Рассчитать абсолютную и относительную ошибки

Вычисление абсолютной и относительной погрешностей измерений при прямых измерениях

1. Абсолютная погрешность

Оценить отклонение
каждого из результатов измерения от
истинной величины можно лишь при наличии
данных большого числа измерений с
использованием теории вероятности.
Однако на практике, в лабораторных
условиях проводят 3-5 измерений. В этом
случае абсолютная погрешность отдельного
i-го
измерения будет следующей:

|DАi|
= |АСР
— Аi|,

где
АСР
— средняя величина размера А. Средняя
арифметическая величина всех ½DАi½
значений

называется
абсолютной погрешностью опыта.
Окончательный результат изме­рения
может быть записан в виде

А = АСР
±
СР,

где
А — искомая величина, которая лежит
внутри интервала

АСР
±
СР.

Н

14

апример, если сделаем несколько
измерений длины заготовки в столярной
мастерской и получим среднее значение
lСР
= 75.5 см, а среднее
арифметическое абсолютной погрешности
lСР
= 0.3 см, то результат
запишется в виде

l
= (75.5 ± 0.3) см.

Это
означает, что истинное значение длины
заготовки лежит в интервале от 75.2 см до
75.8 см. При этом не имеет смысла вычислять
среднее значение с большим числом знаков
после запятой, так как от этого точность
не увеличивается.

2. Относительная погрешность

Абсолютная
погрешность измерения не характеризует
точности проведенных измерений. Поэтому
для того, чтобы сравнить точность
различных измерений и величин разной
размерности, находят среднюю относительную
погрешность результата (ЕА).
Относительная погрешность определяется
отношением абсолютной погрешности к
среднему арифметическому значению
измеряемой величины, которая определяется
в процентах:

ЕА=100%.

Относительная
погрешность показывает, какая часть
абсолютной погрешности приходится на
каждую единицу измеренной величины.
Это дает возможность оценить точность
проведенных измерений, качество работы.

Так,
например, пусть при измерении бруска
длиной l
= 1.51 см была допущена абсолютная
погрешность 0.03 мм, а при измерении
расстояния от Земли до Луны L
= 3.64.105
км абсолютная погрешность составила
100 км. Может показаться, что первое
измерение выполнено намного точнее
второго. Однако о точности измерения
можно судить по относительной погрешности,
а она показывает, что второе измерение
было выполнено в семь раз точнее первого:

El
=

100% = 0.2%

и
ЕL
=
100%
= 0.03%.

Вычисление абсолютных и относительных погрешностей при косвенных2 измерениях

В
большинстве случаев при выполнении
физических экспериментов исследуемая
величина не может быть измерена
непосредственно, а является функцией
одной или нескольких переменных,
измеренных непосредственно. При косвенных
измерениях абсолютная и относительная
погрешности результатов измерений
находятся вычислением через абсолютные
и относительные погрешности непосредственно
измеренных величин.

Использование формул дифференцирования

Для
определения абсолютных и относительных
погрешностей искомой величины при
косвенных измерениях можно воспользоваться
формулами дифференцирования, потому
что абсолютная ошибка функции равна
абсолютной ошибке аргумента, умноженной
на производную этой функции, то есть
полному дифференциалу функции.

Рассмотрим
это более подробно. До­пустим, что
физическая величина А является функцией
многих переменных:

A
= f
(x,
y,
z
…).

Правило
I.
Вначале
находят абсолютную погрешность величины
А, а затем относительную погрешность.
Для этого необходимо:

1) Найти полный
дифференциал функции


.

2

16

) Заменить бесконечно малые dx, dу,
dz, … соответствующими абсолютными
ошибками аргументовDx,
Dy,
Dz,
… (при этом знаки «минус» в абсо­лютных
ошибках аргументов заменяют знаками
«плюс», так чтобы величина ошибки
была максимальной):


.

Применяя
это правило к частным случаям, получим:


абсолютная погрешность суммы равна
сумме абсолютных погрешностей слагаемых.
Если X
= a
+ b,
то DX
= Da
+ Db;


абсолютная погрешность разности равна
сумме абсолютных погрешностей
уменьшаемого и вычитаемого. Если X
= a
— b,
то DX
= Da
+ Db;


абсолютная погрешность произведения
двух сомножителей равна сумме произведений
среднего значения первого множителя
(aCP)
на абсолютную погрешность второго и
среднего значения второго множителя
(bCP)
на абсолютную погрешность первого. Если
X
= а 
b,
то DX
= aCP

Db
+ bCP

Dа.
Если X
= a n
, то DX
= n
аCPn-1

Dа;


абсолютная погрешность дроби равна
сумме произведения знаменателя на
абсолютную погрешность числителя и
числителя на абсолютную погрешность
знаменателя, деленной на квадрат
знаменателя. Если X
=,
то DX=.

3) По определению
найдем относительную погрешность

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    12.02.2015183.3 Кб27Пример работы по теме ПЕРЕСКАЗ.doc

  • #

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики — более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.


А какая ваша оценка?

ВИДЕО УРОК

Абсолютная погрешность.

Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.

Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.

Существует формула
абсолютной погрешности. Обозначим точное число буквой 
А, а буквой  а
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:

а = А – а.

ПРИМЕР:

В школе учится  374 ученика. Если округлить это число до  400,
то абсолютная погрешность измерения равна
:

400 – 374 = 26.

ПРИМЕР:

На предприятии  1284  рабочих и
служащих. При округлении этого числа до 
1300  абсолютная
погрешность составляет

1300 – 1284 = 16.

При округлении до  1280  абсолютная
погрешность составляет

1284 – 1280 = 4.

Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.

ПРИМЕР:

Торговые весы могут дать абсолютную погрешность, не
превышающую 
5 г, а аптекарские – не превышающую одной сотой грамма.

Записывают
абсолютную погрешность числа, используя знак 
±.

ПРИМЕР:

Длина рулона обоев составляет.

30 м ± 3
см.

Границу абсолютной
погрешности называют предельной абсолютной погрешностью.

Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.

ПРИМЕР:

Допустим, что при измерении коридора длиной в  20
м  мы допустили абсолютную погрешность
всего только в 
1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 
18
см  длины, мы тоже допустили абсолютную
погрешность в 
1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 
20
м  ошибка в 
1
см  вполне допустима и неизбежна, но
на 
18
см  такая ошибка является очень грубой.

Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 
20 м погрешность в  1 см 
составляет

долю
измеряемой величины, а при измерении корешка книги погрешность в 
см составляет


долю
измеряемой величины
.

Делаем вывод, что измеряя корешок книги, имеющий  18
см  длины и допустив погрешность в 
1
см, можно считать измерение с большой ошибкой. Но если погрешность в 
1
см  была допущена при измерении коридора
длиной в 
20
м, то это измерение можно считать максимально точным.

Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.

Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 
0,5 мм.

ПРИМЕР:

Для измерения длины болта использованы метровая линейка с
делениями 
0,5 см  и линейка с
делениями 
1 мм. В обоих случаях получен результат  3,5
см. Ясно, что в первом случае отклонение найденной длины 
3,5
см  от истинной, не
должно по модулю превышать 
0,5 см, во втором случае 
0,1 см.

Если этот же результат получится при измерении
штангенциркулем, то

p(l; 3,5) = |l – 3,5 ≤ 0,01|.

Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае 
l = 0,5  и, следовательно,

3
l ≤ 4,

в другом – l = 0,1  и

3,4
l ≤ 3,6.

ПРИМЕР:

Длина листа бумаги формата  А4  равна  (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно 
(650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.

РЕШЕНИЕ:

Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной  погрешности не
превышает  1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.

При измерении длины листа абсолютная погрешность не
превышает 
0,1 см на  29,7 см, то есть в процентном отношении это составляет

0,1
: 29,7 ∙ 100% ≈ 0,33%

измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает 
1 км 
на 
650 км, что в процентном соотношении составляет

1
: 650 ∙ 100% ≈ 0,15%

измеряемой величины.

Видим, что расстояние между городами измерено точнее, чем
длинна листа формата 
А4.

Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.

Относительная погрешность.

Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.

Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах. 

Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.

ПРИМЕР:

Округлим дробь  14,7 до целых и найдём относительную погрешность приближённого
значения
:

14,7 ≈ 15,

Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.

ПРИМЕР:

При измерении в (сантиметрах) толщины 
b 
стекла и длины 
l  книжной полки
получили следующие результаты
:

b 0,4 с
точностью до
  0,1,

l 100 с
точностью до
  0,1.

