-
Page 1
User Manual Original Instructions PowerFlex 755/755T Integrated Safety Functions Option Module Catalog Number 20-750-S4… -
Page 2
Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. -
Page 3: Table Of Contents
Table of Contents Preface Conventions ……….. 9 Terminology .
-
Page 4
Table of Contents Chapter 3 Safety I/O Safety Inputs……….39 Safety Input Operation . -
Page 5
Safety Controller Project ……..106 Add an Option Module to a PowerFlex 755 Drive… 108 Generate the Safety Network Number (SNN) . -
Page 6
Operation Add a PowerFlex 755 Drive to the Controller Project..144 Understand Module Properties Categories ….. 145 Module Properties>General Category . -
Page 7
Table of Contents Safety Supervisor State ……..199 Safety Core Fault . -
Page 8
Table of Contents Appendix D Parameter Data Parameters and Settings in a Linear List ……253 Device Parameters ……..253 Host Config Parameters. -
Page 9: Preface
Standard I/O mode. IMPORTANT You must have a basic understanding of electrical circuitry and familiarity with PowerFlex 755 drives and PowerFlex 755T drive products. You must also be trained and experienced in the creation, operation, and maintenance of safety systems.
-
Page 10: Terminology
Throughout this manual, the PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, PowerFlex 755TM drive systems are also referred to as PowerFlex 755T drive products. The PowerFlex 755 drive is used for the examples in this manual. Terminology Table 1 defines the abbreviations that are used in this manual.
-
Page 11
Preface Table 1 — Abbreviations and Definitions (continued) Abbreviation Full Term Definition System for control, protection, or monitoring based on one or more programmable electronic devices, Programmable Electronic Systems including all elements of the system such as power supplies, sensors and other input devices, data highways and other communication paths, and actuators and other output devices. -
Page 12: Product Firmware And Release Notes
Preface Product Firmware and Product firmware and release notes are available online within the Product Compatibility and Download Center. Release Notes 1. From the Search bar on http://www.ab.com, choose Compatibility and Downloads. 2. Search for your product. 3. On the search results page, find the firmware and release notes for your product.
-
Page 13: Additional Resources
Provides declarations of conformity, certificates, and other certification details. www.rockwellautomation.com/global/certification/overview.page You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
-
Page 14
Preface Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 15: What Is The Integrated Safety Functions Option Module
Chapter About Safe Stop and Safe Monitor Functions This chapter provides information on safety considerations for the Integrated Safety Functions option module. Topic Page What Is the Integrated Safety Functions Option Module? Compatible Drives Compatible Safety Controllers Safety Application Requirements Safety Certification Proof Tests PFD and PFH Definitions…
-
Page 16
• PowerFlex® 750-Series Safe Torque Off option module (catalog number 20-750-S) • PowerFlex 750-Series Safe Speed Monitor option module (catalog number 20-750-S1) • PowerFlex 755/755T Integrated Safety — Safe Torque Off option module (catalog number 20-750-S3) • PowerFlex 755/755T Integrated Safety Functions option module (catalog number 20-750-S4) -
Page 17: Compatible Drives
IMPORTANT Do not use this option module as a control for starting or stopping the drive. Compatible Drives The Integrated Safety Functions option module is compatible with these PowerFlex 755 drives and PowerFlex 755T drive products: • PowerFlex 755 drives (v14.xxx or later) • PowerFlex 755TL low harmonic drives (v4.xxx or later) •…
-
Page 18: Safety Application Requirements
GuardLogix Controller Systems Safety Reference Manuals that are listed in the Additional Resources on page The TÜV Rheinland group has approved the PowerFlex 755 Integrated Safety Safety Certification Functions option module (catalog number 20-750-S4) as suitable for use in integrated safety applications: •…
-
Page 19: Stop Category Definitions
About Safe Stop and Safe Monitor Functions Chapter 1 ATTENTION: When designing your system, consider how various personnel can interact with the machine. Additional safeguard devices can be required for your specific application. ATTENTION: In circumstances where external influences (for example, suspended loads that can fall) are present, additional measures (for example, mechanical brakes) can be necessary to help prevent any hazard.
-
Page 20: Proof Tests
Chapter 1 About Safe Stop and Safe Monitor Functions Proof Tests IEC 61508 requires you to perform various proof tests of the equipment that is used in the system. Proof tests are performed at user-defined times. For example, proof tests can be once a year, once every 15 years, or whatever time frame is appropriate.
-
Page 21: Pfd And Pfh Data
(STO) or Timed Safe Stop 1 functions. These values apply when Safety Instance is set to ‘Safe Stop Only – No Feedback’ . Table 2 — PFD and PFH for PowerFlex 755 Drives STO and Timed SS1 PowerFlex 755 Drives…
-
Page 22
Chapter 1 About Safe Stop and Safe Monitor Functions In general, the PFD and PFH values from Table 4 should be added to Table 2 Table 3 when Safety Instance is set to ‘Single Feedback Monitoring’ or ‘Dual Feedback Monitoring’ . When using Dual Feedback Monitoring, enable Discrepancy Testing. -
Page 23: Safety Data For Safety I/O
About Safe Stop and Safe Monitor Functions Chapter 1 Safety Data for Safety I/O The Integrated Safety Functions option module provides four safety inputs and two safety outputs. Table 5 provides PFD and PFH values to add for safety functions that use this Safety I/O. Table 5 — PFD or PFH to Add When Safety Functions Use Safety I/O Attribute Single Channel Safety I/O…
-
Page 24: Safety Reaction Time
Additional Resources on page Table 7 — Safety Reaction Time Drive Family Value, Max PowerFlex 755 drives (firmware revision 13 or later), Frames 1…10 PowerFlex 755TL low harmonic drives, Frames 8…12 15 ms PowerFlex 755TR regenerative drives, Frames 8…12 PowerFlex 755TM drive systems, Frames 8…12 IMPORTANT An input signal condition that is present for less than the reaction time may not result in the safety function being performed.
-
Page 25: Encoder Considerations
About Safe Stop and Safe Monitor Functions Chapter 1 Encoder Considerations This section describes factors to consider when using an encoder with the Integrated Safety Functions option module. Supported Encoders Table 8 describes the supported encoder types based on the feedback card that is used and the physical terminal it is connected to.
-
Page 26
Chapter 1 About Safe Stop and Safe Monitor Functions The following voltage monitoring ranges are supported: • 4.75v…5.25v (Recommended setting when using 20-750-DENC-1 card with the 12V Jumper in the ‘Storage’ position) • 11.4v…12.6v (Recommended setting when using 20-750-DENC-1 card with the 12V Jumper in the ‘Enabled’… -
Page 27: Digital Aqb Diagnostics
About Safe Stop and Safe Monitor Functions Chapter 1 Dual Encoder Velocity and/or Position Discrepancy The dual encoder velocity and position discrepancy diagnostic helps ensure that the position and/or velocity of the two encoders match within a configurable tolerance. The position and velocity discrepancy limits are individually configurable;…
-
Page 28
Chapter 1 About Safe Stop and Safe Monitor Functions + Cos Vector Length Monitoring The Sin + Cos vector length monitoring diagnostic helps ensure that the sine and cosine signals are sinusoidal and 90° apart. This diagnostic is meant to detect errors in the wiring of the encoder and problems within the encoder itself. -
Page 29: Contact Information If Safety Option Failure Occurs
Chapter 1 Contact Information If Safety If you experience a failure with any safety-certified device, contact your local Allen-Bradley distributor to request any of these actions: Option Failure Occurs • Return the device to Rockwell Automation so the failure is appropriately logged for the catalog number that is affected and a record is made of the failure.
-
Page 30
Chapter 1 About Safe Stop and Safe Monitor Functions Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 31: Installation
Chapter Installation This chapter provides installation, jumper settings, and wiring for the Integrated Safety Functions option module. Topic Page Remove Power to the System Access the Control Pod Set the SAFETY and Hardware ENABLE Jumpers Install the Safety Option Module I/O Wiring Cabling ATTENTION: The following information is a guide for proper installation.
-
Page 32: Remove Power To The System
Chapter 2 Installation Remove Power to the System Before performing any work on the drive, remove all power to the system. ATTENTION: • Electrical Shock Hazard. Verify that all sources of AC and DC power are de- energized and locked out or tagged out in accordance with the requirements of ANSI/NFPA 70E, Part II.
-
Page 33: Set The Safety And Hardware Enable Jumpers
SAFETY jumper must be removed. If the SAFETY jumper is not removed, a ‘Safety Jumper In’ fault occurs. IMPORTANT PowerFlex 755 drives (frames 8…10) control boards do not have a SAFETY jumper. If the Integrated Safety Functions option module is installed, the control board hardware ENABLE jumper must be installed.
-
Page 34: Install The Safety Option Module
IMPORTANT Only one safety option module can be installed in a drive. Multiple safety option modules or duplicate safety option module installations are not supported. Figure 4 — PowerFlex 755 Drives, Frames 1…7 Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
-
Page 35: Feedback Installation Guidelines
Installation Chapter 2 Feedback Installation Guidelines Follow these guidelines for the Integrated Safety Functions option module. Feedback Devices The Integrated Safety Functions option module can be used with one of the following feedback devices when safe feedback monitoring is used: •…
-
Page 36: I/O Wiring
Chapter 2 Installation I/O Wiring This section describes the onboard safety I/O and wiring considerations. A power supply must be connected between the SP and SC terminals in order for the safety I/O to be used. See Power Supply Requirements on page information on selecting a power supply.
-
Page 37: Power Supply Requirements
Installation Chapter 2 Power Supply Requirements IMPORTANT The external power supply must conform to the Directive 2006/95/EC Low Voltage by applying the requirements of EN61131-2 Programmable Controllers, Part 2 — Equipment Requirements and Tests, and one of the following: • EN60950 — SELV (Safety Extra Low Voltage) •…
-
Page 38
Chapter 2 Installation Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 39: Safety Inputs
Chapter Safety I/O This chapter provides information that is related to the embedded safety inputs and outputs on the Integrated Safety Functions option module. Topic Page Safety Inputs Safety Outputs Safety Inputs Read this section for information about safety inputs and their operation modes.
-
Page 40
Chapter 3 Safety I/O Table 14 — Typical External Pulse Width and Period Pulse Width Period 500 μs 300 ms Figure 5 — Test Pulse in a Cycle Typical Pulse Typical Pulse Test Period Test Period 300 ms 300ms Typical Typical Pulse Pulse… -
Page 41: Latch Input Error Operation In Single Channel Mode
Safety I/O Chapter 3 Latch Input Error Operation in Single Channel Mode The safety input subsystem allows for a configurable time for which an alarm state is held. This is referred to as Input Latch Error Time. In single channel mode, the input latch error time describes the period between when the alarm condition is removed and when the safety input stops reporting the alarm.
-
Page 42: Single Channel Safety Input Status Data
Chapter 3 Safety I/O Single Channel Safety Input Status Data Figure 8 describes the status and value that is reported by the Safety IO subsystem for normal and alarm states. In normal operation, the Safety Input value reported is the value being read on the input terminal. The Safety Input status is on.
-
Page 43: Dual-Channel Safety Input Operation
Safety I/O Chapter 3 Dual-channel Safety Input Operation To support redundant safety devices, the consistency between signals on two input points can be evaluated. This is referred to as Dual-channel operation. Two modes are available when using dual-channel inputs: equivalent and complementary.
-
Page 44: Equivalent Dual-Channel Input Operation
Chapter 3 Safety I/O Equivalent Dual-channel Input Operation In Equivalent mode, both inputs of a pair must typically be in the same (equivalent) state. When a transition occurs in one channel of the pair, before the transition of the second channel of the pair, a discrepancy occurs. If the second channel transitions to the appropriate state before the discrepancy time elapses, the inputs are considered equivalent.
-
Page 45: Complementary Dual-Channel Input Operation
Safety I/O Chapter 3 Complementary Dual-channel Input Operation In Complementary mode, the inputs of a pair are typically in the opposite (complementary) state. When a transition occurs in one channel of the pair before the transition of the second channel of the pair, a discrepancy occurs. If the second channel transitions to the appropriate state before the discrepancy time elapses, the inputs are considered complementary.
-
Page 46: Standard Input Operation
Chapter 3 Safety I/O Standard Input Operation When a safety input is configured for standard input operation, no diagnostics are performed on the input. Unlike safety inputs, a standard input cannot be used with pulse testing and can only be used in single channel mode. A standard input can still be configured to have an onoff and offon filter time.
-
Page 47
Safety I/O Chapter 3 Safety Input Status The safety input status indicates whether an alarm is present in the safety input point. The safety input status is provided in the safety input assembly, as shown Table Table 18 describes the attributes for reading the safety status via CIP messaging. -
Page 48
Chapter 3 Safety I/O Table 19 — Safety Input Assembly Tags for Safety Input Values Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SI.InputStatus SINT A collection of safety input values and status for each safety input module :SI.In00Data Value of Safety Input 0… -
Page 49: Safety Input Alarms
Safety I/O Chapter 3 Table 21 — Safety Input Assembly Tags for Safety Input Valid Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SI.IOSupport SINT A collection of bits describing safety IO functionality Safety Input 0 Valid module :SI.In00Valid 0 = Data invalid 1 = Data valid…
-
Page 50: Determining Safety Input Alarm Type
Chapter 3 Safety I/O An internal circuit error occurs when an internal pulse test fails. This means that circuitry inside the module has failed. An internal circuit error may not be recoverable; replacing the module may be required. An external circuit error occurs when pulse testing by the safety input’s associated test output fails.
-
Page 51: Safety Input Alarm Recovery
Safety I/O Chapter 3 Table 23 — MSG Configuration for Safety Input Alarm Type Service Code 0x0E Get attribute single Class 0x3D Safety Discrete Input Point Object Instance i + 1 Where i is the number of the safety input Data Type USINT Attribute…
-
Page 52: Use With Powerflex 750-Series Atex Option Module
Chapter 3 Safety I/O Figure 11 — Off-on Delay Input Signal Safety Input Value On-delay On-off Delay An input signal is treated as logic 1 during the off-delay time (0…126 ms, in increments of 1 ms) after the falling edge of the input contact. The input only turns off if the input contact remains off after the off delay time has elapsed.
-
Page 53: Single-Channel Mode
Safety I/O Chapter 3 Figure 13 — Test Pulse in a Cycle Typical Pulse Test Period 300 ms Typical Pulse Width 500 μs Table 24 — Typical External Pulse Width and Period Pulse Width Period 500 μs 300 ms IMPORTANT To help prevent the test pulse from causing the connected device to malfunction, pay careful attention to the input response time of the device that is connected to the output.
-
Page 54: Latch Output Error Operation In Single Channel Mode
Chapter 3 Safety I/O Figure 14 — Single-channel Setting (not to scale) Normal Operation Safety Output Terminal Safety Output Value Safety Output Status Alarm Operation Safety Output Terminal Safety Output Value Alarm Detected Safety Output Status Latch Output Error Operation in Single Channel Mode The safety output subsystem allows for a latch error time to be configured.
-
Page 55: Dual-Channel Mode
Safety I/O Chapter 3 Dual-channel Mode When the data of both channels is in the on state, and neither channel has an alarm, the outputs are turned on. The status is normal. If an alarm is detected on one channel, the safety output data and individual safety output status turn off for both channels.
-
Page 56
Chapter 3 Safety I/O Figure 17 — Dual Channel Output Latch Error Behavior Output Latch Error Time Safety Output 0 Value Safety Output 1 Value Dual Channel Safety Output ALARM Status Dual Channel ALARM Safety Output Status Alarm Cleared Alarm Alarm Detected Condition Removed and… -
Page 57: Safety Output Safety Data
Safety I/O Chapter 3 Safety Output Safety Data The Safety Output data of the Integrated Safety Functions module can be monitored through: • Safety Input Assembly • DPI Parameters • CIP Messaging The following Safety Output data is available in the Integrated Safety Functions Module: •…
-
Page 58
Chapter 3 Safety I/O Safety Output Ready When set, the safety output ready attribute indicates that the safety output is configured for safety use and ready to be commanded. IMPORTANT Check the Safety Output Ready attribute before commanding the safety output. -
Page 59: Commanding Safety And Test Outputs
Safety I/O Chapter 3 Table 29 — Safety Input Assembly Tags for Safety Output Monitor Value Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module:SI.OutputStatus SINT A collection of safety output status, safety output monitor values, and test output status module:SI.Out00Monitor Output Monitor Value of Safety Output 0 0 = OFF…
-
Page 60: Safety Output Alarms
Chapter 3 Safety I/O Safety Output Alarms The Safety Output logic can detect the following errors: • Configuration • Circuit • Dual Channel Discrepancy (Dual Channel Configuration Only) • Partner Channel (Dual Channel Configuration Only) When an error is detected, the associated safety output data is put into the safe state and the Alarm Type attribute is set.
-
Page 61: Determining Safety Output Alarm Type
Safety I/O Chapter 3 Partner Channel Error When the safety outputs are configured for dual channel mode, and one of the safety outputs experiences a circuit or configuration error, the other safety output will report a Partner Channel error. TIP The safety output data will still be placed in the safe state when a Partner Channel error occurs.
-
Page 62: Safety Output Alarm Recovery
Chapter 3 Safety I/O Safety Output Alarm Recovery If an alarm is detected, the safety outputs are switched to the safe state and remain in the safe state. Follow this procedure to activate the safety output data again. 1. Remove the cause of the alarm. 2.
-
Page 63: Standard Output Mode
Safety I/O Chapter 3 ATTENTION: Do not use test outputs as safety outputs. Test outputs do not function as safety outputs. Standard Output Mode When a test output is configured for standard output mode, the test output point operates as a general purpose output. The output can be commanded through the safety output assembly.
-
Page 64: Test Output Status
Chapter 3 Safety I/O The following Test Output data is available in the Integrated Safety Functions module: • Test Output Status • Test Output Ready Each test output point reports its own status and ready attributes. IMPORTANT Test Output data is not safety data and cannot be used for safety applications.
-
Page 65: Test Output Ready
Safety I/O Chapter 3 Test Output Ready When set, the test output ready attribute indicates that the test output is configured for standard output mode, and is ready to be commanded. In other modes, the test output ready attribute is forced to the safe (alarm) state. IMPORTANT The Test Output Ready attribute should be checked before commanding the test output.
-
Page 66
Chapter 3 Safety I/O Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 67: Drive-Based Safe Stop Functions
Chapter Drive-based Safe Stop Functions Use this chapter to learn more about the Safe Torque Off, Timed Safe Stop 1, Monitored Safe Stop 1, and Safe Brake Control stopping functions that are built into the Integrated Safety Functions option module. IMPORTANT The information in this section describes Safety Stop Functions operating in the drive.
-
Page 68: Safety Input Assembly Safe Stop Function Tags
Chapter 4 Drive-based Safe Stop Functions Table 38 — Safety Output Assembly Tags for Safety Stop Functions (continued) Safety Output Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SO.SS1Request If Safe Stop 1 (SS1) is configured: 0 = No Request 1 = Request Safe Stop 1 If Safe Stop 1 is not configured, this tag must be set to 0.
-
Page 69
Drive-based Safe Stop Functions Chapter 4 Table 39 — Safety Input Assembly Tags for Safety Stop Functions Safety Input Assembly Tag Name Type/[bit] Description (S4 option to safety controller) module :SI.SBCActive Safe Brake Control (SBC) function status: 0 = Release Brake (So0 and So1 ON) 1 = Engage Brake (So0 and So1 OFF) module :SI.SS1Active Safe Stop 1 (SS1) function status:… -
Page 70: Safety Function In Response To Connection Event
Chapter 4 Drive-based Safe Stop Functions ATTENTION: Safety I/O connections and produced/consumed connections cannot be automatically configured to fault the controller if a connection is lost and the system transitions to the safe state. If you must detect a device fault so that the system maintains the required SIL level, you must monitor the Safety I/O CONNECTION_STATUS bits and initiate the fault via program logic.
-
Page 71: Connection Idle Action
Drive-based Safe Stop Functions Chapter 4 parameter is not changed, the safety function that is triggered by the connection loss may fault. Connection Idle Action When the connection idle event is detected, the following attributes will be set: • In Standard Control Mode –…
-
Page 72: Safe Torque Off Activation
Chapter 4 Drive-based Safe Stop Functions Safe Torque Off Activation Safe Torque Off can be initiated by one or more sources: • STO Output – Setting the Safety Output Assembly Tag (module:SO.STOOutput = 1) • SS1 Complete – Completion of a Safe Stop 1 •…
-
Page 73: Safe Torque Off Delay
Drive-based Safe Stop Functions Chapter 4 • In Motion Control Mode – axis.SafeTorqueOffActiveStatus = 1 – axis.SafetyResetRequiredStatus = 1 The steps to reset the STO function depend on the cause of STO activation and the Restart/Cold Start Type configured in the module. Safety Fault STO Activation Reset IMPORTANT When the STO function is activated by a Safety Fault, the cause of the safety fault must be removed before STO can be reset, regardless of the configured…
-
Page 74: Safe Torque Off Operation
Chapter 4 Drive-based Safe Stop Functions to SBC delay. In the case of STO activation by a safety fault, any configured delay is ignored, and torque is disabled instantly. Safe Torque Off Operation The operation of the STO function and its attributes is dependent on the configuration of the STO function and the activation reason.
-
Page 75
Drive-based Safe Stop Functions Chapter 4 Figure 21 — STO with Delay STO Delay Velocity SO. STO Output Disable Torque 0x00 STO Activation 0x01 = STO Output SI.STO Active STO Active P4 [Safety Status] STO Active STO Active SI.TorqueDisabled Torque Disabled SI.RestartRequired Restart Required SO.ResetRequest… -
Page 76: Safe Torque Off Stopping Action And Source
Chapter 4 Drive-based Safe Stop Functions Figure 22 — STO with Safety Fault SI. Safety Fault Safety Fault STO Activation 0x04 = Safety Stop Fault Disable Torque SI.STO Active SI.Torque Disabled Torque Disabled SI.Restart Required Restart Required Always Required to Reset a Fault SO.Reset Request Fault Cleared (1) Safety Output Assembly…
-
Page 77: Sto Safety Fault
Drive-based Safe Stop Functions Chapter 4 If the STO Stopping Action Source is Controller, or the STO Stopping Action is configured for a non-default value, a STO Delay may need to be specified in order for the Stopping Action to be completed before torque is disabled. See the drive’s reference manual for information on its supported stop modes.
-
Page 78: Safe Stop 1 Function
Chapter 4 Drive-based Safe Stop Functions Safe Stop 1 Function The Safe Stop 1 (SS1) function signals the configured SS1 Stop Action Source to initiate a stopping action, then the safety module monitors the stop. When the Safe Stop 1 is complete, STO is activated and torque is disabled. If the drive does not complete the stop within the limits that are configured in the Safe Stop 1 function, an SS1 Fault is annunciated.
-
Page 79: Safe Stop 1 Reset
Drive-based Safe Stop Functions Chapter 4 Safe Stop 1 Reset After an SS1 action is complete, the SS1 function must be reset in order to enable torque. When the STO Function needs to be reset, the following attribute values are set: •…
-
Page 80: Safe Stop 1 Stopping Action And Source
Chapter 4 Drive-based Safe Stop Functions Safe Stop 1 Stopping Action and Source In response to an SS1 activation, the type of stop and the source responsible for controlling the stop is configurable. These configuration attributes are defined • SS1 Stopping Action – Configures what stopping action to perform in response to an SS1 Activation.
-
Page 81: Monitored Safe Stop 1
Drive-based Safe Stop Functions Chapter 4 timing of SS1 status and torque attributes in response to an SS1 activation, along with the restart type behavior. Figure 24 — Timed Safe Stop 1 SS1 Ext Max Stop Time Velocity SO.SS1Request SS1 Activation 0x00 0x00 0x01 = SS1 Request…
-
Page 82
Chapter 4 Drive-based Safe Stop Functions After the SS1 Active bit is set, the configured SS1 Decel Monitor Delay timer begins. After the configured Decel Monitor Delay expires, an internal speed ramp value is computed every time that the encoder is sampled. If the magnitude of module:SI.FeedbackVelocity exceeds the sum of the internal ramp plus Decel Speed Tolerance, the SS1 Fault Type attribute is set to ‘Deceleration Rate’… -
Page 83
Drive-based Safe Stop Functions Chapter 4 to SBC Delay is negative (and STO Activates SBC = Linked), then the Torque Disabled attribute is set after the configured time delay. Otherwise, the Torque Disabled attribute is set immediately. Figure 27 shows the timing of the Monitored SS1 operation, along with the restart type behavior. -
Page 84: Ss1 Safety Fault
Chapter 4 Drive-based Safe Stop Functions SS1 Safety Fault When an SS1 Safety Fault occurs, the STO function is activated immediately and torque is disabled. Figure 27 describes the timing of attributes when an SS1 fault occurs during SS1 execution. Figure 28 describes the operation of SS1 when an SS1 fault is detected.
-
Page 85: Safe Brake Control Function
Drive-based Safe Stop Functions Chapter 4 Figure 28 — Safe Stop 1 Fault Operation SS1 Max Stop Time Velocity SS1 Max Stop Time Fault Occurs (Feedback Velocity > Expected Velocity) Standstill Speed SO.SS1Request SS1 Request 0x00 SS1 Activation 0x00 0x01 = SS1 Request SI.SS1Active SS1 Active S1.SafetyFault…
-
Page 86: Safe Brake Control Reset
Chapter 4 Drive-based Safe Stop Functions When SBC is activated, all sources of activation are stored in an attribute as a bit mask, and the attribute can then be read to determine the causes of an SBC activation. Figure 29 shows the operation of the SBC activation attribute.
-
Page 87: Safe Brake Control Modes
Drive-based Safe Stop Functions Chapter 4 Safety Fault SBC Activation Reset IMPORTANT When the SBC function is activated by a Safety Fault, the cause of the safety fault must be removed before the SBC function can be reset, regardless of the configured restart type.
-
Page 88: Safe Brake Control Operation
Chapter 4 Drive-based Safe Stop Functions • So1: Safety Discrete Output Point Object Instance 4 • Safety Dual Channel Output Object Instance 2 Used, Test Pulses In ‘Used, Test Pulses’ mode, the associated safety outputs are tested with a 500 μs pulse every 300 ms when the brake is in the released state (outputs energized).
-
Page 89
Drive-based Safe Stop Functions Chapter 4 SBC Operation when Activated by Safety Output Assembly When the SBC function is activated by clearing the module:SO.SBCOutput tag, the associated safety outputs are deenergized, forcing the brake to engage, and torque is still enabled. Figure 30 shows the timing of SBC attributes when the SBC function is executed independently. -
Page 90
Chapter 4 Drive-based Safe Stop Functions Figure 31 — SBC Linked to STO with Positive Delay SI. STO Active Disable Torque Torque Disabled SI.TorqueDisabled 0x00 SBC Activation 0x02 = STO Active SI.SBCActive Engage Brake (STO to SBC Delay) > 0 SI.BrakeEngaged Brake Engaged Brake Engaged… -
Page 91
Drive-based Safe Stop Functions Chapter 4 to the safe state changes. The ‘Safe State’ of the SBC function is the ‘Brake Engaged’ state. SBC not Linked to STO Safety Fault Operation When a safety fault is detected in the module (and the SBC function is configured to not be linked to STO activation), the SBC function will be activated with the SBC activation reason being ‘Safety Stop Fault’… -
Page 92
Chapter 4 Drive-based Safe Stop Functions Figure 34 — SBC Operation under Safety Fault Condition (linked to STO with positive delay) SI.SafetyFault Safety Fault STO Activation 0x04 = Safety Stop Fault 0x00 Disable Torque SI.STOActive SI.TorqueDisabled Torque Disabled SBC Activation 0x00 0x06 = STO Active, Safety Stop Fault SI.SBCActive… -
Page 93: Sbc Safety Fault
Drive-based Safe Stop Functions Chapter 4 SBC Safety Fault When the module experiences an SBC Fault, the module is placed in the safe state and the cause of the fault is recorded. If SBC function detects a fault, it will set: •…
-
Page 94
Chapter 4 Drive-based Safe Stop Functions The drive-based SBC function does not implement checking of brake feedback; however, the available safety inputs can be used to send the status of brake feedback to the safety controller that is programmed with a diagnostic check. -
Page 95: Drive Safety Instructions
GuardLogix 5380 controllers and use the EtherNet/IP™ network to communicate with the safety I/O. Drive Safety instructions use safety feedback, provided by PowerFlex 755/755T drive products to the Safety Task of the controller, to perform safe monitoring functions. Rockwell Automation Publication 750-UM005A-EN-P…
-
Page 96
Chapter 5 Controller-based Safety Functions Table 40 — Drive Safety Instructions Safety Instruction Description The SFX function scales feedback position into position units and feedback velocity into position units per time unit. SFX is used with Safety Feedback Interface other Drive Safety instructions.SFX also provides unwind for rotary applications and position homing. -
Page 97: Before Adding The Safety Instructions
Chapter 5 Before Adding the Safety Instructions Before adding drive safety instructions to your Logix Designer application, you must have PowerFlex 755/755T drive products with 20-750-S4 options installed in your project. Drive Safety Instruction Example Drive Safety instructions provide the following information. In this example, the Safely-limited Speed (SLS) instruction is shown.
-
Page 98: Pass-Through Data Using Standard I/O Mode
SLS instruction. IMPORTANT Pass-through data is for status information only and does not impact configured safety functions. Figure 39 — Pass-through Data Path (Standard I/O Mode) PowerFlex 755 Drive Safety Task Programming SLS Active status is Safety sent to the drive.
-
Page 99
Controller-based Safety Functions Chapter 5 Table 42 — SLS Tag Information Safety Output Assembly Tag Axis Tag module :SO.SLSActive Drive: I.SafetyStatus SLSActive module :SO.SLSLimit Drive: I.SafetyStatus SLSLimit module :SO.SLSFault Drive :I.SafetyStatus SLSFault TIP The words module and drive (italic) in these tag names represent the module and drive name that is assigned in the Logix Designer application. -
Page 100: Pass-Through Data Using Integrated Motion
SLS instruction. IMPORTANT Pass-through data is for status information only and does not impact configured safety functions. Figure 40 — Pass-through Data Path PowerFlex 755 Drive Safety Task Programming SLS Active status is Safety sent to the drive.
-
Page 101: Sfx Instruction
The PowerFlex 755/755T drive provides safe position and velocity feedback. Up to SIL 3 PLe safety rating can be achieved by using dual feedback with velocity and/or position discrepancy checking.
-
Page 102: Sfx Instruction Example
Chapter 5 Controller-based Safety Functions Figure 41 — SFX Instruction Feeds Data to SS1 Instruction Actual Position Feedback Position (position units) (counts) PowerFlex 755/ PowerFlex 755/ 755T Drive 755T Drive Actual Speed Feedback Velocity (position units/second (feedback units/second) or position units/minute)
-
Page 103
Controller-based Safety Functions Chapter 5 Figure 42 — Effective Resolution Parameter In this example, the motor is used in a rotary application where the unwind is set to roll over each motor revolution. Therefore, the unwind of ‘512 Counts/ Rev’ was added in the SFX instruction appropriately. Figure 43 — Scaling Rockwell Automation Publication 750-UM005A-EN-P… -
Page 104
Chapter 5 Controller-based Safety Functions Homing Setting the ‘Actual Position’ output to the ‘Home Position input’ (homing) of the instruction is required if using a position-based drive safety instruction like Safely-limited Position (SLP). If a position-based drive safety instruction is not being used on an axis, homing the SFX instruction is not required. -
Page 105: Safety Assembly Tags
The SO.Output00Output, SO.Output01Output, SO.Test00Output, and SO.Test01Output tags are sent from the GuardLogix safety output assembly to the PowerFlex 755 safety output assembly to control the safety and test outputs on the Integrated Safety Functions option module. The SI.StopStatus tags are sent from the PowerFlex 755 to the GuardLogix safety input assembly and indicate the PowerFlex 755 safety control status.
-
Page 106: Configure Safety In The Logix Designer Application
Configure Safety in the Logix This chapter provides instructions for how to add and configure an Integrated Safety Functions option module in a PowerFlex 755/ 755T drive product to an Designer Application existing project in the Logix Designer application. This chapter is specific to safety and does not cover all aspects of drive configuration.
-
Page 107
2. Select from the following drive products and click Create. • PowerFlex 755 HiPwr EENET • PowerFlex 755 EENET • PowerFlex 755T • PowerFlex 755TM Bus Supply This example uses the PowerFlex 755 EENET. Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 108: Add An Option Module To A Powerflex 755 Drive
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Add an Option Module to a PowerFlex 755 Drive 1. In the Device Definition dialog box, enter the connection type that you want to use. Select from one of the following types. The ‘Standard and Safety’…
-
Page 109
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 2. When a network safety connection is selected, the 20-750-S3 Network STO option is selected by default. Click the Safety Peripheral pull- down menu and select 20-750-S4. 3. If feedback is being used (indicated by the selection in Safety Instance 1), enter a feedback device for the Safety Feedback Module. -
Page 110: Generate The Safety Network Number (Snn)
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 4. Scroll down and enter additional Device Definition data for the drive product being used. Generate the Safety Network Number (SNN) The assignment of a time-based SNN is automatic when you create a GuardLogix safety controller project and add new Safety I/O devices.
-
Page 111
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 To edit the SNN, follow these steps. 1. To open the Safety Network Number dialog box, click to the right of the Safety Network Number. 2. Select either Time-based or Manual. If you select Manual, enter a value from 1…9999 decimal. -
Page 112
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Electronic Keying The electronic keying options are for the standard connection to the drive. Electronic Keying Indicates that all keying attributes must match to establish communication. If any attribute Exact Match does not match precisely, communication with the device does not occur. -
Page 113
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 6. Click the Add new peripheral pull-down menu to add any additional peripherals, such as feedback devices to use with the safety option module. In this example, a ‘20-750-UFB-1 Universal Feedback’ option module has been added. -
Page 114
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation The Input and Output tabs are for setting the datalinks between the drive and the controller that is performing control. Add P4 [Safety Status] and P5 [Safety Faults] to provide pass-thru data from the safety task/safety controller to the main task/standard controller. -
Page 115
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 10. Click Create to create the drive and have it added to the I/O Configuration folder. Save the project to save any edits and double-click the drive in the I/O Configuration folder to reopen the drive properties window. -
Page 116
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation For safety output connections, the Max Observed Network Delay displays the value that is generated by the output module. For safety input connections, it displays the value that is generated by the controller. -
Page 117
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 13. Click Actions under Safety Configuration in the navigation tree to open the Actions page. Use the settings on the Actions page to: • Define the action to take when the safety connection is lost. •… -
Page 118
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 14. Click STO under Safety Configuration in the navigation tree to open the STO page. The Delay value is the time delay between the STO Active condition and Safe Torque Disabled. This allows the drive to bring the motor to a controlled stop before disabling torque. -
Page 119
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Property Description Specifies the mode of the SS1 function. The Mode selection determines which parameters on the tab are available to configure. The available options are: • Not Used • Timed SS1 Mode •… -
Page 120
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Property Description The physical input points available for configuration (terminals Si0, Si1, Si2, Point and Si3). Specifies the type of operation for the input. Available options are: • Single Channel Point Operation — Type •… -
Page 121
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Property Description Point The physical output points available for configuration (terminals So0 and So1). Specifies the type of operation for the output. Available options are: Point Operation — Type • Single Channel •… -
Page 122
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Property Description Specifies the mode of the SBC function. Available options are: • Not Used Mode • Used, No Test Pulses • Used, Test Pulses Identifies if Safe Torque Off (STO) activation triggers the SBC function. Available options are: STO Activates SBC •… -
Page 123
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 20. Enter the information for the device that is being used for the primary feedback. Red boxes indicate items that must be updated. The properties available on this page are determined by the safety feedback device selected when the drive module was created. -
Page 124
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 22. Enter the information for the device being used for the secondary feedback. Red boxes indicate items that must be updated. The properties available on this page are determined by the safety feedback device selected when the drive module was created. -
Page 125: Safety Configuration Signature And Ownership
Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in drive module General tab) •…
-
Page 126: Reset Ownership
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Configuration Ownership has to be reset to establish a new connection or to reestablish an existing connection. Reset Ownership To reset ownership, see Restore the Drive to Out-of-Box State on page 214.
-
Page 127: Standard And Safety Tasks
(datalinked parameters) in the Integrated Safety Function option module. The PowerFlex 755/755T drive products, with the Integrated Safety Function option module, provides integrated safety functions. Safety functionality operates independently of the inverters and feedback that is used for motion.
-
Page 128
Safety I/O Standard I/O Assembly Assembly PowerFlex 755/755T Drive Product 4. The main task controls the drive to bring the motor to a stop within the Monitored SS1 limits for speed and time. 5. While the drive is stopping, the SS1 function (in the motion-safety instance) monitors the motor speed to make sure it remains below the speed limit and maximum stopping time. -
Page 129: Pass-Through Data
214 for more information. Replacing an entire PowerFlex 755 drive or PowerFlex 755T drive product on an integrated safety network is more involved than replacing standard devices because of the safety network number (SNN). The device number and SNN is the safety Device ID of the device.
-
Page 130: Replace An Integrated Safety Drive In A Guardlogix System
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation integrity on the initial download to the PowerFlex 755 drive or PowerFlex 755T drive product. When the Logix Designer application is online, the Safety tab of the Module Properties dialog box displays the current configuration ownership. When the opened project owns the configuration, Local is displayed.
-
Page 131
ATTENTION: Enable the Configure Always feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755/ 755T drive product. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s Configure Always feature is… -
Page 132: Powerflex 755 Io Mode Using Sfx, Ss1, And Sls Instructions
Standard I/O Mode – Configuration, Programming, and Operation PowerFlex 755 IO Mode Using In this example, a PowerFlex 755 drive (equipped with embedded Ethernet) controls an induction motor with a 1024 PPR incremental encoder. A Dual SFX, SS1, and SLS Instructions…
-
Page 133
Figure 47 — Studio 5000 Connection Set to Standard and Safety Studio 5000 Connection is set to ‘Standard and Safety’ since the GuardLogix controller will provide both in this example. Figure 48 — Studio 5000 Powerflex 755 EENET Configuration Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 134
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Figure 49 — Studio 5000 Safety Primary Feedback Configuration Figure 50 — Studio 5000 Safety Scaling Configuration Figure 51 — Studio 5000 Input Configuration • Inputs 0 and 1 are used with an OSSD Estop input from the 800FP. Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 135: Programming Example
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 • Input 2 is a standard digital input from a push button to safety reset the S4 module. • Input 3 is a standard digital input from a push button to set the SFX home.
-
Page 136
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Safety Input The DCS Instruction is responsible for evaluating the dual-input validity into the GuardLogix safety controller. Figure 53 — DCS Instruction with the S4 is Mapped to the 800FP Safety Logic The Safety Logic is used to configure when a safety reset occurs, the home trigger, and the execution of the SFX instruction (which must have primary… -
Page 137
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Figure 54 — Safety Logic Example Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 138
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Safety Output The Safe Torque Off output must be true in order for any of the preceding safe monitoring functions (namely SFX, SS1, and SLS) to function. Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 139
Chapter 6 Figure 55 — Safety Output Example The PowerFlex 755 S4 safety actions can be configured based on the required reaction to various machine requirements. In this instance, the STO request is executed by the PowerFlex 755 in causing a disable and coast reaction. -
Page 140
Figure 57 — The Use of Datalink is Required to Pass Data from the S4 Safety Function to the Standard I/O Routine Figure 58 — Standard I/O Routine That Starts and Stops the PowerFlex 755 Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 141
Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Figure 59 — Standard I/O Routine That Runs the Drive at Velocity and Changes to Safe Limited Speed Velocity When Requested by the Safety Task Figure 60 — Standard I/O Routine That Commands the Drive to Zero Velocity Once the SS1 Request is Made by the Safety Task Figure 61 — Standard I/O Routine That Monitors When at Zero Speed and Stops the Drive Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 142
Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 143
The SO.Output00Output, SO.Output01Output, SO.Test00Output, and SO.Test01Output tags are sent from the GuardLogix safety output assembly to the PowerFlex 755 safety output assembly to control the safety and test outputs on the Integrated Safety Functions option module. The SI.StopStatus tags are sent from the PowerFlex 755 to the GuardLogix safety input assembly and indicate the PowerFlex 755 safety control status. -
Page 144: Add A Powerflex 755 Drive To The Controller Project
Configure the Integrated This section provides instructions for how to add and configure an Integrated Safety Functions option module in a PowerFlex 755/755T drive product to an Safety Function Option existing project in the Logix Designer application. This chapter is specific to Module in the Logix Designer safety and does not cover all aspects of drive configuration.
-
Page 145: Understand Module Properties Categories
Integrated Motion – Configuration, Programming, and Operation Chapter 7 The Integrated Safety Function module and its safe speed monitor functions Understand Module are configured in the Studio 5000 Logix Designer® application. Follow these Properties Categories guidelines when configuring your safety application. IMPORTANT For access to Motion Safety module properties, the Connection pull-down menu in the Module Definition dialog box must be configured for Motion and Safety or Safety Only.
-
Page 146: Module Properties>General Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Module Properties Category Page General page 146 Connection and Safety page 149 Motion Safety Actions page 152 Primary Feedback page 153 Secondary Feedback page 155 Scaling page 156 Discrepancy Checking page 157 page 158 page 159 page 160…
-
Page 147
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 44 — Electronic Keying Methods Electronic Keying Indicates that all keying attributes must match to establish communication. If any attribute Exact Match does not match precisely, communication with the device does not occur. Lets the installed device accept the key of the device that is defined in the project when the installed device can emulate the defined device. -
Page 148
Chapter 7 Integrated Motion – Configuration, Programming, and Operation 6. When using ‘Single’ or ‘Dual Feedback Monitoring’ mode, use these steps to add a safety feedback device. a. Right-click the drive under Peripheral Devices, and then click New Peripheral Device… to bring up the Peripheral Device Definition dialog box. -
Page 149: Module Properties>Connection And Safety Categories
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 46 — Motion Safety Instance Definitions Motion Safety Instance Mode Module Connection Options Description Safe Stop Only — STO function and Timed SS1 Safe Stop functions are available. No Feedback Single Feedback Monitoring •…
-
Page 150
Chapter 7 Integrated Motion – Configuration, Programming, and Operation 3. Click the Configuration tab. The default safety task Period value (and output RPI) is 20 ms. IMPORTANT The ‘Period’ is the interval at which the safety task executes. The ‘Watchdog’ must be less than the period. For more safety task information, see the GuardLogix 5580 and Compact GuardLogix 5380 Controller Systems Safety Reference Manual, publication 1756-RM012. -
Page 151
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 47 — Advanced Reaction Connection Time Limit Configuration Settings Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign. -
Page 152: Motion Safety>Actions Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Motion Safety>Actions Category The Actions category provides fault behavior options. Determine the preferred machine function when a connection loss or connection idle condition occurs. Safe Torque-off (STO) means that the drive immediately disables the motor power outputs causing a coast condition for the motor and load.
-
Page 153: Motion Safety>Primary Feedback Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 2. From the Connection Loss Action and Connection Idle Action pull- down menus, choose SS1 or STO as required for your application. 3. From the Restart Type and Cold Start Type pull-down menus, choose Automatic or Manual as required for your application.
-
Page 154
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 49 — Feedback Options Feedback Option 20-750-UFB-1 20-750-DENC-1 Sine/Cosine Primary Digital AqB Hiperface Secondary Digital AqB Digital AqB Table 50 — Safety Feedback Configuration Attributes Attribute Description Specify the units of the encoder. Default value is revolutions (Rev) that supports rotary motors. Units When using a linear encoder, select Meter. -
Page 155: Motion Safety>Secondary Feedback Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 51 — Voltage Monitoring Values for Feedback Device Feedback Devices 20-750-UFB 20-750-DENC Not monitored Not monitored 7V…12V 4.75V…5.25V Primary 4.75V…5.25V 7V…12V 11.4V…12.6V Not monitored Not monitored 7V…12V 4.75V…5.25V Secondary 4.75V…5.25V 7V…12V 11.4V…12.6V Motion Safety>Secondary Feedback Category…
-
Page 156: Motion Safety>Scaling Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Motion Safety>Scaling Category The Primary Feedback category set safety resolution in terms of counts per encoder unit. The Scaling category configures the position and time to be used in terms of counts per position unit in the safe monitoring functions. Figure 63 — Scaling Category (default settings) Table 52 — Scaling Category Attributes Attribute…
-
Page 157: Motion Safety>Discrepancy Checking Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Motion Safety>Discrepancy Checking Category Discrepancy checking is only used in applications where the ‘Module Definition>Safety Instance’ is configured for ‘Dual Feedback Monitoring’ . Its purpose is to perform an evaluation of the speed and position discrepancy between primary and secondary feedback.
-
Page 158: Motion Safety>Sto Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation and secondary feedback position. Use the ‘Velocity/Position Check’ mode if position and velocity checking are needed. Follow these steps to configure the Discrepancy Checking attribute. 1. From the Mode pull-down menu, choose the appropriate discrepancy checking mode for your application.
-
Page 159: Motion Safety>Ss1 Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 STO becomes active if any of the following inputs to STO are asserted: • STO Output = 0 • Safety Connection Loss and Connection Loss Action = STO • Safety Connection is Idle and Connection Idle Action = STO •…
-
Page 160: Motion Safety>Sbc Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 66 — SS1 Dialog Box (Timed SS1, default) Monitored SS1 is a ramped safe-stop where the motion safety instance monitors the speed ramp to standstill speed, while either the motion task or the drive controls the deceleration to standstill speed.
-
Page 161: Motion Safety>Input Configuration Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 of the physical brake outputs are performed. For more information on the drive-based SBC function, see Safe Brake Control Function on page Table 53 for descriptions of the SBC attributes. Table 53 — SBC Attributes Attribute Description Determines if an STO event engages the brake.
-
Page 162: Motion Safety>Test Output Category
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Error Latch Time attribute configures the time that a discrepancy must exist before a Safety Input alarm is generated. See Latch Input Error Operation in Single Channel Mode on page 41 for more information.
-
Page 163: Motion Safety>Output Configuration Category
Integrated Motion – Configuration, Programming, and Operation Chapter 7 TIP If a safety input’s Point Mode is configured for ‘Used with Test Output’ , the Test Output indicated by the ‘Test Source’ field must have its ‘Point Mode’ configured as ‘Pulse Test Output’ . Table 56 — Test Output Point Mode Values Value Description…
-
Page 164: Axis Properties > Actions > Safety Actions
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 57 — Point Operation Type Values Value Description The safety output operates in single channel mode. See Single-channel Mode on page Single Channel for more information. The safety output operates in dual channel mode with its partner safety output. See Dual Channel Dual-channel Mode on page…
-
Page 165: Feedback Device
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 68 on page 165 shows the Actions page. Table 59 on page 165 describes the Safety Action attributes. Figure 68 — Axis Properties > Actions Page Table 59 — Safety Actions Attributes Descriptions Attribute Description Specifies the stopping action that will be executed in response to a STO Activation.
-
Page 166: Generate The Safety Network Number (Snn)
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 60 — Motor/Load Feedback Device Selection Terminal Safety Feedback Device Selection Motor/Load Feedback Device Selection – SN + SN Port X Primary Port X Channel B – CS + SN –…
-
Page 167: Safety Configuration Signature And Ownership
Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in drive module General tab) •…
-
Page 168: Reset Ownership
Chapter 7 Integrated Motion – Configuration, Programming, and Operation If any differences are detected, the safety connection between the safety controller and the drive is not established (for a new drive/system) or lost (for an existing drive/system). A yellow icon appears next to the drive in the controller project tree to indicate a lost or unestablished connection.
-
Page 169: Motion Direct Commands In Motion Control Systems
ATTENTION: Enable the ‘Configure Always’ feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755/ 755T drive product. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s ‘Configure Always’…
-
Page 170
Understand STO Bypass When Using Motion Direct Commands If a Safety-only connection between the GuardLogix safety controller and the PowerFlex 755/755T drive product was established at least once after it was received from the factory, then it does not allow motion while the safety controller is in Program mode by default. -
Page 171
Logix Designer Application Warning Messages When the controller is in Run mode, executing safety functions, the PowerFlex 755 drive follows the commands that it receives from the safety controller. The controller reports ‘Safety State = Running’ and ‘Axis State = Stopped/Running’… -
Page 172
Chapter 7 Integrated Motion – Configuration, Programming, and Operation When you issue a motion direct command to an axis to produce torque in Program mode, for example MSO or MDS, with the safety connection present to the drive, a warning message is presented before the motion direct command is executed, as shown in Figure Figure 72 — STO Bypass Prompt When the Safety Controller is in Program Mode… -
Page 173
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 73 — Safety State Indications After Controller Transitions to Program Mode (MDC executing) IMPORTANT The persistent warning message text ‘Safe Torque Off bypassed’ appears when a motion direct command is executed. The warning message persists even after the dialog is closed and reopened as long as the integrated safety drive is in STO Bypass mode. -
Page 174
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Warning Icon and Text in Axis Properties In addition to the other warnings that require your acknowledgement, the Logix Designer application also provides warning icons and persistent warning messages in other Axis Properties dialog boxes when the integrated safety drive is in STO Bypass mode. -
Page 175
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 77 — Axis and Safe State Indications on the Motion Console Dialog Box Functional Safety Considerations ATTENTION: Before maintenance work can be performed in Program mode, the developer of the application must consider the implications of allowing motion through motion direct commands. -
Page 176: Programming
Figure 79 page 179. • The PowerFlex 755 and PowerFlex 755T drives and drive products contain one inverter for control of one motor and one motion axis. • Feedback from position encoders, supplied to the motion tasks, is also associated with the axis.
-
Page 177
Integrated Motion – Configuration, Programming, and Operation Chapter 7 system applications, an E-stop switch is used to stop the system. In the following example, the switch is used to initiate the process that brings the axis to a controlled stop before removing power. This type of stop is called Stop Category 1. -
Page 178
STO by clearing the bit: module:SO.STOOutput tag of the drive motion- safety instance. This figure shows how the safety task and motion tasks communicate with the drive. Figure 78 — Safe Monitor System Communication PowerFlex 755/755T Drive Product CIP Motion™ Motion Protocol… -
Page 179: Safe Monitor Network Communication
Motion Axis Motion Safety Motion Core Instance PowerFlex 755/755T Drive Product Motion Connection The motion connection communicates drive motion and safety status to the motion task. The motion connection also receives motion commands from the motion task in the motion controller.
-
Page 180
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 61 — Motion Connection Axis Tags Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.AxisSafetyState DINT Drive module Safety Supervisor state. See the Safety Supervisor None State… -
Page 181
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 61 — Motion Connection Axis Tags (continued) Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.SLSActiveStatus [18] BOOL Indicates that the controller-based SLS function is active. module:SO.SLSActive[inst] 0 = SLS Function is not Active 1 = SLS Function is Active… -
Page 182
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 61 — Motion Connection Axis Tags (continued) Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.SafeTorqueOffFault BOOL Indicates a fault occurred within the STO function of the drive- None (use explicit message) module safety instance. -
Page 183: Explicit Messages
Integrated Motion – Configuration, Programming, and Operation Chapter 7 The pass-through data includes items such as status and faults for controller- based safety functions. Two general-purpose 32-bit words are provided in the output assembly from the safety controller and appear as AxisSafetyDataA and Axis SafetyDataB in the motion controller associated axis.
-
Page 184: With Integrated Motion
Running (torque permitted) STO bypass state Integrated In this example, a PowerFlex 755 drive (equipped with embedded Ethernet) Application Example — Using controls a servo motor (catalog number MPL-B430P-M). A Universal Feedback SFX, SS1, and SLS Instructions option module (catalog number 20-750-UFB-1) and an Integrated Safety…
-
Page 185: Studio 5000 Logix Designer Application Configuration
Integrated Motion – Configuration, Programming, and Operation Chapter 7 A Guard Locking Switch (catalog number TLS-Z GD2) is mapped to one of the S4 Safety Outputs. This switch can be opened when the Safe Stop 1 is complete and when the Safe Limited Speed is below the required speed for an operator to access the machine function.
-
Page 186
Integrated Motion – Configuration, Programming, and Operation Figure 82 — Peripheral Device Definition This PowerFlex 755 drive is configured with the 20-750-UFB-1 in port 4. The Safe Feedback checkbox must be checked for proper configuration and agreement with the safety switches on the Universal Feedback option module. -
Page 187: Programming Example
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 85 — Studio 5000 Safety Input Configuration Example • Inputs 0 and 1 are used with an OSSD Estop input from the 800FP. • Input 2 is a standard digital input from a push button to safety reset the S4 module.
-
Page 188
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 87 — DCS Instruction with the S4 is Mapped to the 800FP Figure 88 — DCS Instruction Evaluates Dual-input Validity Safety Logic The Safety Logic is used to configure when a safety reset occurs, the home trigger, and the execution of the SFX instruction (which must have primary feedback valid for it to execute properly). -
Page 189
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 89 — Safety Logic Example Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 190
(namely SFX, SS1, and SLS) to function. Figure 90 — Safety Output Example The PowerFlex 755 S4 safety actions can be configured based on the required reaction to various machine requirements. In this instance, the STO request is executed by the PowerFlex 755 in causing a disable and coast reaction. -
Page 191
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 91 — Safety Output Programming Example The Safe Limited Speed (and any other safe monitoring instruction requests besides STO, SS1, and SS2) are handled with the use of pass-through tags in the GuardLogix Motion Controller. -
Page 192
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 93 — Motion Instructions to Run the Motor at a Specific Velocity Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 193
Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 94 — Use of the Motion Change Dynamics Instruction to Change from Normal Operating Speed to Safe Limited Speed and Back based on the Safety Task Request Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 194
Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 95 — Use of the Motion Axis Stop Instruction to Bring the Motor to 0 Speed Once the SS1 Request is Made From the Safety Task When the stop is complete and 0 speed, the Motion Servo Off is given to open the position loop and stop modulating the drive. -
Page 195
Chapter Monitoring and Troubleshooting This chapter provides information for monitoring and troubleshooting the Integrated Safety Functions option module. Topic Page Monitor Status Using Status Indicators Monitor Status with a HIM or Software Monitor Status Using Status The option module has four status indicators to provide status of the module, safety network, and motion output of the drive: Indicators •… -
Page 196: Module Status Indicator (Ds1)
Chapter 8 Monitoring and Troubleshooting Module Status Indicator (DS1) Table 65 provides information for the module status indicator. Table 65 — Module Status LED (DS1) For Safety Supervisor State Status Indicator Description or Problem No power No power is applied to drive Device self-test (1) Flashing red/green Device is performing its power-on self-test…
-
Page 197: Motion Output Status Indicator (Ds3)
Monitoring and Troubleshooting Chapter 8 Motion Output Status Indicator (DS3) Table 67 provides information for the motion output status indicator. Table 67 — Motion Output Status LED (DS3) State Status Indicator Problem Torque disabled Torque is disabled Torque permitted Solid green STO circuit is permitting torque Circuit fault Flashing red…
-
Page 198
Chapter 8 Monitoring and Troubleshooting Figure 96 — Axis Faults and Status The safety faults named in Table 69 appear as Safety Faults when they occur. In addition, if any of these faults are present, a safety fault appears under the axis fault. -
Page 199: Understand Safety Faults
Monitoring and Troubleshooting Chapter 8 Understand Safety Faults To obtain more detailed information about any faults that are detected in the drive, most faults have a corresponding fault-type attribute. These attributes are read by using an MSG instruction in the ladder program to read the specific attribute information, or by reading the corresponding DPI™…
-
Page 200: Rockwell Automation Publication 750-Um005A-En-P — October
Chapter 8 Monitoring and Troubleshooting Safe Torque Off Fault The Safe Torque Off (STO) function detected a fault. The safe stop function records the specific fault type in the STO Fault Type attribute. The STO Fault Type attribute is also recorded in P7 [STO Fault Type]. Table 71 describes the parameters for an MSG instruction.
-
Page 201: Safe Stop 1 Fault
Monitoring and Troubleshooting Chapter 8 Safe Stop 1 Fault The Safe Stop 1 (SS1) function detected a fault. The safe stop function records the specific fault type in the Safe Stop Fault attribute. The SS1 Fault Type is also recorded in P10 [SS1 Fault Type]. Table 74 describes the parameters for an MSG instruction.
-
Page 202: Safe Brake Control Fault
Chapter 8 Monitoring and Troubleshooting Safe Brake Control Fault The Safe Brake Control (SBC) function detected a fault. The safe stop function records the specific fault type in the SBC Fault Type attribute. The SBC fault type is also recorded in P11 [SBC Fault Type]. Table 75 describes the parameters for an MSG instruction.
-
Page 203: Safety Feedback Faults
Monitoring and Troubleshooting Chapter 8 Safety Feedback Faults When configured for safety feedback, the device performs periodic diagnostics to make sure that the feedback device is operating correctly. Explicit messaging can be used to read the fault type information from the drive. For example, if an error is detected, the Safe Feedback object (class code 0x58) updates the Safe Feedback Fault Type attribute (attribute ID 0x09) with the reason for the fault.
-
Page 204: Safety Fault Reset
Chapter 8 Monitoring and Troubleshooting Safety Fault Reset If the drive motion safety instance detects a fault, the input assembly tag module:SI.SafetyFault is set to 1. The associated axis.SafetyFault tag is also set to 1. A Safety Fault can result from the SS1 stopping function, STO function, safety feedback, SBC function, or other safety diagnostics.
-
Page 205: Monitor Status With A Him Or Software
Monitoring and Troubleshooting Chapter 8 Figure 97 — Reset Safe Stop Fault Diagr Disable Torque SO.SafeTorqueOff (bit 0) Permit Torque Reset Request SO.Reset (bit 7) Torque Disabled SI.TorqueDisabled (bit 0) SI.SafetyFault (bit 6) No Fault Faulted Reset Required SI.ResetRequired (bit 7) Faulted P4 [Host Config] Safety Status (bit 0)—>Safety Fault Reset Request…
-
Page 206
Chapter 8 Monitoring and Troubleshooting application. After determining the fault type, see the Understand Safety Faults section for more information on the fault. Safety board faults are also stored in the drive fault queue: Figure 98 — Drive Fault Queue Further information on the cause of the fault is also recorded in the Integrated Safety Functions module events queue: Figure 99 — Mobile Events Queue… -
Page 207
Monitoring and Troubleshooting Chapter 8 Table 78 through Table 84 for a description of these parameters. Table 78 — P3 [Safety State] Value Display Text Description Testing Device is performing test diagnostics Idle No active connections Test Flt A fault has occurred while executing test diagnostics Executing Normal running state Abort… -
Page 208
Chapter 8 Monitoring and Troubleshooting Table 79 — P4 [Safety Status] (continued) Display Text Description SMT OvrTemp Indicates whether the Safe Motor Temperature function has detected a temperature above the limit. 0 = Temp Below Limit 1 = Temp Above Limit SSM Active Indicates if the Safe Speed Monitoring function is active. -
Page 209
Monitoring and Troubleshooting Chapter 8 Table 80 — P5 [Safety Faults] Display Text Description Core Fault The module has detected an unrecoverable fault. Fdbk Fault A fault is present in a safety feedback device. STO Fault This bit indicates the fault status of the STO function. 0 = no fault 1 = faulted The cause of the fault is recorded in device P7 [STO Fault Type]. -
Page 210: Monitor Status Using Integrated Motion
Chapter 8 Monitoring and Troubleshooting Table 82 — P7 [Safe Faults Mfg] Display Text Description SFX Fault The Safety Feedback Interface Add On Instruction has experienced a fault. Table 83 — P8 [Safety Data A] Data Type Display Text Description DWORD Safety Data A User-defined data sent from Safety Controller.
-
Page 211
Monitoring and Troubleshooting Chapter 8 Table 85 — Motion Connection Axis Tags Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.CIPStartInhibits DINT A bit map that specifies the current state of all standard conditions that inhibits starting of the axis. -
Page 212
Chapter 8 Monitoring and Troubleshooting Table 85 — Motion Connection Axis Tags (continued) Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.SCAActiveStatus [26] BOOL Indicates the state of the module:SO.SCAActive controller output tag. Axis.SCAStatus [27] BOOL Indicates the state of the module:SO.SCAStatus controller output tag. -
Page 213
Monitoring and Troubleshooting Chapter 8 Table 85 — Motion Connection Axis Tags (continued) Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.SDIFault [19] BOOL Set if the module:SO.SDIFault controller output tag is set. Enters ‘Safely Limited Direction (SDI)’… -
Page 214: Out-Of-Box State
PowerFlex® 755 drive at least once, you can follow these steps to restore your PowerFlex 755 drive to the out-of-box state while online. 1. Right-click the PowerFlex 755 drive you created, and choose Properties. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
-
Page 215
Monitoring and Troubleshooting Chapter 8 2. Click the Connection tab. 3. Check Inhibit Module. 4. Click Apply. 5. Click the Safety Tab. 6. Click Reset Ownership. 7. Click the Connection tab. 8. Clear the Inhibit Module checkbox. 9. Click Apply. 10. -
Page 216
Chapter 8 Monitoring and Troubleshooting Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 217
Appendix Safety Function Validation Checklist Use this appendix to validate your drive safety instructions. Each instruction has a checklist with test commands and results to verify for normal operation and abnormal operation scenarios. Topic Page Safe Stop 1 (SS1) Safe Stop 2 (SS2) Safe Operating Speed (SOS) Safely-limited Speed (SLS) Safely-limited Position (SLP) -
Page 218
Appendix A Safety Function Validation Checklist Safe Stop 1 (SS1) Use this SS1 instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program. -
Page 219
Safety Function Validation Checklist Appendix A Table 1 — SS1 Instruction Checklist (continued) Test Type Test Description Test Status Change the motion deceleration rate within the motion task that is associated with this SS1 function so that the stop delay time is exceeded without triggering a deceleration fault. -
Page 220: Checklist Safe Stop 2 (Ss2)
Appendix A Safety Function Validation Checklist Safe Stop 2 (SS2) Use this SS2 instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 221
Safety Function Validation Checklist Appendix A Table 2 — SS2 Instruction Checklist (continued) Test Type Test Description Test Status Change the motion deceleration rate within the motion task that is associated with this SS2 function so that the stop delay time is exceeded without triggering a deceleration fault. -
Page 222
Appendix A Safety Function Validation Checklist Table 2 — SS2 Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine at maximum (normal) operating system speed. -
Page 223: Safe Operating Speed (Sos)
Safety Function Validation Checklist Appendix A Safe Operating Speed (SOS) Use this SOS instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 224
Appendix A Safety Function Validation Checklist Table 3 — SOS Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine at maximum (normal) operating system speed. -
Page 225: Safely-Limited Speed (Sls)
Safety Function Validation Checklist Appendix A Safely-limited Speed (SLS) Use this SLS instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 226: Safely-Limited Position (Slp)
Appendix A Safety Function Validation Checklist Safely-limited Position (SLP) Use this SLP instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 227
Safety Function Validation Checklist Appendix A Table 5 — SLP Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine within the desired position range. -
Page 228: Safe Direction (Sdi)
Appendix A Safety Function Validation Checklist Safe Direction (SDI) Use this SDI instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 229: Safe Feedback Interface (Sfx)
Safety Function Validation Checklist Appendix A Safe Feedback Interface Use this SFX instruction checklist to verify normal operation and the abnormal operation scenarios. (SFX) IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 230
Appendix A Safety Function Validation Checklist Table 7 — SFX Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine within the normal operating range. -
Page 231: Safe Brake Control (Sbc)
Safety Function Validation Checklist Appendix A Safe Brake Control (SBC) Use this SBC instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
-
Page 232
Appendix A Safety Function Validation Checklist Notes: Rockwell Automation Publication 750-UM005A-EN-P- October 2018… -
Page 233
Appendix Specifications, Certifications, and CE Conformity This appendix provides general specifications for the Integrated Safety Functions option module. Topic Page Integrated Safety Functions Option Module Specifications Environmental Specifications Certifications Integrated Safety Functions These specifications apply to the Integrated Safety Functions option module. For additional specifications, see these publications: Option Module Specifications •… -
Page 234
Appendix B Specifications, Certifications, and CE Conformity Electrical Requirements Table 10 — Safety Input Specifications Attribute Value Input Type Current Sinking IEC 61131-2 (input type) Type 3 Voltage, on-state 11…30V DC Voltage, off-state -3…5V DC Current, on-state, minimum 2 mA Current, off-state, maximum 1.5 mA Table 11 — Safety Output Specifications… -
Page 235: Environmental Specifications
For detailed information on environmental, pollution degree, and drive enclosure rating specifications, see the technical data publication for your drive. • PowerFlex 755 AC Drives Technical Data, publication 750-TD001 • PowerFlex 750-Series Products with TotalFORCE Control Technical…
-
Page 236: Certifications
Up to SIL 3, according to EN 61800-5-2 and IEC 61508, and SIL CL3 according to EN IEC 62061; Up to Performance Level PLe and Category 4, according to EN ISO 13849-1; When used as described in this PowerFlex 755 Integrated Safety Functions User Manual, publication 750-UM004. (1) See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page…
-
Page 237: Emc Directive (2014/30/Eu)
Specifications, Certifications, and CE Conformity Appendix B EMC Directive (2014/30/EU) • EN 61800-3 — Adjustable speed electric power drive systems — Part 3: EMC requirements and specific test methods Waste Electrical and Electronic Equipment (WEEE) At the end of its life, this equipment should be collected separately from any unsorted municipal waste.
-
Page 238
Appendix B Specifications, Certifications, and CE Conformity Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 239
Appendix Safety I/O Assemblies and Safety Attributes Controller axis tags are used by the motion controller motion task to read the status of safety functions and coordinator motion. This appendix lists the motion controller tags that are associated with the safety instances and with safety functions operating in the safety task of the controller. -
Page 240
Appendix C Safety I/O Assemblies and Safety Attributes Safety Assembly Tags Safety assembly tags are associated with a safety connection from a safety controller to a drive module. The data in these tags are communicated at the configured connection rate. Safety Input Assembly tags contain the data that is transferred from the drive to the GuardLogix®… -
Page 241
Safety I/O Assemblies and Safety Attributes Appendix C Table 14 — Safety Input Assembly Tags (continued) Safety Input Assembly Tag Name Type/[bit] Description (input to safety controller) module :SI.MotionPositive 1 = Feedback Velocity > Primary Feedback Standstill Speed module :SI.MotionNegative 1 = Feedback Velocity <… -
Page 242
Appendix C Safety I/O Assemblies and Safety Attributes Table 15 — Safety Output Assembly Tags Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module: SO.PassThruDataA[ instance ] DINT 32-bit data container holding general-purpose safety data passed from the safety controller. module :SO.PassThruDataB[ instance ] DINT 32-bit data container holding general-purpose safety data passed from the safety controller. -
Page 243
Safety I/O Assemblies and Safety Attributes Appendix C Table 15 — Safety Output Assembly Tags (continued) Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module :SO.SLSActive[ instance ] Indicates that the controller-based SLS function is active. 0 = SLS Function is not active 1 = SLS Function is active module :SO.SLSLimit[ instance ] Indicates that the controller-based SLS function has detected the monitored axis speed… -
Page 244
Appendix C Safety I/O Assemblies and Safety Attributes Table 15 — Safety Output Assembly Tags (continued) Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module :SO.SLSFault[ instance ] Controller-based SLS fault. 0 = Normal Operation 1 = Fault module :SO.SDIFault[ instance ] Controller-based SDI fault. -
Page 245
Safety I/O Assemblies and Safety Attributes Appendix C Safety Feedback Attributes Safety feedback attributes provide configuration and status information for safety feedback. The module has two safety feedback instances. The safety feedback instances contain safety feedback attributes and safety feedback configuration data. -
Page 246
1 = Inverted according to the encoder manufacture specifications. For feedback devices internal to Allen-Bradley® motors, the Normal direction is clockwise rotation of the shaft when facing the end of the motor shaft. -
Page 247: Safe Stop Function Attributes
Safety I/O Assemblies and Safety Attributes Appendix C Safe Stop Function Safe-stop function attributes provide configuration and status information for safety feedback. Attributes The module has one safe stop function instance. Safe-stop function attributes provide status and configuration data. All attributes can be read using explicit messages.
-
Page 248
Appendix C Safety I/O Assemblies and Safety Attributes Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 50 (0x32) Connection Loss Action Safety Output Connection is lost (or closed) and optional Connection Loss 0 = STO (default) Action is Set to STO (default). -
Page 249
Safety I/O Assemblies and Safety Attributes Appendix C Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 282 (0x11A) SS1 Active Safe Stop 1 function active. 0 = Not Active 1 = Active 283 (0x11B) SS1 Fault… -
Page 250
Appendix C Safety I/O Assemblies and Safety Attributes Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 361 (0x169) SBC Output Commanded state of the SBC Outputs. 0 = Engage Brake (default) 1 = Release Brake Permit 362 (0x16A) SBC Active… -
Page 251: Explicit Messages
Safety I/O Assemblies and Safety Attributes Appendix C Explicit Messages Use explicit messages to communicate with a drive and obtain additional fault, status, or configuration information that is not available in the Safety I/O Tag structure. Attribute data is useful for additional diagnostic information. IMPORTANT Explicit messages must not be used for any safety related function.
-
Page 252
Appendix C Safety I/O Assemblies and Safety Attributes backplane and <port> is the number of the backplane port where the 20-750- S4 option is installed. This can be port 4, 5, or 6. In CIP Motion applications the 20-750-S4 must be installed in port 6. Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 253: Parameters And Settings In A Linear List
Appendix Parameter Data This appendix provides a description of the device parameters and host config parameters. Parameters and Settings in a This section describes the status parameters and their values in numerical order. Linear List Device Parameters Table 20 — Device Config Parameters Display Name Values Description…
-
Page 254
Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Extended Status “Self Test” (0) A self test is in progress. USINT Detailed description of “FW Update” (1) A firmware update is in progress. the module status based on Identity “IO Faulted”… -
Page 255
Parameter Data Appendix D Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description SS1 Fault Type “No Fault” (1) No fault being reported by the Safe Stop BYTE 1 function. The fault reported by the Safe Stop 1 “Config”… -
Page 256
Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Input Alarm “No Alarm” (0) No alarm reported by the input instance. BYTE The alarm being “Config” (1) The input instance’s configuration is reported by the input invalid. -
Page 257
Parameter Data Appendix D Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Enc1 Accel REAL Primary encoder acceleration in units/ s2. The units of this value are of the type reported by parameter 24 — (En1 Unit). -
Page 258
Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Enc2 Velocity REAL Secondary encoder velocity in Units/s. The units of this value are of the type reported by P34 [Enc2 Unit]. Enc2 Accel REAL Secondary encoder… -
Page 259: Host Config Parameters
Host Parameters 11…14 configure how the PowerFlex® 755 drive reacts to a change in the status of the safety functions. These configuration parameters are not part of the ‘Safety’ configuration, they are part of the PowerFlex 755 drive configuration. Table 21 — Host Config Parameters…
-
Page 260
Appendix D Parameter Data Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description Safety Status BOOL[32] Indicates status of the safety functions. Options Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 0 “Safety Fault”… -
Page 261
Parameter Data Appendix D Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description Safety Faults BOOL[32] Indicates what type of safety fault has occurred. Options Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 1 “Core Fault”… -
Page 262
Appendix D Parameter Data Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description STO Actn Src Default: 0 — Drive RW DWORD Determines whether the drive or the controller initiates a stop when the Safety Status STO Active Options: 0 — Drive bit is set. -
Page 263: Index
Index Numerics cycle interpolation 154 20-750-S 16 resolution 154 20-750-S1 16 20-750-S3 16 diagnostic 206 cosine 27 actions 152 encoder 25 hiperface 27 ADC 114 digital AqB encoders 27 additional resources 13 discrepancy 162 assembly tags checking 157 input 240 errors 50 output 242 testing 22…
-
Page 264
STO bypass 170 warning messages 171 jumper locations MSG command 214 Powerflex 755 drives 33 PowerFlex 755T drive products 33 jumper settings 31 network delay multiplier 151 network status 195 Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 265
100 brake 93 in standard I/O mode 98 category 233 PFD 20 connection 147 control state 214 PowerFlex 755 drives 21 core fault 199 PowerFlex 755T drive products 21 DeviceID 129 PFH 20 digital outputs 52 definition 11… -
Page 266
Index edit 111 spurious trip rate 23 output 149 SS1 78 output alarm 60 activation 78 output assembly tag 67 fault 201 output data 57 reset 79 output ready 58 safety fault 84 output status 57 stopping action and source 80 output with test pulse 52 validation checklist 218 performance level 18… -
Page 267
Index test output 162 mode 63 ready 65 status 64 test pulse 52 test pulses 164 test pulses mode 88 time 156 timed SS1 80 SS1 definition 10 timeout multiplier 151 TÜV Rheinland 18 type 162 units 154 used as standard input 162 no test pulses mode 87 test pulses mode 88 with test output 162… -
Page 268
Index Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018… -
Page 270
Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page. Allen-Bradley, Connected Components Workbench, CompactLogix, ControlLogix, DeviceLogix, DPI, Integrated Architecture, Guard I/O, GuardLogix, Logix 5000, PowerFlex, QuickView, Rockwell Automation, Rockwell Software, Studio 5000 Logix Designer, and TotalFORCE are trademarks of Rockwell Automation, Inc.
PowerFlex 755T Drives with TotalFORCE Control Programming Manual
PowerFlex, PowerFlex 755T, 20G, 20J, PowerFlex 750-Seies, TotalFORCE, TotalFORCE Control, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex Common Bus Inverter, PowerFlex Bus Supply
«PowerFlex, PowerFlex 755T, 20G, 20J, PowerFlex 750-Seies, TotalFORCE, TotalFORCE Control, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex Common Bus Inverter, PowerFlex Bus Supply»
Rockwell Automation
Rockwell Automation Publication 750-PM101A-EN-P — February 2021. PowerFlex Drives with TotalFORCE Control Programming Manual. Important User …
PowerFlex 755T Drives with TotalFORCE …
PowerFlex 755T Drives with TotalFORCE Control Programming Manual
750-pm101 -en-p — Rockwell Automation
2021-02-15 — The parameters and fault and alarm codes for this product are in spreadsheets … PowerFlex 755TM AC Precharge Modules Unpacking and Lifting Instructions,.
- PDF Viewer
- Universal Document Viewer
- Google Docs View
- Google Drive View
- Download Document [pdf]Not Your Device? Search For Manuals / Datasheets:
File Info : application/pdf, 136 Pages, 19.67MB
Document
750-pm101 -en-p
Front Cover The parameters and fault and alarm codes for this product are in spreadsheets that are attached to this PDF. To access the spreadsheets, save this PDF and open it from your device (not in a browser). Then CLICK HERE to open the Attachments pane (to the left) and access each spreadsheet. PowerFlex Drives with TotalFORCE Control Firmware Revision 10.xxx Programming Manual Original Instructions PowerFlex Drives with TotalFORCE Control Programming Manual Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations. WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss. ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence. IMPORTANT Identifies information that is critical for successful application and understanding of the product. Labels may also be on or inside the equipment to provide specific precautions. SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present. BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures. ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE). 2 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Table of Contents About This Publication Startup Parameter Organization PowerFlex 755T Control Block Diagrams Troubleshooting Preface Access Files Attached to this Publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Download Firmware, AOP, EDS, and Other Files . . . . . . . . . . . . . . . . . . . . 5 Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 1 Parameter Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CIP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Supported Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Step 1: Gather the Required Information . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Step 2: Validate the Drive Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Step 3: Power Up and Configure the Modular Control Profiles . . . . . . . 15 Step 4: Configure the Line Side Converter . . . . . . . . . . . . . . . . . . . . . . . . . 19 Step 5: Enter Motor Nameplate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Step 6: Enter Motor Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Step 7: Configure Motor Encoder Feedback . . . . . . . . . . . . . . . . . . . . . . . . 20 Step 8: Autotune the Motor Side Inverter Control . . . . . . . . . . . . . . . . . . 20 Step 9: Set Up Velocity Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Step 10: Set Up Start/Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Step 11: Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Step 12: Verify Drive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Establishing A Connection With EtherNet/IP . . . . . . . . . . . . . . . . . . . . . . 26 Apply and Remove Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 2 About Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Parameter Access Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Parameter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 How Drive Parameters are Organized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Overview and System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Predictive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 3 Diagram Conventions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Line Side Converter Control Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Motor Side Inverter Control Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter 4 Fault and Alarm Code Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Configurable Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 3 Table of Contents Viewing Faults and Alarms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 HIM Indication (Fault Display Screen) . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Manually Clearing Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Status Indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Setting Factory Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Fan Usage by Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Hardware Service Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Fault and Alarm Display Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Common Symptoms and Corrective Actions . . . . . . . . . . . . . . . . . . . . . . 121 Testpoint Codes and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Reset as Shipped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Configurable LCL Filter Capacitor Failure Response . . . . . . . . . . . . . . . 131 Configurable LCL Filter Capacitor Over Resonance Response . . . . . . 131 PowerFlex 755T Lifting/Torque Proving . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Technical Support Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 About This Publication Preface This publication contains the basic information to start up and troubleshoot PowerFlex® 750T Products with TotalFORCE® Control, firmware revision 10 and later. Firmware revisions 6 and earlier are documented in the PowerFlex Drives with TotalFORCE Control Programming Manual (firmware revision 6.xxx and earlier), publication 750-PM100. This publication is intended for qualified personnel. · You must understand the hazards that are associated with electromechanical equipment installations. · You must understand and follow all applicable local, national, and/or international electrical codes. · You must be able to program and operate adjustable frequency AC drive devices. · You must have an understanding of the parameter settings and functions. Access Files Attached to this Parameter descriptions are provided in a separate Microsoft® Excel® Publication spreadsheet that is an attachment to this PDF file. For instructions on saving the file to your computer, see Parameter Descriptions on page 9. Alarm and fault descriptions are provided in a separate Microsoft Excel file that is an attachment to this PDF file. For instructions on saving the file to your computer, see Fault and Alarm Code Descriptions on page 107. Download Firmware, AOP, EDS, and Other Files Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes from the Product Compatibility and Download Center at rok.auto/pcdc. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 5 Preface About This Publication Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource PowerFlex 750-Series Products with TotalFORCE Control Technical Data, publication 750-TD100 PowerFlex 750-Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100 PowerFlex 755T Flux Vector Tuning, publication 750-AT006 PowerFlex 20-HIM-A6 / -C6S HIM (Human Interface Module) User Manual, 20HIM-UM001 PowerFlex 755TM IP00 Open Type Kits Installation Instructions, publication 750-IN101 PowerFlex 755TM AC Precharge Modules Unpacking and Lifting Instructions, publication 750-IN102 PowerFlex 755TM DC Precharge Modules Unpacking and Lifting Instructions, publication 750-IN103 PowerFlex 755TM Power and Filter Modules Unpacking and Lifting Instructions, publication 750-IN104 PowerFlex 750-Series Service Cart and DCPC Module Lift Instructions, publication 750-IN105 PowerFlex 755TM Power and Filter Module Storage Hardware Instructions, publication 750-IN106 PowerFlex 755T Module Service Ramp Instructions, publication 750-IN108 PowerFlex 750-Series I/O, Feedback, and Power Option Modules Installation, publication 750-IN111 PowerFlex Drives with TotalFORCE Control Programming Manual (firmware revision 6.xxx and earlier), publication 750-PM100 PowerFlex 750-Series Products with TotalFORCE Control Reference Manual, publication 750-RM100 PowerFlex 755TM IP00 Open Type Kits Technical Data, publication 750-TD101 PowerFlex 750-Series Products with TotalFORCE Control Hardware Service Manual, publication 750-TG100 PowerFlex 750-Series Safe Speed Monitor Option Module Safety Reference Manual, publication 750-RM001 PowerFlex 750-Series Safe Torque Off Option Module User Manual, publication 750-UM002 PowerFlex 750-Series ATEX Option Module User Manual, publication 750UM003 PowerFlex 755 Integrated Safety - Safe Torque Off Option Module User Manual, publication 750-UM004 PowerFlex 755/755T Integrated Safety Functions Option Module User Manual, publication 750-UM005 PowerFlex Drives with TotalFORCE Control Built-in EtherNet/IPTM Adapter User Manual, publication 750COM-UM009 Industry Installation Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-AT003 Drives in Common Bus Configurations with PowerFlex 755TM Bus Supplies Application Techniques, publication DRIVES-AT005 Description Provides detailed information on: · Drive and bus supply specifications · Option specifications · Fuse and circuit breaker ratings Provides the basic steps to install PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, and PowerFlex 755TM drive systems. Provides guidance on how to tune Flux Vector position and velocity loops, filters, and other features to achieve the level of performance that is required for a given application. This publication is intended for novice drives users and users with advanced skills. Provides detailed information on HIM components, operation, and features. Provides instructions to install IP00 Open Type kits in user-supplied enclosures. These publications provide detailed information on: · Component weights · Precautions and recommendations · Hardware attachment points · Lifting the component out of the packaging Provides detailed setup and operating instructions for the module service cart and DC precharge module lift. Provides detailed installation and usage instructions for this hardware accessory. Provides detailed usage instructions for the module service ramp. Provides instructions to install and wire 750-Series option modules. Provides detailed information on: · I/O, control, and feedback options · Parameters and programming · Faults, alarms, and troubleshooting Provides detailed setup and programming instructions for common applications. Provides detailed information on: · Kit selection · Kit ratings and specifications · Option specifications Provides detailed information on: · Preventive maintenance · Component testing · Hardware replacement procedures These publications provide detailed information on installation, setup, and operation of the 750-Series safety option modules. Provides information on how to install, configure, and troubleshoot applications for the PowerFlex drives with the built-in EtherNet/IP adapter. Provides basic information on enclosure systems, considerations to help protect against environmental contaminants, and power and grounding considerations for installing Pulse Width Modulated (PWM) AC drives. Provides basic information to properly wire and ground the following products in common bus applications: · PowerFlex 755TM drive system for common bus solutions · PowerFlex 750-Series AC and DC input drives · KinetixTM 5700 servo drives 6 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Preface About This Publication Resource Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001 EtherNet/IP Network Devices User Manual, ENET-UM006 Ethernet Reference Manual, ENET-RM002 System Security Design Guidelines Reference Manual, SECURE-RM001 Industrial Components Preventive Maintenance, Enclosures, and Contact Ratings Specifications, publication IC-TD002 Safety Guidelines for the Application, Installation, and Maintenance of Solid-state Control, publication SGI-1.1 Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Product Certifications website, rok.auto/certifications Rockwell Automation Knowledge Base Description Provides basic information to properly wire and ground PWM AC drives. Describes how to configure and use EtherNet/IP devices to communicate on the EtherNet/IP network. Describes basic Ethernet concepts, infrastructure components, and infrastructure features. Provides guidance on how to conduct security assessments, implement Rockwell Automation products in a secure system, harden the control system, manage user access, and dispose of equipment. Provides a quick reference tool for Allen-Bradley industrial automation controls and assemblies. Designed to harmonize with NEMA Standards Publication No. ICS 1.1-1987 and provides general guidelines for the application, installation, and maintenance of solid-state control in the form of individual devices or packaged assemblies incorporating solid-state components. Provides general guidelines for installing a Rockwell Automation industrial system. Provides declarations of conformity, certificates, and other certification details. The Rockwell Automation Support Forum You can view or download publications at rok.auto/literature. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 7 Preface About This Publication Notes: 8 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Startup 1 Chapter Parameter Descriptions The procedure in this Startup chapter is designed to guide you through the 12 basic steps that are required to start up your PowerFlex® 750T product for the first time for simple applications. This procedure uses the HIM to configure parameters. You may prefer to use the PowerFlex 755T Startup Assistant Wizard in Connected Components WorkbenchTM (version 10 or later) software for this instead of the HIM. Topic Page Step 1: Gather the Required Information 10 Step 2: Validate the Drive Installation 14 Step 3: Power Up and Configure the Modular Control Profiles 15 Step 4: Configure the Line Side Converter 19 Step 5: Enter Motor Nameplate Data 19 Step 6: Enter Motor Inertia 20 Step 7: Configure Motor Encoder Feedback 20 Step 8: Autotune the Motor Side Inverter Control 20 Step 9: Set Up Velocity Reference 22 Step 10: Set Up Start/Stop 23 Step 11: Special Considerations 24 Step 12: Verify Drive Operation 25 PowerFlex 750T parameters are listed in the Microsoft® Excel® spreadsheet that is attached to this PDF file. CLICK HERE to open the Attachments pane (to the left) and access the parameter spreadsheet. This link does not work if you view this PDF file in a browser. Make sure you save the PDF file and open it from your device. Then use the link to open the Attachments pane. You can also find the parameter spreadsheet in Knowledgebase Article PowerFlex 755T Drives Parameter Descriptions and Fault and Alarm Codes (FRN 10). You do not need a support contract to access the article. To view the parameter descriptions: 1. Right-click the desired Excel file and choose Save. 2. Open the Excel file. For full functionality (filter and search), use the Microsoft Excel application. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 9 Chapter 1 Startup Equipment CIP Security Supported Applications The following equipment requirements apply to the use of this publication. · The drive is a PowerFlex 750-Series in a standalone installation. · No load sharing or multiple motors on a single drive. · The drive is equipped with either a PowerFlex 20-HIM-A6 or a 20-HIM-C6S Human Interface Module (HIM). CIP SecurityTM is a standard, open-source communication mechanism that helps to provide a secure data transport across an EtherNet/IPTM network. It lets CIP-connected devices authenticate each other before transmitting and receiving data. CIP Security uses the following security properties to help devices protect themselves from malicious communication: · Device Identity and Authentication · Data Integrity and Authentication · Data Confidentiality Rockwell Automation uses the following products to implement CIP Security: · FactoryTalk® Services Platform, version 6.11 or later, with the following components enabled: - FactoryTalk Policy Manager - FactoryTalk System Services · FactoryTalk Linx, version 6.11 or later · Studio 5000® Design Environment, version 32.00.00 or later · CIP Security-enabled Rockwell Automation® products, for example, the product described in this publication This publication is intended for use on typical applications such as fans, pumps, compressors, and conveyors. These are simple velocity applications. Step 1: Gather the Required Information When you apply power to your drive for the first time, you need to enter specific information about your application. You need to enter motor nameplate data and set up your I/O. Step 1: Gather the Required Information helps you to verify that you have the needed information prior to drive powerup. Record Motor Nameplate Data Record the data to be entered into the parameters during powerup. You can also record data for up to five drive/motor combinations. Use this table to record a descriptive name for each drive/motor combination and their respective parameters. 10 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup Drive/Motor Name (example, Main Exhaust Fan) Drive/Motor 1: Drive/Motor 2: Drive/Motor 3: Drive/Motor 4: Drive/Motor 5: Port No. 10 Parameter Parameter No. Name 400 Motor NP Volts Drive/Motor 1: Drive/Motor 2: Drive/Motor 3: Drive/Motor 4: Drive/Motor 5: 10 401 Motor NP Amps 10 402 Motor NP Hertz 10 403 Motor NP RPM 10 405 Mtr NP Pwr Units u kWu Hp u kWu Hp u kWu Hp u kWu Hp u kWu Hp 10 406 Motor NP Power 10 407 Motor Poles 10 900 (1)(2) Motor Inertia 13 30 Nom Line Freq 13 32 AC Line kVA A (Transformer kVA) 13 34 (3) AC Line Imped% A 13 52 Ext Bus Cap 13 100 Current Limit 13 104 Regen Power Limit (1) Only needed for Flux Vector control. (2) This information is not typically on the motor nameplate. If this information is not provided by the motor data sheet, use the equation on page 20 to calculate motor inertia. (3) Calculate 13:34 [Line Impedance] = (xfmr impedance + line reactor impedance) * xfmr kva/drive kva * 100 Verify Power Wiring Visually inspect the power wiring connections to each drive. Be sure you are satisfied that the correct wires are connected to the input terminals and to the output terminals. See the PowerFlex 750-Series Products with TotalFORCE® Control Installation Instructions, publication 750-IN100 for more information about where these connections are made. Verify Wiring AC input power is on L1, L2, L3 / R, S, T. Output motor connection is on T1, T2, T3 / U, V, W. Proper ground wire terminations at PE ground studs. Drive 1 Wiring is Correct u u u Drive 2 Wiring is Correct u u u Drive 3 Wiring is Correct u u u Drive 4 Wiring is Correct u u u Drive 5 Wiring is Correct u u u Rockwell Automation Publication 750-PM101A-EN-P - February 2021 11 Chapter 1 Startup Drive 1 Power jumpers are configured correctly. u Verify Power Jumper Configuration PowerFlex 755T drives contain protective MOVs and common mode capacitors that are referenced to ground. To guard against drive damage and/or operation problems, these devices must be properly configured. IMPORTANT The drive power source type must be accurately determined and the jumpers must be configured for the power source. See the PowerFlex 750Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100 for more information on common power source types, where power jumpers are in the drive, and the proper jumper configuration for your power source. Use this table to record that you have verified that the power jumper configuration is correct for each drive. Drive 2 Power jumpers are configured correctly. u Drive 3 Power jumpers are configured correctly. u Drive 4 Power jumpers are configured correctly. u Drive 5 Power jumpers are configured correctly. u Verify I/O Wiring To properly configure a drive, you need to know the source of the velocity reference and the start/stop commands. There are three places where signal sources (such as push buttons, potentiometers, or communication network cabling) are connected to the drive. 1. The main control board. · Embedded EtherNet/IPTM port on a PowerFlex 755T · DeviceLogixTM port on a PowerFlex 755T · Terminal block TB1 on a PowerFlex 755T main control board (Digital Input 0) 2. An expansion I/O module. 3. A communication network module. You can always use the HIM for speed, start, and stop control. If that is the case for operating conditions, proceed to Step 3: Power Up and Configure the Modular Control Profiles on page 15. 12 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Where are Signal Sources Connected? Chapter 1 Startup Use this diagram to help determine where signal sources are connected in each of your drives. You need this information when you reach Step 9: Set Up Velocity Reference on page 22. IMPORTANT The 750-Series drive uses the term `Port' to designate (in software) the physical location where hardware is located. Port Location Labels Sh Sh PTC PTC+ Ao0 Ao0+ Ao1 1 Ao1+ 10V 10VC +10V Ai0 Ai0+ Ai1 2 Ai1+ 24VC +24V DiC Di0 Di1 Di2 Di3 3 Di4 Di5 4 Item Description 1 Communication network module (Port 5 installation shown) 2 Expansion I/O module (Port 4 installation shown) 3 Embedded EtherNet/IP 4 Terminal block TB1 on main control board behind the Ethernet port Rockwell Automation Publication 750-PM101A-EN-P - February 2021 13 Chapter 1 Startup Item Are signal sources connected to a communication network module installed in your drive? If yes, note the module's port number. Drive 1: Drive 2: Drive 3: Drive 4: Drive 5: u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No Which EtherNet/IP configuration is your drive using (BOOTP, DHCP, or manual IP address)? If using a manual IP address, enter the IP address and the subnet address. Drive 1: Drive 2: Drive 3: Drive 4: Drive 5: u BOOTP u DHCP u BOOTP u DHCP u BOOTP u DHCP u BOOTP u DHCP u BOOTP u DHCP 1 u Manual IP Address u Manual IP Address u Manual IP Address u Manual IP Address u Manual IP Address Subnet Mask (required) Subnet Mask (required) Subnet Mask (required) Subnet Mask (required) Subnet Mask (required) Gateway Address (required) Gateway Address (required) Gateway Address (required) Gateway Address (required) Gateway Address (required) Are signal sources connected to an expansion I/O module installed in your drive? If yes, note the module's port number. 2 Drive 1: Drive 2: Drive 3: Drive 4: Drive 5: u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No Is there a connection to the Embedded EtherNet/IP port? 3 Drive 1: u Yes u No Drive 2: u Yes u No Drive 3: u Yes u No Drive 4: u Yes u No Drive 5: u Yes u No Are signal sources connected to terminal block TB1 on the main control board located behind the EtherNet/IP port? 4 Drive 1: u Yes u No Drive 2: u Yes u No Drive 3: u Yes u No Drive 4: u Yes u No Drive 5: u Yes u No See the diagram on page 13 for item number locations. Step 2: Validate the Drive Installation Verify the status of the enable jumper and the safety jumper. · If the enable jumper is removed, control power is required at Di0 on the main control board for the drive to be able to accept a Start command. See parameter 0:100 [Digital In Sts] bit 0 `Digital In 0'. For more information, see PowerFlex 750-Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100. · If the safety jumper is removed, see the manual for the safety option that is installed. - Catalog number 20-750-S: PowerFlex 750-Series Safe Torque Off User Manual, publication 750-UM002. - Catalog number 20-750-S1: Safe Speed Monitor Option Module for PowerFlex 750-Series AC Drives Safety Reference Manual, publication 750-RM001. - Catalog number 20-750-S3: PowerFlex 755 Integrated Safety - Safe Torque Off User Manual, publication 750-UM004. - Catalog number 20-750-S4: PowerFlex 755T Integrated Safety Functions Option Module User Manual, publication 750-UM005. 14 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Step 3: Power Up and Configure the Modular Control Profiles Drive/Motor Name (example, Main Exhaust Fan) Port Parameter Parameter No. No. Name 0 33 VoltageClass Cfg 0 35 Duty Rating Cfg 0 46 Velocity Units 0 65 Pri MtrCtrl Mode 0 67 Sec MtrCtrl Mode 0 70 Application Sel 0 72 Emb Logic Select Chapter 1 Startup In this step, you power up the drive and configure the Modular Control Profiles. Modular Control Profiles change to match your preferences and application needs. A power cycle is required for the new configuration to work. Modular Control Profiles improve user interface and performance. Preparation Use the following table to keep track of your configurations and preferences. Drive/Motor 1: Drive/Motor 2: Drive/Motor 3: Drive/Motor 4: Drive/Motor 5: Drive/Motor 1: Drive/Motor 2: Drive/Motor 3: Drive/Motor 4: Drive/Motor 5: Voltage Class Most customers order the drive that matches their incoming voltage. The voltage class parameter allows some extra flexibility. For example, it allows you to use the same drive in 400V or 480V operation. For 400/480V products, Low Voltage selects 400V and High Voltage selects 480V. For 600/690V products, Low Voltage selects 600V and High Voltage selects 690V. Duty Rating Class The duty class parameter allows you to select the continuous and overload modes of operation. Normal Duty Selects the normal continuous rating, with overload ratings of 110% for 60 seconds and 150% for 3 seconds. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 15 Chapter 1 Startup 16 Heavy Duty Provides a lower continuous rating, with overload ratings of 150% for 60 seconds and 180% for 3 seconds. Light Duty provides the highest continuous rating, with an overload rating of 110% for 60 seconds. Not available on all drive sizes. The value of this parameter affects the continuous current rating of the drive. Velocity Units This parameter allows you to select either Hertz (Hz) or Revolutions per Minute (RPM) as the units for velocity (speed). Motor Control Mode Select the motor control mode that the product uses for primary (port 10) and secondary (port 11) control of the motor side inverter. You can choose from the following: · Volts per Hertz The most basic form of motor control. Useful for variable torque applications such as pumps, fans, and multiple motors in parallel. · Sensorless Vector An enhanced form of V/Hz control useful variable torque and simple constant torque applications. Sensorless vector produces better torque at low frequencies than volts per hertz. Motor Tuning recommended. · Economize An enhanced form of Sensorless Vector control designed to reduce energy consumption when the drive is not accelerating. Motor Tuning recommended. · Flux Vector A control mode that is designed for precise Torque, Velocity and/or Position regulation. Useful for variable torque, constant torque, and constant power applications. Provides precise position and velocity tracking. Provides excellent disturbance rejection. This mode is needed for position and load sharing applications. Motor Tuning is required. Flux Vector is the recommended control mode for both encoder and encoderless control of permanent magnet motors. Application Mode You can add one of the following functionalities to determine which application parameters are present in port 9. Choose from the following options: · None leaves port 9 empty. · Process PID only provides a PID regulator for process applications in port 9. Use this for pressure or flow transducers on fan or pump applications. Use it for tension transducers on winding applications. · Torque Prove provides a mechanism for coordinating the motor and mechanical brake on lifting applications. This selection loads these parameters as well as the Process PID parameters into port 9. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup · Oil Well provides a mechanism for pump jack and progressive cavity pump applications. Power the Drive ATTENTION: Power must be applied to the drive to perform the following startup procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, allow only qualified service personnel to perform the following procedure. Thoroughly read and understand the procedure before beginning. 1. Apply AC power and control voltages to the drive. See Apply and Remove Power on page 28. 2. When prompted, use the or to highlight the desired display language. Stopped AUTO 0.000 Hz F Select Language to Use English Francaise Espanol Italiano ENTER Language Selection Screen 3. Press the ENTER soft key to select the language. Language selection only applies to new drives. It is not required if the drive has been previously used or when resetting from factory defaults. If this drive was previously powered and configured, and is being repurposed for this application, reset the drive parameters following the instructions in Setting Factory Defaults on page 118. IMPORTANT Language selection only applies to new drives. It is not required if the drive has been previously used or when resetting from factory defaults. If this drive was previously powered and configured, and is being repurposed for this application, reset the drive parameters following the instructions in Setting Factory Defaults on page 118. 4. Press the ESC soft key to access the Status screen. The Status screen is displayed on HIM powerup. 5. Use the or key to scroll to port 0. Stopped AUTO 0.00 Hz F Host Drive 480V 740A 20G...D740 00 ESC REF PAR# TEXT Rockwell Automation Publication 750-PM101A-EN-P - February 2021 17 Chapter 1 Startup 18 Configure the Voltage Class Navigate to parameter 0:33 [VoltageClass Cfg] and enter the configuration for Low Voltage or High Voltage. A change to this parameter is needed only when you are applying a drive on a voltage other than what the catalog number specifies. Configure the Duty Rating Navigate to parameter 0:35 [Duty Rating Cfg] and enter the configuration for Normal, Heavy, or Light Duty. Configure Velocity Units Navigate to parameter 0:46 [Velocity Units] and enter the configuration for Hz or RPM. Configure the Motor Control Mode Navigate to parameter 0:65 [Pri MtrCtrl Mode] and enter the configuration for Volts per Hz, Sensorless Vector, Economize, Flux Vector, or Synchronous Reluctance. This configuration is only needed when you are not using Sensorless Vector. For permanent magnet motors, select an option. · 4 `IPM FV', induction motor flux vector · 5 `SPM FV', interior permanent magnet motor flux vector · 6 `PM VHz', surface permanent magnet motor flux vector · 7 `PM VHz', permanent magnet motor volts per Hertz · 8 `PM SV', permanent magnet motor sensorless vector For synchronous reluctance motors, select an option. · 9 `SynR VHz', synchronous reluctance motor volts per Hertz · 10 `SynR SV', synchronous reluctance motor sensorless vector Configure the Application Selection Navigate to parameter 0:70 [Application Sel] and enter the configuration for Process PID, Torque Prove, or Oil Well. Cycle Power and Verify the Modular Control Profile Configurations 1. Cycle power or reset the drive (Reset Device) in order to load the control mode. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup IMPORTANT You must cycle power or reset the drive (Reset Device) in order to load the value of these parameters. 2. Navigate to port 0. 3. Navigate to `Actual' feedback parameters to verify the configuration: 0:34 [VoltageClass Act] 0:36 [Duty Rating Act] 0:47 [Vel Units Act] 0:66 [Pri MtrCtrl Act] 0:71 [Application Act] Step 4: Configure the Line Side Converter In this step, you configure the line side converter using the HIM. You may prefer to use the Regenerative Converter Setup Wizard in Connected Components Workbench software for this instead of the HIM. 1. Navigate to port 13 (Line Side Converter Control). 2. Navigate to the following parameters and enter that data gathered in Step 1: Gather the Required Information in this order. See page 10 of this publication. 13:30 [Nom Line Freq] 13:32 [AC Line kVA A] 13:34 [AC Line Imped% A] 3. On a 755TM bus supply, navigate to parameter the following parameters and enter that data. 13:52 [Ext Bus Cap] 13:100 [Current Limit] 13:104 [Regen Power Lmt] [Ext Bus Cap] Enter the bus capacitance of products outside of the local bus supply or integrated drive that share the common DC bus. Include the capacitance of Common Bus Inverters and DC input drives that share the common DC bus. Include any additional capacitor modules added to the common DC bus. See Drives in Common Bus Configurations, publication DRIVES-AT002. Step 5: Enter Motor Nameplate Data You may prefer to use the PowerFlex 755T Setup Assistant in Connected Components Workbench software to perform steps 5...8 instead of the HIM. In this step, you configure the Motor Side Inverter Control to contain the motor nameplate information. 1. Navigate to port 10 (Motor Side Inverter Control). 2. Navigate to the following parameters and enter the data gathered in Step 1: Gather the Required Information on page 10: 10:400 [Motor NP Volts] 10:403 [Motor NP RPM] 10:406 [Motor NP Power] 10:401 [Motor NP Amps] 10:405 [Mtr NP Pwr Units] 10:407 [Motor Poles] 10:402 [Motor NP Hertz] If the number of motor poles is not on the motor nameplate, use the following formula to determine the value: Motor Poles = (120 x Motor NP Hertz)/Motor NP RPM Round the result to the nearest even number. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 19 Chapter 1 Startup Step 6: Enter Motor Inertia In this step, you configure the Motor Inertia parameter. This is only needed for proper operation with Flux Vector mode. This parameter does not exist in other motor control modes. 1. Navigate to parameter 10:900 [Motor Inertia]. Then enter the data gathered in Step 1: Gather the Required Information on page 10. Enter using the units of kg x m2. Divide lb x ft2 or WK2 by 23.73 to convert to kg x m2. If the data is not available on the motor nameplate or data sheet, use the following equation to estimate motor inertia: Motor Inertia = Motor Hp/[250 x (Motor Hp/500 + 1)] Step 7: Configure Motor Encoder Feedback In this step, you configure the motor encoder feedback. This step is needed only if you are using motor encoder feedback. 1. Navigate to parameter 10:1000 [Pri Vel Fb Sel]. Then enter the two-digit port number for feedback option card, and the four-digit parameter number for the parameter that displays the feedback. For example, enter 05 and 0004 when using a 20-750-ENC-1 in slot 5. This links to parameter nn:4 [Encoder Feedback]. 2. Navigate to the port that contains the feedback option card. For example, navigate to port 5 when using a 20-750-ENC-1 in slot 5. 3. Configure the parameters on the feedback option card to match the encoder you are using. For example, configure the following parameters if using a 20-750-ENC1: nn:1 [Encoder Cfg], nn:2 [Encoder PPR], and nn:3 [Fdbk Loss Cfg]. Step 8: Autotune the Motor Side Inverter Control In this step, you perform tuning tests using the HIM. IMPORTANT During this test, the drive uses an internal reference that is positive (forward). During operation and other tests, the drive uses an external reference that you select. An external reference can include the HIM, analog input, or communicated reference. The direction of rotation depends on the polarity (direction) of that external reference. Make sure the external reference moves the motor in the intended direction. Set Maximum Velocity (Permanent Magnet Motors) Follow these steps for permanent magnet motor applications only. 1. Before you run autotune tests, configure the maximum velocity and bus protection parameters. Navigate to Port 10 `Primary Motor Side Control Parameters' for standard applications. When using the secondary motor control feature to configure a secondary motor, navigate to Port 11 `Secondary Motor Side Control Parameters.' 20 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup 2. Set parameter 10:691 [PM Bus Prot] and parameter 10:699 [PM Vel Max] to the Motor Nameplate RPM or Hertz according to the velocity unit selection in 0:46 [Velocity Units]. If unit conversion is necessary, see the formula in Step 5: Enter Motor Nameplate Data on page 19. Perform the Direction Test 1. Navigate to parameter 10:910 [Autotune] and enter a value of 1 `Direction Test'. 2. Press the Start key. 3. Observe if the motor direction is forward or reverse for the application. 4. Press the Stop key. 5. Address the direction. · If the direction is forward, proceed to next test. · If the direction is reverse, you have two alternatives: Set bit 4 `Mtr Lead Rev' of parameter 10:420 [Mtr Cfg Options]. This reverses the phase rotation of the applied voltage, effectively reversing the motor leads. Or Power down and physically reverse the motor leads. 6. Run the test again to verify that the motor direction is now forward. Perform the Motor ID Test 1. Navigate to parameter 10:510 [MtrParam C/U Sel]. Select a value of 2 `LoadCalcData'. This copies the calculated motor characteristic parameters to the `User Entered' parameters and then selects option 1 `User Entered'. The results of a Motor ID test will update the 'User Entered' parameters accordingly. 2. For induction motors, navigate to parameter 10:910 [Autotune] and enter a value of 2 `Static MtrID'. For permanent magnet motors, navigate to parameter 10:910 [Autotune] and enter a value of 3 `Rotate MtrID'. Permanent Magnet motors require a rotate tune. A static tune is not supported. 3. Press the Start key. Configuration Complete The drive is able to start/stop from the HIM and has been successfully started up. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 21 Chapter 1 Startup Step 9: Set Up Velocity Reference Select the configuration according to the wiring you observed in Step 2: Validate the Drive Installation. Door-mounted or Remote-mounted HIM 1. Navigate to port 10 (Motor Side Inverter Control). 2. Navigate to parameter 10:1800 [VRef A Sel]. Then enter a value of 215 `Port 2 Reference'. Connections on 11-Series I/O Module - Cat. No. 20-750-11xxx-xxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx 1. Navigate to parameter 10:1800 [VRef A Sel]. Then enter the two-digit port number for I/O option card, and the four-digit parameter number for the parameter that displays the analog input. For example, enter 04 and 0050 when using a 20-750-22xxx-xxxx in slot 4. This links to parameter nn:50 [Anlg In0 Value]. 2. Navigate to the port containing the I/O option card. Then enter the needed parameter values. In the above example, you would go to port 4 and enter values for these parameters: nn:45 [Anlg In Type], nn:50 [Anlg In0 Value], nn:51 [Anlg In0 Hi], nn:52 [Anlg In0 Lo], and nn:53 [Anlg In0 LssActn]. Embedded EtherNet/IP Interface Navigate to port 10 (Motor Side Inverter Control). Navigate to parameter 10:1800 [VRef A Sel]. Then enter a value of 211 `Emb Enet Ref'. 22 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Step 10: Set Up Start/Stop Door Mounted or Remote Mounted HIM The keys on the HIM provide three-wire control. Use the Start key for start. Use the Stop key for stop. Chapter 1 Startup Three-Wire Control on 11-Series I/O Module - Cat. No. 20-750-11xxxxxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx 1. Navigate to port 0, the main product port. 2. Navigate to parameter 0:108 [DI M Stop]. Then enter the two-digit port number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input where the stop button is wired. For example, enter 04 and 0001 and 00 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 0 for digital input 0 in parameter nn:1 [Dig In Sts]. 3. Navigate to parameter 0:117 [DI M Start]. Then enter the two-digit port number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input digital input where the start button is wired. For example, enter 04 and 0001 and 01 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 1 for digital input 1 in parameter nn:1 [Dig In Sts]. Two-Wire Control on 11-Series I/O Module - Cat. No. 20-750-11xxx-xxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx 1. Navigate to port 0, the main product port. 2. Navigate to parameter 0:120 [DI M Run]. Then enter the two-digit port number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input where the run button is wired. For example, enter 04 and 0001 and 00 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 0 for digital input 0 in parameter nn:1 [Dig In Sts]. IMPORTANT You must select either two-wire and three-wire control. The drive cannot be set to use both control modes simultaneously. A Start and a Run on the same drive causes a 73 `Digin Cfg B' digital input configuration fault. Embedded EtherNet/IP Interface The logic command word from the controller starts and stops the drive without any special parameter settings. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 23 Chapter 1 Startup Step 11: Special Considerations Acceleration and Deceleration Rates The default acceleration rate is 10 seconds (from 0 to Motor NP RPM). The default deceleration rate is 10 seconds (from Motor NP RPM to 0). Use the following steps to modify this if needed. 1. Navigate to port 10, the motor control port. 2. Navigate to parameter 10:1915 [VRef Accel Time1] and then enter the desired acceleration rate in seconds. 3. Navigate to parameter 10:1917 [VRef Decel Time1] and then enter the desired deceleration rate in seconds. Analog Output 1. Navigate to the port that contains the I/O card with the analog outputs you need to use. 2. Modify the following I/O card parameters as needed: nn:75 [Anlg Out0 Sel] nn:81 [Anlg Out0 Lo] nn:88 [Anlg Out1 DataHi] nn:76 [Anlg Out0 Stpt] nn:82 [Anlg Out0 Val] nn:89 [Anlg Out1 DataLo] nn:77 [Anlg Out0 Data] nn:85 [Anlg Out1 Sel] nn:90 [Anlg Out1 Hi] nn:78 [Anlg Out0 DataHi] nn:86 [Anlg Out1 Stpt] nn:91 [Anlg Out1 Lo] nn:79 [Anlg Out0 DataLo] nn:87 [Anlg Out1 Data] nn:92 [Anlg Out1 Val] nn:80 [Anlg Out0 Hi] Relay Output 1. Navigate to the port that contains the I/O card with the relay outputs you need to use. 2. Modify the following I/O card parameters as needed: nn:10 [RO0 Sel] nn:14 [RO0 On Time] nn:22 [RO1 Level] nn:11 [RO0 Level Sel] nn:15 [RO0 Off Time] nn:23 [RO1 Level CmpSts] nn:12 [RO0 Level] nn:20 [RO1 Sel] nn:24 [RO1 On Time] nn:13 [RO0 Level CmpSts] nn:21 [RO1 Level Sel] nn:25 [RO1 Off Time] 24 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Step 12: Verify Drive Operation Speed Reference HIM Source Control Board Analog Input Expansion I/O Module Analog Input (Port 4) Communications over EtherNet/IP (Port 6 or Port 13) Communications over Other Protocol (Port 6) Chapter 1 Startup Now that you have completed the steps required to start up your drive for the first time, verify that each of your drive/motor combinations is operating correctly and record the results. Use the information displayed on the HIM, the drive status indicators to the right of the HIM, and the system operation to assist with verifying drive operation. 1. Is each drive/motor combination responding correctly to each of the signal sources? Signal Command Start Stop Direction (if applicable) Drive/Motor 1 u u u Drive/Motor 2 u u u Drive/Motor 3 u u u Drive/Motor 4 Drive/Motor 5 u u u u u u 2. Is each drive/motor combination responding correctly to the speed reference source? (Check only those that apply.) Drive/Motor 1 Drive/Motor 2 Drive/Motor 3 Drive/Motor 4 Drive/Motor 5 u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No u Yes u No Configuration Considerations If any of your drive/motor combinations are not functioning properly, review steps 1...12 to be sure that the correct information was gathered or calculated and that parameters were set correctly. You can also see parameters 10:350 [VRef Source] and 10:603 [Start Inhibit]. If your EtherNet/IP communications are not functioning properly, verify the controller/PLC is communicating the expected commands and/or reference. For more information, see the PowerFlex Drives with TotalFORCE Control Built-in EtherNet/IP Adapter User Manual, publication 750COM-UM009, or contact your PLC expert. To interpret the Drive Status Indicators, see page 110. See also parameter 0:200 [MS Logic Rslt]. If performance problems persist, see the publications listed in Additional Resources on page 6. If you feel you need additional technical support, gather the information listed on page 14 prior to contacting a support representative. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 25 Chapter 1 Startup Establishing A Connection With EtherNet/IP See the PowerFlex 750-Series Drives with TotalFORCE Control Built-in EtherNet/IP Adapter, publication 750-UM009. There are three methods for configuring the embedded EtherNet/IP adapter's IP address: · Adapter Rotary Switches Use the switches when working on a simple, isolated network (for example, 192.168.1.xxx) where: - other products on the network use switches to set their IP addresses - the product does not need to be accessed from outside the network - a simplified node addressing method is preferd The three adapter switches are read when the drive powers up, and represent three decimal digits from top to bottom (see Figure 1). If set to a valid address (001-254), the adapter will use that value as the lower octet of its IP address (192.168.1.xxx, where xxx = rotary switch settings), along with a subnet mask of 255.255.255.0 and there will be no gateway configured. Also, the setting for adapter 0:300 [Net Addr Sel] is automatically ignored. See Figure 1 and its accompanying table for all possible switch settings and their related descriptions. IMPORTANT When using the adapter rotary switches, set the IP address before power is applied because the adapter uses the IP address it detects when it first receives power. · BOOTP or DHCP Server Use BOOTP/DHCP if you prefer to control the IP addresses of devices that use a server. The BOOTP/DHCP server provides the IP address, subnet mask, and gateway addresses. If the address is invalid, DHCP is used. When using this method, set the rotary switches to 999. For BOOTP, set 0:300 [Net Addr Sel] to 2 `BOOTP'. For DHCP, set 0:300 [Net Addr Sel] to 3 `DHCP'. · Adapter Parameters Use adapter parameters when you want more flexibility in setting up the IP address, or need to communicate outside the control network using a gateway. The IP address, subnet mask, and gateway addresses are taken from the adapter parameters you set. When using this method, set the rotary switches to 999. Set 0:300 [Net Addr Sel] to 1 `Parameters'. Address Configuration Parameters - IP Address: 0:302 [IP Addr Cfg 1]...0:305 [IP Addr Cfg 4] - Subnet Mask Address: 0:306 [Subnet Cfg 1]...0:309 [Subnet Cfg 4] - Gateway Address: 0:310 [Gateway Cfg 1]...0:313 [Gateway Cfg 4] Regardless of the method used to set the adapter's IP address, each node on the EtherNet/IP network must have a unique IP address. To change an IP address, you must set the new value and then remove and reapply power to (or reset) the adapter. 26 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Figure 1 - Setting the IP Address Switches Chapter 1 Startup Hundreds Position Tens Position Ones Position Possible Settings 000, 255...887, 889...999 001...254 888 Description Adapter uses the setting depending on 0:300 [Net Addr Sel], BOOTP setting, DHCP setting, or the adapter parameter settings for the IP address. Adapter uses the rotary switch settings for the IP address (192.168.1.xxx, where xxx = rotary switch settings). Resets the adapter IP address function to factory defaults. This setting also resets most parameters to factory defaults (see Setting Factory Defaults on page 118). After you reset the adapter, power down the drive. Set the switches to a setting other than 888. Power up the drive to accept the new address. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 27 Chapter 1 Startup Apply and Remove Power The following procedures describe how to energize PowerFlex 755T products in both stand-alone and in system installations. 755TL and TR Drives without 24V Auxiliary Power This procedure applies to drives without 24V auxiliary power. Input Bay Power Bay (B) (A) Three-phase Power Energize Energize the product in the following sequence: 1. Energize three-phase power (A). 2. Turn the fused disconnect handle (B) to the `On' position. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect handle (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 28 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 755TL and TR Drives with 24V Auxiliary Power Chapter 1 Startup This procedure covers drives with 24V auxiliary power. IMPORTANT This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial powerup, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence. Input Bay (B) (C) 24V Auxiliary Power Power Bay (A) Three-phase Power Energize Energize the product in the following sequence: 1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication. 2. Energize three-phase power (A). 3. Turn the fused disconnect switch (B) to the `On' position. 4. After drive boots up, clear faults related to the three-phase outage. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. Leave 24V auxiliary power (C) energized when the drive is not in operation. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 29 Chapter 1 Startup Systems with 755TM Bus Supplies and Common Bus Inverters This procedure covers systems without 24V auxiliary power and without separate 240V control power. Bus supplies ordered with the C1 Control Transformer option do not require separate 240V control power. Input Bay (B) Power Bay Power Bay (F) Control Bay (E) Power Bay (F) (A) Three-phase Power Energize Energize the product in the following sequence: 1. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 2. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 3. Energize three-phase power (A). 4. Turn the fused disconnect switch (B) to the `On' position. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 3. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 4. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 30 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup Systems with 24V Auxiliary Power and without Separate 240V Control Power IMPORTANT This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial powerup, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence. Bus supplies ordered with the C1 Control Transformer option do not require separate 240V control power. Input Bay (B) (C) 24V Auxiliary Power Power Bay Power Bay (F) Control Bay (E) Power Bay (F) (A) Three-phase Power Energize Energize the product in the following sequence: 1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication. 2. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This is not needed if 24V auxiliary power (C) remains energized. 3. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 4. Energize three-phase power (A). 5. Turn the fused disconnect switch (B) to the `On' position. 6. After drive system boots up, clear faults related to the three-phase outage. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 31 Chapter 1 Startup 3. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This is not needed if 24V auxiliary power (C) remains energized. 4. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 5. Leave 24V auxiliary power (C) energized when the drive is not in operation. Systems without 24V Auxiliary Power and with Separate 240V Control Power Bus supplies ordered without the C1 Control Transformer option require separate 240V control power. (D) 240V Control Power Input Bay (B) Power Bay Power Bay (F) Control Bay (E) Power Bay (F) (A) Three-phase Power Energize Energize the product in the following sequence: 1. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 2. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 3. Energize 240V control power (D). 4. Energize three-phase power (A). 5. Turn the fused disconnect switch (B) to the `On' position. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 32 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 1 Startup 3. De-energize 240V control power (D). IMPORTANT Step 3, de-energize 240V control power is required. If three-phase power is de-energized and re-energized while 240V control power stays energized, Common Bus Inverter non-resettable functional safety faults result. To clear these faults, de-energize and reenergize 240V control power. 4. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 5. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. Systems with 24V Auxiliary Power and with Separate 240V Control Power IMPORTANT This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial power-up, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence. Bus supplies ordered without the C1 Control Transformer option require separate 240V control power. (D) 240V Control Power (C) 24V Auxiliary Power Input Bay (B) Power Bay Power Bay (F) Control Bay (E) Power Bay (F) (A) Three-phase Power Energize Energize the product in the following sequence: 1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication. 2. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 3. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 33 Chapter 1 Startup 4. Energize 240V control power (D). 5. Energize three-phase power (A). 6. Turn the fused disconnect switch (B) to the `On' position. 7. After drive system boots up, clear faults related to the three-phase outage. De-energize De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 3. De-energize 240V control power (D). This is only needed to turn off heatsink fans on LCL filters. 4. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 5. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 6. Leave 24V auxiliary power (C) energized when the drive is not in operation. 34 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 About Parameters Parameter Organization 2 Chapter This chapter lists and describes the parameters in PowerFlex 750-Series Products with TotalFORCE® Control. The parameters can be programmed (viewed/edited) using a Human Interface Module (HIM). See the Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001, for information on using the HIM to view and edit parameters. You can also use Connected Components WorkbenchTM (version 10 or later) software. If the drive is connected to a ControlLogix® or CompactLogixTM controller you can also use Studio 5000 Logix Designer® (version 20 or later). To configure a drive module to operate in a specific way, certain drive parameters may have to be configured appropriately. Four types of parameters exist: · Numeric Parameters These parameters have a single numeric value (such as 1750.0 RPM). · ENUM Parameters These parameters allow a selection from two or more items. The LCD HIM will display a text message for each item. · Indirect Parameters These parameters assign or select sources for data. They have a maximum value of 159999.15. The two most significant digits select the port of the source. The following four digits select the parameter number of the source. The two digits below the decimal point select the bit number of the source. For example, parameter 0:117 [DI M Start] is an indirect parameter for selecting the source of the Start digital input function. You may want to select input 01 on an IO card in port 4. You would enter 04 and 0001 and .01. This assigns bit 01 of parameter 0001 [Dig In Sts] of the card in port 4 to the Start function. · Bit Parameters These parameters have individual bits associated with features or conditions. If the bit is 0, the feature is off or the condition is false. If the bit is 1, the feature is on or the condition is true. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 35 Chapter 2 Parameter Organization Parameter Access Level Three parameter access level options are selectable by 0:30 [Access Level]. · Option 0 `Basic' is the most limited view that only displays parameters and options that are commonly used by operators. · Option 1 `Advanced' is an expanded view of parameters that is helpful to maintenance technicians and for engineers to access more advanced drive features when they commission the drive. · Option 2 `Expert' provides design engineers with a comprehensive view of the entire parameter set. Parameter References Parameter references are shown as Port#:Parameter# [Parameter Display Name] convention. For example, 0:30 [Access Level] tells you that the Access Level parameter is number 30 in port 0. How Drive Parameters are Organized Connected Components Workbench programming software displays parameters in `Linear List' or `File Group Parameter' format. The `File Group Parameter' format simplifies programming by dividing Files into groups of parameters that are used for similar functions. Overview and System Architecture The PowerFlex 755T architecture is an evolution of the high power (frames 8...10) PowerFlex 755 architecture. There are changes to improve usability and performance. There are changes to include new functionality and additional power modules. Ports, files, and groups are containers for control and parameters. This architecture organizes the parameters among these containers to make them easy to find. It also limits which parameters are presented. It only presents the parameters that are related to the active configuration. 36 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Port 0 System (Whole Product) See page 37 Monitor Product Config Feedback & I/O Communication Embedded ENET Protection Diagnostics Figure 2 - System Architecture Chapter 2 Parameter Organization Port 10 Pri MtrSideCtrl See page 38 Monitor Dynamic Control Protection Diagnostics Electrical System Feedback Position Velocity Torque Port 13 Line Side Ctrl See page 38 Monitor Dynamic Control Protection Diagnostics Port 11 Sec MtrSideCtrl See page 38 Monitor Dynamic Control Protection Diagnostics Electrical System Feedback Position Velocity Torque Port 14 Line Side Power See page 38 Line Side Common L0...L9 Power Module AC Precharge F0...F9 LCL Filter Port 12 Motor Side Power See page 38 MotorSide Common Trq Accuracy Mod M0...M9 Power Module Port 9 Application See page 38 Process PID Torque Prove Oil Well DeviceLogix Diagnostics Port 1 HIM (Pod) Port 2 HIM (Door) Port 3 HIM (Ext.) Port 4 Option Slot Port 5 Option Slot Port 6 Option Slot Port 7 Option Slot Port 8 Option Slot See page 38 Port 0 PowerFlex 755T System Port This port contains parameters for monitoring and configuring the whole product (drive or bus supply). It contains parameters for configuring digital input functions and motor encoder feedback channels. It includes parameters for the Embedded EtherNet/IP interface. This port also contains parameters that configure port 9 (the application port) and port 10 (the primary motor control port). These parameters determine what ports 9 and 10 contain. Ports 9 and 10 do not display parameters or software that is related to unused configurations. For example, if you do not select Torque Prove in the Application Selection parameter then port 9 does not contain parameters for Torque Prove. If you do not select the Flux Vector motor control mode, then port 10 does not display Flux Vector parameters or software. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 37 Chapter 2 Parameter Organization Port 9 Application Parameters This port contains parameters and software that is related to specific applications. The contents of this port depend the setting of parameter 0:70 [Application Sel]. It can contain nothing, Process PID, or Torque Prove. Port 10 Primary and Port 11 Secondary Motor Side Control Parameters These ports contain parameters and software that is related to the primary and secondary control of the motor side inverter. Port 10 is the primary motor side control port and port 11 is the secondary port. The contents of these ports depend the setting of parameters 0:65 [Pri MtrCtrl Mode] and 0:67 [Sec MtrCtrl Mode]. They can contain Volts per Hertz, Senorless Vector, Economizer, or Flux Vector control. They contain parameters for configuring the starting and stopping of the motor side inverter. They contain parameters for entering the electrical attributes of the motor. They contain parameters for configuring and monitoring the Position, Velocity, and Torque loops. Port 12 Motor Side Power Parameters This port contains parameters that are related to the power hardware in the motor side inverter. These parameters monitor and configure the power modules. Port 13 Line Side Control Parameters This port contains parameters and software that is related to control of the line side converter. It contains parameters for configuring and monitoring the control of the converter. It contains parameters for entering the electrical attributes of the AC line source. Port 14 Line Side Power Parameters This port contains parameters that are related to the power hardware in the line side converter. These parameters monitor and configure the power modules, AC precharge, and LCL filters. Port 1 HIM on Control Pod The Human Interface Module (HIM) on the control pod connects through port 1. 38 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Predictive Maintenance Port 2 HIM (Door Mount or Handheld) Chapter 2 Parameter Organization A second HIM or 1203-USB programming interface connects through port 2. The factory installed door-mounted HIM connects through port 2. Port 3 HIM or 1203-USB A third HIM or 1203-USB programming interface connects through port 3. Port 3 is visible when using a 1203-S03 splitter cable. Port 4...8 Option Slot Ports 4...8 are the DPI and DSI option slots. I/O (see page 447), feedback (see page 471), communication (see page 444), and functional safety option modules can be installed in these option slots. For firmware revisions 10.xxx or later, the remaining life of components with predictive maintenance appear on the Predictive Maintenance page in the Device Details window in Connected Components Workbench software and the Drive Details window in Studio Logix 5000 Designer® application. Figure 3 - Connected Components Workbench - Predictive Maintenance Page Rockwell Automation Publication 750-PM101A-EN-P - February 2021 39 Chapter 2 Parameter Organization Notes: 40 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 3 Chapter PowerFlex 755T Control Block Diagrams Flow diagrams on the following pages illustrate the PowerFlex 755T drive control algorithms. 755T Control Block Diagrams Diagram Page PowerFlex 755T Converter Overview 44 Metering 45 Phase Locked Loop 46 Power Loss 47 Line Side Converter Data 48 Current Reference Generator 49 Reactive Power Control 50 Droop Control 51 Dynamic Bus Control 52 Voltage Reference Generator 53 Voltage Control 54 DC Bus Observer 55 Power Factor Correction 56 Current/Power Limits 57 Current Control 58 LSC Control Configuration 59 Drive Derating 60 755TM Common Bus Inverter Control Block Diagrams Diagram Page Flux Vector Overview 61 Variable Frequency, SV Overview 62 CBI Metering 63 Feedback Configuration & Status 64 Position Homing 65 Position Reference 1 66 Position Reference Move Profiles 67 Position Reference 2 68 Position Regulator 69 Position Control Phase Locked Loop 70 Position Control Position Reference CAM 71 Position Control Profiler/Indexer 1 72 Position Control Profiler/Indexer 2 73 Position Control Roll Position Indicator 74 Position Control Spindle Orient 75 Velocity Reference Overview 76 Velocity Reference Selection 77 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 41 Chapter 3 PowerFlex 755T Control Block Diagrams 755TM Common Bus Inverter Control Block Diagrams Diagram Page Velocity Reference All 78 Velocity Reference Flux Vector 79 Velocity Reference Flux Vector Move Profiles 80 Velocity Reference CAM 81 Velocity Regulator Flux Vector 82 Torque Overview 83 Torque Reference Selection 84 Load Observer 85 Friction Compensation 86 Torque Reference CAM 87 Torque Reference 88 Torque Filters 89 Torque Control Current, for Induction Motor 90 Torque Control Current, for Permanent Magnet Motor 91 Process Control 1 92 Process Control 2 93 MOP Control 97 22-Series Inputs & Outputs Digital 98 22-Series Inputs & Outputs Analog 99 11-Series Inputs & Outputs Digital 100 11-Series Inputs & Outputs Analog 101 11-Series Inputs & Outputs ATEX 102 Control Logic 103 Inverter Overload IT 104 Motor Overload 105 42 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 3 PowerFlex 755T Control Block Diagrams Diagram Conventions and Definitions Definitions of the Per Unit system: 1.0 PU Position = Distance traveled / 1 second at Base Velocity 1.0 PU Velocity = Base Velocity of the Motor 1.0 PU Torque = Base Torque of the Motor Symbol Legend: Drive Parameters Option Module Parameters Requires port number. Read Only Parameter Read / Write Parameter Read Only Parameter with Bit Enumeration Read / Write Parameter with Bit Enumeration Provides additional information. ( ) = Enumeration Parameter XX[ ] = Page and Coordinate ex. Tst [A2] = pg Tst, Column A, Row 2 = Constant value `d' = Prefix refers to Diagnostic Item Number ex. d33 = Diagnostic Item 33 `X:YY' = Parameter in PORT X TP0000 = Software Testpoint (Name and Number) * Notes, Important: (1) These diagrams are for reference only and may not accurately reflect all logical control signals; actual functionality is implied by the approximated diagrams. Accuracy of these diagrams is not guaranteed. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 43 Chapter 3 PowerFlex 755T Control Block Diagrams Line Side Converter Control Diagrams Figure 4 - PowerFlex 755T Converter Overview 44 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Overview Rockwell Automation Publication 750-PM101A-EN-P - February 2021 PowerFlex 755T Converter - Overview Active Cur Ref 65 Active Curr Rate 66 DC Bus Ref Sel 45 ManDCBus Ref Sel 47 DC Bus Ref Preset 48 DC Bus Rate Lmt 49 AC Line Voltage 2 DroopVdcRef VARCtrlVdcRef Port 0 DC Bus Volts Volt Reg BW Volt Reg Damping Ext Bus Cap u Volt Reg Ki u Volt Reg Kp Volt Reg C/U Sel Current Reference Generator Reference Selection and Limiter 1msec ActvCurRegSel.slx Iq Rate Lmt 226 7 40 2 Conv Options Cfg LSC Control Cfg Option Select 125usec Voltage Reference Generator Reference Selection and Limiter 1msec ActvCnvtrVbusRefLim.slx 226 4 Vdc Cmd Lmt 226 5 Vdc Rate Lmt 46 Auto DC Bus Ref Line Voltage Feedback PLL Config 85 Basic PLL Kp 86 Basic PLL Ki 87 50 DC Bus Command 2nd Harm Filt BW 89 DC Offst Filt BW 90 DC Offst LPF BW 91 Voltage Control PI Power Factor 3 Regulator Port 0 DC Bus Volts Auto DC Bus Ref 55 56 52 Auto Gain 59 Calculation 57 54 125usec VbusReg.slx c Volt 60 Reg Ki 58 c Volt Reg Kp DroopCtrlModeSel FullLd DroopGain NoLd DroopGain Trans Droop Cur ManDroopDCBusMin Regen Power Lmt Motor Power Lmt Auto DC Bus Ref Rated Volts Active Cur Cmd Power Factor Correction Curr/Pwr Limits 125usec ActvCnvtrPwrLimCalc.slx Active Cur Cmd 67 Active Current 7 Vq, Vd AC Line 1 Freq 0 Phase Lock Loop LCL Model 125usec LclSSComp.slx Line Angle AC Line kW 13 Port 0 DC Bus Volts 3 AC Line Freq 1 Regen Power Lmt 104 Motor Power Lmt 105 Current Lmt 100 Phase Locked Loop AC Line Freq 1 KVAR Ref 69 KVAR Rate Limit 70 88 Basic PLL Error BusAutoAdjReg Kp 82 BusAutoAdjReg Ki 83 Limit VAR Control 101 Cur Lmt Command 106 Regen Pwr Avail 107 Motor Pwr Avail Cur Reg BW 75 Cur Reg Damping 76 u Cur Reg Ki 79 u Cur Reg Kp 77 Cur Reg C/U Sel 74 AC Line kVA A 32 AC Line Imped% A 34 AC Line kVA B 33 AC Line Imped% B 35 AC Line Source 31 VARCtrlVdcRef Reactive Current 8 20usec Drive Derating 16 Derating 3 Block 46 1msec DroopCtrl 350 351 0 352 353 Linear Droop 357 Control 1 104 105 NonLinear Droop 46 Control 25 67 1msec DroopVdcRef.slx VarDCBAdjDis 40 3 Reactv Cur Cmd 73 28 Derated Amps 356 NoLdDrpDC BusRef 355 MaxFullLd DrpGn 225 9 DrpGn Limit Sts 354 Droop Gain Actv DroopVdcRef 1 msec Line Voltage Power Loss Metering AC Line Voltage Processing Converter Current Processing Grid Current Feedback AC Line Freq 1 Basic PLL Error 88 Power Disturbance Monitor BasicPLL Err Lmt 192 BasicPLL Err Dly 193 125usec VltgSag Det Actn Line Voltage Feedback RMS Line Voltage Feedback Converter Current Feedback LSCPhLossDetActn DFDT Det Actn PLL LOS Det Actn PwrLoss Det Actn RMS Converter Current Feedback RideThrough Time LCL Filter Capacitor Current Processing Grid Current Feedback Line Voltage Feedback DC Bus Voltage Processing DC Bus Voltage Feedback Converter Current Feedback 125usec Current Control PI Regulator Ki Kp Auto Gain Calculation PWM Calc 80 c Cur Reg Ki 78 c Cur Reg Kp 125usec VltgRefGen.slx PI Regulator Ride Through Configuration Voltage Sag Condition Status DFDT Limit Condition Status Line Sync Loss Condition Status Phase Loss Condition Status Power Loss Condition Status 173 176 179 181 170 172 LineSideCnv Data Instantaneous Power Calculator 125usec ActvCnvtrPwrCalc.slx 174 VltgSagRTExpActn 177 PhsLossRTExpActn 180 DFDTRdTHrExpACtn 171 PwrLossRTExpActn 13 AC Line kW 14 AC Line kVA 15 AC Line kVAR 16 Power Factor Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Metering Figure 5 - Metering Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 Vrs AC Line Voltage Analog to Digital Vst Conversion, Scaling and Processing Vtr VL12Inst VL23Inst 2 VL31Inst C D E F VqSyncFilt LPF VqSyncFilt1 LPF1 3 2 2 dq Display Filter 307 0 Display Filter 307 2 VqSyncFdbk Vq Ir Vd VdSyncFdbk Converter Current Analog to Digital Conversion, Scaling Is and Processing It LPF LPF1 VdSyncFilt VdSyncFilt1 OR G H I Metering (Metering) 3 2 2 dq Display Filter 307 0 OR Display Filter 307 3 Active Current 7 I0Fdbk 8 Reactive Current 3 4 AC Line Voltage Feedback Peak to RMS Conversion Display Filter 307 0 Display Filter 307 9 Averaging 0 LPF 1 0 LPF 1 0 LPF 1 OR 0 LPF 1 3 VabFdbkFilt R-S Line Volts 4 VbcFdbkFilt S-T Line Volts 5 VcaFdbkFilt T-R Line Volts AC Line Voltage 2 Input LPF Init 21 ACLineMemory 22 ACLineMemReset Converter Current Feedback Peak to RMS Conversion IaInst IbInst IcInst Display Filter 307 0 Display Filter 307 3 Averaging 0 6 LPF 1 AC Line Current 0 LPF 1 0 LPF 1 0 LPF 1 OR 9 R Phase Current 10 S Phase Current 11 T Phase Current DC Voltage Analog to Digital Conversion, Scaling 0 Port 0 5 and Processing LPF 1 3 DC Bus Volts text LCL Capacitor Current Analog to Digital Conversion, Scaling and Processing Display Filter 307 0 OR Display Filter 307 11 DC Bus Voltage Feedback LCL Capacitor Current Feedback 6 Phase A Line Current Phase B Line Current Phase C Line Current Chapter 3 PowerFlex 755T Control Block Diagrams 45 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 6 - Phase Locked Loop 46 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PLL A B 1 PLL DC Offst 85 2 Line Voltage Metering [B1] 0 2 DC Offset 1 Cancellation 3 DC Offst Filt BW 90 DC Offst LPF BW 91 4 5 C 3 dq D E F G H I Phase Locked Loop (PLL) Nom Line Freq 30 Basic PLL Error 88 PI Regulator Integrator Line Angle PLL Unbl Rej 85 1 Basic PLL Kp 86 Basic PLL Ki 87 PLL Freq Src 85 3 0 0 0 0 1 AC Line Freq LPF 1 89 2nd Harm Filt BW Unbalance Rejection 1 1 Display Filter 307 0 OR Display Filter 307 1 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PwrLoss Figure 7 - Power Loss Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 RMS Line Voltage Metering [D3] 2 Line Voltage Metering [B1] 3 Line Current Feedback Metering [H5] 4 AC Line Freq PLL [H3] 1 5 BasicPLL Error 88 BasicPLL Err Lmt 192 BasicPLL Err Dly 193 6 C Power Loss Detection Voltage Sag Detection Phase Loss Detection DFDT Detection D E F G H I Power Loss (PwrLoss) AC Ride Thru 935 21 RideThrough Time 172 To Condition Handler (Faults & Alarms) PwrLoss Det Actn 170 PwrLossRTExpActn 171 Ride Through Configuration Timer PowerLoss Det PowerLoss RTExp VltgSag Det Actn 173 VltgSagRTExpActn 174 935 22 Input Phase Loss LSCPhLossDetActn 176 PhsLossRTExpActn 177 DFDT Det Actn 179 DFDTRdTHrExpACtn 180 Ride Through Configuration Ride Through Configuration Ride Through Configuration Timer Timer Timer Line Sag Det Line Sag RT Exp Phase Loss Det Phase Loss RTExp High df/dt Det High df/dt Det RTExp Line Sync Loss Detection PLL LOS Det Actn 181 935 23 AC Line Sync Ride Through Configuration Timer LnSyncLoss Det LnSyncLoss RTExp Chapter 3 PowerFlex 755T Control Block Diagrams 47 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 8 - Line Side Converter Data 48 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard LscData A B 1 Vrs Metering [B1] Ir Metering [F1] 2 Vst Metering [B1] Is Metering [F1] 3 It Metering [F2] C X X X D 13 AC Line kW X 4 Vtr Metering [B1] X 5 X 1/3 E F G H I LineSideCnv Data (LscData) X 16 Power Factor X2 X 14 AC Line kVA X2 15 AC Line kVAR 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard CurRefGen A B C D E F G H I Current Reference Generator (CurRefGen) 1 Figure 9 - Current Reference Generator Rockwell Automation Publication 750-PM101A-EN-P - February 2021 2 Active Cur Ref 65 Rate Limit LscCtrlCfg [C3] 226 7 Iq Rate Lmt 3 Active Curr Rate 66 4 Chapter 3 PowerFlex 755T Control Block Diagrams 5 6 49 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 10 - Reactive Power Control 50 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DroopCtrl VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VarCtrl A B C D E F G H I 1 Reactive Power Control (VarCtrl) BusAutoAdjReg Kp 82 VarDCBAdjDis 40 3 BusAutoAdjReg Ki 83 2 Vq Metering [D1] BusRefAutoAdjReg Port 0,DC Bus Volts Metering [D5] 3 0 VoltRefGen [C5} Vq Metering [D1] 1 3 SourceImpedance LscData [C5] BusRefAutoAdjCalculation Active Cur Cmd 67 4 CurrPwrLmt [F5} Reference Reactive Current 5 KVAR Ref 69 Calculation Rate Limit KVAR Rate Limit 70 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard DroopCtrl Figure 11 - Droop Control Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B Droop Control -Linear Mode 1 Regen Power Lmt 104 |u| Abs Motor 105 Power Lmt Auto DC 46 Bus Ref ManDroop DCBusMin 357 2 Rated Volts 25 Trans Droop 353 Cur NoLd 352 DroopGain 3 FullLd DroopGain 351 |u| Abs Man Droop DcBusRefMin Enbl VbusRef Max Calc +100% 0% Limit +100% 0% Limit Vdc Minimum sel C D E F G H Regen Power Limit Motor Power Limit Vdc Minimum Droop Gain Limit Calc Vbus Ref Maximum +100% 0% Limit 355 MaxFullLdDrpGn FullLd Droop Gain Lmtd Limit 225 9 DrpGn Limit 0% NoLd Droop Gain Lmtd CurPwrLmt [G3] Active Cur Cmd 67 Active Droop Gain Calc Droop Gain Actv 354 Trans Droop Cur Vdc Min Motoring Limit CurPwrLmt [G3] Active Cur Cmd 67 FullLdDrpGainPrc No Load Droop Vdc Ref Calc NoLdDrpGainPrc No Load Vdc Ref Vdc Droop Ref Calc 356 NoLdDrpDCBusRef Droop Control - NonLinear Mode 4 5 FullLd DroopGain 351 NoLd DroopGain 352 Gain Scaling CurPwrLmt [G3] 6 Active Cur Cmd 67 0% Vdc Minimum Motor Power Limit Regen Power Limit Vbus Ref Maximum Coef Limit Calc 3rdOrderCoef Max Coeff Calc 1stOrderCoef 3rdOrderCoef MaxFullLdDrpGn 1stOrderCoef 1stOrderCoef 3rdOrderCoef Active Droop Gain Calc Limit +100% 0% Limit 356 NoLdDrpDCBusRef No Load Vdc Ref 3rdOrderCoef Limited No Load Droop Vdc Ref Calc 225 9 DrpGn Limit 1stOrderCoef Prc 3rdOrderCoef Prc Vdc Droop Ref Calc 355 MaxFullLdDrpGn Active Cur Cmd 67 CurPwrLmt [G3] 354 Droop Gain Actv I DroopVdcRef VoltRefGen [C5] Chapter 3 PowerFlex 755T Control Block Diagrams 51 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 12 - Dynamic Bus Control 52 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard DBC Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 DBC NomMtrPwrLm 330 DBC IdleMtrPwrLm 331 332 DBC NomRgnPwrLm DBC IdleRgnPwrLm 333 2 104 Regen Power Lmt Motor Power Lmt 105 3 Port 0,DC Bus Volts Metering [D5] 3 4 62 DBC V Thresh Lo 63 5 DBC V Thresh Hi 64 DBC V Thresh Nom 7 Active Current 6 C D E F G H I Dynamic Bus Control (DBC) DBC Mode Sel 61 Linear DBC Power Limit Calc Parameter Selection DBCMtrngPwrLimActv CurPwrLmt [B2] DBCMtrngPwrLimActv NonLinearOrderRegen Nonlinear Order Calc NonLinear DBC Power Limit Calc DBC Vref Calc NonLinearOrderMtrng DBCVdcRef VoltRefGen [B6] Parameter Selection DBCRegenPwrLimActv CurPwrLmt [B2] DBCRegenPwrLimActv DBC Mode Sel(61): 0- Linear 1-Nonlinear. Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VoltRefGen Figure 13 - Voltage Reference Generator Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I DC Bus Ref Selector: 1 0- Auto 1- Manual 2- Droop Ctrl 3- VAR Control Voltage Reference Generator (VoltRefGen) VbusRefHiLim DC Bus Ref Sel 45 2 Auto DC Bus Ref 46 0 VbusOptRef High 1.02 Max Boost Voltage MAX 1 AC Line Voltage 2 [2E2] Rms x 0 Pk Calc 3 DC Bus Command 50 ManDCBusRefSel VoltCtrl [F2] 47 MAX ManDC BusAnlgHi DC BusRef Preset 48 Inverter DC Bus Limit VbusRefLowLim Low 41 4 42 Parameter 1 Anlg In Selection ManDC BusAnlgLo VbusRefLmtd Limit VbusLimSts 226 4 Vdc Cmd Lmt DC Bus Rate Lmt 49 Rate Limit 226 5 Vdc Rate Lmt VbusRateLim 5 DroopVdcRef 2 DroopCtrl [I4] KVARVdcRef 3 KVARCtrl [G2] DBCVdcRef 4 DynamicBusCtrl [E5] 6 Chapter 3 PowerFlex 755T Control Block Diagrams 53 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 14 - Voltage Control 54 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VoltCtrl Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D 1 Volt Reg C/U Sel Selector: 0- Calculated 1- User Entered 2 BusObsConfig(320): 0- Disabled 1- BusObsOnly. 2- BusObsVltEst. 3 Port 0,DC Bus Volts Metering [D5] 3 BusObsConfig 320 0,1 BusObs Volt Est 2 DC Bus Obs [H5] Volt Reg C/U Sel 54 Volt Reg BW 55 Volt Reg Damping 56 4 Internal Bus Capacitance Auto Gain Calculation Total Sys Cap DcBusObs [C1] c Volt Reg Ki 60 0 u Volt Reg Ki 59 1 c Volt Reg Kp 58 0 u Volt Reg Kp 57 1 5 Ext Bus Cap 52 E F G H I Voltage Control (VoltCtrl) DC Bus Command 50 VoltRefGen [G3] BusRegIntegTerm VbusErr BusRegPropTerm PI Regulator IqRefVbusReg DC Bus Obs A[2] VbusRegKi VbusRegKp 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard DCBusObs Figure 15 - DC Bus Observer Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 IqRefVbusReg 2 BusObsConfig(320): 0- Disabled 1- BusObsOnly. 2- BusObsVltEst. 3 320 BusObsConfig B C Total Sys Cap VoltCtrl [C4] Cur Lmt Command 101 4 D E F + - Limit -1 X 0 1,2 0 1.0 0 0 1,2 Port 0 DC Bus Volts 3 5 6 + X - c BusObs Kp 321 u BusObs Kp 322 323 cBus Obs Ki 324 u BusObs Ki X X G H I DC Bus Obs LscCtrlCfg [C5] IqRefDcBusObs X BusObs Curr Est X 325 VoltCtrl [F3] 1,2 BusObs Volt Est Chapter 3 PowerFlex 755T Control Block Diagrams 55 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 16 - Power Factor Correction 56 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PFC A B C D E F G H I Power Factor Correction (PFC) 1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 2 AC Line Freq 1 PLL [H3] 0 Active Current Compensation IqRefComp CurPwrLmt [E4] LCL Data VqRefComp 3 LscCtrlCfg [F3] Vq, Vd Feed Forward and Decoupling VqFeedFwd 360 FFVltgLPFTime VdRefComp VdFeedFwd Vd Metering [D1] Low Pass Filter 4 IdRefComp Reactive Current Vq Metering [D1] Low Pass Compensation CurPwrLmt [F5] Filter 5 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard CurPwrLmt Figure 17 - Current/Power Limits Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 B C DC Bus Ref Sel 45 Regen Power Lmt 104 0,1,2, 3 DBCRegenPwrLimActv 4 DynamicBusCtrl [H2] 2 Motor Power Lmt 105 0,1,2, 3 DBCMtrngPwrLimActv DynamicBusCtrl [H4] 4 3 Vq Metering [D1] Vd Metering [D1] Port 0 3 DC Bus Volts 4 Metering [D5] AC Line Frequency 1 PLL [H3] Total Inductance DC Bus Current Limit Calculation 5 6 D E F G H I Curr/Pwr Limits (CurPwrLmt) Derated Amps 28 DriveDerating [H3] AC Line kW 13 LscData [D2] Available Power Calculation 106 Regen Pwr Avail 107 Motor Pwr Avail 71 KVAR Available IqVbusCurLim Iq Cur Lim Abs Iq Current Limit Current Limit 100 Calculation PFC [H2] IdVbusCurLim 226 0 Current Lmt 226 2 Mtrng PwrLmt 226 3 Regen PwrLmt ILmtUsrSts Active Cur Cmd 67 226 6 Iq Cmd Lmt 101 Cur Lmt Command CurrCtrl [11F2] Reactv Cur Cmd 73 VarCtrl [G5] Iq Ref Lmtd Id Cur Lim Abs Id Current Limit Calculation PFC [H4] CurrCtrl [11F4] 226 8 Id Cmd Lmt 72 KVAR Command Chapter 3 PowerFlex 755T Control Block Diagrams 57 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 18 - Current Control 58 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard CurrCtrl A B C D E 1 Cur Reg C/U Sel Selector: 0- Calculated 1- User Entered 2 Cur Reg BW 75 3 Cur Reg Damping 76 LCL Data 4 AC Line Source 31 AC Line kVA A 32 AC Line Imped% A 34 AC Line kVA B 33 5 AC Line Imped% B 35 Source Impedance Processing Cur Reg C/U Sel 74 Auto Gain Calculation c Cur Reg Ki 80 0 u Cur Reg Ki 79 1 c Cur Reg Kp 78 0 u Cur Reg Kp 77 1 F G H I Current Control (CurrCtrl) Active Cur Cmd 67 CurPwrLmt [G3] Active Current 7 Metering [I1] Reactv Cur Cmd 73 CurPwrLmt [G4] Reactive Current 8 Metering [I2] IqSyncErr CurRegqOut PI Regulator CurRegKiIq CurRegKpIq CurRegKpId CurRegKiId PFC [G3] VqSyncRef P W M VdSyncRef IdSyncErr CurRegdOut PI Regulator PFC [G4] 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard LscCtrlCfg Figure 19 - LSC Control Configuration Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I LSC Control Cfg (LscCtrlCfg) 1 PwrFeedFwdConfig(300): 0- Disabled 1-Enabled. 2 BusObsConfig(320): 0- Disabled 1- BusObsOnly. 2- BusObsVltEst. CurRefGen [F2] 40 2 Conv Options Cfg IqRefOpSel VoltCtrl [H2] 3 FFPwr Curr Calc Converter Mode Select PFC [A2,E2,A4,E4] X 326 3 300 PwrFeedFwdConfig 00 Metering [D5] Port 0,DC Bus Volts FF Power Gain 13:44 4 1 X X Output Power 10:4 Metering [D1] Vq X 3/2 BusObsConfig 320 5 00 DC Bus Obs[H2] IqRefDcBusObs 1,2 Chapter 3 PowerFlex 755T Control Block Diagrams 6 59 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 20 - Drive Derating 60 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard DriveDerating A B C D E F G H I Drive Derating (DriveDerating) 1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 2 225 16 Running Line Side Sts 1 Port 0 3 DC Bus Volts 3 Metering [D5] Auto DC Bus Ref 46 X Low Pass Filter a3X3 + a 2X2 + a 1X + a 0 1 Rated Amps 26 Power Factor 16 X 28 Derated Amps 4 DFE Derating 0 Data 5 6 Motor Side Inverter Control Diagrams Figure 21 - Flux Vector Overview Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Vector Overview Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Position Control Feedback Option Cards Load Psn Fb Sel 1014 Profiler Steps 1-16 PReg Fb Sel 1013 Position Fb 1746 Position Fdbk ' Selection Load Fdbk Selection [ N ] [ D ] ' Gear Ratio Pos Profiler Spd Profiler PsnVelTrq Actv 34 PTP Ref Sel 1383 PTP Ref Selection PTP Mode Selection Home Psn User 1648 Homing PTP Command 1391 Psn PTP Position Planner PTP Reference 1404 PsnVelTrq Actv 34 PCAM Psn Select 1426 PCAM Planner Vel Vel Pos PLL Ext Vel Sel PLL PRef Sel 1591 1595 Vel PLL Planner Pos Position Mode Selection PRef Select 1681 Direct Ref Selection PRef Direct 1683 Position Init Preset 6 1745 Position Actual Proportional Channel Integration Channel PRef Selected 1684 Position Offset u PReg Kp 1755 u PReg Ki 1757 PRef EGR Out 1686 [ N ] [ D ] Gear Ratio + + ' Ref NF 1 & Ref NF 2 PReg Vel Out 1767 PI Regulator x 1752 Psn Gear Ratio 1731 Position Command Psn Gear Ratio 1752 x ( VRef Profilr ) ( Vel FF Ref ) Velocity Control Reference VRef A Sel 1800 VRef B Sel 1807 RefA TrimPct Sel 1850 RefB TrimPct Sel 1860 RefA Trim Sel 1855 RefB Trim Sel 1865 VRef Selection & Limits Speed Ref x TrimPct Ref Trim + Ref Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Preset Speed 6 Preset Speed 7 1814 1815 1816 1817 1818 1819 1820 VRef Selected 1892 PTP VRef Fwd 1405 PCAM Vel Out 1503 PLL Vel Out 1612 PsnVelTrq Actv 34 Vel FF Selection Accel FF Gain 1973 1974 Accel FF Mode 1972 Vel Comp Sel 1752 Psn Gear Ratio 1927 Accel FF Output x Accel FF 2070 PID Output Sel 9:14 PsnVelTrq Actv 34 PID Vel Exclusive Selection Vel Ref CAM Speed Profiling Selection VRef Ramped 1923 Jogging Selection Vector Ramp & Move Profiles Vel FF Gain x 1760 1761 + Ref NF 1 + & Ref NF 2 Vel Comp 1930 Vel Comp Out + X + Jog Speed 1 Jog Speed 2 1894 1895 Virtual Encoder PID Speed Trim Selection 1932 VRef Scale 9:14 PID Output Sel Process Control PID Ref Sel 9:25 PID Fdbk Sel 9:35 ( PID Output Meter ) PID Reference Selection PID Feedback Selection PID Ref Meter 9:26 PID Fdbk Meter 9:36 PID Prop Gain 9:4 PID Int Time 9:5 PID Deriv Time 9:6 PID Regulator PID Output Meter 9:13 Limit 9:10 PID LPF BW ( PID Output Meter ) ( PReg Vel Out ) ( Vel Comp Out ) ( VRef Scaled ) Flux Vector Overview (Vector Overview) Vel Limit Pos 1898 + + + Limit 1899 Vel Limit Neg Velocity Control Regulator VRef Final 1933 1042 Vel Fb Active PI Regulator System BW 906 VReg Kp 1955 1956 VReg Ki 1957 1958 VReg Output 1969 1961 Droop RPM at FLA Torque Control ( VReg Output ) TqCAM Trq Out Trq PsnVelTrq Actv Ref 2524 CAM Trq Ref Out 34 2072 Torque Step 2077 FrctnComp Mode 2050 Friction Comp + ++ - FrctnComp Out 2057 Load Observer 2020 LdObs Mode 1042 Vel Fb Active X Total Inertia Position/ Velocity/ Torque Mode Selection + ++ + 2076 Trq Ref Selected Trq Ref CAM Trq Ref A Stpt 2001 Trq Ref B Stpt 2008 Trq Ref A Sel 2000 Trq Ref B Sel 2007 Torque Ref Selection Trq Commanded 2073 Torque Ref Filters Trq Ref Filtered 2080 Trq Ref Limited 2087 Limit Torque Limit Generation PID Torque Trim / Excl Selection 9:14 PID Output Sel FOC Perm Magn & Vector Control Current Processing Motor E1 Gear Load E2 Chapter 3 PowerFlex 755T Control Block Diagrams 61 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 22 - Variable Frequency, SV Overview 62 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Freq Overview Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 Vref MOP Vref Sel B Jog Speed 1 Jog Speed 2 PID Output Sel 1894 1895 9:14 Vref All C D E F G H Variable Frequency (V/Hz), SV Overview (Freq Overview) VRef All [I4] VRef Commanded 1914 Velocity 1923 Limited VRef Ramped Convert Electrical to Mechanical Units Velocity Control Current/Bus Limiter 1892 2 VRef Selected 954 Ref NF1 Freq Act From Anti-Sway [D2] 956 Ref NF1 Depth Act 3 VRef Ramp In 1 Variable Boost Override Velocity Referencing (I/O) - Frequency Auto Tune Override Start/ Stop Override Torque Proving Override V/F Ramp and Rate Select Convert Mechanical to Electrical Units VelRamp Rate 2 Mtr Cfg 420 15 Options (Jerk Select) Rate Control 957 Ref NF1 Gain Act 943 Ref NF1 Width 6 Ref NF1 Ref NF2 Freq Ref NF2 Width Ref NF2 Depth Ref NF2 Gain Ref NF2 948 949 950 951 Max Speed Bus/Current Limits ' Limiter and Integrator Limit Vel Limit Pos Vel Limit Neg Overspeed Limit 1898 1899 1904 Vel Ctrl Options 1950 Accel Time 1 1915 Accel Time 2 1916 Ramp 4 Decel Time 1 1917 S Curve Decel Time 2 1918 Jog Acc Dec Time 1896 VRef Accel, Decel Jerk 1919 1920 Vel Limit Pos 1898 5 Vel Limit Neg 1899 Limit Velocity Scale and Status Ramp Rate Convert Electrical to Mechanical Units 1942 1933 Display Filter Vel Fb Active VRef Final 1044 Motor Vel Fb Output Frequency 1 Vel Limit Pos Vel Limit Neg Overspeed Limit Limit Fdbk [D5], Proc 1 [E4], 1898 Proc 1 [H3] 1899 1904 At Limit Status 365 3 (OverSpd Lmt) Process Control PID 9:13 6 PID Output Meter Limit Vel Limit Pos Vel Limit Neg 1898 1899 Frequency Adder Vel Droop 3 Droop RPM at FLA 1961 1 [NP Spd] X Filtered (100 R/S) Iq Feedback (pu) VCL CReg C/U Sel c Slip RPM atFLA u Slip RPM atFLA 444 Mtr Cfg Options 420 14 (SlipCompSclr) 489 1 [NP Spd] 490 X1 Iq Feedback (pu) LPF Slip Comp LPF BW 491 0 0 I V/Hz Current Processing Motor Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard CBI Metering A B C D E F G H I 1 CBI Metering Signals (CBI Metering) Figure 23 - CBI Metering Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 3 PowerFlex 755T Control Block Diagrams Command Signals 2 VRef Commanded VRef Final 1914 1933 Common Bus Inverter (CBI) Trq Commanded * 2073 Position Command ** 1731 Motor Side Power Structure DC + Bus 3 U Motor Phase V Motor Phase W Motor Phase 4 DC - Bus 5 * Flux Vector Only ** Flux Vector with Encoder Only 6 Output Signals 1 Output Frequency 2 Output Voltage 3 Output Current 4 Output Power 5 Output Pwr Factr AC Motor Digital Encoder Option Feedback Signals 8 9 11 13 1044 1745 1746 Torque Cur Fb Flux Cur Fb Motor Voltage Fb DC Bus Memory Motor Vel Fb for Freq control modes, this is filtered VRef Final Position Actual ** Position Fb ** 63 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 24 - Feedback Configuration & Status 64 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Fdbk Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A LdObs Mode [2020]: 1 0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only 4- Accel Fdbk B C Vel Fb Taps 1001 Pri Vel Feedback Primary Velocity Fb 0 2 Source Processing Parameter 1 Selection Pri VelFb Sel 1000 = Open Loop Alt Vel Fb Taps 1007 Alt Vel Feedback Alternate Velocity Fb 0 3 Source Processing Parameter 1 Selection Alt VelFb Sel 1006 = Open Loop D E F G H I Feedback Configuration & Status (Fdbk) Fb Loss Action 1019 Fdbk Loss Detect 1002 c Vel Fb LPF BW 1003 u Vel Fb LPF BW 1004 c Vel Fb LPF Gn 1005 u Vel Fb LPF Gn Pri Vel Feedback LPF 1040 0 1008 c AltVelFbLPF BW 1009 u AltVelFbLPF BW 1021 c AltVelFbLPF Gn 1022 u AltVelFbLPF Gn 355 5 Motor Side Sts 2 (Fdbk Loss Sw0) 2020 LdObs Mode Ld Obs [C3] 0, 1, 4 Ld Obs [H5] Trq Ref [C4] LdObs Vel Est 2034 2, 3 Display Filtering Vel Fb Active 1042 Motor Vel Fb 1044 VReg Vect [A3], Cur IM [B3] Cur IPM [B3] Alt Vel Feedback LPF 1041 1 0 1 Note: Load Observer Velocity Estimate is not available in Torque or with Open Loop Feedback LdObs Vel Fb In 2028 Ld Obs [A5], Trq Ref [A4] Torque Current Ref Open Loop Open Loop Fb Pri Psn Feedback Source Pri Position Fb 1769 0 Position Fb 1746 Homing [B4], PRef 1 [C5], PReg [A3, A4] Roll Psn [A2]. 4 Cur IM, SPM [H2] FV Open Loop Calc Velocity (Est Mtr Omega) Open Loop Virtual Encoder 1048 Parameter Selection Spdl Orient [A2]. Torque Cur Fb 8 PReg Fb Sel 1013 526 VEncdls FReg Kp 527 VEncdls FReg Ki 1018 Virtual Enc EPR Alt Psn Feedback Source Alt Position Fb 1770 1 Parameter Selection Load Ratio Virtual Enc EPR Alt PReg Fb Sel 1012 Enc VRef Taps 5 901 1018 1833 VRef Overview [G4] VRef Final 1933 Motor Simulator Virtual Encoder Cur IM SPM [E2] 2087 Cur IPM [E2] 900 Trq Ref Limited 6 Motor Inertia Simulator Fb 1050 Aux Encoder Vel Reference Source Enc VRef Sel 1832 Parameter Selection Aux Velocity Reference Processing Enc VRef 1834 VRef Sel [A3] Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Homing Figure 25 - Position Homing Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C 1. When Homing function is enabled, 1 Home Psn Actual ( 1647) is loaded with Position Fb (1746) . 2. When Homing function is complete, Zero Position ( 1697) is loaded with Home Psn Actual [1647] - Home Psn User [1648].Then Position Actual [1745] is loaded with Position Fb [1746] - Zero Position [1697]. Find Home Speed 1643 Find Home Ramp 1644 Home Torq Thresh 1649 3. When Position Redefine is enabled, Home Psn Actual [1647] is loaded with 2 Position Fb [1746] . 4. Parameter P1649 to P1655 are only applicable while performing Home to Torque operation. Home Torq Limit 1650 Home Torq Time 1651 Home Offset 1652 5. If Home Offset (1652) is non zero, than the Home Psn Actual [1647] = [Position Fb [1746] / Marker Psn] +/- Home Offset (1652). Once Torque Reference > Home Torq Thresh (1649), the drive ramps down to point b after 3 Home Torq Time (1651) expires. Drive performs PTP move to go back to Home Psn Actual [1647], which is point c. Home Return Spd 1653 Home Accel 1654 Home Decel 1655 Home Psn User 1648 6. If Home Offset (1652) is zero, than Home Psn Actual [1647] = [Position Fb [1746] / Marker Psn] . Once Torque Reference > Home Torq Thresh (1649), the drive ramps down to point b after Home Torq Time (1651) expires. It stays at point b and drive does not perform any PTP move. Position Fb 1746 Fdbk [H4] 4 7. If Home Ctrl Option (1640) bit 1 Home DI and bit 8 Home Torque are set and user sets or toggle bit 0 Find Home from 0 to 1, drive does not generate Home Request. It will generate Type 2 Alarm Invld Homing Cnfg . Home Psn Actual 1647 5 6 D Speed E Alarm Status B 466 8 Homing Actv F G H I Position Homing (Homing) Homing Homing Event VRef Homing VRef All [G3] a + PTP Command c b Position 1391 PRef 1 [E2] Zero Position 1697 PReg [B3] - Position Actual + 1745 PReg [B3] Home Ctrl Options 1640 0 Find Home 1 Home DI 2 Home Marker 3 Return Home 4 Psn Redefine 5 Homing Alarm 6 Home DI Inv 7 Hold At Home 8 Home Torque 0:170 DI Find Home 0:171 DI Return Home 0:172 DI Redefine Psn 0:173 DI OL Home Limit Homing Status 1641 0 Home Request 1 Home Enabled 2 Homing 3 At Home Chapter 3 PowerFlex 755T Control Block Diagrams 65 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 26 - Position Reference 1 66 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PRef1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Profile Indexer 1 Step 1-16 Values 1209 1220 1374 Profile Indexer Step 1-16 Dwell Step 1-16 Batch Step 1-16 Next Step 1-16 Action 1210 1211 1212 1213 1221 1222 1223 1224 1375 1376 1377 1378 1202 0-4 Profile 8 Command 10 StrStepSel0-4 Hold Step Restart Step PsnVelTrq Actv Trq Ref [E5] 34 Position Reference 1 (PRef1) PTP Planner and Move Profiles (PRef Move) Ref Move Type 931 Position Mode Selection PsnVelTrq Actv Trq Ref [E5] 34 Zero Torque 0 PTP VRef Fwd Speed Reg 1 2 PTP Reference and Indexer Profiler 1405 PTP Control 1381 0 Vel Override 4 Intgrtr Hold 5 Ref Pause 6 Ref Sync Absolute Position PTP Mode 1382 Absolute 0 PTP EGR Psn PTP Homing [G2] PTP Command 1391 PRef Move [B3], Prof Ind 1 [H3], Homing [H2] LinScurve SineSquared Poly5 PRef Move [H3] ¦ 1404 PTP Reference Move Mult/Div PTP Ref Sel 1383 PTP Ref Scale PTP Control 1381 1 1388 1389 3 PTP Setpoint 1385 1384 Other Ref Sources X Parameter Selection Index Position [ N ] [ D ] Gear Rat PTP Index 1 DI Indx Step 0:176 X Control 1381 2 Reverse Move DI Indx StepRev 0:177 1386 3 Preset Psn 4 DI Indx StepPrst 0:178 PTP Index 1641 1 Home Enabled Homing Status Cubic PCAM Psn Select PCAM Psn Stpt 1427 1426 Other Ref Sources Parameter Selection PCAM Main Pt M 0...15 PCam Planner Psn Ref CAM PCam [G3] PCAM Vel Out 1575 1574 PCAM Psn Out PCam [G2] 1446 1422 PCAM Mode Preset Change Immediate 2 PCAM Main 1478 Pt S 0...15 1445 PCAM Main Types Direct Position Reference Selection PLL Planner PRef Select 1681 PLL Ext Vel Sel 1591 PLL Vel Out Torque Reg 2 SLAT Min 3 SLAT Max 4 Sum 5 Psn PTP 6 Profiler 11 Psn Camming 8 Psn PLL 9 Psn Direct 7 Psn SpndlOrnt 10 0,1,2,3,4,5 0 PRef Selected 1684 PRef 2 [A1] Psn Direct Stpt 1682 PLL Ext Vel Stpt 1592 1612 PLL Enc Out PLL [H3] Spd Ref 0,1,2,3,4,5,7 5 Virtual EncDelay 1017 VRef Vect [H2] Virtual Enc Psn Parameter Other Ref Sources PLL Psn Stpt 1596 Parameter Selection PLL Control 1615 PLL Vel Out Adv PLL [H4] 1613 PLL Enc Out Adv PLL [H3] 0 Psn PTP 6 1046 VRef Vect [H2] Selection Other Ref Parameter 1616 Profiler 11 Vel FF Sources Selection PLL [H4] VRef Vect Other Ref PLL PRef Sel 1595 Psn Camming 8 [I4] Sources 1683 6 PRef Direct Psn PLL 9 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PRef Move Chapter 3 PowerFlex 755T Control Block Diagrams Figure 27 - Position Reference Move Profiles Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I PTP Position Reference Move Profiles (PRef Move) 1 Ref Move Type 931 Point to Point parameter initializations performed with Position Regulator INACTIVE Max Speed Fwd Max Speed Rev PTP Vel Override 1392 1393 1402 Virtual Encoder PTP Feedback 1396 PTP Reference [1404], PTP Feedback [1396], PTP Command [1391] are loaded with Position Actual [1745]. 2 PTP Accel Time 1398 PTP Decel Time 1399 PTP S Curve 1403 LinScurve (0) These parameters apply to all Move Types PTP PRef Status 1380 0 ZeroFFSpdRef 1 Ref Complete 2 PTP Int Hold 3 SpdFFRef En 3 PRef 1 [E2] PTP Command 1391 4 Ref Accel Time 934 Ref Decel Time 935 RefEnergyBalance 932 Ref Max Accel 936 Ref Max Decel 937 5 Ref Time Base 933 0 = Rate 1 = Time 0 = Rate 1 = Time 0 = Rate SineSquared (1) Poly5 (2) Cubic (3) 1406 1407 1408 1409 PTP Vel Max PTP Accel Max PTP Decel Max PTP Move Time 1411 PTP Move Seg 0- Accel Decel 1- Dwell Decel 2- Decel 3- Reversing PTP VRef Fwd 1405 6 1404 PRef 1 [G2] PTP Reference PTP Move Status 1410 0 1 2 3 4 Vel Limited AccelLimited DecelLimited Zero Move Move Failed Ref Fault Config 941 6 24 PTP VelMax Time 25 PTP AccMaxTime 26 PTP DecMaxTime 27 PTP Time Left 28 PTP Iterations 67 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 28 - Position Reference 2 68 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PRef2 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E 1 EGR is skipped when Electronic Gear Ratio PRef EGR Out Point to Point Position 1686 PRef Selected control is active. PRef 1 [I4] 1684 [ N ] [ D ] + Ref NF 1 + Gear Rat F G H I Position Reference 2 (PRef2) Ref NF 2 Position Command 1731 PRef NF Del 15 ' PRef NF Del PReg [C3] Psn Offset 1 Sel Psn Offset 1 1691 1690 Psn EGR Mult Psn EGR Div 1687 1688 PRef OfstPsn 13 2 Other Ref Position Reference Offset Sources Parameter Selection 12 PRef Ofst In + Psn Offset 2 Sel 1693 + ReRef 0 Virtual Encoder Psn Offset 2 1694 1 Rate Lim 2 1730 Other Ref Sources Parameter Selection Psn Ctrl Options 1695 (OffsetReRef) Psn Offset Vel 1730 3 Psn Ctrl Options (OffsetVel En) 3 From Anti-Sway [D2] 954 Ref NF1 Freq Act 956 Ref NF1 Depth Act 957 Ref NF1 Gain Act 943 Ref NF1 Width 948 Ref NF2 Freq 949 Ref NF2 Width 950 Ref NF2 Depth 951 Ref NF2 Gain P os ition Watc h 1 P os ition Watc h 2 Psn Ctrl Options 1730 6 PsnWtch1Arm 7 PsnWatch1Dir Psn Ctrl Options 1730 8 PsnWtch2Arm 9 PsnWatch2Dir PsnWatch1 DtctIn 1738 PReg Status 4 Other Ref 1732 9 PsnW1Detect Sources Parameter Selection Position Watch 1 PsnWatch1 Select 1737 1739 PsnWatch1 Stpt PsnWatch2 DtctIn 1742 Other Ref Sources Parameter Selection PsnWatch2 Select 1741 Position Watch 2 1743 PsnWatch2 Stpt PReg Status 1732 10 PsnW2Detect In Position Detect 5 PReg Status Position Error 1750 PReg [D3] 1732 11 InPsn Detect In Position Detect In PosPsn Window 1734 In PosPsn Dwell 1735 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard PReg Figure 29 - Position Regulator Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I 906 System BW 1 * Set (905) System C/U Sel = User to manually adjust Kp and Ki gains. Otherwise the 1010 AltFb Gn Scale 907 System Damping following params determine Calc gains. 901 Load Ratio 902 Load Coupling 2 Parameter initializations performed with Position Regulator INACTIVE 1. If Homing function is enabled, Position Actual (1745) is loaded with Position Fb (1746) . 2. Else, if Zero Psn (1730 Bit 04) is set, Position Actual (1745) is loaded with Position Fb (1746) Zero Position [1697). 3. Else, Position Command (1731) and PRef EGR Out (1686) are loaded with Position Actual (1745) *4. EGR is skipped when Point to Point Position control is active (included Profiler, PLL with PTP) Position Regulator (PReg) Psn Feedback Scaling PRef NF Del PRef 2 [H1] PI Regulator Psn Ctrl Options Zero Position (Zero Psn) Position Actual 4 1730 1697 1745 3 Homing [H3] Xzero Preset 6 1746 Position Fb Fdbk [H4] ' Psn Load Actual Load Psn Fb Sel 1748 4 1746 Position Fb Fdbk [H4] Other Position Feedback Sources 1014 LdPsn Fb Del 20 ' Parameter Selection 6 [ N ] [ D ] Gear Rat Position Error + - 6 1750 PRef 2 [C5] Psn Fb Del 21 Calib Const Psn Gear Ratio ( Motor Speed Gear Output Spd ) 1752 c PReg Kp* u PReg Kp* PReg LdError 22 + - 6 Calib Const + - kp P Gain 1754 1755 kp P Gain ki s I Gain LdPsn Geared 23 c PReg Ki* u PReg Ki* 1756 1757 + + PReg Int Out 1765 PReg Status 1732 8 Intgrtr Hold PReg Droop 1763 Load Psn Fb Mult 1015 5 Load Psn Fb Div 1016 Droop On PReg Output Limit Intgrtr En Or Inv Intgrtr Hold PReg Vel Limit Pos 1766 PReg Vel Limit Neg 1768 1 0 0 Limit Psn Ctrl Options 1730 0 Reserved 1 Intgrtr En 2 Offset ReRef 3 OffsetVel En 4 Zero Psn 5 Intgrtr Hold 6 PsnWtch1Arm 7 PsnWatch1Dir 8 PsnWtch2Arm 9 PsnWatch2Dir 10 Add Spd Ref PReg Vel Out 1767 VRef Vect [D5] PReg Status 1732 0 OffsetIntgrtr 1 Offset ReRef 2 Psn Intgrtr 3 Psn Reg Lmt 4 Reserved 5 Reserved 6 Reserved 7 Psn Reg Actv 8 Intgrtr Hold 9 PsnW1Detect 10 PsnW2Detect 11 InPsn Detect 6 Chapter 3 PowerFlex 755T Control Block Diagrams 69 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 30 - Position Control Phase Locked Loop 70 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Psn PLL Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Position Control Phase Locked Loop 1 (Psn PLL) PLL Ctrl Options PLL Ext VelScale 2 PLL Ctrl Options 1593 PLL Ctrl Options PLL Ctrl Options PLL Ctrl Options PLL LPF BW 1590 1590 2 1590 1 1590 3 1598 PLL Ext Vel Stpt 1592 Other Ref 0 X Ext 1 Vel FF Velocity FF Accel Comp Sources Parameter 0 1 Selection LPF 1590 0 PLL Enable 1 Velocity FF 2 Ext Vel FF 3 Accel Comp 4 PCAM Enable 5 PTP Enable 6 Prof Enable - Bit4 enables PCAM function with PLL. - Bit5 enables PTP function with PLL - Bit6 enables Profiler function with PLL Can not select multiple bits. PLL references must connect to appropriate outputs of the function. PLL Ext Vel Sel 1591 0 0 PLL Ctrl Options 3 PCAM Vel Out 1575 PCAM Enable 4 1 X to V PTP Enable 1 5 Conv PTP VRef Fwd 1405 Prof Enable 6 1 PLL BW 1600 PLL Psn Stpt 1596 0 Other Ref 4 Sources Parameter Selection + Loop - Filter 1590 0 PLL Enable 1 0 0 + + VE 1 0 0 Delay Delay 1612 PLL Vel Out PRef1 [G5] 1613 PLL Vel Out Adv PRef1 [G5] 1615 PLL Enc Out PRef1 [G5] 1616 PLL Enc Out Adv PRef1 [G5] PLL PRef Sel 1595 1597 PLL Psn Out Fltr PCAM Psn Out 1574 PCAM Enable 4 1 PTP Enable 1 5 5 PTP Reference 1404 Prof Enable 6 1 EGR [ ] [ ] 1604 PLL Virt Enc RPM PLL EPR Input 1606 X X 1607 PLL EPR Output PLL Rvls Input 1609 1610 PLL Rvls Output 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Psn CAM Chapter 3 PowerFlex 755T Control Block Diagrams Figure 31 - Position Control Position Reference CAM Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Position Control Position Reference CAM 1 (Psn Ref CAM) PCAM Mode 1422 PCAM Slave Scale 1436 0 - Off 1 - Single step 2 - Continuous 3 Persistent * *(not for P1420 [PCAM Type] = 1 - TCAM ) Y (slave) Position Reference CAM Other Ref Sources Parameter 2 Selection PCAM SlaveSclSel 1435 1574 PCAM Psn Out Pref 1 [G4] PCAM Type 1420 PCAM Psn Stpt 1427 Other Ref Sources Parameter 3 Selection 0 - PCAM time 1 - TCAM Unwind Unwind X (master) FIR X Filter * 1576 1575 PCAM Vel Out Pref 1 [G3] PCAM Vel OutTaps *(PCAM only) PCAM Psn Select 1426 Virtual Encoder PCAM Psn Ofst PCAM PsnOfst Eps 1428 1429 PCAM Start Cfg 1425 4 0 Pnt Zero 1 Last Stop 2 Actl Input 3 Remainder Profile Definition PCAM Master Scl 1434 PCAM Vel Scale 1438 Other Ref Sources Parameter Selection PCAM Vel SclSel 1437 PCAM Start Slope PCAM End Slope 1442 1443 Pt M00 1446 Pt S00 1478 Pt M01 1447 Pt S01 1479 Both Main and Aux CAM Pt M01 1512 Pt S01 1543 PCAM Pt M15 1461 Pt S15 1493 PCAM Pt M15 1526 Pt S15 1557 Main Aux 5 Types 1445 0 - - 14 x Types 1511 x 1 - 14 x Linear or Cubic Linear or Cubic EndPnt 1444 End Pnt 1510 6 PCAM Status 1423 Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 VReg IntHold 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15 DI PCAM Start 0:880 PCAM Control 1421 Not TCAM Start 0 DirectionOut 1 Aux Cam En 2 VReg IntHold 3 Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10 Not TCAM 71 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 32 - Position Control Profiler/Indexer 1 72 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Prof Ind 1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I 1 Step Step Step Step 1 2 3 4 Step Step 15 16 Type 1205 1216 1227 1238 1359 1370 Velocity 1206 1217 1228 1239 1360 1371 Accel 1207 1218 1229 1240 1361 1372 Decel 1208 1219 1230 1241 1362 1373 Value 1209 1220 1231 1242 1363 1374 2 Dwell 1210 1221 1232 1243 1364 1375 Batch 1211 1222 1233 1244 1365 1376 Next Action 1212 1223 1234 1245 1213 1224 1235 1246 1366 1377 1367 1378 Blend P1 Sel 1214 1225 1236 1247 1368 1379 Blend P2 Sel Dig In 1215 1226 1237 1248 0:860 0:861 0:862 0:863 1369 1419 0:874 0:875 Speed/Position Move Table Position Control Profiler/Indexer (1) (Prof Ind 1) Profiler/Indexer Time Vref Prof Ind 1 Vref All [C3] PsnVelTrq Actv 34 Trq Ref [D5] Profiler Other 0 PTP Command 1391 Pref 1 [E2] 3 Prof DI Invert 0:850 0 Hold Step Counts Per Unit 1203 1 Abort Step ProfVel Override 1204 2 AbortProfile 3 Vel Override 4 StrStepSel0 5 StrStepSel1 6 StrStepSel2 7 StrStepSel3 4 8 StrStepSel4 0:851 DI Hold Step 9 Step1 0:852 DI Abort Step 10 Step2 0:853 DI Abort Profile 11 Step3 0:854 DI Vel Override 12 Step4 0:855 DI StrtStep Sel0 13 Step5 0856 DI StrtStep Sel1 14 Step6 0:857 DI StrtStep Sel2 15 Step7 0:858 DI StrtStep Sel3 5 16 Step8 0:859 DI StrtStep Sel4 17 Step9 18 Step10 19 Step11 20 Step12 21 Step13 22 Step14 6 23 Step15 24 Step16 Profile Command 1202 0 StrStepSel0 1 StrStepSel1 2 StrStepSel2 3 StrStepSel3 4 StrStepSel4 5 Reserved 6 Reserved 7 Reserved 8 Hold Step 9 Vel Override 10 Restart Step 11 HomNotSetAlm 12 Prof Run Alm Starting Step (0-16) Alarm Status B 466 7 Profile Actv 9 Not Home Set Profile Status 1200 0 Step Bit 0 1 Step Bit 1 2 Step Bit 2 3 Step Bit 3 4 Step Bit 4 5 Reserved 6 Reserved 7 Reserved 8 Enabled 9 Running 10 PositionMode 11 Dwell 12 Holding 13 In Position 14 Complete 15 Stopped 16 Resume 17 Restart Step 18 Vel Override 19 Home Not Set Current Step (0-16) 1201 Units Traveled Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Prof Ind 2 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 33 - Position Control Profiler/Indexer 2 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Position Control Profiler/Indexer (2) 1 (Prof Ind 2) Type = Position Absolute (Posit Abs) Action Posit Blend Time Param Digin (+/-) Wait Step to Next End Blend Blend Blend Digin Velocity Move vel N/A N/A N/A Move vel Move vel N/A Accel Move accel N/A N/A N/A Move accel Move accel N/A Decel Move decel N/A N/A N/A Move decel Move decel N/A 2 Value Absolute N/A N/A N/A Absolute Absolute N/A Target pos Target pos Target pos Dwell N/A N/A N/A N/A Dwell Time Dwell Time Dwell Time Batch N/A N/A N/A N/A N/A N/A N/A Next Next Step N/A N/A N/A Next Step Next Step N/A Next Step Position > N/A N/A N/A DigIn Position > Restart Condition Value transition Value Indexer DigIn # N/A N/A N/A N/A Digin # N/A N/A Type = Position Incremental (Posit Incr) Action Posit Blend Time Param Digin (+/-) Wait Step to Next End 3 Blend Blend Blend Digin Velocity Move vel N/A N/A N/A Move vel Move vel N/A Accel Move accel N/A N/A N/A Move accel Move accel N/A Decel Move decel N/A N/A N/A Move decel Move decel N/A Value Incremental N/A N/A Target pos N/A Incremental Incremental N/A Target pos Target pos Dwell N/A Batch N/A N/A N/A N/A N/A N/A Dwell Time Dwell Time Dwell Time N/A Batch # Batch # N/A Next Next Step N/A N/A N/A Next Step Next Step N/A Next Step Position > N/A N/A Condition Value N/A DigIn Position > Restart transition Value Indexer DigIn # N/A N/A N/A N/A Digin # N/A N/A 4 Type = Speed Profile Action Posit Blend Time Blend Param Blend Digin Blend (+/-) Wait Digin Step to Next End Velocity Move vel Move vel Move vel Move Vel Move vel Move vel N/A Accel Move accel Move accel Move accel Move accel Move accel Move accel N/A Decel Move decel Move decel Move decel Move decel Move decel Move decel N/A Value Incremental Total Time Compare Param # N/A Target pos (+/-) Total Time Total Time N/A Dwell N/A N/A CompareParam # Dwell Dwell Time Dwell Time Dwell Time Time Batch N/A N/A N/A Batch # Batch # Batch # N/A Next Next Step Next Step Next Step Next Step Next Step Next Step N/A 5 Next Step Position > Time > Param[Blend P1] Digin Digin Time > Restart Condition Value Value Compare to [Value] transition Value Profile Param [Blend P2] transition DigIn # N/A N/A N/A Digin # Digin # N/A N/A 6 73 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 34 - Position Control Roll Position Indicator 74 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Roll Psn Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I 1 Position Control Roll Position Indicator Roll Psn Offset (Roll Psn) 1085 Roll Psn Config 1080 0 Enable ReRef Roll Psn Config 1080 2 Rereference 2 ' RP Pos Fd Stpt 1083 Position Fb 1746 Other Ref Sources Parameter Selection ' 60 RPsn Dlt In 3 RP Psn Fb Sel 1082 62 RPsn EGR Den EGR [ ] + + [ ] 63 RPsn Dlt Out 61 RPsn EGR Num X *1 X *1 Roll Psn Config 1080 1 Preset Roll Psn Preset 1084 6 RPsn Mod In 1 64 0 Modulo Divider Mod Roll Psn Status 1081 0 Enable 1 Rereference 1090 RP Psn Output X 1092 RP Unit Out 1086 RP EPR Input 1087 RP Rvls Input 1088 RP Rvls Output 1089 RP Unwind 1091 RP Unit Scale 4 Gear Ratio *1: Product need to be within 32-bits integer range RP Psn Output 1090 RP Unwind 1089 5 0 Position Feedback Input 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Spindle Figure 35 - Position Control Spindle Orient Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A SO Config 1060 0 Home DI 1 1 Home DI 0 Marker Pulse SO Offset 1063 2 Position Fb 1746 1013 Preg Fb Sel 3 4 5 SO Position Out 1069 1067 SO Cnts per Rvls 6 0 B C D E F G H I Position Control Spindle Orient (Spindle) Rising Edge ReCap ' EGR [ ] [ ] + 6 - X *1 X *1 ReCap Spindle Position Indicator Modulo Divider Mod SO Config X 1060 4 Scale Invert 0 1 ÷ SO Unit Out 1070 SO Status SO Config 1061 0 At SO Speed 1060 0 Home DI 1 Mode 1 Home DI Inv 2 Orient Cplt 2 Recap Hm Psn 3 ShortestPath SO Position Out 1069 4 Scale Invert 1064 SO EPR Input 1065 SO Rvls Input 1066 SO Rvls Output SO Offset 1063 SO Cnts per Rvls 1067 Gear Ratio *1: Product need to be within 32-bits integer range SO Setpoint 1062 SO Unit Scale 1068 Spindle Position Command SO Status 1061 1 Mode SO Vel Lim Fwd 1073 SO Vel Lim Rev 1074 Spindle Position Planner Vref Ramped 1923 Position Feedback Input SO Vel Lim Fwd 1073 Limit 1074 SO Vel Lim Rev 1071 SO Accel Time 1072 SO Decel Time Chapter 3 PowerFlex 755T Control Block Diagrams 75 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 36 - Velocity Reference Overview 76 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VRef Overview Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 B C Velocity Reference Selection VRef Selected D E F G H I Velocity Reference Overview (VRef Overview) VRef A RefA Trim RefA TrimPct RefA Auto + Velocity Reference Control VelRefCAM/ VRef 2 VRef B RefB Trim RefB Auto + + VRef Commanded Profiling/ Jogging/ Lift App/ Autotune/ Homing/ Direction Mode Limit Switch Control Limit Limited Skip Bands RefB TrimPct Overrides From PI Regulator Presets 3-7 Auto (Exclusive Mode) DPI Ports 1-6 Manual ENet VRef VRef Stop / Torque Proving 3 Vector Ramp and Move Profiles Virtual Encoder Vector Velocity Control Vel Comp Accel FF Accel FF to Trq Ref Friction Comp Friction Comp Torque Ref Flux Vector Velocity Ramp & VRef Ramped Move 4 Profiles Ref NF 1 & x Ref NF 2 Limit Motor VRef 1933 VReg From From Vel Limit VRef Final Ref PTP Profile Generator PI Regulator VRef Scale (Trim Mode) Rate Select From Position Regulator VRef Ramped VF or SV Linear Ref NF 1 5 Ramp & & S Curve Ref NF 2 V/F Ramp S-Curve Droop Limit Vel Limit From PI Regulator (Trim Mode) 6 V/F Velocity Control Limit Vel Limit & Overspeed Limit From Slip Comp Velocity Feedback Vector Ramp Status FF Ramp Status 1 Output Frequency Frequency Ref Velocity Status Status Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VRef Sel Figure 37 - Velocity Reference Selection Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I VRef A Sel Velocity Reference Selection (VRef Sel) 1 1800 Disabled (0) VRef A Stpt 1801 Preset Speed 1 1814 * Note: Analog Hi, Lo scaling only used when Analog Input is selected `d' Prefix Refers to Diagnostic Item Number (ex. d33) Reference Symbol Legend RefA TrmPct Sel 1850 RefA Trim Sel 1855 Velocity Units 0:46 350 VRef Source 1870 VelTrimPctRefSrc 1871 Vel Trim Source 1890 VRef Sel Sts 0:47 Vel Units Act Preset Speed 2 1815 Preset Speed 3 1816 2 Preset Speed 4 1817 Preset Speed 5 1818 Preset Speed 6 1819 Preset Speed 7 1820 MOP Reference 1823 MOP [G3] Enc VRef 1834 3 Fdbk [H5] Port 1 Reference 0:214 Port 2 Reference 0:215 Port 3 Reference 0:216 Port 4 Reference 0:217 Port 5 Reference 0:218 Port 6 Reference 0:219 Parameter Selection Default Option Ports: 4 Analog, EtherNet * VRefA AnlgHi 1802 Disabled (0) RefA TrimPct Stpt 1851 Default Port 1 Reference Port 2 Reference Port 3 Reference Port 4 Reference Port 5 Reference Port 6 Reference 0:214 0:215 0:216 0:217 0:218 0:219 Parameter Selection Anlg In1 PortVal (option port) Anlg In2 PortVal (option port) RefA TrmPct AnHi 1852 * RefA TrmPct AnLo 1853 x x Disabled (0) RefA Trim Stpt 1856 Default Port 1 Reference Port 2 Reference Port 3 Reference Port 4 Reference Port 5 Reference Port 6 Reference 0:214 0:215 0:216 0:217 0:218 0:219 Parameter Selection Anlg In1 PortVal (option port) Anlg In2 PortVal (option port) RefA Trim AnHi 1857 * RefA Trim AnLo 1858 Motor Side Sts 1 354 9 14 13 12 11 10 Man Ref Ref Ref Ref Ref Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 1 ( Ref A Auto ) 2 ( Ref B Auto ) 1816 ( Preset Speed 3) 3 1817 ( Preset Speed 4) 4 1818 ( Preset Speed 5) 5 1819 ( Preset Speed 6) 6 1820 ( Preset Speed 7) 7 0:214 17 ( DPI Prt1 Man ) 0:215 ( DPI Prt2 Man ) 18 0:216 19 ( DPI Prt3 Man ) + 0:217 20 ( DPI Prt4 Man ) VRef Sel VRef All [A1] VRefA AnlgLo 1803 VRef A Mult 1804 21 0:218 ( DPI Prt5 Man ) 0:219 22 ( DPI Prt6 Man ) Disabled (0) Disabled (0) Disabled (0) VRef B Stpt 1808 RefB TrmPct Stpt 1861 RefB Trim Stpt 1866 5 VRefB AnlgHi 1809 RefB TrmPct AnHi 1862 RefB Trim AnHi 1867 VRefB AnlgLo 1810 Other Ref Sources * Parameter Selection RefB TrmPct AnLo 1863 Other Ref Sources * Parameter Selection RefB Trim AnLo 1868 Other Ref Sources * Parameter Selection VRef B Sel 1807 RefB TrmPct Sel 1860 RefB Trim Sel 1865 DI ManRef AnlgHi 0:148 * 0:149 Parameter DI ManRef AnlgLo Selection 16 ( DI Man Sel ) Alt Man Ref AnHi 0:147 DI Man Ref Sel x 6 VRef B Mult 1811 x 1836 31 + * 1837 ( Alt Man Sel ) Parameter Alt Man Ref AnLo Selection 1835 Alt Man Ref Sel Chapter 3 PowerFlex 755T Control Block Diagrams 77 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 38 - Velocity Reference All 78 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VRef All Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B Position Control Add Speed Reference Option Trq Ref [E5] Psn Ctrl Options 1 PsnVelTrq Actv (Add VRef) 34 1730 10 VRef Sel VRef Sel [I2] Position (>= 6) 1 0 Non-position 0 (< 6) VRef Selected 1892 PI Speed Exclusive 0 2 1 PID Output Meter 9:13 Proc 1 [H2] PID Status 9:3 0 PID Enable Motor Side Sts 1 354 16 Running & 9:14 Speed Excl PID Output Sel = 1 30 VRef PID Sel 3 C D E F G H I Velocity Reference All (VRef All) Velocity Reference CAM VCAM Control (Cam Enable) 2201 3 0 Vel Ref CAM [H2] VCAM Vel Out 2354 Vel 1 Ref CAM V eloc ity P rofiling Trq Ref [E5] PsnVelTrq Actv 34 6 Profiler 6 Profile Status 1200 10 Position Mode 1 Position 0 0 Speed VRef Profilr 67 J ogging Lift App (Micro Positioning) Motor Side Sts 1 (Jogging) 354 17 0 Jog Speed 1 1,0 1894 1 Jog Speed 2 0,1 1895 Logic [H3] Drive Logic Rslt 879 2 19 Jog1 Jog2 Trq Prove Status (Micro Psn) 9:52 2 0 x1 9:71 MicroPsn ScalePct VRef Prof Ind x 1752 Psn Gear Ratio Prof Ind 1 [H2] Pump Application Oil Well 1 [H3] PumpJackSpdRefEnbl 0 Oil Well 2 [H4] POfVelRefSts 0 PumpJack 1 SpdRef Oil Well 1 [H3] 1 POf Vel Ref Oil Well 2 [H4] VRef Homing Homing [H2] Homing Homing Status 1641 1 0 1 VRef Homing 31 x 1752 Psn Gear Ratio Direction Mode Control Autotune Tests Limit Switch Control Velocity Ref Command Limits Direction Mode 930 Direction Test VRef Sel Sts (Decel Lmt Sw) VRef Sel Sts (End Lmt Sw) Min Velocity Max Velocity Skip Bands 4 1890 13 1890 14 Limits VRef CLmt In Limits VRef SkipOut 34 Max 0 Bipolar 1 Rev Disable 2 Unipolar 0 X 0 1 5 Hz 912 0 0 1 1 0 33 Limit Limit 1906 VRef Limited Proc 2 [B2] Skip Bands Skip Speed 1 1908 Foward Command Logic 5 VRef Dir Sel 32 (+1) Unipol Fwd 1 (-1) Unipol 0 Rev Autotune Vel Lim Id or Inertia Test 1814 Preset Speed 1 Vel Low Lim Pos 1900 Vel Low Lim Neg 1901 Vel Limit Pos 1898 Vel Limit Neg 1899 Skip Speed 2 1909 Skip Speed 3 1910 Skip Speed 1911 Band Internal Load Dependent Max Limit (Lift Application) 6 Trq Prove Status (LoadTestActv) 9:52 5 VRef Commanded 1914 VRef Vect [A1] VRef OverRide Testpoint 39: 0- No Override 1- Psn Cntrl Add Spd Ref Option 2- PI Speed Exclusive 3- Speed Profiling 4- Jogging 5- Homing 6- Autotune 7- Direction Test 8- Limit Switch Decel Limit 9- Limit Switch End Limit 10- Torque Proving 11-Oil Well Pump 12-Variable Boost 13-Velocity Ref CAM Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VRef Vect Figure 39 - Velocity Reference Flux Vector Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C Start/Stop 1 Motor Side Sts 1 (Running) Motor Side Sts 1 354 16 OR (Stopping) 355 9 VRef Commanded 354 18 Motor Side Sts 2 VRef All [I4] 1914 0 (Autotuning) 1 Not Stopping and Active 00 01 Stopping or Not Active 2 D E F G H I Velocity Reference - Flux Vector (VRef Vect) VRef OverRide (Testpoint 39) = Velocity Ref CAM (13)? 0 Velocity Ramp and Move Profiles (VRef Move) VRef Ramp In 1 1923 VRef Ramped Proc 2 [C2] Vel Ctrl Options (Delayed Ref) 1950 8 0 Virtual Encoder LinScurve SineSquared Poly5 Cubic Virtual Enc EPR (Edges Per Rev) 1018 One Scan Delay VRef Delayed 1924 1 PRef 1 [C5] Virtual Enc Psn 1046 Ref NF2 Freq 948 Ref NF2 Width 949 Int Ramp Ref Ref NF2 Depth 950 1 Trq Ref [G1] Ref NF2 Gain 951 Velocity Control 3 VRef Filtered 931 Ref Move Type Virtual Encoder One Scan Delay 1017 Virtual EncDelay PRef 1 [C5] Accel Feed Forward 1925 VRef NF In 36 Accel FF Mode Accel FF Output Ref NF2 Ref NF1 1972 Velocity Comp 2070 Disabled 0 0 Int Ramp Ref 1 d 4 Ext Ramped Ref dt 2 d 1978 dt 1931 3 Accel FF 905 System C/U Sel 1973 c Accel FF Gain 1974 u Accel FF Gain 0 1 Accel FF Output 0 Trq Ref [A2] 140 Cur Lmt Stop OR 130 LineLoss Act Vel Comp Sel 1927 Not Used 0 Ramped Ref 1 d dt 1931 Rate Ref 2 Vel Comp Out 1930 From Anti-Sway [D2] Speed Comp 954 Ref NF1 Freq Act FF Vel Rate Ref 1975 Accel FF NegGain FF Vel Rate Ref c Vel Comp Gain 1928 956 Ref NF1 Depth Act 957 Ref NF1 Gain Act u Vel Comp Gain 1929 943 Ref NF1 Width 1932 VRef Scaled X 37 Velocity Ref Final Limits VRef Psn FF 35 0 x 1760 c Vel FF Gain 1761 u Vel FF Gain 1 0 354 17 Motor Side Sts 1 (Jogging) 1752 Psn Gear Ratio Vel FF PRef 1 [I5] 5 VRef Scale 140 Cur Lmt Stop Proc 1 [H2] 6 9:13 PID Output Meter PI Velocity Trim 2 0 2 9:14 PID Output Sel (Speed Trim) 0 01 354 17 Motor Side Sts 1 (Jogging) PReg Vel Out PReg [H3] Position Reg Output 1767 0 PReg Vel Out 0 1 354 17 Motor Side Sts 1 (Jogging) VRef FLmt In 38 Max Speed Limit At Limit Status (MaxSpeed Lmt) 365 2 Vel Limit Pos Vel Limit Neg 1898 1899 Limit OR 130 0 1 0 LineLoss Act 1933 VRef Final VReg Vect [A3] Chapter 3 PowerFlex 755T Control Block Diagrams 79 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 40 - Velocity Reference Flux Vector Move Profiles 80 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Ref Move Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Velocity Reference, Flux Vector Move Profiles (VRef Move) 1 Motor Side Sts 1 354 17 Jogging 0 VRef Accel Time1 1915 1,0 VRef Accel Time2 1916 0,1 MS Logic Rslt 0:200 8 9 (Accel Time 1, 2) 1 2 Jog Acc Dec Time 1896 0 Logic [H3] VRef Decel Time1 1917 1,0 VRef Decel Time2 1918 0,1 MS Logic Rslt 0:200 10 11 (Decel Time 1, 2) Logic [H3] VRef Accel Jerk 1919 VRef Decel Jerk 1920 3 VRef Vect [E1] Vel Ctrl Options 1950 (Ramp Hold) 0 (Ramp Disable) 1 (StpNoSCrvAcc) 2 (NoSCrvSpdChg) 9 VRef Ramp In 1 Ref Time Base 933 Ref Move Type 931 VelRamp Rate 2 LinScurve (0) VRef Ramped 1923 Proc 2 [C2] VRef Vect [G1] 4 Ref Accel Time 934 Ref Decel Time 935 RefEnergyBalance 932 Ref Max Accel 936 Ref Max Decel 937 5 Ref Max AccJerk 938 Ref Max DecJerk 939 Ref Fault Config 941 0 = Rate 1 = Time 0 = Rate 1 = Time 0 = Rate SineSquared (1) Poly5 (2) Cubic (3) 1934 1935 1936 1937 VRef Accel Max VRef AccJerk Max VRef DecJerk Max VRef Move Time 1939 VRef Move Seg 0- Accel Decel 1- Dwell Decel 2- Decel 3- Reversing VRef Move Status 1938 0 1 2 3 4 AccelLimited AccelJerkLim DecelJerkLim Zero Move Move Failed 4 VRefAccelMaxTime 5 VRefAcJrkMaxTime 6 VRefDcJrkMaxTime 7 VRef Time Left 8 VRef Iterations 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VelRefCAM Figure 41 - Velocity Reference CAM Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F 1 VCAM Mode 2202 0 - Off 1 - Single step 2 Continuous (not for P2200 [VCAM Type] = 2 3 Persistent (not for P2200 [VCAM Type] = 1 VCAM) TCAM) Velocity Reference CAM VCAM Slave Scale 2216 Other Ref Sources Parameter 2 Selection Y (slave) VCAM SlaveSclSel 2215 G H I Velocity Reference CAM (Vel Ref CAM) 2354 VCAM Vel Out VRef All [D3] VCAM Type 2200 VCAM Psn Stpt 2207 0 - PCAM Other Ref Sources Parameter 3 Selection Unwind VCAM Psn Select 2206 Virtual Encoder time 1 - TCAM X (master) VCAM Psn Ofst 2208 ' VCAM PsnOfst EPS 2209 VCAM Vel Stpt 2211 4 Other Ref 2 - VCAM Sources Parameter Selection 0 Pnt Zero VCAM Vel Select 2210 1 Last Stop 2 Actl Input VCAM Master Scl 2214 VCAM Start Cfg 2205 3 Remainder Profile Definition 5 VCAM Start Slope 2222 VCAM End Slope 2223 Pt M00 2226 Pt S00 2258 Pt M01 2227 Pt S01 2259 Both Main and Aux CAM Pt M01 2292 Pt S01 2323 VCAM Main Pt M15 Types 2241 2225 Pt S15 2273 0 - - 14 x VCAM Aux Pt M15 2306 Pt S15 2337 Types 2291 x 1 - 14 x Linear or Cubic Linear or Cubic 6 EndPnt 2224 End Pnt 2290 VCAM Status 2203 Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 Reserved 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15 VCAM 16 DI VCAM Start 0:883 VCAM Control 2201 Not TCAM Start 0 DirectionOut 1 Aux Cam En 2 Cam Enable 3 Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10 Not TCAM Chapter 3 PowerFlex 755T Control Block Diagrams 81 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 42 - Velocity Regulator Flux Vector 82 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard VReg Vect Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Velocity Regulator - Flux Vector (VReg Vect) 1 905 2 System C/U Sel (905): 0- Calculated* 1- User Entered 2- Load Calculated then revert to User Entered * Set (905) System C/U Sel = User to manually adjust Kp and Ki gains. Otherwise the following params determine Calc gains. 906 System BW 1010 AltFb Gn Scale 907 System Damping 901 Load Ratio 902 Load Coupling 3 VRef Vect [H6] 1933 VRef Final Fdbk [G2] VelFb Active 1042 4 5 6 nff 1953 FeedFwd VReg Anti Backup Velocity Error 1951 + - ks s ServoLck Servo Lock Gain 1952 + + +10% -10% Limit 40 VReg SrvLock + c VReg Kp 1955 u VReg Kp 1956 + - Hold / Reset At Limit Status 365 PTP PsnRefStatus (PTP Int Hold) 1380 2 Vel Ctrl Options 1950 3 (SpdRegIntRes) (SpdRegIntHld) 4 (Jog No Integ) 6 aVRegKp 41 kp P Gain kp P Gain aVRegKi 42 ki s I Gain c VReg Ki u VReg Ki c Alt Kvi OL Fb u Alt Kvi OL Fb 1957 1958 1959 1960 VReg Trq Preset 1980 Preset Trq Ref Selected Trq Ref [G3] 2076 PsnVelTrq Actv 34 Trq Ref [E5] Bumpless At Limit Status (Spd Reg Lmt) VReg Lmt In 43 365 4 + + Limit 1965 Accel Limit Pos 1966 Accel Limit Neg 1962 VReg Int Out Vel Droop 3 Droop Kj 1961 44 Droop RPM at FLA VReg Enable 45 00 VReg Output 1 1969 Trq Ref [B2] Figure 43 - Torque Overview Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Trq Overview A 1 2 B VReg PI Out Accel FF 3 Trq Ref 1 Trq Ref 2 Trq Trim 4 Drive Voltage and Current Ratings DC Bus Voltage Brake/Bus Config 5 C D E F G H I Torque Overview (Trq Overview) VReg Output Trim VelFb + - Load Observer Torque Reference Scale and Trim Select Trq Ref CAM Torque Step Position / Velocity / Torque Mode Select + ++ + Friction Comp Trq Filters Trq Ref Filtered Torque Limit Te Iq Calc Current Limit Rate Limit Torque Current Ref Regen Power Limit Bus + Voltage + Regulator Pos Torque Limit Pwr Te Calc Torque Limit Select Neg Torque Limit Power, Torque, and Current Limit Reference Generation Current Limit Processing and Selection Chapter 3 PowerFlex 755T Control Block Diagrams 6 83 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 44 - Torque Reference Selection 84 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Trq Ref Sel A B C D E F G H I * Note: Analog Hi, Lo 1 scaling only used when Analog Input is selected Torque Reference Selection (Trq Ref Sel) Rockwell Automation Publication 750-PM101A-EN-P - February 2021 2 3 Trq Ref A Stpt 2001 4 Trq Ref A Sel 2000 0.0 ( Disabled ) ( Setpoint ) From DIO Option Card From DIO Option Card Trq Ref A AnlgHi Trq Ref A AnlgLo Default ( Analog In 1 ) ( Analog In 2 ) 2002 * 2003 Parameter Selection Default 0 1 Trq Ref B Sel 2007 0.0 ( Disabled ) Trq Ref B Stpt 2008 ( Setpoint ) From DIO Option Card ( Analog In 1 ) From DIO Option Card ( Analog In 2 ) Default Parameter Selection Trq Ref B AnlgHi 2009 * Trq Ref B AnlgLo 2010 Bit Source DI M TorqueStptA 0:167 Parameter Selection Trq Ref B Mult 2011 5 Trq Ref A Mult 2004 x PID Output Sel 9:14 PID Output Meter (PID Torque Trim) Proc 1 [H2 ] 3,4 9:13 Other 0 3 = Torque Excl 4 = Torque Trim Trq Commanded 2073 x Other + 3 0 Trq Ref [B4], Proc 1 [A4] Other 3 0 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Ld Obs Figure 45 - Load Observer Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 B C D E Motor NP RPM 403 Mtr NP Pwr Units 405 Motor NP Power 406 Motor Inertia 900 Load Ratio 901 Acc Trq Calc 44 Kj Trq Scale 50 LdObs Acc Ref In 2027 Trq Ref [B2] 2 LdObs Mode (2020): 0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only 4- Accel Fdbk Note:Load Observer is internally disabled in 3 TrqReg mode or VelMode with open loop feedback Cur IM, SPM [E3] Cur IPM [E3] Active Pos Torque Limit Active Neg Torque Limit LdObs Mode 2020 + TrqRefPosLimActv - 51 TrqRefNegLimActv 52 1 Trq Scale 1 Trq Scale X 0,3 4 1,2 0 0.5 4 LdObs VelFb In 2028 Fdbk [G3] 5 K j * aVRegK p 1961 ----------------- - Np RPM + Droop RPM at FLA 1.0 LdObs Vel Error 2031 + X - c LdObs Kp 2021 u LdObs Kp 2022 2023 c LdObs Ki 2024 u LdObs Ki F G H I Load Observer (Ld Obs) LdObs Acc Ref Out 2037 Limit 0 0,4 1,2,3 Trq Ref Out 2072 X Trq Ref [D2] Trq Ref [D3] LdObs Torque Est X 2036 Trq Ref [C3] LdObs Accel Est 2035 1,2,3,4 Fdbk [E3] LdObs Vel Est 2034 X X 6 Chapter 3 PowerFlex 755T Control Block Diagrams 85 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 46 - Friction Compensation 86 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Friction Comp A 1 B C D Friction Compensation Adjustments E F G H I Friction Compensation (Friction Comp) Torque 2 + 2056 + FrctnComp Rated 2054 + FrctnComp Stick 2055 + FrctnComp Slip 3 403 - -Motor NP RPM 2051 - FrctnComp Trig 2052 FrctnComp Hyst 403 + + Motor NP RPM Speed FrctnComp Hyst 2052 + FrctnComp Trig 2051 4 - FrctnComp Slip 2055 - FrctnComp Stick 2054 - FrctnComp Rated 2056 - 5 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Trq RefCAM Figure 47 - Torque Reference CAM Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F 1 TqCAM Mode 2372 0 - Off 1 - Single step 2 Continuous (not for TqCAM Type [2370] = 2 3 Persistent (not for TqCAM Type [2370] = 1 VCAM) TCAM) Torque Reference CAM TqCAM SlaveScale 2386 Y (slave) Other Ref Sources Parameter 2 Selection TqCAM SlvSclSel 2385 G H I Torque Reference CAM (Trq Ref CAM) 2524 TqCAM Trq Out Trq Ref [H3] TqCAM Type 2370 TqCAM Psn Stpt 2377 0 - PCAM Other Ref Sources Parameter 3 Selection Unwind TqCAM Psn Select 2376 Virtual Encoder time 1 - TCAM X (master) TqCAM Psn Ofst 2378 ' TqCAM PsnOfstEPS 2379 TqCAM Vel Stpt 2381 4 Other Ref 2 - VCAM Sources Parameter Selection TqCAM Vel Select 2380 0 Pnt Zero 1 Last Stop 2 Actl Input TqCAM Master Scl 2384 TqCAM Start Cfg 2375 3 Remainder Profile Definition 5 TqCAM StartSlope 2392 TqCAM End Slope 2393 Pt M00 2396 Pt S00 2428 Pt M01 2397 Pt S01 2429 Both Main and Aux CAM Pt M01 2462 Pt S01 2493 TqCAM Main Pt M15 Types 2411 2395 Pt S15 2443 TqCAM Aux 0 - - 14 x Pt M15 2476 Pt S15 2507 Types 2461 x 1 - 14 x Linear or Cubic Linear or Cubic 6 EndPnt 2394 End Pnt 2460 TqCAM Status 2373 Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 Reserved 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15 VCAM 16 DI TqCAM Start 0:886 TqCAM Control 2371 Not TCAM Start 0 DirectionOut 1 Aux Cam En 2 Cam Enable 3 Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10 Not TCAM Chapter 3 PowerFlex 755T Control Block Diagrams 87 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 48 - Torque Reference 88 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Trq Ref Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Ld Obs[2020] modes: 1 0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only 4- Accel Fdbk Motor NP RPM 403 Mtr NP Pwr Units 405 Motor NP Power 406 Motor Inertia 900 Load Ratio 901 2 VReg Vect [H3] VReg Output 1969 + + Accel FF Output Ld Obs [A2] LdObs Acc Ref In 2027 Acc Trq Calc Ld Obs [H2] LdObs Acc Ref Out 2037 + - 44 Kj 50 Trq Scale Trq Ref Out 2072 X Torque Reference (Trq Ref) ***INTERNAL CONDITION ONLY*** Zero Torque 0 0 Logic Ctrl State (Forced Spd) OR Min/Max Cntrl (Forced Spd) Speed Reg 1 0 Torque Reg 2 1 FrctnComp Mode 2050 Disabled 0 0 VRef Filtered 1925 1 VRef Vect [D3] Ext Ramped Ref 2 1978 Vel Fb Active 1042 3 FrctnComp Out 2057 Friction Comp 2051 FrctnComp Trig 2052 FrctnComp Hyst 2053 FrctnComp Time 2054 FrctnComp Stick 2055 FrctnComp Slip 2056 FrctnComp Rated VRef Vect [C4] 2070 3 c LdObs Kp 2021 u LdObs Kp 2022 c LdObs Ki 2023 u LdObs Ki 2024 LdObs VelFb In 2028 Fdbk [G3] 4 Load Disabled 0 Observer LdObs Mode 2020 0,3 LdObs Accel Est 2035 1,2,4 LdObs Vel Est 2,3 2034 2031 LdObs Vel Error Ld Obs [H3] LdObs Torque Est 2036 X Vel Feedback Fdbk [E3] SLAT Min 3 Min SLAT Max 4 Max Sum 5 + + 6 Psn PTP 7 Psn Direct 8 Psn Camming Trq Ref Selected 2076 VReg Vect [D5] + ++ + + TrqRefAtZero 150 0 1 0 Trq Ref Filt In 2150 Trq Filt [A2] Torque Step 2077 TqCAM Trq Out 2524 Trq Ref CAM [H2] Trq Ref CAM 9 Psn PLL Trq Ref Sel [H5] Trq Commanded 2073 Psn SpdlOrnt 10 Profiler 11 PsnVelTrq Mode A 30 5 ABCD PsnVelTrq Mode B 31 Select 00 PsnVelTrq Mode C 32 01 10 PsnVelTrq Mode D 33 11 DI SpTqPs Sel 1 0:161 DI SpTqPs Sel 0 0:160 6 Prof Ind 1 [H2], VReg Vect [D6], PRef 1 [D2, H1], VRef All [A1], VRef All [D2] SLAT Err Stpt 39 SLAT Dwell Time 40 Mtr Cfg Options (Zero TrqStop) (Trq ModeStop) 420 012 (Trq ModeJog) 34 PsnVelTrq Actv Select Logic Motor Side Sts 1 354 21 22 23 Torque Mode PositionMode Speed Mode Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Trq Filt Figure 49 - Torque Filters Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Torque Filters (Trq Filt) 1 Trq Ref Filt In Trq Ref [H3] 2150 Torque Lead Lag Filters 2 2152 Trq LLF BW 2153 Trq LLF Gain Torque Low Pass Filter Torque Notch Filter 1 Torque Notch Filter 2 Torque Notch Filter 3 Torque Notch Filter 4 Trq Ref Filtered 2080 Cur IM [B2] Cur IM SPM [B2], Cur IPM [B2] *2156 Trq LPF BW Act 3 AdptTune Config 2110 Key * Save in non-volatile memory *2160 Trq NF1 Freq Act *2162 Trq NF1 Width Act *2164 Trq NF1 Depth Act *2170 Trq NF2 Freq Act *2172 Trq NF2 Width Act *2174 Trq NF2 Depth Act *2180 Trq NF3 Freq Act *2182 Trq NF3 Width Act *2184 Trq NF3 Depth Act *2190 Trq NF4 Freq Act *2192 Trq NF4 Width Act *2194 Trq NF4 Depth Act Trq NF Threshold 2111 *2166 Trq NF1 Gain Act *2176 Trq NF2 Gain Act *2186 Trq NF3 Gain Act *2196 Trq NF4 Gain Act Trq NF Freq LLim 2112 Trq NF Freq HLim 2113 Trq NF WidthMin 2114 Trq NF WidthMax 2115 4 Trq LPF BW LLim 2116 TP 265 GnOptTimeLeft AdptTune NF Num AdptTuneMinScale GnStab TorqueLim 2118 2119 2134 Adaptive Tuning Note: User Trq NF and Selected LPF gains pass through as Active gains when Adaptive Tuning is disabled. GnOpt TorqueLim 2135 GnOpt Scale Inc 2136 System C/U Sel 905 GnOpt Error Type 2137 c Trq LPF BW 2154 Trq NF1 Freq 2159 Trq NF2 Freq 2169 Trq NF3 Freq 2179 Trq NF4 Freq 2189 5 GnOptPosErrThrsh 2139 u Trq LPF BW 2155 Trq NF1 Width 2161 Trq NF2 Width 2171 Trq NF3 Width 2181 Trq NF4 Width 2191 GnOptVelErrThrsh 2140 Trq NF1 Depth 2163 Trq NF2 Depth 2173 Trq NF3 Depth 2183 Trq NF4 Depth 2193 GnOptSclHiLim 2141 Trq NF1 Gain 2165 Trq NF2 Gain 2175 Trq NF3 Gain 2185 Trq NF4 Gain 2195 GnOpt Time 2142 2120 AdptTune Status *2121 AdptTune GnScale 2123 Trq NF Freq Est 2124 Trq NF Mag Est 2125 Trq NF Wdth Est 2129 AdptTuneStabFreq 2130 AdptTuneStabMag 2138 GnOpt Error Max 6 Chapter 3 PowerFlex 755T Control Block Diagrams 89 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 50 - Torque Control Current, for Induction Motor 90 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Cur IM SPM Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 Trq Ref Filtered 2 Trq Filt [H2] 2080 Torque Limit Neg 2084 VelFb Active Fdbk [G2] 1042 Regen Power Lim 229 {Regen PwrLmt} 3 Bus {BusVltgFVLmt} Regulator + + Motor Power Lim 230 {Mtrng PwrLmt} Torque Limit Pos 2083 4 Voltage Ref/ {Mtr Vltg Lkg} Limit Generation C Pwr Te Calc D E F G H I Torque Control - Current, for Induction Motor (Cur IM) Flux Vector At Limit Status 365 21 Trq Pos Lmt 22 Trq Neg Lmt 23 Mtrng PwrLmt 24 Regen PwrLmt 25 Cur Lmt FV 26 Therm RegLmt 27 BusVltgFVLmt 28 Mtr Vltg Lkg At Limit Status 365 17 TrqCurPosLmt TrqCurNegLmt 2087 TrqRefNegLimActv 52 Active Neg Torque Limit Trq Ref Limited Limit Fdbk [C6] Cur IPM [E2] TrqRefPosLimActv 51 Active Pos Torque Limit -1 Max Ld Obs [C2] Te Iq Calc Limit Rate Lim Neg Pos Limit Limit 227 Current Rate Lim 420 16 Mtr Cfg Options (IqDelay) 0 -2 1 Z IqsRefLmtd 101 Torque Current Ref -1 Min Flux Pk Torque Iq Current Limit Flux Cur Fb 9 Is,Id Iq Calc Min Active Iq Current Limit Iq,Id Is Calc Flux Vector (3,6) 5 Current Lmt Sel 221 Current Limit 1 222 Power Unit Thermal Mgr Current Limit Current Limit 2 223 Parameter Thermal Protection Selection {Therm RegLmt} {Cur Lmt FV} 6 ActvCurLim 255 Scale RMS VF or SV (0-2,4,5,7,8) Port 0 Pri MtrCtrl Mode 65 224 Active Cur Lim Invert IT [D2] Chapter 3 PowerFlex 755T Control Block Diagrams Figure 51 - Torque Control Current, for Permanent Magnet Motor Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Cur IPM A 1 2 3 4 B C Trq Filt [H2] Trq Ref Filtered 2080 Torque Limit Neg 2084 VelFb Active Fdbk [G2] 1042 Regen Power Lim 229 {Regen PwrLmt} Bus {BusVltgFVLmt} Regulator + + Motor Power Lim 230 {Mtrng PwrLmt} Torque Limit Pos 2083 Pwr Te Calc D E F G H I Torque Control - Current, for Permanent Magnet Motor (Cur PM) Flux Vector At Limit Status 365 21 Trq Pos Lmt 22 Trq Neg Lmt 23 Mtrng PwrLmt 24 Regen PwrLmt 25 Cur Lmt FV 26 Therm RegLmt 27 BusVltgFVLmt 28 Mtr Vltg Lkg At Limit Status 365 17 TrqCurPosLmt 18 TrqCurNegLmt Mtr Cfg Options 420 16 (IqDelay) Trq Ref Limited 2087 Fdbk [C6] Limit Cur IPM [E2] TrqRefNegLimActv 52 Active Neg Torque Limit TrqRefPosLimActv 51 Active Pos Torque Limit Te Id Iq Calc -1 Max Voltage Limit Te Id Ld Obs [C2] Calc Limit Min Limit Rate Lim Neg Limit Is,Id Iq Calc Pos Limit 227 Current Rate Lim 0 -2 1 Z IqsRefLmtd 101 Torque Current Ref Id Current Ref {Mtr Vltg Lkg} Voltage Ref/ Limit Generation Pk Torque Iq Current Limit 5 Current Lmt Sel 221 ActvCurLim Current Limit 1 222 Power Unit Thermal Mgr Current Limit 255 Scale Current Limit 2 223 Parameter Thermal Protection RMS Selection {Therm RegLmt} {Cur Lmt FV} 6 224 Active Cur Lim Invert IT [D2] 91 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 52 - Process Control 1 92 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Proc 1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I From Anti-Sway [D2] 1 Process Control 1 (Proc 1) DI PID Invert PID Ref Sel 954 Ref NF1 Freq Act 9:23 9:25 956 Ref NF1 Depth Act 948 Ref NF2 Freq 949 Ref NF2 Width Option PID Ref PID Ref 957 Ref NF1 Gain Act 950 Ref NF2 Depth Port: Digital In AnlgHi 9:29 AnlgLo 9:30 943 Ref NF1 Width 951 Ref NF2 Gain PID Deadband Parameter Selection Option Port: Analog In Parameter Selection Analog Types 2 MOP [G3] MOP Reference Scale 9:9 Invert Error 9:1 1 PID Cfg (Ramp Ref) 00 x 0 1 Ref Ref NF1 NF2 +- 1 -1 Error Deadband 1 -1 E +- PID Error Meter 9:12 200% Limit 9:6 PID Deriv Time kd-S D Gain PID Prop Gain 9:4 kp P Gain PID Output Mult PID Status (PID In Limit) 9:3 3 9:15 +++ x Limit PID Output Limited Proc 2 [A2] 1823 PID Setpoint 9:28 Float Types Default 9:27 PID Ref Mult 9:26 PID Ref Meter 0 Ramp 9:3 0 PID Status (PID Enabled) Filter LPass 9:10 PID LPF BW 9:2 3 PID Control (PID InvError) Proc 1 [C5] Hold Request Hold 9:3 1 PID Status (PID Hold) PID Upper Limit 9:7 9:8 PID Lower Limit VRef Freq [I4] PID Fdbk Sel 9:35 PID Fdbk Meter 9:36 Output Frequency 1 Hz Per Unit PID Fdbk Mult 3 Option Port: 9:38 0 Analog In MOP [G3] MOP Reference Float Types PID Fdbk PID Fdbk AnlgHi AnlgLo x 1 1823 PID Fdbk Stpt 9:39 9:40 9:1 3 PID Cfg (Fdbk Sqrt) 9:37 Default Parameter Selection PID Cfg (Anti PID Output Sel Windup) Conv VRef Freq [I4] Output Frequency 1 Hz Per Unit 9:14 9:1 5 1 AntiWind Up PID Cfg Proc 1 [E5] (Preload Int) PID Status 9:1 3 (PID Enabled) -1 PID Output Sel Z 9:3 0 9:14 0 0 PID Preload 9:11 1 1 Conv Trq Ref Sel [H5] Trq Commanded 4 2073 Torque Cur Fb 8 Output Current 3 Analog Types Analog Loss Scale 1,2 3,4 PID FBLoss SpSel 9:42 0 355 0 10 Motor Side Sts 2 (PID FB Loss) Proc 2 [D3, D6] Option Port: Digital In DI PID Enable 9:20 Parameter Selection Motor Side Sts 1 (Stopping) 354 18 ki s + + I Gain 1 PID Control Drive InLimit 1 0 0,2,3,4 0.0 Accel Conditional 1 0 0.0 Output Power 4 9:14 PID Output Sel 9:43 PID FBLoss TqSel PID Enable 1 Option Port: 5 Digital In DI PID Hold 9:21 Parameter Selection PID Hold 0 1 Hold Request Proc 1 [F2] 0 PID Control (PID Enable) 0 9:2 354 16 9:20 Motor Side Sts 1 DI PID Enable (Running) PID Output Sel 9:14 2 1 PID Stop Mode 0 9:3 0 PID Status (PID Enabled) Proc 1 [H3] 9:2 1 PID Control (PID Hold) 4 9:1 18 354 9:13 PID Output Meter 9:5 PID Int Time (PID Reset) 2 9:2 1 0 9:3 2 PID Status (PID Reset) 9:22 DI PID Reset Option Port: Digital In PID Reset Parameter Selection 6 365 1 2 17-31 Drive InLimit PID Cfg (Stop Mode) Motor Side Sts 1 (Stopping) Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Proc 2 Figure 53 - Process Control 2 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E PID Output Sel 1 9:14 PID FBLoss SpSel 9:42 PID Output Limited Proc 1 [H2] Not Used 0 MOP Reference MOP [G3] 1823 VRef A Sel 1800 Parameter Selection Float Types Default VRef Ramped Speed 2 Excl 1 To VRef 1923 Speed [6B2] VRef Vect [G1], VRef Freq [D2] >0 -1 Neg Limit PID Cfg (Percent Ref) 1906 Vref Limited 1 VRef All [G4] 6 9:1 ++ 1 Trim 2 1 X 1 0 Pos Limit 0 0 0 A B |A| > |B| 0 1 1 0 354 18 Motor Side Sts 1 Stopping 3 2 9:1 355 10 Motor Side Sts 2 PID Cfg (Zero Clamp) Proc 1 [C4] PID FBLoss TqSel 9:43 F G H I Process Control 2 (Proc 2) PID Output Meter 9:13 VRef Vect [B5] VRef Freq [A5] Parameter Selection MOP Reference 4 MOP [G3] 1823 Float Types Torque Excl 3 Torq Ref A Torq Ref B Trq Ref A Stpt 676 Default + >0 -1 Neg Limit 1 PID Output Sel 9:14 3 ++ 4 1 Torque 5 Trim 4 1 0 Pos Limit 0 0 PID Output Meter 9:13 Trq Ref Sel [G4] 2 9:1 PID Cfg (Zero Clamp) 355 10 Motor Side Sts 2 (PID FB Loss) 6 Proc 1 [C4] Chapter 3 PowerFlex 755T Control Block Diagrams 93 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 54 - Reference Notch Filter 1 for Crane Application 94 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard AntiSway A B C 1 Crane Length 1 966 2 NF1 freq = 1 g 2 Crane Length1 g = earth acceleration gravity (i.e. 9.81 m/s^2) Ref NF1 Freq 0 0 942 0 0 0 3 Ref NF1 Depth 944 1 0 0 Ref NF1 Gain 945 4 D E F G H I Reference Notch Filter 1 Tuning for Crane Application (Anti-Sway) 954 Ref NF1 Freq Act 956 Ref NF1 Depth Act 957 Ref NF1 Gain Act Freq Overview [G2] VRef Vect [F4] PRef 2 [E2] Proc1 [C1] 5 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Oil Well 1 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 55 - Pump Jack and Progressive Cavity Pump Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 Torq Thresh Low 9:154 OilWell Pump Cfg 9:100 Motor Sheave 9:110 Gearbox Ratio 9:116 2 Gearbox Sheave 9:117 PCP Pump Sheave 9:160 Torq Thresh High 9:151 TorqAlarm Config (TorqThreshLo) 9:149 1 3 TorqAlarm Config (TorqThreshHi) 9:149 0 Min Rod Speed 9:154 Oil Well [C2] Total Gear Ratio 9:109 Max Rod Speed 9:156 4 Gear Ratio X X OilWell Pump Cfg 9:100 Total Gear Ratio Oil Well [C2] 9:109 5 Max Rod Torque 9:157 Gearbox Limit 9:114 Gearbox Rating 9:115 Torque Limit Pos 2083 6 Torque Limit Pos 2083 Troq Lim Online Max Online Min C D E F G H I Pump Jack and Progressive Cavity Pump (Oil Well 1) TrqRefThreshLo X 9:109 Total Gear Ratio X TrqRefThreshHi OilWell Pump Cfg 9:100 1 PumpJack 0 =0 0 2 PrgrsvCavity TorqThreshLo 0 TorqThreshHi -1 Vel Limit Pos 1898 Vel Limit Pos 1898 Limit Online Max Online Min -1 Limit Online Max Vel LimitNeg 1899 Online Min Vel Limit Neg 1899 Max Torque Limits Limit TorqAlmTimeoutLo 9:161 TorqThreshLo Oil well 1 [D3] Cur IM [E2] Motor Side Sts 1 (AtSpeed) Trq Ref Limited 2087 |u| 354 8 Oil Well Low Torq Timeout Condition Motor Side Sts 1 (AtSpeed) TorqAlarm Dwell Cur IM [E2] TorqThreshHi Oil well 1 [D3] 354 8 9:150 Trq Ref Limited 2087 |u| Oil Well High Torq Condition 1900 Vel Low Limit Pos 1901 Vel Low Limit Neg 1898 Vel Limit Pos 1899 Vel Limit Neg Preset Speed 1 1814 TorqAlmTimeoutHi 9:152 TorqAlarmTOActHi 9:153 6 TorqAlarm Action Preset Spd1 Oil Well [C2] 9:148 9:109 1 Total Gear Ratio Motor Side Sts 1 (AtSpeed) 354 8 2083 Torq Lim Pos VRefAll [I4] VRef Commanded 1914 Oil Well 1 [C2] Fdbk [G2] Total Gear Ratio 1 9:109 u Vel Fb Active 1042 Oil Well 1 [C2] Cur IM [E2] 9:109 2087 Total Gear Ratio Trq Ref Limited 9:104 8 OW TrqLvl Lo 9:104 7 OW TrqLvl Hi Oil Well High Torq Timeout Condition OW TrqLvl TO 9:104 9 PumpJackSpdRef VRef All [G2] PumpJackSpdRefEnbl VRef All [G2] X 9:145 Rod Speed Cmd X 9:143 Rod Speed X 9:144 Rod Torque 95 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 56 - Pump Off 96 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Oil Well 2 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I OilWell Pump Cfg 9:100 1 Pump Jack Selected Pump Off (Oil Well 2) 1 TP65 POf Trq Pk TP60 POf Trq Filt TP66 POf MinTrq TP69 POfDrpTrqInt Trq Ref Filt In 2150 LPF 9:124 Pct Cycle Trq Vel Fb Active 1042 2 Total Gear Ratio 9:109 Pos Offset 9:102 1 TP70 POf Cyc Psn TP58 POf Psn Position Calculation Pump Off Setup 9:102 Pos Filter 0 Pos Min Trq 2 + - 9:129 Stroke Pos Count Torque Calculation POf Psn [B2] Set Top of Stroke TP52 POfTopStkPsn Pump Off Config 9:101 Automatic 0 SetTopofStrk Cmd 9:118 9:119 SetTopofStrk Sts Position 1 Disable 0 3 Enable 1 0 Ready 1 Active Cycle 2 Pump Cy Str Cmd 9:111 Disable 0 Enable 1 9:125 Pct Lift Trq 9:126 Pct Drop Trq Pump Off Position Setup TP53 POf Psn 1 TP54 POf Psn 2 TP55 POf Psn 3 TP56 POf Psn 4 TP57 POf Psn 5 TP59 POf PsnState TP71 POf Test1 9:112 Pump Cy Str Sts 0 Ready 1 Active 2 Complete 3 Error Stroke Pos Count [D2] POfTopStkPsn [D2] Pump Off control state 0 - InitBaseLine 1 - Running 2 - ReturnToRun 3 - PumpOffBaseOne 4 - PumpOffWaitOne 5 - PumpOffBaseTwo 6 - PumpOffWaitTwo 7 - PumpOffStop 9:130 Stroke Per Min 9:132 Pump Off Count 9:133 PumpOff SleepCnt 9:134 Day Stroke Count 9:104 OW Pump Status 0 Pump Off Enbl 1 Pump Slowed 2 Pump Stopped 3 Cycle Used 4 TopOf Stroke 5 PumpOff Alrm 6 Pump Stable TP50 POfVelRefSts VRef All [H2] DI PumpOff Disbl 9:138 TP51 POf Vel Ref TP61 4 DI Pump Baseline 9:139 POf State TP62 POf Avg Trq Pump Off Time 9:108 TP63 POf Cyc Cnts Pump Off Level 9:106 X 1/100 Pump Off Speed 9:107 X Torque Setpoint 9:120 Pump Off Action 9:105 TP64 POf Alm Cnts TP67 POf Lo Lvl TP68 POf Hi Lvl Change Speed 0 5 Always Stop 1 Pump Off Control 9:103 Stop After 1 2 9:102 Pump Off Setup Stop After 2 3 Disable 0 3 Cycle PO Pos Baseline Set 1 4 Dis Baseline Fixed Setpt 2 5 RstPmpOffCnt 6 RstPmpSlpCnt 6 Position rolls over at 10000 counts representing one torque cycle Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard MOP Figure 57 - MOP Control Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 2 3 4 5 6 B C D E F DI M MOP Inc 0:151 MOP Rate 1825 Parameter Indirect MOP Inc Option Port: Digital In Zero Speed (0) MOP Init Stpt 1829 Preset Speed 1 1814 Preset Speed 2 1815 Preset Speed 3 1816 Preset Speed 4 1817 Preset Speed 5 1818 Preset Speed 6 Preset Speed 7 1819 1820 MOP Limit High 1826 MOP Limit Low 1827 Vel Low Lim Pos 1900 Vel Low Lim Neg 1901 MOP Init Select 1828 Default Parameter Selection Calc 0 Step 0 Option Port: Digital In Parameter Indirect MOP Inc DI M MOP Dec 0:152 + 0 - Reset / Save 00 1824 1 MOP Ref Save (At Stop) 00 1824 0 MOP Ref Save (At Pwr Down) 1 351 4 M Start Inhibits (Stop) 1 351 3 M Start Inhibits (Precharge) G H I MOP Control (MOP) MOP Limit High 1826 Limit MOP Reference 1823 VRef Sel [A3] 1827 MOP Limit Low Chapter 3 PowerFlex 755T Control Block Diagrams 97 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 58 - 22-Series Inputs & Outputs Digital 98 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard 22Series IO Digital Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 In5 2 In4 In3 3 In2 In1 4 In0 Com B Inputs Dig In Fltr Mask 25 Dig In Fltr Mask 24 Dig In Fltr Mask 23 Dig In Fltr Mask 22 Dig In Fltr Mask 21 Dig In Fltr Mask 20 Filter Filter Filter Filter Filter Filter C D E F G H I 22-Series Inputs & Outputs Digital (22-Series IO Digital) Dig In Sts 1 543210 Dig In Fltr 3 Dig In Fltr 3 Relay Out0 Source Parameter Selection 10 RO0 Sel Dig In Fltr 3 Dig In Fltr 3 Relay Out1 Transistor Out0 Source Parameter Selection 20 RO1/TO0 Sel Outputs Dig Out Invert 60 RO0 Off Time 15 Dig Out Sts 50 0 Timer Inv 1 14 RO0 On Time RO1/TO0 Off Time Dig Out Invert 61 25 Dig Out Sts 51 0 Timer Inv 1 OR 24 RO1/TO0 On Time NC Common NO NC Common NO Dig In Fltr 3 Dig In Fltr 3 *-1R2T (1-Relay / 2-Transistor) I/O Modules Only Dig Out Invert 62 TO1 Off Time 35 Dig Out Sts 52 Transistor Out1 Source 0 Timer NO Parameter Selection Inv 1 30 TO1 Sel 34 TO1 On Time Output Compare RO0 Level Sel RO1/TO0 Level Sel *-1R2T (1-Relay / 2-Transistor) I/O Modules Only 5 11 RO0 Level CmpSts 21 RO1/TO0 Level CmpSts TO1 Level Sel 31 TO1 Level CmpSts Option Module Parameters Reference Symbol Legend RO0 Level Source Parameter Selection A AB A<B 13 1 0 RO1/TO0 Level Source Parameter Selection A AB A<B 23 1 0 TO1 Level Source Parameter Selection A AB A<B 33 1 0 RO0 Level 12 B RO1/TO0 Level 22 B TO1 Level 32 B 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard 22Series IO Digital Chapter 3 PowerFlex 755T Control Block Diagrams Figure 59 - 22-Series Inputs & Outputs Analog Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B C D E F G H I Inputs 22-Series Inputs & Outputs 1 Voltage Anlg In0 LssActn 53 Anlg In Loss Sts 49 1 Anlg In0 Value 50 V/mA Anlg In Type + 45 0 Loss Detection Loss Pre Scaled Value Anlg In0 Hi 51 Scaled Value V/mA ADC + 2 - Current Ignore 0 Alarm 1 Flt Continue 2 Square Root 46 0 Anlg In Sqrt (kn * s) + wn s + wn Lead Lag In-Lo Hi-Lo Scale V/mA 52 Anlg In0 Lo FltCoastStop 3 Anlg In0 Filt Gn 55 Flt RampStop 4 Anlg In0 Filt BW 56 Flt CL Stop 5 Analog (22-Series IO Analog) Option Module Parameters Reference Symbol Legend Hold 6 Input 3 7 Set Input Lo Set Input Hi 8 Anlg In1 LssActn 63 Anlg In Loss Sts 49 2 Anlg In1 Value 60 Voltage V/mA 4 Anlg In Type Loss Detection + 45 1 Loss Pre Scaled Value Anlg In1 Hi 61 Scaled Value V/mA ADC + - Current Ignore 0 Alarm 1 Flt Continue 2 Square Root 46 1 Anlg In Sqrt (kn * s) + wn s + wn Lead Lag In-Lo Hi-Lo Scale V/mA 62 Anlg In1 Lo FltCoastStop 3 Anlg In1 Filt Gn 65 5 Flt RampStop 4 Anlg In1 Filt BW 66 Flt CL Stop 5 Hold 6 Input 7 Set Input Lo 6 Set Input Hi 8 Outputs Anlg Out0 Val 82 Anlg Out0 Data 77 Anlg Out0 DataHi V/mA 78 Anlg Out0 Hi 80 Analog Out Type 70 0 V/mA Anlg Out0 Stpt 76 Other Ref Sources Parameter Selection Abs 71 0 In-Lo Hi-Lo Scale V/mA DAC Anlg Out0 Sel 75 Anlg Out Abs 81 79 Anlg Out0 Lo Anlg Out0 DataLo Voltage + + Current Anlg Out1 Val 92 Anlg Out1 Data 87 Anlg Out1 DataHi V/mA 88 Anlg Out1 Hi 90 Analog Out Type 70 1 V/mA Anlg Out1 Stpt 86 Other Ref Sources Parameter Selection Abs 71 1 In-Lo Hi-Lo Scale V/mA DAC Anlg Out1 Sel 85 Anlg Out Abs 91 89 Anlg Out1 Lo Anlg Out1 DataLo Voltage + + Current 99 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 60 - 11-Series Inputs & Outputs Digital 100 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard 11-Series IO Digital Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 2 In2 In1 3 In0 Com 4 B C Inputs Dig In Sts 1 Dig In Fltr Mask 22 Dig In Fltr Mask 21 Dig In Fltr Mask 20 Filter Filter Filter Dig In Fltr 3 Dig In Fltr 3 Dig In Fltr 3 D E F G H I 11-Series Inputs & Outputs Digital (11-Series IO Digital) Outputs RO0 Off Time 15 Dig Out Sts Dig Out Invert 50 NC 60 210 Relay Out0 Source Parameter Selection 10 0 Inv 1 Timer 14 Common NO RO0 Sel RO0 On Time Relay Out1 Transistor Out0 Source Parameter Selection 20 RO1/TO0 Sel RO1/TO0 Off Time Dig Out Invert 61 25 Dig Out Sts 51 0 Timer Inv 1 OR 24 RO1/TO0 On Time NC Common NO *-1R2T (1-Relay / 2-Transistor) I/O Modules Only Dig Out Invert 62 TO1 Off Time 35 Dig Out Sts 52 Transistor Out1 Source 0 Timer NO Parameter Selection Inv 1 30 TO1 Sel 34 TO1 On Time Output Compare RO0 Level Sel RO1/TO0 Level Sel *-1R2T (1-Relay / 2-Transistor) I/O Modules Only 5 11 RO0 Level CmpSts 21 RO1/TO0 Level CmpSts TO1 Level Sel 31 TO1 Level CmpSts Option Module Parameters Reference Symbol Legend RO0 Level Source Parameter Selection A AB A<B 13 1 0 RO1/TO0 Level Source Parameter Selection A AB A<B 23 1 0 TO1 Level Source Parameter Selection A AB A<B 33 1 0 RO0 Level 12 B RO1/TO0 Level 22 B TO1 Level 32 B 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard 22-Series IO Analog A B C D E F G H I 11-Series Inputs & Outputs Analog (11-Series IO Analog) 1 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 61 - 11-Series Inputs & Outputs Analog Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Input 2 Anlg In Loss Sts Anlg In0 Value Anlg In0 LssActn 53 49 1 50 V/mA Voltage + Anlg In Type 45 0 Loss Detection Loss Pre Scaled Value Anlg In0 Hi 51 Scaled Value V/mA ADC + 3 - Current Ignore 0 Alarm 1 Flt Continue 2 Square Root 46 0 Anlg In Sqrt (kn * s) + wn s + wn Lead Lag In-Lo Hi-Lo Scale V/mA 52 Anlg In0 Lo FltCoastStop 3 Anlg In0 Filt Gn 55 Flt RampStop 4 Anlg In0 Filt BW 56 Flt CL Stop 5 Hold 6 Input 4 7 Set Input Lo Set Input Hi 8 Option Module Parameters Reference Symbol Legend Output Anlg Out0 Val 82 Anlg Out0 Data 77 Anlg Out0 DataHi V/mA 78 Anlg Out0 Hi 80 Analog Out Type 70 0 V/mA Anlg Out0 Stpt 76 Other Ref Sources Parameter Selection Abs 71 0 In-Lo Hi-Lo Scale V/mA DAC Anlg Out0 Sel 75 Anlg Out Abs 81 79 Anlg Out0 Lo Anlg Out0 DataLo Voltage + + Current 5 6 101 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 62 - 11-Series Inputs & Outputs ATEX 102 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard 22-Series IO Analog A 1 2 3 4 B C D E F G H I 11-Series Inputs & Outputs ATEX (11-Series IO ATEX) Motor PTC/Thermostat Input + PTC/Thermostat Buffer & Input Comparator - PTC Monitor Motor PTC 41 0 Thml Snsor OK 1 Short Cirkt 2 Over Temp 3 Voltage Loss 13 Thermostat 14 PTC Selected Fault AND Logic Reset AND Logic Transistor Latch ATEX Relay Output Common NO 5 6 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Logic Figure 63 - Control Logic Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 0 Digital Inputs 15 0 DPI Port 1 2 (Drv Mounted HIM) 15 0 DPI Port 2 15 0 DPI Port 3 3 15 0 DPI Port 4 15 0 DPI Port 5 4 15 0 DPI Port 6 15 0 Embedded Ethernet 5 15 6 C D E F G H I Control Logic (Logic) Note: The following parameters are typically referenced when configuring or monitoring Control Logic; P10:351 [M Start Inhibits] 0:230 Write Mask Cfg Logic Parser Mask Evaluation Logic Owner Logic Logic Evaluation 0:200 MS Logic Rslt VRef Sel [G2], 0 VRef All [E3], VRef Vect [E2, E3] 31 Masks Masks Act Status 0:41 Logic Mask 0:42 Auto Mask 0:43 Manual Cmd Mask 0:44 Manual Ref Mask 0:231 Write Mask Act 0:233 Port Mask Act Owners 0:260 0:261 0:262 0:263 0:264 0:265 0:266 Stop Owner Start Owner Jog Owner Dir Owner Clear Flt Owner Manual Owner Ref Select Owner Bit 00 Stop 01 Start 02 Jog1 03 Clear Faults 04 Forward 05 Reverse 06 Manual 07 Reserved 08 Accel Time 1 09 Accel Time 2 10 Decel Time 1 11 Decel Time 2 12 SpdRef Sel 0 13 SpdRef Sel 1 14 SpdRef Sel 2 15 Reserved Bit 16 Coast Stop 17 Climit Stop 18 Run 19 Jog 2 20 Reserved 21 Reserved 22 Reserved 23 Reserved 24 Reserved 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 Reserved 30 Reserved 31 Reserved Chapter 3 PowerFlex 755T Control Block Diagrams 103 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 64 - Inverter Overload IT 104 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Invert Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A 1 2 3 B C D E Power Frame Reading Data NTC Voltage Class 305 Duty Cycle / Rating 306 Drive OL Mode 220 PWM Frequency 425 DC Bus Volts 0:3 Output Current 3 Current Limit 1 222 Current Limit 2 223 Other Ref Sources Parameter Selection Inverter Overload (IT) Heatsink and Junction Degree Calculator Current Lmt Sel 221 Bus Reg Lvl Cfg 118 4 DC Bus Memory 13 Bus Memory 0 Bus Reg Level 119 BusReg Level 1 DC Bus Command 13:50 LineSideRef 2 5 Converter Control 6 Bus Reg Mode A 116 Bus Reg Mode B 117 Bus Voltage Reference Bus Reg Ki 121 Bus Reg Kp 120 Bus Limit Kp 122 * Bus Limit Kd 123 Bus Limit ACR Ki 125 Bus Limit ACR Kp 124 * Note: Parameters are not functional when any of the FV motor control modes are selected Bus Regulator dc bus F G H I Inverter Overload IT (Invert IT) 357 Drive OL Count 359 IGBT Temp Pct 360 IGBT Temp 362 Heatsnk Temp Pct 363 Heatsnk Temp 224 Active Cur Lim Cur IM [H5] 426 PWM Freq Act Alarm Status B 960 0 IGBT OT 1 Heatsink OT 4 Drive OL 5 CurLmt Reduc 6 PWMFrq Reduc Fault Status B 953 2 Drive OL 3 Heatsink OT 4 Transistor OT 5 SinkUnderTmp 6 Excess Load Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard Motor I2T A B C D E F G H I Motor Overload (Motor I2T) 1 Figure 65 - Motor Overload Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 3 PowerFlex 755T Control Block Diagrams 2 Mtr Over Load (I2T) Mtr OL Action 200 Mtr OL at Pwr Up 201 Motor Current 206 MtrOL Rst Time Mtr OL Alm Level 202 207 Mtr OL Counts Mtr OL Rst Level 205 3 Mtr Prtn Class 209 150% right of curve 208 Mtr OL Trip Time Mtr HotStrtCoeff 210 Mtr Cooling Time 211 102% Motor 58 (Hot) 176 (Cold) time (sec) Motor Side Sts 1 208 30 Motor OL Current (for default settings) Condition Sts A Mtr OL Factor 203 X Motor NP Amps 401 1.0 - 2.0 (1.025 Typ) 460 2 Motor OL Alarm Status A 50% 4 959 2 Motor OL Mtr OL Hertz 204 Motor Speed (Hz) Fault Status A 952 2 Motor OL 5 6 105 Chapter 3 PowerFlex 755T Control Block Diagrams Figure 66 - High Speed Trend Wizard 106 Overview Metering PLL PwrLoss LscData CurRefGen VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating Vector Overview PRef Move Freq Overview PRef2 CBI Metering PReg Fdbk Psn PLL Homing Psn CAM PRef1 Prof Ind 1 Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2 MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog Logic Invert Motor I2T High Speed Wizard High Speed Wizard Rockwell Automation Publication 750-PM101A-EN-P - February 2021 A B 1 Trend Mode Pre-Trigger 2 Sample Interval C D E F G H I High Speed Trend Wizard Start Trend Stop Trend Trend Sample Configuration 8 buffers of 4096 samples; minimum interval of 1 ms or 16 buffers of 1024 samples; minimum interval of 1 ms or 4 buffers of 1024 samples; minimum interval of 125 us (select one) 0 to maximum (4096 or 1024) samples Mimimum (1 ms or 125 us) Download Trend Configuration Not Configured Download Ready or Complete Trend Status Start Stop Running Gather pre-trigger samples Buffers Full Stop Finishing Gather posttrigger samples Trigger Condition Met Compare Two Parameters Trend Trigger Setup OR Compare Parameter to a Trigger Value 3 Test bit in a Parameter Compare Two bits in Two Parameters Trigger Condition Met Buffers Full Param A Param B OR Compare Options: >, <, =, , , or Trigger Condition OR Met Param A Bit `nn' Test Options: bit is True or False Trigger Param A bit OR Condition Met Param B bit Test Options: bit is True or False Compare Options: AND, OR, XOR Trigger Condition Met Trigger Value 4 Specify Trend Buffer Data Sources Parameter or Bit Trend Data Source Trend Buffer 1 (circular, 1024 or 4096 samples) Trend Buffers Trend Buffer 2 (circular, 1024 or 4096 samples) Trend Buffer 16 (circular, 1024 ... samples) 8 buffers of 4096 samples; minimum interval of 1 ms or 16 buffers of 1024 samples; minimum interval of 1 ms or 4 buffers of 1024 samples; minimum interval of 125 us 5 Trend Upload/Download Computer Download Trend OR Configuration to Drive Load Trend Configuration from .xml file OR Configuration Save/Load Computer Upload Trend Save Trend Results. Save buffers OR Configuration to .xml file to .csv file 6 Trend Buffer Contents 4 Chapter Troubleshooting This chapter provides information to guide through troubleshooting PowerFlex TotalFORCE® Control common symptoms and corrective actions. Topic Page Fault and Alarm Code Descriptions 107 Faults 108 Alarms 108 Events 108 Configurable Conditions 108 Viewing Faults and Alarms 108 HIM Indication (Fault Display Screen) 109 Manually Clearing Faults 109 Status Indicators 110 Setting Factory Defaults 118 Fan Usage by Product 120 Hardware Service Manual 121 Fault and Alarm Display Codes 121 Common Symptoms and Corrective Actions 121 Testpoint Codes and Functions 123 Reset as Shipped 130 Configurable LCL Filter Capacitor Failure Response 131 Configurable LCL Filter Capacitor Over Resonance Response 131 PowerFlex 755T Lifting/Torque Proving 132 Technical Support Options 133 Fault and Alarm Code Descriptions PowerFlex 750T fault and alarm codes are listed in the Microsoft® Excel® spreadsheet that is attached to this PDF file. CLICK HERE to open the Attachments pane (to the left) and access the fault and alarm spreadsheet. This link does not work if you view this PDF file in a browser. Make sure you save the PDF file and open it from your device. Then use the link to open the Attachments pane. You can also find the fault and alarm spreadsheet in Knowledgebase Article PowerFlex 755T Drives Parameter Descriptions and Fault and Alarm Codes (FRN 10). You do not need a support contract to access the article. To view the fault and alarm codes: 1. Right-click the desired Excel file and choose Save. 2. Open the Excel file. For full functionality (filter and search), use the Microsoft Excel application. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 107 Chapter 4 Troubleshooting Faults A fault is a condition that stops the drive. There are four types of faults. Type Major Fault Minor Fault Resettable Non-resettable Description If this type of fault occurs while the line side converter or motor side inverter is modulating, it stops modulating. If it occurs while the line side converter or motor side inverter is not modulating, it prevents starting. It prevents starting until the fault is cleared. If this type of fault occurs while the line side converter or motor side inverter is modulating, it allows modulation to continue. If it occurs while the line side converter or motor side inverter is not modulating, it prevents starting. It prevents starting until the fault is cleared. This type of fault can be cleared. Resettable faults are identified by `Resettable Fault'. This type of fault normally requires drive or motor repair. You must correct the cause of the fault before the fault can be cleared. The fault will be reset on powerup after repair. Non-resettable faults are identified by `Non-Reset Fault'. Alarms An alarm is a condition that, if left unaddressed, can stop the drive if the drive running or does not allow you to start the drive. There are two types of alarms. Type Alarm 1 Alarm 2 Description Alarms of type 1 indicate that a condition exists. Type 1 alarms are user configurable. Alarms of type 2 indicate that a configuration error exists and the drive cannot be started. Type 2 alarms are not configurable. Events Events occur under normal operation of the product. When an event occurs, the drive records an entry consisting of a numeric event code and a time stamp in an event queue. Events can help to troubleshoot problems. Configurable Conditions You can enable user-configurable conditions as either an alarm or fault. Type Configurable Description Event action is enabled/disabled by a parameter. Options can include: `Ignore' (0) No action is taken. `Alarm' (1) Type 1 alarm indicated. `Flt Minor' (2) Minor fault indicated. If running, drive continues to run. `FltCoastStop' (3) Major fault indicated. Coast to Stop. `Flt RampStop' (4) Major fault indicated. Ramp to Stop. `Flt CL Stop' (5) Major fault indicated. Current Limit Stop. Viewing Faults and Alarms The fault and alarm queues, which are accessible through software or the HIM, provide you with a history of faults, alarms, and events. You can also access diagnostic file parameters for additional information. · Port 0: Diagnostics File, Status Group · Port 0: Diagnostics File, Fault/Alarm Info Group · Port 10: Diagnostics File, Status Group · Port 10: Diagnostics File, Fault/Alarm Info Group · Port 13: Diagnostics File, Status Group · Port 13: Diagnostics File, Fault/Alarm Info Group 108 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting HIM Indication (Fault Display Screen) The popup fault display screen automatically appears when the drive detects a fault condition for the host drive or any connected peripheral. By default, the status bar flashes to alert the operator. To change the display flash mode, see the PowerFlex 20-HIM-A6 and 20-HIM-C6S HIM User Manual, publication 20HIM-UM001, for instructions. The fault display screen displays the following information. · Fault Code number (See Fault and Alarm Display Codes on page 121.) · Fault description · Elapsed time (in hh:mm:ss format) from fault detection Figure 67 - Pop-Up/Flashing Fault Display Screen Stopped 0.00 Hz AUTO F FAULTED Fault Code 81 Port 1 DPI Loss Elapsed Time 01:26:37 ESC CLR Manually Clearing Faults Soft Key Functions Label Name ESC Escape CLR Clear Single Function Key Key Name Stop Description Reverts back to the previous screen without clearing the fault. Removes the pop-up Fault Display screen from the display and clears the fault. Description Removes the pop-up Fault Display screen from the display and clears the fault. Step Key(s) 1. Press the `Clear' soft key to acknowledge the fault. The fault information is removed so that you can use the HIM. CLR 2. Address the condition that caused the fault. The cause must be corrected before the fault can be cleared. 3. After corrective action has been taken, clear the fault by one of these methods: Press Stop (if running the drive will stop) Cycle drive power Select the `Clear' soft key on the HIM Diagnostic folder Faults menu. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 109 Chapter 4 Troubleshooting Status Indicators Status indicators report the condition of the product. HIM Cradle Status Indicators The status indicators on the HIM cradle do not indicate the status of an installed communication adapter option. If an optional communication adapter is installed, refer to the adapter user manual for the location a description of any status indicators. Table 1 - PowerFlex 755T Status Indicator Descriptions Name Color Green Yellow STS (Status) Red Red / Yellow Yellow / Green Green / Red Unlit Unlit Red ENET Red / Green Green Unlit LNK1 (Link 1) Green LNK2 (Link 2) Yellow State Flashing Steady Flashing Steady Flashing Steady Flashing Alternately Flashing Alternately Flashing Alternately Off Off Flashing Steady Flashing Alternately Flashing Steady Off Flashing Steady Flashing Steady Description The product is ready, but not running, with no converter or inverter faults or alarms present. The product is running (that is, the converter and inverter are active) with no faults or alarms present. A start inhibit condition is present in the converter or inverter. The product cannot be started until the start inhibit condition is cleared. A type 1 (user configurable) alarm condition is present in the converter or inverter while the drive is not running. The product can be started without clearing the alarm condition. See parameters 10:465 [Alarm Status A] and 10:466 [Alarm Status B]. A major fault (for example, an EEPROM CRC fault) is present causing converter and inverter modulation to stop. The product cannot be restarted until the fault condition is cleared. See parameter 0:610 [Last Fault Code]. A non-resettable fault (for example, a user FPGA configuration not loaded) is present in the converter or inverter. A minor fault is present that does not stop converter or inverter modulation. However, the product cannot be restarted until the fault condition is cleared. The product is running with a type 1 alarm present that does not stop modulation in the converter or inverter. The product can be restarted without clearing the alarm condition. See parameters 10:465 [Alarm Status A] and 10:466 [Alarm Status B]. The product is updating the nonvolatile memory for firmware on the main control board, an option card, or a peripheral device. Main control board is not powered. Embedded EtherNet/IPTM is not properly connected to the network or needs an IP address. An EtherNet/IP connection has timed out. Explicit messaging control timed out. Network address rotary switches have changed or IP address is invalid (defaulting to DHCP) or DHCP lease expired. Adapter failed the duplicate IP address detection test. Rotary switches are set to 888 or the DHCP lease has expired. Adapter is performing a self-test. Adapter is properly connected but is not communicating with any devices on the network. Adapter is properly connected and communicating on the network. Adapter is not powered or is not transmitting on the network. Adapter is properly connected (100 Mbps) and transmitting data packets on the network. Adapter is properly connected (100 Mbps) but is not transmitting on the network. Adapter is properly connected (10 Mbps) and transmitting data packets on the network. Adapter is properly connected (10 Mbps) but is not transmitting on the network. 110 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Power Layer Interface (PLI) Circuit Board Status Indicators Connections Cover Frame 8 and Larger Power Module Frame 7 Power Module PowerFlex 755T power modules use status indicators and a 7-segment display to report conditions. The power layer interface circuit board is located behind the connections cover of the power module chassis. Name DS3 DS5/DS6 Color Green Green / Yellow Green / Red Yellow Red Green Red State Flashing at 2 Hz Flashing at 0.5 Hz Description Active mode in process. Update in process. Flashing Alternately Login mode in process. Flashing Alternately Erase in process. Flashing at 2 Hz Flashing at 0.5 Hz Blink 2 Count Blink 3 Count Blink 4 Count Blink 5 Count Blink 6 Count Blink 7 Count Flashing Flashing Loopback fiber test mode is in process. Boot mode is in process. Clock fault Firmware fault FLEXBUS fault PRGM fault FPGA PRGM fault SFLASH PRGM fault Fiber connection is online. Fiber connection is offline. Lit Segment Description Fiber loss The PLI is not online. DS6 DS5 7-Segment Display Right Display Left Display DS3 The PLI is online but not initialized or logged in. The PLI is initialized and logged in. The right display indicates the module number (Lx/Mx). This display indicates that the module is in a ready state. The PLI is initialized, logged in, and PWM active. The right display indicates the module number (Lx/Mx). The PLI is initialized, logged in, and faulted. The right display indicates the module number (Lx/Mx). The PLI initialization is complete. Fiber is online. The PLI is faulted. PWM is enabled. Frame 8 and larger board orientation shown. Frame 7 is the opposite orientation. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 111 Chapter 4 Troubleshooting AC Precharge Circuit Board Status Indicators Input Bay DS1 7-Segment Display DS2 DS3 DS4 DS5 The PowerFlex 755T AC precharge module uses status indicators and a 7segment display to report conditions. See Figure 68 on page 113 for the location of the AC precharge board. Name DS1 (AC Precharge) DS2 (240V AC) DS3 (Communications) DS4 (AC Precharge) DS5 (Firmware Status) 7-Segment Display Color Green Red Green Yellow Red Unlit Green Yellow Unlit Green Yellow Red Unlit Green Green / Red Yellow Red Red State Flashing Flashing Steady Steady Flashing Off Steady Flashing Off Steady Flashing Steady Flashing Flashing Off Steady Flashing Alternately Steady Flashing Steady Flashing Description Fiber connection is online. Fiber connection is offline. 240V AC Okay 240V AC Low Alarm 240V AC Loss Fault 240V AC Loss Alarm Fiber connection is online. Communications Loss Inactive Precharge Done (Main circuit breaker is closed.) Main circuit breaker is closing. Main circuit breaker is opening. Not Ready Main circuit breaker opened. Ready No faults or alarms are present. Update in progress. Alarm is present. Fault is present. Normal Operation · At powerup, the display indicates the major firmware revision number, the minor revision number, and the build number for 1 second each. · After powerup is complete, the display indicates the number that is assigned to the module by the main control board. (Shown: P0 = Precharge 0) Alarms · When an alarm condition exists, the display indicates the alarm code. · If there are multiple alarm codes, the display cycles through the codes and displays each code for 2 seconds. Faults · When a fault condition exists, the display indicates the fault code for Port 14. · If there are multiple fault codes, the display cycles through the codes and displays each code for 2 seconds. · If the device is faulted, the display only indicates fault codes. Alarm codes are omitted. 112 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Figure 68 - AC Precharge Location Chapter 4 Troubleshooting Frame 7 Drive Frame 8 Input Bay Frame 9 Input Bay Frame 10...15 Input Bay Rockwell Automation Publication 750-PM101A-EN-P - February 2021 113 Chapter 4 Troubleshooting Table 2 - AC Precharge 7-Segment Display Fault and Alarm Codes Display Code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 32 33 Display State Flashing Steady Flashing Steady Flashing Steady Steady Flashing Flashing Flashing Steady Flashing Steady Flashing Steady Flashing Steady Flashing Flashing Flashing Steady Flashing Flashing Flashing Flashing Flashing Steady Steady Condition Code 14001 14070 14002 14071 14003 14072 14073 14004 14005 14006 14108 14007 14109 14008 14110 14009 14130 14120 14121 14122 14126 14123 14124 14010 14011 14012 14127 14128 Condition Name Image Watchdog Fault Board Over Temperature Alarm Constants Message Invalid Board Over Temperature Fault Constants Checksum Board Under Temperature Alarm Board Under Temperature Fault Nonvolatile Data Checksum Fault Power Supply Undervoltage Precharge Fault 240V AC Low MCB Failed to Close or Wiring Bay Overtemp 240V AC Loss MCB Failed to Open Fused Disconnect Open (MCB open) MCB Aux Mismatch or Wiring Bay Overtemp TVSS Open PCC Failed to Close PCC Failed to Open PCC Aux Mismatch AC Line Over Voltage MCB Trip Reset MCB Overcurrent 240V AC Loss Fault 240V AC Over Voltage Fused Disconnect Open (MCB closed) MCB Life Threshold Exceeded PCC Life Threshold Exceeded 114 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 DC Precharge Circuit Board Status Indicators Chapter 4 Troubleshooting DC Precharge Module DS7 DS2 DS3 DS4 DS5 7-Segment Display The PowerFlex 755T DC precharge module uses status indicators and a 7segment display to report conditions. The DC precharge circuit board is located behind a transparent panel on the left side of the DC precharge module chassis. The DC precharge circuit board status indicators are not visible while installed in a DC precharge module. Name DS7 (DC Precharge) DS2 (240V AC) DS3 (Communications) DS4 (DC Precharge) DS5 (Firmware Status) 7-Segment Display Color Green Red Green Yellow Red Unlit Green Yellow Unlit Green Yellow Red Unlit Green Green / Red Yellow Red Red State Flashing Flashing Steady Steady Flashing Off Steady Flashing Off Steady Flashing Steady Flashing Flashing Off Steady Flashing Alternately Steady Flashing Steady Flashing Description Fiber connection is online. Fiber connection is offline. 240V AC Okay 240V AC Low Alarm 240V AC Loss Fault 240V AC Loss Alarm Fiber connection is online. Communications Loss Inactive Precharge Done (Molded case switch is closed.) Molded case switch is closing. Molded case switch is opening. Not Ready Molded case switch opened. Ready No faults or alarms are present. Update in progress. Alarm is present. Fault is present. Normal Operation · At powerup, the display indicates the major firmware revision number, the minor revision number, and the build number for 1 second each. · After powerup is complete, the display indicates the number that is assigned to the module by the main control board. (Shown: P1 = Precharge 1) Alarms · When an alarm condition exists, the display indicates the alarm code. · If there are multiple alarm codes, the display cycles through the codes and displays each code for 2 seconds. Faults · When a fault condition exists, the display indicates the fault code. · If there are multiple fault codes, the display cycles through the codes and displays each code for 2 seconds. · If the device is faulted, the display only indicates fault codes. Alarm codes are omitted. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 115 Chapter 4 Troubleshooting Table 3 - DC Precharge 7-Segment Display Fault and Alarm Codes Display Code 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 32 Display State Flashing Steady Flashing Steady Flashing Steady Steady Flashing Flashing Flashing Steady Flashing Steady Flashing Flashing Flashing Steady Flashing Flashing Flashing Flashing Flashing Steady Condition Code 12001 12070 12002 12071 12003 12072 12073 12004 12005 12006 12108 12007 12109 12008 12009 12010 12110 12011 12012 12050 12051 12052 12053 Condition Name Image Watchdog Fault Board Over Temperature Alarm Constants Message Invalid Board Over Temperature Fault Constants Checksum Board Under Temperature Alarm Board Under Temperature Fault Nonvolatile Data Checksum Fault Power Supply Undervoltage Precharge Fault 240V AC Low MCS Failed to Close or Wiring Bay Overtemp 240V AC Loss MCS Shunt Trip MCS Aux Mismatch or Wiring Bay Overtemp 240V AC Loss Fault Fused Disconnect Open (MCS Open) 240V AC Over Voltage Fused Disconnect Open (MCS closed) Bus Fuse Harness Bus Positive Fuse Blown Bus Negative Fuse Blown Molded Case Switch Life Threshold Exceeded 116 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Fiber-optic Interface Circuit Board Status Indicator The PowerFlex 755T fiber-optic interface uses a status indicator to report conditions. The fiber-optic interface circuit board is mounted on the rear panel of the control pod assembly and is used with frame 7...15 drives and bus supplies. Name DS1 Color Green Green / Yellow Green / Red Yellow Red State Flashing at 2 Hz Flashing at 0.5 Hz Description Active mode in process. Update in process. Flashing Alternately Login mode in process. Flashing Alternately Erase in process. Flashing at 2 Hz Flashing at 0.5 Hz Blink 2 Count Blink 3 Count Blink 4 Count Blink 5 Count Blink 6 Count Blink 7 Count Loopback fiber test mode is in process. Boot mode is in process. Clock fault Firmware fault FLEXBUS fault PRGM fault FPGA PRGM fault SFLASH PRGM fault Control Pod Assembly DS1 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 117 Chapter 4 Troubleshooting Fiber-optic Transceiver Circuit Board Status Indicators PowerFlex 755T fiber-optic transceiver circuit boards use status indicators to report conditions. The fiber-optic transceiver circuit boards plug into edge connectors on the fiber interface circuit board in the control pod assembly of frame 7...15 drives and bus supplies. Name DS1, DS2 Color State Green Flashing Red Flashing Description Fiber connection is online. Fiber connection is offline. Control Pod Assembly DS2 DS1 Setting Factory Defaults The PowerFlex 20-HIM-A6/-C6S HIM User Manual, publication 20HIM-UM001, provides detailed instructions on using Human Interface Module capabilities, including, setting the PowerFlex 750-Series drive to factory settings. The following tables list the parameters that are not reset when Set Defaults `Most' is executed. The internal date and time properties are not reset by this operation. Port 0: Product Config File, Preferences Group Number 30 31 46 Display Name Access Level Language Velocity Units Full Name User Access Level Display Language Velocity Units 118 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Port 0: Product Config File, Control Config Group Number 33 35 Display Name VoltageClass Cfg Duty Rating Cfg Full Name Voltage Class Configure Duty Rating Configure Port 0: Product Config File, Port Mode Group Number 65 70 Display Name Pri MtrCtrl Mode Application Sel Full Name Primary Motor Control Mode Application Select Port 0: Product Config File, Option Cfg Group Number 80 82 Display Name DCP Option TAM Option Full Name DC Precharge Option Torque Accuracy Module Option Port 0: Feedback & I/O File, Command Group Number Display Name 134 DI EmergencyOVRD Full Name Digital Input Emergency Override Port 0: Embedded ENET File, Address Config Group Number 300 302 303 304 305 306 307 308 309 310 311 312 313 314 316 Display Name Net Addr Sel IP Addr Cfg 1 IP Addr Cfg 2 IP Addr Cfg 3 IP Addr Cfg 4 Subnet Cfg 1 Subnet Cfg 2 Subnet Cfg 3 Subnet Cfg 4 Gateway Cfg 1 Gateway Cfg 2 Gateway Cfg 3 Gateway Cfg 4 Net Rate Cfg 1 Net Rate Cfg 3 Full Name Network Address Selection IP Address Configuration 1 IP Address Configuration 2 IP Address Configuration 3 IP Address Configuration 4 Subnet Configuration 1 Subnet Configuration 2 Subnet Configuration 3 Subnet Configuration 4 Gateway Configuration 1 Gateway Configuration 2 Gateway Configuration 3 Gateway Configuration 4 Net Rate Configuration 1 Net Rate Configuration 3 Port 0: Protection File, Overrides Group Number 454 455 Display Name Emerg OVRD Mode Emerg Prot OVRD Full Name Emergency Override Mode ProtectionsOverridenbyEmergencyOverride Parameter 0:457 [Purge Frequency] ATTENTION: Unintended parameter value can result due to This Port Only reset. Parameter 0:457 [Purge Frequency] is reset to the default value when a Set Defaults for This Port Only is applied to port 10 or port 11. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 119 Chapter 4 Troubleshooting Fan Usage by Product These tables list the fans that are present in each product frame size and enclosure rating. Fan Type Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan Frame 5 Drives None Present Present None None None None Frame 6 Drives None Present Present None None None None Frame 7 Drives IP21, UL Type 1 Single None Present None Present None None IP54, UL Type 12 Single None Present None Present None None Fan Type Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan Frame 8 Drives IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Frame 9 Drives IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Frame 10...15 Drives IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Fan Type Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan Frame 8 Bus Supplies IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Frame 9 Bus Supplies IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Frame 10...15 Bus Supplies IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present Present Present None Present Present (with option) Present (with option) Present Present None None Fan Type Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan Frame 8 Common Bus Inverters IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present None None None Present Present (with option) Present (with option) Present (with option) Present (with option) Frame 9 Common Bus Inverters IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present None None None Present Present (with option) Present (with option) Present (with option) Present (with option) Frame 10...15 Common Bus Inverters IP21, UL Type 1 IP54, UL Type 12 Dual Dual None None Present Present None None None Present Present (with option) Present (with option) Present (with option) Present (with option) 120 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Hardware Service Manual Chapter 4 Troubleshooting The PowerFlex 750-Series AC Drive Hardware Service Manual, publication 750-TG100, provides schematics and detailed instructions on part replacement for PowerFlex 755T products. Fault and Alarm Display Codes Common Symptoms and Corrective Actions Event numbers for PowerFlex 750-Series faults and alarms are displayed in one of three formats. · Port 00 (Host Drive) displays the event number only. For example, code 21 `Clr Fault Queue' is displayed as: Fault Code 21. · Ports 01 through 09 use the format PEEE, indicating port number (P) and event number (EEE). For example, code 1 `Analog In Loss' on an I/O module installed in Port 4 is displayed as: Fault Code 4001. · Ports 10 through 14 use the format PPEEE, indicating port number (PP) and event number (EEE). For example, code 37 `S OverTemp Alm' on Port 14 is displayed as: Fault Code 14037. Drive does not start from Start or Run inputs that are wired to the terminal block. Cause(s) Indication Corrective Action Drive is faulted Flashing red status light Clear fault. · Press Stop · Cycle power · `Clear Faults' on the HIM Diagnostic menu Incorrect input wiring. See Installation Instructions, publication 750-IN100, for wiring examples. · 2-wire control requires Run, Run Forward, Run Reverse, or Jog input None · 3-wire control requires Start and Stop inputs · Verify 24 Volt Common is connected to Digital Input Common Wire inputs correctly. Incorrect digital input programming. · Mutually exclusive choices have been made (for example, Jog and Jog Forward) · 2-wire and 3-wire programming may be conflicting · Start configured without a Stop configured None Configure input function. Flashing yellow status light and `DigIn Cnfg B' or `DigIn Cnfg C' indication on Resolve input function conflicts. LCD HIM. 10:355 [Motor Side Sts 2] shows type 2 alarm(s). Terminal block does not have control. None Check 0:41 [Logic Mask]. Drive does not Start from HIM. Cause(s) Drive is configured for 2-wire level control. Another device has Manual control. Port does not have control. Indication None None None Corrective Action Change 0:101 [Digital In Cfg] to correct control function. -- Change 0:41 [Logic Mask] to enable correct port. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 121 Chapter 4 Troubleshooting Drive does not respond to changes in speed command. Cause(s) No value is coming from the source of the command. Indication LCD HIM Status Line indicates `At Speed' and output is 0 Hz. Incorrect reference source has been programmed. None Incorrect Reference source is being selected via remote device or digital inputs. None Corrective Action · If the source is an analog input, check wiring and use a meter to check for presence of signal · Check 10:1800 [VRef A Sel] for the source of the speed reference · Reprogram 10:1800 [VRef A Sel] for correct source · Check 10:354 [Motor Side Sts 1], bits 12 and 13 for unexpected source selections · Check 0:100 [Digital In Sts], to see if inputs are selecting an alternate source · Check configuration of 173...175 [DI Speed Sel n] functions Motor and/or drive will not accelerate to commanded speed. Cause(s) Acceleration time is excessive. Indication None Excess load or short acceleration times force the drive into current limit, slowing or stopping None acceleration. Speed command source or value is not as expected. None Programming is preventing the drive output from exceeding limiting values. None Corrective Action Reprogram 10:1915/ 1916 [VRef Accel Timen]. Check 10:354 [Motor Side Sts 1], bit 27 to see if the drive is in Current Limit. Remove excess load or reprogram 10:1915/1916 [VRef Accel Timen]. Check for the proper Speed Command using Steps 1 through 7 above. Check 10:1898 [Vel Limit Pos], 10:1899 [Vel Limit Neg], and 10:422 [Maximum Freq] to assure that speed is not limited by programming. Motor operation is unstable. Cause(s) Indication Motor data was incorrectly entered or Autotune was not performed. None Corrective Action 1. Correctly enter motor nameplate data. 2. Perform `Static Tune'or `Rotate Tune' Autotune procedure. See parameter 10:910 [Autotune]. Drive will not reverse motor direction. Cause(s) Digital input is not selected for reversing control. Digital input is incorrectly wired. Indication None None Direction mode parameter is incorrectly programmed. None Motor wiring is improperly phased for reverse. None A bipolar analog speed command input is incorrectly wired or signal is absent. None Corrective Action Check that the DI Reversing function is correctly configured. Check digital input wiring. Reprogram 10:930 [Direction Mode], for analog `Bipolar' or digital `Unipolar' control. Switch any two motor leads. 1. Use meter to check that an analog input voltage is present. 2. Check bipolar analog signal wiring. Positive voltage commands forward direction. Negative voltage commands reverse direction. 122 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Testpoint Codes and Functions Chapter 4 Troubleshooting Stopping the drive results in a Decel Inhibit fault. Cause(s) The bus regulation feature is enabled and is halting deceleration due to excessive bus voltage. Excess bus voltage is normally due to excessive regenerated energy or unstable AC line input voltages. Internal timer has halted drive operation. Indication Decel Inhibit fault screen. LCD Status Line indicates `Faulted.' Corrective Action 1. Reprogram parameters 10:116/ 117 [Bus Reg Mode n] to eliminate any `Adjust Freq' selection. 2. Disable bus regulation (parameters 10:116/117 [Bus Reg Mode n]) and add a dynamic brake. 3. Correct AC input line instability or add an isolation transformer. 4. Access 10:170 [Dec Inhibit Actn] to select desired fault action. 5. Reset drive. Problems adding a datalink. Cause(s) Another device is communicating with the processor. Indication None Corrective Action Verify that a PLC is not communication with the drive. Disconnect communication cable or inhibit communication in PLC software. Select testpoint with a [Testpoint Sel n] parameter. View testpoint values with [Testpoint REAL n] and [Testpoint DINT n] parameters. Port 9 Testpoint Codes No. Name Description Data Type Units 1 TrqPrvState The present state of the Torque Proving state machine. DINT t/f 2 TrqPrvSpdBandTimer Timer count for the Speed Band function in Torque Proving. REAL Sec 3 TrqPrvBrkSlipStartActv Indicated the Brake Slip start has occurred and is presently active. DINT t/f Port 10 Testpoint Codes No. Name 1 VRef Ramp In 2 VelRamp Rate 3 Vel Droop 10 PRef Sel Del 11 PRef Sel EGR 12 PRef Ofst In 13 PRef OfstPsn Description Data Type Units Velocity Reference at the input to the ramp and S Curve function. REAL PU This signal is the active rate of change of the velocity reference. It is produced by the velocity reference REAL PU/S ramp and S curve function. Velocity Droop offset signal output from droop function. REAL PU The change in 10:1684 [PRef Selected] every millisecond. It is applied to the input of the Electronic Gear Ratio (EGR) function. Position units are encoder DINT Cnts edge counts. The output of the Position Reference Electronic Gear Ratio function. It is similar to the EGR input in that it is a position change over 1 millisecond. This signal is re- DINT C/ms accumulated to create 10:1686 [Pref EGR Out]. Position units are encoder edge counts. The summation of 10:1691 [Psn Offset 1] and 10:1694 [Psn Offset 2]. It is the user input to the Position Reference Offset function. Position units are DINT Cnts encoder edge counts. The output of the Position Reference Offset function. It represents the total offset that is to be applied to the Position Reference. Position units are encoder edge DINT Cnts counts. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 123 Chapter 4 Troubleshooting 124 Port 10 Testpoint Codes (Continued) No. Name 14 PRef OfstOut 15 PRef NF Out 20 LdPsn Fb Del 21 Psn Fb Del 22 PReg LdError 23 LdPsn Geared 30 VRef PID Sel 31 VRef Homing 32 VRef DIR Sel 33 Vref CLmt In 34 VRef SkipOut 35 VRef Psn FF 36 VRef NF In 37 VRef Scaled 38 VRef FLmt In 40 VReg SrvLock 41 aVRegKp 42 aVRegKi 43 VReg Lmt In Description Data Type Units The change in Position Reference Offset that is to be applied to every millisecond. It is summed with the output of the position reference EGR. Position units are DINT Cnts encoder edge counts. The output of the Position Reference Notch Filters. It represents a Position Command change over 1 millisecond. This signal is re-accumulated to create DINT Cnts 10:1731 [Position Command]. Position units are encoder edge counts. The change in the Load Position Feedback every millisecond. It is the input to the Load Position Feedback Gear Ratio. Position units are encoder edge DINT C/ms counts. The change in 10:1746 [Position Fb] every millisecond. It is subtracted from the output of the Position Reference Notch Filters. The result of this subtraction when re-accumulated becomes DINT C/ms 10:1750 [Position Error]. Position units are encoder edge counts. The difference between the output of the Position Reference Notch Filters and the Load Position Feedback Gear Ratio function. Position units are encoder edge counts. DINT Cnts The output of the Load Position Feedback Gear Ratio function. When re-accumulated this becomes 10:1748 [Psn Load Actual]. Position units are encoder DINT Cnts edge counts. If this signal is non-zero, then the PID Output Meter has exclusive control of the Velocity Reference. If this signal is zero, then the Velocity Reference is controlled DINT t/f by 10:1892 [VRef Selected]. Velocity reference signal used for the Homing function. REAL PU If this signal is non-zero, then the active direction for Unipolar Direction Mode will be forward. If this signal is zero, then the active direction for Unipolar Direction DINT t/f Mode will be reverse. Velocity Reference signal at the input to the Min and Max Velocity Command Limiters. REAL PU Velocity Reference signal at the output of the Skip Band function. REAL PU Velocity feed forward reference signal used when position control is active. Sums with velocity ramp REAL PU output. Velocity Reference at the input to the reference notch filters. The output of these filters is REAL PU 10:1925 [Vref Filtered]. Velocity Reference at the output of the multiply block that applies 10:1932 [VRef Scale]. REAL PU Velocity Reference signal at the input to the Final velocity limiter. The output of this limiter is 10:1933 [VRef Final]. REAL PU Output of the Servo Lock function in the Velocity Regulator. Sums with 10:1951 [Velocity Error]. REAL PU Internal proportional gain used in the velocity regulator. Incorporates gain scaling from Adaptive Tuning and Alternate Feedback. Also includes REAL R/S conversion from Hz to rad/sec. Internal integral gain used in the velocity regulator. Incorporates gain scaling from Adaptive Tuning and Alternate Feedback. Also includes Kp gain and REAL R/S conversion from Hz to rad/sec. Input signal to the Acceleration Limiter in the Velocity Regulator. Units are PU Velocity per second. REAL PU/S Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Port 10 Testpoint Codes (Continued) No. Name Description Data Type Units 44 Kj Scale factor used to convert acceleration signals to torque signals. Proportional to system inertia. Acceleration units are PU Vel/sec. Torque units are PU REAL Sec motor torque. 50 Trq Scale Scale factor used to convert acceleration signals to torque signals. Proportional to system inertia. Acceleration units are rev/sec2. Torque units are REAL percent of rated motor torque. 51 TrqRefPosLimActv Positive limit that is being applied to the Trq Ref Filtered parameter. Result is displayed in Trq Ref Limited parameter. REAL Nm 52 TrqRefNegLimActv Negative limit that is being applied to the Trq Ref Filtered parameter. Result is displayed in Trq Ref Limited parameter. REAL Nm 100 EncdrlsCompTestState Encoderless test state. DINT n/a 101 IqsRefLmtd Torque producing Current Reference. Output of the Current Rate Limiter. REAL PkA 105 PhsLossAmptdRO Ratio of second harmonocs amplitdue to sixth harmonics. DINT n/a 106 PhsLossDtctCnts Input phase loss detection counts. REAL Cnts 110 OloopOmegaOutput Electrical speed generated in FV open loop control mode. REAL R/S 111 OmegaRotor Rotor speed generated in FV open loop control mode. REAL R/S 115 IaFbk A-phase simultaneously sampled current feedback scaled to units of the system. REAL PkA 116 IbFbk B-phase simultaneously sampled current feedback scaled to units of the system. REAL PkA 117 IcFbk C-phase simultaneously sampled current feedback scaled to units of the system. REAL PkA 120 FreqSync Enhanced Delay This signal indicates the status of the delay when Flying Start function is activated. This is for the CEMF mode of the Flying Start function. DINT t/f 121 FreqSync Enhanced State This signal indicates the status of flying start operating state. This is for the CEMF mode of the Flying Start DINT function. t/f This signal indicates the status of flying start operating 122 FreqSync Sweep State state. This is for the Sweep mode of the Flying Start DINT t/f function. 125 PrchrgState State of the Precharge state machine. DINT t/f 130 LineLoss Act If this signal is non-zero, then a Line Loss condition is active. If this signal is zero, then a Line Loss condition DINT t/f is not active. 135 Power State Handler The present state being executed by the power state handler. DINT t/f 136 PwrStateCmd Commanded state from the PowerStateMach to the PowerStateHandler. DINT t/f If this signal is non-zero, then a Current Limit Stopping 140 Current Limit Stop Active Sequence is active. If this signal is zero, then a Current DINT t/f Limit Stopping Sequence is not active. 141 Sequencer State The present state of the Sequencer. DINT t/f 145 ActvPwmFreq Active PWM frequency REAL Hz 146 MaxJuncTemp Active max junction temperature used in thermal manager. REAL °C 150 TrqRefAtZero If this signal is non-zero, then the 10:2150 [Trq Ref Filt In] will be forced to a value of zero. If this signal is zero, then the Torque Reference is supplied by 10:2076 [Trq Ref Selected] after offset by DINT t/f the Friction Compensation and Torque Step signals. This signal could become non-zero as part of a stop sequence or during Autotune. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 125 Chapter 4 Troubleshooting 126 Port 10 Testpoint Codes (Continued) No. Name 155 RideThruRcvrLvl 156 RideThruStrtLvl 157 VbusUnderVltgLvl 160 Theta_e 161 Theta_r 170 IdSyncFdbk 171 IqSyncFdbk 172 VdSyncFdbk 173 VqSyncFdbk 180 VdsCmd 181 VqsCmd 190 FieldWeakSts 191 FluxRegFdFwd 192 FlxRegOmgLim 193 IdCompMtrnIq 194 IdCompMtrnPu 195 IdCompRegnIq 196 IdCompRegnPu 197 FlxIdSyncRef 198 NegIdsLim 199 PosIdsLim 200 VqsFdbkFltrd 210 FLARPM 211 OmegSlipFilt 212 RsGain 213 SlipGnFltrd 214 SlipGnLatchd 215 SlipGnLmtd 216 SlipLoTrqLim 217 SlipGnMaxLim 218 SlipGnMinLim 219 SlipIntegOut Description Data Type Units This is the level of DC Bus voltage where the PWM can become active again when power loss has occurred REAL VDC and power is recovered. This is the level of bus voltage where the PwrLoss mode is triggered. REAL VDC This is the level set to trigger a bus under voltage event. REAL VDC This signal is the Theta_e, the electrical stator angle, in radians. REAL Rad This signal is the Theta_r, the electrical rotor angle, in radians. REAL Rad Flux current feedback. REAL PkA Torque current feedback. REAL PkA This signal is the d-axis voltage feedback. REAL PkV This signal is the q-axis voltage feedback. REAL PkV D-axis voltage command in synchronous reference frame. REAL PkV Q-axis voltage command in synchronous reference frame. REAL PkV If this signal is non-zero, then the field weakening control is active. DINT t/f This signal is the flux regulator output feed forward term. REAL PkA If this signal is non-zero, then the flux regulator is not active. If this signal is zero, then the flux regulator is DINT t/f active. This signal displays the corresponding Iq Ref values for IdComp during motoring operation. REAL PU This signal displays the required IdComp values during motoring. REAL PU This signal displays the corresponding Iq Ref values for IdComp during regen operation. REAL PU This signal displays the required IdComp values during regen operation. REAL PU This signal is the d-axis current reference, which is the output of the flux regulator. REAL PkA If this signal is non-zero, then the flux regulator is at negative Id current limit. DINT t/f If this signal is non-zero, then the flux regulator is at positive Id current limit. DINT t/f This signal is the filtered q-axis voltage feedback. REAL PkV This signal is the Slip RPM at full load amps, which is calculated based on the filtered slip gain. REAL RPM This signal is the filtered slip in rad/sec. REAL R/S This signal is the Rs gain, which is calculated based on the filtered slip gain. REAL PU This signal is the filtered slip gain. REAL R/S/A This signal is the latched slip gain in the slip regulator. REAL R/S/A This signal is the limited slip gain, which is the slip regulator output. REAL R/S/A If this signal is non-zero, then the slip regulator is not active because the q-axis current reference is below DINT t/f the set value. If this signal is non-zero, then the slip regulator is at maximum slip gain limit. DINT t/f If this signal is non-zero, then the slip regulator is at minimum slip gain limit. DINT t/f This signal is the integration term of the slip regulator output. REAL R/S/A Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Port 10 Testpoint Codes (Continued) No. Name 220 SlipPropOut 221 VdsFdbkFltrd 230 IdSyncRef 231 IqSyncRef 232 VdSyncFF_Ref 233 VqSyncFF_Ref 240 LambdaDsSync 241 LambdaDsFilt 242 LambdaQsSync 243 LambdaQsFilt 250 TrqEst 251 TrqEstFltrd 255 ActvCurLim 260 FluxCurMax 261 FluxCurMin 262 LambdaDsRtd 263 MtrRtdTrq 264 SlipGnRtd Description Data Type Units This signal is the proportional term of the slip regulator output. REAL R/S/A This signal is the filtered d-axis voltage feedback. REAL PkV Flux current command. REAL PkA Torque command. REAL PkA This signal is the feed forward d-axis voltage reference. REAL PkV This signal is the feed forward q-axis voltage reference. REAL PkV This signal is the d-axis stator flux. REAL VSec This signal is the filtered d-axis stator flux. REAL VSec This signal is the q-axis stator flux. REAL VSec This signal is the filtered q-axis stator flux. REAL VSec This signal is the estimated torque in N·m. REAL Nm This signal is the filtered estimated torque in N·m. REAL Nm This is the active current limit value. REAL PkA This is the maximum flux current value. REAL PkA This is the minimum flux current value. REAL PkA This signal is the rated d-axis stator flux. REAL VSec This is the motor rated torque value in N·m that is calculated from motor name plate data. REAL Nm This is the rated slip gain value. REAL R/S/A Port 13 Testpoint Codes No. Display Name 1 VL12Inst 2 VL23Inst 3 VL31Inst 4 VqSyncFdbk 5 VqSyncFilt 6 VqSyncFilt1 7 VdSyncFdbk 8 VdSyncFilt 9 VdSyncFilt1 10 VabFdbkFilt Description Data Type Units The grid line voltage L12 instantaneously sampled voltage feedback scaled to units of the system. REAL Volts The grid line voltage L23 instantaneously sampled voltage feedback scaled to units of the system. REAL Volts The grid line voltage L31 instantaneously sampled voltage feedback scaled to units of the system. REAL Volts The instantaneous value of the grid line voltage q-axis voltage component in the synchronous reference REAL Volts frame scaled to units of the system. The grid line voltage q-axis voltage component in the synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 1 ms, and scaled to REAL Volts units of the system. The grid line voltage q-axis voltage component in the synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 10 ms, and scaled REAL Volts to units of the system. The instantaneous value of the grid line voltage d-axis voltage component in the synchronous reference REAL Volts frame scaled to units of the system. The grid line voltage d-axis voltage component in the synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 1 ms, and scaled to REAL Volts units of the system. The grid line voltage d-axis voltage component in the synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 10 ms, and scaled REAL Volts to units of the system. The grid line voltage L12 instantaneously sampled voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the REAL Volts system. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 127 Chapter 4 Troubleshooting 128 Port 13 Testpoint Codes (Continued) No. Display Name 11 VbcFdbkFilt 12 VcaFdbkFilt 13 IaInst 14 IbInst 15 IcInst 16 I0Fdbk 17 VbusRateLim 18 VbusOptRef 19 VbusRefLoLim 20 VbusRefHiLim 21 VbusLimSts 22 VbusErr 23 VbusRegKi 24 VbusRegKp 25 IqRefVbusReg 26 IqRefComp 27 VqRefComp 28 VdRefComp 29 IdRefComp 30 IqVbusCurLim 31 IdVbusCurLim 32 ILmtUserSts 33 IdRefSts Description Data Type Units The grid line voltage L23 instantaneously sampled voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the REAL Volts system. The grid line voltage L31 instantaneously sampled voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the REAL Volts system. A-phase simultaneously sampled current feedback scaled to units of the system. REAL A B-phase simultaneously sampled current feedback scaled to units of the system. REAL A C-phase simultaneously sampled current feedback scaled to units of the system. REAL A The instantaneous value of the zero sequence current/ summation of the feedback currents. REAL A Selected voltage rate of change of the bus voltage, this value is set by a user parameter in case of manual bus reference and it is set to a very high value when it is in REAL V/S optimized mode. Optimized value of the DC Bus Reference. REAL Volts The calculated minimum possible value of the DC Bus command. REAL Volts The calculated maximum possible value of the DC Bus command. REAL Volts A status signal indicates if the bus reference is limited. DINT t/f The instantaneous error signal between the DC Bus command and the measured DC bus. This signal is processed through the controller of the bus regulator REAL Volts to generate the current reference command. The integral gain of the bus voltage regulator. REAL AS/V The proportional gain of the bus voltage regulator. REAL A/V The instantaneous value of the active current command generated by the DC bus voltage regulator. REAL A The instantaneous value of the active current (q-axis current component in the synchronous reference frame) calculated by the LCL steady state REAL A compensation algorithm. The instantaneous value of the grid line voltage (q-axis voltage component in the synchronous reference frame) calculated by the LCL steady state REAL Volts compensation algorithm. The instantaneous value of the grid line voltage (d-axis voltage component in the synchronous reference frame) calculated by the LCL steady state REAL Volts compensation algorithm. The instantaneous value of the reactive current (d-axis current component in the synchronous reference frame) calculated by the LCL steady state REAL A compensation algorithm. The maximum value of the active current component for a given DC bus value, line voltage magnitude, and line reactance, this limit is calculated based on the REAL A maximum active power transfer theoretically achievable between the AFE converter and the grid. The maximum value of the reactive current component for a given DC bus value, line voltage magnitude, and line reactance, this limit is calculated based on the REAL A maximum reactive power transfer theoretically achievable between the AFE converter and the grid. A status signal that indicates current is limited by the user current limit parameter. DINT t/f A status signal that indicates d-axis current at limit. DINT t/f Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Port 13 Testpoint Codes (Continued) No. Display Name 34 IqSyncErr 35 IdSyncErr 36 CurRegKiIq 37 CurRegKpIq 38 CurRegKiId 39 CurRegKpId 40 CurRegqOut 41 CurRegdOut 42 VqSyncRef 43 VdSyncRef 45 CurRegqI 46 CurRegqP 47 VltRefLim Description Data Type The instantaneous error signal between the active current command and the calculated active current. This signal is processed through the controller of the REAL current regulator to generate the reference voltage command. The instantaneous error signal between the reactive current command and the calculated reactive current component. This signal is processed through the REAL controller of the current regulator to generate the reference voltage command. The integral gain of the current regulator of the active current component. REAL The proportional gain of the current regulator of the active current component. REAL The integral gain of the current regulator of the reactive current component. REAL The proportional gain of the current regulator of the reactive current component. REAL The output signal of the current regulator used to regulate the active current component which includes the effect of both the proportional action and the REAL integral action. The output signal of the current regulator used to regulate the reactive current component which includes the effect of both the proportional action and REAL the integral action. The final q-axis component of the voltage reference that is connected to the modulator. This component is used along with the d-axis component of the voltage REAL reference to generate the magnitude and the angle of the final voltage reference connected to the modulator. The final d-axis component of the voltage reference that is connected to the modulator. This component is used along with the q-axis component of the voltage REAL reference to generate the magnitude and the angle of the final voltage reference connected to the modulator. The output of the integral term of the of the current regulator used to regulate the active current REAL component. The output of the proportional term of the of the current regulator used to regulate the active current REAL component. The limited value of the magnitude of the voltage reference used to generate the three phase modulator REAL signals. Units A A VSec/A V/A VSec/A V/A Volts Volts Volts Volts Volts Volts Volts Rockwell Automation Publication 750-PM101A-EN-P - February 2021 129 Chapter 4 Troubleshooting Reset as Shipped The TotalFORCE control platform has a recovery mode. Use the following procedure if the processor fails to start up. 1. Power down the product. 2. Locate the IP address switches on the main control board. 3. Record the positions of the switches so they can be set back to these positions at the end of the procedure. Hundreds Position Tens Position Ones Position 4. Set all three switches to position 8, for an overall value of 888. Figure 69 - IP Address Switches Set to 888 Hundreds Position Tens Position Ones Position 5. Power up the product. Wait for the STS indicator to turn flashing red and the ENET indicator to turn solid red. 6. Power down the product. 7. Power up the product a second time. Wait for the STS indicator to turn flashing red and the ENET indicator to turn solid red. 8. Power down the product. 9. Set the IP address switches to the positions recorded in step 3. 10. Power up the product. 130 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Chapter 4 Troubleshooting Configurable LCL Filter Capacitor Failure Response Review the Attention statement that follows if you intend to configure the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Failure event occurs. ATTENTION: You must read the following information before you can enable the Line Side Converter to produce an alarm instead of a fault when the LCL Filter Capacitor Failure event occurs. Operating the product (drive or bus supply) during the LCL Capacitor Failure event may damage the LCL filter. This damage may lead to catastrophic product failure and collateral damages. It is your responsibility to configure drive parameters, understand the causes and consequences of LCL capacitor failure, and meet safety requirements in accordance with all applicable codes and standards. If enabling the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Failure event occurs is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the application, set bit 6 `CapFailAlrm' of parameter 13:40 [Conv Options Cfg]. This action removes Fault 24, `CapFailureCfg'. It allows parameter 0:452 [LCLCapFailActn] to be set to 0 `Alarm', enabling an alarm instead of a fault. Configurable LCL Filter Capacitor Over Resonance Response Review the Attention statement that follows if you intend to configure the line side converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs. ATTENTION: You must read the following information before you can enable the Line Side Converter to produce an alarm instead of a fault when the LCL Filter Capacitor Over Resonance event occurs. Operating the product (drive or bus supply) during the LCL Capacitor Over Resonance event may damage the LCL filter. This damage may lead to catastrophic product failure and collateral damages. It is your responsibility to configure drive parameters, understand the causes and consequences of LCL capacitor over resonance, and meet safety requirements in accordance with all applicable codes and standards. If enabling the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the application, set bit 5 `CapORsncAlrm' of parameter 13:40 [Conv Options Cfg]. This action removes Fault 56, `CapOvrRsncCfg'. It allows parameter 0:453 [CapOvrRsncActn] to be set to 0 `Alarm', enabling an alarm instead of a fault. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 131 Chapter 4 Troubleshooting PowerFlex 755T Lifting/ Torque Proving Review the Attention statement that follows if you intend to use the TorqProveTM feature without an encoder. ATTENTION: You must read the following information before you can use TorqProve with no encoder. Encoderless TorqProve must be limited to lifting applications where personal safety is not a concern. Encoders offer additional protection and must be used where personal safety is a concern. Encoderless TorqProve cannot hold a load at zero speed without a mechanical brake and does not offer additional protection if the brake slips/fails. Loss of control in suspended load applications can cause personal injury and/or equipment damage. It is your responsibility to configure drive parameters, test any lifting functionality, and meet safety requirements in accordance with all applicable codes and standards. If encoderless TorqProve is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the encoderless application, set bit 3 `EnclsTrqProv' of parameter 10:420 [Mtr Options Cfg] to a value of 1. This action removes Alarm 9014 `TP Encls Config' and allows bit 1 `Encoderless' of parameter 9:50 [Trq Prove Cfg] to be changed to 1 enabling encoderless TorqProve. For information on TorqProve applications, see the PowerFlex 750-Series with TotalFORCE Control reference manual, publication 750-RM100. 132 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 Technical Support Options Chapter 4 Troubleshooting What You Need When You Call Tech Support When you contact Technical Support, please be prepared to provide the following information: · Order number · Product catalog number and drive series number (if applicable) · Product serial number · Firmware revision number · Fault code listed in 0:610 [Last Fault Code] · Installed options and port assignments · Technical Support Wizard; see page 133 or drive parameter list Also be prepared with: · A description of your application · A detailed description of the problem · A brief history of the drive installation · First-time installation, product has not been running · Established installation, product has been running The data contained in the following parameters will help in initial troubleshooting of a faulted drive. You can use the table below to record the data provided in each parameter listed. Parameter No. 0:610 10:460 10:461 10:462 10:465 10:466 10:467 13:240 13:241 13:258 13:259 13:260 Parameter Name Last Fault Code Condition Sts A Fault Status A Fault Status B Alarm Status A Alarm Status B Type 2 Alarms Fault Status A Fault Status B Alarm Status A Alarm Status B Type 2 Alarms Parameter Data Technical Support Wizards If you are connected to a drive via Connected Components WorkbenchTM (version 11 or later) software, you can run a Tech Support wizard to gather information that will help diagnose problems with your drive and/or peripheral device. The information gathered by the wizard is saved as a text file and can be emailed to your remote technical support contact. IMPORTANT The Tech Support wizard cannot be accessed when not connected. Rockwell Automation Publication 750-PM101A-EN-P - February 2021 133 Chapter 4 Troubleshooting Notes: 134 Rockwell Automation Publication 750-PM101A-EN-P - February 2021 PowerFlex Drives with TotalFORCE Control Programming Manual Rockwell Automation Publication 750-PM101A-EN-P - February 2021 135 Rockwell Automation Support Use these resources to access support information. Technical Support Center Knowledgebase Local Technical Support Phone Numbers Literature Library Product Compatibility and Download Center (PCDC) Find help with how-to videos, FAQs, chat, user forums, and product notification updates. Access Knowledgebase articles. Locate the telephone number for your country. Find installation instructions, manuals, brochures, and technical data publications. Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes. rok.auto/support rok.auto/knowledgebase rok.auto/phonesupport rok.auto/literature rok.auto/pcdc Documentation Feedback Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback. Waste Electrical and Electronic Equipment (WEEE) At the end of life, this equipment should be collected separately from any unsorted municipal waste. Rockwell Automation maintains current product environmental information on its website at rok.auto/pec. Allen-Bradley, CIP Security, Connected Components Workbench, DeviceLogix, expanding human possibility, FactoryTalk, PowerFlex, Rockwell Automation, Studio 5000, and TotalFORCE are trademarks of Rockwell Automation, Inc. EtherNet/IP is a trademark of ODVA, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies. Rockwell Otomasyon Ticaret A.. Kar Plaza Merkezi E Blok Kat:6 34752, çerenkÖy, stanbul, Tel: +90 (216) 5698400 EEE YÖnetmeliine Uygundur Publication 750-PM101A-EN-P - February 2021 Copyright © 2021 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.
Acrobat Distiller 21.0 (Windows)
Обновлено: 21 сентября 2023 г. 15:45
При работе промышленной электроники Allen Bradley в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы Allen Bradley: PowerFlex, 1305 Series, 1332 Series, 1333 Series, 1334 Series, 1336 Series, 1341 Series, 1351 Series, 1352 Series, 1361 Series, 160 Series,. В свою очередь серия Allen Bradley PowerFlex включает в себя следующие модели: PowerFlex 755T, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex 753, PowerFlex 755, PowerFlex 755T, PowerFlex 70, PowerFlex 700S, PowerFlex 700, PowerFlex 700L, PowerFlex 523, PowerFlex 525, PowerFlex 527, PowerFlex 4M, PowerFlex 4, PowerFlex 40, PowerFlex 40P, PowerFlex 400. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.
Частотные преобразователи Allen Bradley имеют следующие распространенные ошибки:
Наиболее частые ошибки преобразователей Allen Bradley PowerFlex 40:
Ошибка F2 (error F2) — ошибка входа Auxiliary;
Ошибка F3 (error F3) — обрыв фазы на входе;
Ошибка F4 (error F4) — пониженное напряжение;
Ошибка F5 (error F5) — перенапряжение;
Ошибка F6 (error F6) — механическая неисправность двигателя;
Ошибка F7 (error F7) — перегрузка двигателя;
Ошибка F8 (error F8) — перегрев радиатора;
Ошибка F12 (error F12) — аппаратная перегрузка по току;
Ошибка F13 (error F13) — короткое замыкание на землю;
Ошибка F29 (error F29) — ошибка аналогового входа;
Ошибка F33 (error F33) — превышено количество попыток автоматического повторного включения — АПВ;
Ошибка F38 (error F38) — замыкание фазы U на землю на выходе ПЧ;
Ошибка F39 (error F39) — замыкание фазы V на землю на выходе ПЧ;
Ошибка F40 (error F40) — замыкание фазы W на землю на выходе ПЧ;
Ошибка F41 (error F41) — короткое замыкание между фазами UV;
Ошибка F42 (error F42) — короткое замыкание между фазами UW;
Ошибка F43 (error F43) — короткое замыкание между фазами VW;
Ошибка F48 (error F48) — параметры EEPROM были сброшены;
Ошибка F63 (error F63) — перегрузка по току по программной уставке;
Ошибка F64 (error F64) — перегрузка во время работы;
Ошибка F70 (error F70) — неисправность силовой части;
Ошибка F71 (error F71) — ошибка связи;
Ошибка F80 (error F80) — ошибка автонастройки;
Ошибка F81 (error F81) — ошибка связи RS485;
Ошибка F100 (error F100) — ошибка контрольной суммы записанных параметров;
Ошибка F122 (error F122) — ошибка платы ввода-вывода.
Похожие статьи:
- Типы выходов датчиков
- Свинцово-кислотные аккумуляторные батареи
- Ni-Cd аккумуляторные батареи
- Delta Servo ASDA-A2 ошибки — расшифровка кодов неисправностей сервоприводов
- Ремонт и поверка установок Тангенс-3М
Время выполнения запроса: 0,00389289855957 секунды.
-
Contents
-
Table of Contents
-
Bookmarks
Quick Links
User Manual
Original Instructions
PowerFlex 755/755T Integrated Safety — Safe Torque Off
Option Module
Catalog Number 20-750-S3
Related Manuals for Allen-Bradley PowerFlex 755
Summary of Contents for Allen-Bradley PowerFlex 755
-
Page 1
User Manual Original Instructions PowerFlex 755/755T Integrated Safety — Safe Torque Off Option Module Catalog Number 20-750-S3… -
Page 2
Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. -
Page 3: Table Of Contents
Configure Safe Torque Off in the Logix Designer Application ..31 and Operation Add a PowerFlex 755 Drive to the Controller Project..33 Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
-
Page 4
Configure Safe Torque Off in the Logix Designer Application ..54 Add a PowerFlex 755 Drive to the Controller Project..55 Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications. -
Page 5
Table of Contents Configure the Drive with Hardwired Safety Connections ..77 Timing Diagrams ……….78 Chapter 7 Monitoring and Troubleshooting Monitor STO Status . -
Page 6
Table of Contents Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 7: Summary Of Changes
Throughout this manual, the PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, PowerFlex 755TM drive systems are also referred to as PowerFlex 755T drive products. The PowerFlex 755 drive is used for the examples in this manual. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
-
Page 8: Terminology
Preface Terminology Table 1 defines the abbreviations that are used in this manual. Table 1 — Abbreviations and Definitions Abbreviation Full Term Definition 1oo2 One out of Two Refers to the behavioral design of a dual-channel safety system. Classification of the safety-related parts of a control system in respect of their resistance to faults and Category their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection, and/or by their reliability (source ISO 13849).
-
Page 9: Product Firmware And Release Notes
Preface Product Firmware and Product firmware and release notes are available online within the Product Compatibility and Download Center. Release Notes 1. From the Search bar on http://www.ab.com, choose Compatibility and Downloads. 2. Search for your product. 3. On the search results page, find the firmware and release notes for your product.
-
Page 10: Additional Resources
Provides information on how to use CompactLogix™ 5380 and Compact GuardLogix 5380 publication 5069-UM001 controllers. You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
-
Page 11: What Is The Integrated Safety — Safe Torque Off Option Module
Chapter Safety Concept This chapter provides information on safety considerations for the Integrated Safety — Safe Torque Off option module. Topic Page What Is the Integrated Safety — Safe Torque Off Option Module? Compatible Drives Compatible Safety Controllers Safety Application Requirements Safety Certification Functional Proof Tests PFD and PFH Definitions…
-
Page 12: Compatible Drives
• PowerFlex 755TM drive systems Integrated STO is via the embedded Ethernet port on the drive only. Device Level Ring (DLR) capability is supported for the PowerFlex 755 when a 20-750-ENETR Dual Port EtherNet/IP option module is used in Tap mode.
-
Page 13: Compatible Safety Controllers
• For PowerFlex 755 drives, AOP version 4.09 (or later) • For PowerFlex 755T drive products, all AOP versions The following Integrated Motion AOPs are needed: • For PowerFlex 755 drives, Integrated Motion AOP version 18.00.00 (or later) • PowerFlex 755T drive products do not support Integrated Motion at this time.
-
Page 14: Hardwired Mode
GuardLogix Controller Systems Safety Reference Manuals listed in the Additional Resources on page The TÜV Rheinland group has approved the PowerFlex 755 Integrated Safety Safety Certification — Safe Torque Off option module (catalog number 20-750-S3) as suitable for use in hardwired or integrated safety applications: •…
-
Page 15: Stop Category Definitions
Safety Concept Chapter 1 IMPORTANT Only qualified, authorized personnel that are trained and experienced in functional safety can plan, implement, and apply functional safety systems. ATTENTION: When designing your system, consider how personnel exit the machine if the door locks while they are in the machine. Additional safeguard devices can be required for your specific application.
-
Page 16: Functional Proof Tests
Chapter 1 Safety Concept See the ISO 13849-1, IEC 61508, and EN 62061 standards for complete information on requirements for PL and SIL determination. Functional Proof Tests The functional safety standards require that functional proof tests be performed on the equipment that is used in the system. Proof tests are performed at user-defined intervals and are dependent upon PFD and PFH values.
-
Page 17: Pfd And Pfh Data
EN 61508 and show worst-case values. This table provides data for a 20-year proof test interval and demonstrates the worst-case effect of various configuration changes on the data. Table 2 — PFD and PFH for PowerFlex 755 Drives PowerFlex 755 Drives PowerFlex 755 Drives…
-
Page 18: Considerations For Safety Ratings
Considerations for Safety The achievable safety rating of an application that uses the Integrated Safety — Safe Torque Off option module that is installed in PowerFlex 755 drives Ratings (firmware revision 13 or later), and PowerFlex 755T drive products are dependent upon many factors, drive options, and the type of motor.
-
Page 19
Chapter Installation This chapter provides installation, jumper settings, and wiring for the Integrated Safety — Safe Torque Off option module. Topic Page Remove Power from the Drive System Access the Control Pod Set the Safety Jumper Install the Safety Option Module ATTENTION: The following information is a guide for proper installation. -
Page 20: Remove Power From The Drive System
Chapter 2 Installation Remove Power from the Before performing any work on the drive, remove all power to the system. Drive System ATTENTION: • Electrical Shock Hazard. Verify that all sources of AC and DC power are de- energized and locked out or tagged out in accordance with the requirements of ANSI/NFPA 70E, Part II.
-
Page 21: Set The Safety Jumper
SAFETY jumper must be removed or a Safety Jumper In Fault (F213) occurs. IMPORTANT PowerFlex 755 drives (frames 8…10) control boards do not have a SAFETY jumper. If the Integrated Safety — Safe Torque Off option module is installed, the control board hardware ENABLE jumper must be installed.
-
Page 22: Install The Safety Option Module
Chapter 2 Installation Figure 2 — PowerFlex 755T Drive Products Jumper Locations (all frame sizes) SAFETY Jumper (jumper is removed) PowerFlex 755T Drive Products Hardware ENABLE Jumper (jumper in place) Install the Safety Option To install the Integrated Safety — Safe Torque Off option module in a drive port, follow these steps: Module 1.
-
Page 23
Installation Chapter 2 Figure 3 — Tighten Screws PowerFlex 755 Drives Frames 1…7 Shown Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 24
Chapter 2 Installation Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 25: Description Of Operation
Chapter Configuration This chapter provides information on how to configure the Integrated Safety — Safe Torque Off option module. Topic Page Description of Operation Out-of-Box State Description of Operation Safe Torque Off (STO) disables the power transistors so that the probability of torque producing switching is sufficiently low for SIL 3.
-
Page 26: Out-Of-Box State
Chapter 3 Configuration IMPORTANT The Integrated Safety — Safe Torque Off option module does not remove dangerous voltages at the drive output. Before performing any electrical work on the drive or motor, turn off the input power to the drive, and follow all safety procedures.
-
Page 27
Reset the Drive by Using the Logix Designer Application After the integrated safety connection configuration is applied to the PowerFlex 755 drive at least once, you can follow these steps to restore your PowerFlex 755 drive to the out-of-box state while online. -
Page 28
Chapter 3 Configuration 5. Click the Safety tab. 6. Click Reset Ownership. 7. Click the Connection tab. 8. Uncheck Inhibit Module. 9. Click Apply. 10. Click OK. Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 29: Description Of Integrated Operation
• You must add the PowerFlex® drive to the Ethernet network connection in the safety controller I/O tree. The PowerFlex 755 drives and PowerFlex 755T drive product STO function reaction time is 15 ms maximum. Reaction time is the delay between the time when the drive STO function receives the STO request, and when power that produces the motion is removed from the motor.
-
Page 30: Safe Torque Off Assembly Tags
Chapter 4 Standard I/O – Network STO Programming and Operation Table 5 — Safe Torque Off Network Specifications Attribute Value Safety connection RPI, min 6 ms Input assembly connections Output assembly connections Safe Torque Off Assembly In Network mode, the safety controller controls the integrated STO function through the SO.SafeTorqueOff tag in the safety output assembly: Tags •…
-
Page 31: Configure Safe Torque Off In The Logix Designer Application
Configure Safe Torque Off in This chapter provides instructions for how to add and configure an Integrated Safety — Safe Torque Off option module in a PowerFlex 755 drive or PowerFlex the Logix Designer 755T drive product in an existing project in the Logix Designer application.
-
Page 32
Chapter 4 Standard I/O – Network STO Programming and Operation To set up your drive with the 20-750-S3 option card, you must configure the following attributes, in addition to the drive’s IP address, revision, ratings, and power structure settings: Port 4, 5, or 6 Electronic Keying Indicates that all keying attributes must match to establish communication. -
Page 33: Add A Powerflex 755 Drive To The Controller Project
3. Follow the appropriate procedure to add and configure an option card and drive: • Add an Option Card to a PowerFlex 755 Drive in I/O Mode on page 34 • Add an Option Card to a PowerFlex 755T Drive Product in I/O…
-
Page 34: I/O Mode
Chapter 4 Standard I/O – Network STO Programming and Operation Add an Option Card to a PowerFlex 755 Drive in I/O Mode 1. On the New Module dialog box, name your drive. 2. Type the IP Address. 3. Choose the Drive tab.
-
Page 35
Standard I/O – Network STO Programming and Operation Chapter 4 5. Expand PF750 peripherals list, select card, and click Create. 6. Choose port and Electronic Keying for card and click OK. Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 36
Chapter 4 Standard I/O – Network STO Programming and Operation 7. Choose General Tab and click change to open Module Definition. 8. Choose the Connection type. The 20-750-S3 card appears in the Safety Type field. Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 37: I/O Mode
Standard I/O – Network STO Programming and Operation Chapter 4 9. Configure the drive’s properties: a. Revision b. Electronic Keying c. Drive Ratings d. Rating Options e. Special Types 10. Click OK to return to the New Module or Module Properties dialog box.
-
Page 38
Chapter 4 Standard I/O – Network STO Programming and Operation 4. Choose the connection type. 5. From the Device Definition Dialog box, choose the Peripherals page and use the Add new peripheral pull-down menu to choose the 20-750- S3 card. Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 39: Generate The Safety Network Number (Snn)
Standard I/O – Network STO Programming and Operation Chapter 4 6. Expand the card entry on the Peripherals page to change the port, if desired, and to choose Electronic Keying method. 7. Click OK to return to the New Module window with drive details. 8.
-
Page 40
Chapter 4 Standard I/O – Network STO Programming and Operation IMPORTANT If you assign an SNN manually, make sure that the system expansion does not result in duplication of SNN and node address combinations. A warning appears if your project contains duplicate SNN and node address combinations. -
Page 41: Configure Safety Connections
Standard I/O – Network STO Programming and Operation Chapter 4 Configure Safety Connections To configure the safety tab, follow these steps. 1. Click the Safety tab in the drive Module Properties dialog box. 2. Adjust the Safety Input Requested Packet Interval (RPI) as desired for your safety system.
-
Page 42
Chapter 4 Standard I/O – Network STO Programming and Operation 4. Configure the advanced settings as desired. Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign. -
Page 43: Safety Configuration Signature And Ownership
Module Properties dialog box) • GuardLogix slot number • GuardLogix safety network number • Path from the GuardLogix safety controller to the PowerFlex 755 drive or PowerFlex 755T drive product • Configuration signature (displayed on the Safety tab of the drive’s…
-
Page 44: Safe Torque Off — Stop Category 0 Example Program
Chapter 4 Standard I/O – Network STO Programming and Operation Safe Torque Off – Stop This safety task code is an example for a category 0 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 0 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…
-
Page 45: Safe Torque Off — Stop Category 1 Example Program
Standard I/O – Network STO Programming and Operation Chapter 4 Safe Torque Off – Stop This safety task code is an example for a category 1 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 1 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…
-
Page 46: Falling Edge Reset
Chapter 4 Standard I/O – Network STO Programming and Operation Falling Edge Reset ISO 13849-1 stipulates that instruction reset functions must occur on falling edge signals. To comply with this requirement, a One Shot Falling (OSF) instruction is used on the reset rung. Then, the OSF instruction Output Bit tag is used as the reset bit for the STO output or enable rungs.
-
Page 47: Safe Torque Off Fault Reset
Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
-
Page 48: Understand Integrated Safety Drive Replacement
State on page 26 for more information. Replacing an entire PowerFlex 755 drive or PowerFlex 755T drive product on an integrated safety network is more involved than replacing standard devices because of the safety network number (SNN). The device number and SNN is the safety Device ID of the device.
-
Page 49
Standard I/O – Network STO Programming and Operation Chapter 4 Figure 5 — Safety I/O Replacement Options Configure Only When No Safety Signature Exists This setting instructs the GuardLogix controller to configure a safety device only when the safety task does not have a safety task signature, and the replacement device is in out-of-box condition. -
Page 50
Chapter 4 Standard I/O – Network STO Programming and Operation Configure Always The GuardLogix controller always attempts to configure a replacement Safety I/O device if the device is in an out-of-box condition, meaning that a safety network number does not exist in the replacement safety device, and the node number and I/O device keying matches the configuration of the controller. -
Page 51: Requirements
Chapter Integrated Motion – Network STO Programming and Operation This chapter provides information for network installation and operation of the Integrated Safety — Safe Torque Off option module when used with Integrated Motion. Topic Page Requirements Description of Operation Configure Safe Torque Off in the Logix Designer Application Safe Torque Off –…
-
Page 52: Safe Torque Off Assembly Tags
• You must add the PowerFlex drive to the Ethernet network connection in the safety controller I/O tree. The PowerFlex 755 drive STO function response time is less than 15 ms. Response time for the drive is the delay between the time the drive STO command receives the CIP Safety™…
-
Page 53
Integrated Motion – Network STO Programming and Operation Chapter 5 Table 8 — Integrated STO Specifications Attribute Logix Designer Tag Name Type Description [bit] The ConnectionStatus data type contains (1) (2) SI.ConnectionStatus DINT RunMode and ConnectionFault status bits. SI.RunMode BOOL Table 9 for descriptions of the combinations of the RunMode and… -
Page 54: Configure Safe Torque Off In The Logix Designer Application
Configure Safe Torque Off in This chapter provides instructions for how to add and configure an Integrated Safety — Safe Torque Off option module in a PowerFlex 755 drive in an existing the Logix Designer project in the Logix Designer application. This chapter is specific to safety and Application does not cover all aspects of drive configuration.
-
Page 55: Add A Powerflex 755 Drive To The Controller Project
2. Select a PowerFlex 755 drive for Integrated Motion on EtherNet/IP networks (selection catalog number ends in –CM-S3 for drives with network STO option). 3. Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications as described in the following section.
-
Page 56: Configure An Option Card On A Powerflex 755 Drive In Integrated Motion On Ethernet/Ip Network Applications
Chapter 5 Integrated Motion – Network STO Programming and Operation Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications 1. On the New Module dialog box, name the drive. 2. Type the IP Address.
-
Page 57: Generate The Safety Network Number (Snn)
Integrated Motion – Network STO Programming and Operation Chapter 5 6. Click Safety Definition to configure 20-750-S3 revision and Electronic Keying. 7. Click OK to close the Safety Definition dialog box. 8. Click OK to close the Module Definition dialog box. Note that the Safety Network Number (SNN) is on the General page and that there is a Safety page.
-
Page 58: Configure Safety Connections
Chapter 5 Integrated Motion – Network STO Programming and Operation 3. Click Generate. 4. Click OK. Configure Safety Connections To configure the safety tab, follow these steps. 1. Click the Safety tab in the drive Module Properties. 2. Adjust the Safety Input Requested Packet Interval (RPI) as desired for your safety system.
-
Page 59
Integrated Motion – Network STO Programming and Operation Chapter 5 3. Click Advanced… for more advanced settings. 4. Configure the advanced settings as desired. Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign. -
Page 60: Safety Configuration Signature And Ownership
Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in the drive’s Module Properties dialog box.) •…
-
Page 61: Safe Torque Off — Stop Category 0 Example Program
Integrated Motion – Network STO Programming and Operation Chapter 5 Safe Torque Off – Stop This safety task code is an example for a category 0 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 0 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…
-
Page 62: Safe Torque Off — Stop Category 1 Example Program
Chapter 5 Integrated Motion – Network STO Programming and Operation Safe Torque Off – Stop This safety task code is an example for a category 1 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 1 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…
-
Page 63: Safety Tags In Standard Routines
Integrated Motion – Network STO Programming and Operation Chapter 5 instruction is used on the reset rung. Then, the OSF instruction Output Bit tag is used as the reset bit for the STO output or enable rungs. Safety Tags in Standard Routines Tags that are classified as safety tags are either controller-scoped or program- scoped.
-
Page 64: Sto Fault Reset
To clear the STO Fault condition, a transition from logic 0 to 1 of the SO.Reset tag is required. If the PowerFlex 755 drive safety controller detects a fault, the input assembly tag SI.SafetyFault is set to 1. To reset an Axis.SafetyFault, a Motion Axis Fault Reset (MAFR) command must be issued.
-
Page 65: Troubleshoot The Safe Torque Off Function
Out-of-Box State on page Replacing a PowerFlex 755 drive that is on an integrated safety network is more complicated than replacing standard devices because of the safety network number (SNN). The device number and SNN make up the safety device’s DeviceID.
-
Page 66: Replace An Integrated Safety Drive In A Guardlogix System
Chapter 5 Integrated Motion – Network STO Programming and Operation Replace an Integrated Safety Drive in a GuardLogix System When you replace an integrated safety drive, the replacement device must be configured properly and the replacement drives operation be user-verified. ATTENTION: During drive replacement or functional test, the safety of the system must not rely on any portion of the affected drive.
-
Page 67: Motion Direct Commands In Motion Control Systems
ATTENTION: Enable the Configure Always feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755 drive. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s Configure Always feature is…
-
Page 68
Understand STO Bypass When Using Motion Direct Commands If a Safety-only connection between the GuardLogix safety controller and the PowerFlex 755 drive was established at least once after the drive was received from the factory, the drive does not allow motion while the safety controller is in Program mode by default. -
Page 69
Logix Designer Application Warning Messages When the controller is in Run mode, executing safety functions, the PowerFlex 755 drive follows the commands that it receives from the safety controller. The controller reports Safety State = Running and Axis State =… -
Page 70
Chapter 5 Integrated Motion – Network STO Programming and Operation When you issue a motion direct command to an axis to produce torque in Program mode, for example MSO or MDS, with the safety connection present to the drive, a warning message is presented before the motion direct command is executed, as shown in Figure Figure 10 — STO Bypass Prompt When the Safety Controller is in Program Mode… -
Page 71
Integrated Motion – Network STO Programming and Operation Chapter 5 Figure 11 — Safety State Indications After Controller Transitions to Program Mode (MDC executing) IMPORTANT The persistent warning message text Safe Torque Off bypassed appears when a motion direct command is executed. The warning message persists even after the dialog is closed and reopened as long as the integrated safety drive is in STO Bypass mode. -
Page 72
Chapter 5 Integrated Motion – Network STO Programming and Operation Torque Permitted in a Multi-workstation Environment The warning in Figure 12 is displayed to notify a second user working in a multi-workstation environment that the first user has placed the integrated safety drive in the STO state and that the current action is about to bypass the STO state and permit torque. -
Page 73
Integrated Motion – Network STO Programming and Operation Chapter 5 Figure 15 — Axis and Safe State Indications on the Motion Console Dialog Box Functional Safety Considerations ATTENTION: Before maintenance work can be performed in Program mode, the developer of the application must consider the implications of allowing motion through motion direct commands and should consider developing logic for runtime maintenance operations to meet the requirements of machine safety operating procedures. -
Page 74
Chapter 5 Integrated Motion – Network STO Programming and Operation Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 75: Wiring
Chapter Hardwired STO Wiring and Operation This chapter provides information for hardwired installation and operation of the Integrated Safety — Safe Torque Off option module. Topic Page Wiring Description of Hardwired Operation Selection of Hardwired Operation Configure the Drive with Hardwired Safety Connections Timing Diagrams Wiring Observe these wiring guidelines when installing the safety option module:…
-
Page 76: Cabling
Chapter 6 Hardwired STO Wiring and Operation IMPORTANT The National Electrical Code and local electrical codes take precedence over the values and methods provided. Cabling • Safety input wiring must be protected against external damage by cable ducts, conduit, armored cable, or other means. •…
-
Page 77: Description Of Hardwired Operation
To add the 20-750-S3 peripheral device, and configure the safety connection, see these sections: Hardwired Safety • Add an Option Card to a PowerFlex 755 Drive in I/O Mode on page 34 Connections • Add an Option Card to a PowerFlex 755T Drive Product in I/O Mode…
-
Page 78: Timing Diagrams
Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
-
Page 79
Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 80
Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. ATTENTION: The STO fault is detected upon demand of the STO function. -
Page 81: Monitor Sto Status
Chapter Monitoring and Troubleshooting This chapter provides information for monitoring and troubleshooting the Integrated Safety — Safe Torque Off option module. Topic Page Monitor STO Status Monitor STO With a HIM or Software Monitor STO Status The option module has three status indicators to provide status of the module, safety network, and motion output of the drive.
-
Page 82: Network Status Indicator (Ds2)
Chapter 7 Monitoring and Troubleshooting Network Status Indicator (DS2) Table 14 provides information for the network status. Table 14 — Network Status LED (DS2) Status State Problem Indicator Not powered/not online Device is not online. No connections Flashing green Device is online but has no connections in the established state. Connected Green Device is online and connections in the established state.
-
Page 83: Monitor Sto With A Him Or Software
Monitoring and Troubleshooting Chapter 7 Monitor STO With a HIM or This section describes safety-related status information available for viewing with a HIM, drive module properties in the Logix Designer application, or Software Connected Components Workbench™ software. Fault Messages on HIM, Drive Module, and Connected Components Workbench Software The only message displayed for any fault originating from the option card is ‘SAFETY BRD FAULT’…
-
Page 84
Chapter 7 Monitoring and Troubleshooting For diagnostic purposes, you can also view status attributes by accessing these Host Config parameters (note: these are different than the ‘Device Config’ parameters) from a HIM, Connected Components Workbench software, or the Logix Designer application: •… -
Page 85
Monitoring and Troubleshooting Chapter 7 Table 20 — Safety Status [P4] Display Text Description Safety Fault Indicates the existence of a safety fault 0 = no fault 1 = faulted Safety Reset A transition from 0 to 1 resets the safety function. Restart Req Indicates whether a manual restart is required following a stop function, 0 = restart not required… -
Page 86: Safety Supervisor State
Chapter 7 Monitoring and Troubleshooting Safety Supervisor State The Safety Supervisor State provides information on the state of the safety connection and the mode of operation. It can be read in the user’s Logix program via the MSG instruction. Table 22 — Safety Supervisor State: MSG Parameter Value Description…
-
Page 87: Integrated Safety — Safe Torque Off Option Module
Appendix Specifications, Certifications, and CE Conformity This appendix provides general specifications for the Integrated Safety — Safe Torque Off option module. Topic Page Integrated Safety — Safe Torque Off Option Module Specifications Environmental Specifications Certifications Integrated Safety — Safe These specifications apply to the Integrated Safety — Safe Torque Off option module.
-
Page 88: Environmental Specifications
For detailed information on environmental, pollution degree, and drive enclosure rating specifications, see the technical data publication for your drive. • PowerFlex 755 AC Drives Technical Data, publication 750-TD001 • PowerFlex 750-Series Products with TotalFORCE™ Control Technical…
-
Page 89: Certifications
EN IEC 62061; Up to Performance Level PLe and Category 3, according to EN ISO 13849-1; When used as described in this PowerFlex 755 Integrated Safety — Safe Torque Off User Manual, publication 750-UM004. (1) See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page…
-
Page 90
Appendix A Specifications, Certifications, and CE Conformity Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 91: Installation Considerations
Appendix STO Option Module Replacement Considerations This appendix provides a comparison of the differences between the Safe Torque Off option module (catalog number 20-750-S) and the new Integrated Safety — Safe Torque Off option module (catalog number 20-750-S3). Topic Page Installation Considerations Wiring Installation Considerations…
-
Page 92: Wiring
Appendix B STO Option Module Replacement Considerations Wiring The wiring and terminal blocks for the option modules are different. Safe Torque Off Option Module This section describes the terminal block and power supply for the Safe Torque Off option module. Table 26 — TB2 Terminal Designation Terminal Name Description…
-
Page 93: Parameters And Settings In A Linear List
Appendix Parameter Data This appendix provides a description of the device config parameters and host config parameters. Parameters and Settings in a This section lists the configurable parameters and their valid settings in numerical order. Linear List Device Config Parameters These parameters are part of the device configuration parameters.
-
Page 94
Appendix C Parameter Data Table 28 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Extended Status “Self Test” (0) A self test is in progress. USINT Detailed description “FW Update” (1) A firmware update is in progress. of the module status based on Identity “IO Faulted”… -
Page 95: Host Config Parameters
Parameter Data Appendix C Table 28 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Safety In Values “In0 Value” (0) Safety Input 0 Value BYTE Current value of the 0 = Off safety inputs. 1 = On “In1 Value”…
-
Page 96
Appendix C Parameter Data Table 29 — Host Config Parameters (continued) Display Name Values Full Name Description Safety State USINT Provides information on the state of the safety connection and the mode of operation. “Testing” (1) – The safety option module is in self-test “Idle”… -
Page 97: Index
STO state reset 64 GuardLogix 5570 13 IP address 34 GuardLogix 5580 13 jumper diagnostics 84 locations documentation Powerflex 755 drives 21 additional resources 10 PowerFlex 755T drive products 22 drive replacement settings 19 integrated safety 48 DS1 81 DS2 81…
-
Page 98
95 task signature 49 PFD 16 SAFETY BRD FAULT 83 PFD and PFH safety only connection 32 PowerFlex 755 drives 17 shielded cable 76 PowerFlex 755T drive products 17 SI.ConnectionStatus tags 30 pollution degree 88 SI.Status tags 30 power supply… -
Page 99
Index status attributes 84 indicators 81 LEDs module status (DS1) 81 motion output status (DS3) 82 network status (DS2) 82 fault condition 47 reset 47 fault messages 83 Circuit Err(3) 83 Discrepancy(102) 83 Mode Conflict(104) 83 Stuck High(5) 83 Stuck Low(4) 83 fault type 83 function response time 29 stop category… -
Page 100
Index Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018… -
Page 102
How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf. Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page. Allen-Bradley, Connected Components Workbench, CompactLogix, ControlLogix, GuardLogix, PowerFlex, Rockwell Automation, Rockwell Software, Studio 5000 Logix Designer, and TotalFORCE are trademarks of Rockwell Automation, Inc.
Дата публикации: 10.08.2017
Устранение неисправностей преобразователя частоты Allen Bradley PowerFlex 700 начинается с неисправности, возникающей во время работы или запуска. Состояние вашего устройства постоянно контролируется, и любые изменения состояния будут отображаться с клавиатуры. Ошибка — это условие, которое останавливает преобразователь и должно быть исправлено до сброса ошибки и запуска частотника. Ниже приведен список неисправностей и возможных причин. Если неисправность не может быть сброшена, это может означать, что привод PowerFlex 700 нуждается в ремонте.
Fault 29 — Analog In Loss — аналоговый вход сконфигурирован на ошибку при потере сигнала. Потеря сигнала произошла.
Fault 108 — Anlg Cal Chksum — Контрольная сумма, считанная из аналоговых данных калибровки, не соответствует расчетной сумме.
Fault 33 — Ошибки Auto Rstrt — Диск неудачно попытался сбросить ошибку и возобновить выполнение запрограммированного количества [Flt RstRun Tries].
Fault 80 — AutoTune Aborted — функция автонастройки отменена пользователем или произошла ошибка.
Fault 2 — Вспомогательный вход — Блокировка дополнительного входа открыта.
Fault 55 — Cntl Bd Overtemp — датчик температуры на главной панели управления обнаружил чрезмерное нагревание.
Fault 69 — Сопротивление ББ — Сопротивление внутреннего резистора БД выходит за допустимые пределы.
Fault 24 — Запрет торможения — привод не выполняет заданное замедление, потому что он пытается ограничить напряжение на шине.
Fault 64 — Привод OverLoad — Превышен рейтинг привода 110% в течение 1 минуты или 150% в течение 3 секунд.
Fault 49 — Привод питания — не отображается ошибка. Используется как маркер включения питания в очереди сбоев, указывая на то, что мощность привода была циклической.
Fault 79 — Чрезмерная нагрузка — двигатель не достиг скорости в назначенное время во время автонастройки.
Fault 91 — Потеря энкодера — Требуется дифференциальный датчик. Отсутствует один из двух сигналов канала энкодера.
Fault 90 — Encoder Quad Err. Оба канала кодировщика изменили состояние в течение одного тактового цикла.
Fault 900-930 — Fatal Faults — Диагностический код, указывающий на неисправность привода.
Fault 52 — Сброс неисправностей — Не отображается ошибка. Используется как маркер в очереди сбоев, указывающий, что была выполнена функция сброса ошибок.
Fault 51 — Flt QueueCleared — Не отображается ошибка. Используется как маркер в очереди ошибок, указывающий, что была выполнена функция очистки очереди.
Fault 78 — FluxAmpsRef Rang — значение для усилителей потока, определенных процедурой автонастройки, превышает запрограммированный [Motor NP FLA].
Fault 13 — Неисправность заземления — путь тока на землю превышает 25% от номинальной мощности.
Fault 93 — Неисправность аппаратного обеспечения — аппаратное включение отключено (перемычка высока), но логический вывод по-прежнему низкий.
Fault 130 — Ошибка аппаратного обеспечения — Ошибка загрузки массива ворот.
Неисправность 131 — Ошибка аппаратного обеспечения — сбой в двух портах.
Fault 18 — Аппаратное обеспечение PTC — Двигатель PTC (положительный температурный коэффициент) Overtemp.
Fault 10 — Теплоотвод LowTemp — Объявляет слишком низкий температурный режим или открытое устройство NTC (датчик температуры радиатора).
Fault 8 — Теплоотвод OvrTemp — Температура радиатора превышает 100% от [Частота вращения] или составляет менее примерно -19 ° C.
Fault 12 — HW OverCurrent — Выходной ток привода превысил предельный ток оборудования.
Fault 106 — Incompat MCB-PB — Информация о характеристиках привода, хранящаяся на плате питания, несовместима с основной панелью управления.
Fault 121 — Потеря связи ввода-вывода — плата ввода-вывода потеряла связь с Главным управлением.
Fault 122 — Ошибка ввода-вывода — обнаружен ввод-вывод, но не была выполнена последовательность включения питания.
Fault 17 — Потеря входной фазы — пульсация шины постоянного тока превысила заданный уровень.
Fault 77 — IR Volts Range — Calculate «- это авто настройка по умолчанию, а значение, определяемое процедурой авто настройки для ИК-капель, не находится в диапазоне допустимых значений.
Fault 87 — IXo VoltageRange — Напряжение, рассчитанное для индуктивного сопротивления двигателя, превышает 25% от [Motor NP Volts].
Fault 15 — Потеря нагрузки — Ток выходного крутящего момента привода ниже [Уровень потери нагрузки] в течение периода времени, превышающего [Время потери нагрузки].
Fault 7 — Перегрузка двигателя — Отключение внутренней электронной перегрузки.
Fault 16 — Термистор двигателя — Выход термистора выходит за допустимые пределы.
Fault 109 — Контрольная сумма ввода / вывода NVS — ошибка контрольной суммы EEprom.
Fault110 — Неисправность ввода-вывода NVS — ошибка ввода-вывода EEprom.
Fault 21 — Выход PhaseLoss — Ток в одной или нескольких фазах потерян или остается ниже заданного уровня.
Fault 25 — OverSpeed Limit — такие функции, как компенсация скольжения или регулировка шины, попытались добавить настройку выходной частоты больше, чем запрограммировано в [Ограничение скорости].
Fault 5 — OverVoltage — Напряжение шины постоянного тока превысило максимальное значение.
Fault 100 — Параметр Chksum — Контрольная сумма, считанная с доски, не соответствует расчетной сумме.
Fault 48 — Params Defaulted — Приводу было задано указание значений по умолчанию для EEPROM.
Fault 38 — Фаза от U до Grnd. На этом этапе между приводом и двигателем обнаружена фаза на землю.
Fault 39 — Фаза V до Grnd — На этом этапе между приводом и двигателем обнаружена фаза на замыкание на землю.
Fault 40 — Фаза W до Grnd. На этом этапе между приводом и двигателем обнаружена фаза на землю.
Fault 41 — Phase UV Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 42 — Phase VW Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 43 — Phase UW Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 71 — Адаптер порта 1 — У коммуникационной карты есть неисправность.
Fault 72 — Адаптер порта 2 — У карты связи есть неисправность.
Fault 73 — Адаптер порта 3 — У карты связи есть неисправность.
Fault 74 — Порт 4 Адаптер — У коммуникационной карты есть неисправность.
Fault 75 — Порт 5 Адаптер — Ошибка связи с коммуникационной картой.
Fault 76 — Порт 6 Адаптер — У коммуникационной карты есть неисправность.
Fault111 — Power Down — данные EEPROM повреждены при включении питания.
Fault 3 — Потеря мощности — Напряжение шины постоянного тока оставалось ниже 85% от номинала дольше, чем [Время потери мощности].
Fault 70 — Блок питания. Один или несколько выходных транзисторов работают в активной области вместо десатурации. Это может быть вызвано чрезмерным током транзистора или недостаточным напряжением базового привода.
Fault 92 — Pulse In Loss — Z Channel выбран как импульсный вход, и сигнал отсутствует.
Fault 104 — Pwr Brd Chksum1 — Контрольная сумма, считанная с EEPROM, не соответствует контрольной сумме, рассчитанной из данных EEPROM.
Fault 105 — Pwr Brd Chksum2 — Контрольная сумма, считанная с доски, не соответствует расчетной сумме.
Fault 107 — Заменена MCB-PB — Главный блок управления был заменен, и параметры не были запрограммированы.
Fault 28 — См. Руководство — Без энкодера TorqProve был включен, но пользователь не читал и не понимал проблемы приложений без энкодера.
Fault 63 — Pin Shear — запрограммировано [Current Lmt Val].
Fault 88 — Ошибка программного обеспечения — Ошибка установления связи с микропроцессором.
Fault 89 — Ошибка программного обеспечения — ошибка установления связи с микропроцессором.
Fault 36 — SW OverCurrent — выходной ток привода превысил номинальный ток 1 мс. Этот рейтинг больше, чем номинальный ток 3 секунды и меньше, чем уровень сбоя аппаратной максимальной токовой защиты. Обычно он составляет 200-250% от номинальной скорости привода.
Fault 20 — TorqPrv Spd Band — разница между [Commanded Speed] и [Encoder Speed] превысила уровень, установленный в [Spd Dev Band] за период времени, превышающий [Spd Band Integrat].
Fault 9 — Trnsistr OvrTemp — Выходные транзисторы превысили максимальную рабочую температуру.
Fault 4 — UnderVoltage — Напряжение шины постоянного тока упало ниже минимального значения 407 В постоянного тока на входе 400/480 В или 204 В постоянного тока на входе 200/240 В.
Fault 101 — UserSet1 Chksum — контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.
Fault 102 — UserSet2 Chksum — контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.
Fault 103 — UserSet3 Chksum — Контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.
Заказать оборудование Allen Bradley
Купить Allen Bradley powerflex ошибки в компании Олниса можно оптом или в розницу. Доставим Allen Bradley powerflex ошибки в любой регион России. Можем предложить точный аналог. Работаем напрямую с производителем, не используя посредников.
При работе промышленной электроники производителя Аллен-Брэдли могут возникать определённые ошибки. Чтобы быстро их устранить, необходима помощь наладчика оборудования или можно самостоятельно ознакомиться с инструкцией. Приборы максимально адаптированы для работы новичков и настроить их не составит большого труда.
Серия Allen Bradley PowerFlex представлена частотными преобразователями. Зная специфику их работы и наименование модельного ряда, можно быстро сориентироваться для устранения ошибок в промышленном секторе:
- серия PowerFlex 1305;
- серия PowerFlex 1332;
- серия PowerFlex 70;
- серия PowerFlex 700S;
- серия PowerFlex 1333;
- серия PowerFlex 1334;
- серия PowerFlex 1336;
- серия PowerFlex 1341;
- серия PowerFlex 1351;
- серия PowerFlex 527;
- серия PowerFlex 4M;
- серия PowerFlex 4;
- серия PowerFlex 40;
- серия PowerFlex 40P;
- серия PowerFlex 1352;
- серия PowerFlex 1361;
- серия PowerFlex 160;
- серия PowerFlex 755T;
- серия PowerFlex 755 TL;
- серия PowerFlex 755TR;
- серия PowerFlex 755TM;
- серия PowerFlex 753;
- серия PowerFlex 755;
- серия PowerFlex 700;
- серия PowerFlex 700L;
- серия PowerFlex 523;
- серия PowerFlex 525;
- серия PowerFlex 400.
Кодировка ошибки и ее значение
Для всех вышеперечисленных частотников наиболее характерны следующие шифры ошибок:
- сбой F2 – ошибка входа в Auxiliary;
- сбой F3 – нарушение или обрыв фазы сети при подключении;
- сбой F4 – слишком низкий показатель электронапряжения в сети;
- сбой F5 – слишком высокий показатель электронапряжения в сети;
- сбой F6 – поломка двигателя, есть механические повреждения, мешающие нормальной работе устройства;
- сбой F7 – перегрузка электромотора напряжением, опасность;
- сбой F8 – начинает перегреваться радиатор;
- сбой F12 – пиковый скачок напряжения с прицельным электроударом на аппарат;
- сбой F13 – произошло короткое замыкание контакта заземления;
- сбой F29 – аналоговый вход неисправен;
- сбой F33 – невозможно переподключиться автоматически, превышен лимит авто запроса;
- сбои в диапазоне F38-43 – сигнализируют о нарушениях работы фаз U, V, W и их коннекта между собой;
- сбой F48 – аварийный сброс всех предустановленных автонастроек;
- сбой F63 – сбой установки ПО;
- сбой F64 – внезапная перезагрузка в процессе работы –неисправность системы;
- сбой F70 – силовая часть аппарата вышла из строя;
- сбой F71 – нарушена обратная связь с контролирующим устройством;
- сбой F80 – автоматические корректировки более работают, требуется перезагрузка системы;
- error F81 – неисправен порт RS-485;
- сбой F100 – отказ подсчета суммы записанных параметров;
- сбой F122 – плата ввода/вывода вышла из строя.
Это основной перечень, который легко устранить, следуя руководству по эксплуатации преобразователей частоты Аллен-Брэдли.
Покупка в «Олниса»
Выбор конкретного устройства и его настройка – задача специалиста или работника, ответственного за контроль прибора. Оригинальные устройства с длительной гарантией работы и полным сервисным обслуживанием на протяжении 12 месяцев от момента покупки вы найдете в нашем онлайн-каталоге.
Все приборы Allen Bradley можно приобрести с доставкой по России или любому другому городу на территории СНГ.
-
alegor
- здесь недавно
- Сообщения: 5
- Зарегистрирован: 08 окт 2022, 13:32
- Имя: Игорь
- город/регион: ВОЛЖСКИЙ
Power flex 400 ОШИБКИ f5 f13
Сообщение
alegor » 08 окт 2022, 14:11
Выдает ошибки 1) перенапряжение на шине DC F5 и параметр b005 завышенное напряжения и к тому же плавает плюс минус 100 в (в действительности все нормально)
2) короткое замыкание выхода F13 но силовые модули исправны кз физически нет.
также индикация температуры B014 повышенная температура 60 градусов и плавает также плюс минус 30 и не реагирует на отключение датчика температуры.
При сбросе всех ошибок остается F13 кз выхода потом снова появляется F5 превышение напряжения.
похоже все указывает на глюк процессорной части.
что с этим можно сделать?
схему бы..)
где купить?
модель 22C-D072A103 SERIA A
-
Ryzhij
- почётный участник форума
- Сообщения: 5370
- Зарегистрирован: 07 окт 2011, 09:12
- Имя: Гаско Вячеслав Эриевич
- Страна: Россия
- город/регион: Рязань
- Благодарил (а): 422 раза
- Поблагодарили: 614 раз
Power flex 400 ОШИБКИ f5 f13
Сообщение
Ryzhij » 10 окт 2022, 14:46
Посмотреть внимательно на проект, и решить вопрос с необходимостью и исправностью тормозных реостатов. И тормозного ключа тоже.
—————————————————
«У человека в душе дыра размером с Бога, и каждый заполняет её как может.» (Жан-Поль Сартр)
«Ту пустоту, которая остаётся в душе, когда в ней нет Бога, и весь мир не может заполнить.» (святитель Николай Сербский)
13 апреля 2023 г. 09:43
При работе промышленной электроники Allen Bradley в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы Allen Bradley: PowerFlex, 1305 Series, 1332 Series, 1333 Series, 1334 Series, 1336 Series, 1341 Series, 1351 Series, 1352 Series, 1361 Series, 160 Series,. В свою очередь серия Allen Bradley PowerFlex включает в себя следующие модели: PowerFlex 755T, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex 753, PowerFlex 755, PowerFlex 755T, PowerFlex 70, PowerFlex 700S, PowerFlex 700, PowerFlex 700L, PowerFlex 523, PowerFlex 525, PowerFlex 527, PowerFlex 4M, PowerFlex 4, PowerFlex 40, PowerFlex 40P, PowerFlex 400. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.
Частотные преобразователи Allen Bradley имеют следующие распространенные ошибки:
Наиболее частые ошибки преобразователей Allen Bradley PowerFlex 40:
Ошибка F2 (error F2) — ошибка входа Auxiliary;
Ошибка F3 (error F3) — обрыв фазы на входе;
Ошибка F4 (error F4) — пониженное напряжение;
Ошибка F5 (error F5) — перенапряжение;
Ошибка F6 (error F6) — механическая неисправность двигателя;
Ошибка F7 (error F7) — перегрузка двигателя;
Ошибка F8 (error F8) — перегрев радиатора;
Ошибка F12 (error F12) — аппаратная перегрузка по току;
Ошибка F13 (error F13) — короткое замыкание на землю;
Ошибка F29 (error F29) — ошибка аналогового входа;
Ошибка F33 (error F33) — превышено количество попыток автоматического повторного включения — АПВ;
Ошибка F38 (error F38) — замыкание фазы U на землю на выходе ПЧ;
Ошибка F39 (error F39) — замыкание фазы V на землю на выходе ПЧ;
Ошибка F40 (error F40) — замыкание фазы W на землю на выходе ПЧ;
Ошибка F41 (error F41) — короткое замыкание между фазами UV;
Ошибка F42 (error F42) — короткое замыкание между фазами UW;
Ошибка F43 (error F43) — короткое замыкание между фазами VW;
Ошибка F48 (error F48) — параметры EEPROM были сброшены;
Ошибка F63 (error F63) — перегрузка по току по программной уставке;
Ошибка F64 (error F64) — перегрузка во время работы;
Ошибка F70 (error F70) — неисправность силовой части;
Ошибка F71 (error F71) — ошибка связи;
Ошибка F80 (error F80) — ошибка автонастройки;
Ошибка F81 (error F81) — ошибка связи RS485;
Ошибка F100 (error F100) — ошибка контрольной суммы записанных параметров;
Ошибка F122 (error F122) — ошибка платы ввода-вывода.
Контакты
Время выполнения запроса: 0,00232911109924 секунды.
Рекомендуемые сообщения
-
#1
Доброго времени суток! Имеется частотный преобразователь Allen Bradley Power Flex 40, мощность 0.75 квт, 220 в. Работал без сбоев до недавнего времени на токарном станке. Без всякой причины выдал ошибку F013 (замыкание одной из фаз на землю). Был проверен двигатель, попробовал подключать другие двигатели- та же ошибка, причем ошибка начала появляться чаще, и теперь появляется примерно через минуту работы ПЧ, без подключения двигателя она также высвечивается. Проверил все конденсаторы, протянул гайки, осмотрел на предмет повреждений платы ПЧ. Частотник рабочий, водой не заливался, внутри даже пыли нет. Может у кого есть опыт в ремонте этих приборов или есть какие-нибудь предположения? Я уже морально подготовился к замене привода, буду рад любому совету.
Поделиться сообщением
Ссылка на сообщение
-
#2
Allen Bradley Power Flex 40 достаточно редкая вещь для использования в личных целях. Скорее всего неисправен сам ПЧ, его силовой модуль, ремонт на такие мощности ПЧ не рентабелен, ремонт может иметь стоимость нового ПЧ. Если сами сможете диагностировать и определить точно неисправность а потом отремонтировать — это одни затраты, а если искать мастера на стороне это уже совсем другие затраты. И в принципе , решать вам, да вы уже и готовы к замене.
Поделиться сообщением
Ссылка на сообщение
-
#3
Полностью с вами согласен. В сети удивительно мало информации по этим частотникам. Нашел упоминание на зарубежном форуме о такой аномалии в приборах выпускавшихся до 2013 года, AB чинила их по гарантии. Что-то подсказывает что транзисторная сборка у меня цела, но проверить без выпайки не могу, грешил на датчики Холла, но это не они. Собственно в ремонт отдавать не хочу, сборка стоит дороже, чем я его купил, да и нет в наших краях толковых мастеров.
Поделиться сообщением
Ссылка на сообщение
-
#4
Эти ПЧ шли в основном для нефтехима, чистый америкос,силовая часть похожа на ПЧ LENZE 8200 Vector. Сделаны неплохо и работают долго, ломаются крайне редко.
Поделиться сообщением
Ссылка на сообщение
-
#5
В моем случае сборка вроде китайская, но качественная. Самое обидное, что отработал он только 1700 часов (судя по внутреннему счетчику), мост целый, на шине постоянного тока стабильно 315 вольт. И насколько удалось прозвонить на клеммах- сборка igbt тоже впорядке, это так еще и потому, что пч работает, хоть и выдает потом ошибку. Данная ошибка означает именно короткое на землю где-то в управляющих цепях, а не замыкание одной из выходных фаз. Похоже на какой-то глюк, который программа интерпретирует как утечка в заземление. Попробую поискать инфу по LENZE 8200, может что подобное попадется.
Поделиться сообщением
Ссылка на сообщение
-
#6
Инфы не найдете, скорее всего один из силовых ключей неисправен, есть у них такая штука как микропробой канала, после микропробоя канал имеет свойство частично восстанавливаться и работать какое то время. Защита у них работает быстро и отрубает управление ключами не допуская полного разрушения структуры канала. Либо датчик тока какой то дает ложное срабатывание.
Поделиться сообщением
Ссылка на сообщение
-
#7
Да уж, я так понимаю убедиться в этом можно лишь заменив сборку на заведомо рабочую. На счет датчиков, считаю проблема не в них, т.к. частотник и без всякого тока на выходных клеммах выдает ошибку. Спасибо вам, Павел, за помощь. Буду подыскивать новый преобразователь.
Поделиться сообщением
Ссылка на сообщение
-
#8
Дело в том, что кроме датчиков тока на выходных фазах, есть ещё датчики тока шины постоянного тока, по ним и идет диагностика короткого на землю.
Поделиться сообщением
Ссылка на сообщение
-
#9
Думаю что и такая причина возможна. При разборке не заметил чтобы после мостика были вообще какие-то датчики.
Поделиться сообщением
Ссылка на сообщение
Для публикации сообщений создайте учётную запись или авторизуйтесь
Вы должны быть пользователем, чтобы оставить комментарий
Войти
Уже есть аккаунт? Войти в систему.
Войти
-
Последние посетители
0 пользователей онлайн
Ни одного зарегистрированного пользователя не просматривает данную страницу