Существует две фундаментальные стратегии: обработка исправимых ошибок (исключения, коды возврата по ошибке, функции-обработчики) и неисправимых (assert()
, abort()
). В каких случаях какую стратегию лучше использовать?
Виды ошибок
Ошибки возникают по разным причинам: пользователь ввёл странные данные, ОС не может дать вам обработчика файла или код разыменовывает (dereferences) nullptr
. Каждая из описанных ошибок требует к себе отдельного подхода. По причинам ошибки делятся на три основные категории:
- Пользовательские ошибки: здесь под пользователем подразумевается человек, сидящий перед компьютером и действительно «использующий» программу, а не какой-то программист, дёргающий ваш API. Такие ошибки возникают тогда, когда пользователь делает что-то неправильно.
- Системные ошибки появляются, когда ОС не может выполнить ваш запрос. Иными словами, причина системных ошибок — сбой вызова системного API. Некоторые возникают потому, что программист передал системному вызову плохие параметры, так что это скорее программистская ошибка, а не системная.
- Программистские ошибки случаются, когда программист не учитывает предварительные условия API или языка программирования. Если API требует, чтобы вы не вызывали
foo()
с0
в качестве первого параметра, а вы это сделали, — виноват программист. Если пользователь ввёл0
, который был переданfoo()
, а программист не написал проверку вводимых данных, то это опять же его вина.
Каждая из описанных категорий ошибок требует особого подхода к их обработке.
Пользовательские ошибки
Сделаю очень громкое заявление: такие ошибки — на самом деле не ошибки.
Все пользователи не соблюдают инструкции. Программист, имеющий дело с данными, которые вводят люди, должен ожидать, что вводить будут именно плохие данные. Поэтому первым делом нужно проверять их на валидность, сообщать пользователю об обнаруженных ошибках и просить ввести заново.
Поэтому не имеет смысла применять к пользовательским ошибкам какие-либо стратегии обработки. Вводимые данные нужно как можно скорее проверять, чтобы ошибок не возникало.
Конечно, такое не всегда возможно. Иногда проверять вводимые данные слишком дорого, иногда это не позволяет сделать архитектура кода или разделение ответственности. Но в таких случаях ошибки должны обрабатываться однозначно как исправимые. Иначе, допустим, ваша офисная программа будет падать из-за того, что вы нажали backspace в пустом документе, или ваша игра станет вылетать при попытке выстрелить из разряженного оружия.
Если в качестве стратегии обработки исправимых ошибок вы предпочитаете исключения, то будьте осторожны: исключения предназначены только для исключительных ситуаций, к которым не относится большинство случаев ввода пользователями неверных данных. По сути, это даже норма, по мнению многих приложений. Используйте исключения только тогда, когда пользовательские ошибки обнаруживаются в глубине стека вызовов, вероятно, внешнего кода, когда они возникают редко или проявляются очень жёстко. В противном случае лучше сообщать об ошибках с помощью кодов возврата.
Системные ошибки
Обычно системные ошибки нельзя предсказать. Более того, они недетерминистские и могут возникать в программах, которые до этого работали без нареканий. В отличие от пользовательских ошибок, зависящих исключительно от вводимых данных, системные ошибки — настоящие ошибки.
Но как их обрабатывать, как исправимые или неисправимые?
Это зависит от обстоятельств.
Многие считают, что ошибка нехватки памяти — неисправимая. Зачастую не хватает памяти даже для обработки этой ошибки! И тогда приходится просто сразу же прерывать выполнение.
Но падение программы из-за того, что ОС не может выделить сокет, — это не слишком дружелюбное поведение. Так что лучше бросить исключение и позволить catch
аккуратно закрыть программу.
Но бросание исключения — не всегда правильный выбор.
Кто-то даже скажет, что он всегда неправильный.
Если вы хотите повторить операцию после её сбоя, то обёртывание функции в try-catch
в цикле — медленное решение. Правильный выбор — возврат кода ошибки и цикличное исполнение, пока не будет возвращено правильное значение.
Если вы создаёте вызов API только для себя, то просто выберите подходящий для своей ситуации путь и следуйте ему. Но если вы пишете библиотеку, то не знаете, чего хотят пользователи. Дальше мы разберём подходящую стратегию для этого случая. Для потенциально неисправимых ошибок подойдёт «обработчик ошибок», а при других ошибках необходимо предоставить два варианта развития событий.
Обратите внимание, что не следует использовать подтверждения (assertions), включающиеся только в режиме отладки. Ведь системные ошибки могут возникать и в релизной сборке!
Программистские ошибки
Это худший вид ошибок. Для их обработки я стараюсь сделать так, чтобы мои ошибки были связаны только с вызовами функций, то есть с плохими параметрами. Прочие типы программистских ошибок могут быть пойманы только в runtime, с помощью отладочных макросов (assertion macros), раскиданных по коду.
При работе с плохими параметрами есть две стратегии: дать им определённое или неопределённое поведение.
Если исходное требование для функции — запрет на передачу ей плохих параметров, то, если их передать, это считается неопределённым поведением и должно проверяться не самой функцией, а оператором вызова (caller). Функция должна делать только отладочное подтверждение (debug assertion).
С другой стороны, если отсутствие плохих параметров не является частью исходных требований, а документация определяет, что функция будет бросать bad_parameter_exception
при передаче ей плохого параметра, то передача — это хорошо определённое поведение (бросание исключения или любая другая стратегия обработки исправимых ошибок), и функция всегда должна это проверять.
В качестве примера рассмотрим получающие функции (accessor functions)
: в спецификации на std::vector<T>
operator[]
говорится, что индекс должен быть в пределах валидного диапазона, при этом at()
сообщает нам, что функция кинет исключение, если индекс не попадает в диапазон. Более того, большинство реализаций стандартных библиотек обеспечивают режим отладки, в котором проверяется индекс operator[]
, но технически это неопределённое поведение, оно не обязано проверяться.
Примечание: необязательно бросать исключение, чтобы получилось определённое поведение. Пока это не упомянуто в исходных условиях для функции, это считается определённым. Всё, что прописано в исходных условиях, не должно проверяться функцией, это неопределённое поведение.
Когда нужно проверять только с помощью отладочных подтверждений, а когда — постоянно?
К сожалению, однозначного рецепта нет, решение зависит от конкретной ситуации. У меня есть лишь одно проверенное правило, которому я следую при разработке API. Оно основано на наблюдении, что проверять исходные условия должен вызывающий, а не вызываемый. А значит, условие должно быть «проверяемым» для вызывающего. Также условие «проверяемое», если можно легко выполнить операцию, при которой значение параметра всегда будет правильным. Если для параметра это возможно, то это получается исходное условие, а значит, проверяется только посредством отладочного подтверждения (а если слишком дорого, то вообще не проверяется).
Но конечное решение зависит от многих других факторов, так что очень трудно дать какой-то общий совет. По умолчанию я стараюсь свести к неопределённому поведению и использованию только подтверждений. Иногда бывает целесообразно обеспечить оба варианта, как это делает стандартная библиотека с operator[]
и at()
.
Хотя в ряде случаев это может быть ошибкой.
Об иерархии std::exception
Если в качестве стратегии обработки исправимых ошибок вы выбрали исключения, то рекомендуется создать новый класс и наследовать его от одного из классов исключений стандартной библиотеки.
Я предлагаю наследовать только от одного из этих четырёх классов:
std::bad_alloc
: для сбоев выделения памяти.std::runtime_error
: для общих runtime-ошибок.std::system_error
(производное отstd::runtime_error
): для системных ошибок с кодами ошибок.std::logic_error
: для программистских ошибок с определённым поведением.
Обратите внимание, что в стандартной библиотеке разделяются логические (то есть программистские) и runtime-ошибки. Runtime-ошибки — более широкое определение, чем «системные». Оно описывает «ошибки, обнаруживаемые только при выполнении программы». Такая формулировка не слишком информативна. Лично я использую её для плохих параметров, которые не являются исключительно программистскими ошибками, а могут возникнуть и по вине пользователей. Но это можно определить лишь глубоко в стеке вызовов. Например, плохое форматирование комментариев в standardese приводит к исключению при парсинге, проистекающему из std::runtime_error
. Позднее оно ловится на соответствующем уровне и фиксируется в логе. Но я не стал бы использовать этот класс иначе, как и std::logic_error
.
Подведём итоги
Есть два пути обработки ошибок:
- как исправимые: используются исключения или возвращаемые значения (в зависимости от ситуации/религии);
- как неисправимые: ошибки журналируются, а программа прерывается.
Подтверждения — это особый вид стратегии обработки неисправимых ошибок, только в режиме отладки.
Есть три основных источника ошибок, каждый требует особого подхода:
- Пользовательские ошибки не должны обрабатываться как ошибки на верхних уровнях программы. Всё, что вводит пользователь, должно проверяться соответствующим образом. Это может обрабатываться как ошибки только на нижних уровнях, которые не взаимодействуют с пользователями напрямую. Применяется стратегия обработки исправимых ошибок.
- Системные ошибки могут обрабатываться в рамках любой из двух стратегий, в зависимости от типа и тяжести. Библиотеки должны работать как можно гибче.
- Программистские ошибки, то есть плохие параметры, могут быть запрещены исходными условиями. В этом случае функция должна использовать только проверку с помощью отладочных подтверждений. Если же речь идёт о полностью определённом поведении, то функции следует предписанным образом сообщать об ошибке. Я стараюсь по умолчанию следовать сценарию с неопределённым поведением и определяю для функции проверку параметров лишь тогда, когда это слишком трудно сделать на стороне вызывающего.
Гибкие методики обработки ошибок в C++
Иногда что-то не работает. Пользователи вводят данные в недопустимом формате, файл не обнаруживается, сетевое соединение сбоит, в системе кончается память. Всё это ошибки, и их надо обрабатывать.
Это относительно легко сделать в высокоуровневых функциях. Вы точно знаете, почему что-то пошло не так, и можете обработать это соответствующим образом. Но в случае с низкоуровневыми функциями всё не так просто. Они не знают, что пошло не так, они знают лишь о самом факте сбоя и должны сообщить об этом тому, кто их вызвал.
В C++ есть два основных подхода: коды возврата ошибок и исключения. Сегодня широко распространено использование исключений. Но некоторые не могут / думают, что не могут / не хотят их использовать — по разным причинам.
Я не буду принимать чью-либо сторону. Вместо этого я опишу методики, которые удовлетворят сторонников обоих подходов. Особенно методики пригодятся разработчикам библиотек.
Проблема
Я работаю над проектом foonathan/memory. Это решение предоставляет различные классы выделения памяти (allocator classes), так что в качестве примера рассмотрим структуру функции выделения.
Для простоты возьмём malloc()
. Она возвращает указатель на выделяемую память. Если выделить память не получается, то возвращается nullptr
, то есть NULL
, то есть ошибочное значение.
У этого решения есть недостатки: вам нужно проверять каждый вызов malloc()
. Если вы забудете это сделать, то выделите несуществующую память. Кроме того, по своей натуре коды ошибок транзитивны: если вызвать функцию, которая может вернуть код ошибки, и вы не можете его проигнорировать или обработать, то вы тоже должны вернуть код ошибки.
Это приводит нас к ситуации, когда чередуются нормальные и ошибочные ветви кода. Исключения в таком случае выглядят более подходящим решением. Благодаря им вы сможете обрабатывать ошибки только тогда, когда вам это нужно, а в противном случае — достаточно тихо передать их обратно вызывающему.
Это можно расценить как недостаток.
Но в подобных ситуациях исключения имеют также очень большое преимущество: функция выделения памяти либо возвращает валидную память, либо вообще ничего не возвращает. Это функция «всё или ничего», возвращаемое значение всегда будет валидным. Это полезное следствие согласно принципу Скотта Майера «Make interfaces hard to use incorrectly and easy to use correctly».
Учитывая вышесказанное, можно утверждать, что вам следует использовать исключения в качестве механизма обработки ошибок. Этого мнения придерживается большинство разработчиков на С++, включая и меня. Но проект, которым я занимаюсь, — это библиотека, предоставляющая средства выделения памяти, и предназначена она для приложений, работающих в реальном времени. Для большинства разработчиков подобных приложений (особенно для игроделов) само использование исключений — исключение.
Каламбур детектед.
Чтобы уважить эту группу разработчиков, моей библиотеке лучше обойтись без исключений. Но мне и многим другим они нравятся за элегантность и простоту обработки ошибок, так что ради других разработчиков моей библиотеке лучше использовать исключения.
Так что же делать?
Идеальное решение: возможность включать и отключать исключения по желанию. Но, учитывая природу исключений, нельзя просто менять их местами с кодами ошибок, поскольку у нас не будет внутреннего кода проверки на ошибки — весь внутренний код опирается на предположение о прозрачности исключений. И даже если бы внутри можно было использовать коды ошибок и преобразовывать их в исключения, это лишило бы нас большинства преимуществ последних.
К счастью, я могу определить, что вы делаете, когда обнаруживаете ошибку нехватки памяти: чаще всего вы журналируете это событие и прерываете программу, поскольку она не может корректно работать без памяти. В таких ситуациях исключения — просто способ передачи контроля другой части кода, которая журналирует и прерывает программу. Но есть старый и эффективный способ передачи контроля: указатель функции (function pointer), то есть функция-обработчик (handler function).
Если у вас включены исключения, то вы просто их бросаете. В противном случае вызываете функцию-обработчика и затем прерываете программу. Это предотвратит бесполезную работу функции-обработчика, та позволит программе продолжить выполняться в обычном режиме. Если не прервать, то произойдёт нарушение обязательного постусловия функции: всегда возвращать валидный указатель. Ведь на выполнении этого условия может быть построена работа другого кода, да и вообще это нормальное поведение.
Я называю такой подход обработкой исключений и придерживаюсь его при работе с памятью.
Решение 1: обработчик исключений
Если вам нужно обработать ошибку в условиях, когда наиболее распространённым поведением будет «журналировать и прервать», то можно использовать обработчика исключений. Это такая функция-обработчик, которая вызывается вместо бросания объекта-исключения. Её довольно легко реализовать даже в уже существующем коде. Для этого нужно поместить управление обработкой в класс исключений и обернуть в макрос выражение throw
.
Сначала дополним класс и добавим функции для настройки и, возможно, запрашивания функции-обработчика. Я предлагаю делать это так же, как стандартная библиотека обрабатывает std::new_handler
:
class my_fatal_error
{
public:
// тип обработчика, он должен брать те же параметры, что и конструктор,
// чтобы у них была одинаковая информация
using handler = void(*)( ... );
// меняет функцию-обработчика
handler set_handler(handler h);
// возвращает текущего обработчика
handler get_handler();
... // нормальное исключение
};
Поскольку это входит в область видимости класса исключений, вам не нужно именовать каким-то особым образом. Отлично, нам же легче.
Если исключения включены, то для удаления обработчика можно использовать условное компилирование (conditional compilation). Если хотите, то также напишите обычный подмешанный класс (mixin class), дающий требуемую функциональность.
Конструктор исключений элегантен: он вызывает текущую функцию-обработчика, передавая ей требуемые аргументы из своих параметров. А затем комбинирует с последующим макросом throw
:
If```cpp #if EXCEPTIONS #define THROW(Ex) throw (Ex) #else #define THROW(Ex) (Ex), std::abort() #endif
> Такой макрос throw также предоставляется [foonathan/compatiblity](https://github.com/foonathan/compatibility).
Можно использовать его и так:
```cpp
THROW(my_fatal_error(...))
Если у вас включена поддержка исключений, то будет создан и брошен объект-исключение, всё как обычно. Но если поддержка выключена, то объект-исключение всё равно будет создан, и — это важно — только после этого произойдёт вызов std::abort()
. А поскольку конструктор вызывает функцию-обработчика, то он и работает, как требуется: вы получаете точку настройки для журналирования ошибки. Благодаря же вызову std::abort()
после конструктора пользователь не может нарушить постусловие.
Когда я работаю с памятью, то при включённых исключениях у меня также включён и обработчик, который вызывается при бросании исключения.
Так что при этой методике вам ещё будет доступна определённая степень кастомизации, даже если вы отключите исключения. Конечно, замена неполноценная, мы только журналируем и прерываем работу программы, без дальнейшего продолжения. Но в ряде случаев, в том числе при исчерпании памяти, это вполне пригодное решение.
А если я хочу продолжить работу после бросания исключения?
Методика с обработчиком исключений не позволяет этого сделать в связи с постусловием кода. Как же тогда продолжить работу?
Ответ прост — никак. По крайней мере, это нельзя сделать так же просто, как в других случаях. Нельзя просто так вернуть код ошибки вместо исключения, если функция на это не рассчитана.
Есть только одно решение: сделать две функции. Одна возвращает код ошибки, а вторая бросает исключения. Клиенты, которым нужны исключения, будут использовать второй вариант, остальные — первый.
Извините, что говорю такие очевидные вещи, но ради полноты изложения я должен был об этом сказать.
Для примера снова возьмём функцию выделения памяти. В этом случае я использую такие функции:
void* try_malloc(..., int &error_code) noexcept;
void* malloc(...);
При сбое выделения памяти первая версия возвращает nullptr
и устанавливает error_code
в коде ошибки. Вторая версия не возвращает nullptr
, зато бросает исключение. Обратите внимание, что в рамках первой версии очень легко реализовать вторую:
void* malloc(...)
{
auto error_code = 0;
auto res = try_malloc(..., error_code);
if (!res)
throw malloc_error(error_code);
return res;
}
Не делайте этого в обратной последовательности, иначе вам придётся ловить исключение, а это дорого. Также это не даст нам скомпилировать код без включённой поддержки исключений. Если сделаете, как показано, то можете просто стереть другую перегрузку (overload) с помощью условного компилирования.
Но даже если у вас включена поддержка исключений, клиенту всё равно может понадобиться вторая версия. Например, когда нужно выделить наибольший возможный объём памяти, как в нашем примере. Будет проще и быстрее вызывать в цикле и проверять по условию, чем ловить исключение.
Решение 2: предоставить две перегрузки
Если недостаточно обработчика исключений, то нужно предоставить две перегрузки. Одна использует код возврата, а вторая бросает исключение.
Если рассматриваемая функция не имеет возвращаемого значения, то можете её использовать для кода ошибки. В противном случае вам придётся возвращать недопустимое значение для сигнализирования об ошибке — как nullptr
в вышеприведённом примере, — а также установить выходной параметр для кода ошибки, если хотите предоставить вызывающему дополнительную информацию.
Пожалуйста, не используйте глобальную переменную errno
или что-то типа GetLastError()
!
Если возвращаемое значение не содержит недопустимое значение для обозначения сбоя, то по мере возможности используйте std::optional
или что-то похожее.
Перегрузка исключения (exception overload) может — и должна — быть реализована в рамках версии с кодом ошибки, как это показано выше. Если компилируете без исключений, сотрите перегрузку с помощью условного компилирования.
std::system_error
Подобная система идеально подходит для работы с кодами ошибок в С++ 11.
Она возвращает непортируемый (non-portable) код ошибки std::error_code
, то есть возвращаемый функцией операционной системы. С помощью сложной системы библиотечных средств и категорий ошибок вы можете добавить собственные коды ошибок, или портируемые std::error_condition
. Для начала почитайте об этом здесь. Если нужно, то можете использовать в функции кода ошибки std::error_code
. А для функции исключения есть подходящий класс исключения: std::system_error
. Он берёт std::error_code
и применяется для передачи этих ошибок в виде исключений.
Эту или подобную систему должны использовать все низкоуровневые функции, являющиеся закрытыми обёртками ОС-функций. Это хорошая — хотя и сложная — альтернатива службе кодов ошибок, предоставляемой операционной системой.
Да, и мне ещё нужно добавить подобное в функции виртуальной памяти. На сегодняшний день они не предоставляют коды ошибок.
std::expected
Выше упоминалось о проблеме, когда у вас нет возвращаемого значения, содержащего недопустимое значение, которое можно использовать для сигнализирования об ошибке. Более того, выходной параметр — не лучший способ получения кода ошибки.
А глобальные переменные вообще не вариант!
В № 4109 предложено решение: std::expected
. Это шаблон класса, который также хранит возвращаемое значение или код ошибки. В вышеприведённом примере он мог бы использоваться так:
std::expected<void*, std::error_code> try_malloc(...);
В случае успеха std::expected
будет хранить не-null указатель памяти, а при сбое — std::error_code
. Сейчас эта методика работает при любых возвращаемых значениях. Комбинация std::expected
и функции исключения определённо допускает любые варианты использования.
Заключение
Если вы создаёте библиотеки, то иногда приходится обеспечивать максимальную гибкость использования. Под этим подразумевается и разнообразие средств обработки ошибок: иногда требуются коды возврата, иногда — исключения.
Одна из возможных стратегий — улаживание этих противоречий с помощью обработчика исключений. Просто удостоверьтесь, что когда нужно, то вызывается callback, а не бросается исключение. Это замена для критических ошибок, которая в любом случае будет журналироваться перед прерыванием работы программы. Как таковой этот способ не универсален, вы не можете переключаться в одной программе между двумя версиями. Это лишь обходное решение при отключённой поддержке исключений.
Более гибкий подход — просто предоставить две перегрузки, одну с исключениями, а вторую без. Это даст пользователям максимальную свободу, они смогут выбирать ту версию, что лучше подходит в их ситуации. Недостаток этого подхода: вам придётся больше потрудиться при создании библиотеки.
Обработка ошибок¶
Функции промежуточного обработчика для обработки ошибок определяются так же, как и другие функции промежуточной обработки, но с указанием для функции обработки ошибок не трех, а четырех аргументов: (err, req, res, next)
. Например:
|
Промежуточный обработчик для обработки ошибок должен быть определен последним, после указания всех app.use()
и вызовов маршрутов; например:
|
Ответы, поступающие из функции промежуточной обработки, могут иметь любой формат, в зависимости от ваших предпочтений. Например, это может быть страница сообщения об ошибке HTML, простое сообщение или строка JSON.
В целях упорядочения (и для фреймворков более высокого уровня) можно определить несколько функций промежуточной обработки ошибок, точно так же, как это допускается для обычных функций промежуточной обработки. Например, для того чтобы определить обработчик ошибок для запросов, совершаемых с помощью XHR
, и для остальных запросов, можно воспользоваться следующими командами:
|
В данном примере базовый код logErrors
может записывать информацию о запросах и ошибках в stderr
, например:
|
Кроме того, в данном примере clientErrorHandler
определен, как указано ниже; в таком случае ошибка явным образом передается далее следующему обработчику:
|
«Обобщающая» функция errorHandler
может быть реализована так:
|
При передаче какого-либо объекта в функцию next()
(кроме строки 'route'
), Express интерпретирует текущий запрос как ошибку и пропустит все остальные функции маршрутизации и промежуточной обработки, не являющиеся функциями обработки ошибок. Для того чтобы обработать данную ошибку определенным образом, необходимо создать маршрут обработки ошибок, как описано в следующем разделе.
Если задан обработчик ошибок с несколькими функциями обратного вызова, можно воспользоваться параметром route
, чтобы перейти к следующему обработчику маршрута. Например:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
В данном примере обработчик getPaidContent
будет пропущен, но выполнение всех остальных обработчиков в app
для /a_route_behind_paywall
будет продолжено.
Вызовы next()
и next(err)
указывают на завершение выполнения текущего обработчика и на его состояние. next(err)
пропускает все остальные обработчики в цепочке, кроме заданных для обработки ошибок, как описано выше.
Стандартный обработчик ошибок¶
В Express предусмотрен встроенный обработчик ошибок, который обрабатывает любые возможные ошибки, встречающиеся в приложении. Этот стандартный обработчик ошибок добавляется в конец стека функций промежуточной обработки.
В случае передачи ошибки в next()
без обработки с помощью обработчика ошибок, такая ошибка будет обработана встроенным обработчиком ошибок. Ошибка будет записана на клиенте с помощью трассировки стека. Трассировка стека не включена в рабочую среду.
Для запуска приложения в рабочем режиме необходимо задать для переменной среды NODE_ENV
значение production
.
При вызове next()
с ошибкой после начала записи ответа (например, если ошибка обнаружена во время включения ответа в поток, направляемый клиенту), стандартный обработчик ошибок Express закрывает соединение и отклоняет запрос.
Поэтому при добавлении нестандартного обработчика ошибок вам потребуется делегирование в стандартные механизмы обработки ошибок в Express в случае, если заголовки уже были отправлены клиенту:
|
Обработка ошибок
Функции промежуточного обработчика для обработки ошибок определяются так же, как и другие функции промежуточной обработки, но с указанием для функции обработки ошибок не трех, а четырех аргументов: (err, req, res, next)
. Например:
app.use(function(err, req, res, next) {
console.error(err.stack);
res.status(500).send('Something broke!');
});
Промежуточный обработчик для обработки ошибок должен быть определен последним, после указания всех app.use()
и вызовов маршрутов; например:
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
app.use(bodyParser());
app.use(methodOverride());
app.use(function(err, req, res, next) {
// logic
});
Ответы, поступающие из функции промежуточной обработки, могут иметь любой формат, в зависимости от ваших предпочтений. Например, это может быть страница сообщения об ошибке HTML, простое сообщение или строка JSON.
В целях упорядочения (и для фреймворков более высокого уровня) можно определить несколько функций промежуточной обработки ошибок, точно так же, как это допускается для обычных функций промежуточной обработки. Например, для того чтобы определить обработчик ошибок для запросов, совершаемых с помощью XHR
, и для остальных запросов, можно воспользоваться следующими командами:
var bodyParser = require('body-parser');
var methodOverride = require('method-override');
app.use(bodyParser());
app.use(methodOverride());
app.use(logErrors);
app.use(clientErrorHandler);
app.use(errorHandler);
В данном примере базовый код logErrors
может записывать информацию о запросах и ошибках в stderr
, например:
function logErrors(err, req, res, next) {
console.error(err.stack);
next(err);
}
Кроме того, в данном примере clientErrorHandler
определен, как указано ниже; в таком случае ошибка явным образом передается далее следующему обработчику:
function clientErrorHandler(err, req, res, next) {
if (req.xhr) {
res.status(500).send({ error: 'Something failed!' });
} else {
next(err);
}
}
“Обобщающая” функция errorHandler
может быть реализована так:
function errorHandler(err, req, res, next) {
res.status(500);
res.render('error', { error: err });
}
При передаче какого-либо объекта в функцию next()
(кроме строки 'route'
), Express интерпретирует текущий запрос как ошибку и пропустит все остальные функции маршрутизации и промежуточной обработки, не являющиеся функциями обработки ошибок. Для того чтобы обработать данную ошибку определенным образом, необходимо создать маршрут обработки ошибок, как описано в следующем разделе.
Если задан обработчик ошибок с несколькими функциями обратного вызова, можно воспользоваться параметром route
, чтобы перейти к следующему обработчику маршрута. Например:
app.get('/a_route_behind_paywall',
function checkIfPaidSubscriber(req, res, next) {
if(!req.user.hasPaid) {
// continue handling this request
next('route');
}
}, function getPaidContent(req, res, next) {
PaidContent.find(function(err, doc) {
if(err) return next(err);
res.json(doc);
});
});
В данном примере обработчик getPaidContent
будет пропущен, но выполнение всех остальных обработчиков в app
для /a_route_behind_paywall
будет продолжено.
Вызовы next()
и next(err)
указывают на завершение выполнения текущего обработчика и на его состояние. next(err)
пропускает все остальные обработчики в цепочке, кроме заданных для обработки ошибок, как описано выше.
Стандартный обработчик ошибок
В Express предусмотрен встроенный обработчик ошибок, который обрабатывает любые возможные ошибки, встречающиеся в приложении. Этот стандартный обработчик ошибок добавляется в конец стека функций промежуточной обработки.
В случае передачи ошибки в next()
без обработки с помощью обработчика ошибок, такая ошибка будет обработана встроенным обработчиком ошибок. Ошибка будет записана на клиенте с помощью трассировки стека. Трассировка стека не включена в рабочую среду.
Для запуска приложения в рабочем режиме необходимо задать для переменной среды NODE_ENV
значение production
.
При вызове next()
с ошибкой после начала записи ответа
(например, если ошибка обнаружена во время включения ответа в поток, направляемый клиенту), стандартный обработчик ошибок Express закрывает соединение и отклоняет запрос.
Поэтому при добавлении нестандартного обработчика ошибок вам потребуется делегирование в стандартные
механизмы обработки ошибок в Express в случае, если заголовки уже были отправлены клиенту:
function errorHandler(err, req, res, next) {
if (res.headersSent) {
return next(err);
}
res.status(500);
res.render('error', { error: err });
}
Содержание
- 1 Методы обработки ошибок
- 2 Исключения
- 3 Классификация исключений
- 3.1 Проверяемые исключения
- 3.2 Error
- 3.3 RuntimeException
- 4 Обработка исключений
- 4.1 try-catch-finally
- 4.2 Обработка исключений, вызвавших завершение потока
- 4.3 Информация об исключениях
- 5 Разработка исключений
- 6 Исключения в Java7
- 7 Примеры исключений
- 8 Гарантии безопасности
- 9 Источники
Методы обработки ошибок
1. Не обрабатывать.
2. Коды возврата. Основная идея — в случае ошибки возвращать специальное значение, которое не может быть корректным. Например, если в методе есть операция деления, то придется проверять делитель на равенство нулю. Также проверим корректность аргументов a
и b
:
Double f(Double a, Double b) { if ((a == null) || (b == null)) { return null; } //... if (Math.abs(b) < EPS) { return null; } else { return a / b; } }
При вызове метода необходимо проверить возвращаемое значение:
Double d = f(a, b); if (d != null) { //... } else { //... }
Минусом такого подхода является необходимость проверки возвращаемого значения каждый раз при вызове метода. Кроме того, не всегда возможно определить тип ошибки.
3.Использовать флаг ошибки: при возникновении ошибки устанавливать флаг в соответствующее значение:
boolean error; Double f(Double a, Double b) { if ((a == null) || (b == null)) { error = true; return null; } //... if (Math.abs(b) < EPS) { error = true; return b; } else { return a / b; } }
error = false; Double d = f(a, b); if (error) { //... } else { //... }
Минусы такого подхода аналогичны минусам использования кодов возврата.
4.Можно вызвать метод обработки ошибки и возвращать то, что вернет этот метод.
Double f(Double a, Double b) { if ((a == null) || (b == null)) { return nullPointer(); } //... if (Math.abs(b) < EPS) { return divisionByZero(); } else { return a / b; } }
Но в таком случае не всегда возможно проверить корректность результата вызова основного метода.
5.В случае ошибки просто закрыть программу.
if (Math.abs(b) < EPS) { System.exit(0); return this; }
Это приведет к потере данных, также невозможно понять, в каком месте возникла ошибка.
Исключения
В Java возможна обработка ошибок с помощью исключений:
Double f(Double a, Double b) { if ((a == null) || (b == null)) { throw new IllegalArgumentException("arguments of f() are null"); } //... return a / b; }
Проверять b
на равенство нулю уже нет необходимости, так как при делении на ноль метод бросит непроверяемое исключение ArithmeticException
.
Исключения позволяют:
- разделить обработку ошибок и сам алгоритм;
- не загромождать код проверками возвращаемых значений;
- обрабатывать ошибки на верхних уровнях, если на текущем уровне не хватает данных для обработки. Например, при написании универсального метода чтения из файла невозможно заранее предусмотреть реакцию на ошибку, так как эта реакция зависит от использующей метод программы;
- классифицировать типы ошибок, обрабатывать похожие исключения одинаково, сопоставлять специфичным исключениям определенные обработчики.
Каждый раз, когда при выполнении программы происходит ошибка, создается объект-исключение, содержащий информацию об ошибке, включая её тип и состояние программы на момент возникновения ошибки.
После создания исключения среда выполнения пытается найти в стеке вызовов метод, который содержит код, обрабатывающий это исключение. Поиск начинается с метода, в котором произошла ошибка, и проходит через стек в обратном порядке вызова методов. Если не было найдено ни одного подходящего обработчика, выполнение программы завершается.
Таким образом, механизм обработки исключений содержит следующие операции:
- Создание объекта-исключения.
- Заполнение stack trace’а этого исключения.
- Stack unwinding (раскрутка стека) в поисках нужного обработчика.
Классификация исключений
Класс Java Throwable
описывает все, что может быть брошено как исключение. Наследеники Throwable
— Exception
и Error
— основные типы исключений. Также RuntimeException
, унаследованный от Exception
, является существенным классом.
Иерархия стандартных исключений
Проверяемые исключения
Наследники класса Exception
(кроме наслеников RuntimeException
) являются проверяемыми исключениями(checked exception). Как правило, это ошибки, возникшие по вине внешних обстоятельств или пользователя приложения – неправильно указали имя файла, например. Эти исключения должны обрабатываться в ходе работы программы, поэтому компилятор проверяет наличие обработчика или явного описания тех типов исключений, которые могут быть сгенерированы некоторым методом.
Все исключения, кроме классов Error
и RuntimeException
и их наследников, являются проверяемыми.
Error
Класс Error
и его подклассы предназначены для системных ошибок. Свои собственные классы-наследники для Error
писать (за очень редкими исключениями) не нужно. Как правило, это действительно фатальные ошибки, пытаться обработать которые довольно бессмысленно (например OutOfMemoryError
).
RuntimeException
Эти исключения обычно возникают в результате ошибок программирования, такие как ошибки разработчика или неверное использование интерфейса приложения. Например, в случае выхода за границы массива метод бросит OutOfBoundsException
. Такие ошибки могут быть в любом месте программы, поэтому компилятор не требует указывать runtime исключения в объявлении метода. Теоретически приложение может поймать это исключение, но разумнее исправить ошибку.
Обработка исключений
Чтобы сгенерировать исключение используется ключевое слово throw
. Как и любой объект в Java, исключения создаются с помощью new
.
if (t == null) { throw new NullPointerException("t = null"); }
Есть два стандартных конструктора для всех исключений: первый — конструктор по умолчанию, второй принимает строковый аргумент, поэтому можно поместить подходящую информацию в исключение.
Возможна ситуация, когда одно исключение становится причиной другого. Для этого существует механизм exception chaining. Практически у каждого класса исключения есть конструктор, принимающий в качестве параметра Throwable
– причину исключительной ситуации. Если же такого конструктора нет, то у Throwable
есть метод initCause(Throwable)
, который можно вызвать один раз, и передать ему исключение-причину.
Как и было сказано раньше, определение метода должно содержать список всех проверяемых исключений, которые метод может бросить. Также можно написать более общий класс, среди наследников которого есть эти исключения.
void f() throws InterruptedException, IOException { //...
try-catch-finally
Код, который может бросить исключения оборачивается в try
-блок, после которого идут блоки catch
и finally
(Один из них может быть опущен).
try { // Код, который может сгенерировать исключение }
Сразу после блока проверки следуют обработчики исключений, которые объявляются ключевым словом catch.
try { // Код, который может сгенерировать исключение } catch(Type1 id1) { // Обработка исключения Type1 } catch(Type2 id2) { // Обработка исключения Type2 }
Сatch
-блоки обрабатывают исключения, указанные в качестве аргумента. Тип аргумента должен быть классом, унаследованного от Throwable
, или самим Throwable
. Блок catch
выполняется, если тип брошенного исключения является наследником типа аргумента и если это исключение не было обработано предыдущими блоками.
Код из блока finally
выполнится в любом случае: при нормальном выходе из try
, после обработки исключения или при выходе по команде return
.
NB: Если JVM выйдет во время выполнения кода из try
или catch
, то finally
-блок может не выполниться. Также, например, если поток выполняющий try
или catch
код остановлен, то блок finally
может не выполниться, даже если приложение продолжает работать.
Блок finally
удобен для закрытия файлов и освобождения любых других ресурсов. Код в блоке finally
должен быть максимально простым. Если внутри блока finally
будет брошено какое-либо исключение или просто встретится оператор return
, брошенное в блоке try
исключение (если таковое было брошено) будет забыто.
import java.io.IOException; public class ExceptionTest { public static void main(String[] args) { try { try { throw new Exception("a"); } finally { throw new IOException("b"); } } catch (IOException ex) { System.err.println(ex.getMessage()); } catch (Exception ex) { System.err.println(ex.getMessage()); } } }
После того, как было брошено первое исключение — new Exception("a")
— будет выполнен блок finally
, в котором будет брошено исключение new IOException("b")
, именно оно будет поймано и обработано. Результатом его выполнения будет вывод в консоль b
. Исходное исключение теряется.
Обработка исключений, вызвавших завершение потока
При использовании нескольких потоков бывают ситуации, когда поток завершается из-за исключения. Для того, чтобы определить с каким именно, начиная с версии Java 5 существует интерфейс Thread.UncaughtExceptionHandler
. Его реализацию можно установить нужному потоку с помощью метода setUncaughtExceptionHandler
. Можно также установить обработчик по умолчанию с помощью статического метода Thread.setDefaultUncaughtExceptionHandler
.
Интерфейс Thread.UncaughtExceptionHandler
имеет единственный метод uncaughtException(Thread t, Throwable e)
, в который передается экземпляр потока, завершившегося исключением, и экземпляр самого исключения. Когда поток завершается из-за непойманного исключения, JVM запрашивает у потока UncaughtExceptionHandler
, используя метод Thread.getUncaughtExceptionHandler()
, и вызвает метод обработчика – uncaughtException(Thread t, Throwable e)
. Все исключения, брошенные этим методом, игнорируются JVM.
Информация об исключениях
-
getMessage()
. Этот метод возвращает строку, которая была первым параметром при создании исключения; -
getCause()
возвращает исключение, которое стало причиной текущего исключения; -
printStackTrace()
печатает stack trace, который содержит информацию, с помощью которой можно определить причину исключения и место, где оно было брошено.
Exception in thread "main" java.lang.IllegalStateException: A book has a null property at com.example.myproject.Author.getBookIds(Author.java:38) at com.example.myproject.Bootstrap.main(Bootstrap.java:14) Caused by: java.lang.NullPointerException at com.example.myproject.Book.getId(Book.java:22) at com.example.myproject.Author.getBookIds(Author.java:35)
Все методы выводятся в обратном порядке вызовов. В примере исключение IllegalStateException
было брошено в методе getBookIds
, который был вызван в main
. «Caused by» означает, что исключение NullPointerException
является причиной IllegalStateException
.
Разработка исключений
Чтобы определить собственное проверяемое исключение, необходимо создать наследника класса java.lang.Exception
. Желательно, чтобы у исключения был конструкор, которому можно передать сообщение:
public class FooException extends Exception { public FooException() { super(); } public FooException(String message) { super(message); } public FooException(String message, Throwable cause) { super(message, cause); } public FooException(Throwable cause) { super(cause); } }
Исключения в Java7
- обработка нескольких типов исключений в одном
catch
-блоке:
catch
(IOException | SQLException ex) {...}
В таких случаях параметры неявно являются final
, поэтому нельзя присвоить им другое значение в блоке catch
.
Байт-код, сгенерированный компиляцией такого catch
-блока будет короче, чем код нескольких catch
-блоков.
-
Try
с ресурсами позволяет прямо вtry
-блоке объявлять необходимые ресурсы, которые по завершению блока будут корректно закрыты (с помощью методаclose()
). Любой объект реализующийjava.lang.AutoCloseable
может быть использован как ресурс.
static String readFirstLineFromFile(String path) throws IOException { try (BufferedReader br = new BufferedReader(new FileReader(path))) { return br.readLine(); } }
В приведенном примере в качестве ресурса использутся объект класса BufferedReader
, который будет закрыт вне зависимосити от того, как выполнится try
-блок.
Можно объявлять несколько ресурсов, разделяя их точкой с запятой:
public static void viewTable(Connection con) throws SQLException { String query = "select COF_NAME, SUP_ID, PRICE, SALES, TOTAL from COFFEES"; try (Statement stmt = con.createStatement(); ResultSet rs = stmt.executeQuery(query)) { //Work with Statement and ResultSet } catch (SQLException e) { e.printStackTrace; } }
Во время закрытия ресурсов тоже может быть брошено исключение. В try-with-resources добавленна возможность хранения «подавленных» исключений, и брошенное try
-блоком исключение имеет больший приоритет, чем исключения получившиеся во время закрытия. Получить последние можно вызовом метода getSuppressed()
от исключения брошенного try
-блоком.
- Перебрасывание исключений с улучшенной проверкой соответствия типов.
Компилятор Java SE 7 тщательнее анализирует перебрасываемые исключения. Рассмотрим следующий пример:
static class FirstException extends Exception { } static class SecondException extends Exception { } public void rethrowException(String exceptionName) throws Exception { try { if ("First".equals(exceptionName)) { throw new FirstException(); } else { throw new SecondException(); } } catch (Exception ex) { throw e; } }
В примере try
-блок может бросить либо FirstException
, либо SecondException
. В версиях до Java SE 7 невозможно указать эти исключения в декларации метода, потому что catch
-блок перебрасывает исключение ex
, тип которого — Exception
.
В Java SE 7 вы можете указать, что метод rethrowException
бросает только FirstException
и SecondException
. Компилятор определит, что исключение Exception ex
могло возникнуть только в try
-блоке, в котором может быть брошено FirstException
или SecondException
. Даже если тип параметра catch
— Exception
, компилятор определит, что это экземпляр либо FirstException
, либо SecondException
:
public void rethrowException(String exceptionName) throws FirstException, SecondException { try { // ... } catch (Exception e) { throw e; } }
Если FirstException
и SecondException
не являются наследниками Exception
, то необходимо указать и Exception
в объявлении метода.
Примеры исключений
- любая операция может бросить
VirtualMachineError
. Как правило это происходит в результате системных сбоев. -
OutOfMemoryError
. Приложение может бросить это исключение, если, например, не хватает места в куче, или не хватает памяти для того, чтобы создать стек нового потока. -
IllegalArgumentException
используется для того, чтобы избежать передачи некорректных значений аргументов. Например:
public void f(Object a) { if (a == null) { throw new IllegalArgumentException("a must not be null"); } }
IllegalStateException
возникает в результате некорректного состояния объекта. Например, использование объекта перед тем как он будет инициализирован.
Гарантии безопасности
При возникновении исключительной ситуации, состояния объектов и программы могут удовлетворять некоторым условиям, которые определяются различными типами гарантий безопасности:
- Отсутствие гарантий (no exceptional safety). Если было брошено исключение, то не гарантируется, что все ресурсы будут корректно закрыты и что объекты, методы которых бросили исключения, могут в дальнейшем использоваться. Пользователю придется пересоздавать все необходимые объекты и он не может быть уверен в том, что может переиспозовать те же самые ресурсы.
- Отсутствие утечек (no-leak guarantee). Объект, даже если какой-нибудь его метод бросает исключение, освобождает все ресурсы или предоставляет способ сделать это.
- Слабые гарантии (weak exceptional safety). Если объект бросил исключение, то он находится в корректном состоянии, и все инварианты сохранены. Рассмотрим пример:
class Interval { //invariant: left <= right double left; double right; //... }
Если будет брошено исключение в этом классе, то тогда гарантируется, что ивариант «левая граница интервала меньше правой» сохранится, но значения left
и right
могли измениться.
- Сильные гарантии (strong exceptional safety). Если при выполнении операции возникает исключение, то это не должно оказать какого-либо влияния на состояние приложения. Состояние объектов должно быть таким же как и до вызовов методов.
- Гарантия отсутствия исключений (no throw guarantee). Ни при каких обстоятельствах метод не должен генерировать исключения. В Java это невозможно, например, из-за того, что
VirtualMachineError
может произойти в любом месте, и это никак не зависит от кода. Кроме того, эту гарантию практически невозможно обеспечить в общем случае.
Источники
- Обработка ошибок и исключения — Сайт Георгия Корнеева
- Лекция Георгия Корнеева — Лекториум
- The Java Tutorials. Lesson: Exceptions
- Обработка исключений — Википедия
- Throwable (Java Platform SE 7 ) — Oracle Documentation
- try/catch/finally и исключения — www.skipy.ru
При работе над веб-приложениями программисту легко попасть в ловушку: разрабатывать и тестировать только понятные сценарии, в которых всё происходит правильно. К сожалению, в реальности встречаются ситуации, в которых всё идёт не так, как планировалось. Обработка ошибок — важная часть пользовательского опыта любого приложения. Если приложение реагирует на ошибки правильно, ваши пользователи будут знать, что делать дальше, даже если что-то идёт не так.
- Обработка ошибок в бэкенд- и фронтенд-приложениях: в чём разница
- Как правильно обрабатывать ошибки
- Как работать с ошибками в AJAX-запросах и что нужно знать о кодах ответа HTTP
- Как перехватывать ошибки во фронтенд-приложениях
- Главное об обработке ошибок во фронтенд-приложениях
Большинство ошибок, с которыми сталкиваются пользователи веб-приложений, можно отнести к одной из перечисленных ниже категорий.
Ошибки ввода
Они возникают, когда приложение по каким-либо причинам не может принять введённую пользователем информацию. Например, такое происходит, если пользовательские данные не проходят валидацию, человек повторно отправляет форму, вводит неуникальный юзернейм, приложение не может найти запрошенные ресурсы и так далее.
Ошибки авторизации
Такое происходит, когда пользователь пытается совершить действие, которое ему не разрешено. Например, если рядовой пользователь форума пытается удалить чужое сообщение или незарегистрированный человек хочет опубликовать пост в блоге.
Ошибки доступности
Эти ошибки возникают, когда ресурс, нужный для завершения действия пользователя, по каким-то причинам недоступен. Такие ошибки бывают запланированными (плановое обновление сайта) и незапланированными (выход из строя сервера).
Неожиданные ошибки
Это ошибки, которые обычно говорят о багах в приложении, например, о необработанных исключениях.
Практически во всех приложениях случаются ошибки из перечисленных выше категорий. Правильная обработка ошибок — ключ к тому, чтобы пользователи оставались довольными, когда во время работы с приложением случается ошибка.
Примечание — тема обработки ошибок во фронтенд-приложениях подробно рассматривается в рамках профессии «Фронтенд-программист». Базовые курсы в этой профессии, включая «Введение в программирование», «Основы командной строки», «Настройка окружения», «Системы контроля версий», доступны бесплатно после регистрации.
Обработка ошибок в бэкенд- и фронтенд-приложениях: в чём разница
Обработка ожидаемых ошибок в бэкенде веб-приложений обычно происходит так: приложение отвечает сообщением об ошибке или отображает это сообщение пользователю. Неожиданные ошибки ломают нормальный процесс ответа и приводят к отображению общей страницы ошибки.
Плохо настроенные приложения могут даже показывать конечному пользователю информацию о внутренних ошибках. В большинстве случаев бэкенд-приложения не очень хорошо помогают человеку справиться с ошибкой и вернуться к нормальному использованию приложения. Но они хорошо справляются с задачей информирования пользователя об ошибках.
У фронтенд-приложений нет встроенного механизма, позволяющего остановить работу и показать сообщение об ошибке. После возникновения ошибки в JavaScript обычно происходит одно из описанных ниже событий:
- Приложение работает, но не выполняет действий, которые ожидает пользователь. Самая распространённая реакция пользователей в такой ситуации — попробовать ещё раз в надежде, что в этот раз приложение поведёт себя ожидаемо.
- Приложение останавливается, но не сообщает об остановке пользователю. Здесь пользователь повторит действие или попробует выполнить новое действие, но у него ничего не получится.
- Если ошибка происходит достаточно рано, пользователь может увидеть белый экран из-за неудачной попытки приложения отобразить страницу.
Все эти сценарии ужасные с точки зрения пользовательского опыта. Они могут разочаровать пользователя, заставить его чувствовать беспомощность и даже злость. Фронтенд-приложения во многом более гибкие в плане обработки ошибок по сравнению с бэкенд-приложениями. Но позаботиться об обработке ошибок должны разработчики, так как встроенные в браузеры инструменты практически бесполезны для конечных пользователей.
Читайте полезную статью
Что такое магические числа в программировании и как снять это заклятие.
Как правильно обрабатывать ошибки
Есть много способов обработки ошибок в JavaScript-приложениях. Вы можете определить глобальный обработчик ошибок, который будет отображать переданные в него сообщения. Также вы можете построить приложение так, чтобы каждый его компонент самостоятельно обрабатывал ошибки, которые в нём возникают.
Один из простых способов обработки ошибок заключается в том, чтобы создать общую схему для реакции на все ошибки и использовать систему событий браузеров, чтобы перехватывать всплывающие ошибки и обрабатывать их. Например, ошибку валидации формы можно перехватить на элементе form
или соответствующем инпуте и показать пользователю сообщение об этой ошибке. А нераспознанная системная ошибка может всплыть на уровень document
. В этом случае пользователь увидит обобщённое сообщение об ошибке.
Взаимодействие с пользователем при возникновении ошибки играет очень важную роль. Вы должны сообщить человеку, что пошло не так, а также объяснить, что делать дальше. В целом, сообщения могут иметь такой смысл:
- Измените что-то и повторите действие. Если пользователь ввёл невалидные данные и не смог отправить форму, благодаря сообщению об ошибке он сможет исправить данные и отправить форму.
- Попробуйте позже. Пользователь не смог отправить форму из-за ошибки сети. Благодаря сообщению он вернётся через 10 минут и успешно отправит форму.
- Свяжитесь с нами. Пользователь не смог отправить форму из-за неожиданной ошибки. Благодаря сообщению об ошибке он свяжется со службой поддержки и решит свои задачи.
При обработке ошибок на стороне клиента часто возникает необходимость выбрать между остановкой и продолжением работы приложения. Если ошибка влияет только на часть системы, можно разрешить человеку пользоваться приложением дальше. Если ошибка критическая или она влияет на разные части приложения, можно показать сообщение в модальном окне, которое невозможно закрыть. Также можно заменить контент страницы сообщением об ошибке. Это защитит пользователя от бесполезных попыток выполнить желаемое действие.
Как работать с ошибками в AJAX-запросах и что нужно знать о кодах ответа HTTP
Самый простой и очень эффективный способ сообщить пользователю об ошибке — правильно использовать коды ответов HTTP. Коды статуса HTTP могут самостоятельно дать пользователю достаточно информации о том, почему возникла ошибка запроса, а также подсказать, что делать дальше.
«Ошибочные» коды ответов HTTP объединяются в две группы: ответы 4XX и ответы 5XX. Первые говорят о проблеме с запросом (клиентские ошибки), а вторые — о проблеме с сервером (серверные ошибки). Ниже перечислены самые распространённые «ошибочные» коды статусов HTTP, которые можно получить при работе с веб-приложением:
- 400 — Bad Request. Обычно этот статус связан с ошибкой ввода, например, если пользователь вводит некорректный адрес электронной почты.
- 401 — Unauthorized. Этот статус связан с ситуацией, когда пользователь пытается получить доступ к чему-либо без авторизации там, где авторизация требуется. Также этот код ошибки подходит в ситуации, когда пользователь пытается выполнить действие, на которое у него нет прав.
- 403 — Forbidden. Разница между этим статусом и статусом 400 незначительная. Обычно код 403 говорит о том, что сервер понял запрос, но не может его выполнить. Например, такой статус можно возвращать, если пользователь ввёл номер акционного купона с истекшим сроком действия.
- 404 — Not Found. Это самый известный из «ошибочных» кодов ответа. Он сообщает, что запрошенный ресурс не найден. Это может произойти из-за некорректного URL, удалённой или перемещённой страницы.
- 409 — Conflict. В большинстве случаев этот статус говорит о конфликте управления версиями. Например, такое происходит, если пользователь пробует загрузить версию файла, которая старше загруженной ранее версии этого файла. Также этот код может говорить об ограничениях уникальности, например, если пользователь пытается повторно отправить электронное письмо (второй раз нажимает кнопку «Отправить», не дождавшись завершения действия).
- 500 — Internal Server Error. Этот статус говорит об ошибке, которую можно описать так: «Что-то пошло не так, но мы не знаем, что именно».
- 503 — Unavailable. Сервер вышел из строя, ошибка может быть запланированной или незапланированной.
Если вы хорошо знаете эти коды, вам будет проще обрабатывать ошибки, которые возникают при работе с AJAX-запросами.
Примечание — Обратите внимание на сервис httpstat.us, он пригодится вам для тестирования реакций на ошибки при разработке фронтенд-приложений.
Как перехватывать ошибки во фронтенд-приложениях
Вы можете определить обработчик глобально с помощью функции window.onerror
. В этом случае обработчик переопределит дефолтное поведение браузеров, благодаря чему ваше приложение будет показывать пользователям полезную информацию при возникновении ошибок.
window.onerror = (message, url, lineNumber) => {
// определяем, знаем ли мы, как обрабатывать ошибку
if (errorCanBeHandled) {
// показываем сообщение об ошибке пользователю
displayErrorMessage(message);
// возвращаем true и запускаем дефолтную
// реакцию приложения на фатальные ошибки
return true;
} else {
// запускаем дефолтную обработку ошибок браузером
return false;
}
}
Этот подход работает. Но иногда бывает сложно понять точную причину проблемы с помощью выброшенного исключения. При обработке ошибок в AJAX-запросах лучше использовать функцию обработки ошибок библиотеки, которой вы пользуетесь для выполнения запросов. Она позволит определить код ответа и корректно на него среагировать.
Изучайте фронтенд-разработку на Хекслете! Первые курсы в профессии «Фронтенд-программист» доступны бесплатно. Регистрируйтесь и стартуйте в удобное время.
Главное об обработке ошибок во фронтенд-приложениях
Главный факт об обработке ошибок заключается в том, что вы должны их обрабатывать. Любая попытка сообщить пользователю что-то полезное, когда возникает ошибка — отличный ход. Даже информирование с помощью alert()
лучше, чем отсутствие информации. Помните, что при проектировании UI вашего приложения нужно учитывать все возможные ситуации, включая различные ошибки.
Адаптированный перевод статьи Front-End Error Handling by Static Apps. Мнение администрации Хекслета может не совпадать с мнением автора оригинальной публикации.