Абсолютная погрешность каждого из этих измерений не
превосходит 
0,1. Однако  0,1  составляет
существенную часть числа 
0,4  и
ничтожную часть числа 
100. Это показывает, что качество второго
измерения намного выше, чем первого.

В результате измерения нашли,
что 
b
0,4  с точностью до  0,1, то
есть абсолютная погрешность измерения не превосходит 
0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно

то есть относительная погрешность приближения не превосходит  25%.

Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит

Говорят, что в первом случае измерение выполнено с
относительной точностью до 
25%,
а во втором – с относительной точностью до
  0,1%.

ПРИМЕР:

Если взять абсолютную погрешность в  1
см,  при измерении длины отрезков 
10
см  и  10
м, то относительные погрешности будут соответственно равны 
10%  и  0,1%. Для
отрезка длиной в 
10 см  погрешность
в 
1
см  очень велика, это ошибка в  
10%. А для десятиметрового отрезка  1 см  не имеет значения, эта ошибка всего в   0,1%.

Чем меньше относительная погрешность
измерения, тем оно точнее.

Различают
систематические и случайные погрешности.

Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.

Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.

В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.

ПРИМЕР:

Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря –
50
г. Взвешивание показало  
3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 
50
г. Относительная погрешность не превосходит 

50/3600
1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.

В предыдущем примере
за предельную абсолютную погрешность можно взять 
50 г, а за предельную относительную погрешность  1,4%.

Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность 
100 г, 150 г  и вообще всякое
число, большее чем 
50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 
4,78  без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 
0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.

Предельная
абсолютная погрешность обозначается греческой буквой 
(<<дельта>>),
предельная относительная погрешность – греческой буквой 
δ
(<<дельта малая>>). Если приближённое число обозначить буквой 
а

Правила округления.

На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.

ПРИМЕР:

Для  х = 1,7 ± 0,2  относительная погрешность измерений равна:

ПРИМЕР:

Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 
17,9 см. Какова предельная относительная погрешность этого
измерения
?

РЕШЕНИЕ:

Здесь  а =
17,9
см. Можно принять 
= 0,1 см, так как с точностью
до 
1 мм 
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся
(при навыке можно прочесть на хорошей линейке и  0,02  и даже  0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину
). Относительная погрешность равна

Округляя, находим

ПРИМЕР:

Цилиндрический поршень имеет около  35
мм  в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла
  0,05% ?

РЕШЕНИЕ:

По условию, предельная относительная
погрешность должна составлять 
0,05%  от  35 мм. Следовательно, предельная абсолютная
погрешность равна

или, усиливая, 0,02
мм.

Можно воспользоваться
формулой

Подставляя в формулу 

а = 35,

𝛿 = 0,0005,

имеем

Значит,


= 35 × 0,0005 = 0,0175
мм.

Действия над приближёнными числами.

Сложение и вычитание приближённых чисел.

Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.

ПРИМЕР:

Складываются приближённые числа

265  и  32.

РЕШЕНИЕ:

Пусть предельная погрешность первого есть  5,
а второго 
1. Тогда предельная погрешность суммы равна

5
+ 1 = 6.

Так, если истинное значение первого есть  270,
а второго 
33, то приближённая сумма

265
+ 32 = 297

на  6  меньше истинной

270
+ 33 = 303.

ПРИМЕР:

Найти сумму приближённых чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Предельная погрешность каждого слагаемого 

0,00005.

Предельная погрешность суммы:

0,00005
9 = 0,00045.

Значит, в последнем (четвёртом) знаке суммы возможна ошибка до  5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 
0,619,
здесь все знаки верные.

При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 
9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 
1, 2, 3, 4  или даже на  5 единиц в ту и в другую сторону.

Например, первое
слагаемое может быть больше своего истинного значения на 
4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.

Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 
0,00045,
это произойдёт:

– когда истинная величина каждого слагаемого больше
приближённой величины на 
0,00005;

– когда истинная величина каждого слагаемого меньше
приближённой величины на 
0,00005.

Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 
0,0000002%  всех возможных случаев.

Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 
0,07% 
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 
2%  всех возможных случаев, а одну единицу –
примерно в 
25%.
В остальных 
75%  случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.

ПРИМЕР:

Найти сумму точных чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Округлим их до тысячных и сложим:

0,091
+ 0,083 + 0,077 + 0,071 + 0,067

 + 0,062 + 0,059 + 0,056 + 0,053 = 0,619.

Предельная погрешность суммы:

0,0005
9 = 0,0045.

Приближённая сумма отличается от истинной на  0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.

Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет
:

0,005
9 = 0,045.

Между тем получим:

0,09
+ 0,08 + 0,08 + 0,07 + 0,07

 + 0,06 + 0,06 + 0,06 + 0,05 = 0,62.

Истинная погрешность составляет только  0,0013.

Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.

ПРИМЕР:

Пусть предельная погрешность приближённого
уменьшаемого 
85  равна  2,
а предельная погрешность вычитаемого 
32  равна  3.
Предельная погрешность разности

85
– 32 = 53

есть

2
+ 3 = 5.

В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться

85
+ 2 = 87 
и

32
– 3 = 29
.

Тогда истинная разность есть

87
– 29 = 58.

Она на  5  отличается от
приближённой разности 
53.

Относительная погрешность суммы и разности.

Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.

Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.

ПРИМЕР:

Найти предельную абсолютную и предельную относительную
погрешность суммы чисел
:

24,4
+ 25,2 + 24,7.

РЕШЕНИЕ:

В каждом слагаемом суммы

24,4
+ 25,2 + 24,7 = 74,3

предельная относительная погрешность примерно одна и та
же, а именно
:

0,05
: 25 = 0,2%.

Такова же она и для суммы.

Здесь предельная абсолютная погрешность равна  0,15,
а относительная

0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.

В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.

Относительные погрешности при сложении и вычитании
складывать нельзя.

Умножение и деление приближённых чисел.

При делении и умножении чисел требуется сложить
относительные погрешности.

ПРИМЕР:

Пусть перемножаются приближённые числа  50  и  20, и пусть предельная относительная погрешность первого
сомножителя есть 
0,4%, а второго 
0,5%.

Тогда предельная относительная погрешность произведения

50
× 20 = 1000

приближённо равна  0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть

50
× 0,004 = 0,2,

а второго

20
× 0,005 = 0,1
.

Поэтому истинная величина произведения не больше чем

(50
+ 0,2)(20 + 0,1) = 1009,02,

и не меньше, чем

(50
– 0,2)(20 – 0,1) = 991,022
.

Если истинная величина произведения есть  1009,2,
то погрешность произведения равна

1009,2
– 1000 = 9,02,

а если  991,02, то погрешность произведения равна

1000
– 991,02 = 8,98.

Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 
9,02.
Предельная относительная погрешность равна

9,02
: 1000 = 0,902%,

то есть приближённо  0,9%.

Задания к уроку 16

  • Задание 1
  • Задание 2
  • Задание 3
  • Урок 1. Числовые неравенства
  • Урок 2. Свойства числовых неравенств
  • Урок 3. Сложение и умножение числовых неравенств
  • Урок 4. Числовые промежутки
  • Урок 5. Линейные неравенства
  • Урок 6. Системы линейных неравенств
  • Урок 7. Нелинейные неравенства
  • Урок 8. Системы нелинейных неравенств
  • Урок 9. Дробно-рациональные неравенства
  • Урок 10. Решение неравенств с помощью графиков
  • Урок 11. Неравенства с модулем
  • Урок 12. Иррациональные неравенства
  • Урок 13. Неравенства с двумя переменными
  • Урок 14. Системы неравенств с двумя переменными
  • Урок 15. Приближённые вычисления

Вычисление погрешностей измерений

Выполнение лабораторных работ связано с измерением физических величин, т. е. определением значений величин опытным путём с помощью измерительных приборов (средств измерения), и обработкой результатов измерений.

Различают прямые и косвенные измерения. При этом результат любого измерения является приблизительным, т. е. содержит погрешность измерения. Точность измерения физической величины характеризуют абсолютная и относительная погрешности.

Прямое измерение — определение значения физической величины непосредственно с помощью измерительного прибора.

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δиx + Δоx при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Абсолютная инструментальная погрешность Δиx связана с классом точности прибора. Абсолютные инструментальные погрешности некоторых средств измерений представлены в таблице 1.

Таблица 1

Средства измерений Диапазон измерений Абсолютная инструментальная погрешность
Линейки:
металлические
деревянные
пластмассовые

150, 300, 500 мм

400, 500, 750 мм
200, 250, 300 мм

0,1 мм

0,5 мм
1 мм
Лента измерительная 150 см 0,5 см
Мензурки 2-го класса 100, 200, 250 см3 5 см3
Амперметр школьный 2 А 0,05 А
Миллиамперметр от 0 до Imax 4 % максимального предела измерений Imax
Вольтметр школьный 6 В 0,15 В
Термометр лабораторный 100 °С 1 °С
Барометр-анероид 720–780 мм рт. ст. 3 мм рт. ст.
Штангенциркули с ценой деления 0,1; 0,05 мм 155, 250, 350 мм 0,1; 0,05 мм в соответствии с ценой деления нониуса
Микрометры с ценой деления 0,01 мм 0–25, 25–50, 50–75 мм 0,004 мм

Абсолютная погрешность отсчёта Δоx связана с дискретностью шкалы прибора. Если величину измеряют с точностью до целого деления шкалы прибора, то погрешность отсчёта принимают равной цене деления. Если при измерении значение величины округляют до половины деления шкалы, то погрешность отсчёта принимают равной половине цены деления.

Абсолютная погрешность определяет значение интервала, в котором лежит истинное значение измеренной величины:

x equals x subscript изм plus-or-minus increment x.

Относительную погрешность прямого измерения определяют отношением абсолютной погрешности к значению измеряемой величины:

straight epsilon subscript x equals fraction numerator increment x over denominator x subscript изм end fraction times 100 percent sign.

Относительная погрешность характеризует точность измерения: чем она меньше, тем точность измерения выше.

Косвенное измерение — определение значения физической величины с использованием формулы, связывающей её с другими величинами, измеренными непосредственно с помощью приборов.

Одним из методов определения погрешности косвенных измерений является метод границ погрешностей. Формулы для вычисления абсолютных и относительных погрешностей косвенных измерений методом границ погрешностей представлены в таблице 2.

Таблица 2

Вид функции y Абсолютная погрешность Δy Относительная погрешность fraction numerator bold increment bold y over denominator bold y end fraction
x1 + x2 Δx1 + Δx2 fraction numerator increment x subscript 1 plus increment x subscript 2 over denominator open vertical bar x subscript 1 plus x subscript 2 close vertical bar end fraction
x1 − x2 Δx1 + Δx2 fraction numerator increment x subscript 1 plus increment x subscript 2 over denominator open vertical bar x subscript 1 minus x subscript 2 close vertical bar end fraction
Cx CΔx fraction numerator increment x over denominator x end fraction
x1x2 |x1| Δx2 + |x2| Δx1 fraction numerator increment x subscript 1 over denominator open vertical bar x subscript 1 close vertical bar end fraction plus fraction numerator increment x subscript 2 over denominator open vertical bar x subscript 2 close vertical bar end fraction
x subscript 1 over x subscript 2 fraction numerator open vertical bar x subscript 1 close vertical bar increment x subscript 2 plus open vertical bar x subscript 2 close vertical bar increment x subscript 1 over denominator x subscript 2 superscript 2 end fraction fraction numerator increment x subscript 1 over denominator open vertical bar x subscript 1 close vertical bar end fraction plus fraction numerator increment x subscript 2 over denominator open vertical bar x subscript 2 close vertical bar end fraction
xn |n||x|n−1Δx open vertical bar n close vertical bar fraction numerator increment x over denominator open vertical bar x close vertical bar end fraction
lnx fraction numerator increment x over denominator x end fraction fraction numerator increment x over denominator x open vertical bar ln x close vertical bar end fraction
sinx |cosx| Δx fraction numerator increment x over denominator open vertical bar tg x close vertical bar end fraction
cosx |sinx| Δx |tgx| Δx
tgx fraction numerator increment x over denominator cos squared x end fraction fraction numerator 2 increment x over denominator open vertical bar sin 2 x close vertical bar end fraction

Абсолютную погрешность табличных величин и фундаментальных физических постоянных определяют как половину единицы последнего разряда значения величины.

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Рассчитайте ошибки и доверительный интервал
  • Раст ошибка чтения диска
  • Раст код ошибки 30004
  • Рассуждение про ошибки
  • Раст код ошибки 10011

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии