y2 Зависимая переменная относительная ошибка аппроксимации
1 100 70 7000 10000 4900 74,26340 0,060906
2 105 79 8295 11025 6241 79,92527 0,011712
3 108 85 9180 11664 7225 83,32238 0,019737
4 113 84 9492 12769 7056 88,98425 0,059336
5 118 85 10030 13924 7225 94,64611 0,113484
6 118 85 10030 13924 7225 94,64611 0,113484
7 110 96 10560 12100 9216 85,58713 0,108467
8 115 99 11385 13225 9801 91,24900 0,078293
9 119 100 11900 14161 10000 95,77849 0,042215
10 118 98 11564 13924 9604 94,64611 0,034223
11 120 99 11880 14400 9801 96,91086 0,021102
12 124 102 12648 15376 10404 101,4404 0,005487
13 129 105 13545 16641 11025 107,1022 0,020021
14 132 112 14784 17424 12544 110,4993 0,013399
Итого: 1629 1299 152293 190557 122267 1299,001 0,701866
Среднее значение: 116,3571 92,78571 10878,07 13611,21 8733,357 х  х
Среднее квадратическое отклонение 8,4988 11,1431 х х х х х
Дисперсия 72,23 124,17 х х х х х

Среднее значение определим по формуле:

Формула среднего значения х

Cреднее квадратическое отклонение рассчитаем по формуле:

Формула сренего квадратического отклонения

и занесём полученный результат в таблицу 1.

Возведя в квадрат полученное значение получим дисперсию:

Формула дисперсии

Параметры уравнения можно определить также и по формулам:

Формула и расчёт параметра регрессии b

Формула и расчёт параметра а

Таким образом, уравнение регрессии:

Линейное уравнение регрессии

Следовательно, с увеличением индекса розничных цен на продукты питания на 1, индекс промышленного производства увеличивается в среднем на 1,13.

Рассчитаем линейный коэффициент парной корреляции:

Формула и расчёт коэффициента корреляции

Связь прямая, достаточно тесная.

Определим коэффициент детерминации:

Расчёт коэффициента детерминации

Вариация результата на 74,59% объясняется вариацией фактора х.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчётные) значения Зависимая переменная.

Так как

Равенство фактических и расчтных значений,

следовательно, параметры уравнения определены правильно.

Рассчитаем среднюю ошибку аппроксимации – среднее отклонение расчётных значений от фактических:

Формула и расчёт средней ошибки аппроксимации

В среднем расчётные значения отклоняются от фактических на 5,01%.

Оценку качества уравнения регрессии проведём с помощью F-теста.

F-тест состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера.

Fфакт определяется по формуле:

Формула F-критерия

где n – число единиц совокупности;

m – число параметров при переменных х.

Расчёт F-критерия

Сравнение табличного и фактического F-критерия

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Расчёт прогнозного значения

2. Степенная регрессия имеет вид:

Степенная модель

Для определения параметров производят логарифмиро­вание степенной функции:

Логарифмирование степенной модели

Для определения параметров логарифмической функции строят систему нормальных уравнений по способу наи­меньших квадратов:

Система уравнений для расчёта параметров степенной модели

Построим таблицу расчётных данных, как показано в таблице 2.

Таблица 2 Расчетные данные для оценки степенной регрессии

№п/п х у lg x lg y lg x*lg y (lg x)2 (lg y)2
1 100 70 2,000000 1,845098 3,690196 4,000000 3,404387
2 105 79 2,021189 1,897627 3,835464 4,085206 3,600989
3 108 85 2,033424 1,929419 3,923326 4,134812 3,722657
4 113 84 2,053078 1,924279 3,950696 4,215131 3,702851
5 118 85 2,071882 1,929419 3,997528 4,292695 3,722657
6 118 85 2,071882 1,929419 3,997528 4,292695 3,722657
7 110 96 2,041393 1,982271 4,046594 4,167284 3,929399
8 115 99 2,060698 1,995635 4,112401 4,246476 3,982560
9 119 100 2,075547 2,000000 4,151094 4,307895 4,000000
10 118 98 2,071882 1,991226 4,125585 4,292695 3,964981
11 120 99 2,079181 1,995635 4,149287 4,322995 3,982560
12 124 102 2,093422 2,008600 4,204847 4,382414 4,034475
13 129 105 2,110590 2,021189 4,265901 4,454589 4,085206
14 132 112 2,120574 2,049218 4,345518 4,496834 4,199295
Итого 1629 1299 28,90474 27,49904 56,79597 59,69172 54,05467
Среднее значение 116,3571 92,78571 2,064624 1,964217 4,056855 4,263694 3,861048
Среднее квадратическое отклонение 8,4988 11,1431 0,031945 0,053853 х х х
Дисперсия 72,23 124,17 0,001021 0,0029 х х х

Продолжение таблицы 2 Расчетные данные для оценки степенной регрессии

№п/п х у Зависимая переменная Квадрат разности у и теоретического значения относительная ошибка аппроксимации Квадрат разности у и среднего значения
1 100 70 74,16448 17,34292 0,059493 519,1886
2 105 79 79,62057 0,385112 0,007855 190,0458
3 108 85 82,95180 4,195133 0,024096 60,61728
4 113 84 88,59768 21,13866 0,054734 77,1887
5 118 85 94,35840 87,57961 0,110099 60,61728
6 118 85 94,35840 87,57961 0,110099 60,61728
7 110 96 85,19619 116,7223 0,11254 10,33166
8 115 99 90,88834 65,79901 0,081936 38,6174
9 119 100 95,52408 20,03384 0,044759 52,04598
10 118 98 94,35840 13,26127 0,037159 27,18882
11 120 99 96,69423 5,316563 0,023291 38,6174
12 124 102 101,4191 0,337467 0,005695 84,90314
13 129 105 107,4232 5,872099 0,023078 149,1889
14 132 112 111,0772 0,85163 0,00824 369,1889
Итого 1629 1299 1296,632 446,4152 0,703074 1738,357
Среднее значение 116,3571 92,78571 х х х х
Среднее квадратическое отклонение 8,4988 11,1431 х х х х
Дисперсия 72,23 124,17 х х х х

 Решая   систему   нормальных уравнений, определяем параметры логарифмической функции.

Формула и расчёт коэффициента регрессии

Формула и расчёт параметра lg а

Получим линейное уравнение:

Линейное уравнение

Выполнив его потенцирование, получим:

Потенцирование линейного уравнения

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата Теоретическое значение у. По ним рассчитаем показатели: тесноты связи – индекс корреляции и среднюю ошибку аппроксимации.

Формула и расчёт индекса корреляции

Связь достаточно тесная.

Формула и расчёт средней ошибки аппроксимации

В среднем расчётные значения отклоняются от фактических на 5,02%.

Формула и расчёт F-критерия

Сравнение табличного и фактического F-критерия

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Прогнозное значение у

3. Уравнение равносторонней гиперболы

Уравнение равносторонней гиперболы

Для определения параметров этого уравнения используется система нормальных уравнений:

Система уравнений для нахождения параметров регрессии

Произведем замену переменных

Замена переменной

и получим следующую систему нормальных уравнений:

Система уравнений после замены

Решая систему нормальных уравнений, определяем параметры гиперболы.

Составим таблицу расчётных данных, как показано в таблице 3.

Таблица 3 Расчетные данные для оценки гиперболической зависимости

№п/п х у z yz Квадрат z Квадрат у
1 100 70 0,010000000 0,700000 0,0001000 4900
2 105 79 0,009523810 0,752381 0,0000907 6241
3 108 85 0,009259259 0,787037 0,0000857 7225
4 113 84 0,008849558 0,743363 0,0000783 7056
5 118 85 0,008474576 0,720339 0,0000718 7225
6 118 85 0,008474576 0,720339 0,0000718 7225
7 110 96 0,009090909 0,872727 0,0000826 9216
8 115 99 0,008695652 0,860870 0,0000756 9801
9 119 100 0,008403361 0,840336 0,0000706 10000
10 118 98 0,008474576 0,830508 0,0000718 9604
11 120 99 0,008333333 0,825000 0,0000694 9801
12 124 102 0,008064516 0,822581 0,0000650 10404
13 129 105 0,007751938 0,813953 0,0000601 11025
14 132 112 0,007575758 0,848485 0,0000574 12544
Итого: 1629 1299 0,120971823 11,13792 0,0010510 122267
Среднее значение: 116,3571 92,78571 0,008640844 0,795566 0,0000751 8733,357
Среднее квадратическое отклонение 8,4988 11,1431 0,000640820 х х х
Дисперсия 72,23 124,17 0,000000411 х х х

Продолжение таблицы 3 Расчетные данные для оценки гиперболической зависимости

№п/п х у Зависимая переменная относительная ошибка аппроксимации Квадрат разности у и теоретического значения Квадрат разности у и среднего значения
1 100 70 72,3262 0,033231 5,411206 519,1886
2 105 79 79,49405 0,006254 0,244083 190,0458
3 108 85 83,47619 0,017927 2,322012 60,61728
4 113 84 89,64321 0,067181 31,84585 77,1887
5 118 85 95,28761 0,121031 105,8349 60,61728
6 118 85 95,28761 0,121031 105,8349 60,61728
7 110 96 86,01027 0,10406 99,79465 10,33166
8 115 99 91,95987 0,071112 49,56344 38,6174
9 119 100 96,35957 0,036404 13,25272 52,04598
10 118 98 95,28761 0,027677 7,357059 27,18882
11 120 99 97,41367 0,016024 2,516453 38,6174
12 124 102 101,46 0,005294 0,291565 84,90314
13 129 105 106,1651 0,011096 1,357478 149,1889
14 132 112 108,8171 0,028419 10,1311 369,1889
Итого: 1629 1299 1298,988 0,666742 435,7575 1738,357
Среднее значение: 116,3571 92,78571 х х х х
Среднее квадратическое отклонение 8,4988 11,1431 х х х х
Дисперсия 72,23 124,17 х х х х

Значения параметров регрессии a и b составили:

Формула и расчёт коэффициента регрессии

Формула и расчёт параметра а

Получено уравнение:

Уравнение регрессии

Индекс корреляции:

Формула и расчёт индекса корреляции

Связь достаточно тесная.

Формула и расчёт средней ошибки аппроксимации 

В среднем расчётные значения отклоняются от фактических на 4,76%.

Формула и расчёт F-критерия

Сравнение табличного и фактического F-критерия

Таким образом, Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признаётся их статистическая значимость и надёжность.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение индекса розничных цен на продукты питания х = 138, тогда прогнозное значение индекса промышленного производства составит:

Прогнозное значение

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи по сравнению с линейной и степенной регрессиями. Средняя ошибка аппроксимации остаётся на допустимом уровне.

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Раст ошибка 142
  • Рассчитать относительную ошибку при взвешивании навесок
  • Рассчитать объем выборки при заданной точности ошибки
  • Раст ошибка 0xc0000142 hid dll
  • Рассчитать абсолютную и относительную ошибки

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии