Расчет ошибки репрезентативности формула

В
статистике выделяют два основных метода
исследования — сплошной и выборочный.
При проведении выборочного исследования
обязательным является соблюдение
следующих требований: репрезентативность
выборочной совокупности и достаточное
число единиц наблюдений. При выборе
единиц наблюдения возможны ошибки
смещения
,
т.е. такие события, появление которых
не может быть точно предсказуемым. Эти
ошибки являются объектив­ными и
закономерными. При определении степени
точности выборочно­го исследования
оценивается величина ошибки, которая
может прои­зойти в процессе выборки
случайная
ошибка репрезентативности (
m)
является
фактической разностью между средними
или относительными величинами, полученными
при проведении выборочного исследования
и аналогичными величинами, которые были
бы получены при проведении исследования
на гене­ральной совокупности.

Оценка
достоверности результатов исследования
предусматривает определение:

1.
ошибки репрезентативности

2.
доверительных границ средних (или
относительных) величин в генеральной
совокупности

3.
достоверности разности средних (или
относительных) величин (по критерию t)

Расчет
ошибки репрезентативности

(mм)
средней арифмети­ческой величины
(М):

,
где σ
— среднее квадратическое отклонение; n
— численность выборки (>30).

Расчет
ошибки репрезентативности (mР)
относительной величины (Р):

,
где Р — соответствующая относительная
величина (рассчитанная, например, в %);

q
=100 — Ρ%
— величина, обратная Р; n
— численность выборки (n>30)

В
клинических и экспериментальных работах
довольно часто приходится использовать
малую
выборку,
когда
число наблюдений меньше или равно 30.
При малой выборке для расчета ошибок
репрезентатив­ности, как средних, так
и относительных величин,
число
наблюде­ний уменьшается на единицу,
т.е.

;
.

Величина
ошибки репрезентативности зависит от
объема выборки: чем больше число
наблюдений, тем меньше ошибка. Для оценки
достоверности выборочного показателя
принят следующий подход: показатель
(или средняя величина) должен в 3 раза
превышать свою ошибку, в этом случае он
считается достоверным.

83. Определение доверительных границ средних и относительных величин.

Знание
величины ошибки недостаточно для того,
чтобы быть уве­ренным в результатах
выборочного исследования, так как
конкрет­ная ошибка выборочного
исследования может быть значительно
больше (или меньше) величины средней
ошибки репрезентативности. Для
оп­ределения точности, с которой
исследователь желает получить ре­зультат,
в статистике используется такое понятие,
как вероят­ность безошибочного
прогноза, которая является характеристикой
надежности результатов выборочных
медико-биологических статистических
исследований. Обычно, при проведении
медико-биологических статистических
исследований используют вероятность
безошибочного прогноза 95% или 99%. В
наиболее ответственных случаях, когда
необходимо сделать особенно важные
выводы в теоретическом или практическом
отношении, используют вероятность
безошибочного прогноза 99,7%

Определенной
степени вероятности безошибочного
прогноза соот­ветствует определенная
величина предельной
ошибки случайной выборки (
Δ
— дельта)
,
которая определяется по формуле:

Δ=t
* m
, где t
— доверительный коэффициент, который
при большой выборке при вероятности
безо­шибочного прогноза 95% равен 2,6;
при вероятности безоши­бочного
прогноза 99% — 3,0; при вероятности
безошибочно­го прогноза 99,7% — 3,3, а при
малой выборке определяется по специальной
таблице значений t
Стьюдента.

Используя
предельную ошибку выборки (Δ),
можно определить до­верительные
границы
,
в которых с определенной вероятностью
безо­шибочного прогноза заключено
действительное значение статистичес­кой
величины,
характеризующей
всю генеральную совокупность (сред­ней
или относительной).

Для
определения доверительных границ
используются следующие формулы:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ

Государственное бюджетное профессиональное образовательное учреждение города Москвы

«ЮРИДИЧЕСКИЙ КОЛЛЕДЖ»

(ГБПОУ Юридический колледж)

ПЛАН-КОНСПЕКТ учебного занятия

по ОП.11 Статистика

учебной дисциплине/междисциплинарному курсу

для обучающихся 2 курса

специальность 40.02.01 Право и организация социального обеспечения

(набор 2016 г.)

(углубленная подготовка)

дата проведения занятия по расписанию

Тема 3.1. Выборочное наблюдение

Занятие 15.  ПЗ №8 Определение ошибки репрезентативности.

Определение объема выборочной совокупности

Цель занятия: отработать практические навыки по определению доверительных пределов и исчислению ошибок выборки 

Задачи занятия:

Обучающая: Обеспечить усвоение обучающимися материала о понятиях: ошибки репрезентативности, выборка, выборочная совокупность;

Воспитательная: воспитывать навыки самостоятельной работы, чувство ответственности за порученный участок работы, дисциплину  умственного труда, уверенность в своих силах, стремление к достижению результата;

Развивающая: создавать условия для развития самостоятельности мышления, способности высказывания собственной точки зрения, систематизировать необходимую информацию, анализировать, сравнивать и обобщать информацию, развивать монологическую речь.

Основная литература:

Глава 11. Выборочное наблюдение. (211-220) Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО 

Дополнительная литература:

 Савюк Л.К. Правовая статистика: Учебник. — М.: Юрист, 2016

Интернет-ресурсы:

  1. Информационно-издательский центр «Статистика России» http://www.statbook.ru 
  2. Электронный фонд правовой и технической документации http://docs.cntd.ru 
  3. Информационно правовой портал http://www.garant.ru/

Междисциплинарные связи: Право социальное обеспечение

Внутридисциплинарные связи: Тема 2.1. Сводка и группировка статистических данных

1. Актуализация знаний по ранее пройденному материалу учебного курса

(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)

Таблица 1.

Вопрос

(тестовое задание)

Ответ

  1. Задача сводки…
  1. дать характеристику объекту исследования с помощью запроектированных систем статистических показателей, выявить и измерить такие путем его существенные черты и особенности;
  2. дать характеристику объекту исследования с помощью запроектированных систем статистических показателей;
  3. выявить и измерить такие путем его существенные черты и особенности;
  4. подсчет общих и групповых итогов, получение системы взаимосвязанных показателей.
  1. Перегруппировка ранее сгруппированных данных статистического наблюдения называется:
  1. типологической группировкой;
  2. структурной группировкой;
  3. вторичной группировкой;
  4. аналитической группировкой.
  1. Плотность распределения – это
  1. частота, рассчитанная на единицу ширины интервала;
  2. количество единиц в ширине интервала;
  3. все верно;
  4. нет верного ответа.
  1. К атрибутивным группировочным признакам относятся:
  1. пол человека;
  2. возраст человека;
  3. среднедушевой доход семьи;
  4. правильного ответа нет.
  1. «Объем производства товаров и услуг», по временному фактору относятся к …
  1. моментному виду;
  2. интервальному виду;
  3. минутному виду;
  4. интенсивному виду.

2. Изучаемые вопросы занятия

1. Определение ошибки репрезентативности.

2. Определение объема выборочной совокупности.

Вопрос 1.        Определение ошибки репрезентативности

В статистике выделяют два основных метода исследования – сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны Ошибки смещения, т. е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки – Случайная ошибка репрезентативности (M) – Является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности.

Оценка достоверности результатов исследования предусматривает определение:

1. ошибки репрезентативности

2. доверительных границ средних (или относительных) величин в генеральной совокупности

3. достоверности разности средних (или относительных) величин (по критерию t)

Расчет ошибки репрезентативности (mм) средней арифметической величины (М):

https://uchenie.net/wp-content/uploads/2012/08/image142.pnghttps://uchenie.net/wp-content/uploads/2012/08/image143.png, где σ – среднее квадратическое отклонение; n – численность выборки (>30).

Расчет ошибки репрезентативности (mР) относительной величины (Р):

https://uchenie.net/wp-content/uploads/2012/08/image144.png, где Р – соответствующая относительная величина (рассчитанная, например, в %);

Q =100 – Ρ% – величина, обратная Р; n – численность выборки (n>30)

В клинических и экспериментальных работах довольно часто приходится использовать Малую выборку, Когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величинЧисло наблюдений уменьшается на единицу, т. е.

https://uchenie.net/wp-content/uploads/2012/08/image145.pnghttps://uchenie.net/wp-content/uploads/2012/08/image146.png.

Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.

Знание величины ошибки недостаточно для того, чтобы быть уверенным в результатах выборочного исследования, так как конкретная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности. Для определения точности, с которой исследователь желает получить результат, в статистике используется такое понятие, как вероятность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований. Обычно, при проведении медико-биологических статистических исследований используют вероятность безошибочного прогноза 95% или 99%. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7%

Определенной степени вероятности безошибочного прогноза соответствует определенная величина Предельной ошибки случайной выборки (Δ – дельта), которая определяется по формуле:

Δ=t * m, где t – доверительный коэффициент, который при большой выборке при вероятности безошибочного прогноза 95% равен 2,6; при вероятности безошибочного прогноза 99% – 3,0; при вероятности безошибочного прогноза 99,7% – 3,3, а при малой выборке определяется по специальной таблице значений t Стьюдента.

Используя предельную ошибку выборки (Δ), можно определить Доверительные границы, в которых с определенной вероятностью безошибочного прогноза заключено действительное значение статистической величины, Характеризующей всю генеральную совокупность (средней или относительной).

Для определения доверительных границ используются следующие формулы:

  1. для средних величин:

 https://uchenie.net/wp-content/uploads/2012/08/image147.png,где Мген – доверительные границы средней величины в генеральной совокупности;

Мвыб – средняя величинаПолученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; mM – ошибка репрезентативности средней величины.

     2) для относительных величин:

https://uchenie.net/wp-content/uploads/2012/08/image148.png, где Рген – доверительные границы относительной величины в генеральной совокупности; Рвыб – относительная величина, полученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент; mP – ошибка репрезентативности относительной величины.

Доверительные границы показывают, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера.

При малом числе наблюдений (n<30), для вычисления доверительных границ значение коэффициента t находят по специальной таблице Стьюдента. Значения t расположены в таблице на пересечении с избранной вероятностью безошибочного прогноза и строкиУказывающей на имеющееся число степеней свободы (n)Которое равно n-1.

на определение ошибок репрезентативности (m) и доверительных границ средней величины генеральной совокупности (Мген) при числе наблюдений больше 30

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у 36 обследованных водителей сельскохозяйственных машин через 1 ч работы составила 80 ударов в 1 минуту; σ = ± 6 ударов в минуту.

Задание: определить ошибку репрезентативности (mM) и доверительные границы средней величины генеральной совокупности (Мген).

Решение.

  1. Вычисление средней ошибки средней арифметической (ошибки репрезентативности) (m): m = σ / √n = 6 / √36 = ±1 удар в минуту
  2. Вычисление доверительных границ средней величины генеральной совокупности (Мген). Для этого необходимо:
  • а) задать степень вероятности безошибочного прогноза (Р = 95 %);
  • б) определить величину критерия t. При заданной степени вероятности (Р=95%) и числе наблюдений меньше 30 величина критерия t, определяемого по таблице, равна 2 (t = 2). Тогда Мген = Мвыб ± tm = 80 ± 2×1 = 80 ± 2 удара в минуту.

Вывод. Установлено с вероятностью безошибочного прогноза Р = 95%, что средняя частота пульса в генеральной совокупности, т.е. у всех водителей сельскохозяйственных машин, через 1 ч работы в аналогичных условиях будет находиться в пределах от 78 до 82 ударов в минуту, т.е. средняя частота пульса менее 78 и более 82 ударов в минуту возможна не более, чем у 5% случаев генеральной совокупности.

на определение ошибок репрезентативности (m) и доверительных границ относительного показателя генеральной совокупности (Рген)

Условие задачи: при медицинском осмотре 164 детей 3 летнего возраста, проживающих в одном из районов городе Н., в 18% случаев обнаружено нарушение осанки функционального характера.

Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген).

Решение.

  1. Вычисление ошибки репрезентативности относительного показателя: m = √P x q / n = √18 x (100 — 18) / 164 = ± 3%
  2. Вычисление доверительных границ средней величины генеральной совокупности (Рген) производится следующим образом:
  • необходимо задать степень вероятности безошибочного прогноза (Р=95%);
  • при заданной степени вероятности и числе наблюдений больше 30, величина критерия t равна 2 (t = 2). Тогда Рген = Рвыб± tm = 18% ± 2 х 3 = 18% ± 6%.

Вывод. Установлено с вероятностью безошибочного прогноза Р=95%, что частота нарушения осанки функционального характера у детей 3 летнего возраста, проживающих в городе Н., будет находиться в пределах от 12 до 24% случаев.

на оценку достоверности разности средних величин

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у водителей сельскохозяйственных машин через 1 ч после начала работы составила 80 ударов в минуту; m = ± 1 удар в мин. Средняя частота пульса у этой же группы водителей до начала работы равнялась 75 ударам в минуту; m = ± 1 удар в минуту.

Задание: оценить достоверность различий средних значений пульса у водителей сельскохозяйственных машин до и после 1 ч работы.

Решение.

https://extra.im/wp-content/uploads/2018/09/6.png

Вывод. Значение критерия t = 3,5 соответствует вероятности безошибочного прогноза Р > 99,7%, следовательно можно утверждать, что различия в средних значениях пульса у водителей сельскохозяйственных машин до и после 1 ч работы не случайно, а достоверно, существенно, т.е. обусловлено влиянием воздействия шума и низкочастотной вибрации.

на оценку достоверности разности относительных показателей

Условие задачи: при медицинском осмотре детей 3 летнего возраста в 18% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 4-летнего возраста составила 24% (m = ± 2,64%).

Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.

Решение.

https://extra.im/wp-content/uploads/2018/09/7.png

Вывод. Значение критерия t=1,5 соответствует вероятности безошибочного прогноза Р<95%. Следовательно, различие в частоте нарушений осанки среди детей, сравниваемых возрастных групп случайно, недостоверно, несущественно, т.е. не обусловлено влиянием возраста детей.

Источники информации по 1 вопросу

Автор и наименование

Страницы

(форма доступа для Интернет-ресурсов)

Основная литература

Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО

 стр. 211-220

Интернет ресурсы

  1. Информационно-издательский центр «Статистика России»

http://www.statbook.ru

  1. Электронный фонд правовой и технической документации

http://docs.cntd.ru 

  1. Информационно правовой портал

http://www.garant.ru/

Контрольное задание по Вопросу 1

  1. Записать в тетрадь конспект (1-2 стр.)

Вопрос 2. Определение объема выборочной совокупности

 Социологические исследования редко бывают сплошными, как, например, перепись населения. Обычно сплошное исследование проводится при небольшой генеральной совокупности.

Чаще всего исследования носят выборочный характер, при котором наиболее важным основанием является возможность распространения полученных результатов и выводов на всю генеральную совокупность. В таком случае сплошное исследование  нецелесообразно. Обеспечение этой нецелесообразности — вопрос о репрезентативности выборки, т.е. достаточной количественной и качественной представительности генеральной совокупности в выборке.

Условиями соблюдения репрезентативности выборки являются:

1) равная возможность каждого члена генеральной совокупности попасть в выборку;

2) отбор необходимо проводить независимо от изучаемого признака (иначе в выборку могут попасть, например, только спортсмены);

3) отбор по возможности должен производиться из однородных совокупностей;

4) величина выборки должна быть достаточно большой.

Далее возникает вопрос: как определить достаточный объем выборки? Для этого необходимо иметь характеристики генеральной совокупности по важнейшим (с точки зрения исследования) признакам. К ним, например, можно отнести сведения о количестве желающих заниматься физической культурой и спортом, о числе занимающихся и т.д. Но, как правило, такие характеристики (или многие из них) не известны. Пилотажные исследования как раз и направлены на их выявление.

Приведем пример определения объема выборочной совокупности. В ходе подготовки к проведению конкретно-социологического исследования на основании теоретических посылок были выделены характеристики и признаки, подлежащие изучению. Например, желание заниматься физической культурой, спортом, величина потребности, участие в видах деятельности и др.

На основании результатов изучения этих признаков в пробном исследовании (30 и более респондентов) определяется объем выборки.

Предположим, что в пробном исследовании опрошено 147 студентов 4-х курсов в четырех вузах Республики Беларусь.

Для желания заниматься физической культурой получены следующие распределения:

1.«Нет, не хочу» — 5 человек;

2.«Скорее не хочу, чем хочу» — 3 человека;

3.«Безразлично» — 11 человек;

4.«Скорее хочу, чем не хочу» — 34 человека;

5.«Да, хочу» — 72 человека.

Для расчета объема выборки используются формулы:

http://ebooks.grsu.by/gorodilin/5.GIF

t — 1,96 — распределение Стьюдента для вероятности 0,95 или 95% (т.е., если требуемая вероятность соответствия характеристик выборки и характеристик генеральной совокупности 95%, всегда = 1,96. Их соответствие на 95% — общепринятое требование в социологических исследованиях.

Для нашего распределения:

http://ebooks.grsu.by/gorodilin/3.GIF

При условии, что выборка в пробном исследовании представляла бы собой модель генеральной совокупности, величина выборочной совокупности для изучения желания заниматься физической культурой должна быть не меньше 147 человек. Тогда с вероятностью 95% можно утверждать, что генеральное среднее лежит в пределах 4,39+0,155.

Поскольку модель выборки в пробном исследовании во вузам не представляет собой модели генеральной совокупности (опрос был в четырех вузах из 30), то увеличиваем полученное n (30/4) в 7,5 раза. Тогда необходимый объем выборки — 1102 респондента.

Качественная представительность полученной выборки оценивается сравнением существенных характеристик (либо связанных с существенными) генеральной совокупности и выборки. Для студенчества, например, такими характеристиками являются: соотношение по полу, охват учебными занятиями по физическому воспитанию, соотношение форм занятий и др.

Когда информация о признаках элементов генеральной совокупности отсутствует, исключается возможность определения объема выборочной совокупности при помощи формул. В этом случае можно опереться на многолетний опыт социологов — практиков, свидетельствующий о том, что для пробных опросов достаточна выборка объемом 100-250 человек. При массовых опросах, если величина генеральной совокупности 5000 человек, достаточный объем выборочной совокупности — не менее 500 человек, если же величина генеральной совокупности 5000 человек и более, то — 10% ее состава (но не более 2000-2500 человек). Это характеризует достаточно достоверные результаты исследования.

ПРИМЕР 1

При проверке импортирования груза на таможне методом случайной выборки было обработано 200 изделий. В результате был установлен средний вес изделия 30г., при СКО=4г с вероятностью 0,997. Определите пределы в которых находится средний вес изделий генеральной совокупности.

Решение.

В данном примере – случайный повторный отбор.

n=200

https://www.goodstudents.ru/images/stories/vyborka/image002.gif=30г

https://www.goodstudents.ru/images/stories/vyborka/image004.gif=4г — СКО

p=0,997, тогда t=3

Формула средней ошибки для случайного повторного отбора:

https://www.goodstudents.ru/images/stories/vyborka/image006.gif

https://www.goodstudents.ru/images/stories/vyborka/image008.gif=0,84 г

https://www.goodstudents.ru/images/stories/vyborka/image010.gifг

Определяем величину средней ошибки.

https://www.goodstudents.ru/images/stories/vyborka/image012.gif

Ответ: пределы в которых находится средний вес изделий:https://www.goodstudents.ru/images/stories/vyborka/image014.gif г

ПРИМЕР 2

 В городе проживает 250тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей:

 P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности.

Число детей в семье, xi

0

1

2

3

4

5

Кол-во детей в семье

1000

2000

1200

400

200

200

Решение

2%-я выборка означает: n=250000*0,02= 5000 семей было исследовано.

Т.к. выборка бесповторная, используем следующую формулу для определения средней величины ошибки:

https://www.goodstudents.ru/images/stories/vyborka/image016.gif

Найдем среднее число детей в выборочной совокупности:

https://www.goodstudents.ru/images/stories/vyborka/image018.gif ребенка

Определим дисперсию

https://www.goodstudents.ru/images/stories/vyborka/image020.gif

https://www.goodstudents.ru/images/stories/vyborka/image022.gif ребенка – средняя величина ошибки

Т.к = 0,954, то t = 2

https://www.goodstudents.ru/images/stories/vyborka/image024.gifребенка

https://www.goodstudents.ru/images/stories/vyborka/image026.gifребенка

Вывод: из-за слишком малой величины ошибки, среднее число детей в генеральной совокупности можно принять за 1,5 ребенка.

Источники информации по 2 вопросу

Автор и наименование

Страницы

(форма доступа для Интернет-ресурсов)

Основная литература

Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 3-е издание, стер. – М.: КНОРУС, 2019. – 232 с. – СПО

 стр. 211-220

Интернет ресурсы

  1. Информационно-издательский центр «Статистика России»

http://www.statbook.ru

  1. Электронный фонд правовой и технической документации

http://docs.cntd.ru 

  1. Информационно правовой портал

http://www.garant.ru/

Контрольное задание по Вопросу 2

  1. Записать в тетрадь конспект (1-2 стр.)

3. Подведение итогов учебного занятия

(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)

Таблица 2.

Наименование изученного вопроса учебного занятия

Контрольное задание по изученному вопросу

Ответ

Определение ошибки репрезентативности.

ЗАДАНИЕ 1

  Условие задачи: при медицинском осмотре 126 детей 6 летнего возраста, проживающих в одном из районов городе А., в 12% случаев обнаружено нарушение осанки функционального характера.

Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген).

Определение ошибки репрезентативности.

ЗАДАНИЕ 2.  

Условие задачи: при медицинском осмотре детей 6 летнего возраста в 15% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 7-летнего возраста составила 24% (m = ± 2,64%).

Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.

Определение объема выборочной совокупности

ЗАДАНИЕ 3. В городе проживает 300 тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей:

 P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности

Определение объема выборочной совокупности

Сформулируйте понятие генеральной совокупности

Определение объема выборочной совокупности

Перечислите способы отбора единиц для выборочного наблюдения

  1. Домашнее задание на следующее занятие
  1. Выучить основные понятия. Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО (стр. 211-220)
  2. Выполнить задание 11.1. в тетради (стр. 224) учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО

Преподаватель                                                                 Ю.В. Древаль

СОГЛАСОВАНО

Протокол заседания ЦК дисциплин профессионального цикла специальности «Право и организация

социального обеспечения»

ГБПОУ Юридический колледж

от ____________ 2017 г. № ___

Весь смысл выборочной совокупности в том, чтоб по ней можно было судить о генеральной совокупности, для этого выборка должна быть репрезентативной. Репрезентативность достигается в том числе достаточным количеством наблюдений (n).

Параметры распределения

Важнейшие параметры распределения случайной величины Х являются — математическое ожидание µ (Мген) и дисперсия σ2.

  • Математическое ожидание (Х) — среднее значение случайной величины при стремлении количества выборок к бесконечности.
  • Среднеквадратичное отклонение2) — показатель рассеивания значений случайной величины относительно ей математического ожидания.

Распределения бывают непрерывными и дискретными. Наиболее известно из непрерывних распределений — нормальное.

Характеристики нормального распределения

  • Совпадение средней арифметической (М), медианы (Ме) и моды (Мо).
  • Чем больше величина отклоняется от среднего значения, тем меньше частота его встречаемости.

Пример нормального распределения

Пример нормального распределения

Первичные величины, характеризующие распределение

  • Средняя арифметическая (М)
  • Среднее квадратичное отклонение2)
  • Коэффициент вариации
  • Коэффициент асимметрии — показатель отклонения распределения в левую и правую сторону по оси абсцесс. Если больше влево — левосторонняя или отрицательная. Если вправо — правосторонняя положительная.
  • Эксцесс — мера сглаженности. Если близко к 0, то форма распределения близка к нормальному виду. Если > 0 — то форма остроконечная. Если < 0 — форма плосковершинная. Норма эксцесса от -1 до +1.

Вид графика в зависимости от значения коэффициента асимметрии

Вид графика в зависимости от значения коэффициента асимметрии

Вид графика в зависимости от эксцесса

Вид графика в зависимости от эксцесса
а,б — отрицательные эксцессы
в — положительный

Значение нормального распределения

Если нормальное распределение, для обработки используют параметрические методы математической статистики для расчёта достоверности различий между выборками:

  • Критерий Стьюдента (t)
  • Критерий Фишера (F)
  • Коэффициент корреляции Пирсона (r)

Если кривая распределения отлична от нормальной, используют методы непараметрической статистики, расчёт достоверности разности по

  • Критерию Манна-Уитни (U)
  • Коэффициенту ранговой корреляции Спирмена (p)

Альтернативное (дихотомическое) распределение

Параметр математического ожидания выражает относительную величину (долю) единиц совокупности, не  которые обладают изученным признаком (Р). Доля совокупности, не обладающая признаком, обозначается q.

Как правило, q = 10 - P.

Дисперсия в таком случае: Рв = nx/nв

Ошибки репрезентативности

  • Ошибка выборочного наблюдения (mвн) — разность между значением параметра в генеральной совокупности и его выборочным значением.

Для среднего значения mвн = | Мген - Мв |; для доли: mвн = | Рген - Рв |.

  • Средняя ошибка (m) — величина, выражающая среднее квадратичное отклонение выборочной средней от математического ожидания: m = √(σ2/n)
  • Соотношение дисперсий между выборочной и генеральной совокупностями: σ22в × n/(n-1)

При достаточно больших выборках (n) можно считать, что σ22в

Расчёт средней ошибки (m) для разных видов выборок

На практике чаще используются следующие формулы

  • Расчёт ошибки репрезентативности средней арифметической (mM): mM=σ/√n
  • Расчёт ошибки репрезентативности относительной величины (mp): mp=√(P*q / n)

где P — относительная величина (проценты, промилле и т.д.)
q — доля единиц совокупности с альтернативным признаком (1-Р или 100-Р или 1000-Р) в зависимости от основания, на которое рассчитан коэффициент
n — численность выборки

  • Если в испытании объём выборки менее 30, то n уменьшается на 1: (n-1)

Вероятность безошибочного прогноза

В медицинских исследований достаточная вероятность — 95-99%. В некоторых случаях должный прогноз — 99,7%.
Определённой вероятности безошибочного прогноза соответствует величина предельной ошибки случайной выборки (Δ).

Δ = t × m

где t — доверительный коэффициент (критерий Стьюдента)
m — средняя ошибка выборки

Вероятность прогноза (р) при значении критерия Стьюдента (t)

t p
< 1.96 < 0.95
2 0.954
2.5 0.988
3 0.997
3.5 0.999
  • Предельная ошибка выборки: Δ = t × √( σ2 ÷ n)
  • Необходимая численность выборки: n = t2 × σ2 ÷ Δ2

Для определения достоверности различий между двумя показателями или средними величинами при малом числе наблюдений (n ≤ 30, в каждой группе) критерий достоверности оценивается по таблице значений t-критерия Стьюдента по числу степеней свободы/ При этом число степеней свободы определяет­ся, как n´= n1 + n2 - 2.

Число степеней свободы, n´ Значение t-критерия Стьюдента при p=0.05
1 12.706
2 4.303
3 3.182
4 2.776
5 2.571
6 2.447
7 2.365
8 2.306
9 2.262
10 2.228
11 2.201
12 2.179
13 2.160
14 2.145
15 2.131
16 2.120
17 2.110
18 2.101
19 2.093
20 2.086
21 2.080
22 2.074
23 2.069
24 2.064
25 2.060
26 2.056
27 2.052
28 2.048
29 2.045
30 2.042
31 2.040
32 2.037
33 2.035
34 2.032
35 2.030
36 2.028
37 2.026
38 2.024
40-41 2.021
42-43 2.018
44-45 2.015
46-47 2.013
48-49 2.011
50-51 2.009
52-53 2.007
54-55 2.005
56-57 2.003
58-59 2.002
60-61 2.000
62-63 1.999
64-65 1.998
66-67 1.997
68-69 1.995
70-71 1.994
72-73 1.993
74-75 1.993
76-77 1.992
78-79 1.991
80-89 1.990
90-99 1.987
100-119 1.984
120-139 1.980
140-159 1.977
160-179 1.975
180-199 1.973
200 1.972
1.960

Оценка достоверности разности величин

Для средних величин:

Для относительных величин:

где М1 и М2, Р1 и Р2 — статистические величины, полученные при проведении выборочных исследований;
m1 и m2; — их ошибки репрезентативности; t — ко­эффициент достоверности.

Понравилась статья? Поделить с друзьями:

Интересное по теме:

  • Расходомер эндресс хаузер ошибка 321
  • Расчет ошибки показателя
  • Расходомер исо ошибка открытия pdata dll
  • Расчет ошибки прогнозирования
  • Растения против зомби invalid file version ошибка

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии