Powerflex 755 коды ошибок

  • Page 1
    User Manual Original Instructions PowerFlex 755/755T Integrated Safety Functions Option Module Catalog Number 20-750-S4…
  • Page 2
    Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.
  • Page 3: Table Of Contents

    Table of Contents Preface Conventions ……….. 9 Terminology .

  • Page 4
    Table of Contents Chapter 3 Safety I/O Safety Inputs……….39 Safety Input Operation .
  • Page 5
    Safety Controller Project ……..106 Add an Option Module to a PowerFlex 755 Drive… 108 Generate the Safety Network Number (SNN) .
  • Page 6
    Operation Add a PowerFlex 755 Drive to the Controller Project..144 Understand Module Properties Categories ….. 145 Module Properties>General Category .
  • Page 7
    Table of Contents Safety Supervisor State ……..199 Safety Core Fault .
  • Page 8
    Table of Contents Appendix D Parameter Data Parameters and Settings in a Linear List ……253 Device Parameters ……..253 Host Config Parameters.
  • Page 9: Preface

    Standard I/O mode. IMPORTANT You must have a basic understanding of electrical circuitry and familiarity with PowerFlex 755 drives and PowerFlex 755T drive products. You must also be trained and experienced in the creation, operation, and maintenance of safety systems.

  • Page 10: Terminology

    Throughout this manual, the PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, PowerFlex 755TM drive systems are also referred to as PowerFlex 755T drive products. The PowerFlex 755 drive is used for the examples in this manual. Terminology Table 1 defines the abbreviations that are used in this manual.

  • Page 11
    Preface Table 1 — Abbreviations and Definitions (continued) Abbreviation Full Term Definition System for control, protection, or monitoring based on one or more programmable electronic devices, Programmable Electronic Systems including all elements of the system such as power supplies, sensors and other input devices, data highways and other communication paths, and actuators and other output devices.
  • Page 12: Product Firmware And Release Notes

    Preface Product Firmware and Product firmware and release notes are available online within the Product Compatibility and Download Center. Release Notes 1. From the Search bar on http://www.ab.com, choose Compatibility and Downloads. 2. Search for your product. 3. On the search results page, find the firmware and release notes for your product.

  • Page 13: Additional Resources

    Provides declarations of conformity, certificates, and other certification details. www.rockwellautomation.com/global/certification/overview.page You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…

  • Page 14
    Preface Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 15: What Is The Integrated Safety Functions Option Module

    Chapter About Safe Stop and Safe Monitor Functions This chapter provides information on safety considerations for the Integrated Safety Functions option module. Topic Page What Is the Integrated Safety Functions Option Module? Compatible Drives Compatible Safety Controllers Safety Application Requirements Safety Certification Proof Tests PFD and PFH Definitions…

  • Page 16
    • PowerFlex® 750-Series Safe Torque Off option module (catalog number 20-750-S) • PowerFlex 750-Series Safe Speed Monitor option module (catalog number 20-750-S1) • PowerFlex 755/755T Integrated Safety — Safe Torque Off option module (catalog number 20-750-S3) • PowerFlex 755/755T Integrated Safety Functions option module (catalog number 20-750-S4)
  • Page 17: Compatible Drives

    IMPORTANT Do not use this option module as a control for starting or stopping the drive. Compatible Drives The Integrated Safety Functions option module is compatible with these PowerFlex 755 drives and PowerFlex 755T drive products: • PowerFlex 755 drives (v14.xxx or later) • PowerFlex 755TL low harmonic drives (v4.xxx or later) •…

  • Page 18: Safety Application Requirements

    GuardLogix Controller Systems Safety Reference Manuals that are listed in the Additional Resources on page The TÜV Rheinland group has approved the PowerFlex 755 Integrated Safety Safety Certification Functions option module (catalog number 20-750-S4) as suitable for use in integrated safety applications: •…

  • Page 19: Stop Category Definitions

    About Safe Stop and Safe Monitor Functions Chapter 1 ATTENTION: When designing your system, consider how various personnel can interact with the machine. Additional safeguard devices can be required for your specific application. ATTENTION: In circumstances where external influences (for example, suspended loads that can fall) are present, additional measures (for example, mechanical brakes) can be necessary to help prevent any hazard.

  • Page 20: Proof Tests

    Chapter 1 About Safe Stop and Safe Monitor Functions Proof Tests IEC 61508 requires you to perform various proof tests of the equipment that is used in the system. Proof tests are performed at user-defined times. For example, proof tests can be once a year, once every 15 years, or whatever time frame is appropriate.

  • Page 21: Pfd And Pfh Data

    (STO) or Timed Safe Stop 1 functions. These values apply when Safety Instance is set to ‘Safe Stop Only – No Feedback’ . Table 2 — PFD and PFH for PowerFlex 755 Drives STO and Timed SS1 PowerFlex 755 Drives…

  • Page 22
    Chapter 1 About Safe Stop and Safe Monitor Functions In general, the PFD and PFH values from Table 4 should be added to Table 2 Table 3 when Safety Instance is set to ‘Single Feedback Monitoring’ or ‘Dual Feedback Monitoring’ . When using Dual Feedback Monitoring, enable Discrepancy Testing.
  • Page 23: Safety Data For Safety I/O

    About Safe Stop and Safe Monitor Functions Chapter 1 Safety Data for Safety I/O The Integrated Safety Functions option module provides four safety inputs and two safety outputs. Table 5 provides PFD and PFH values to add for safety functions that use this Safety I/O. Table 5 — PFD or PFH to Add When Safety Functions Use Safety I/O Attribute Single Channel Safety I/O…

  • Page 24: Safety Reaction Time

    Additional Resources on page Table 7 — Safety Reaction Time Drive Family Value, Max PowerFlex 755 drives (firmware revision 13 or later), Frames 1…10 PowerFlex 755TL low harmonic drives, Frames 8…12 15 ms PowerFlex 755TR regenerative drives, Frames 8…12 PowerFlex 755TM drive systems, Frames 8…12 IMPORTANT An input signal condition that is present for less than the reaction time may not result in the safety function being performed.

  • Page 25: Encoder Considerations

    About Safe Stop and Safe Monitor Functions Chapter 1 Encoder Considerations This section describes factors to consider when using an encoder with the Integrated Safety Functions option module. Supported Encoders Table 8 describes the supported encoder types based on the feedback card that is used and the physical terminal it is connected to.

  • Page 26
    Chapter 1 About Safe Stop and Safe Monitor Functions The following voltage monitoring ranges are supported: • 4.75v…5.25v (Recommended setting when using 20-750-DENC-1 card with the 12V Jumper in the ‘Storage’ position) • 11.4v…12.6v (Recommended setting when using 20-750-DENC-1 card with the 12V Jumper in the ‘Enabled’…
  • Page 27: Digital Aqb Diagnostics

    About Safe Stop and Safe Monitor Functions Chapter 1 Dual Encoder Velocity and/or Position Discrepancy The dual encoder velocity and position discrepancy diagnostic helps ensure that the position and/or velocity of the two encoders match within a configurable tolerance. The position and velocity discrepancy limits are individually configurable;…

  • Page 28
    Chapter 1 About Safe Stop and Safe Monitor Functions + Cos Vector Length Monitoring The Sin + Cos vector length monitoring diagnostic helps ensure that the sine and cosine signals are sinusoidal and 90° apart. This diagnostic is meant to detect errors in the wiring of the encoder and problems within the encoder itself.
  • Page 29: Contact Information If Safety Option Failure Occurs

    Chapter 1 Contact Information If Safety If you experience a failure with any safety-certified device, contact your local Allen-Bradley distributor to request any of these actions: Option Failure Occurs • Return the device to Rockwell Automation so the failure is appropriately logged for the catalog number that is affected and a record is made of the failure.

  • Page 30
    Chapter 1 About Safe Stop and Safe Monitor Functions Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 31: Installation

    Chapter Installation This chapter provides installation, jumper settings, and wiring for the Integrated Safety Functions option module. Topic Page Remove Power to the System Access the Control Pod Set the SAFETY and Hardware ENABLE Jumpers Install the Safety Option Module I/O Wiring Cabling ATTENTION: The following information is a guide for proper installation.

  • Page 32: Remove Power To The System

    Chapter 2 Installation Remove Power to the System Before performing any work on the drive, remove all power to the system. ATTENTION: • Electrical Shock Hazard. Verify that all sources of AC and DC power are de- energized and locked out or tagged out in accordance with the requirements of ANSI/NFPA 70E, Part II.

  • Page 33: Set The Safety And Hardware Enable Jumpers

    SAFETY jumper must be removed. If the SAFETY jumper is not removed, a ‘Safety Jumper In’ fault occurs. IMPORTANT PowerFlex 755 drives (frames 8…10) control boards do not have a SAFETY jumper. If the Integrated Safety Functions option module is installed, the control board hardware ENABLE jumper must be installed.

  • Page 34: Install The Safety Option Module

    IMPORTANT Only one safety option module can be installed in a drive. Multiple safety option modules or duplicate safety option module installations are not supported. Figure 4 — PowerFlex 755 Drives, Frames 1…7 Rockwell Automation Publication 750-UM005A-EN-P — October 2018…

  • Page 35: Feedback Installation Guidelines

    Installation Chapter 2 Feedback Installation Guidelines Follow these guidelines for the Integrated Safety Functions option module. Feedback Devices The Integrated Safety Functions option module can be used with one of the following feedback devices when safe feedback monitoring is used: •…

  • Page 36: I/O Wiring

    Chapter 2 Installation I/O Wiring This section describes the onboard safety I/O and wiring considerations. A power supply must be connected between the SP and SC terminals in order for the safety I/O to be used. See Power Supply Requirements on page information on selecting a power supply.

  • Page 37: Power Supply Requirements

    Installation Chapter 2 Power Supply Requirements IMPORTANT The external power supply must conform to the Directive 2006/95/EC Low Voltage by applying the requirements of EN61131-2 Programmable Controllers, Part 2 — Equipment Requirements and Tests, and one of the following: • EN60950 — SELV (Safety Extra Low Voltage) •…

  • Page 38
    Chapter 2 Installation Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 39: Safety Inputs

    Chapter Safety I/O This chapter provides information that is related to the embedded safety inputs and outputs on the Integrated Safety Functions option module. Topic Page Safety Inputs Safety Outputs Safety Inputs Read this section for information about safety inputs and their operation modes.

  • Page 40
    Chapter 3 Safety I/O Table 14 — Typical External Pulse Width and Period Pulse Width Period 500 μs 300 ms Figure 5 — Test Pulse in a Cycle Typical Pulse Typical Pulse Test Period Test Period 300 ms 300ms Typical Typical Pulse Pulse…
  • Page 41: Latch Input Error Operation In Single Channel Mode

    Safety I/O Chapter 3 Latch Input Error Operation in Single Channel Mode The safety input subsystem allows for a configurable time for which an alarm state is held. This is referred to as Input Latch Error Time. In single channel mode, the input latch error time describes the period between when the alarm condition is removed and when the safety input stops reporting the alarm.

  • Page 42: Single Channel Safety Input Status Data

    Chapter 3 Safety I/O Single Channel Safety Input Status Data Figure 8 describes the status and value that is reported by the Safety IO subsystem for normal and alarm states. In normal operation, the Safety Input value reported is the value being read on the input terminal. The Safety Input status is on.

  • Page 43: Dual-Channel Safety Input Operation

    Safety I/O Chapter 3 Dual-channel Safety Input Operation To support redundant safety devices, the consistency between signals on two input points can be evaluated. This is referred to as Dual-channel operation. Two modes are available when using dual-channel inputs: equivalent and complementary.

  • Page 44: Equivalent Dual-Channel Input Operation

    Chapter 3 Safety I/O Equivalent Dual-channel Input Operation In Equivalent mode, both inputs of a pair must typically be in the same (equivalent) state. When a transition occurs in one channel of the pair, before the transition of the second channel of the pair, a discrepancy occurs. If the second channel transitions to the appropriate state before the discrepancy time elapses, the inputs are considered equivalent.

  • Page 45: Complementary Dual-Channel Input Operation

    Safety I/O Chapter 3 Complementary Dual-channel Input Operation In Complementary mode, the inputs of a pair are typically in the opposite (complementary) state. When a transition occurs in one channel of the pair before the transition of the second channel of the pair, a discrepancy occurs. If the second channel transitions to the appropriate state before the discrepancy time elapses, the inputs are considered complementary.

  • Page 46: Standard Input Operation

    Chapter 3 Safety I/O Standard Input Operation When a safety input is configured for standard input operation, no diagnostics are performed on the input. Unlike safety inputs, a standard input cannot be used with pulse testing and can only be used in single channel mode. A standard input can still be configured to have an onoff and offon filter time.

  • Page 47
    Safety I/O Chapter 3 Safety Input Status The safety input status indicates whether an alarm is present in the safety input point. The safety input status is provided in the safety input assembly, as shown Table Table 18 describes the attributes for reading the safety status via CIP messaging.
  • Page 48
    Chapter 3 Safety I/O Table 19 — Safety Input Assembly Tags for Safety Input Values Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SI.InputStatus SINT A collection of safety input values and status for each safety input module :SI.In00Data Value of Safety Input 0…
  • Page 49: Safety Input Alarms

    Safety I/O Chapter 3 Table 21 — Safety Input Assembly Tags for Safety Input Valid Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SI.IOSupport SINT A collection of bits describing safety IO functionality Safety Input 0 Valid module :SI.In00Valid 0 = Data invalid 1 = Data valid…

  • Page 50: Determining Safety Input Alarm Type

    Chapter 3 Safety I/O An internal circuit error occurs when an internal pulse test fails. This means that circuitry inside the module has failed. An internal circuit error may not be recoverable; replacing the module may be required. An external circuit error occurs when pulse testing by the safety input’s associated test output fails.

  • Page 51: Safety Input Alarm Recovery

    Safety I/O Chapter 3 Table 23 — MSG Configuration for Safety Input Alarm Type Service Code 0x0E Get attribute single Class 0x3D Safety Discrete Input Point Object Instance i + 1 Where i is the number of the safety input Data Type USINT Attribute…

  • Page 52: Use With Powerflex 750-Series Atex Option Module

    Chapter 3 Safety I/O Figure 11 — Off-on Delay Input Signal Safety Input Value On-delay On-off Delay An input signal is treated as logic 1 during the off-delay time (0…126 ms, in increments of 1 ms) after the falling edge of the input contact. The input only turns off if the input contact remains off after the off delay time has elapsed.

  • Page 53: Single-Channel Mode

    Safety I/O Chapter 3 Figure 13 — Test Pulse in a Cycle Typical Pulse Test Period 300 ms Typical Pulse Width 500 μs Table 24 — Typical External Pulse Width and Period Pulse Width Period 500 μs 300 ms IMPORTANT To help prevent the test pulse from causing the connected device to malfunction, pay careful attention to the input response time of the device that is connected to the output.

  • Page 54: Latch Output Error Operation In Single Channel Mode

    Chapter 3 Safety I/O Figure 14 — Single-channel Setting (not to scale) Normal Operation Safety Output Terminal Safety Output Value Safety Output Status Alarm Operation Safety Output Terminal Safety Output Value Alarm Detected Safety Output Status Latch Output Error Operation in Single Channel Mode The safety output subsystem allows for a latch error time to be configured.

  • Page 55: Dual-Channel Mode

    Safety I/O Chapter 3 Dual-channel Mode When the data of both channels is in the on state, and neither channel has an alarm, the outputs are turned on. The status is normal. If an alarm is detected on one channel, the safety output data and individual safety output status turn off for both channels.

  • Page 56
    Chapter 3 Safety I/O Figure 17 — Dual Channel Output Latch Error Behavior Output Latch Error Time Safety Output 0 Value Safety Output 1 Value Dual Channel Safety Output ALARM Status Dual Channel ALARM Safety Output Status Alarm Cleared Alarm Alarm Detected Condition Removed and…
  • Page 57: Safety Output Safety Data

    Safety I/O Chapter 3 Safety Output Safety Data The Safety Output data of the Integrated Safety Functions module can be monitored through: • Safety Input Assembly • DPI Parameters • CIP Messaging The following Safety Output data is available in the Integrated Safety Functions Module: •…

  • Page 58
    Chapter 3 Safety I/O Safety Output Ready When set, the safety output ready attribute indicates that the safety output is configured for safety use and ready to be commanded. IMPORTANT Check the Safety Output Ready attribute before commanding the safety output.
  • Page 59: Commanding Safety And Test Outputs

    Safety I/O Chapter 3 Table 29 — Safety Input Assembly Tags for Safety Output Monitor Value Safety Input Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module:SI.OutputStatus SINT A collection of safety output status, safety output monitor values, and test output status module:SI.Out00Monitor Output Monitor Value of Safety Output 0 0 = OFF…

  • Page 60: Safety Output Alarms

    Chapter 3 Safety I/O Safety Output Alarms The Safety Output logic can detect the following errors: • Configuration • Circuit • Dual Channel Discrepancy (Dual Channel Configuration Only) • Partner Channel (Dual Channel Configuration Only) When an error is detected, the associated safety output data is put into the safe state and the Alarm Type attribute is set.

  • Page 61: Determining Safety Output Alarm Type

    Safety I/O Chapter 3 Partner Channel Error When the safety outputs are configured for dual channel mode, and one of the safety outputs experiences a circuit or configuration error, the other safety output will report a Partner Channel error. TIP The safety output data will still be placed in the safe state when a Partner Channel error occurs.

  • Page 62: Safety Output Alarm Recovery

    Chapter 3 Safety I/O Safety Output Alarm Recovery If an alarm is detected, the safety outputs are switched to the safe state and remain in the safe state. Follow this procedure to activate the safety output data again. 1. Remove the cause of the alarm. 2.

  • Page 63: Standard Output Mode

    Safety I/O Chapter 3 ATTENTION: Do not use test outputs as safety outputs. Test outputs do not function as safety outputs. Standard Output Mode When a test output is configured for standard output mode, the test output point operates as a general purpose output. The output can be commanded through the safety output assembly.

  • Page 64: Test Output Status

    Chapter 3 Safety I/O The following Test Output data is available in the Integrated Safety Functions module: • Test Output Status • Test Output Ready Each test output point reports its own status and ready attributes. IMPORTANT Test Output data is not safety data and cannot be used for safety applications.

  • Page 65: Test Output Ready

    Safety I/O Chapter 3 Test Output Ready When set, the test output ready attribute indicates that the test output is configured for standard output mode, and is ready to be commanded. In other modes, the test output ready attribute is forced to the safe (alarm) state. IMPORTANT The Test Output Ready attribute should be checked before commanding the test output.

  • Page 66
    Chapter 3 Safety I/O Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 67: Drive-Based Safe Stop Functions

    Chapter Drive-based Safe Stop Functions Use this chapter to learn more about the Safe Torque Off, Timed Safe Stop 1, Monitored Safe Stop 1, and Safe Brake Control stopping functions that are built into the Integrated Safety Functions option module. IMPORTANT The information in this section describes Safety Stop Functions operating in the drive.

  • Page 68: Safety Input Assembly Safe Stop Function Tags

    Chapter 4 Drive-based Safe Stop Functions Table 38 — Safety Output Assembly Tags for Safety Stop Functions (continued) Safety Output Assembly Tag Name Type/[bit] Description (safety controller to S4 option) module :SO.SS1Request If Safe Stop 1 (SS1) is configured: 0 = No Request 1 = Request Safe Stop 1 If Safe Stop 1 is not configured, this tag must be set to 0.

  • Page 69
    Drive-based Safe Stop Functions Chapter 4 Table 39 — Safety Input Assembly Tags for Safety Stop Functions Safety Input Assembly Tag Name Type/[bit] Description (S4 option to safety controller) module :SI.SBCActive Safe Brake Control (SBC) function status: 0 = Release Brake (So0 and So1 ON) 1 = Engage Brake (So0 and So1 OFF) module :SI.SS1Active Safe Stop 1 (SS1) function status:…
  • Page 70: Safety Function In Response To Connection Event

    Chapter 4 Drive-based Safe Stop Functions ATTENTION: Safety I/O connections and produced/consumed connections cannot be automatically configured to fault the controller if a connection is lost and the system transitions to the safe state. If you must detect a device fault so that the system maintains the required SIL level, you must monitor the Safety I/O CONNECTION_STATUS bits and initiate the fault via program logic.

  • Page 71: Connection Idle Action

    Drive-based Safe Stop Functions Chapter 4 parameter is not changed, the safety function that is triggered by the connection loss may fault. Connection Idle Action When the connection idle event is detected, the following attributes will be set: • In Standard Control Mode –…

  • Page 72: Safe Torque Off Activation

    Chapter 4 Drive-based Safe Stop Functions Safe Torque Off Activation Safe Torque Off can be initiated by one or more sources: • STO Output – Setting the Safety Output Assembly Tag (module:SO.STOOutput = 1) • SS1 Complete – Completion of a Safe Stop 1 •…

  • Page 73: Safe Torque Off Delay

    Drive-based Safe Stop Functions Chapter 4 • In Motion Control Mode – axis.SafeTorqueOffActiveStatus = 1 – axis.SafetyResetRequiredStatus = 1 The steps to reset the STO function depend on the cause of STO activation and the Restart/Cold Start Type configured in the module. Safety Fault STO Activation Reset IMPORTANT When the STO function is activated by a Safety Fault, the cause of the safety fault must be removed before STO can be reset, regardless of the configured…

  • Page 74: Safe Torque Off Operation

    Chapter 4 Drive-based Safe Stop Functions to SBC delay. In the case of STO activation by a safety fault, any configured delay is ignored, and torque is disabled instantly. Safe Torque Off Operation The operation of the STO function and its attributes is dependent on the configuration of the STO function and the activation reason.

  • Page 75
    Drive-based Safe Stop Functions Chapter 4 Figure 21 — STO with Delay STO Delay Velocity SO. STO Output Disable Torque 0x00 STO Activation 0x01 = STO Output SI.STO Active STO Active P4 [Safety Status] STO Active STO Active SI.TorqueDisabled Torque Disabled SI.RestartRequired Restart Required SO.ResetRequest…
  • Page 76: Safe Torque Off Stopping Action And Source

    Chapter 4 Drive-based Safe Stop Functions Figure 22 — STO with Safety Fault SI. Safety Fault Safety Fault STO Activation 0x04 = Safety Stop Fault Disable Torque SI.STO Active SI.Torque Disabled Torque Disabled SI.Restart Required Restart Required Always Required to Reset a Fault SO.Reset Request Fault Cleared (1) Safety Output Assembly…

  • Page 77: Sto Safety Fault

    Drive-based Safe Stop Functions Chapter 4 If the STO Stopping Action Source is Controller, or the STO Stopping Action is configured for a non-default value, a STO Delay may need to be specified in order for the Stopping Action to be completed before torque is disabled. See the drive’s reference manual for information on its supported stop modes.

  • Page 78: Safe Stop 1 Function

    Chapter 4 Drive-based Safe Stop Functions Safe Stop 1 Function The Safe Stop 1 (SS1) function signals the configured SS1 Stop Action Source to initiate a stopping action, then the safety module monitors the stop. When the Safe Stop 1 is complete, STO is activated and torque is disabled. If the drive does not complete the stop within the limits that are configured in the Safe Stop 1 function, an SS1 Fault is annunciated.

  • Page 79: Safe Stop 1 Reset

    Drive-based Safe Stop Functions Chapter 4 Safe Stop 1 Reset After an SS1 action is complete, the SS1 function must be reset in order to enable torque. When the STO Function needs to be reset, the following attribute values are set: •…

  • Page 80: Safe Stop 1 Stopping Action And Source

    Chapter 4 Drive-based Safe Stop Functions Safe Stop 1 Stopping Action and Source In response to an SS1 activation, the type of stop and the source responsible for controlling the stop is configurable. These configuration attributes are defined • SS1 Stopping Action – Configures what stopping action to perform in response to an SS1 Activation.

  • Page 81: Monitored Safe Stop 1

    Drive-based Safe Stop Functions Chapter 4 timing of SS1 status and torque attributes in response to an SS1 activation, along with the restart type behavior. Figure 24 — Timed Safe Stop 1 SS1 Ext Max Stop Time Velocity SO.SS1Request SS1 Activation 0x00 0x00 0x01 = SS1 Request…

  • Page 82
    Chapter 4 Drive-based Safe Stop Functions After the SS1 Active bit is set, the configured SS1 Decel Monitor Delay timer begins. After the configured Decel Monitor Delay expires, an internal speed ramp value is computed every time that the encoder is sampled. If the magnitude of module:SI.FeedbackVelocity exceeds the sum of the internal ramp plus Decel Speed Tolerance, the SS1 Fault Type attribute is set to ‘Deceleration Rate’…
  • Page 83
    Drive-based Safe Stop Functions Chapter 4 to SBC Delay is negative (and STO Activates SBC = Linked), then the Torque Disabled attribute is set after the configured time delay. Otherwise, the Torque Disabled attribute is set immediately. Figure 27 shows the timing of the Monitored SS1 operation, along with the restart type behavior.
  • Page 84: Ss1 Safety Fault

    Chapter 4 Drive-based Safe Stop Functions SS1 Safety Fault When an SS1 Safety Fault occurs, the STO function is activated immediately and torque is disabled. Figure 27 describes the timing of attributes when an SS1 fault occurs during SS1 execution. Figure 28 describes the operation of SS1 when an SS1 fault is detected.

  • Page 85: Safe Brake Control Function

    Drive-based Safe Stop Functions Chapter 4 Figure 28 — Safe Stop 1 Fault Operation SS1 Max Stop Time Velocity SS1 Max Stop Time Fault Occurs (Feedback Velocity > Expected Velocity) Standstill Speed SO.SS1Request SS1 Request 0x00 SS1 Activation 0x00 0x01 = SS1 Request SI.SS1Active SS1 Active S1.SafetyFault…

  • Page 86: Safe Brake Control Reset

    Chapter 4 Drive-based Safe Stop Functions When SBC is activated, all sources of activation are stored in an attribute as a bit mask, and the attribute can then be read to determine the causes of an SBC activation. Figure 29 shows the operation of the SBC activation attribute.

  • Page 87: Safe Brake Control Modes

    Drive-based Safe Stop Functions Chapter 4 Safety Fault SBC Activation Reset IMPORTANT When the SBC function is activated by a Safety Fault, the cause of the safety fault must be removed before the SBC function can be reset, regardless of the configured restart type.

  • Page 88: Safe Brake Control Operation

    Chapter 4 Drive-based Safe Stop Functions • So1: Safety Discrete Output Point Object Instance 4 • Safety Dual Channel Output Object Instance 2 Used, Test Pulses In ‘Used, Test Pulses’ mode, the associated safety outputs are tested with a 500 μs pulse every 300 ms when the brake is in the released state (outputs energized).

  • Page 89
    Drive-based Safe Stop Functions Chapter 4 SBC Operation when Activated by Safety Output Assembly When the SBC function is activated by clearing the module:SO.SBCOutput tag, the associated safety outputs are deenergized, forcing the brake to engage, and torque is still enabled. Figure 30 shows the timing of SBC attributes when the SBC function is executed independently.
  • Page 90
    Chapter 4 Drive-based Safe Stop Functions Figure 31 — SBC Linked to STO with Positive Delay SI. STO Active Disable Torque Torque Disabled SI.TorqueDisabled 0x00 SBC Activation 0x02 = STO Active SI.SBCActive Engage Brake (STO to SBC Delay) > 0 SI.BrakeEngaged Brake Engaged Brake Engaged…
  • Page 91
    Drive-based Safe Stop Functions Chapter 4 to the safe state changes. The ‘Safe State’ of the SBC function is the ‘Brake Engaged’ state. SBC not Linked to STO Safety Fault Operation When a safety fault is detected in the module (and the SBC function is configured to not be linked to STO activation), the SBC function will be activated with the SBC activation reason being ‘Safety Stop Fault’…
  • Page 92
    Chapter 4 Drive-based Safe Stop Functions Figure 34 — SBC Operation under Safety Fault Condition (linked to STO with positive delay) SI.SafetyFault Safety Fault STO Activation 0x04 = Safety Stop Fault 0x00 Disable Torque SI.STOActive SI.TorqueDisabled Torque Disabled SBC Activation 0x00 0x06 = STO Active, Safety Stop Fault SI.SBCActive…
  • Page 93: Sbc Safety Fault

    Drive-based Safe Stop Functions Chapter 4 SBC Safety Fault When the module experiences an SBC Fault, the module is placed in the safe state and the cause of the fault is recorded. If SBC function detects a fault, it will set: •…

  • Page 94
    Chapter 4 Drive-based Safe Stop Functions The drive-based SBC function does not implement checking of brake feedback; however, the available safety inputs can be used to send the status of brake feedback to the safety controller that is programmed with a diagnostic check.
  • Page 95: Drive Safety Instructions

    GuardLogix 5380 controllers and use the EtherNet/IP™ network to communicate with the safety I/O. Drive Safety instructions use safety feedback, provided by PowerFlex 755/755T drive products to the Safety Task of the controller, to perform safe monitoring functions. Rockwell Automation Publication 750-UM005A-EN-P…

  • Page 96
    Chapter 5 Controller-based Safety Functions Table 40 — Drive Safety Instructions Safety Instruction Description The SFX function scales feedback position into position units and feedback velocity into position units per time unit. SFX is used with Safety Feedback Interface other Drive Safety instructions.SFX also provides unwind for rotary applications and position homing.
  • Page 97: Before Adding The Safety Instructions

    Chapter 5 Before Adding the Safety Instructions Before adding drive safety instructions to your Logix Designer application, you must have PowerFlex 755/755T drive products with 20-750-S4 options installed in your project. Drive Safety Instruction Example Drive Safety instructions provide the following information. In this example, the Safely-limited Speed (SLS) instruction is shown.

  • Page 98: Pass-Through Data Using Standard I/O Mode

    SLS instruction. IMPORTANT Pass-through data is for status information only and does not impact configured safety functions. Figure 39 — Pass-through Data Path (Standard I/O Mode) PowerFlex 755 Drive Safety Task Programming SLS Active status is Safety sent to the drive.

  • Page 99
    Controller-based Safety Functions Chapter 5 Table 42 — SLS Tag Information Safety Output Assembly Tag Axis Tag module :SO.SLSActive Drive: I.SafetyStatus SLSActive module :SO.SLSLimit Drive: I.SafetyStatus SLSLimit module :SO.SLSFault Drive :I.SafetyStatus SLSFault TIP The words module and drive (italic) in these tag names represent the module and drive name that is assigned in the Logix Designer application.
  • Page 100: Pass-Through Data Using Integrated Motion

    SLS instruction. IMPORTANT Pass-through data is for status information only and does not impact configured safety functions. Figure 40 — Pass-through Data Path PowerFlex 755 Drive Safety Task Programming SLS Active status is Safety sent to the drive.

  • Page 101: Sfx Instruction

    The PowerFlex 755/755T drive provides safe position and velocity feedback. Up to SIL 3 PLe safety rating can be achieved by using dual feedback with velocity and/or position discrepancy checking.

  • Page 102: Sfx Instruction Example

    Chapter 5 Controller-based Safety Functions Figure 41 — SFX Instruction Feeds Data to SS1 Instruction Actual Position Feedback Position (position units) (counts) PowerFlex 755/ PowerFlex 755/ 755T Drive 755T Drive Actual Speed Feedback Velocity (position units/second (feedback units/second) or position units/minute)

  • Page 103
    Controller-based Safety Functions Chapter 5 Figure 42 — Effective Resolution Parameter In this example, the motor is used in a rotary application where the unwind is set to roll over each motor revolution. Therefore, the unwind of ‘512 Counts/ Rev’ was added in the SFX instruction appropriately. Figure 43 — Scaling Rockwell Automation Publication 750-UM005A-EN-P…
  • Page 104
    Chapter 5 Controller-based Safety Functions Homing Setting the ‘Actual Position’ output to the ‘Home Position input’ (homing) of the instruction is required if using a position-based drive safety instruction like Safely-limited Position (SLP). If a position-based drive safety instruction is not being used on an axis, homing the SFX instruction is not required.
  • Page 105: Safety Assembly Tags

    The SO.Output00Output, SO.Output01Output, SO.Test00Output, and SO.Test01Output tags are sent from the GuardLogix safety output assembly to the PowerFlex 755 safety output assembly to control the safety and test outputs on the Integrated Safety Functions option module. The SI.StopStatus tags are sent from the PowerFlex 755 to the GuardLogix safety input assembly and indicate the PowerFlex 755 safety control status.

  • Page 106: Configure Safety In The Logix Designer Application

    Configure Safety in the Logix This chapter provides instructions for how to add and configure an Integrated Safety Functions option module in a PowerFlex 755/ 755T drive product to an Designer Application existing project in the Logix Designer application. This chapter is specific to safety and does not cover all aspects of drive configuration.

  • Page 107
    2. Select from the following drive products and click Create. • PowerFlex 755 HiPwr EENET • PowerFlex 755 EENET • PowerFlex 755T • PowerFlex 755TM Bus Supply This example uses the PowerFlex 755 EENET. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 108: Add An Option Module To A Powerflex 755 Drive

    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Add an Option Module to a PowerFlex 755 Drive 1. In the Device Definition dialog box, enter the connection type that you want to use. Select from one of the following types. The ‘Standard and Safety’…

  • Page 109
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 2. When a network safety connection is selected, the 20-750-S3 Network STO option is selected by default. Click the Safety Peripheral pull- down menu and select 20-750-S4. 3. If feedback is being used (indicated by the selection in Safety Instance 1), enter a feedback device for the Safety Feedback Module.
  • Page 110: Generate The Safety Network Number (Snn)

    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 4. Scroll down and enter additional Device Definition data for the drive product being used. Generate the Safety Network Number (SNN) The assignment of a time-based SNN is automatic when you create a GuardLogix safety controller project and add new Safety I/O devices.

  • Page 111
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 To edit the SNN, follow these steps. 1. To open the Safety Network Number dialog box, click to the right of the Safety Network Number. 2. Select either Time-based or Manual. If you select Manual, enter a value from 1…9999 decimal.
  • Page 112
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Electronic Keying The electronic keying options are for the standard connection to the drive. Electronic Keying Indicates that all keying attributes must match to establish communication. If any attribute Exact Match does not match precisely, communication with the device does not occur.
  • Page 113
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 6. Click the Add new peripheral pull-down menu to add any additional peripherals, such as feedback devices to use with the safety option module. In this example, a ‘20-750-UFB-1 Universal Feedback’ option module has been added.
  • Page 114
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation The Input and Output tabs are for setting the datalinks between the drive and the controller that is performing control. Add P4 [Safety Status] and P5 [Safety Faults] to provide pass-thru data from the safety task/safety controller to the main task/standard controller.
  • Page 115
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 10. Click Create to create the drive and have it added to the I/O Configuration folder. Save the project to save any edits and double-click the drive in the I/O Configuration folder to reopen the drive properties window.
  • Page 116
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation For safety output connections, the Max Observed Network Delay displays the value that is generated by the output module. For safety input connections, it displays the value that is generated by the controller.
  • Page 117
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 13. Click Actions under Safety Configuration in the navigation tree to open the Actions page. Use the settings on the Actions page to: • Define the action to take when the safety connection is lost. •…
  • Page 118
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 14. Click STO under Safety Configuration in the navigation tree to open the STO page. The Delay value is the time delay between the STO Active condition and Safe Torque Disabled. This allows the drive to bring the motor to a controlled stop before disabling torque.
  • Page 119
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Property Description Specifies the mode of the SS1 function. The Mode selection determines which parameters on the tab are available to configure. The available options are: • Not Used • Timed SS1 Mode •…
  • Page 120
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Property Description The physical input points available for configuration (terminals Si0, Si1, Si2, Point and Si3). Specifies the type of operation for the input. Available options are: • Single Channel Point Operation — Type •…
  • Page 121
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Property Description Point The physical output points available for configuration (terminals So0 and So1). Specifies the type of operation for the output. Available options are: Point Operation — Type • Single Channel •…
  • Page 122
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Property Description Specifies the mode of the SBC function. Available options are: • Not Used Mode • Used, No Test Pulses • Used, Test Pulses Identifies if Safe Torque Off (STO) activation triggers the SBC function. Available options are: STO Activates SBC •…
  • Page 123
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 20. Enter the information for the device that is being used for the primary feedback. Red boxes indicate items that must be updated. The properties available on this page are determined by the safety feedback device selected when the drive module was created.
  • Page 124
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation 22. Enter the information for the device being used for the secondary feedback. Red boxes indicate items that must be updated. The properties available on this page are determined by the safety feedback device selected when the drive module was created.
  • Page 125: Safety Configuration Signature And Ownership

    Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in drive module General tab) •…

  • Page 126: Reset Ownership

    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Configuration Ownership has to be reset to establish a new connection or to reestablish an existing connection. Reset Ownership To reset ownership, see Restore the Drive to Out-of-Box State on page 214.

  • Page 127: Standard And Safety Tasks

    (datalinked parameters) in the Integrated Safety Function option module. The PowerFlex 755/755T drive products, with the Integrated Safety Function option module, provides integrated safety functions. Safety functionality operates independently of the inverters and feedback that is used for motion.

  • Page 128
    Safety I/O Standard I/O Assembly Assembly PowerFlex 755/755T Drive Product 4. The main task controls the drive to bring the motor to a stop within the Monitored SS1 limits for speed and time. 5. While the drive is stopping, the SS1 function (in the motion-safety instance) monitors the motor speed to make sure it remains below the speed limit and maximum stopping time.
  • Page 129: Pass-Through Data

    214 for more information. Replacing an entire PowerFlex 755 drive or PowerFlex 755T drive product on an integrated safety network is more involved than replacing standard devices because of the safety network number (SNN). The device number and SNN is the safety Device ID of the device.

  • Page 130: Replace An Integrated Safety Drive In A Guardlogix System

    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation integrity on the initial download to the PowerFlex 755 drive or PowerFlex 755T drive product. When the Logix Designer application is online, the Safety tab of the Module Properties dialog box displays the current configuration ownership. When the opened project owns the configuration, Local is displayed.

  • Page 131
    ATTENTION: Enable the Configure Always feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755/ 755T drive product. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s Configure Always feature is…
  • Page 132: Powerflex 755 Io Mode Using Sfx, Ss1, And Sls Instructions

    Standard I/O Mode – Configuration, Programming, and Operation PowerFlex 755 IO Mode Using In this example, a PowerFlex 755 drive (equipped with embedded Ethernet) controls an induction motor with a 1024 PPR incremental encoder. A Dual SFX, SS1, and SLS Instructions…

  • Page 133
    Figure 47 — Studio 5000 Connection Set to Standard and Safety Studio 5000 Connection is set to ‘Standard and Safety’ since the GuardLogix controller will provide both in this example. Figure 48 — Studio 5000 Powerflex 755 EENET Configuration Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 134
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Figure 49 — Studio 5000 Safety Primary Feedback Configuration Figure 50 — Studio 5000 Safety Scaling Configuration Figure 51 — Studio 5000 Input Configuration • Inputs 0 and 1 are used with an OSSD Estop input from the 800FP. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 135: Programming Example

    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 • Input 2 is a standard digital input from a push button to safety reset the S4 module. • Input 3 is a standard digital input from a push button to set the SFX home.

  • Page 136
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Safety Input The DCS Instruction is responsible for evaluating the dual-input validity into the GuardLogix safety controller. Figure 53 — DCS Instruction with the S4 is Mapped to the 800FP Safety Logic The Safety Logic is used to configure when a safety reset occurs, the home trigger, and the execution of the SFX instruction (which must have primary…
  • Page 137
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Figure 54 — Safety Logic Example Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 138
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Safety Output The Safe Torque Off output must be true in order for any of the preceding safe monitoring functions (namely SFX, SS1, and SLS) to function. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 139
    Chapter 6 Figure 55 — Safety Output Example The PowerFlex 755 S4 safety actions can be configured based on the required reaction to various machine requirements. In this instance, the STO request is executed by the PowerFlex 755 in causing a disable and coast reaction.
  • Page 140
    Figure 57 — The Use of Datalink is Required to Pass Data from the S4 Safety Function to the Standard I/O Routine Figure 58 — Standard I/O Routine That Starts and Stops the PowerFlex 755 Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 141
    Standard I/O Mode – Configuration, Programming, and Operation Chapter 6 Figure 59 — Standard I/O Routine That Runs the Drive at Velocity and Changes to Safe Limited Speed Velocity When Requested by the Safety Task Figure 60 — Standard I/O Routine That Commands the Drive to Zero Velocity Once the SS1 Request is Made by the Safety Task Figure 61 — Standard I/O Routine That Monitors When at Zero Speed and Stops the Drive Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 142
    Chapter 6 Standard I/O Mode – Configuration, Programming, and Operation Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 143
    The SO.Output00Output, SO.Output01Output, SO.Test00Output, and SO.Test01Output tags are sent from the GuardLogix safety output assembly to the PowerFlex 755 safety output assembly to control the safety and test outputs on the Integrated Safety Functions option module. The SI.StopStatus tags are sent from the PowerFlex 755 to the GuardLogix safety input assembly and indicate the PowerFlex 755 safety control status.
  • Page 144: Add A Powerflex 755 Drive To The Controller Project

    Configure the Integrated This section provides instructions for how to add and configure an Integrated Safety Functions option module in a PowerFlex 755/755T drive product to an Safety Function Option existing project in the Logix Designer application. This chapter is specific to Module in the Logix Designer safety and does not cover all aspects of drive configuration.

  • Page 145: Understand Module Properties Categories

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 The Integrated Safety Function module and its safe speed monitor functions Understand Module are configured in the Studio 5000 Logix Designer® application. Follow these Properties Categories guidelines when configuring your safety application. IMPORTANT For access to Motion Safety module properties, the Connection pull-down menu in the Module Definition dialog box must be configured for Motion and Safety or Safety Only.

  • Page 146: Module Properties>General Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Module Properties Category Page General page 146 Connection and Safety page 149 Motion Safety Actions page 152 Primary Feedback page 153 Secondary Feedback page 155 Scaling page 156 Discrepancy Checking page 157 page 158 page 159 page 160…

  • Page 147
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 44 — Electronic Keying Methods Electronic Keying Indicates that all keying attributes must match to establish communication. If any attribute Exact Match does not match precisely, communication with the device does not occur. Lets the installed device accept the key of the device that is defined in the project when the installed device can emulate the defined device.
  • Page 148
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation 6. When using ‘Single’ or ‘Dual Feedback Monitoring’ mode, use these steps to add a safety feedback device. a. Right-click the drive under Peripheral Devices, and then click New Peripheral Device… to bring up the Peripheral Device Definition dialog box.
  • Page 149: Module Properties>Connection And Safety Categories

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 46 — Motion Safety Instance Definitions Motion Safety Instance Mode Module Connection Options Description Safe Stop Only — STO function and Timed SS1 Safe Stop functions are available. No Feedback Single Feedback Monitoring •…

  • Page 150
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation 3. Click the Configuration tab. The default safety task Period value (and output RPI) is 20 ms. IMPORTANT The ‘Period’ is the interval at which the safety task executes. The ‘Watchdog’ must be less than the period. For more safety task information, see the GuardLogix 5580 and Compact GuardLogix 5380 Controller Systems Safety Reference Manual, publication 1756-RM012.
  • Page 151
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 47 — Advanced Reaction Connection Time Limit Configuration Settings Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign.
  • Page 152: Motion Safety>Actions Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Motion Safety>Actions Category The Actions category provides fault behavior options. Determine the preferred machine function when a connection loss or connection idle condition occurs. Safe Torque-off (STO) means that the drive immediately disables the motor power outputs causing a coast condition for the motor and load.

  • Page 153: Motion Safety>Primary Feedback Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 2. From the Connection Loss Action and Connection Idle Action pull- down menus, choose SS1 or STO as required for your application. 3. From the Restart Type and Cold Start Type pull-down menus, choose Automatic or Manual as required for your application.

  • Page 154
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 49 — Feedback Options Feedback Option 20-750-UFB-1 20-750-DENC-1 Sine/Cosine Primary Digital AqB Hiperface Secondary Digital AqB Digital AqB Table 50 — Safety Feedback Configuration Attributes Attribute Description Specify the units of the encoder. Default value is revolutions (Rev) that supports rotary motors. Units When using a linear encoder, select Meter.
  • Page 155: Motion Safety>Secondary Feedback Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 51 — Voltage Monitoring Values for Feedback Device Feedback Devices 20-750-UFB 20-750-DENC Not monitored Not monitored 7V…12V 4.75V…5.25V Primary 4.75V…5.25V 7V…12V 11.4V…12.6V Not monitored Not monitored 7V…12V 4.75V…5.25V Secondary 4.75V…5.25V 7V…12V 11.4V…12.6V Motion Safety>Secondary Feedback Category…

  • Page 156: Motion Safety>Scaling Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Motion Safety>Scaling Category The Primary Feedback category set safety resolution in terms of counts per encoder unit. The Scaling category configures the position and time to be used in terms of counts per position unit in the safe monitoring functions. Figure 63 — Scaling Category (default settings) Table 52 — Scaling Category Attributes Attribute…

  • Page 157: Motion Safety>Discrepancy Checking Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Motion Safety>Discrepancy Checking Category Discrepancy checking is only used in applications where the ‘Module Definition>Safety Instance’ is configured for ‘Dual Feedback Monitoring’ . Its purpose is to perform an evaluation of the speed and position discrepancy between primary and secondary feedback.

  • Page 158: Motion Safety>Sto Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation and secondary feedback position. Use the ‘Velocity/Position Check’ mode if position and velocity checking are needed. Follow these steps to configure the Discrepancy Checking attribute. 1. From the Mode pull-down menu, choose the appropriate discrepancy checking mode for your application.

  • Page 159: Motion Safety>Ss1 Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 STO becomes active if any of the following inputs to STO are asserted: • STO Output = 0 • Safety Connection Loss and Connection Loss Action = STO • Safety Connection is Idle and Connection Idle Action = STO •…

  • Page 160: Motion Safety>Sbc Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 66 — SS1 Dialog Box (Timed SS1, default) Monitored SS1 is a ramped safe-stop where the motion safety instance monitors the speed ramp to standstill speed, while either the motion task or the drive controls the deceleration to standstill speed.

  • Page 161: Motion Safety>Input Configuration Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 of the physical brake outputs are performed. For more information on the drive-based SBC function, see Safe Brake Control Function on page Table 53 for descriptions of the SBC attributes. Table 53 — SBC Attributes Attribute Description Determines if an STO event engages the brake.

  • Page 162: Motion Safety>Test Output Category

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Error Latch Time attribute configures the time that a discrepancy must exist before a Safety Input alarm is generated. See Latch Input Error Operation in Single Channel Mode on page 41 for more information.

  • Page 163: Motion Safety>Output Configuration Category

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 TIP If a safety input’s Point Mode is configured for ‘Used with Test Output’ , the Test Output indicated by the ‘Test Source’ field must have its ‘Point Mode’ configured as ‘Pulse Test Output’ . Table 56 — Test Output Point Mode Values Value Description…

  • Page 164: Axis Properties > Actions > Safety Actions

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 57 — Point Operation Type Values Value Description The safety output operates in single channel mode. See Single-channel Mode on page Single Channel for more information. The safety output operates in dual channel mode with its partner safety output. See Dual Channel Dual-channel Mode on page…

  • Page 165: Feedback Device

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 68 on page 165 shows the Actions page. Table 59 on page 165 describes the Safety Action attributes. Figure 68 — Axis Properties > Actions Page Table 59 — Safety Actions Attributes Descriptions Attribute Description Specifies the stopping action that will be executed in response to a STO Activation.

  • Page 166: Generate The Safety Network Number (Snn)

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 60 — Motor/Load Feedback Device Selection Terminal Safety Feedback Device Selection Motor/Load Feedback Device Selection – SN + SN Port X Primary Port X Channel B – CS + SN –…

  • Page 167: Safety Configuration Signature And Ownership

    Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in drive module General tab) •…

  • Page 168: Reset Ownership

    Chapter 7 Integrated Motion – Configuration, Programming, and Operation If any differences are detected, the safety connection between the safety controller and the drive is not established (for a new drive/system) or lost (for an existing drive/system). A yellow icon appears next to the drive in the controller project tree to indicate a lost or unestablished connection.

  • Page 169: Motion Direct Commands In Motion Control Systems

    ATTENTION: Enable the ‘Configure Always’ feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755/ 755T drive product. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s ‘Configure Always’…

  • Page 170
    Understand STO Bypass When Using Motion Direct Commands If a Safety-only connection between the GuardLogix safety controller and the PowerFlex 755/755T drive product was established at least once after it was received from the factory, then it does not allow motion while the safety controller is in Program mode by default.
  • Page 171
    Logix Designer Application Warning Messages When the controller is in Run mode, executing safety functions, the PowerFlex 755 drive follows the commands that it receives from the safety controller. The controller reports ‘Safety State = Running’ and ‘Axis State = Stopped/Running’…
  • Page 172
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation When you issue a motion direct command to an axis to produce torque in Program mode, for example MSO or MDS, with the safety connection present to the drive, a warning message is presented before the motion direct command is executed, as shown in Figure Figure 72 — STO Bypass Prompt When the Safety Controller is in Program Mode…
  • Page 173
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 73 — Safety State Indications After Controller Transitions to Program Mode (MDC executing) IMPORTANT The persistent warning message text ‘Safe Torque Off bypassed’ appears when a motion direct command is executed. The warning message persists even after the dialog is closed and reopened as long as the integrated safety drive is in STO Bypass mode.
  • Page 174
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Warning Icon and Text in Axis Properties In addition to the other warnings that require your acknowledgement, the Logix Designer application also provides warning icons and persistent warning messages in other Axis Properties dialog boxes when the integrated safety drive is in STO Bypass mode.
  • Page 175
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 77 — Axis and Safe State Indications on the Motion Console Dialog Box Functional Safety Considerations ATTENTION: Before maintenance work can be performed in Program mode, the developer of the application must consider the implications of allowing motion through motion direct commands.
  • Page 176: Programming

    Figure 79 page 179. • The PowerFlex 755 and PowerFlex 755T drives and drive products contain one inverter for control of one motor and one motion axis. • Feedback from position encoders, supplied to the motion tasks, is also associated with the axis.

  • Page 177
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 system applications, an E-stop switch is used to stop the system. In the following example, the switch is used to initiate the process that brings the axis to a controlled stop before removing power. This type of stop is called Stop Category 1.
  • Page 178
    STO by clearing the bit: module:SO.STOOutput tag of the drive motion- safety instance. This figure shows how the safety task and motion tasks communicate with the drive. Figure 78 — Safe Monitor System Communication PowerFlex 755/755T Drive Product CIP Motion™ Motion Protocol…
  • Page 179: Safe Monitor Network Communication

    Motion Axis Motion Safety Motion Core Instance PowerFlex 755/755T Drive Product Motion Connection The motion connection communicates drive motion and safety status to the motion task. The motion connection also receives motion commands from the motion task in the motion controller.

  • Page 180
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 61 — Motion Connection Axis Tags Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.AxisSafetyState DINT Drive module Safety Supervisor state. See the Safety Supervisor None State…
  • Page 181
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Table 61 — Motion Connection Axis Tags (continued) Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.SLSActiveStatus [18] BOOL Indicates that the controller-based SLS function is active. module:SO.SLSActive[inst] 0 = SLS Function is not Active 1 = SLS Function is Active…
  • Page 182
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Table 61 — Motion Connection Axis Tags (continued) Axis Tag Name Motion Connection Safety Output Assembly Tag Name Data Type Description (motion controller) (safety controller) Attribute # Axis.SafeTorqueOffFault BOOL Indicates a fault occurred within the STO function of the drive- None (use explicit message) module safety instance.
  • Page 183: Explicit Messages

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 The pass-through data includes items such as status and faults for controller- based safety functions. Two general-purpose 32-bit words are provided in the output assembly from the safety controller and appear as AxisSafetyDataA and Axis SafetyDataB in the motion controller associated axis.

  • Page 184: With Integrated Motion

    Running (torque permitted) STO bypass state Integrated In this example, a PowerFlex 755 drive (equipped with embedded Ethernet) Application Example — Using controls a servo motor (catalog number MPL-B430P-M). A Universal Feedback SFX, SS1, and SLS Instructions option module (catalog number 20-750-UFB-1) and an Integrated Safety…

  • Page 185: Studio 5000 Logix Designer Application Configuration

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 A Guard Locking Switch (catalog number TLS-Z GD2) is mapped to one of the S4 Safety Outputs. This switch can be opened when the Safe Stop 1 is complete and when the Safe Limited Speed is below the required speed for an operator to access the machine function.

  • Page 186
    Integrated Motion – Configuration, Programming, and Operation Figure 82 — Peripheral Device Definition This PowerFlex 755 drive is configured with the 20-750-UFB-1 in port 4. The Safe Feedback checkbox must be checked for proper configuration and agreement with the safety switches on the Universal Feedback option module.
  • Page 187: Programming Example

    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 85 — Studio 5000 Safety Input Configuration Example • Inputs 0 and 1 are used with an OSSD Estop input from the 800FP. • Input 2 is a standard digital input from a push button to safety reset the S4 module.

  • Page 188
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 87 — DCS Instruction with the S4 is Mapped to the 800FP Figure 88 — DCS Instruction Evaluates Dual-input Validity Safety Logic The Safety Logic is used to configure when a safety reset occurs, the home trigger, and the execution of the SFX instruction (which must have primary feedback valid for it to execute properly).
  • Page 189
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 89 — Safety Logic Example Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 190
    (namely SFX, SS1, and SLS) to function. Figure 90 — Safety Output Example The PowerFlex 755 S4 safety actions can be configured based on the required reaction to various machine requirements. In this instance, the STO request is executed by the PowerFlex 755 in causing a disable and coast reaction.
  • Page 191
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 91 — Safety Output Programming Example The Safe Limited Speed (and any other safe monitoring instruction requests besides STO, SS1, and SS2) are handled with the use of pass-through tags in the GuardLogix Motion Controller.
  • Page 192
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 93 — Motion Instructions to Run the Motor at a Specific Velocity Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 193
    Integrated Motion – Configuration, Programming, and Operation Chapter 7 Figure 94 — Use of the Motion Change Dynamics Instruction to Change from Normal Operating Speed to Safe Limited Speed and Back based on the Safety Task Request Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 194
    Chapter 7 Integrated Motion – Configuration, Programming, and Operation Figure 95 — Use of the Motion Axis Stop Instruction to Bring the Motor to 0 Speed Once the SS1 Request is Made From the Safety Task When the stop is complete and 0 speed, the Motion Servo Off is given to open the position loop and stop modulating the drive.
  • Page 195
    Chapter Monitoring and Troubleshooting This chapter provides information for monitoring and troubleshooting the Integrated Safety Functions option module. Topic Page Monitor Status Using Status Indicators Monitor Status with a HIM or Software Monitor Status Using Status The option module has four status indicators to provide status of the module, safety network, and motion output of the drive: Indicators •…
  • Page 196: Module Status Indicator (Ds1)

    Chapter 8 Monitoring and Troubleshooting Module Status Indicator (DS1) Table 65 provides information for the module status indicator. Table 65 — Module Status LED (DS1) For Safety Supervisor State Status Indicator Description or Problem No power No power is applied to drive Device self-test (1) Flashing red/green Device is performing its power-on self-test…

  • Page 197: Motion Output Status Indicator (Ds3)

    Monitoring and Troubleshooting Chapter 8 Motion Output Status Indicator (DS3) Table 67 provides information for the motion output status indicator. Table 67 — Motion Output Status LED (DS3) State Status Indicator Problem Torque disabled Torque is disabled Torque permitted Solid green STO circuit is permitting torque Circuit fault Flashing red…

  • Page 198
    Chapter 8 Monitoring and Troubleshooting Figure 96 — Axis Faults and Status The safety faults named in Table 69 appear as Safety Faults when they occur. In addition, if any of these faults are present, a safety fault appears under the axis fault.
  • Page 199: Understand Safety Faults

    Monitoring and Troubleshooting Chapter 8 Understand Safety Faults To obtain more detailed information about any faults that are detected in the drive, most faults have a corresponding fault-type attribute. These attributes are read by using an MSG instruction in the ladder program to read the specific attribute information, or by reading the corresponding DPI™…

  • Page 200: Rockwell Automation Publication 750-Um005A-En-P — October

    Chapter 8 Monitoring and Troubleshooting Safe Torque Off Fault The Safe Torque Off (STO) function detected a fault. The safe stop function records the specific fault type in the STO Fault Type attribute. The STO Fault Type attribute is also recorded in P7 [STO Fault Type]. Table 71 describes the parameters for an MSG instruction.

  • Page 201: Safe Stop 1 Fault

    Monitoring and Troubleshooting Chapter 8 Safe Stop 1 Fault The Safe Stop 1 (SS1) function detected a fault. The safe stop function records the specific fault type in the Safe Stop Fault attribute. The SS1 Fault Type is also recorded in P10 [SS1 Fault Type]. Table 74 describes the parameters for an MSG instruction.

  • Page 202: Safe Brake Control Fault

    Chapter 8 Monitoring and Troubleshooting Safe Brake Control Fault The Safe Brake Control (SBC) function detected a fault. The safe stop function records the specific fault type in the SBC Fault Type attribute. The SBC fault type is also recorded in P11 [SBC Fault Type]. Table 75 describes the parameters for an MSG instruction.

  • Page 203: Safety Feedback Faults

    Monitoring and Troubleshooting Chapter 8 Safety Feedback Faults When configured for safety feedback, the device performs periodic diagnostics to make sure that the feedback device is operating correctly. Explicit messaging can be used to read the fault type information from the drive. For example, if an error is detected, the Safe Feedback object (class code 0x58) updates the Safe Feedback Fault Type attribute (attribute ID 0x09) with the reason for the fault.

  • Page 204: Safety Fault Reset

    Chapter 8 Monitoring and Troubleshooting Safety Fault Reset If the drive motion safety instance detects a fault, the input assembly tag module:SI.SafetyFault is set to 1. The associated axis.SafetyFault tag is also set to 1. A Safety Fault can result from the SS1 stopping function, STO function, safety feedback, SBC function, or other safety diagnostics.

  • Page 205: Monitor Status With A Him Or Software

    Monitoring and Troubleshooting Chapter 8 Figure 97 — Reset Safe Stop Fault Diagr Disable Torque SO.SafeTorqueOff (bit 0) Permit Torque Reset Request SO.Reset (bit 7) Torque Disabled SI.TorqueDisabled (bit 0) SI.SafetyFault (bit 6) No Fault Faulted Reset Required SI.ResetRequired (bit 7) Faulted P4 [Host Config] Safety Status (bit 0)—>Safety Fault Reset Request…

  • Page 206
    Chapter 8 Monitoring and Troubleshooting application. After determining the fault type, see the Understand Safety Faults section for more information on the fault. Safety board faults are also stored in the drive fault queue: Figure 98 — Drive Fault Queue Further information on the cause of the fault is also recorded in the Integrated Safety Functions module events queue: Figure 99 — Mobile Events Queue…
  • Page 207
    Monitoring and Troubleshooting Chapter 8 Table 78 through Table 84 for a description of these parameters. Table 78 — P3 [Safety State] Value Display Text Description Testing Device is performing test diagnostics Idle No active connections Test Flt A fault has occurred while executing test diagnostics Executing Normal running state Abort…
  • Page 208
    Chapter 8 Monitoring and Troubleshooting Table 79 — P4 [Safety Status] (continued) Display Text Description SMT OvrTemp Indicates whether the Safe Motor Temperature function has detected a temperature above the limit. 0 = Temp Below Limit 1 = Temp Above Limit SSM Active Indicates if the Safe Speed Monitoring function is active.
  • Page 209
    Monitoring and Troubleshooting Chapter 8 Table 80 — P5 [Safety Faults] Display Text Description Core Fault The module has detected an unrecoverable fault. Fdbk Fault A fault is present in a safety feedback device. STO Fault This bit indicates the fault status of the STO function. 0 = no fault 1 = faulted The cause of the fault is recorded in device P7 [STO Fault Type].
  • Page 210: Monitor Status Using Integrated Motion

    Chapter 8 Monitoring and Troubleshooting Table 82 — P7 [Safe Faults Mfg] Display Text Description SFX Fault The Safety Feedback Interface Add On Instruction has experienced a fault. Table 83 — P8 [Safety Data A] Data Type Display Text Description DWORD Safety Data A User-defined data sent from Safety Controller.

  • Page 211
    Monitoring and Troubleshooting Chapter 8 Table 85 — Motion Connection Axis Tags Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.CIPStartInhibits DINT A bit map that specifies the current state of all standard conditions that inhibits starting of the axis.
  • Page 212
    Chapter 8 Monitoring and Troubleshooting Table 85 — Motion Connection Axis Tags (continued) Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.SCAActiveStatus [26] BOOL Indicates the state of the module:SO.SCAActive controller output tag. Axis.SCAStatus [27] BOOL Indicates the state of the module:SO.SCAStatus controller output tag.
  • Page 213
    Monitoring and Troubleshooting Chapter 8 Table 85 — Motion Connection Axis Tags (continued) Axis Tag Name (motion controller) MDAO Attribute Data Type Description or [bit] Axis.SDIFault [19] BOOL Set if the module:SO.SDIFault controller output tag is set. Enters ‘Safely Limited Direction (SDI)’…
  • Page 214: Out-Of-Box State

    PowerFlex® 755 drive at least once, you can follow these steps to restore your PowerFlex 755 drive to the out-of-box state while online. 1. Right-click the PowerFlex 755 drive you created, and choose Properties. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…

  • Page 215
    Monitoring and Troubleshooting Chapter 8 2. Click the Connection tab. 3. Check Inhibit Module. 4. Click Apply. 5. Click the Safety Tab. 6. Click Reset Ownership. 7. Click the Connection tab. 8. Clear the Inhibit Module checkbox. 9. Click Apply. 10.
  • Page 216
    Chapter 8 Monitoring and Troubleshooting Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 217
    Appendix Safety Function Validation Checklist Use this appendix to validate your drive safety instructions. Each instruction has a checklist with test commands and results to verify for normal operation and abnormal operation scenarios. Topic Page Safe Stop 1 (SS1) Safe Stop 2 (SS2) Safe Operating Speed (SOS) Safely-limited Speed (SLS) Safely-limited Position (SLP)
  • Page 218
    Appendix A Safety Function Validation Checklist Safe Stop 1 (SS1) Use this SS1 instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.
  • Page 219
    Safety Function Validation Checklist Appendix A Table 1 — SS1 Instruction Checklist (continued) Test Type Test Description Test Status Change the motion deceleration rate within the motion task that is associated with this SS1 function so that the stop delay time is exceeded without triggering a deceleration fault.
  • Page 220: Checklist Safe Stop 2 (Ss2)

    Appendix A Safety Function Validation Checklist Safe Stop 2 (SS2) Use this SS2 instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 221
    Safety Function Validation Checklist Appendix A Table 2 — SS2 Instruction Checklist (continued) Test Type Test Description Test Status Change the motion deceleration rate within the motion task that is associated with this SS2 function so that the stop delay time is exceeded without triggering a deceleration fault.
  • Page 222
    Appendix A Safety Function Validation Checklist Table 2 — SS2 Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine at maximum (normal) operating system speed.
  • Page 223: Safe Operating Speed (Sos)

    Safety Function Validation Checklist Appendix A Safe Operating Speed (SOS) Use this SOS instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 224
    Appendix A Safety Function Validation Checklist Table 3 — SOS Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine at maximum (normal) operating system speed.
  • Page 225: Safely-Limited Speed (Sls)

    Safety Function Validation Checklist Appendix A Safely-limited Speed (SLS) Use this SLS instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 226: Safely-Limited Position (Slp)

    Appendix A Safety Function Validation Checklist Safely-limited Position (SLP) Use this SLP instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 227
    Safety Function Validation Checklist Appendix A Table 5 — SLP Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine within the desired position range.
  • Page 228: Safe Direction (Sdi)

    Appendix A Safety Function Validation Checklist Safe Direction (SDI) Use this SDI instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 229: Safe Feedback Interface (Sfx)

    Safety Function Validation Checklist Appendix A Safe Feedback Interface Use this SFX instruction checklist to verify normal operation and the abnormal operation scenarios. (SFX) IMPORTANT Perform I/O verification and validation before validating your safety ladder program. SFX instruction must be verified within your application. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 230
    Appendix A Safety Function Validation Checklist Table 7 — SFX Instruction Checklist (continued) Test Type Test Description Test Status Initiate a Start command. • Verify that the machine is in a normal machine run condition • Verify proper machine status and safety application program status Operate the machine within the normal operating range.
  • Page 231: Safe Brake Control (Sbc)

    Safety Function Validation Checklist Appendix A Safe Brake Control (SBC) Use this SBC instruction checklist to verify normal operation and the abnormal operation scenarios. IMPORTANT Perform I/O verification and validation before validating your safety ladder program. When possible, use immediate operands for instructions to reduce the possibility of systematic errors in your ladder program.

  • Page 232
    Appendix A Safety Function Validation Checklist Notes: Rockwell Automation Publication 750-UM005A-EN-P- October 2018…
  • Page 233
    Appendix Specifications, Certifications, and CE Conformity This appendix provides general specifications for the Integrated Safety Functions option module. Topic Page Integrated Safety Functions Option Module Specifications Environmental Specifications Certifications Integrated Safety Functions These specifications apply to the Integrated Safety Functions option module. For additional specifications, see these publications: Option Module Specifications •…
  • Page 234
    Appendix B Specifications, Certifications, and CE Conformity Electrical Requirements Table 10 — Safety Input Specifications Attribute Value Input Type Current Sinking IEC 61131-2 (input type) Type 3 Voltage, on-state 11…30V DC Voltage, off-state -3…5V DC Current, on-state, minimum 2 mA Current, off-state, maximum 1.5 mA Table 11 — Safety Output Specifications…
  • Page 235: Environmental Specifications

    For detailed information on environmental, pollution degree, and drive enclosure rating specifications, see the technical data publication for your drive. • PowerFlex 755 AC Drives Technical Data, publication 750-TD001 • PowerFlex 750-Series Products with TotalFORCE Control Technical…

  • Page 236: Certifications

    Up to SIL 3, according to EN 61800-5-2 and IEC 61508, and SIL CL3 according to EN IEC 62061; Up to Performance Level PLe and Category 4, according to EN ISO 13849-1; When used as described in this PowerFlex 755 Integrated Safety Functions User Manual, publication 750-UM004. (1) See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page…

  • Page 237: Emc Directive (2014/30/Eu)

    Specifications, Certifications, and CE Conformity Appendix B EMC Directive (2014/30/EU) • EN 61800-3 — Adjustable speed electric power drive systems — Part 3: EMC requirements and specific test methods Waste Electrical and Electronic Equipment (WEEE) At the end of its life, this equipment should be collected separately from any unsorted municipal waste.

  • Page 238
    Appendix B Specifications, Certifications, and CE Conformity Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 239
    Appendix Safety I/O Assemblies and Safety Attributes Controller axis tags are used by the motion controller motion task to read the status of safety functions and coordinator motion. This appendix lists the motion controller tags that are associated with the safety instances and with safety functions operating in the safety task of the controller.
  • Page 240
    Appendix C Safety I/O Assemblies and Safety Attributes Safety Assembly Tags Safety assembly tags are associated with a safety connection from a safety controller to a drive module. The data in these tags are communicated at the configured connection rate. Safety Input Assembly tags contain the data that is transferred from the drive to the GuardLogix®…
  • Page 241
    Safety I/O Assemblies and Safety Attributes Appendix C Table 14 — Safety Input Assembly Tags (continued) Safety Input Assembly Tag Name Type/[bit] Description (input to safety controller) module :SI.MotionPositive 1 = Feedback Velocity > Primary Feedback Standstill Speed module :SI.MotionNegative 1 = Feedback Velocity <…
  • Page 242
    Appendix C Safety I/O Assemblies and Safety Attributes Table 15 — Safety Output Assembly Tags Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module: SO.PassThruDataA[ instance ] DINT 32-bit data container holding general-purpose safety data passed from the safety controller. module :SO.PassThruDataB[ instance ] DINT 32-bit data container holding general-purpose safety data passed from the safety controller.
  • Page 243
    Safety I/O Assemblies and Safety Attributes Appendix C Table 15 — Safety Output Assembly Tags (continued) Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module :SO.SLSActive[ instance ] Indicates that the controller-based SLS function is active. 0 = SLS Function is not active 1 = SLS Function is active module :SO.SLSLimit[ instance ] Indicates that the controller-based SLS function has detected the monitored axis speed…
  • Page 244
    Appendix C Safety I/O Assemblies and Safety Attributes Table 15 — Safety Output Assembly Tags (continued) Safety Output Assembly Tag Name Type/[bit] Description (output to safety controller) module :SO.SLSFault[ instance ] Controller-based SLS fault. 0 = Normal Operation 1 = Fault module :SO.SDIFault[ instance ] Controller-based SDI fault.
  • Page 245
    Safety I/O Assemblies and Safety Attributes Appendix C Safety Feedback Attributes Safety feedback attributes provide configuration and status information for safety feedback. The module has two safety feedback instances. The safety feedback instances contain safety feedback attributes and safety feedback configuration data.
  • Page 246
    1 = Inverted according to the encoder manufacture specifications. For feedback devices internal to Allen-Bradley® motors, the Normal direction is clockwise rotation of the shaft when facing the end of the motor shaft.
  • Page 247: Safe Stop Function Attributes

    Safety I/O Assemblies and Safety Attributes Appendix C Safe Stop Function Safe-stop function attributes provide configuration and status information for safety feedback. Attributes The module has one safe stop function instance. Safe-stop function attributes provide status and configuration data. All attributes can be read using explicit messages.

  • Page 248
    Appendix C Safety I/O Assemblies and Safety Attributes Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 50 (0x32) Connection Loss Action Safety Output Connection is lost (or closed) and optional Connection Loss 0 = STO (default) Action is Set to STO (default).
  • Page 249
    Safety I/O Assemblies and Safety Attributes Appendix C Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 282 (0x11A) SS1 Active Safe Stop 1 function active. 0 = Not Active 1 = Active 283 (0x11B) SS1 Fault…
  • Page 250
    Appendix C Safety I/O Assemblies and Safety Attributes Table 18 — Safe Stop Function Attributes (Class 0x5A) (continued) Attribute ID Attribute Name Attribute Description Values Decimal (Hex) 361 (0x169) SBC Output Commanded state of the SBC Outputs. 0 = Engage Brake (default) 1 = Release Brake Permit 362 (0x16A) SBC Active…
  • Page 251: Explicit Messages

    Safety I/O Assemblies and Safety Attributes Appendix C Explicit Messages Use explicit messages to communicate with a drive and obtain additional fault, status, or configuration information that is not available in the Safety I/O Tag structure. Attribute data is useful for additional diagnostic information. IMPORTANT Explicit messages must not be used for any safety related function.

  • Page 252
    Appendix C Safety I/O Assemblies and Safety Attributes backplane and <port> is the number of the backplane port where the 20-750- S4 option is installed. This can be port 4, 5, or 6. In CIP Motion applications the 20-750-S4 must be installed in port 6. Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 253: Parameters And Settings In A Linear List

    Appendix Parameter Data This appendix provides a description of the device parameters and host config parameters. Parameters and Settings in a This section describes the status parameters and their values in numerical order. Linear List Device Parameters Table 20 — Device Config Parameters Display Name Values Description…

  • Page 254
    Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Extended Status “Self Test” (0) A self test is in progress. USINT Detailed description of “FW Update” (1) A firmware update is in progress. the module status based on Identity “IO Faulted”…
  • Page 255
    Parameter Data Appendix D Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description SS1 Fault Type “No Fault” (1) No fault being reported by the Safe Stop BYTE 1 function. The fault reported by the Safe Stop 1 “Config”…
  • Page 256
    Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Input Alarm “No Alarm” (0) No alarm reported by the input instance. BYTE The alarm being “Config” (1) The input instance’s configuration is reported by the input invalid.
  • Page 257
    Parameter Data Appendix D Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Enc1 Accel REAL Primary encoder acceleration in units/ s2. The units of this value are of the type reported by parameter 24 — (En1 Unit).
  • Page 258
    Appendix D Parameter Data Table 20 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Enc2 Velocity REAL Secondary encoder velocity in Units/s. The units of this value are of the type reported by P34 [Enc2 Unit]. Enc2 Accel REAL Secondary encoder…
  • Page 259: Host Config Parameters

    Host Parameters 11…14 configure how the PowerFlex® 755 drive reacts to a change in the status of the safety functions. These configuration parameters are not part of the ‘Safety’ configuration, they are part of the PowerFlex 755 drive configuration. Table 21 — Host Config Parameters…

  • Page 260
    Appendix D Parameter Data Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description Safety Status BOOL[32] Indicates status of the safety functions. Options Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 0 “Safety Fault”…
  • Page 261
    Parameter Data Appendix D Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description Safety Faults BOOL[32] Indicates what type of safety fault has occurred. Options Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit 1 “Core Fault”…
  • Page 262
    Appendix D Parameter Data Table 21 — Host Config Parameters (continued) Display Name Values Full Name Description STO Actn Src Default: 0 — Drive RW DWORD Determines whether the drive or the controller initiates a stop when the Safety Status STO Active Options: 0 — Drive bit is set.
  • Page 263: Index

    Index Numerics cycle interpolation 154 20-750-S 16 resolution 154 20-750-S1 16 20-750-S3 16 diagnostic 206 cosine 27 actions 152 encoder 25 hiperface 27 ADC 114 digital AqB encoders 27 additional resources 13 discrepancy 162 assembly tags checking 157 input 240 errors 50 output 242 testing 22…

  • Page 264
    STO bypass 170 warning messages 171 jumper locations MSG command 214 Powerflex 755 drives 33 PowerFlex 755T drive products 33 jumper settings 31 network delay multiplier 151 network status 195 Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 265
    100 brake 93 in standard I/O mode 98 category 233 PFD 20 connection 147 control state 214 PowerFlex 755 drives 21 core fault 199 PowerFlex 755T drive products 21 DeviceID 129 PFH 20 digital outputs 52 definition 11…
  • Page 266
    Index edit 111 spurious trip rate 23 output 149 SS1 78 output alarm 60 activation 78 output assembly tag 67 fault 201 output data 57 reset 79 output ready 58 safety fault 84 output status 57 stopping action and source 80 output with test pulse 52 validation checklist 218 performance level 18…
  • Page 267
    Index test output 162 mode 63 ready 65 status 64 test pulse 52 test pulses 164 test pulses mode 88 time 156 timed SS1 80 SS1 definition 10 timeout multiplier 151 TÜV Rheinland 18 type 162 units 154 used as standard input 162 no test pulses mode 87 test pulses mode 88 with test output 162…
  • Page 268
    Index Notes: Rockwell Automation Publication 750-UM005A-EN-P — October 2018…
  • Page 270
    Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page. Allen-Bradley, Connected Components Workbench, CompactLogix, ControlLogix, DeviceLogix, DPI, Integrated Architecture, Guard I/O, GuardLogix, Logix 5000, PowerFlex, QuickView, Rockwell Automation, Rockwell Software, Studio 5000 Logix Designer, and TotalFORCE are trademarks of Rockwell Automation, Inc.

PowerFlex 755T Drives with TotalFORCE Control Programming Manual

PowerFlex, PowerFlex 755T, 20G, 20J, PowerFlex 750-Seies, TotalFORCE, TotalFORCE Control, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex Common Bus Inverter, PowerFlex Bus Supply

«PowerFlex, PowerFlex 755T, 20G, 20J, PowerFlex 750-Seies, TotalFORCE, TotalFORCE Control, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex Common Bus Inverter, PowerFlex Bus Supply»

Rockwell Automation

Rockwell Automation Publication 750-PM101A-EN-P — February 2021. PowerFlex Drives with TotalFORCE Control Programming Manual. Important User …

PowerFlex 755T Drives with TotalFORCE …

PowerFlex 755T Drives with TotalFORCE Control Programming Manual

750-pm101 -en-p — Rockwell Automation

2021-02-15 — The parameters and fault and alarm codes for this product are in spreadsheets … PowerFlex 755TM AC Precharge Modules Unpacking and Lifting Instructions,.

  • PDF Viewer
  • Universal Document Viewer
  • Google Docs View
  • Google Drive View
  • Download Document [pdf]Not Your Device? Search For Manuals / Datasheets:

    File Info : application/pdf, 136 Pages, 19.67MB

    Document

750-pm101 -en-p

Front Cover
The parameters and fault and alarm codes for this product are in spreadsheets that are attached to this PDF. To access the spreadsheets, save this PDF and open it from your device (not in a browser). Then CLICK HERE to open the Attachments pane (to the left) and access each spreadsheet.
PowerFlex Drives with TotalFORCE Control
Firmware Revision 10.xxx
Programming Manual
Original Instructions
PowerFlex Drives with TotalFORCE Control Programming Manual
Important User Information
Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.
IMPORTANT Identifies information that is critical for successful application and understanding of the product. Labels may also be on or inside the equipment to provide specific precautions.
SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.
BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.
ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
2
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Table of Contents
About This Publication Startup
Parameter Organization PowerFlex 755T Control Block Diagrams Troubleshooting
Preface
Access Files Attached to this Publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Download Firmware, AOP, EDS, and Other Files . . . . . . . . . . . . . . . . . . . . 5 Additional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 1
Parameter Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 CIP Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Supported Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Step 1: Gather the Required Information . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Step 2: Validate the Drive Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Step 3: Power Up and Configure the Modular Control Profiles . . . . . . . 15 Step 4: Configure the Line Side Converter . . . . . . . . . . . . . . . . . . . . . . . . . 19 Step 5: Enter Motor Nameplate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Step 6: Enter Motor Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Step 7: Configure Motor Encoder Feedback . . . . . . . . . . . . . . . . . . . . . . . . 20 Step 8: Autotune the Motor Side Inverter Control . . . . . . . . . . . . . . . . . . 20 Step 9: Set Up Velocity Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Step 10: Set Up Start/Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Step 11: Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Step 12: Verify Drive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Establishing A Connection With EtherNet/IP . . . . . . . . . . . . . . . . . . . . . . 26 Apply and Remove Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 2
About Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Parameter Access Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Parameter References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 How Drive Parameters are Organized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Overview and System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Predictive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 3
Diagram Conventions and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Line Side Converter Control Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Motor Side Inverter Control Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Chapter 4
Fault and Alarm Code Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Configurable Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
3
Table of Contents
Viewing Faults and Alarms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 HIM Indication (Fault Display Screen) . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Manually Clearing Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Status Indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Setting Factory Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Fan Usage by Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Hardware Service Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Fault and Alarm Display Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Common Symptoms and Corrective Actions . . . . . . . . . . . . . . . . . . . . . . 121 Testpoint Codes and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Reset as Shipped . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Configurable LCL Filter Capacitor Failure Response . . . . . . . . . . . . . . . 131 Configurable LCL Filter Capacitor Over Resonance Response . . . . . . 131 PowerFlex 755T Lifting/Torque Proving . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Technical Support Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
About This Publication
Preface
This publication contains the basic information to start up and troubleshoot PowerFlex® 750T Products with TotalFORCE® Control, firmware revision 10 and later.
Firmware revisions 6 and earlier are documented in the PowerFlex Drives with TotalFORCE Control Programming Manual (firmware revision 6.xxx and earlier), publication 750-PM100.
This publication is intended for qualified personnel.
· You must understand the hazards that are associated with electromechanical equipment installations.
· You must understand and follow all applicable local, national, and/or international electrical codes.
· You must be able to program and operate adjustable frequency AC drive devices.
· You must have an understanding of the parameter settings and functions.
Access Files Attached to this Parameter descriptions are provided in a separate Microsoft® Excel®
Publication
spreadsheet that is an attachment to this PDF file. For instructions on saving
the file to your computer, see Parameter Descriptions on page 9.
Alarm and fault descriptions are provided in a separate Microsoft Excel file that is an attachment to this PDF file. For instructions on saving the file to your computer, see Fault and Alarm Code Descriptions on page 107.
Download Firmware, AOP, EDS, and Other Files
Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes from the Product Compatibility and Download Center at rok.auto/pcdc.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
5
Preface About This Publication
Additional Resources
These documents contain additional information concerning related products from Rockwell Automation.
Resource
PowerFlex 750-Series Products with TotalFORCE Control Technical Data, publication 750-TD100
PowerFlex 750-Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100
PowerFlex 755T Flux Vector Tuning, publication 750-AT006
PowerFlex 20-HIM-A6 / -C6S HIM (Human Interface Module) User Manual, 20HIM-UM001 PowerFlex 755TM IP00 Open Type Kits Installation Instructions, publication 750-IN101 PowerFlex 755TM AC Precharge Modules Unpacking and Lifting Instructions, publication 750-IN102 PowerFlex 755TM DC Precharge Modules Unpacking and Lifting Instructions, publication 750-IN103 PowerFlex 755TM Power and Filter Modules Unpacking and Lifting Instructions, publication 750-IN104 PowerFlex 750-Series Service Cart and DCPC Module Lift Instructions, publication 750-IN105 PowerFlex 755TM Power and Filter Module Storage Hardware Instructions, publication 750-IN106 PowerFlex 755T Module Service Ramp Instructions, publication 750-IN108 PowerFlex 750-Series I/O, Feedback, and Power Option Modules Installation, publication 750-IN111
PowerFlex Drives with TotalFORCE Control Programming Manual (firmware revision 6.xxx and earlier), publication 750-PM100
PowerFlex 750-Series Products with TotalFORCE Control Reference Manual, publication 750-RM100
PowerFlex 755TM IP00 Open Type Kits Technical Data, publication 750-TD101
PowerFlex 750-Series Products with TotalFORCE Control Hardware Service Manual, publication 750-TG100
PowerFlex 750-Series Safe Speed Monitor Option Module Safety Reference Manual, publication 750-RM001 PowerFlex 750-Series Safe Torque Off Option Module User Manual, publication 750-UM002 PowerFlex 750-Series ATEX Option Module User Manual, publication 750UM003 PowerFlex 755 Integrated Safety - Safe Torque Off Option Module User Manual, publication 750-UM004 PowerFlex 755/755T Integrated Safety Functions Option Module User Manual, publication 750-UM005 PowerFlex Drives with TotalFORCE Control Built-in EtherNet/IPTM Adapter User Manual, publication 750COM-UM009 Industry Installation Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-AT003
Drives in Common Bus Configurations with PowerFlex 755TM Bus Supplies Application Techniques, publication DRIVES-AT005
Description Provides detailed information on: · Drive and bus supply specifications · Option specifications · Fuse and circuit breaker ratings Provides the basic steps to install PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, and PowerFlex 755TM drive systems. Provides guidance on how to tune Flux Vector position and velocity loops, filters, and other features to achieve the level of performance that is required for a given application. This publication is intended for novice drives users and users with advanced skills. Provides detailed information on HIM components, operation, and features. Provides instructions to install IP00 Open Type kits in user-supplied enclosures.
These publications provide detailed information on: · Component weights · Precautions and recommendations · Hardware attachment points · Lifting the component out of the packaging Provides detailed setup and operating instructions for the module service cart and DC precharge module lift. Provides detailed installation and usage instructions for this hardware accessory. Provides detailed usage instructions for the module service ramp. Provides instructions to install and wire 750-Series option modules. Provides detailed information on: · I/O, control, and feedback options · Parameters and programming · Faults, alarms, and troubleshooting Provides detailed setup and programming instructions for common applications. Provides detailed information on: · Kit selection · Kit ratings and specifications · Option specifications Provides detailed information on: · Preventive maintenance · Component testing · Hardware replacement procedures
These publications provide detailed information on installation, setup, and operation of the 750-Series safety option modules.
Provides information on how to install, configure, and troubleshoot applications for the PowerFlex drives with the built-in EtherNet/IP adapter. Provides basic information on enclosure systems, considerations to help protect against environmental contaminants, and power and grounding considerations for installing Pulse Width Modulated (PWM) AC drives. Provides basic information to properly wire and ground the following products in common bus applications: · PowerFlex 755TM drive system for common bus solutions · PowerFlex 750-Series AC and DC input drives · KinetixTM 5700 servo drives
6
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Preface About This Publication
Resource Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001 EtherNet/IP Network Devices User Manual, ENET-UM006 Ethernet Reference Manual, ENET-RM002
System Security Design Guidelines Reference Manual, SECURE-RM001
Industrial Components Preventive Maintenance, Enclosures, and Contact Ratings Specifications, publication IC-TD002
Safety Guidelines for the Application, Installation, and Maintenance of Solid-state Control, publication SGI-1.1
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Product Certifications website, rok.auto/certifications Rockwell Automation Knowledge Base
Description
Provides basic information to properly wire and ground PWM AC drives.
Describes how to configure and use EtherNet/IP devices to communicate on the EtherNet/IP network. Describes basic Ethernet concepts, infrastructure components, and infrastructure features. Provides guidance on how to conduct security assessments, implement Rockwell Automation products in a secure system, harden the control system, manage user access, and dispose of equipment. Provides a quick reference tool for Allen-Bradley industrial automation controls and assemblies. Designed to harmonize with NEMA Standards Publication No. ICS 1.1-1987 and provides general guidelines for the application, installation, and maintenance of solid-state control in the form of individual devices or packaged assemblies incorporating solid-state components. Provides general guidelines for installing a Rockwell Automation industrial system. Provides declarations of conformity, certificates, and other certification details. The Rockwell Automation Support Forum
You can view or download publications at rok.auto/literature.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
7
Preface About This Publication
Notes:
8
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Startup
1 Chapter
Parameter Descriptions
The procedure in this Startup chapter is designed to guide you through the 12 basic steps that are required to start up your PowerFlex® 750T product for the first time for simple applications.
This procedure uses the HIM to configure parameters. You may prefer to use the PowerFlex 755T Startup Assistant Wizard in Connected Components WorkbenchTM (version 10 or later) software for this instead of the HIM.
Topic
Page
Step 1: Gather the Required Information
10
Step 2: Validate the Drive Installation
14
Step 3: Power Up and Configure the Modular Control Profiles
15
Step 4: Configure the Line Side Converter
19
Step 5: Enter Motor Nameplate Data
19
Step 6: Enter Motor Inertia
20
Step 7: Configure Motor Encoder Feedback
20
Step 8: Autotune the Motor Side Inverter Control
20
Step 9: Set Up Velocity Reference
22
Step 10: Set Up Start/Stop
23
Step 11: Special Considerations
24
Step 12: Verify Drive Operation
25
PowerFlex 750T parameters are listed in the Microsoft® Excel® spreadsheet that is attached to this PDF file.
CLICK HERE to open the Attachments pane (to the left) and access the parameter spreadsheet. This link does not work if you view this PDF file in a browser. Make sure you save the PDF file and open it from your device. Then use the link to open the Attachments pane.
You can also find the parameter spreadsheet in Knowledgebase Article PowerFlex 755T Drives Parameter Descriptions and Fault and Alarm Codes (FRN 10). You do not need a support contract to access the article.
To view the parameter descriptions: 1. Right-click the desired Excel file and choose Save. 2. Open the Excel file.
For full functionality (filter and search), use the Microsoft Excel application.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
9
Chapter 1 Startup
Equipment CIP Security
Supported Applications
The following equipment requirements apply to the use of this publication. · The drive is a PowerFlex 750-Series in a standalone installation. · No load sharing or multiple motors on a single drive. · The drive is equipped with either a PowerFlex 20-HIM-A6 or a 20-HIM-C6S Human Interface Module (HIM).
CIP SecurityTM is a standard, open-source communication mechanism that helps to provide a secure data transport across an EtherNet/IPTM network. It lets CIP-connected devices authenticate each other before transmitting and receiving data.
CIP Security uses the following security properties to help devices protect themselves from malicious communication:
· Device Identity and Authentication · Data Integrity and Authentication · Data Confidentiality
Rockwell Automation uses the following products to implement CIP Security: · FactoryTalk® Services Platform, version 6.11 or later, with the following components enabled: - FactoryTalk Policy Manager - FactoryTalk System Services · FactoryTalk Linx, version 6.11 or later · Studio 5000® Design Environment, version 32.00.00 or later · CIP Security-enabled Rockwell Automation® products, for example, the product described in this publication
This publication is intended for use on typical applications such as fans, pumps, compressors, and conveyors. These are simple velocity applications.
Step 1: Gather the Required Information
When you apply power to your drive for the first time, you need to enter specific information about your application. You need to enter motor nameplate data and set up your I/O. Step 1: Gather the Required Information helps you to verify that you have the needed information prior to drive powerup.
Record Motor Nameplate Data
Record the data to be entered into the parameters during powerup. You can also record data for up to five drive/motor combinations. Use this table to record a descriptive name for each drive/motor combination and their respective parameters.
10
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
Drive/Motor Name (example, Main Exhaust Fan)
Drive/Motor 1:
Drive/Motor 2:
Drive/Motor 3:
Drive/Motor 4:
Drive/Motor 5:
Port No.
10
Parameter Parameter
No.
Name
400 Motor NP Volts
Drive/Motor 1:
Drive/Motor 2:
Drive/Motor 3:
Drive/Motor 4:
Drive/Motor 5:
10
401 Motor NP Amps
10
402 Motor NP Hertz
10
403 Motor NP RPM
10
405 Mtr NP Pwr Units u kWu Hp
u kWu Hp
u kWu Hp
u kWu Hp
u kWu Hp
10
406 Motor NP Power
10
407 Motor Poles
10
900 (1)(2) Motor Inertia
13
30 Nom Line Freq
13
32
AC Line kVA A (Transformer kVA)
13
34 (3) AC Line Imped% A
13
52 Ext Bus Cap
13
100 Current Limit
13
104 Regen Power Limit
(1) Only needed for Flux Vector control. (2) This information is not typically on the motor nameplate. If this information is not provided by the motor data sheet, use the equation on page 20 to calculate motor inertia. (3) Calculate 13:34 [Line Impedance] = (xfmr impedance + line reactor impedance) * xfmr kva/drive kva * 100
Verify Power Wiring
Visually inspect the power wiring connections to each drive. Be sure you are satisfied that the correct wires are connected to the input terminals and to the output terminals. See the PowerFlex 750-Series Products with TotalFORCE® Control Installation Instructions, publication 750-IN100 for more information about where these connections are made.
Verify Wiring AC input power is on L1, L2, L3 / R, S, T. Output motor connection is on T1, T2, T3 / U, V, W. Proper ground wire terminations at PE ground studs.
Drive 1 Wiring is Correct
u u u
Drive 2 Wiring is Correct
u u u
Drive 3 Wiring is Correct
u u u
Drive 4 Wiring is Correct
u u u
Drive 5 Wiring is Correct
u u u
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
11
Chapter 1 Startup
Drive 1 Power jumpers are configured correctly.
u
Verify Power Jumper Configuration
PowerFlex 755T drives contain protective MOVs and common mode capacitors that are referenced to ground. To guard against drive damage and/or operation problems, these devices must be properly configured.
IMPORTANT
The drive power source type must be accurately determined and the jumpers must be configured for the power source. See the PowerFlex 750Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100 for more information on common power source types, where power jumpers are in the drive, and the proper jumper configuration for your power source.
Use this table to record that you have verified that the power jumper configuration is correct for each drive.
Drive 2 Power jumpers are configured correctly.
u
Drive 3 Power jumpers are configured correctly.
u
Drive 4 Power jumpers are configured correctly.
u
Drive 5 Power jumpers are configured correctly.
u
Verify I/O Wiring
To properly configure a drive, you need to know the source of the velocity reference and the start/stop commands. There are three places where signal sources (such as push buttons, potentiometers, or communication network cabling) are connected to the drive.
1. The main control board. · Embedded EtherNet/IPTM port on a PowerFlex 755T · DeviceLogixTM port on a PowerFlex 755T · Terminal block TB1 on a PowerFlex 755T main control board (Digital Input 0)
2. An expansion I/O module. 3. A communication network module.
You can always use the HIM for speed, start, and stop control. If that is the case for operating conditions, proceed to Step 3: Power Up and Configure the Modular Control Profiles on page 15.
12
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Where are Signal Sources Connected?
Chapter 1 Startup
Use this diagram to help determine where signal sources are connected in each of your drives. You need this information when you reach Step 9: Set Up Velocity Reference on page 22.
IMPORTANT The 750-Series drive uses the term `Port' to designate (in software) the physical location where hardware is located.
Port Location Labels
Sh
Sh
PTC­
PTC+
Ao0­ Ao0+ Ao1­
1
Ao1+
­10V
10VC
+10V
Ai0­ Ai0+ Ai1­
2
Ai1+
24VC
+24V
DiC
Di0
Di1 Di2 Di3
3
Di4
Di5
4
Item Description
1
Communication network module (Port 5 installation shown)
2
Expansion I/O module (Port 4 installation shown)
3
Embedded EtherNet/IP
4
Terminal block TB1 on main control board behind the Ethernet port
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
13
Chapter 1 Startup
Item
Are signal sources connected to a communication network module installed in your drive? If yes, note the module's port number.
Drive 1:
Drive 2:
Drive 3:
Drive 4:
Drive 5:
u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No
Which EtherNet/IP configuration is your drive using (BOOTP, DHCP, or manual IP address)? If using a manual IP address, enter the IP address and the subnet address.
Drive 1:
Drive 2:
Drive 3:
Drive 4:
Drive 5:
u BOOTP u DHCP
u BOOTP u DHCP
u BOOTP u DHCP
u BOOTP u DHCP
u BOOTP u DHCP
1
u Manual
IP Address
u Manual
IP Address
u Manual
IP Address
u Manual
IP Address
u Manual
IP Address
Subnet Mask (required)
Subnet Mask (required)
Subnet Mask (required)
Subnet Mask (required)
Subnet Mask (required)
Gateway Address (required) Gateway Address (required) Gateway Address (required) Gateway Address (required) Gateway Address (required)
Are signal sources connected to an expansion I/O module installed in your drive? If yes, note the module's port number.
2 Drive 1:
Drive 2:
Drive 3:
Drive 4:
Drive 5:
u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No u Yes: Port No. u No
Is there a connection to the Embedded EtherNet/IP port?
3
Drive 1: u Yes u No Drive 2: u Yes u No Drive 3: u Yes u No Drive 4: u Yes u No Drive 5: u Yes u No
Are signal sources connected to terminal block TB1 on the main control board located behind the EtherNet/IP port?
4
Drive 1: u Yes u No Drive 2: u Yes u No Drive 3: u Yes u No Drive 4: u Yes u No Drive 5: u Yes u No
See the diagram on page 13 for item number locations.
Step 2: Validate the Drive Installation
Verify the status of the enable jumper and the safety jumper.
· If the enable jumper is removed, control power is required at Di0 on the main control board for the drive to be able to accept a Start command. See parameter 0:100 [Digital In Sts] bit 0 `Digital In 0'. For more information, see PowerFlex 750-Series Products with TotalFORCE Control Installation Instructions, publication 750-IN100.
· If the safety jumper is removed, see the manual for the safety option that is installed.
- Catalog number 20-750-S: PowerFlex 750-Series Safe Torque Off User Manual, publication 750-UM002.
- Catalog number 20-750-S1: Safe Speed Monitor Option Module for PowerFlex 750-Series AC Drives Safety Reference Manual, publication 750-RM001.
- Catalog number 20-750-S3: PowerFlex 755 Integrated Safety - Safe Torque Off User Manual, publication 750-UM004.
- Catalog number 20-750-S4: PowerFlex 755T Integrated Safety Functions Option Module User Manual, publication 750-UM005.
14
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Step 3: Power Up and Configure the Modular Control Profiles
Drive/Motor Name (example, Main Exhaust Fan)
Port Parameter Parameter
No.
No.
Name
0
33 VoltageClass Cfg
0
35 Duty Rating Cfg
0
46 Velocity Units
0
65 Pri MtrCtrl Mode
0
67 Sec MtrCtrl Mode
0
70 Application Sel
0
72 Emb Logic Select
Chapter 1 Startup
In this step, you power up the drive and configure the Modular Control Profiles. Modular Control Profiles change to match your preferences and application needs. A power cycle is required for the new configuration to work. Modular Control Profiles improve user interface and performance.
Preparation
Use the following table to keep track of your configurations and preferences.
Drive/Motor 1:
Drive/Motor 2:
Drive/Motor 3:
Drive/Motor 4:
Drive/Motor 5:
Drive/Motor 1:
Drive/Motor 2:
Drive/Motor 3:
Drive/Motor 4:
Drive/Motor 5:
Voltage Class
Most customers order the drive that matches their incoming voltage. The voltage class parameter allows some extra flexibility. For example, it allows you to use the same drive in 400V or 480V operation.
For 400/480V products, Low Voltage selects 400V and High Voltage selects 480V.
For 600/690V products, Low Voltage selects 600V and High Voltage selects 690V.
Duty Rating Class
The duty class parameter allows you to select the continuous and overload modes of operation.
Normal Duty ­ Selects the normal continuous rating, with overload ratings of 110% for 60 seconds and 150% for 3 seconds.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
15
Chapter 1 Startup 16
Heavy Duty ­ Provides a lower continuous rating, with overload ratings of 150% for 60 seconds and 180% for 3 seconds.
Light Duty ­ provides the highest continuous rating, with an overload rating of 110% for 60 seconds. Not available on all drive sizes.
The value of this parameter affects the continuous current rating of the drive.
Velocity Units
This parameter allows you to select either Hertz (Hz) or Revolutions per Minute (RPM) as the units for velocity (speed).
Motor Control Mode
Select the motor control mode that the product uses for primary (port 10) and secondary (port 11) control of the motor side inverter. You can choose from the following:
· Volts per Hertz ­ The most basic form of motor control. Useful for variable torque applications such as pumps, fans, and multiple motors in parallel.
· Sensorless Vector ­ An enhanced form of V/Hz control useful variable torque and simple constant torque applications. Sensorless vector produces better torque at low frequencies than volts per hertz. Motor Tuning recommended.
· Economize ­ An enhanced form of Sensorless Vector control designed to reduce energy consumption when the drive is not accelerating. Motor Tuning recommended.
· Flux Vector ­ A control mode that is designed for precise Torque, Velocity and/or Position regulation. Useful for variable torque, constant torque, and constant power applications. Provides precise position and velocity tracking. Provides excellent disturbance rejection. This mode is needed for position and load sharing applications. Motor Tuning is required.
Flux Vector is the recommended control mode for both encoder and encoderless control of permanent magnet motors.
Application Mode
You can add one of the following functionalities to determine which application parameters are present in port 9. Choose from the following options:
· None ­ leaves port 9 empty. · Process PID only ­ provides a PID regulator for process applications in
port 9. Use this for pressure or flow transducers on fan or pump applications. Use it for tension transducers on winding applications. · Torque Prove ­ provides a mechanism for coordinating the motor and mechanical brake on lifting applications. This selection loads these parameters as well as the Process PID parameters into port 9.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
· Oil Well ­ provides a mechanism for pump jack and progressive cavity pump applications.
Power the Drive
ATTENTION: Power must be applied to the drive to perform the following startup procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, allow only qualified service personnel to perform the following procedure. Thoroughly read and understand the procedure before beginning.
1. Apply AC power and control voltages to the drive. See Apply and Remove Power on page 28.
2. When prompted, use the or to highlight the desired display language.
Stopped
AUTO
0.000 Hz
F
Select Language to Use
English
Francaise
Espanol
Italiano
ENTER
Language Selection Screen
3. Press the ENTER soft key to select the language. Language selection only applies to new drives. It is not required if the drive has been previously used or when resetting from factory defaults. If this drive was previously powered and configured, and is being repurposed for this application, reset the drive parameters following the instructions in Setting Factory Defaults on page 118.
IMPORTANT
Language selection only applies to new drives. It is not required if the drive has been previously used or when resetting from factory defaults. If this drive was previously powered and configured, and is being repurposed for this application, reset the drive parameters following the instructions in Setting Factory Defaults on page 118.
4. Press the ESC soft key to access the Status screen.
The Status screen is displayed on HIM powerup.
5. Use the
or
key to scroll to port 0.
Stopped
AUTO
0.00 Hz
F
Host Drive
480V 740A
20G...D740
00
ESC
REF PAR# TEXT
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
17
Chapter 1 Startup 18
Configure the Voltage Class
Navigate to parameter 0:33 [VoltageClass Cfg] and enter the configuration for Low Voltage or High Voltage. A change to this parameter is needed only when you are applying a drive on a voltage other than what the catalog number specifies.
Configure the Duty Rating
Navigate to parameter 0:35 [Duty Rating Cfg] and enter the configuration for Normal, Heavy, or Light Duty.
Configure Velocity Units
Navigate to parameter 0:46 [Velocity Units] and enter the configuration for Hz or RPM.
Configure the Motor Control Mode
Navigate to parameter 0:65 [Pri MtrCtrl Mode] and enter the configuration for Volts per Hz, Sensorless Vector, Economize, Flux Vector, or Synchronous Reluctance. This configuration is only needed when you are not using Sensorless Vector.
For permanent magnet motors, select an option. · 4 `IPM FV', induction motor flux vector · 5 `SPM FV', interior permanent magnet motor flux vector · 6 `PM VHz', surface permanent magnet motor flux vector · 7 `PM VHz', permanent magnet motor volts per Hertz · 8 `PM SV', permanent magnet motor sensorless vector
For synchronous reluctance motors, select an option. · 9 `SynR VHz', synchronous reluctance motor volts per Hertz · 10 `SynR SV', synchronous reluctance motor sensorless vector
Configure the Application Selection
Navigate to parameter 0:70 [Application Sel] and enter the configuration for Process PID, Torque Prove, or Oil Well.
Cycle Power and Verify the Modular Control Profile Configurations
1. Cycle power or reset the drive (Reset Device) in order to load the control mode.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
IMPORTANT You must cycle power or reset the drive (Reset Device) in order to load the value of these parameters.
2. Navigate to port 0.
3. Navigate to `Actual' feedback parameters to verify the configuration:
0:34 [VoltageClass Act] 0:36 [Duty Rating Act]
0:47 [Vel Units Act] 0:66 [Pri MtrCtrl Act]
0:71 [Application Act]
Step 4: Configure the Line Side Converter
In this step, you configure the line side converter using the HIM.
You may prefer to use the Regenerative Converter Setup Wizard in Connected Components Workbench software for this instead of the HIM.
1. Navigate to port 13 (Line Side Converter Control).
2. Navigate to the following parameters and enter that data gathered in Step 1: Gather the Required Information in this order. See page 10 of this publication.
13:30 [Nom Line Freq]
13:32 [AC Line kVA A]
13:34 [AC Line Imped% A]
3. On a 755TM bus supply, navigate to parameter the following parameters
and enter that data.
13:52 [Ext Bus Cap]
13:100 [Current Limit]
13:104 [Regen Power Lmt]
[Ext Bus Cap] ­ Enter the bus capacitance of products outside of the local bus supply or integrated drive that share the common DC bus. Include the capacitance of Common Bus Inverters and DC input drives that share the common DC bus. Include any additional capacitor modules added to the common DC bus. See Drives in Common Bus Configurations, publication DRIVES-AT002.
Step 5: Enter Motor Nameplate Data
You may prefer to use the PowerFlex 755T Setup Assistant in Connected Components Workbench software to perform steps 5...8 instead of the HIM.
In this step, you configure the Motor Side Inverter Control to contain the motor nameplate information.
1. Navigate to port 10 (Motor Side Inverter Control).
2. Navigate to the following parameters and enter the data gathered in Step 1: Gather the Required Information on page 10:
10:400 [Motor NP Volts]
10:403 [Motor NP RPM]
10:406 [Motor NP Power]
10:401 [Motor NP Amps]
10:405 [Mtr NP Pwr Units]
10:407 [Motor Poles]
10:402 [Motor NP Hertz]
If the number of motor poles is not on the motor nameplate, use the following formula to determine the value:
Motor Poles = (120 x Motor NP Hertz)/Motor NP RPM Round the result to the nearest even number.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
19
Chapter 1 Startup
Step 6: Enter Motor Inertia
In this step, you configure the Motor Inertia parameter. This is only needed for proper operation with Flux Vector mode. This parameter does not exist in other motor control modes.
1. Navigate to parameter 10:900 [Motor Inertia]. Then enter the data gathered in Step 1: Gather the Required Information on page 10. Enter using the units of kg x m2.
Divide lb x ft2 or WK2 by 23.73 to convert to kg x m2.
If the data is not available on the motor nameplate or data sheet, use the following equation to estimate motor inertia:
Motor Inertia = Motor Hp/[250 x (Motor Hp/500 + 1)]
Step 7: Configure Motor Encoder Feedback
In this step, you configure the motor encoder feedback.
This step is needed only if you are using motor encoder feedback. 1. Navigate to parameter 10:1000 [Pri Vel Fb Sel]. Then enter the two-digit port number for feedback option card, and the four-digit parameter number for the parameter that displays the feedback.
For example, enter 05 and 0004 when using a 20-750-ENC-1 in slot 5. This links to parameter nn:4 [Encoder Feedback]. 2. Navigate to the port that contains the feedback option card.
For example, navigate to port 5 when using a 20-750-ENC-1 in slot 5. 3. Configure the parameters on the feedback option card to match the
encoder you are using.
For example, configure the following parameters if using a 20-750-ENC1: nn:1 [Encoder Cfg], nn:2 [Encoder PPR], and nn:3 [Fdbk Loss Cfg].
Step 8: Autotune the Motor Side Inverter Control
In this step, you perform tuning tests using the HIM.
IMPORTANT
During this test, the drive uses an internal reference that is positive (forward). During operation and other tests, the drive uses an external reference that you select. An external reference can include the HIM, analog input, or communicated reference. The direction of rotation depends on the polarity (direction) of that external reference. Make sure the external reference moves the motor in the intended direction.
Set Maximum Velocity (Permanent Magnet Motors)
Follow these steps for permanent magnet motor applications only.
1. Before you run autotune tests, configure the maximum velocity and bus protection parameters. Navigate to Port 10 `Primary Motor Side Control Parameters' for standard applications. When using the secondary motor control feature to configure a secondary motor, navigate to Port 11 `Secondary Motor Side Control Parameters.'
20
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
2. Set parameter 10:691 [PM Bus Prot] and parameter 10:699 [PM Vel Max] to the Motor Nameplate RPM or Hertz according to the velocity unit selection in 0:46 [Velocity Units]. If unit conversion is necessary, see the formula in Step 5: Enter Motor Nameplate Data on page 19.
Perform the Direction Test
1. Navigate to parameter 10:910 [Autotune] and enter a value of 1 `Direction Test'.
2. Press the Start key. 3. Observe if the motor direction is forward or reverse for the application.
4. Press the Stop key. 5. Address the direction.
· If the direction is forward, proceed to next test. · If the direction is reverse, you have two alternatives:
Set bit 4 `Mtr Lead Rev' of parameter 10:420 [Mtr Cfg Options]. This reverses the phase rotation of the applied voltage, effectively reversing the motor leads.
Or
Power down and physically reverse the motor leads. 6. Run the test again to verify that the motor direction is now forward.
Perform the Motor ID Test
1. Navigate to parameter 10:510 [MtrParam C/U Sel]. Select a value of 2 `LoadCalcData'. This copies the calculated motor characteristic parameters to the `User Entered' parameters and then selects option 1 `User Entered'. The results of a Motor ID test will update the 'User Entered' parameters accordingly.
2. For induction motors, navigate to parameter 10:910 [Autotune] and enter a value of 2 `Static MtrID'. For permanent magnet motors, navigate to parameter 10:910 [Autotune] and enter a value of 3 `Rotate MtrID'. Permanent Magnet motors require a rotate tune. A static tune is not supported.
3. Press the Start key.
Configuration Complete
The drive is able to start/stop from the HIM and has been successfully started up.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
21
Chapter 1 Startup
Step 9: Set Up Velocity Reference
Select the configuration according to the wiring you observed in Step 2: Validate the Drive Installation.
Door-mounted or Remote-mounted HIM
1. Navigate to port 10 (Motor Side Inverter Control). 2. Navigate to parameter 10:1800 [VRef A Sel]. Then enter a value of
215 `Port 2 Reference'.
Connections on 11-Series I/O Module - Cat. No. 20-750-11xxx-xxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx
1. Navigate to parameter 10:1800 [VRef A Sel]. Then enter the two-digit port number for I/O option card, and the four-digit parameter number for the parameter that displays the analog input.
For example, enter 04 and 0050 when using a 20-750-22xxx-xxxx in slot 4. This links to parameter nn:50 [Anlg In0 Value]. 2. Navigate to the port containing the I/O option card. Then enter the needed parameter values.
In the above example, you would go to port 4 and enter values for these parameters: nn:45 [Anlg In Type], nn:50 [Anlg In0 Value], nn:51 [Anlg In0 Hi], nn:52 [Anlg In0 Lo], and nn:53 [Anlg In0 LssActn].
Embedded EtherNet/IP Interface
Navigate to port 10 (Motor Side Inverter Control).
Navigate to parameter 10:1800 [VRef A Sel]. Then enter a value of 211 `Emb Enet Ref'.
22
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Step 10: Set Up Start/Stop Door Mounted or Remote Mounted HIM
The keys on the HIM provide three-wire control. Use the Start key for start. Use the Stop key for stop.
Chapter 1 Startup
Three-Wire Control on 11-Series I/O Module - Cat. No. 20-750-11xxxxxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx
1. Navigate to port 0, the main product port. 2. Navigate to parameter 0:108 [DI M Stop]. Then enter the two-digit port
number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input where the stop button is wired.
For example, enter 04 and 0001 and 00 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 0 for digital input 0 in parameter nn:1 [Dig In Sts].
3. Navigate to parameter 0:117 [DI M Start]. Then enter the two-digit port number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input digital input where the start button is wired.
For example, enter 04 and 0001 and 01 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 1 for digital input 1 in parameter nn:1 [Dig In Sts].
Two-Wire Control on 11-Series I/O Module - Cat. No. 20-750-11xxx-xxxx or 22-Series I/O Module - Cat. No. 20-750-22xxx-xxxx
1. Navigate to port 0, the main product port.
2. Navigate to parameter 0:120 [DI M Run]. Then enter the two-digit port number for I/O option card, the four-digit parameter number for the digital input status, and then the two-digit bit number for the digital input where the run button is wired.
For example, enter 04 and 0001 and 00 when using a 20-750-22xxx-xxxx in slot 4. This links to bit 0 for digital input 0 in parameter nn:1 [Dig In Sts].
IMPORTANT
You must select either two-wire and three-wire control. The drive cannot be set to use both control modes simultaneously. A Start and a Run on the same drive causes a 73 `Digin Cfg B' digital input configuration fault.
Embedded EtherNet/IP Interface
The logic command word from the controller starts and stops the drive without any special parameter settings.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
23
Chapter 1 Startup
Step 11: Special Considerations
Acceleration and Deceleration Rates
The default acceleration rate is 10 seconds (from 0 to Motor NP RPM).
The default deceleration rate is 10 seconds (from Motor NP RPM to 0).
Use the following steps to modify this if needed. 1. Navigate to port 10, the motor control port. 2. Navigate to parameter 10:1915 [VRef Accel Time1] and then enter the desired acceleration rate in seconds. 3. Navigate to parameter 10:1917 [VRef Decel Time1] and then enter the desired deceleration rate in seconds.
Analog Output
1. Navigate to the port that contains the I/O card with the analog outputs you need to use.
2. Modify the following I/O card parameters as needed:
nn:75 [Anlg Out0 Sel]
nn:81 [Anlg Out0 Lo]
nn:88 [Anlg Out1 DataHi]
nn:76 [Anlg Out0 Stpt]
nn:82 [Anlg Out0 Val]
nn:89 [Anlg Out1 DataLo]
nn:77 [Anlg Out0 Data]
nn:85 [Anlg Out1 Sel]
nn:90 [Anlg Out1 Hi]
nn:78 [Anlg Out0 DataHi]
nn:86 [Anlg Out1 Stpt]
nn:91 [Anlg Out1 Lo]
nn:79 [Anlg Out0 DataLo]
nn:87 [Anlg Out1 Data]
nn:92 [Anlg Out1 Val]
nn:80 [Anlg Out0 Hi]
Relay Output
1. Navigate to the port that contains the I/O card with the relay outputs you need to use.
2. Modify the following I/O card parameters as needed:
nn:10 [RO0 Sel]
nn:14 [RO0 On Time]
nn:22 [RO1 Level]
nn:11 [RO0 Level Sel]
nn:15 [RO0 Off Time]
nn:23 [RO1 Level CmpSts]
nn:12 [RO0 Level]
nn:20 [RO1 Sel]
nn:24 [RO1 On Time]
nn:13 [RO0 Level CmpSts]
nn:21 [RO1 Level Sel]
nn:25 [RO1 Off Time]
24
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Step 12: Verify Drive Operation
Speed Reference HIM Source Control Board Analog Input Expansion I/O Module Analog Input (Port 4) Communications over EtherNet/IP (Port 6 or Port 13) Communications over Other Protocol (Port 6)
Chapter 1 Startup
Now that you have completed the steps required to start up your drive for the first time, verify that each of your drive/motor combinations is operating correctly and record the results.
Use the information displayed on the HIM, the drive status indicators to the right of the HIM, and the system operation to assist with verifying drive operation.
1. Is each drive/motor combination responding correctly to each of the signal sources?
Signal Command Start Stop Direction (if applicable)
Drive/Motor 1
u u u
Drive/Motor 2
u u u
Drive/Motor 3
u u u
Drive/Motor 4 Drive/Motor 5
u
u
u
u
u
u
2. Is each drive/motor combination responding correctly to the speed reference source? (Check only those that apply.)
Drive/Motor 1
Drive/Motor 2
Drive/Motor 3
Drive/Motor 4
Drive/Motor 5
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
u Yes u No
Configuration Considerations
If any of your drive/motor combinations are not functioning properly, review steps 1...12 to be sure that the correct information was gathered or calculated and that parameters were set correctly. You can also see parameters 10:350 [VRef Source] and 10:603 [Start Inhibit].
If your EtherNet/IP communications are not functioning properly, verify the controller/PLC is communicating the expected commands and/or reference. For more information, see the PowerFlex Drives with TotalFORCE Control Built-in EtherNet/IP Adapter User Manual, publication 750COM-UM009, or contact your PLC expert.
To interpret the Drive Status Indicators, see page 110. See also parameter 0:200 [MS Logic Rslt].
If performance problems persist, see the publications listed in Additional Resources on page 6.
If you feel you need additional technical support, gather the information listed on page 14 prior to contacting a support representative.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
25
Chapter 1 Startup
Establishing A Connection With EtherNet/IP
See the PowerFlex 750-Series Drives with TotalFORCE Control Built-in EtherNet/IP Adapter, publication 750-UM009.
There are three methods for configuring the embedded EtherNet/IP adapter's IP address:
· Adapter Rotary Switches ­ Use the switches when working on a simple, isolated network (for example, 192.168.1.xxx) where: - other products on the network use switches to set their IP addresses - the product does not need to be accessed from outside the network - a simplified node addressing method is preferd
The three adapter switches are read when the drive powers up, and represent three decimal digits from top to bottom (see Figure 1). If set to a valid address (001-254), the adapter will use that value as the lower octet of its IP address (192.168.1.xxx, where xxx = rotary switch settings), along with a subnet mask of 255.255.255.0 and there will be no gateway configured. Also, the setting for adapter 0:300 [Net Addr Sel] is automatically ignored.
See Figure 1 and its accompanying table for all possible switch settings and their related descriptions.
IMPORTANT When using the adapter rotary switches, set the IP address before power is applied because the adapter uses the IP address it detects when it first receives power.
· BOOTP or DHCP Server ­ Use BOOTP/DHCP if you prefer to control the IP addresses of devices that use a server. The BOOTP/DHCP server provides the IP address, subnet mask, and gateway addresses. If the address is invalid, DHCP is used. When using this method, set the rotary switches to 999. For BOOTP, set 0:300 [Net Addr Sel] to 2 `BOOTP'. For DHCP, set 0:300 [Net Addr Sel] to 3 `DHCP'.
· Adapter Parameters ­ Use adapter parameters when you want more flexibility in setting up the IP address, or need to communicate outside the control network using a gateway. The IP address, subnet mask, and gateway addresses are taken from the adapter parameters you set. When using this method, set the rotary switches to 999. Set 0:300 [Net Addr Sel] to 1 `Parameters'.
Address Configuration Parameters
- IP Address: 0:302 [IP Addr Cfg 1]...0:305 [IP Addr Cfg 4] - Subnet Mask Address: 0:306 [Subnet Cfg 1]...0:309 [Subnet Cfg 4] - Gateway Address: 0:310 [Gateway Cfg 1]...0:313 [Gateway Cfg 4]
Regardless of the method used to set the adapter's IP address, each node on the EtherNet/IP network must have a unique IP address. To change an IP address, you must set the new value and then remove and reapply power to (or reset) the adapter.
26
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Figure 1 - Setting the IP Address Switches
Chapter 1 Startup
Hundreds Position
Tens Position Ones
Position
Possible Settings 000, 255...887, 889...999 001...254
888
Description Adapter uses the setting depending on 0:300 [Net Addr Sel], BOOTP setting, DHCP setting, or the adapter parameter settings for the IP address. Adapter uses the rotary switch settings for the IP address (192.168.1.xxx, where xxx = rotary switch settings). Resets the adapter IP address function to factory defaults. This setting also resets most parameters to factory defaults (see Setting Factory Defaults on page 118). After you reset the adapter, power down the drive. Set the switches to a setting other than 888. Power up the drive to accept the new address.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
27
Chapter 1 Startup
Apply and Remove Power
The following procedures describe how to energize PowerFlex 755T products in both stand-alone and in system installations.
755TL and TR Drives without 24V Auxiliary Power
This procedure applies to drives without 24V auxiliary power.
Input Bay
Power Bay
(B)
(A) Three-phase Power
Energize
Energize the product in the following sequence: 1. Energize three-phase power (A). 2. Turn the fused disconnect handle (B) to the `On' position.
De-energize
De-energize the product in the following sequence: 1. Turn the fused disconnect handle (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed.
28
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
755TL and TR Drives with 24V Auxiliary Power
Chapter 1 Startup
This procedure covers drives with 24V auxiliary power.
IMPORTANT
This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial powerup, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence.
Input Bay
(B) (C) 24V Auxiliary Power
Power Bay
(A) Three-phase Power
Energize
Energize the product in the following sequence: 1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication. 2. Energize three-phase power (A). 3. Turn the fused disconnect switch (B) to the `On' position. 4. After drive boots up, clear faults related to the three-phase outage.
De-energize
De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed.
Leave 24V auxiliary power (C) energized when the drive is not in operation.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
29
Chapter 1 Startup
Systems with 755TM Bus Supplies and Common Bus Inverters
This procedure covers systems without 24V auxiliary power and without separate 240V control power.
Bus supplies ordered with the ­C1 Control Transformer option do not require separate 240V control power.
Input Bay (B)
Power Bay
Power Bay (F)
Control Bay
(E)
Power Bay (F)
(A)
Three-phase Power
Energize
Energize the product in the following sequence: 1. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 2. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 3. Energize three-phase power (A). 4. Turn the fused disconnect switch (B) to the `On' position.
De-energize
De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 3. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 4. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge.
30
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
Systems with 24V Auxiliary Power and without Separate 240V Control Power
IMPORTANT
This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial powerup, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence.
Bus supplies ordered with the ­C1 Control Transformer option do not require separate 240V control power.
Input Bay
(B) (C) 24V Auxiliary Power
Power Bay
Power Bay (F)
Control Bay
(E)
Power Bay (F)
(A)
Three-phase Power
Energize
Energize the product in the following sequence: 1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication. 2. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This is not needed if 24V auxiliary power (C) remains energized. 3. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 4. Energize three-phase power (A). 5. Turn the fused disconnect switch (B) to the `On' position. 6. After drive system boots up, clear faults related to the three-phase outage.
De-energize
De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
31
Chapter 1 Startup
3. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This is not needed if 24V auxiliary power (C) remains energized.
4. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge.
5. Leave 24V auxiliary power (C) energized when the drive is not in operation.
Systems without 24V Auxiliary Power and with Separate 240V Control Power
Bus supplies ordered without the ­C1 Control Transformer option require separate 240V control power.
(D) 240V Control Power
Input Bay (B)
Power Bay
Power Bay (F)
Control Bay
(E)
Power Bay (F)
(A)
Three-phase Power
Energize
Energize the product in the following sequence: 1. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation. 2. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 3. Energize 240V control power (D). 4. Energize three-phase power (A). 5. Turn the fused disconnect switch (B) to the `On' position.
De-energize
De-energize the product in the following sequence: 1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed.
32
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 1 Startup
3. De-energize 240V control power (D).
IMPORTANT
Step 3, de-energize 240V control power is required. If three-phase power is de-energized and re-energized while 240V control power stays energized, Common Bus Inverter non-resettable functional safety faults result. To clear these faults, de-energize and reenergize 240V control power.
4. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation.
5. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge.
Systems with 24V Auxiliary Power and with Separate 240V Control Power
IMPORTANT
This procedure assumes that 24V auxiliary power was not removed when the product was de-energized. If you are conducting an initial power-up, or if 24V auxiliary power was removed, only apply 24V auxiliary power as the final step in the Energize sequence.
Bus supplies ordered without the ­C1 Control Transformer option require separate 240V control power.
(D) 240V Control Power
(C) 24V Auxiliary Power
Input Bay (B)
Power Bay
Power Bay (F)
Control Bay
(E)
Power Bay (F)
(A) Three-phase Power
Energize
Energize the product in the following sequence:
1. Leave 24V auxiliary power (C) energized when the drive is not in operation. This keeps up the control and communication.
2. Leave the Control Power switches (E) for the Common Bus Inverters in the `On' position when the drive system is not in operation.
3. Leave the DC Precharge switches (F) for the Common Bus Inverters in the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
33
Chapter 1 Startup
4. Energize 240V control power (D). 5. Energize three-phase power (A). 6. Turn the fused disconnect switch (B) to the `On' position. 7. After drive system boots up, clear faults related to the three-phase
outage.
De-energize
De-energize the product in the following sequence:
1. Turn the fused disconnect switch (B) to the `Off' position. 2. De-energize three-phase power (A). This may not be needed. 3. De-energize 240V control power (D). This is only needed to turn off
heatsink fans on LCL filters. 4. Leave the Control Power switches (E) for the Common Bus Inverters in
the `On' position when the drive system is not in operation. 5. Leave the DC Precharge switches (F) for the Common Bus Inverters in
the `On' position when the drive system is not in operation. This step is not required for Common Bus Inverters without DC Precharge. 6. Leave 24V auxiliary power (C) energized when the drive is not in operation.
34
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
About Parameters
Parameter Organization
2 Chapter
This chapter lists and describes the parameters in PowerFlex 750-Series Products with TotalFORCE® Control. The parameters can be programmed (viewed/edited) using a Human Interface Module (HIM). See the Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001, for information on using the HIM to view and edit parameters. You can also use Connected Components WorkbenchTM (version 10 or later) software. If the drive is connected to a ControlLogix® or CompactLogixTM controller you can also use Studio 5000 Logix Designer® (version 20 or later).
To configure a drive module to operate in a specific way, certain drive parameters may have to be configured appropriately. Four types of parameters exist:
· Numeric Parameters These parameters have a single numeric value (such as 1750.0 RPM).
· ENUM Parameters These parameters allow a selection from two or more items. The LCD HIM will display a text message for each item.
· Indirect Parameters These parameters assign or select sources for data. They have a maximum value of 159999.15. The two most significant digits select the port of the source. The following four digits select the parameter number of the source. The two digits below the decimal point select the bit number of the source. For example, parameter 0:117 [DI M Start] is an indirect parameter for selecting the source of the Start digital input function. You may want to select input 01 on an IO card in port 4. You would enter 04 and 0001 and .01. This assigns bit 01 of parameter 0001 [Dig In Sts] of the card in port 4 to the Start function.
· Bit Parameters These parameters have individual bits associated with features or conditions. If the bit is 0, the feature is off or the condition is false. If the bit is 1, the feature is on or the condition is true.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
35
Chapter 2 Parameter Organization
Parameter Access Level
Three parameter access level options are selectable by 0:30 [Access Level].
· Option 0 `Basic' is the most limited view that only displays parameters and options that are commonly used by operators.
· Option 1 `Advanced' is an expanded view of parameters that is helpful to maintenance technicians and for engineers to access more advanced drive features when they commission the drive.
· Option 2 `Expert' provides design engineers with a comprehensive view of the entire parameter set.
Parameter References
Parameter references are shown as Port#:Parameter# [Parameter Display Name] convention. For example, 0:30 [Access Level] tells you that the Access Level parameter is number 30 in port 0.
How Drive Parameters are Organized
Connected Components Workbench programming software displays parameters in `Linear List' or `File Group Parameter' format. The `File Group Parameter' format simplifies programming by dividing Files into groups of parameters that are used for similar functions.
Overview and System Architecture
The PowerFlex 755T architecture is an evolution of the high power (frames 8...10) PowerFlex 755 architecture. There are changes to improve usability and performance. There are changes to include new functionality and additional power modules.
Ports, files, and groups are containers for control and parameters. This architecture organizes the parameters among these containers to make them easy to find. It also limits which parameters are presented. It only presents the parameters that are related to the active configuration.
36
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Port 0 System (Whole Product) ­ See page 37
Monitor Product Config Feedback & I/O Communication
Embedded ENET Protection Diagnostics
Figure 2 - System Architecture
Chapter 2 Parameter Organization
Port 10 Pri MtrSideCtrl ­ See page 38
Monitor Dynamic Control Protection Diagnostics Electrical
System Feedback Position Velocity Torque
Port 13 Line Side Ctrl ­ See page 38
Monitor Dynamic Control
Protection Diagnostics
Port 11 Sec MtrSideCtrl­ See page 38
Monitor Dynamic Control Protection Diagnostics Electrical
System Feedback Position Velocity Torque
Port 14 Line Side Power ­ See page 38
Line Side Common L0...L9 Power Module AC Precharge F0...F9 LCL Filter
Port 12 Motor Side Power ­ See page 38
MotorSide Common Trq Accuracy Mod M0...M9 Power Module
Port 9 Application ­ See page 38
Process PID Torque Prove Oil Well
DeviceLogix Diagnostics
Port 1 HIM (Pod)
Port 2 HIM (Door)
Port 3 HIM (Ext.)
Port 4 Option Slot
Port 5 Option Slot
Port 6 Option Slot
Port 7 Option Slot
Port 8 Option Slot
See page 38
Port 0 PowerFlex 755T System Port
This port contains parameters for monitoring and configuring the whole product (drive or bus supply). It contains parameters for configuring digital input functions and motor encoder feedback channels. It includes parameters for the Embedded EtherNet/IP interface.
This port also contains parameters that configure port 9 (the application port) and port 10 (the primary motor control port). These parameters determine what ports 9 and 10 contain. Ports 9 and 10 do not display parameters or software that is related to unused configurations. For example, if you do not select Torque Prove in the Application Selection parameter then port 9 does not contain parameters for Torque Prove. If you do not select the Flux Vector motor control mode, then port 10 does not display Flux Vector parameters or software.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
37
Chapter 2 Parameter Organization
Port 9 Application Parameters
This port contains parameters and software that is related to specific applications. The contents of this port depend the setting of parameter 0:70 [Application Sel]. It can contain nothing, Process PID, or Torque Prove.
Port 10 Primary and Port 11 Secondary Motor Side Control Parameters
These ports contain parameters and software that is related to the primary and secondary control of the motor side inverter. Port 10 is the primary motor side control port and port 11 is the secondary port. The contents of these ports depend the setting of parameters 0:65 [Pri MtrCtrl Mode] and 0:67 [Sec MtrCtrl Mode]. They can contain Volts per Hertz, Senorless Vector, Economizer, or Flux Vector control. They contain parameters for configuring the starting and stopping of the motor side inverter. They contain parameters for entering the electrical attributes of the motor. They contain parameters for configuring and monitoring the Position, Velocity, and Torque loops.
Port 12 Motor Side Power Parameters
This port contains parameters that are related to the power hardware in the motor side inverter. These parameters monitor and configure the power modules.
Port 13 Line Side Control Parameters
This port contains parameters and software that is related to control of the line side converter. It contains parameters for configuring and monitoring the control of the converter. It contains parameters for entering the electrical attributes of the AC line source.
Port 14 Line Side Power Parameters
This port contains parameters that are related to the power hardware in the line side converter. These parameters monitor and configure the power modules, AC precharge, and LCL filters.
Port 1 HIM on Control Pod
The Human Interface Module (HIM) on the control pod connects through port 1.
38
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Predictive Maintenance
Port 2 HIM (Door Mount or Handheld)
Chapter 2 Parameter Organization
A second HIM or 1203-USB programming interface connects through port 2. The factory installed door-mounted HIM connects through port 2.
Port 3 HIM or 1203-USB
A third HIM or 1203-USB programming interface connects through port 3. Port 3 is visible when using a 1203-S03 splitter cable.
Port 4...8 Option Slot
Ports 4...8 are the DPI and DSI option slots. I/O (see page 447), feedback (see page 471), communication (see page 444), and functional safety option modules can be installed in these option slots.
For firmware revisions 10.xxx or later, the remaining life of components with predictive maintenance appear on the Predictive Maintenance page in the Device Details window in Connected Components Workbench software and the Drive Details window in Studio Logix 5000 Designer® application.
Figure 3 - Connected Components Workbench - Predictive Maintenance Page
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
39
Chapter 2 Parameter Organization
Notes:
40
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
3 Chapter
PowerFlex 755T Control Block Diagrams
Flow diagrams on the following pages illustrate the PowerFlex 755T drive control algorithms.
755T Control Block Diagrams
Diagram
Page
PowerFlex 755T Converter ­ Overview
44
Metering
45
Phase Locked Loop
46
Power Loss
47
Line Side Converter Data
48
Current Reference Generator
49
Reactive Power Control
50
Droop Control
51
Dynamic Bus Control
52
Voltage Reference Generator
53
Voltage Control
54
DC Bus Observer
55
Power Factor Correction
56
Current/Power Limits
57
Current Control
58
LSC Control Configuration
59
Drive Derating
60
755TM Common Bus Inverter Control Block Diagrams
Diagram
Page
Flux Vector Overview
61
Variable Frequency, SV Overview
62
CBI Metering
63
Feedback Configuration & Status
64
Position Homing
65
Position Reference 1
66
Position Reference ­ Move Profiles
67
Position Reference 2
68
Position Regulator
69
Position Control ­ Phase Locked Loop
70
Position Control ­ Position Reference CAM
71
Position Control ­ Profiler/Indexer 1
72
Position Control ­ Profiler/Indexer 2
73
Position Control ­ Roll Position Indicator
74
Position Control ­ Spindle Orient
75
Velocity Reference Overview
76
Velocity Reference Selection
77
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
41
Chapter 3 PowerFlex 755T Control Block Diagrams
755TM Common Bus Inverter Control Block Diagrams
Diagram
Page
Velocity Reference ­ All
78
Velocity Reference ­ Flux Vector
79
Velocity Reference Flux Vector ­ Move Profiles
80
Velocity Reference CAM
81
Velocity Regulator ­ Flux Vector
82
Torque Overview
83
Torque Reference Selection
84
Load Observer
85
Friction Compensation
86
Torque Reference CAM
87
Torque Reference
88
Torque Filters
89
Torque Control ­ Current, for Induction Motor
90
Torque Control ­ Current, for Permanent Magnet Motor
91
Process Control 1
92
Process Control 2
93
MOP Control
97
22-Series Inputs & Outputs ­ Digital
98
22-Series Inputs & Outputs ­ Analog
99
11-Series Inputs & Outputs ­ Digital
100
11-Series Inputs & Outputs ­ Analog
101
11-Series Inputs & Outputs ­ ATEX
102
Control Logic
103
Inverter Overload IT
104
Motor Overload
105
42
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 3 PowerFlex 755T Control Block Diagrams
Diagram Conventions and Definitions
Definitions of the Per Unit system: 1.0 PU Position = Distance traveled / 1 second at Base Velocity 1.0 PU Velocity = Base Velocity of the Motor 1.0 PU Torque = Base Torque of the Motor
Symbol Legend:
Drive Parameters
Option Module Parameters
Requires port number.
Read Only Parameter
Read / Write Parameter
Read Only Parameter with Bit Enumeration
Read / Write Parameter with Bit Enumeration
Provides additional information.
( ) = Enumeration Parameter XX[ ] = Page and Coordinate
ex. Tst [A2] = pg Tst, Column A, Row 2 = Constant value
`d' = Prefix refers to Diagnostic Item Number ex. d33 = Diagnostic Item 33
`X:YY' = Parameter in PORT X
TP0000 = Software Testpoint (Name and Number)
* Notes, Important:
(1) These diagrams are for reference only and may not accurately reflect all logical control signals; actual functionality is implied by the approximated diagrams. Accuracy of these diagrams is not guaranteed.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
43
Chapter 3 PowerFlex 755T Control Block Diagrams
Line Side Converter Control Diagrams
Figure 4 - PowerFlex 755T Converter ­ Overview
44
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Overview
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
PowerFlex 755T Converter - Overview
Active Cur Ref
65
Active Curr Rate
66
DC Bus Ref Sel
45
ManDCBus Ref Sel
47
DC Bus Ref Preset
48
DC Bus Rate Lmt
49
AC Line Voltage
2
DroopVdcRef
VARCtrlVdcRef
Port 0 DC Bus Volts
Volt Reg BW Volt Reg Damping
Ext Bus Cap u Volt Reg Ki u Volt Reg Kp
Volt Reg C/U Sel
Current Reference Generator
Reference Selection and Limiter
1msec ActvCurRegSel.slx
Iq Rate Lmt 226 7
40 2 Conv Options Cfg
LSC Control Cfg Option Select
125usec
Voltage Reference Generator
Reference Selection and Limiter
1msec ActvCnvtrVbusRefLim.slx
226 4 Vdc Cmd Lmt 226 5 Vdc Rate Lmt 46 Auto DC Bus Ref
Line Voltage Feedback
PLL Config
85
Basic PLL Kp
86
Basic PLL Ki
87
50 DC Bus Command
2nd Harm Filt BW
89
DC Offst Filt BW
90
DC Offst LPF BW
91
Voltage Control
PI
Power Factor
3
Regulator
Port 0
DC Bus Volts
Auto DC Bus Ref 55
56
52
Auto
Gain
59
Calculation
57
54
125usec VbusReg.slx
c Volt 60 Reg Ki
58 c Volt Reg Kp
DroopCtrlModeSel FullLd DroopGain
NoLd DroopGain Trans Droop Cur ManDroopDCBusMin
Regen Power Lmt Motor Power Lmt Auto DC Bus Ref
Rated Volts
Active Cur Cmd
Power Factor Correction
Curr/Pwr Limits
125usec ActvCnvtrPwrLimCalc.slx
Active Cur Cmd 67
Active Current 7
Vq, Vd
AC Line
1
Freq
0
Phase Lock Loop
LCL Model
125usec LclSSComp.slx
Line Angle
AC Line kW
13
Port 0 DC Bus Volts
3
AC Line Freq
1
Regen Power Lmt 104 Motor Power Lmt 105
Current Lmt 100
Phase Locked Loop
AC Line Freq 1
KVAR Ref 69
KVAR Rate Limit
70
88
Basic PLL Error BusAutoAdjReg Kp 82
BusAutoAdjReg Ki 83
Limit VAR Control
101
Cur Lmt Command
106
Regen Pwr Avail
107
Motor Pwr Avail
Cur Reg BW 75 Cur Reg Damping 76
u Cur Reg Ki 79 u Cur Reg Kp 77 Cur Reg C/U Sel 74 AC Line kVA A 32 AC Line Imped% A 34 AC Line kVA B 33 AC Line Imped% B 35 AC Line Source 31
VARCtrlVdcRef
Reactive Current 8
20usec Drive Derating
16
Derating
3
Block
46 1msec
DroopCtrl
350
351
0
352
353
Linear
Droop
357
Control
1 104
105
NonLinear
Droop
46
Control
25
67
1msec DroopVdcRef.slx
VarDCBAdjDis 40 3
Reactv Cur Cmd 73
28
Derated Amps
356 NoLdDrpDC BusRef
355 MaxFullLd DrpGn
225 9 DrpGn Limit Sts
354 Droop Gain Actv
DroopVdcRef
1 msec
Line Voltage
Power Loss
Metering
AC Line Voltage Processing
Converter Current
Processing
Grid Current Feedback
AC Line Freq
1
Basic PLL Error
88
Power Disturbance
Monitor
BasicPLL Err Lmt
192
BasicPLL Err Dly
193
125usec VltgSag Det Actn
Line Voltage Feedback RMS
Line Voltage Feedback
Converter Current Feedback
LSCPhLossDetActn DFDT Det Actn
PLL LOS Det Actn PwrLoss Det Actn
RMS Converter Current Feedback
RideThrough Time
LCL Filter Capacitor Current
Processing
Grid Current Feedback
Line Voltage Feedback
DC Bus Voltage Processing
DC Bus Voltage Feedback
Converter Current Feedback
125usec
Current Control
PI Regulator
Ki Kp
Auto Gain Calculation
PWM Calc
80 c Cur Reg Ki 78 c Cur Reg Kp
125usec VltgRefGen.slx
PI Regulator
Ride Through Configuration
Voltage Sag Condition Status DFDT Limit Condition Status Line Sync Loss Condition Status Phase Loss Condition Status Power Loss Condition Status
173 176 179 181 170 172
LineSideCnv Data
Instantaneous Power
Calculator
125usec ActvCnvtrPwrCalc.slx
174 VltgSagRTExpActn 177 PhsLossRTExpActn 180 DFDTRdTHrExpACtn 171 PwrLossRTExpActn
13 AC Line kW 14 AC Line kVA 15 AC Line kVAR 16 Power Factor
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Metering
Figure 5 - Metering
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1 Vrs
AC Line Voltage Analog to Digital
Vst
Conversion, Scaling and
Processing
Vtr
VL12Inst
VL23Inst
2
VL31Inst
C
D
E
F
VqSyncFilt LPF
VqSyncFilt1 LPF1
3 2
2 dq
Display Filter 307 0 Display Filter 307 2
VqSyncFdbk
Vq
Ir
Vd
VdSyncFdbk
Converter Current Analog to Digital Conversion, Scaling
Is
and Processing
It
LPF
LPF1
VdSyncFilt
VdSyncFilt1
OR
G
H
I
Metering (Metering)
3 2
2 dq
Display Filter 307 0
OR Display Filter 307 3
Active Current 7
I0Fdbk
8 Reactive Current
3
4
AC Line Voltage
Feedback
Peak to RMS Conversion
Display Filter 307 0 Display Filter 307 9
Averaging
0 LPF 1
0 LPF 1
0 LPF 1
OR
0 LPF 1
3
VabFdbkFilt
R-S Line Volts 4
VbcFdbkFilt
S-T Line Volts 5
VcaFdbkFilt
T-R Line Volts
AC Line Voltage 2
Input LPF
Init
21 ACLineMemory
22 ACLineMemReset
Converter Current Feedback
Peak to RMS Conversion
IaInst IbInst IcInst
Display Filter 307 0 Display Filter 307 3
Averaging
0 6
LPF 1 AC Line Current
0 LPF 1
0 LPF 1
0 LPF 1
OR
9 R Phase Current
10 S Phase Current
11
T Phase Current
DC Voltage Analog to Digital Conversion,
Scaling
0
Port 0
5
and Processing
LPF 1
3 DC Bus Volts
text
LCL Capacitor Current Analog to Digital
Conversion, Scaling and Processing
Display Filter 307 0 OR
Display Filter 307 11
DC Bus Voltage
Feedback
LCL Capacitor Current Feedback
6
Phase A Line Current
Phase B Line Current
Phase C Line Current
Chapter 3 PowerFlex 755T Control Block Diagrams
45
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 6 - Phase Locked Loop
46
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PLL
A
B
1
PLL DC Offst
85 2
Line Voltage
Metering [B1]
0
2
DC Offset
1
Cancellation
3
DC Offst Filt BW
90
DC Offst LPF BW
91
4
5
C
3 dq
D
E
F
G
H
I
Phase Locked Loop (PLL)
Nom Line Freq
30
Basic PLL Error 88
PI Regulator
Integrator
Line Angle
PLL Unbl Rej 85 1
Basic PLL Kp 86
Basic PLL Ki
87
PLL Freq Src 85 3
0
0
0
0
1 AC Line Freq
LPF
1
89 2nd Harm Filt BW
Unbalance
Rejection
1
1 Display Filter 307 0 OR Display Filter 307 1
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PwrLoss
Figure 7 - Power Loss
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1
RMS Line Voltage Metering [D3]
2
Line Voltage Metering [B1]
3
Line Current Feedback Metering [H5]
4
AC Line Freq PLL [H3]
1
5
BasicPLL Error
88
BasicPLL Err Lmt 192
BasicPLL Err Dly
193
6
C
Power Loss Detection
Voltage Sag Detection
Phase Loss Detection
DFDT Detection
D
E
F
G
H
I
Power Loss (PwrLoss)
AC Ride Thru 935 21
RideThrough Time 172
To Condition Handler (Faults & Alarms)
PwrLoss Det Actn 170 PwrLossRTExpActn 171
Ride Through Configuration
Timer
PowerLoss Det PowerLoss RTExp
VltgSag Det Actn 173
VltgSagRTExpActn 174
935 22 Input Phase Loss
LSCPhLossDetActn
176
PhsLossRTExpActn
177
DFDT Det Actn 179
DFDTRdTHrExpACtn
180
Ride Through Configuration
Ride Through Configuration
Ride Through Configuration
Timer Timer Timer
Line Sag Det Line Sag RT Exp
Phase Loss Det Phase Loss RTExp
High df/dt Det High df/dt Det RTExp
Line Sync Loss
Detection
PLL LOS Det Actn 181 935 23 AC Line Sync
Ride Through Configuration
Timer
LnSyncLoss Det LnSyncLoss RTExp
Chapter 3 PowerFlex 755T Control Block Diagrams
47
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 8 - Line Side Converter Data
48
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
LscData
A
B
1
Vrs Metering [B1]
Ir Metering [F1]
2 Vst
Metering [B1]
Is Metering [F1]
3
It Metering [F2]
C
X X X
D 13 AC Line kW
X
4
Vtr
Metering [B1]
X
5
X
1/3
E
F
G
H
I
LineSideCnv Data (LscData)
X
16 Power Factor
X2
X
14 AC Line kVA
X2
15 AC Line kVAR
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
CurRefGen
A
B
C
D
E
F
G
H
I
Current Reference Generator (CurRefGen)
1
Figure 9 - Current Reference Generator
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
2
Active Cur Ref
65
Rate Limit
LscCtrlCfg [C3] 226 7 Iq Rate Lmt
3
Active Curr Rate
66
4
Chapter 3 PowerFlex 755T Control Block Diagrams
5 6
49
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 10 - Reactive Power Control
50
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DroopCtrl VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VarCtrl
A
B
C
D
E
F
G
H
I
1
Reactive Power Control (VarCtrl)
BusAutoAdjReg Kp
82
VarDCBAdjDis 40 3
BusAutoAdjReg Ki
83
2
Vq
Metering [D1]
BusRefAutoAdjReg
Port 0,DC Bus Volts Metering [D5] 3
0 VoltRefGen [C5}
Vq
Metering [D1]
1
3
SourceImpedance LscData [C5]
BusRefAutoAdjCalculation
Active Cur Cmd 67 4
CurrPwrLmt [F5}
Reference Reactive Current
5
KVAR Ref
69
Calculation
Rate
Limit
KVAR Rate Limit
70
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
DroopCtrl
Figure 11 - Droop Control
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
Droop Control -Linear Mode
1
Regen Power Lmt 104
|u|
Abs
Motor
105
Power Lmt
Auto DC
46
Bus Ref
ManDroop DCBusMin 357 2
Rated Volts 25
Trans Droop 353 Cur
NoLd
352
DroopGain
3
FullLd DroopGain 351
|u|
Abs
Man Droop DcBusRefMin
Enbl VbusRef Max Calc
+100% 0%
Limit
+100% 0%
Limit
Vdc Minimum
sel
C
D
E
F
G
H
Regen Power Limit Motor Power Limit
Vdc Minimum
Droop Gain Limit Calc
Vbus Ref Maximum
+100%
0%
Limit
355 MaxFullLdDrpGn
FullLd Droop Gain Lmtd
Limit
225 9 DrpGn Limit
0%
NoLd Droop Gain Lmtd
CurPwrLmt [G3]
Active Cur Cmd
67
Active Droop Gain Calc
Droop Gain Actv 354
Trans Droop Cur Vdc Min Motoring Limit
CurPwrLmt [G3] Active Cur Cmd 67
FullLdDrpGainPrc
No Load Droop Vdc Ref Calc
NoLdDrpGainPrc No Load Vdc Ref
Vdc Droop Ref Calc
356 NoLdDrpDCBusRef
Droop Control - NonLinear Mode
4
5
FullLd DroopGain
351
NoLd DroopGain
352
Gain Scaling
CurPwrLmt [G3] 6
Active Cur Cmd 67
0%
Vdc Minimum Motor Power Limit Regen Power Limit Vbus Ref Maximum
Coef Limit Calc
3rdOrderCoef Max
Coeff Calc
1stOrderCoef 3rdOrderCoef
MaxFullLdDrpGn
1stOrderCoef
1stOrderCoef 3rdOrderCoef
Active Droop Gain Calc
Limit
+100% 0%
Limit
356 NoLdDrpDCBusRef
No Load Vdc Ref
3rdOrderCoef Limited
No Load Droop Vdc Ref Calc
225 9 DrpGn Limit
1stOrderCoef Prc 3rdOrderCoef Prc
Vdc Droop Ref Calc
355 MaxFullLdDrpGn
Active Cur Cmd 67 CurPwrLmt [G3]
354 Droop Gain Actv
I
DroopVdcRef VoltRefGen [C5]
Chapter 3 PowerFlex 755T Control Block Diagrams
51
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 12 - Dynamic Bus Control
52
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
DBC
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1 DBC NomMtrPwrLm 330
DBC IdleMtrPwrLm 331 332
DBC NomRgnPwrLm DBC IdleRgnPwrLm 333
2 104
Regen Power Lmt
Motor Power Lmt 105
3 Port 0,DC Bus Volts
Metering [D5] 3
4
62 DBC V Thresh Lo
63 5
DBC V Thresh Hi 64
DBC V Thresh Nom 7
Active Current 6
C
D
E
F
G
H
I
Dynamic Bus Control (DBC)
DBC Mode Sel 61
Linear DBC Power Limit Calc
Parameter Selection
DBCMtrngPwrLimActv CurPwrLmt [B2]
DBCMtrngPwrLimActv
NonLinearOrderRegen
Nonlinear Order Calc
NonLinear DBC Power Limit Calc
DBC Vref Calc
NonLinearOrderMtrng
DBCVdcRef VoltRefGen [B6]
Parameter Selection
DBCRegenPwrLimActv CurPwrLmt [B2]
DBCRegenPwrLimActv
DBC Mode Sel(61):
0- Linear 1-Nonlinear.
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VoltRefGen
Figure 13 - Voltage Reference Generator
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
DC Bus Ref Selector: 1 0- Auto
1- Manual
2- Droop Ctrl 3- VAR Control
Voltage Reference Generator (VoltRefGen)
VbusRefHiLim
DC Bus Ref Sel 45
2
Auto DC Bus Ref
46
0
VbusOptRef
High
1.02
Max Boost Voltage
MAX 1
AC Line Voltage
2
[2E2]
Rms
x
0
Pk
Calc
3
DC Bus Command 50
ManDCBusRefSel
VoltCtrl [F2]
47
MAX
ManDC BusAnlgHi
DC BusRef Preset 48
Inverter DC Bus Limit
VbusRefLowLim
Low
41
4
42
Parameter
1
Anlg In
Selection
ManDC BusAnlgLo
VbusRefLmtd
Limit
VbusLimSts
226 4 Vdc Cmd Lmt
DC Bus Rate Lmt
49
Rate Limit
226 5 Vdc Rate Lmt
VbusRateLim
5
DroopVdcRef
2
DroopCtrl [I4]
KVARVdcRef
3
KVARCtrl [G2]
DBCVdcRef
4
DynamicBusCtrl [E5] 6
Chapter 3 PowerFlex 755T Control Block Diagrams
53
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 14 - Voltage Control
54
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VoltCtrl
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
1 Volt Reg C/U Sel Selector: 0- Calculated
1- User Entered
2 BusObsConfig(320):
0- Disabled 1- BusObsOnly. 2- BusObsVltEst.
3
Port 0,DC Bus Volts Metering [D5] 3
BusObsConfig 320
0,1
BusObs Volt Est
2
DC Bus Obs [H5]
Volt Reg C/U Sel
54
Volt Reg BW
55
Volt Reg Damping
56
4
Internal Bus Capacitance
Auto Gain Calculation
Total Sys Cap DcBusObs [C1]
c Volt Reg Ki 60 0
u Volt Reg Ki 59
1
c Volt Reg Kp 58 0
u Volt Reg Kp 57
1
5
Ext Bus Cap
52
E
F
G
H
I
Voltage Control (VoltCtrl)
DC Bus Command 50
VoltRefGen [G3]
BusRegIntegTerm
VbusErr
BusRegPropTerm
PI Regulator
IqRefVbusReg
DC Bus Obs A[2]
VbusRegKi
VbusRegKp
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
DCBusObs
Figure 15 - DC Bus Observer
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
1
IqRefVbusReg
2
BusObsConfig(320):
0- Disabled 1- BusObsOnly. 2- BusObsVltEst. 3
320
BusObsConfig
B
C
Total Sys Cap VoltCtrl [C4]
Cur Lmt Command 101
4
D
E
F
+
-
Limit
-1
X
0
1,2
0
1.0
0
0
1,2
Port 0
DC Bus Volts
3
5
6
+
X
-
c BusObs Kp 321 u BusObs Kp 322
323 cBus Obs Ki 324 u BusObs Ki
X
X
G
H
I
DC Bus Obs
LscCtrlCfg [C5] IqRefDcBusObs
X
BusObs Curr Est
X
325
VoltCtrl [F3]
1,2
BusObs Volt Est
Chapter 3 PowerFlex 755T Control Block Diagrams
55
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 16 - Power Factor Correction
56
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PFC
A
B
C
D
E
F
G
H
I
Power Factor Correction (PFC)
1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
2
AC Line Freq
1
PLL [H3]
0
Active Current Compensation
IqRefComp
CurPwrLmt [E4]
LCL Data
VqRefComp
3 LscCtrlCfg [F3]
Vq, Vd Feed Forward and Decoupling
VqFeedFwd
360 FFVltgLPFTime
VdRefComp
VdFeedFwd Vd
Metering [D1]
Low Pass
Filter
4
IdRefComp
Reactive Current
Vq Metering [D1]
Low Pass
Compensation
CurPwrLmt [F5]
Filter
5
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
CurPwrLmt
Figure 17 - Current/Power Limits
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
B
C
DC Bus Ref Sel
45
Regen Power Lmt
104
0,1,2, 3
DBCRegenPwrLimActv
4
DynamicBusCtrl [H2]
2
Motor Power Lmt 105
0,1,2, 3
DBCMtrngPwrLimActv
DynamicBusCtrl [H4]
4
3
Vq Metering [D1]
Vd Metering [D1]
Port 0
3
DC Bus Volts
4
Metering [D5]
AC Line Frequency
1
PLL [H3]
Total Inductance
DC Bus Current Limit Calculation
5
6
D
E
F
G
H
I
Curr/Pwr Limits (CurPwrLmt)
Derated Amps
28
DriveDerating [H3]
AC Line kW
13
LscData [D2]
Available Power
Calculation
106 Regen Pwr Avail 107 Motor Pwr Avail 71 KVAR Available
IqVbusCurLim
Iq Cur Lim Abs
Iq Current Limit
Current Limit 100
Calculation
PFC [H2]
IdVbusCurLim
226 0 Current Lmt 226 2 Mtrng PwrLmt 226 3 Regen PwrLmt
ILmtUsrSts
Active Cur Cmd 67
226 6 Iq Cmd Lmt 101 Cur Lmt Command
CurrCtrl [11F2]
Reactv Cur Cmd 73
VarCtrl [G5]
Iq Ref Lmtd Id Cur Lim Abs
Id Current Limit
Calculation
PFC [H4]
CurrCtrl [11F4] 226 8 Id Cmd Lmt 72 KVAR Command
Chapter 3 PowerFlex 755T Control Block Diagrams
57
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 18 - Current Control
58
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
CurrCtrl
A
B
C
D
E
1
Cur Reg C/U Sel Selector: 0- Calculated 1- User Entered
2
Cur Reg BW
75
3
Cur Reg Damping
76
LCL Data
4
AC Line Source
31
AC Line kVA A
32
AC Line Imped% A
34
AC Line kVA B
33
5
AC Line Imped% B
35
Source Impedance Processing
Cur Reg C/U Sel
74
Auto Gain Calculation
c Cur Reg Ki
80
0
u Cur Reg Ki
79
1
c Cur Reg Kp 78 0
u Cur Reg Kp 77
1
F
G
H
I
Current Control (CurrCtrl)
Active Cur Cmd 67 CurPwrLmt [G3]
Active Current 7
Metering [I1]
Reactv Cur Cmd 73 CurPwrLmt [G4]
Reactive Current 8
Metering [I2]
IqSyncErr
CurRegqOut PI Regulator
CurRegKiIq CurRegKpIq
CurRegKpId CurRegKiId
PFC [G3]
VqSyncRef
P W M
VdSyncRef
IdSyncErr
CurRegdOut
PI Regulator
PFC [G4]
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
LscCtrlCfg
Figure 19 - LSC Control Configuration
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
LSC Control Cfg (LscCtrlCfg)
1
PwrFeedFwdConfig(300):
0- Disabled 1-Enabled.
2
BusObsConfig(320):
0- Disabled 1- BusObsOnly. 2- BusObsVltEst.
CurRefGen [F2]
40 2 Conv Options Cfg
IqRefOpSel
VoltCtrl [H2]
3
FFPwr Curr Calc
Converter Mode Select
PFC [A2,E2,A4,E4]
X
326
3
300 PwrFeedFwdConfig
00
Metering [D5] Port 0,DC Bus Volts
FF Power Gain 13:44
4
1
X
X
Output Power 10:4
Metering [D1]
Vq
X
3/2
BusObsConfig
320
5
00
DC Bus Obs[H2]
IqRefDcBusObs
1,2
Chapter 3 PowerFlex 755T Control Block Diagrams
6
59
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 20 - Drive Derating
60
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
DriveDerating
A
B
C
D
E
F
G
H
I
Drive Derating (DriveDerating)
1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
2
225 16
Running
Line Side Sts 1
Port 0
3
DC Bus Volts
3
Metering [D5]
Auto DC Bus Ref
46
X
Low Pass Filter
a3X3 + a 2X2 + a 1X + a 0
1
Rated Amps
26
Power Factor 16
X
28
Derated Amps
4
DFE Derating
0
Data
5 6
Motor Side Inverter Control Diagrams
Figure 21 - Flux Vector Overview
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Vector Overview
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Position Control
Feedback Option Cards
Load Psn Fb Sel 1014
Profiler Steps 1-16
PReg Fb Sel
1013
Position Fb
1746
Position Fdbk
'
Selection
Load Fdbk Selection
[ N ] [ D ]
'
Gear Ratio
Pos Profiler Spd Profiler
PsnVelTrq Actv 34
PTP Ref Sel 1383
PTP Ref Selection
PTP Mode Selection
Home Psn
User
1648
Homing
PTP Command
1391
Psn PTP Position Planner
PTP Reference 1404
PsnVelTrq Actv 34
PCAM Psn Select
1426
PCAM Planner
Vel Vel
Pos
PLL Ext Vel Sel
PLL PRef Sel
1591 1595
Vel
PLL Planner Pos
Position Mode
Selection
PRef Select
1681
Direct Ref Selection
PRef Direct 1683
Position Init Preset
6
1745 Position Actual
Proportional Channel
Integration Channel
PRef Selected
1684
Position Offset
u PReg Kp 1755
u PReg Ki 1757
PRef EGR Out
1686
[ N ] [ D ]
Gear Ratio
+ +
'
Ref NF 1 & Ref NF 2
PReg Vel Out 1767
PI
Regulator
x
1752 Psn Gear Ratio 1731 Position Command
Psn Gear Ratio 1752
x
( VRef Profilr )
( Vel FF Ref )
Velocity Control ­ Reference
VRef A Sel 1800
VRef B Sel 1807
RefA TrimPct Sel 1850
RefB TrimPct Sel 1860
RefA Trim Sel 1855
RefB Trim Sel 1865
VRef Selection &
Limits
Speed
Ref x
TrimPct
Ref
Trim
+
Ref
Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Preset Speed 6 Preset Speed 7
1814 1815 1816 1817 1818 1819 1820
VRef Selected 1892
PTP VRef Fwd 1405 PCAM Vel Out 1503
PLL Vel Out 1612
PsnVelTrq Actv 34
Vel FF Selection
Accel FF Gain 1973 1974
Accel FF Mode 1972
Vel Comp Sel 1752 Psn Gear Ratio
1927
Accel FF Output
x
Accel FF
2070
PID Output Sel 9:14
PsnVelTrq Actv 34
PID Vel Exclusive Selection
Vel Ref CAM
Speed Profiling Selection
VRef Ramped 1923
Jogging Selection
Vector Ramp &
Move Profiles
Vel FF Gain
x 1760
1761
+ Ref NF 1
+
&
Ref NF 2
Vel Comp
1930
Vel Comp Out
+
X
+
Jog Speed 1 Jog Speed 2
1894 1895
Virtual Encoder
PID Speed Trim
Selection
1932 VRef Scale
9:14 PID Output Sel
Process Control PID Ref Sel 9:25
PID Fdbk Sel 9:35
( PID Output Meter )
PID Reference Selection
PID Feedback Selection
PID Ref Meter 9:26
PID Fdbk Meter 9:36
PID Prop Gain 9:4
PID Int Time 9:5
PID Deriv Time 9:6
PID Regulator
PID Output Meter 9:13
Limit
9:10
PID LPF BW
( PID Output Meter )
( PReg Vel Out )
( Vel Comp Out ) ( VRef Scaled )
Flux Vector Overview (Vector Overview)
Vel Limit Pos 1898
+ +
+ Limit
1899 Vel Limit Neg
Velocity Control ­ Regulator
VRef Final 1933
1042 Vel Fb Active
PI Regulator
System BW 906 VReg Kp 1955 1956 VReg Ki 1957 1958
VReg Output 1969
1961
Droop RPM at FLA
Torque Control
( VReg Output )
TqCAM Trq Out Trq
PsnVelTrq Actv
Ref
2524
CAM
Trq Ref Out 34
2072
Torque Step
2077
FrctnComp Mode 2050
Friction Comp
+ ++
-
FrctnComp Out
2057
Load Observer
2020 LdObs Mode
1042 Vel Fb Active
X
Total Inertia
Position/ Velocity/ Torque
Mode Selection
+ ++
+
2076 Trq Ref Selected
Trq Ref CAM
Trq Ref A Stpt 2001
Trq Ref B Stpt 2008
Trq Ref A Sel 2000
Trq Ref B Sel 2007
Torque Ref
Selection
Trq Commanded
2073
Torque Ref
Filters
Trq Ref Filtered
2080
Trq Ref Limited 2087
Limit
Torque Limit
Generation
PID Torque Trim / Excl Selection
9:14
PID Output Sel
FOC Perm Magn
& Vector Control Current Processing
Motor E1
Gear
Load E2
Chapter 3 PowerFlex 755T Control Block Diagrams
61
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 22 - Variable Frequency, SV Overview
62
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Freq Overview
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
1
Vref MOP
Vref Sel
B
Jog Speed 1 Jog Speed 2
PID Output Sel
1894 1895
9:14
Vref All
C
D
E
F
G
H
Variable Frequency (V/Hz), SV Overview (Freq Overview)
VRef All [I4] VRef
Commanded
1914
Velocity 1923 Limited
VRef Ramped
Convert Electrical to Mechanical Units
Velocity Control ­ Current/Bus Limiter
1892
2
VRef Selected
954 Ref NF1 Freq Act
From Anti-Sway [D2]
956 Ref NF1 Depth Act
3
VRef Ramp In 1
Variable Boost
Override
Velocity Referencing (I/O) - Frequency
Auto Tune Override
Start/ Stop Override
Torque Proving Override
V/F Ramp and Rate Select
Convert Mechanical to Electrical Units
VelRamp Rate 2
Mtr Cfg 420 15 Options
(Jerk Select)
Rate Control
957 Ref NF1 Gain Act
943 Ref NF1 Width
6
Ref NF1
Ref NF2 Freq Ref NF2 Width Ref NF2 Depth Ref NF2 Gain
Ref NF2
948 949 950 951
Max Speed
Bus/Current
Limits
'
Limiter and
Integrator
Limit
Vel Limit Pos Vel Limit Neg Overspeed Limit
1898 1899 1904
Vel Ctrl Options 1950
Accel Time 1 1915
Accel Time 2 1916
Ramp
4
Decel Time 1 1917
S Curve
Decel Time 2 1918
Jog Acc Dec Time 1896
VRef Accel, Decel Jerk 1919 1920
Vel Limit Pos 1898
5
Vel Limit Neg 1899
Limit
Velocity Scale and
Status
Ramp Rate
Convert Electrical to Mechanical Units
1942 1933
Display Filter
Vel Fb Active VRef Final
1044
Motor Vel Fb Output Frequency 1
Vel Limit Pos Vel Limit Neg Overspeed Limit
Limit Fdbk [D5], Proc 1 [E4],
1898
Proc 1 [H3]
1899
1904
At Limit Status 365 3
(OverSpd Lmt)
Process Control PID
9:13
6
PID Output Meter
Limit
Vel Limit Pos Vel Limit Neg
1898 1899
Frequency Adder
Vel Droop 3
Droop RPM at FLA
1961
1
[NP Spd]
X
Filtered (100 R/S) Iq Feedback (pu)
VCL CReg C/U Sel c Slip RPM atFLA u Slip RPM atFLA
444
Mtr Cfg Options 420 14 (SlipCompSclr)
489
1
[NP Spd]
490
X1
Iq Feedback (pu)
LPF
Slip Comp LPF BW
491
0 0
I
V/Hz Current Processing
Motor
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
CBI Metering
A
B
C
D
E
F
G
H
I
1
CBI Metering Signals (CBI Metering)
Figure 23 - CBI Metering
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 3 PowerFlex 755T Control Block Diagrams
Command Signals
2
VRef Commanded VRef Final
1914 1933
Common Bus Inverter (CBI)
Trq Commanded * 2073
Position Command ** 1731
Motor Side Power Structure
DC + Bus
3
U Motor Phase V Motor Phase W Motor Phase
4
DC - Bus
5
* Flux Vector Only ** Flux Vector with Encoder Only 6
Output Signals
1 Output Frequency 2 Output Voltage 3 Output Current 4 Output Power 5 Output Pwr Factr
AC Motor
Digital Encoder Option
Feedback Signals
8 9 11 13 1044 1745 1746
Torque Cur Fb Flux Cur Fb Motor Voltage Fb DC Bus Memory Motor Vel Fb ­ for Freq control modes, this is filtered VRef Final Position Actual ** Position Fb **
63
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 24 - Feedback Configuration & Status
64
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Fdbk
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
LdObs Mode [2020]:
1 0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only 4- Accel Fdbk
B
C
Vel Fb Taps 1001
Pri Vel Feedback
Primary Velocity Fb
0
2
Source
Processing
Parameter
1
Selection
Pri VelFb Sel 1000
= Open Loop
Alt Vel Fb Taps 1007
Alt Vel Feedback
Alternate Velocity Fb
0
3
Source
Processing
Parameter
1
Selection
Alt VelFb Sel 1006
= Open Loop
D
E
F
G
H
I
Feedback Configuration & Status (Fdbk)
Fb Loss Action 1019
Fdbk Loss Detect
1002 c Vel Fb LPF BW 1003 u Vel Fb LPF BW 1004 c Vel Fb LPF Gn 1005 u Vel Fb LPF Gn
Pri Vel Feedback
LPF
1040
0
1008 c AltVelFbLPF BW 1009 u AltVelFbLPF BW 1021 c AltVelFbLPF Gn 1022 u AltVelFbLPF Gn
355 5 Motor Side Sts 2 (Fdbk Loss Sw0)
2020 LdObs Mode Ld Obs [C3]
0, 1, 4
Ld Obs [H5] Trq Ref [C4]
LdObs Vel Est
2034
2, 3
Display Filtering
Vel Fb Active 1042
Motor Vel Fb 1044
VReg Vect [A3], Cur IM [B3] Cur IPM [B3]
Alt Vel Feedback
LPF
1041
1
0 1
Note: Load Observer Velocity Estimate is not available in Torque or with Open Loop Feedback
LdObs Vel Fb In 2028
Ld Obs [A5], Trq Ref [A4]
Torque Current Ref
Open Loop
Open Loop Fb
Pri Psn Feedback
Source
Pri Position Fb
1769
0
Position Fb 1746
Homing [B4], PRef 1 [C5], PReg [A3, A4] Roll Psn [A2].
4
Cur IM, SPM [H2]
FV Open Loop Calc
Velocity (Est Mtr Omega)
Open Loop Virtual Encoder
1048
Parameter Selection
Spdl Orient [A2].
Torque Cur Fb 8
PReg Fb Sel 1013
526
VEncdls FReg Kp
527
VEncdls FReg Ki
1018 Virtual Enc EPR
Alt Psn Feedback
Source
Alt Position Fb
1770
1
Parameter Selection
Load Ratio Virtual Enc EPR
Alt PReg Fb Sel 1012
Enc VRef Taps
5
901
1018
1833
VRef Overview [G4]
VRef Final 1933
Motor Simulator Virtual Encoder
Cur IM SPM [E2]
2087
Cur IPM [E2]
900
Trq Ref Limited
6
Motor Inertia
Simulator Fb 1050
Aux Encoder Vel Reference Source
Enc VRef Sel 1832
Parameter Selection
Aux Velocity Reference Processing
Enc VRef 1834
VRef Sel [A3]
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Homing
Figure 25 - Position Homing
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
1. When Homing function is enabled,
1
Home Psn Actual ( 1647) is loaded with Position Fb (1746) .
2. When Homing function is complete, Zero Position ( 1697) is loaded with Home Psn Actual [1647] - Home Psn User [1648].Then Position Actual [1745] is loaded with Position Fb [1746] - Zero Position [1697].
Find Home Speed 1643 Find Home Ramp 1644 Home Torq Thresh 1649
3. When Position Redefine is enabled,
Home Psn Actual [1647] is loaded with
2
Position Fb [1746] .
4. Parameter P1649 to P1655 are only applicable while performing Home to Torque operation.
Home Torq Limit 1650 Home Torq Time 1651
Home Offset 1652
5. If Home Offset (1652) is non ­ zero,
than the Home Psn Actual [1647] =
[Position Fb [1746] / Marker Psn] +/-
Home Offset (1652). Once Torque
Reference > Home Torq Thresh (1649),
the drive ramps down to point b after
3
Home Torq Time (1651) expires. Drive
performs PTP move to go back to Home
Psn Actual [1647], which is point c.
Home Return Spd 1653 Home Accel 1654 Home Decel 1655
Home Psn User 1648
6. If Home Offset (1652) is zero, than Home Psn Actual [1647] = [Position Fb [1746] / Marker Psn] . Once Torque Reference > Home Torq Thresh (1649), the drive ramps down to point b after Home Torq Time (1651) expires. It stays at point b and drive does not perform any PTP move.
Position Fb 1746
Fdbk [H4]
4 7. If Home Ctrl Option (1640) bit 1 ­ Home DI and bit 8 ­ Home Torque are set and user sets or toggle bit 0 ­ Find Home from 0 to 1, drive does not generate Home Request. It will generate Type 2 Alarm ­ Invld Homing Cnfg .
Home Psn Actual 1647
5
6
D
Speed
E
Alarm Status B 466 8 Homing Actv
F
G
H
I
Position Homing (Homing)
Homing
Homing Event
VRef Homing
VRef All [G3]
a +
PTP Command
c
b Position
1391 PRef 1 [E2]
Zero Position
1697 PReg [B3]
-
Position Actual
+
1745 PReg [B3]
Home Ctrl Options 1640 0 Find Home
1 Home DI 2 Home Marker 3 Return Home 4 Psn Redefine 5 Homing Alarm 6 Home DI Inv 7 Hold At Home 8 Home Torque
0:170 DI Find Home 0:171 DI Return Home 0:172 DI Redefine Psn 0:173 DI OL Home Limit
Homing Status 1641 0 Home Request
1 Home Enabled 2 Homing 3 At Home
Chapter 3 PowerFlex 755T Control Block Diagrams
65
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 26 - Position Reference 1
66
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PRef1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Profile Indexer
1
Step 1-16 Values 1209 1220 1374
Profile Indexer
Step 1-16 Dwell Step 1-16 Batch Step 1-16 Next Step 1-16 Action
1210 1211 1212 1213
1221 1222 1223 1224
1375 1376 1377 1378
1202 0-4
Profile
8
Command 10
StrStepSel0-4 Hold Step Restart Step
PsnVelTrq Actv Trq Ref [E5] 34
Position Reference 1 (PRef1)
PTP Planner and Move Profiles (PRef Move)
Ref Move Type
931
Position Mode Selection PsnVelTrq Actv Trq Ref [E5] 34
Zero Torque 0
PTP VRef Fwd
Speed Reg 1
2
PTP Reference and Indexer
Profiler
1405
PTP Control
1381
0 Vel Override 4 Intgrtr Hold 5 Ref Pause 6 Ref Sync
Absolute Position
PTP Mode 1382 Absolute 0
PTP EGR
Psn PTP
Homing [G2]
PTP Command
1391
PRef Move [B3], Prof Ind 1 [H3],
Homing [H2]
LinScurve SineSquared
Poly5
PRef Move [H3]
¦
1404
PTP Reference
Move
Mult/Div
PTP Ref Sel
1383
PTP Ref Scale
PTP Control 1381 1
1388 1389
3
PTP Setpoint
1385
1384
Other Ref Sources
X
Parameter Selection
Index Position
[ N ] [ D ]
Gear Rat
PTP
Index 1
DI Indx Step 0:176
X
Control
1381 2 Reverse Move
DI Indx StepRev 0:177
1386
3 Preset Psn
4
DI Indx StepPrst 0:178
PTP
Index
1641 1 Home Enabled Homing Status
Cubic
PCAM Psn Select
PCAM Psn Stpt
1427
1426
Other Ref Sources
Parameter Selection
PCAM Main Pt M 0...15
PCam Planner
Psn Ref CAM
PCam [G3] PCAM Vel Out
1575
1574
PCAM Psn Out PCam [G2]
1446
1422 PCAM Mode
Preset
Change
Immediate 2
PCAM Main 1478 Pt S 0...15
1445 PCAM Main Types
Direct Position Reference Selection
PLL Planner
PRef Select 1681
PLL Ext Vel Sel 1591
PLL Vel Out
Torque Reg 2 SLAT Min 3
SLAT Max 4 Sum 5
Psn PTP 6 Profiler 11
Psn
Camming 8 Psn PLL 9 Psn Direct 7 Psn SpndlOrnt 10 0,1,2,3,4,5 0
PRef Selected
1684
PRef 2 [A1]
Psn Direct Stpt 1682
PLL Ext Vel Stpt
1592
1612 PLL Enc Out
PLL [H3]
Spd Ref
0,1,2,3,4,5,7
5
Virtual EncDelay 1017
VRef Vect [H2]
Virtual Enc Psn
Parameter
Other Ref Sources
PLL Psn Stpt
1596
Parameter Selection
PLL Control
1615 PLL Vel Out Adv PLL [H4]
1613 PLL Enc Out Adv PLL [H3]
0 Psn PTP 6
1046
VRef Vect [H2]
Selection
Other Ref
Parameter
1616
Profiler 11
Vel FF
Sources
Selection
PLL [H4]
VRef Vect
Other Ref
PLL PRef Sel 1595
Psn
Camming 8
[I4]
Sources
1683
6
PRef Direct
Psn PLL 9
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PRef Move
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 27 - Position Reference ­ Move Profiles
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
PTP Position Reference ­ Move Profiles (PRef Move)
1
Ref Move Type 931
Point to Point parameter initializations performed with Position Regulator INACTIVE
Max Speed Fwd Max Speed Rev PTP Vel Override
1392 1393 1402
Virtual Encoder
PTP Feedback 1396
PTP Reference [1404], PTP Feedback [1396], PTP Command [1391] are loaded with Position Actual [1745].
2
PTP Accel Time
1398
PTP Decel Time 1399
PTP S Curve
1403
LinScurve (0)
These parameters apply to all Move Types
PTP PRef Status 1380 0 ZeroFFSpdRef 1 Ref Complete 2 PTP Int Hold 3 SpdFFRef En
3
PRef 1 [E2]
PTP Command
1391
4
Ref Accel Time 934
Ref Decel Time 935
RefEnergyBalance 932
Ref Max Accel
936
Ref Max Decel
937
5
Ref Time Base 933 0 = Rate 1 = Time
0 = Rate 1 = Time 0 = Rate
SineSquared (1) Poly5 (2) Cubic (3)
1406 1407 1408 1409
PTP Vel Max PTP Accel Max PTP Decel Max PTP Move Time
1411 PTP Move Seg
0- Accel Decel 1- Dwell Decel 2- Decel 3- Reversing
PTP VRef Fwd 1405
6
1404
PRef 1 [G2]
PTP Reference
PTP Move Status 1410 0 1 2 3 4
Vel Limited AccelLimited DecelLimited Zero Move Move Failed
Ref Fault Config
941
6
24 PTP VelMax Time 25 PTP AccMaxTime 26 PTP DecMaxTime 27 PTP Time Left 28 PTP Iterations
67
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 28 - Position Reference 2
68
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PRef2
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
1
EGR is skipped when
Electronic Gear Ratio
PRef EGR Out
Point to Point Position
1686
PRef Selected
control is active.
PRef 1 [I4]
1684
[ N ] [ D ]
+
Ref NF 1
+
Gear Rat
F
G
H
I
Position Reference 2 (PRef2)
Ref NF 2
Position Command 1731
PRef NF Del 15
'
PRef NF Del PReg [C3]
Psn Offset 1 Sel Psn Offset 1
1691
1690
Psn EGR Mult Psn EGR Div
1687 1688
PRef OfstPsn 13
2
Other Ref
Position Reference Offset
Sources
Parameter Selection
12 PRef Ofst In
+ Psn Offset 2 Sel 1693 +
ReRef
0
Virtual Encoder
Psn Offset 2 1694
1
Rate Lim
2 1730
Other Ref
Sources
Parameter Selection
Psn Ctrl Options 1695 (OffsetReRef) Psn Offset Vel
1730
3
Psn Ctrl Options (OffsetVel En)
3
From Anti-Sway [D2]
954 Ref NF1 Freq Act 956 Ref NF1 Depth Act 957 Ref NF1 Gain Act 943 Ref NF1 Width
948 Ref NF2 Freq 949 Ref NF2 Width 950 Ref NF2 Depth 951 Ref NF2 Gain
P os ition Watc h 1
P os ition Watc h 2
Psn Ctrl Options 1730 6 PsnWtch1Arm 7 PsnWatch1Dir
Psn Ctrl Options 1730 8 PsnWtch2Arm 9 PsnWatch2Dir
PsnWatch1 DtctIn 1738
PReg Status
4
Other Ref
1732 9 PsnW1Detect
Sources
Parameter
Selection
Position Watch 1
PsnWatch1 Select 1737
1739 PsnWatch1 Stpt
PsnWatch2 DtctIn 1742
Other Ref Sources
Parameter Selection
PsnWatch2 Select 1741
Position Watch 2
1743 PsnWatch2 Stpt
PReg Status 1732 10 PsnW2Detect
In Position Detect 5
PReg Status
Position Error 1750 PReg [D3]
1732 11 InPsn Detect
In Position Detect
In PosPsn Window 1734 In PosPsn Dwell 1735
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
PReg
Figure 29 - Position Regulator
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
906 System BW 1
* Set (905) System C/U Sel =
User to manually adjust Kp and Ki gains. Otherwise the
1010 AltFb Gn Scale 907 System Damping
following params determine Calc gains.
901 Load Ratio
902 Load Coupling
2
Parameter initializations performed with Position Regulator INACTIVE
1. If Homing function is enabled, Position Actual (1745) is loaded with Position Fb (1746) . 2. Else, if Zero Psn (1730 Bit 04) is set, Position Actual (1745) is loaded with Position Fb (1746) ­ Zero Position [1697). 3. Else, Position Command (1731) and PRef EGR Out (1686) are loaded with Position Actual (1745) *4. EGR is skipped when Point to Point Position control is active (included Profiler, PLL with PTP)
Position Regulator (PReg)
Psn Feedback Scaling
PRef NF Del PRef 2 [H1]
PI Regulator
Psn Ctrl Options Zero
Position
(Zero Psn) Position Actual
4 1730 1697
1745
3
Homing
[H3]
Xzero Preset
6
1746 Position Fb Fdbk [H4]
'
Psn Load Actual Load Psn Fb Sel
1748
4
1746
Position Fb Fdbk [H4]
Other Position Feedback Sources
1014
LdPsn Fb Del 20
'
Parameter Selection
6
[ N ] [ D ]
Gear Rat
Position Error
+ -
6
1750
PRef 2 [C5]
Psn Fb Del
21
Calib Const
Psn Gear Ratio
(
Motor Speed Gear Output Spd
)
1752
c PReg Kp* u PReg Kp*
PReg LdError 22
+ -
6
Calib Const
+ -
kp
P Gain 1754 1755
kp
P Gain
ki s
I Gain
LdPsn Geared 23
c PReg Ki* u PReg Ki*
1756 1757
+ +
PReg Int Out 1765
PReg Status
1732
8 Intgrtr Hold
PReg Droop 1763
Load Psn Fb Mult 1015
5
Load Psn Fb Div 1016
Droop
On PReg Output Limit
Intgrtr En
Or
Inv
Intgrtr Hold
PReg Vel Limit Pos 1766 PReg Vel Limit Neg 1768
1
0 0
Limit
Psn Ctrl Options
1730 0 Reserved 1 Intgrtr En 2 Offset ReRef 3 OffsetVel En 4 Zero Psn 5 Intgrtr Hold 6 PsnWtch1Arm 7 PsnWatch1Dir 8 PsnWtch2Arm 9 PsnWatch2Dir 10 Add Spd Ref
PReg Vel Out 1767
VRef Vect [D5]
PReg Status
1732 0 OffsetIntgrtr 1 Offset ReRef 2 Psn Intgrtr 3 Psn Reg Lmt 4 Reserved 5 Reserved 6 Reserved 7 Psn Reg Actv 8 Intgrtr Hold 9 PsnW1Detect 10 PsnW2Detect 11 InPsn Detect
6
Chapter 3 PowerFlex 755T Control Block Diagrams
69
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 30 - Position Control ­ Phase Locked Loop
70
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Psn PLL
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Position Control ­ Phase Locked Loop
1
(Psn PLL)
PLL Ctrl Options
PLL Ext VelScale
2
PLL Ctrl Options
1593
PLL Ctrl Options
PLL Ctrl Options
PLL Ctrl Options
PLL LPF BW
1590
1590 2
1590 1
1590 3
1598
PLL Ext Vel Stpt 1592 Other Ref
0
X
Ext
1
Vel FF
Velocity FF
Accel Comp
Sources
Parameter
0
1
Selection
LPF
1590
0 PLL Enable 1 Velocity FF 2 Ext Vel FF 3 Accel Comp 4 PCAM Enable 5 PTP Enable 6 Prof Enable
- Bit4 enables PCAM function with PLL. - Bit5 enables PTP function with PLL - Bit6 enables Profiler function with PLL Can not select multiple bits. PLL references must connect to appropriate outputs of the function.
PLL Ext Vel Sel 1591
0 0
PLL Ctrl Options
3
PCAM Vel Out 1575 PCAM Enable 4
1
X to V
PTP Enable
1
5
Conv
PTP VRef Fwd
1405 Prof Enable
6
1
PLL BW 1600
PLL Psn Stpt 1596 0
Other Ref
4
Sources
Parameter
Selection
+
Loop
-
Filter
1590 0 PLL Enable
1 0 0
+
+
VE
1
0 0
Delay Delay
1612 PLL Vel Out PRef1 [G5]
1613 PLL Vel Out Adv PRef1 [G5]
1615 PLL Enc Out PRef1 [G5]
1616 PLL Enc Out Adv PRef1 [G5]
PLL PRef Sel
1595
1597 PLL Psn Out Fltr
PCAM Psn Out 1574 PCAM Enable 4
1
PTP Enable
1
5
5
PTP Reference 1404 Prof Enable
6
1
EGR [ ] [ ]
1604 PLL Virt Enc RPM
PLL EPR Input 1606
X
X
1607 PLL EPR Output
PLL Rvls Input 1609
1610 PLL Rvls Output
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Psn CAM
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 31 - Position Control ­ Position Reference CAM
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Position Control ­ Position Reference CAM
1
(Psn Ref CAM)
PCAM Mode 1422 PCAM Slave Scale 1436
0 - Off 1 - Single step 2 - Continuous 3 ­ Persistent * *(not for P1420 [PCAM Type] = 1 - TCAM )
Y (slave)
Position Reference CAM
Other Ref
Sources
Parameter
2
Selection
PCAM SlaveSclSel 1435
1574 PCAM Psn Out Pref 1 [G4]
PCAM Type 1420
PCAM Psn Stpt 1427
Other Ref
Sources
Parameter
3
Selection
0 - PCAM
time 1 - TCAM
Unwind
Unwind
X (master)
FIR
X
Filter *
1576
1575 PCAM Vel Out Pref 1 [G3]
PCAM Vel OutTaps *(PCAM only)
PCAM Psn Select 1426
Virtual Encoder
PCAM Psn Ofst PCAM PsnOfst Eps
1428 1429
PCAM Start Cfg 1425 4
0 ­ Pnt Zero 1 ­ Last Stop 2 ­ Actl Input 3 ­ Remainder
Profile Definition
PCAM Master Scl 1434
PCAM Vel Scale 1438
Other Ref Sources
Parameter Selection
PCAM Vel SclSel 1437
PCAM Start Slope PCAM End Slope
1442 1443
Pt M00 1446 Pt S00 1478 Pt M01 1447 Pt S01 1479
Both Main and Aux CAM
Pt M01 1512 Pt S01 1543
PCAM Pt M15 1461 Pt S15 1493 PCAM
Pt M15 1526 Pt S15 1557
Main
Aux
5
Types 1445 0 - - 14 x
Types 1511 x 1 - 14 x
Linear or Cubic
Linear or Cubic
EndPnt 1444
End Pnt 1510
6
PCAM Status 1423
Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 VReg IntHold 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15
DI PCAM Start 0:880
PCAM Control 1421
Not TCAM
Start 0 DirectionOut 1 Aux Cam En 2 VReg IntHold 3
Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10
Not TCAM
71
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 32 - Position Control ­ Profiler/Indexer 1
72
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Prof Ind 1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
1
Step Step Step Step
1
2
3
4
Step Step 15 16
Type
1205 1216 1227 1238
1359 1370
Velocity
1206 1217 1228 1239
1360 1371
Accel
1207 1218 1229 1240
1361 1372
Decel
1208 1219 1230 1241
1362 1373
Value
1209 1220 1231 1242
1363 1374
2
Dwell
1210 1221 1232 1243
1364 1375
Batch
1211 1222 1233 1244
1365 1376
Next Action
1212 1223 1234 1245 1213 1224 1235 1246
1366 1377 1367 1378
Blend P1 Sel
1214 1225 1236 1247
1368 1379
Blend P2 Sel Dig In
1215 1226 1237 1248 0:860 0:861 0:862 0:863
1369 1419 0:874 0:875
Speed/Position Move Table
Position Control ­ Profiler/Indexer (1)
(Prof Ind 1)
Profiler/Indexer
Time
Vref Prof Ind 1 Vref All [C3]
PsnVelTrq Actv 34 Trq Ref [D5]
Profiler
Other
0
PTP Command
1391
Pref 1 [E2]
3
Prof DI Invert 0:850 0 Hold Step
Counts Per Unit 1203
1 Abort Step
ProfVel Override 1204
2 AbortProfile
3 Vel Override
4 StrStepSel0
5 StrStepSel1
6 StrStepSel2
7 StrStepSel3
4
8 StrStepSel4
0:851 DI Hold Step
9 Step1
0:852 DI Abort Step
10 Step2
0:853 DI Abort Profile
11 Step3
0:854 DI Vel Override
12 Step4
0:855 DI StrtStep Sel0
13 Step5
0856 DI StrtStep Sel1
14 Step6
0:857 DI StrtStep Sel2
15 Step7
0:858 DI StrtStep Sel3
5
16 Step8
0:859 DI StrtStep Sel4
17 Step9
18 Step10
19 Step11
20 Step12
21 Step13
22 Step14 6
23 Step15
24 Step16
Profile Command 1202 0 StrStepSel0
1 StrStepSel1 2 StrStepSel2 3 StrStepSel3 4 StrStepSel4 5 Reserved 6 Reserved 7 Reserved 8 Hold Step 9 Vel Override 10 Restart Step 11 HomNotSetAlm 12 Prof Run Alm
Starting Step (0-16)
Alarm Status B 466 7 Profile Actv 9 Not Home Set
Profile Status 1200 0 Step Bit 0
1 Step Bit 1 2 Step Bit 2 3 Step Bit 3 4 Step Bit 4 5 Reserved 6 Reserved 7 Reserved 8 Enabled 9 Running 10 PositionMode 11 Dwell 12 Holding 13 In Position 14 Complete 15 Stopped 16 Resume 17 Restart Step 18 Vel Override 19 Home Not Set
Current Step (0-16)
1201 Units Traveled
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Prof Ind 2
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 33 - Position Control ­ Profiler/Indexer 2
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Position Control ­ Profiler/Indexer (2)
1
(Prof Ind 2)
Type = Position Absolute (Posit Abs)
Action
Posit Blend Time Param Digin (+/-) Wait Step to Next End
Blend Blend Blend Digin
Velocity Move vel
N/A
N/A
N/A
Move vel
Move vel
N/A
Accel
Move accel N/A
N/A
N/A
Move accel Move accel N/A
Decel
Move decel N/A
N/A
N/A
Move decel Move decel N/A
2
Value
Absolute
N/A
N/A
N/A
Absolute
Absolute
N/A
Target pos
Target pos Target pos
Dwell
N/A
N/A
N/A
N/A
Dwell Time Dwell Time Dwell
Time
Batch
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Next
Next Step
N/A
N/A
N/A
Next Step
Next Step
N/A
Next Step Position >
N/A
N/A
N/A
DigIn
Position > Restart
Condition Value
transition
Value
Indexer
DigIn # N/A
N/A
N/A
N/A
Digin #
N/A
N/A
Type = Position Incremental (Posit Incr)
Action
Posit Blend Time Param Digin (+/-) Wait Step to Next End
3
Blend Blend Blend Digin
Velocity Move vel
N/A
N/A
N/A
Move vel
Move vel
N/A
Accel
Move accel N/A
N/A
N/A
Move accel Move accel N/A
Decel
Move decel N/A
N/A
N/A
Move decel Move decel N/A
Value
Incremental N/A
N/A
Target pos
N/A
Incremental Incremental N/A
Target pos Target pos
Dwell
N/A
Batch
N/A
N/A
N/A
N/A
N/A
N/A
Dwell Time Dwell Time Dwell
Time
N/A
Batch #
Batch #
N/A
Next
Next Step
N/A
N/A
N/A
Next Step
Next Step
N/A
Next Step Position > N/A
N/A
Condition Value
N/A
DigIn
Position > Restart
transition
Value
Indexer
DigIn #
N/A
N/A
N/A
N/A
Digin #
N/A
N/A
4 Type = Speed Profile
Action
Posit Blend Time Blend Param Blend
Digin Blend
(+/-) Wait Digin
Step to Next End
Velocity Move vel Move vel Move vel
Move Vel Move vel Move vel N/A
Accel
Move accel Move accel Move accel
Move accel
Move accel Move accel N/A
Decel
Move decel Move decel Move decel
Move decel
Move decel Move decel N/A
Value
Incremental Total Time Compare Param # N/A
Target pos
(+/-)
Total Time Total Time N/A
Dwell
N/A
N/A
CompareParam # Dwell
Dwell Time Dwell Time Dwell
Time
Time
Batch
N/A
N/A
N/A
Batch # Batch #
Batch #
N/A
Next
Next Step Next Step Next Step
Next Step Next Step Next Step N/A
5
Next Step Position > Time >
Param[Blend P1] Digin
Digin
Time >
Restart
Condition Value
Value
Compare to
[Value] transition Value
Profile
Param [Blend P2] transition
DigIn #
N/A
N/A
N/A
Digin # Digin #
N/A
N/A
6
73
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 34 - Position Control ­ Roll Position Indicator
74
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Roll Psn
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
1
Position Control ­ Roll Position Indicator
Roll Psn Offset
(Roll Psn)
1085
Roll Psn Config 1080 0 Enable
ReRef
Roll Psn Config 1080 2 Rereference
2
'
RP Pos Fd Stpt 1083
Position Fb 1746
Other Ref Sources
Parameter Selection
'
60 RPsn Dlt In
3 RP Psn Fb Sel 1082
62
RPsn EGR Den
EGR [ ]
+ + [ ]
63 RPsn Dlt Out
61 RPsn EGR Num
X *1
X *1
Roll Psn Config 1080 1 Preset
Roll Psn Preset 1084
6
RPsn Mod In
1
64
0
Modulo Divider
Mod
Roll Psn Status 1081 0 Enable
1 Rereference
1090 RP Psn Output
X
1092 RP Unit Out
1086 RP EPR Input
1087 RP Rvls Input
1088 RP Rvls Output
1089 RP Unwind
1091 RP Unit Scale
4 Gear Ratio
*1: Product need to be within 32-bits integer range
RP Psn Output 1090
RP Unwind 1089 5
0
Position Feedback
Input
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Spindle
Figure 35 - Position Control ­ Spindle Orient
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A SO Config 1060 0 Home DI
1 1
Home DI 0
Marker Pulse
SO Offset 1063 2
Position Fb 1746
1013 Preg Fb Sel
3
4
5
SO Position Out
1069
1067 SO Cnts per Rvls
6
0
B
C
D
E
F
G
H
I
Position Control ­ Spindle Orient
(Spindle)
Rising Edge
ReCap
'
EGR [ ] [ ]
+
6
-
X *1
X *1
ReCap
Spindle Position Indicator
Modulo Divider
Mod
SO Config
X
1060
4 Scale Invert 0
1
÷
SO Unit Out 1070
SO Status
SO Config
1061 0 At SO Speed
1060 0 Home DI
1 Mode
1 Home DI Inv
2 Orient Cplt
2 Recap Hm Psn
3 ShortestPath
SO Position Out 1069
4 Scale Invert
1064 SO EPR Input
1065 SO Rvls Input
1066 SO Rvls Output
SO Offset 1063
SO Cnts per Rvls 1067
Gear Ratio *1: Product need to be within 32-bits integer range
SO Setpoint 1062
SO Unit Scale 1068
Spindle Position Command
SO Status 1061 1 Mode
SO Vel Lim Fwd 1073
SO Vel Lim Rev 1074
Spindle Position Planner
Vref Ramped 1923 Position Feedback Input
SO Vel Lim Fwd 1073
Limit 1074 SO Vel Lim Rev
1071 SO Accel Time
1072 SO Decel Time
Chapter 3 PowerFlex 755T Control Block Diagrams
75
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 36 - Velocity Reference Overview
76
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VRef Overview
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
B
C
Velocity Reference Selection
VRef Selected
D
E
F
G
H
I
Velocity Reference Overview (VRef Overview)
VRef A RefA Trim RefA TrimPct
RefA Auto
+
Velocity Reference Control
VelRefCAM/
VRef
2
VRef B RefB Trim
RefB Auto
+
+
VRef Commanded
Profiling/ Jogging/ Lift App/ Autotune/ Homing/
Direction Mode
Limit Switch Control
Limit
Limited
Skip Bands
RefB TrimPct
Overrides
From
PI Regulator
Presets 3-7 Auto
(Exclusive Mode)
DPI Ports 1-6 Manual
ENet VRef
VRef Stop / Torque
Proving
3
Vector Ramp and Move Profiles
Virtual Encoder
Vector Velocity Control
Vel Comp
Accel FF
Accel FF to Trq Ref
Friction Comp
Friction Comp Torque Ref
Flux Vector
Velocity Ramp &
VRef Ramped
Move
4
Profiles
Ref NF 1
&
x
Ref NF 2
Limit
Motor VRef
1933
VReg
From
From
Vel Limit
VRef Final
Ref
PTP Profile Generator
PI Regulator VRef Scale (Trim Mode)
Rate Select
From Position Regulator
VRef Ramped
VF or SV
Linear
Ref NF 1
5
Ramp &
&
S Curve
Ref NF 2
V/F Ramp S-Curve
Droop
Limit Vel Limit
From PI Regulator (Trim Mode) 6
V/F Velocity Control
Limit
Vel Limit & Overspeed Limit
From Slip Comp
Velocity Feedback Vector Ramp Status
FF Ramp Status
1
Output Frequency
Frequency Ref
Velocity Status
Status
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VRef Sel
Figure 37 - Velocity Reference Selection
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
VRef A Sel
Velocity Reference Selection (VRef Sel)
1
1800
Disabled (0) VRef A Stpt 1801 Preset Speed 1 1814
* Note: Analog Hi, Lo scaling only used when Analog Input is selected
`d' Prefix Refers to Diagnostic Item Number (ex. d33) ­ Reference Symbol Legend
RefA TrmPct Sel 1850
RefA Trim Sel 1855
Velocity Units 0:46
350
VRef Source
1870 VelTrimPctRefSrc
1871 Vel Trim Source
1890 VRef Sel Sts
0:47
Vel Units Act
Preset Speed 2 1815 Preset Speed 3 1816 2 Preset Speed 4 1817 Preset Speed 5 1818 Preset Speed 6 1819 Preset Speed 7 1820
MOP Reference 1823 MOP [G3]
Enc VRef 1834
3
Fdbk [H5]
Port 1 Reference 0:214
Port 2 Reference 0:215
Port 3 Reference 0:216
Port 4 Reference 0:217
Port 5 Reference 0:218
Port 6 Reference 0:219
Parameter Selection
Default
Option Ports:
4
Analog, EtherNet
*
VRefA AnlgHi 1802
Disabled (0) RefA TrimPct Stpt 1851
Default
Port 1 Reference Port 2 Reference Port 3 Reference Port 4 Reference Port 5 Reference Port 6 Reference
0:214 0:215 0:216 0:217 0:218 0:219
Parameter Selection
Anlg In1 PortVal (option port)
Anlg In2 PortVal (option port)
RefA TrmPct AnHi 1852
*
RefA TrmPct AnLo 1853
x
x
Disabled (0) RefA Trim Stpt 1856
Default
Port 1 Reference Port 2 Reference Port 3 Reference Port 4 Reference Port 5 Reference Port 6 Reference
0:214 0:215 0:216 0:217 0:218 0:219
Parameter Selection
Anlg In1 PortVal (option port)
Anlg In2 PortVal (option port)
RefA Trim AnHi 1857
*
RefA Trim AnLo 1858
Motor Side Sts 1
354 9 14 13 12 11 10
Man Ref Ref Ref Ref Ref Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0
0
1
( Ref A Auto )
2
( Ref B Auto )
1816 ( Preset Speed 3) 3
1817 ( Preset Speed 4) 4
1818 ( Preset Speed 5) 5
1819 ( Preset Speed 6) 6
1820 ( Preset Speed 7) 7
0:214
17
( DPI Prt1 Man )
0:215
( DPI Prt2 Man )
18
0:216
19
( DPI Prt3 Man )
+
0:217
20
( DPI Prt4 Man )
VRef Sel VRef All [A1]
VRefA AnlgLo 1803
VRef A Mult 1804
21
0:218
( DPI Prt5 Man )
0:219
22
( DPI Prt6 Man )
Disabled (0)
Disabled (0)
Disabled (0)
VRef B Stpt 1808
RefB TrmPct Stpt 1861
RefB Trim Stpt 1866
5
VRefB AnlgHi 1809
RefB TrmPct AnHi 1862
RefB Trim AnHi 1867
VRefB AnlgLo 1810 Other Ref Sources
* Parameter Selection
RefB TrmPct AnLo 1863 Other Ref Sources
* Parameter Selection
RefB Trim AnLo 1868 Other Ref Sources
* Parameter Selection
VRef B Sel 1807
RefB TrmPct Sel 1860
RefB Trim Sel 1865
DI ManRef AnlgHi
0:148
* 0:149 Parameter
DI ManRef AnlgLo Selection
16
( DI Man Sel )
Alt Man Ref AnHi 0:147 DI Man Ref Sel
x
6
VRef B Mult 1811
x
1836
31
+
* 1837
( Alt Man Sel )
Parameter
Alt Man Ref AnLo Selection
1835 Alt Man Ref Sel
Chapter 3 PowerFlex 755T Control Block Diagrams
77
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 38 - Velocity Reference ­ All
78
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VRef All
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
Position Control ­ Add Speed Reference Option
Trq Ref [E5]
Psn Ctrl Options
1
PsnVelTrq Actv
(Add VRef)
34
1730 10
VRef Sel VRef Sel [I2]
Position
(>= 6)
1
0 Non-position 0
(< 6)
VRef Selected 1892
PI Speed Exclusive
0
2 1
PID Output Meter 9:13 Proc 1 [H2]
PID Status
9:3 0 PID Enable
Motor Side Sts 1
354 16 Running
&
9:14
Speed Excl
PID Output Sel = 1
30 VRef PID Sel
3
C
D
E
F
G
H
I
Velocity Reference ­ All (VRef All)
Velocity Reference CAM
VCAM Control (Cam Enable)
2201 3 0
Vel Ref CAM [H2] VCAM Vel Out
2354
Vel
1
Ref
CAM
V eloc ity P rofiling
Trq Ref [E5] PsnVelTrq Actv
34
6
Profiler 6
Profile Status 1200 10 Position Mode 1 Position 0 0 Speed
VRef Profilr 67
J ogging
Lift App (Micro Positioning)
Motor Side Sts 1 (Jogging)
354 17
0
Jog Speed 1
1,0 1894
1
Jog Speed 2
0,1 1895
Logic [H3]
Drive Logic Rslt
879
2
19
Jog1 Jog2
Trq Prove Status (Micro Psn) 9:52 2
0
x1
9:71 MicroPsn ScalePct
VRef Prof Ind
x
1752 Psn Gear Ratio
Prof Ind 1 [H2]
Pump Application
Oil Well 1 [H3] PumpJackSpdRefEnbl
0
Oil Well 2 [H4] POfVelRefSts
0
PumpJack 1 SpdRef
Oil Well 1 [H3]
1 POf Vel Ref
Oil Well 2 [H4]
VRef Homing Homing [H2]
Homing
Homing Status 1641 1 0 1
VRef Homing 31
x
1752
Psn Gear Ratio
Direction Mode Control
Autotune Tests
Limit Switch Control
Velocity Ref Command Limits
Direction Mode 930
Direction Test
VRef Sel Sts (Decel Lmt Sw)
VRef Sel Sts (End Lmt Sw)
Min Velocity Max Velocity
Skip Bands
4
1890 13
1890 14
Limits
VRef CLmt In
Limits
VRef SkipOut 34
Max
0
Bipolar
1 Rev Disable 2
Unipolar 0
X
0
1 5 Hz
912
0
0
1
1
0
33
Limit
Limit
1906 VRef Limited Proc 2 [B2]
Skip Bands
Skip Speed 1 1908
Foward Command
Logic
5
VRef Dir Sel 32
(+1)
Unipol Fwd
1
(-1)
Unipol 0
Rev
Autotune Vel Lim
Id or Inertia Test
1814 Preset Speed 1
Vel Low Lim Pos 1900 Vel Low Lim Neg 1901
Vel Limit Pos 1898 Vel Limit Neg 1899
Skip Speed 2 1909 Skip Speed 3 1910
Skip Speed 1911 Band
Internal Load Dependent Max Limit
(Lift Application)
6
Trq Prove Status (LoadTestActv)
9:52
5
VRef Commanded 1914
VRef Vect [A1]
VRef OverRide Testpoint 39:
0- No Override 1- Psn Cntrl ­ Add Spd Ref Option 2- PI Speed Exclusive 3- Speed Profiling 4- Jogging 5- Homing 6- Autotune 7- Direction Test 8- Limit Switch Decel Limit 9- Limit Switch End Limit 10- Torque Proving 11-Oil Well Pump 12-Variable Boost 13-Velocity Ref CAM
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VRef Vect
Figure 39 - Velocity Reference ­ Flux Vector
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
Start/Stop
1
Motor Side Sts 1 (Running)
Motor Side Sts 1 354 16
OR
(Stopping)
355 9
VRef Commanded
354 18 Motor Side Sts 2
VRef All [I4]
1914
0
(Autotuning)
1
Not Stopping
and Active
00
01
Stopping or Not Active
2
D
E
F
G
H
I
Velocity Reference - Flux Vector (VRef Vect)
VRef OverRide (Testpoint 39) =
Velocity Ref CAM (13)?
0
Velocity Ramp and Move Profiles (VRef Move)
VRef Ramp In 1
1923 VRef Ramped Proc 2 [C2]
Vel Ctrl Options (Delayed Ref)
1950 8
0 Virtual Encoder
LinScurve SineSquared
Poly5 Cubic
Virtual Enc EPR
(Edges Per Rev)
1018
One Scan
Delay
VRef Delayed
1924
1
PRef 1 [C5] Virtual Enc Psn
1046
Ref NF2 Freq
948
Ref NF2 Width
949
Int Ramp Ref
Ref NF2 Depth
950
1
Trq Ref [G1]
Ref NF2 Gain
951
Velocity Control
3
VRef Filtered
931
Ref Move Type
Virtual Encoder
One Scan
Delay
1017
Virtual EncDelay PRef 1 [C5]
Accel Feed Forward
1925
VRef NF In 36
Accel FF Mode
Accel FF Output
Ref NF2
Ref NF1
1972
Velocity Comp
2070
Disabled 0 0
Int Ramp Ref 1
d
4
Ext Ramped Ref
dt
2
d
1978
dt
1931
3
Accel FF
905 System C/U Sel 1973 c Accel FF Gain 1974 u Accel FF Gain
0
1
Accel FF Output
0
Trq Ref [A2]
140 Cur Lmt Stop
OR
130
LineLoss Act
Vel Comp Sel 1927
Not Used 0
Ramped Ref 1
d
dt
1931
Rate Ref 2
Vel Comp Out 1930
From Anti-Sway [D2]
Speed Comp
954 Ref NF1 Freq Act
FF Vel Rate Ref
1975 Accel FF NegGain
FF Vel Rate Ref c Vel Comp Gain 1928
956 Ref NF1 Depth Act 957 Ref NF1 Gain Act
u Vel Comp Gain 1929
943 Ref NF1 Width
1932
VRef Scaled
X
37
Velocity Ref Final Limits
VRef Psn FF 35
0
x
1760 c Vel FF Gain 1761 u Vel FF Gain
1
0
354 17
Motor Side Sts 1 (Jogging)
1752 Psn Gear Ratio
Vel FF PRef 1 [I5]
5
VRef Scale
140 Cur Lmt Stop
Proc 1 [H2] 6
9:13 PID Output Meter
PI Velocity Trim 2
0 2 9:14
PID Output Sel (Speed Trim)
0
01 354 17
Motor Side Sts 1 (Jogging)
PReg Vel Out PReg [H3]
Position Reg Output
1767
0
PReg Vel Out 0 1
354 17
Motor Side Sts 1 (Jogging)
VRef FLmt In 38
Max Speed Limit
At Limit Status (MaxSpeed Lmt)
365 2
Vel Limit Pos Vel Limit Neg
1898 1899
Limit
OR 130
0
1 0
LineLoss Act
1933 VRef Final
VReg Vect [A3]
Chapter 3 PowerFlex 755T Control Block Diagrams
79
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 40 - Velocity Reference Flux Vector ­ Move Profiles
80
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Ref Move
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Velocity Reference, Flux Vector ­ Move Profiles (VRef Move)
1
Motor Side Sts 1 354 17 Jogging
0
VRef Accel Time1
1915 1,0
VRef Accel Time2
1916 0,1
MS Logic Rslt 0:200 8 9 (Accel Time 1, 2)
1
2
Jog Acc Dec Time 1896
0
Logic [H3]
VRef Decel Time1 1917 1,0
VRef Decel Time2 1918 0,1
MS Logic Rslt 0:200 10 11 (Decel Time 1, 2) Logic [H3]
VRef Accel Jerk 1919
VRef Decel Jerk 1920
3
VRef Vect [E1]
Vel Ctrl Options 1950
(Ramp Hold)
0
(Ramp Disable) 1
(StpNoSCrvAcc) 2
(NoSCrvSpdChg) 9
VRef Ramp In 1
Ref Time Base 933
Ref Move Type
931
VelRamp Rate 2
LinScurve (0)
VRef Ramped 1923
Proc 2 [C2] VRef Vect [G1]
4
Ref Accel Time 934
Ref Decel Time 935
RefEnergyBalance 932
Ref Max Accel
936
Ref Max Decel
937
5
Ref Max AccJerk
938
Ref Max DecJerk
939
Ref Fault Config
941
0 = Rate 1 = Time 0 = Rate 1 = Time 0 = Rate
SineSquared (1) Poly5 (2) Cubic (3)
1934 1935 1936 1937
VRef Accel Max VRef AccJerk Max VRef DecJerk Max VRef Move Time
1939 VRef Move Seg
0- Accel Decel 1- Dwell Decel 2- Decel 3- Reversing
VRef Move Status 1938 0 1 2 3 4
AccelLimited AccelJerkLim DecelJerkLim Zero Move Move Failed
4 VRefAccelMaxTime 5 VRefAcJrkMaxTime 6 VRefDcJrkMaxTime 7 VRef Time Left 8 VRef Iterations
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VelRefCAM
Figure 41 - Velocity Reference CAM
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
1
VCAM Mode 2202
0 - Off 1 - Single step 2 ­ Continuous (not for P2200 [VCAM Type] = 2 ­ 3 ­ Persistent (not for P2200 [VCAM Type] = 1 ­
VCAM) TCAM)
Velocity Reference CAM
VCAM Slave Scale 2216
Other Ref
Sources
Parameter
2
Selection
Y (slave)
VCAM SlaveSclSel 2215
G
H
I
Velocity Reference CAM
(Vel Ref CAM)
2354 VCAM Vel Out VRef All [D3]
VCAM Type 2200
VCAM Psn Stpt 2207
0 - PCAM
Other Ref
Sources
Parameter
3
Selection
Unwind
VCAM Psn Select 2206
Virtual Encoder
time
1 - TCAM
X (master)
VCAM Psn Ofst 2208
'
VCAM PsnOfst EPS
2209
VCAM Vel Stpt 2211
4
Other Ref
2 - VCAM
Sources
Parameter
Selection
0 ­ Pnt Zero
VCAM Vel Select 2210
1 ­ Last Stop 2 ­ Actl Input
VCAM Master Scl 2214
VCAM Start Cfg 2205
3 ­ Remainder
Profile Definition
5
VCAM Start Slope 2222
VCAM End Slope 2223
Pt M00 2226 Pt S00 2258 Pt M01 2227 Pt S01 2259
Both Main and Aux CAM
Pt M01 2292 Pt S01 2323
VCAM Main
Pt M15 Types
2241 2225
Pt S15 2273 0 - - 14 x
VCAM Aux
Pt M15 2306 Pt S15 2337 Types 2291 x 1 - 14 x
Linear or Cubic
Linear or Cubic
6
EndPnt 2224
End Pnt 2290
VCAM Status 2203
Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 Reserved 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15 VCAM 16
DI VCAM Start 0:883
VCAM Control 2201
Not TCAM
Start 0 DirectionOut 1 Aux Cam En 2 Cam Enable 3
Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10
Not TCAM
Chapter 3 PowerFlex 755T Control Block Diagrams
81
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 42 - Velocity Regulator ­ Flux Vector
82
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
VReg Vect
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Velocity Regulator - Flux Vector (VReg Vect)
1
905 2
System C/U Sel (905):
0- Calculated* 1- User Entered 2- Load Calculated then revert to User Entered
* Set (905) System C/U Sel =
User to manually adjust Kp and Ki gains. Otherwise the following params determine Calc gains.
906 System BW 1010 AltFb Gn Scale 907 System Damping 901 Load Ratio 902 Load Coupling
3 VRef Vect [H6] 1933
VRef Final
Fdbk [G2]
VelFb Active 1042
4
5 6
nff
1953
FeedFwd
VReg Anti Backup
Velocity Error 1951
+ -
ks s
ServoLck
Servo Lock Gain 1952
+ +
+10%
-10%
Limit
40 VReg SrvLock
+
c VReg Kp 1955 u VReg Kp 1956
+ -
Hold / Reset
At Limit Status 365
PTP PsnRefStatus (PTP Int Hold)
1380
2
Vel Ctrl Options 1950 3
(SpdRegIntRes)
(SpdRegIntHld)
4
(Jog No Integ)
6
aVRegKp 41
kp
P Gain
kp
P Gain
aVRegKi 42
ki s
I Gain
c VReg Ki u VReg Ki c Alt Kvi OL Fb u Alt Kvi OL Fb
1957 1958 1959 1960
VReg Trq Preset 1980
Preset
Trq Ref Selected Trq Ref [G3]
2076
PsnVelTrq Actv 34 Trq Ref [E5]
Bumpless
At Limit Status (Spd Reg Lmt)
VReg Lmt In 43
365 4
+ +
Limit
1965 Accel Limit Pos
1966 Accel Limit Neg
1962 VReg Int Out
Vel Droop 3
Droop
Kj
1961
44
Droop RPM at FLA
VReg Enable
45
00 VReg Output
1
1969
Trq Ref [B2]
Figure 43 - Torque Overview
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Trq Overview
A 1
2
B
VReg PI Out Accel FF
3
Trq Ref 1
Trq Ref 2
Trq Trim
4
Drive Voltage and
Current Ratings
DC Bus Voltage
Brake/Bus Config
5
C
D
E
F
G
H
I
Torque Overview (Trq Overview)
VReg Output Trim
VelFb
+ -
Load Observer
Torque Reference
Scale and Trim
Select
Trq Ref CAM
Torque Step
Position / Velocity / Torque
Mode Select
+ ++
+
Friction Comp
Trq Filters
Trq Ref Filtered
Torque Limit
Te Iq
Calc
Current Limit
Rate Limit
Torque Current
Ref
Regen Power Limit
Bus
+
Voltage
+
Regulator
Pos Torque Limit
Pwr Te
Calc
Torque Limit Select
Neg Torque Limit Power, Torque, and Current Limit Reference Generation
Current Limit
Processing and
Selection
Chapter 3 PowerFlex 755T Control Block Diagrams
6
83
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 44 - Torque Reference Selection
84
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Trq Ref Sel
A
B
C
D
E
F
G
H
I
* Note: Analog Hi, Lo
1
scaling only used when
Analog Input is selected
Torque Reference Selection (Trq Ref Sel)
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
2
3 Trq Ref A Stpt 2001
4
Trq Ref A Sel 2000
0.0
( Disabled )
( Setpoint )
From DIO Option Card From DIO Option Card
Trq Ref A AnlgHi Trq Ref A AnlgLo
Default
( Analog In 1 )
( Analog In 2 )
2002
*
2003
Parameter Selection
Default 0 1
Trq Ref B Sel 2007
0.0
( Disabled )
Trq Ref B Stpt 2008 ( Setpoint )
From DIO Option Card
( Analog In 1 )
From DIO Option Card
( Analog In 2 )
Default
Parameter Selection
Trq Ref B AnlgHi 2009
*
Trq Ref B AnlgLo 2010
Bit Source
DI M TorqueStptA 0:167
Parameter Selection
Trq Ref B Mult 2011
5
Trq Ref A Mult 2004
x
PID Output Sel
9:14
PID Output Meter (PID Torque Trim)
Proc 1 [H2 ] 3,4
9:13
Other
0
3 = Torque Excl 4 = Torque Trim
Trq Commanded 2073
x
Other
+
3 0
Trq Ref [B4], Proc 1 [A4]
Other
3 0
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Ld Obs
Figure 45 - Load Observer
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
B
C
D
E
Motor NP RPM 403 Mtr NP Pwr Units 405 Motor NP Power 406
Motor Inertia 900 Load Ratio 901
Acc Trq
Calc
44 Kj
Trq Scale 50
LdObs Acc Ref In 2027
Trq Ref [B2] 2
LdObs Mode (2020):
0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only 4- Accel Fdbk
Note:Load Observer is
internally disabled in
3
TrqReg mode or
VelMode with open loop
feedback
Cur IM, SPM [E3] Cur IPM [E3]
Active Pos Torque Limit
Active Neg Torque Limit
LdObs Mode 2020
+
TrqRefPosLimActv
-
51
TrqRefNegLimActv 52
1 Trq Scale
1 Trq Scale
X
0,3
4
1,2
0
0.5
4
LdObs VelFb In 2028
Fdbk [G3] 5
K j * aVRegK p
1961
-----------------
-
Np RPM
+
Droop RPM at FLA
1.0 LdObs Vel Error
2031
+
X
-
c LdObs Kp 2021 u LdObs Kp 2022
2023 c LdObs Ki 2024 u LdObs Ki
F
G
H
I
Load Observer (Ld Obs)
LdObs Acc Ref Out 2037
Limit
0
0,4
1,2,3
Trq Ref Out 2072
X
Trq Ref [D2]
Trq Ref [D3] LdObs Torque Est
X
2036
Trq Ref [C3] LdObs Accel Est
2035
1,2,3,4
Fdbk [E3] LdObs Vel Est
2034
X
X
6
Chapter 3 PowerFlex 755T Control Block Diagrams
85
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 46 - Friction Compensation
86
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Friction Comp
A 1
B
C
D
Friction Compensation Adjustments
E
F
G
H
I
Friction Compensation (Friction Comp)
Torque
2
+
2056
+ FrctnComp Rated
2054
+ FrctnComp Stick
2055 + FrctnComp Slip
3
403
- -Motor NP RPM
2051 - FrctnComp Trig
2052
FrctnComp Hyst
403
+ + Motor NP RPM
Speed
FrctnComp Hyst 2052
+ FrctnComp Trig 2051
4
- FrctnComp Slip
2055
- FrctnComp Stick 2054
- FrctnComp Rated 2056
-
5
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Trq RefCAM
Figure 47 - Torque Reference CAM
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
1
TqCAM Mode 2372
0 - Off 1 - Single step 2 ­ Continuous (not for TqCAM Type [2370] = 2 ­ 3 ­ Persistent (not for TqCAM Type [2370] = 1 ­
VCAM) TCAM)
Torque Reference CAM
TqCAM SlaveScale 2386
Y (slave)
Other Ref
Sources
Parameter
2
Selection
TqCAM SlvSclSel 2385
G
H
I
Torque Reference CAM
(Trq Ref CAM)
2524 TqCAM Trq Out Trq Ref [H3]
TqCAM Type 2370
TqCAM Psn Stpt 2377
0 - PCAM
Other Ref
Sources
Parameter
3
Selection
Unwind
TqCAM Psn Select 2376
Virtual Encoder
time
1 - TCAM
X (master)
TqCAM Psn Ofst 2378
'
TqCAM PsnOfstEPS
2379
TqCAM Vel Stpt 2381
4
Other Ref
2 - VCAM
Sources
Parameter
Selection
TqCAM Vel Select 2380
0 ­ Pnt Zero 1 ­ Last Stop 2 ­ Actl Input
TqCAM Master Scl
2384
TqCAM Start Cfg 2375
3 ­ Remainder
Profile Definition
5
TqCAM StartSlope 2392
TqCAM End Slope 2393
Pt M00 2396 Pt S00 2428 Pt M01 2397 Pt S01 2429
Both Main and Aux CAM
Pt M01 2462 Pt S01 2493
TqCAM Main
Pt M15 Types
2411 2395
Pt S15 2443 TqCAM Aux
0 - - 14 x
Pt M15 2476 Pt S15 2507 Types 2461 x 1 - 14 x
Linear or Cubic
Linear or Cubic
6
EndPnt 2394
End Pnt 2460
TqCAM Status 2373
Started 0 In Cam 1 TCAM 2 Single Step 3 Continuous 4 DirectionOut 5 Aux Cam En 6 Reserved 7 MainWrongOrd 8 AuxWrongOrd 9 Persist Mode 10 Direction In 11 Offset En 12 RerefPsnOfst 13 Unidirection 14 PCAM 15 VCAM 16
DI TqCAM Start 0:886
TqCAM Control 2371
Not TCAM
Start 0 DirectionOut 1 Aux Cam En 2 Cam Enable 3
Reserved 4 Reserved 5 Direction In 6 Offset En 7 RerefPsnOfst 8 Unidirection 9 CamProfNrml 10
Not TCAM
Chapter 3 PowerFlex 755T Control Block Diagrams
87
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 48 - Torque Reference
88
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Trq Ref
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Ld Obs[2020] modes:
1
0- Disabled 1- LdObs Only 2- LdObs VelEst 3- Vel Est Only
4- Accel Fdbk
Motor NP RPM 403 Mtr NP Pwr Units 405 Motor NP Power 406
Motor Inertia 900 Load Ratio 901
2 VReg Vect [H3]
VReg Output
1969
+
+
Accel FF Output
Ld Obs [A2] LdObs
Acc Ref In 2027
Acc Trq
Calc
Ld Obs [H2] LdObs
Acc Ref Out 2037
+ -
44 Kj
50
Trq Scale
Trq Ref Out 2072
X
Torque Reference (Trq Ref)
***INTERNAL CONDITION ONLY***
Zero Torque 0 0
Logic Ctrl State (Forced Spd)
OR Min/Max Cntrl (Forced Spd)
Speed Reg 1
0
Torque Reg 2
1
FrctnComp Mode 2050
Disabled 0 0
VRef Filtered 1925
1
VRef Vect [D3]
Ext Ramped Ref 2
1978
Vel Fb Active
1042
3
FrctnComp Out 2057
Friction Comp
2051 FrctnComp Trig 2052 FrctnComp Hyst 2053 FrctnComp Time 2054 FrctnComp Stick 2055 FrctnComp Slip 2056 FrctnComp Rated
VRef Vect [C4]
2070
3
c LdObs Kp 2021
u LdObs Kp 2022
c LdObs Ki 2023 u LdObs Ki 2024
LdObs VelFb In 2028 Fdbk [G3]
4
Load Disabled 0 Observer
LdObs Mode 2020
0,3
LdObs Accel Est
2035
1,2,4
LdObs Vel Est
2,3
2034
2031 LdObs Vel Error
Ld Obs [H3] LdObs
Torque Est 2036
X
Vel Feedback Fdbk [E3]
SLAT
Min 3
Min
SLAT
Max 4
Max
Sum 5
+ +
6
Psn PTP
7
Psn Direct
8
Psn Camming
Trq Ref Selected 2076
VReg Vect [D5]
+ ++ + +
TrqRefAtZero 150 0
1 0
Trq Ref Filt In 2150
Trq Filt [A2]
Torque Step
2077
TqCAM Trq Out
2524
Trq Ref CAM [H2]
Trq Ref CAM
9
Psn PLL
Trq Ref Sel [H5]
Trq Commanded 2073
Psn SpdlOrnt 10 Profiler 11
PsnVelTrq Mode A
30
5
ABCD
PsnVelTrq Mode B
31
Select
00
PsnVelTrq Mode C
32
01
10
PsnVelTrq Mode D
33
11
DI SpTqPs Sel 1 0:161 DI SpTqPs Sel 0 0:160 6
Prof Ind 1 [H2], VReg Vect [D6], PRef 1 [D2, H1], VRef All [A1], VRef All [D2]
SLAT Err Stpt
39
SLAT Dwell Time 40
Mtr Cfg Options
(Zero TrqStop)
(Trq ModeStop) 420
012
(Trq ModeJog)
34 PsnVelTrq Actv
Select Logic
Motor Side Sts 1 354 21 22 23
Torque Mode PositionMode Speed Mode
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Trq Filt
Figure 49 - Torque Filters
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Torque Filters (Trq Filt)
1
Trq Ref Filt In Trq Ref [H3]
2150
Torque Lead Lag Filters
2
2152 Trq LLF BW 2153 Trq LLF Gain
Torque Low Pass Filter
Torque Notch Filter
1
Torque Notch Filter
2
Torque Notch Filter
3
Torque Notch Filter
4
Trq Ref Filtered
2080
Cur IM [B2] Cur IM SPM [B2],
Cur IPM [B2]
*2156 Trq LPF BW Act
3 AdptTune Config 2110
Key
* Save in non-volatile memory
*2160 Trq NF1 Freq Act *2162 Trq NF1 Width Act *2164 Trq NF1 Depth Act
*2170 Trq NF2 Freq Act *2172 Trq NF2 Width Act *2174 Trq NF2 Depth Act
*2180 Trq NF3 Freq Act *2182 Trq NF3 Width Act *2184 Trq NF3 Depth Act
*2190 Trq NF4 Freq Act *2192 Trq NF4 Width Act *2194 Trq NF4 Depth Act
Trq NF Threshold 2111
*2166 Trq NF1 Gain Act
*2176 Trq NF2 Gain Act
*2186 Trq NF3 Gain Act
*2196 Trq NF4 Gain Act
Trq NF Freq LLim 2112
Trq NF Freq HLim 2113
Trq NF WidthMin 2114
Trq NF WidthMax 2115
4
Trq LPF BW LLim 2116
TP 265 GnOptTimeLeft
AdptTune NF Num AdptTuneMinScale GnStab TorqueLim
2118 2119 2134
Adaptive Tuning Note: User Trq NF and Selected LPF gains pass through as Active gains when Adaptive Tuning is disabled.
GnOpt TorqueLim 2135
GnOpt Scale Inc 2136
System C/U Sel 905
GnOpt Error Type 2137
c Trq LPF BW 2154
Trq NF1 Freq 2159
Trq NF2 Freq 2169
Trq NF3 Freq 2179
Trq NF4 Freq 2189
5
GnOptPosErrThrsh 2139
u Trq LPF BW 2155
Trq NF1 Width 2161
Trq NF2 Width 2171
Trq NF3 Width 2181
Trq NF4 Width 2191
GnOptVelErrThrsh 2140
Trq NF1 Depth 2163
Trq NF2 Depth 2173
Trq NF3 Depth 2183
Trq NF4 Depth 2193
GnOptSclHiLim 2141
Trq NF1 Gain 2165
Trq NF2 Gain 2175
Trq NF3 Gain 2185
Trq NF4 Gain 2195
GnOpt Time 2142
2120 AdptTune Status *2121 AdptTune GnScale 2123 Trq NF Freq Est 2124 Trq NF Mag Est 2125 Trq NF Wdth Est 2129 AdptTuneStabFreq
2130 AdptTuneStabMag
2138 GnOpt Error Max 6
Chapter 3 PowerFlex 755T Control Block Diagrams
89
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 50 - Torque Control ­ Current, for Induction Motor
90
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Cur IM SPM
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1
Trq Ref Filtered
2
Trq Filt [H2]
2080
Torque Limit Neg 2084
VelFb Active
Fdbk [G2]
1042
Regen Power Lim 229
{Regen PwrLmt}
3
Bus
{BusVltgFVLmt}
Regulator
+ +
Motor Power Lim 230
{Mtrng PwrLmt}
Torque Limit Pos 2083
4
Voltage Ref/
{Mtr Vltg Lkg}
Limit
Generation
C
Pwr Te
Calc
D
E
F
G
H
I
Torque Control - Current, for Induction Motor (Cur IM)
Flux Vector
At Limit Status
365 21 Trq Pos Lmt 22 Trq Neg Lmt 23 Mtrng PwrLmt 24 Regen PwrLmt
25 Cur Lmt FV 26 Therm RegLmt 27 BusVltgFVLmt 28 Mtr Vltg Lkg
At Limit Status 365 17 TrqCurPosLmt
TrqCurNegLmt
2087
TrqRefNegLimActv 52 Active Neg Torque Limit
Trq Ref Limited
Limit
Fdbk [C6] Cur IPM [E2]
TrqRefPosLimActv 51
Active Pos Torque Limit
-1
Max
Ld Obs [C2]
Te
Iq
Calc
Limit
Rate Lim
Neg
Pos
Limit
Limit
227
Current Rate Lim
420 16 Mtr Cfg Options
(IqDelay)
0
-2 1 Z
IqsRefLmtd 101
Torque Current Ref
-1 Min
Flux
Pk Torque Iq Current Limit
Flux Cur Fb 9
Is,Id
Iq
Calc
Min
Active Iq Current Limit
Iq,Id
Is
Calc
Flux Vector (3,6)
5 Current Lmt Sel 221
Current Limit 1 222
Power Unit
Thermal Mgr Current Limit
Current Limit 2 223
Parameter
Thermal Protection
Selection
{Therm RegLmt}
{Cur Lmt FV}
6
ActvCurLim 255
Scale RMS
VF or SV (0-2,4,5,7,8)
Port 0 Pri MtrCtrl Mode
65
224 Active Cur Lim Invert IT [D2]
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 51 - Torque Control ­ Current, for Permanent Magnet Motor
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Cur IPM
A 1 2 3 4
B
C
Trq Filt [H2]
Trq Ref Filtered 2080
Torque Limit Neg 2084
VelFb Active
Fdbk [G2]
1042
Regen Power Lim 229
{Regen PwrLmt}
Bus
{BusVltgFVLmt}
Regulator
+ +
Motor Power Lim 230
{Mtrng PwrLmt}
Torque Limit Pos 2083
Pwr
Te
Calc
D
E
F
G
H
I
Torque Control - Current, for Permanent Magnet Motor (Cur PM)
Flux Vector
At Limit Status
365 21 Trq Pos Lmt 22 Trq Neg Lmt 23 Mtrng PwrLmt 24 Regen PwrLmt
25 Cur Lmt FV 26 Therm RegLmt 27 BusVltgFVLmt 28 Mtr Vltg Lkg
At Limit Status 365 17 TrqCurPosLmt 18 TrqCurNegLmt
Mtr Cfg Options
420 16
(IqDelay)
Trq Ref Limited
2087 Fdbk [C6]
Limit
Cur IPM [E2]
TrqRefNegLimActv 52 Active Neg Torque Limit
TrqRefPosLimActv 51
Active Pos Torque Limit
Te Id Iq
Calc
-1
Max
Voltage Limit
Te Id
Ld Obs [C2]
Calc
Limit
Min
Limit
Rate Lim
Neg Limit
Is,Id Iq
Calc
Pos Limit
227
Current Rate Lim
0
-2 1 Z
IqsRefLmtd 101
Torque Current
Ref
Id Current
Ref
{Mtr Vltg Lkg}
Voltage Ref/ Limit
Generation
Pk Torque Iq Current Limit
5
Current Lmt Sel 221
ActvCurLim
Current Limit 1 222
Power Unit
Thermal Mgr Current Limit
255
Scale
Current Limit 2 223
Parameter
Thermal Protection
RMS
Selection
{Therm RegLmt}
{Cur Lmt FV}
6
224 Active Cur Lim Invert IT [D2]
91
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 52 - Process Control 1
92
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Proc 1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
From Anti-Sway [D2] 1
Process Control 1 (Proc 1)
DI PID Invert
PID Ref Sel
954
Ref NF1 Freq Act
9:23
9:25
956
Ref NF1 Depth Act
948 Ref NF2 Freq 949 Ref NF2 Width
Option
PID Ref PID Ref
957
Ref NF1 Gain Act
950 Ref NF2 Depth
Port: Digital In
AnlgHi 9:29
AnlgLo 9:30
943 Ref NF1 Width
951 Ref NF2 Gain
PID Deadband
Parameter Selection
Option Port:
Analog In
Parameter Selection
Analog Types
2
MOP [G3]
MOP Reference
Scale
9:9
Invert Error
9:1 1 PID Cfg (Ramp Ref)
00
x
0
1
Ref
Ref
NF1
NF2
+-
1
-1
Error Deadband
1
-1 E
+-
PID Error Meter 9:12
200% Limit
9:6 PID Deriv Time
kd-S
D Gain
PID Prop Gain 9:4
kp
P Gain
PID Output Mult
PID Status (PID In Limit)
9:3 3
9:15
+++
x
Limit
PID Output Limited Proc 2 [A2]
1823
PID Setpoint 9:28
Float Types Default
9:27
PID Ref Mult 9:26
PID Ref Meter
0 Ramp
9:3 0 PID Status (PID Enabled)
Filter
LPass
9:10
PID LPF BW
9:2 3
PID Control (PID InvError)
Proc 1 [C5] Hold Request
Hold
9:3
1
PID Status (PID Hold)
PID Upper Limit 9:7
9:8 PID Lower Limit
VRef Freq [I4]
PID Fdbk Sel 9:35
PID Fdbk Meter
9:36
Output Frequency 1
Hz Per Unit
PID Fdbk Mult
3
Option
Port:
9:38 0
Analog In
MOP [G3] MOP Reference
Float Types
PID Fdbk PID Fdbk AnlgHi AnlgLo
x
1
1823 PID Fdbk Stpt
9:39 9:40
9:1 3 PID Cfg (Fdbk Sqrt)
9:37
Default
Parameter Selection
PID Cfg (Anti PID Output Sel Windup)
Conv
VRef Freq [I4] Output Frequency
1
Hz Per Unit
9:14 9:1 5
1 AntiWind Up
PID Cfg
Proc 1 [E5]
(Preload Int)
PID Status
9:1 3
(PID Enabled)
-1
PID Output Sel
Z
9:3 0
9:14
0
0
PID Preload 9:11
1
1
Conv
Trq Ref Sel [H5] Trq Commanded
4
2073
Torque Cur Fb
8
Output Current
3
Analog Types Analog Loss
Scale 1,2 3,4
PID FBLoss SpSel 9:42
0 355
0
10
Motor Side Sts 2 (PID FB Loss)
Proc 2 [D3, D6]
Option Port:
Digital In
DI PID Enable 9:20
Parameter Selection
Motor Side Sts 1 (Stopping)
354 18
ki s
+ +
I Gain
1 PID Control
Drive InLimit
1
0
0,2,3,4 0.0
Accel Conditional
1
0 0.0
Output Power 4
9:14 PID Output Sel
9:43 PID FBLoss TqSel
PID Enable 1
Option
Port:
5
Digital In
DI PID Hold 9:21
Parameter Selection
PID Hold
0 1
Hold Request Proc 1 [F2]
0
PID Control (PID Enable)
0
9:2
354 16
9:20 Motor Side Sts 1
DI PID Enable
(Running)
PID Output Sel 9:14
2 1
PID Stop Mode
0
9:3
0
PID Status (PID Enabled)
Proc 1 [H3]
9:2 1 PID Control (PID Hold)
4 9:1
18 354
9:13 PID Output Meter
9:5 PID Int Time
(PID Reset) 2 9:2
1 0
9:3
2
PID Status (PID Reset)
9:22 DI PID Reset
Option Port:
Digital In
PID Reset
Parameter Selection
6
365
1 2 17-31
Drive InLimit
PID Cfg (Stop Mode)
Motor Side Sts 1 (Stopping)
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Proc 2
Figure 53 - Process Control 2
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
PID Output Sel
1
9:14
PID FBLoss SpSel 9:42
PID Output Limited Proc 1 [H2]
Not Used 0
MOP Reference MOP [G3] 1823
VRef A Sel
1800
Parameter Selection
Float Types
Default
VRef Ramped
Speed
2
Excl 1
To VRef
1923
Speed
[6B2]
VRef Vect [G1],
VRef Freq [D2]
>0
-1
Neg Limit
PID Cfg (Percent Ref)
1906 Vref Limited
1
VRef All [G4]
6 9:1
++ 1
Trim 2
1
X
1
0
Pos Limit
0
0
0
A B |A| > |B|
0
1
1
0
354 18 Motor Side Sts 1
Stopping
3
2 9:1
355 10 Motor Side Sts 2
PID Cfg
(Zero Clamp)
Proc 1 [C4]
PID FBLoss TqSel 9:43
F
G
H
I
Process Control 2 (Proc 2)
PID Output Meter 9:13
VRef Vect [B5] VRef Freq [A5]
Parameter
Selection
MOP Reference
4
MOP [G3] 1823
Float Types
Torque Excl 3
Torq Ref A Torq Ref B
Trq Ref A Stpt 676
Default
+
>0
-1
Neg Limit
1
PID Output Sel 9:14
3
++ 4
1
Torque
5
Trim 4
1
0
Pos Limit
0
0
PID Output Meter 9:13
Trq Ref Sel [G4]
2 9:1
PID Cfg (Zero Clamp)
355 10
Motor Side Sts 2 (PID FB Loss)
6
Proc 1 [C4]
Chapter 3 PowerFlex 755T Control Block Diagrams
93
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 54 - Reference Notch Filter 1 for Crane Application
94
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
AntiSway
A
B
C
1
Crane Length 1 966
2
NF1 freq = 1
g
2 Crane Length1
g = earth acceleration gravity (i.e. 9.81 m/s^2)
Ref NF1 Freq
0
0 942
0 0
0
3
Ref NF1 Depth 944
1
0
0 Ref NF1 Gain 945
4
D
E
F
G
H
I
Reference Notch Filter 1 Tuning for Crane
Application (Anti-Sway)
954 Ref NF1 Freq Act 956 Ref NF1 Depth Act 957 Ref NF1 Gain Act
Freq Overview [G2] VRef Vect [F4] PRef 2 [E2] Proc1 [C1]
5 6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Oil Well 1
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 55 - Pump Jack and Progressive Cavity Pump
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1
Torq Thresh Low 9:154 OilWell Pump Cfg 9:100
Motor Sheave 9:110
Gearbox Ratio 9:116
2
Gearbox Sheave 9:117
PCP Pump Sheave 9:160
Torq Thresh High 9:151
TorqAlarm Config (TorqThreshLo) 9:149 1
3
TorqAlarm Config (TorqThreshHi) 9:149 0
Min Rod Speed 9:154
Oil Well [C2]
Total Gear Ratio 9:109
Max Rod Speed 9:156 4
Gear Ratio
X X
OilWell Pump Cfg 9:100
Total Gear Ratio
Oil Well [C2]
9:109
5 Max Rod Torque 9:157
Gearbox Limit 9:114
Gearbox Rating 9:115
Torque Limit Pos 2083
6
Torque Limit Pos 2083
Troq Lim
Online Max Online Min
C
D
E
F
G
H
I
Pump Jack and Progressive Cavity Pump (Oil Well 1)
TrqRefThreshLo
X
9:109 Total Gear Ratio
X
TrqRefThreshHi
OilWell Pump Cfg
9:100 1 PumpJack
0 =0 0
2 PrgrsvCavity TorqThreshLo
0 TorqThreshHi
-1
Vel Limit Pos 1898 Vel Limit Pos 1898
Limit Online Max Online Min
-1
Limit Online Max Vel LimitNeg 1899 Online Min Vel Limit Neg 1899
Max Torque Limits
Limit
TorqAlmTimeoutLo 9:161
TorqThreshLo Oil well 1 [D3]
Cur IM [E2]
Motor Side Sts 1 (AtSpeed)
Trq Ref Limited
2087
|u|
354 8
Oil Well Low Torq Timeout
Condition
Motor Side Sts 1 (AtSpeed)
TorqAlarm Dwell
Cur IM [E2] TorqThreshHi Oil well 1 [D3]
354 8
9:150
Trq Ref Limited
2087
|u|
Oil Well High Torq Condition
1900 Vel Low Limit Pos 1901 Vel Low Limit Neg 1898 Vel Limit Pos
1899 Vel Limit Neg
Preset Speed 1 1814
TorqAlmTimeoutHi 9:152
TorqAlarmTOActHi 9:153 6
TorqAlarm Action Preset Spd1
Oil Well [C2]
9:148 9:109
1 Total Gear Ratio
Motor Side Sts 1 (AtSpeed)
354 8
2083 Torq Lim Pos
VRefAll [I4]
VRef Commanded 1914
Oil Well 1 [C2] Fdbk [G2]
Total Gear Ratio
1
9:109
u
Vel Fb Active
1042
Oil Well 1 [C2] Cur IM [E2]
9:109 2087
Total Gear Ratio Trq Ref Limited
9:104 8 OW TrqLvl Lo
9:104 7 OW TrqLvl Hi
Oil Well High Torq Timeout
Condition
OW TrqLvl TO 9:104 9
PumpJackSpdRef VRef All [G2]
PumpJackSpdRefEnbl VRef All [G2]
X
9:145 Rod Speed Cmd
X
9:143 Rod Speed
X
9:144 Rod Torque
95
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 56 - Pump Off
96
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Oil Well 2
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
OilWell Pump Cfg 9:100 1 Pump Jack Selected
Pump Off (Oil Well 2)
1
TP65 POf Trq Pk
TP60 POf Trq Filt
TP66 POf MinTrq
TP69 POfDrpTrqInt
Trq Ref Filt In 2150
LPF
9:124 Pct Cycle Trq
Vel Fb Active 1042 2
Total Gear Ratio 9:109
Pos Offset 9:102 1
TP70 POf Cyc Psn TP58 POf Psn
Position Calculation
Pump Off Setup 9:102 Pos Filter 0
Pos Min Trq 2
+ -
9:129 Stroke Pos Count
Torque Calculation
POf Psn [B2]
Set Top of Stroke
TP52 POfTopStkPsn
Pump Off Config 9:101
Automatic 0
SetTopofStrk Cmd 9:118
9:119 SetTopofStrk Sts
Position 1
Disable 0
3
Enable 1
0 Ready 1 Active
Cycle 2
Pump Cy Str Cmd 9:111
Disable 0
Enable 1
9:125 Pct Lift Trq 9:126 Pct Drop Trq
Pump Off Position Setup
TP53 POf Psn 1 TP54 POf Psn 2 TP55 POf Psn 3 TP56 POf Psn 4 TP57 POf Psn 5
TP59 POf PsnState TP71 POf Test1
9:112 Pump Cy Str Sts 0 Ready 1 Active 2 Complete 3 Error
Stroke Pos Count [D2] POfTopStkPsn [D2]
Pump Off control state
0 - InitBaseLine 1 - Running 2 - ReturnToRun 3 - PumpOffBaseOne 4 - PumpOffWaitOne 5 - PumpOffBaseTwo 6 - PumpOffWaitTwo 7 - PumpOffStop
9:130 Stroke Per Min
9:132 Pump Off Count
9:133 PumpOff SleepCnt
9:134 Day Stroke Count
9:104 OW Pump Status 0 Pump Off Enbl 1 Pump Slowed 2 Pump Stopped 3 Cycle Used 4 TopOf Stroke 5 PumpOff Alrm 6 Pump Stable
TP50 POfVelRefSts
VRef All [H2]
DI PumpOff Disbl 9:138
TP51 POf Vel Ref
TP61
4
DI Pump Baseline 9:139
POf State
TP62 POf Avg Trq
Pump Off Time 9:108
TP63 POf Cyc Cnts
Pump Off Level 9:106
X
1/100
Pump Off Speed 9:107
X
Torque Setpoint 9:120 Pump Off Action 9:105
TP64 POf Alm Cnts TP67 POf Lo Lvl TP68 POf Hi Lvl
Change Speed 0
5
Always Stop 1
Pump Off Control 9:103 Stop After 1 2
9:102 Pump Off Setup
Stop After 2 3
Disable 0
3 Cycle PO Pos
Baseline Set 1
4 Dis Baseline
Fixed Setpt 2
5 RstPmpOffCnt
6 RstPmpSlpCnt
6
Position rolls over at 10000 counts representing one torque cycle
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
MOP
Figure 57 - MOP Control
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1 2 3 4 5 6
B
C
D
E
F
DI M MOP Inc 0:151
MOP Rate 1825
Parameter Indirect
MOP Inc
Option Port: Digital In
Zero Speed (0)
MOP Init Stpt 1829 Preset Speed 1 1814 Preset Speed 2 1815 Preset Speed 3 1816 Preset Speed 4 1817 Preset Speed 5 1818
Preset Speed 6 Preset Speed 7
1819 1820
MOP Limit High 1826 MOP Limit Low 1827
Vel Low Lim Pos 1900 Vel Low Lim Neg 1901
MOP Init Select 1828
Default
Parameter Selection
Calc
0
Step
0
Option Port: Digital In
Parameter Indirect
MOP Inc
DI M MOP Dec 0:152
+
0
-
Reset / Save
00
1824 1 MOP Ref Save
(At Stop)
00
1824 0 MOP Ref Save (At Pwr Down)
1
351 4 M Start Inhibits
(Stop) 1
351 3 M Start Inhibits
(Precharge)
G
H
I
MOP Control (MOP)
MOP Limit High 1826
Limit
MOP Reference 1823
VRef Sel [A3]
1827 MOP Limit Low
Chapter 3 PowerFlex 755T Control Block Diagrams
97
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 58 - 22-Series Inputs & Outputs ­ Digital
98
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
22Series IO Digital
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
In5 2
In4
In3 3
In2
In1 4
In0 Com
B Inputs
Dig In Fltr Mask 25
Dig In Fltr Mask 24
Dig In Fltr Mask 23
Dig In Fltr Mask 22
Dig In Fltr Mask 21
Dig In Fltr Mask 20
Filter Filter Filter Filter Filter Filter
C
D
E
F
G
H
I
22-Series Inputs & Outputs ­ Digital (22-Series IO Digital)
Dig In Sts 1 543210 Dig In Fltr 3
Dig In Fltr 3
Relay Out0 Source
Parameter Selection
10 RO0 Sel
Dig In Fltr 3
Dig In Fltr 3
Relay Out1 Transistor Out0
Source
Parameter Selection
20 RO1/TO0 Sel
Outputs
Dig Out Invert 60
RO0 Off Time 15
Dig Out Sts 50
0
Timer
Inv 1
14 RO0 On Time
RO1/TO0 Off Time
Dig Out Invert 61
25
Dig Out Sts
51
0
Timer
Inv 1
OR
24 RO1/TO0 On Time
NC Common NO
NC Common NO
Dig In Fltr 3
Dig In Fltr 3
*-1R2T (1-Relay / 2-Transistor) I/O Modules Only
Dig Out Invert 62
TO1 Off Time 35
Dig Out Sts 52
Transistor Out1 Source
0
Timer
NO
Parameter Selection
Inv 1
30 TO1 Sel
34 TO1 On Time
Output Compare
RO0 Level Sel
RO1/TO0 Level Sel
*-1R2T (1-Relay / 2-Transistor) I/O Modules Only
5
11
RO0 Level CmpSts
21
RO1/TO0 Level CmpSts
TO1 Level Sel 31
TO1 Level CmpSts
Option Module Parameters ­ Reference Symbol Legend
RO0 Level Source
Parameter Selection
A AB A<B
13 1 0
RO1/TO0 Level Source
Parameter Selection
A AB A<B
23 1 0
TO1 Level Source
Parameter Selection
A AB A<B
33 1 0
RO0 Level 12
B
RO1/TO0 Level
22
B
TO1 Level
32
B
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
22Series IO Digital
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 59 - 22-Series Inputs & Outputs ­ Analog
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
C
D
E
F
G
H
I
Inputs
22-Series Inputs & Outputs ­
1 Voltage
Anlg In0 LssActn 53
Anlg In Loss Sts 49 1
Anlg In0 Value 50
V/mA
Anlg In Type
+
45 0
Loss Detection
Loss
Pre Scaled Value
Anlg In0 Hi 51
Scaled Value
V/mA
ADC
+
2
-
Current
Ignore 0 Alarm 1 Flt Continue 2
Square Root
46 0 Anlg In Sqrt
(kn * s) + wn s + wn
Lead Lag
In-Lo Hi-Lo
Scale V/mA
52
Anlg In0 Lo
FltCoastStop 3
Anlg In0 Filt Gn 55
Flt RampStop 4
Anlg In0 Filt BW 56
Flt CL Stop 5
Analog (22-Series IO Analog)
Option Module Parameters ­ Reference Symbol Legend
Hold
6
Input
3
7
Set Input Lo
Set Input Hi 8
Anlg In1 LssActn 63
Anlg In Loss Sts 49 2
Anlg In1 Value 60
Voltage
V/mA
4
Anlg In Type
Loss
Detection
+
45 1
Loss
Pre Scaled Value
Anlg In1 Hi 61
Scaled Value
V/mA
ADC
+
-
Current
Ignore 0 Alarm 1 Flt Continue 2
Square Root
46 1 Anlg In Sqrt
(kn * s) + wn s + wn
Lead Lag
In-Lo Hi-Lo
Scale V/mA
62
Anlg In1 Lo
FltCoastStop 3
Anlg In1 Filt Gn 65
5
Flt RampStop 4
Anlg In1 Filt BW 66
Flt CL Stop 5
Hold
6
Input
7 Set Input Lo
6
Set Input Hi 8
Outputs
Anlg Out0 Val
82
Anlg Out0 Data 77
Anlg Out0 DataHi
V/mA
78
Anlg Out0 Hi
80
Analog Out Type 70 0
V/mA
Anlg Out0 Stpt 76 Other Ref Sources
Parameter Selection
Abs 71 0
In-Lo Hi-Lo
Scale
V/mA
DAC
Anlg Out0 Sel 75
Anlg Out Abs
81
79
Anlg Out0 Lo
Anlg Out0 DataLo
Voltage +
+
Current
Anlg Out1 Val
92
Anlg Out1 Data 87
Anlg Out1 DataHi
V/mA
88
Anlg Out1 Hi
90
Analog Out Type 70 1
V/mA
Anlg Out1 Stpt 86 Other Ref Sources
Parameter Selection
Abs 71 1
In-Lo Hi-Lo
Scale
V/mA
DAC
Anlg Out1 Sel 85
Anlg Out Abs
91
89
Anlg Out1 Lo
Anlg Out1 DataLo
Voltage +
+
Current
99
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 60 - 11-Series Inputs & Outputs ­ Digital
100
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
11-Series IO Digital
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
2
In2
In1
3
In0
Com
4
B
C
Inputs
Dig In Sts 1
Dig In Fltr Mask 22
Dig In Fltr Mask 21
Dig In Fltr Mask 20
Filter Filter Filter
Dig In Fltr 3
Dig In Fltr 3
Dig In Fltr 3
D
E
F
G
H
I
11-Series Inputs & Outputs ­ Digital (11-Series IO Digital)
Outputs
RO0 Off Time
15
Dig Out Sts
Dig Out Invert
50
NC
60
210
Relay Out0 Source
Parameter Selection
10
0 Inv 1
Timer 14
Common NO
RO0 Sel
RO0 On Time
Relay Out1 Transistor Out0
Source
Parameter Selection
20 RO1/TO0 Sel
RO1/TO0 Off Time
Dig Out Invert 61
25
Dig Out Sts
51
0
Timer
Inv 1
OR
24 RO1/TO0 On Time
NC Common NO
*-1R2T (1-Relay / 2-Transistor) I/O Modules Only
Dig Out Invert 62
TO1 Off Time 35
Dig Out Sts 52
Transistor Out1 Source
0
Timer
NO
Parameter Selection
Inv 1
30 TO1 Sel
34 TO1 On Time
Output Compare
RO0 Level Sel
RO1/TO0 Level Sel
*-1R2T (1-Relay / 2-Transistor) I/O Modules Only
5
11
RO0 Level CmpSts
21
RO1/TO0 Level CmpSts
TO1 Level Sel 31
TO1 Level CmpSts
Option Module Parameters ­ Reference Symbol Legend
RO0 Level Source
Parameter Selection
A AB A<B
13 1 0
RO1/TO0 Level Source
Parameter Selection
A AB A<B
23 1 0
TO1 Level Source
Parameter Selection
A AB A<B
33 1 0
RO0 Level 12
B
RO1/TO0 Level
22
B
TO1 Level
32
B
6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
22-Series IO Analog
A
B
C
D
E
F
G
H
I
11-Series Inputs & Outputs ­ Analog (11-Series IO Analog)
1
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 61 - 11-Series Inputs & Outputs ­ Analog
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Input
2
Anlg In Loss Sts
Anlg In0 Value
Anlg In0 LssActn 53
49 1
50
V/mA
Voltage +
Anlg In Type 45 0
Loss Detection
Loss
Pre Scaled Value
Anlg In0 Hi 51
Scaled Value
V/mA
ADC
+
3
-
Current
Ignore 0 Alarm 1 Flt Continue 2
Square Root
46 0 Anlg In Sqrt
(kn * s) + wn s + wn
Lead Lag
In-Lo Hi-Lo
Scale V/mA
52
Anlg In0 Lo
FltCoastStop 3
Anlg In0 Filt Gn 55
Flt RampStop 4
Anlg In0 Filt BW 56
Flt CL Stop 5
Hold
6
Input
4
7 Set Input Lo
Set Input Hi 8
Option Module Parameters ­ Reference Symbol Legend
Output
Anlg Out0 Val
82
Anlg Out0 Data 77
Anlg Out0 DataHi
V/mA
78
Anlg Out0 Hi
80
Analog Out Type 70 0
V/mA
Anlg Out0 Stpt 76 Other Ref Sources
Parameter Selection
Abs 71 0
In-Lo Hi-Lo
Scale
V/mA
DAC
Anlg Out0 Sel 75
Anlg Out Abs
81
79
Anlg Out0 Lo
Anlg Out0 DataLo
Voltage +
+
Current
5
6
101
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 62 - 11-Series Inputs & Outputs ­ ATEX
102
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
22-Series IO Analog
A 1 2 3 4
B
C
D
E
F
G
H
I
11-Series Inputs & Outputs ­ ATEX (11-Series IO ATEX)
Motor PTC/Thermostat Input
+ PTC/Thermostat
Buffer &
Input
Comparator
-
PTC Monitor
Motor PTC
41 0 Thml Snsor OK 1 Short Cirkt 2 Over Temp 3 Voltage Loss 13 Thermostat 14 PTC Selected
Fault AND Logic
Reset AND Logic
Transistor Latch
ATEX Relay Output
Common
NO
5 6
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Logic
Figure 63 - Control Logic
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1
0
Digital Inputs
15 0
DPI Port 1 2 (Drv Mounted HIM)
15 0
DPI Port 2
15 0
DPI Port 3
3 15 0
DPI Port 4
15 0
DPI Port 5
4
15
0
DPI Port 6
15 0
Embedded Ethernet
5
15
6
C
D
E
F
G
H
I
Control Logic (Logic)
Note: The following parameters are typically referenced when configuring or monitoring Control Logic; P10:351 [M Start Inhibits]
0:230 Write Mask Cfg
Logic Parser
Mask Evaluation Logic
Owner Logic
Logic Evaluation
0:200
MS Logic Rslt
VRef Sel [G2], 0 VRef All [E3],
VRef Vect [E2, E3]
31
Masks
Masks Act Status
0:41 Logic Mask 0:42 Auto Mask 0:43 Manual Cmd Mask 0:44 Manual Ref Mask
0:231 Write Mask Act 0:233 Port Mask Act
Owners
0:260 0:261 0:262 0:263 0:264 0:265 0:266
Stop Owner Start Owner Jog Owner Dir Owner Clear Flt Owner Manual Owner Ref Select Owner
Bit
00 Stop 01 Start 02 Jog1 03 Clear Faults 04 Forward 05 Reverse 06 Manual 07 Reserved 08 Accel Time 1 09 Accel Time 2 10 Decel Time 1 11 Decel Time 2 12 SpdRef Sel 0 13 SpdRef Sel 1 14 SpdRef Sel 2 15 Reserved
Bit
16 Coast Stop 17 Climit Stop 18 Run 19 Jog 2 20 Reserved 21 Reserved 22 Reserved 23 Reserved 24 Reserved 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 Reserved 30 Reserved 31 Reserved
Chapter 3 PowerFlex 755T Control Block Diagrams
103
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 64 - Inverter Overload IT
104
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Invert
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A 1
2
3
B
C
D
E
Power Frame Reading Data NTC
Voltage Class 305 Duty Cycle / Rating 306
Drive OL Mode 220
PWM Frequency 425
DC Bus Volts
0:3
Output Current 3
Current Limit 1 222 Current Limit 2 223
Other Ref Sources
Parameter Selection
Inverter Overload (IT)
Heatsink and Junction Degree
Calculator
Current Lmt Sel 221
Bus Reg Lvl Cfg 118 4
DC Bus Memory
13
Bus Memory 0
Bus Reg Level 119
BusReg Level 1
DC Bus Command 13:50
LineSideRef 2
5
Converter Control
6
Bus Reg Mode A 116 Bus Reg Mode B 117
Bus Voltage Reference
Bus Reg Ki 121 Bus Reg Kp 120
Bus Limit Kp 122
*
Bus Limit Kd 123
Bus Limit ACR Ki 125
Bus Limit ACR Kp 124
* Note: Parameters are not functional when any of the FV motor control
modes are selected
Bus Regulator
dc bus
F
G
H
I
Inverter Overload IT (Invert IT)
357 Drive OL Count
359 IGBT Temp Pct 360 IGBT Temp
362 Heatsnk Temp Pct 363 Heatsnk Temp 224 Active Cur Lim
Cur IM [H5]
426 PWM Freq Act Alarm Status B 960 0 IGBT OT
1 Heatsink OT 4 Drive OL 5 CurLmt Reduc 6 PWMFrq Reduc
Fault Status B 953 2 Drive OL 3 Heatsink OT 4 Transistor OT 5 SinkUnderTmp 6 Excess Load
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
Motor I2T
A
B
C
D
E
F
G
H
I
Motor Overload (Motor I2T)
1
Figure 65 - Motor Overload
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 3 PowerFlex 755T Control Block Diagrams
2
Mtr Over Load (I2T)
Mtr OL Action 200 Mtr OL at Pwr Up 201
Motor Current
206 MtrOL Rst Time
Mtr OL Alm Level 202
207 Mtr OL Counts
Mtr OL Rst Level 205
3
Mtr Prtn Class 209
150%
right of curve
208 Mtr OL Trip Time
Mtr HotStrtCoeff 210 Mtr Cooling Time 211
102% Motor
58 (Hot) 176 (Cold)
time (sec)
Motor Side Sts 1 208 30 Motor OL
Current
(for default settings)
Condition Sts A
Mtr OL Factor 203
X
Motor NP Amps 401
1.0 - 2.0 (1.025 Typ)
460 2 Motor OL
Alarm Status A
50%
4
959 2 Motor OL
Mtr OL Hertz 204
Motor Speed (Hz)
Fault Status A 952 2 Motor OL
5
6
105
Chapter 3 PowerFlex 755T Control Block Diagrams Figure 66 - High Speed Trend Wizard
106
Overview Metering PLL PwrLoss LscData CurRefGen
VarCtrl DroopCtrl DBC VoltRefGen VoltCtrl DCBusObs
PFC CurPwrLmt CurrCtrl LscCtrlCfg DriveDerating
Vector Overview PRef Move
Freq Overview PRef2
CBI Metering PReg
Fdbk
Psn PLL
Homing
Psn CAM
PRef1
Prof Ind 1
Prof Ind 2 Roll Psn Spindle VRef Overview VRef Sel VRef All
VelRefCAM VRef Vect Ref Move VReg Vect Trq Overview Trq Ref Sel
Ld Obs Friction Comp Trq RefCAM Trq Ref Trq Filt Cur IM SPM
Cur IPM Proc 1 Proc 2 AntiSway Oil Well 1 Oil Well 2
MOP 22Series IO Digital 22Series IO Digital 11-Series IO Digital 22-Series IO Analog 22-Series IO Analog
Logic Invert Motor I2T High Speed Wizard
High Speed Wizard
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
A
B
1
Trend Mode
Pre-Trigger
2
Sample Interval
C
D
E
F
G
H
I
High Speed Trend Wizard
Start Trend
Stop Trend
Trend Sample Configuration
8 buffers of 4096 samples; minimum interval of 1 ms
or
16 buffers of 1024 samples; minimum interval of 1 ms
or
4 buffers of 1024 samples; minimum interval of 125 us
(select one)
0 to maximum (4096 or 1024) samples
Mimimum (1 ms or 125 us)
Download Trend Configuration
Not Configured
Download
Ready or Complete
Trend Status
Start Stop
Running
Gather pre-trigger samples
Buffers Full Stop
Finishing
Gather posttrigger samples
Trigger Condition Met
Compare Two Parameters
Trend Trigger Setup
OR
Compare Parameter to a Trigger Value
3
Test bit in a Parameter
Compare Two bits in Two Parameters
Trigger Condition Met
Buffers Full
Param A
Param B OR
Compare Options: >, <, =, , , or 
Trigger Condition
OR
Met
Param A Bit `nn'
Test Options: bit is True or False
Trigger
Param A bit OR
Condition
Met
Param B bit
Test Options: bit is True or False
Compare Options: AND, OR, XOR
Trigger Condition
Met
Trigger Value
4
Specify Trend Buffer Data Sources
Parameter or Bit Trend Data Source
Trend Buffer 1 (circular, 1024 or 4096 samples)
Trend Buffers
Trend Buffer 2 (circular, 1024 or 4096 samples)
Trend Buffer 16
(circular, 1024
...
samples)
8 buffers of 4096 samples; minimum interval of 1 ms or
16 buffers of 1024 samples; minimum interval of 1 ms or
4 buffers of 1024 samples; minimum interval of 125 us
5
Trend Upload/Download
Computer
Download
Trend
OR
Configuration
to Drive
Load Trend Configuration from .xml file
OR Configuration Save/Load
Computer
Upload Trend
Save Trend
Results. Save buffers
OR Configuration to .xml file
to .csv file
6
Trend Buffer Contents
4 Chapter
Troubleshooting
This chapter provides information to guide through troubleshooting PowerFlex TotalFORCE® Control common symptoms and corrective actions.
Topic
Page
Fault and Alarm Code Descriptions
107
Faults
108
Alarms
108
Events
108
Configurable Conditions
108
Viewing Faults and Alarms
108
HIM Indication (Fault Display Screen)
109
Manually Clearing Faults
109
Status Indicators
110
Setting Factory Defaults
118
Fan Usage by Product
120
Hardware Service Manual
121
Fault and Alarm Display Codes
121
Common Symptoms and Corrective Actions
121
Testpoint Codes and Functions
123
Reset as Shipped
130
Configurable LCL Filter Capacitor Failure Response
131
Configurable LCL Filter Capacitor Over Resonance Response
131
PowerFlex 755T Lifting/Torque Proving
132
Technical Support Options
133
Fault and Alarm Code Descriptions
PowerFlex 750T fault and alarm codes are listed in the Microsoft® Excel® spreadsheet that is attached to this PDF file.
CLICK HERE to open the Attachments pane (to the left) and access the fault and alarm spreadsheet. This link does not work if you view this PDF file in a browser. Make sure you save the PDF file and open it from your device. Then use the link to open the Attachments pane.
You can also find the fault and alarm spreadsheet in Knowledgebase Article PowerFlex 755T Drives Parameter Descriptions and Fault and Alarm Codes (FRN 10). You do not need a support contract to access the article.
To view the fault and alarm codes: 1. Right-click the desired Excel file and choose Save. 2. Open the Excel file.
For full functionality (filter and search), use the Microsoft Excel application.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
107
Chapter 4 Troubleshooting
Faults
A fault is a condition that stops the drive. There are four types of faults.
Type Major Fault
Minor Fault Resettable Non-resettable
Description If this type of fault occurs while the line side converter or motor side inverter is modulating, it stops modulating. If it occurs while the line side converter or motor side inverter is not modulating, it prevents starting. It prevents starting until the fault is cleared. If this type of fault occurs while the line side converter or motor side inverter is modulating, it allows modulation to continue. If it occurs while the line side converter or motor side inverter is not modulating, it prevents starting. It prevents starting until the fault is cleared. This type of fault can be cleared. Resettable faults are identified by `Resettable Fault'. This type of fault normally requires drive or motor repair. You must correct the cause of the fault before the fault can be cleared. The fault will be reset on powerup after repair. Non-resettable faults are identified by `Non-Reset Fault'.
Alarms
An alarm is a condition that, if left unaddressed, can stop the drive if the drive running or does not allow you to start the drive. There are two types of alarms.
Type Alarm 1
Alarm 2
Description Alarms of type 1 indicate that a condition exists. Type 1 alarms are user configurable. Alarms of type 2 indicate that a configuration error exists and the drive cannot be started. Type 2 alarms are not configurable.
Events
Events occur under normal operation of the product. When an event occurs, the drive records an entry consisting of a numeric event code and a time stamp in an event queue. Events can help to troubleshoot problems.
Configurable Conditions
You can enable user-configurable conditions as either an alarm or fault.
Type Configurable
Description Event action is enabled/disabled by a parameter. Options can include: `Ignore' (0) ­ No action is taken. `Alarm' (1) ­ Type 1 alarm indicated. `Flt Minor' (2) ­ Minor fault indicated. If running, drive continues to run. `FltCoastStop' (3) ­ Major fault indicated. Coast to Stop. `Flt RampStop' (4) ­ Major fault indicated. Ramp to Stop. `Flt CL Stop' (5) ­ Major fault indicated. Current Limit Stop.
Viewing Faults and Alarms
The fault and alarm queues, which are accessible through software or the HIM, provide you with a history of faults, alarms, and events. You can also access diagnostic file parameters for additional information.
· Port 0: Diagnostics File, Status Group · Port 0: Diagnostics File, Fault/Alarm Info Group · Port 10: Diagnostics File, Status Group · Port 10: Diagnostics File, Fault/Alarm Info Group · Port 13: Diagnostics File, Status Group · Port 13: Diagnostics File, Fault/Alarm Info Group
108
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
HIM Indication (Fault Display Screen)
The popup fault display screen automatically appears when the drive detects a fault condition for the host drive or any connected peripheral. By default, the status bar flashes to alert the operator. To change the display flash mode, see the PowerFlex 20-HIM-A6 and 20-HIM-C6S HIM User Manual, publication 20HIM-UM001, for instructions.
The fault display screen displays the following information. · Fault Code number (See Fault and Alarm Display Codes on page 121.) · Fault description · Elapsed time (in hh:mm:ss format) from fault detection
Figure 67 - Pop-Up/Flashing Fault Display Screen
Stopped 0.00 Hz
AUTO F
­ ­ FAULTED ­ ­ Fault Code 81 Port 1 DPI Loss Elapsed Time 01:26:37
ESC
CLR
Manually Clearing Faults
Soft Key Functions
Label Name
ESC
Escape
CLR
Clear
Single Function Key
Key
Name
Stop
Description Reverts back to the previous screen without clearing the fault. Removes the pop-up Fault Display screen from the display and clears the fault.
Description Removes the pop-up Fault Display screen from the display and clears the fault.
Step
Key(s)
1. Press the `Clear' soft key to acknowledge the fault. The fault information is removed so that you can use the HIM.
CLR
2. Address the condition that caused the fault.
The cause must be corrected before the fault can be cleared.
3. After corrective action has been taken, clear the fault by one of these methods:
Press Stop (if running the drive will stop)
Cycle drive power
Select the `Clear' soft key on the HIM Diagnostic folder Faults menu.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
109
Chapter 4 Troubleshooting
Status Indicators
Status indicators report the condition of the product.
HIM Cradle Status Indicators
The status indicators on the HIM cradle do not indicate the status of an installed communication adapter option. If an optional communication adapter is installed, refer to the adapter user manual for the location a description of any status indicators.
Table 1 - PowerFlex 755T Status Indicator Descriptions
Name
Color
Green
Yellow
STS (Status) Red
Red / Yellow Yellow / Green Green / Red Unlit Unlit
Red ENET
Red / Green Green Unlit LNK1 (Link 1) Green LNK2 (Link 2) Yellow
State Flashing
Steady
Flashing
Steady
Flashing
Steady Flashing Alternately Flashing Alternately Flashing Alternately Off Off
Flashing
Steady Flashing Alternately Flashing Steady Off Flashing Steady Flashing Steady
Description The product is ready, but not running, with no converter or inverter faults or alarms present. The product is running (that is, the converter and inverter are active) with no faults or alarms present. A start inhibit condition is present in the converter or inverter. The product cannot be started until the start inhibit condition is cleared. A type 1 (user configurable) alarm condition is present in the converter or inverter while the drive is not running. The product can be started without clearing the alarm condition. See parameters 10:465 [Alarm Status A] and 10:466 [Alarm Status B]. A major fault (for example, an EEPROM CRC fault) is present causing converter and inverter modulation to stop. The product cannot be restarted until the fault condition is cleared. See parameter 0:610 [Last Fault Code]. A non-resettable fault (for example, a user FPGA configuration not loaded) is present in the converter or inverter. A minor fault is present that does not stop converter or inverter modulation. However, the product cannot be restarted until the fault condition is cleared. The product is running with a type 1 alarm present that does not stop modulation in the converter or inverter. The product can be restarted without clearing the alarm condition. See parameters 10:465 [Alarm Status A] and 10:466 [Alarm Status B]. The product is updating the nonvolatile memory for firmware on the main control board, an option card, or a peripheral device. Main control board is not powered. Embedded EtherNet/IPTM is not properly connected to the network or needs an IP address. An EtherNet/IP connection has timed out. Explicit messaging control timed out. Network address rotary switches have changed or IP address is invalid (defaulting to DHCP) or DHCP lease expired. Adapter failed the duplicate IP address detection test. Rotary switches are set to 888 or the DHCP lease has expired.
Adapter is performing a self-test.
Adapter is properly connected but is not communicating with any devices on the network. Adapter is properly connected and communicating on the network. Adapter is not powered or is not transmitting on the network. Adapter is properly connected (100 Mbps) and transmitting data packets on the network. Adapter is properly connected (100 Mbps) but is not transmitting on the network. Adapter is properly connected (10 Mbps) and transmitting data packets on the network. Adapter is properly connected (10 Mbps) but is not transmitting on the network.
110
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Power Layer Interface (PLI) Circuit Board Status Indicators
Connections Cover Frame 8 and Larger Power Module
Frame 7 Power Module
PowerFlex 755T power modules use status indicators and a 7-segment display to report conditions. The power layer interface circuit board is located behind the connections cover of the power module chassis.
Name DS3 DS5/DS6
Color Green Green / Yellow Green / Red Yellow
Red
Green Red
State Flashing at 2 Hz Flashing at 0.5 Hz
Description Active mode in process. Update in process.
Flashing Alternately Login mode in process.
Flashing Alternately Erase in process.
Flashing at 2 Hz
Flashing at 0.5 Hz Blink 2 Count Blink 3 Count Blink 4 Count Blink 5 Count Blink 6 Count Blink 7 Count Flashing Flashing
Loopback fiber test mode is in process. Boot mode is in process. Clock fault Firmware fault FLEXBUS fault PRGM fault FPGA PRGM fault SFLASH PRGM fault Fiber connection is online. Fiber connection is offline.
Lit Segment Description Fiber loss
The PLI is not online.
DS6 DS5
7-Segment Display
Right Display Left Display DS3
The PLI is online but not initialized or logged in. The PLI is initialized and logged in. The right display indicates the module number (Lx/Mx). This display indicates that the module is in a ready state. The PLI is initialized, logged in, and PWM active. The right display indicates the module number (Lx/Mx). The PLI is initialized, logged in, and faulted. The right display indicates the module number (Lx/Mx). The PLI initialization is complete.
Fiber is online.
The PLI is faulted.
PWM is enabled.
Frame 8 and larger board orientation shown. Frame 7 is the opposite orientation.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
111
Chapter 4 Troubleshooting
AC Precharge Circuit Board Status Indicators
Input Bay
DS1 7-Segment Display
DS2 DS3 DS4 DS5
The PowerFlex 755T AC precharge module uses status indicators and a 7segment display to report conditions. See Figure 68 on page 113 for the location of the AC precharge board.
Name DS1 (AC Precharge) DS2 (240V AC) DS3 (Communications) DS4 (AC Precharge) DS5 (Firmware Status)
7-Segment Display
Color Green Red Green Yellow Red Unlit Green Yellow Unlit Green
Yellow Red Unlit Green Green / Red Yellow Red
Red
State Flashing Flashing Steady Steady Flashing Off Steady Flashing Off Steady Flashing Steady Flashing Flashing Off Steady Flashing Alternately Steady Flashing
Steady
Flashing
Description Fiber connection is online. Fiber connection is offline. 240V AC Okay 240V AC Low Alarm 240V AC Loss Fault 240V AC Loss Alarm Fiber connection is online. Communications Loss Inactive Precharge Done (Main circuit breaker is closed.) Main circuit breaker is closing. Main circuit breaker is opening. Not Ready Main circuit breaker opened. Ready No faults or alarms are present.
Update in progress.
Alarm is present. Fault is present. Normal Operation
· At powerup, the display indicates the major firmware revision number, the minor revision number, and the build number for 1 second each.
· After powerup is complete, the display indicates the number that is assigned to the module by the main control board. (Shown: P0 = Precharge 0)
Alarms
· When an alarm condition exists, the display indicates the alarm code.
· If there are multiple alarm codes, the display cycles through the codes and displays each code for 2 seconds.
Faults
· When a fault condition exists, the display indicates the fault code for Port 14.
· If there are multiple fault codes, the display cycles through the codes and displays each code for 2 seconds.
· If the device is faulted, the display only indicates fault codes. Alarm codes are omitted.
112
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Figure 68 - AC Precharge Location
Chapter 4 Troubleshooting
Frame 7 Drive
Frame 8 Input Bay
Frame 9 Input Bay
Frame 10...15 Input Bay
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
113
Chapter 4 Troubleshooting
Table 2 - AC Precharge 7-Segment Display Fault and Alarm Codes
Display Code 0
1
2 3 4 5 6
7
8
9 10 11 12 13 14 15 16 17 32 33
Display State Flashing Steady Flashing Steady Flashing Steady Steady Flashing Flashing Flashing Steady Flashing Steady Flashing Steady Flashing Steady Flashing Flashing Flashing Steady Flashing Flashing Flashing Flashing Flashing Steady Steady
Condition Code 14001 14070 14002 14071 14003 14072 14073 14004 14005 14006 14108 14007 14109 14008 14110 14009 14130 14120 14121 14122 14126 14123 14124 14010 14011 14012 14127 14128
Condition Name Image Watchdog Fault Board Over Temperature Alarm Constants Message Invalid Board Over Temperature Fault Constants Checksum Board Under Temperature Alarm Board Under Temperature Fault Nonvolatile Data Checksum Fault Power Supply Undervoltage Precharge Fault 240V AC Low MCB Failed to Close or Wiring Bay Overtemp 240V AC Loss MCB Failed to Open Fused Disconnect Open (MCB open) MCB Aux Mismatch or Wiring Bay Overtemp TVSS Open PCC Failed to Close PCC Failed to Open PCC Aux Mismatch AC Line Over Voltage MCB Trip Reset MCB Overcurrent 240V AC Loss Fault 240V AC Over Voltage Fused Disconnect Open (MCB closed) MCB Life Threshold Exceeded PCC Life Threshold Exceeded
114
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
DC Precharge Circuit Board Status Indicators
Chapter 4 Troubleshooting
DC Precharge Module
DS7
DS2 DS3 DS4 DS5
7-Segment Display
The PowerFlex 755T DC precharge module uses status indicators and a 7segment display to report conditions. The DC precharge circuit board is located behind a transparent panel on the left side of the DC precharge module chassis. The DC precharge circuit board status indicators are not visible while installed in a DC precharge module.
Name DS7 (DC Precharge) DS2 (240V AC) DS3 (Communications) DS4 (DC Precharge) DS5 (Firmware Status)
7-Segment Display
Color Green Red Green Yellow Red Unlit Green Yellow Unlit Green
Yellow Red Unlit Green Green / Red Yellow Red
Red
State Flashing Flashing Steady Steady Flashing Off Steady Flashing Off Steady Flashing Steady Flashing Flashing Off Steady Flashing Alternately Steady Flashing
Steady
Flashing
Description Fiber connection is online. Fiber connection is offline. 240V AC Okay 240V AC Low Alarm 240V AC Loss Fault 240V AC Loss Alarm Fiber connection is online. Communications Loss Inactive Precharge Done (Molded case switch is closed.) Molded case switch is closing. Molded case switch is opening. Not Ready Molded case switch opened. Ready No faults or alarms are present.
Update in progress.
Alarm is present. Fault is present. Normal Operation
· At powerup, the display indicates the major firmware revision number, the minor revision number, and the build number for 1 second each.
· After powerup is complete, the display indicates the number that is assigned to the module by the main control board. (Shown: P1 = Precharge 1)
Alarms
· When an alarm condition exists, the display indicates the alarm code.
· If there are multiple alarm codes, the display cycles through the codes and displays each code for 2 seconds.
Faults
· When a fault condition exists, the display indicates the fault code.
· If there are multiple fault codes, the display cycles through the codes and displays each code for 2 seconds.
· If the device is faulted, the display only indicates fault codes. Alarm codes are omitted.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
115
Chapter 4 Troubleshooting
Table 3 - DC Precharge 7-Segment Display Fault and Alarm Codes
Display Code
0
1
2
3 4 5
6
7
8 9
10
11 12 15 16 17 32
Display State Flashing Steady Flashing Steady Flashing Steady Steady Flashing Flashing Flashing Steady Flashing Steady Flashing Flashing Flashing Steady Flashing Flashing Flashing Flashing Flashing Steady
Condition Code 12001 12070 12002 12071 12003 12072 12073 12004 12005 12006 12108 12007 12109 12008 12009 12010 12110 12011 12012 12050 12051 12052 12053
Condition Name Image Watchdog Fault Board Over Temperature Alarm Constants Message Invalid Board Over Temperature Fault Constants Checksum Board Under Temperature Alarm Board Under Temperature Fault Nonvolatile Data Checksum Fault Power Supply Undervoltage Precharge Fault 240V AC Low MCS Failed to Close or Wiring Bay Overtemp 240V AC Loss MCS Shunt Trip MCS Aux Mismatch or Wiring Bay Overtemp 240V AC Loss Fault Fused Disconnect Open (MCS Open) 240V AC Over Voltage Fused Disconnect Open (MCS closed) Bus Fuse Harness Bus Positive Fuse Blown Bus Negative Fuse Blown Molded Case Switch Life Threshold Exceeded
116
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Fiber-optic Interface Circuit Board Status Indicator
The PowerFlex 755T fiber-optic interface uses a status indicator to report conditions. The fiber-optic interface circuit board is mounted on the rear panel of the control pod assembly and is used with frame 7...15 drives and bus supplies.
Name DS1
Color Green Green / Yellow Green / Red Yellow
Red
State Flashing at 2 Hz Flashing at 0.5 Hz
Description Active mode in process. Update in process.
Flashing Alternately Login mode in process.
Flashing Alternately Erase in process.
Flashing at 2 Hz
Flashing at 0.5 Hz Blink 2 Count Blink 3 Count Blink 4 Count Blink 5 Count Blink 6 Count Blink 7 Count
Loopback fiber test mode is in process. Boot mode is in process. Clock fault Firmware fault FLEXBUS fault PRGM fault FPGA PRGM fault SFLASH PRGM fault
Control Pod Assembly
DS1
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
117
Chapter 4 Troubleshooting
Fiber-optic Transceiver Circuit Board Status Indicators
PowerFlex 755T fiber-optic transceiver circuit boards use status indicators to report conditions. The fiber-optic transceiver circuit boards plug into edge connectors on the fiber interface circuit board in the control pod assembly of frame 7...15 drives and bus supplies.
Name DS1, DS2
Color State
Green Flashing
Red
Flashing
Description Fiber connection is online. Fiber connection is offline.
Control Pod Assembly
DS2 DS1
Setting Factory Defaults
The PowerFlex 20-HIM-A6/-C6S HIM User Manual, publication
20HIM-UM001, provides detailed instructions on using Human Interface Module capabilities, including, setting the PowerFlex 750-Series drive to factory settings.
The following tables list the parameters that are not reset when Set Defaults `Most' is executed. The internal date and time properties are not reset by this operation.
Port 0: Product Config File, Preferences Group
Number 30 31 46
Display Name Access Level Language Velocity Units
Full Name User Access Level Display Language Velocity Units
118
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Port 0: Product Config File, Control Config Group
Number 33 35
Display Name VoltageClass Cfg Duty Rating Cfg
Full Name Voltage Class Configure Duty Rating Configure
Port 0: Product Config File, Port Mode Group
Number 65 70
Display Name Pri MtrCtrl Mode Application Sel
Full Name Primary Motor Control Mode Application Select
Port 0: Product Config File, Option Cfg Group
Number 80 82
Display Name DCP Option TAM Option
Full Name DC Precharge Option Torque Accuracy Module Option
Port 0: Feedback & I/O File, Command Group
Number Display Name 134 DI EmergencyOVRD
Full Name Digital Input Emergency Override
Port 0: Embedded ENET File, Address Config Group
Number 300 302 303 304 305 306 307 308 309 310 311 312 313 314 316
Display Name Net Addr Sel IP Addr Cfg 1 IP Addr Cfg 2 IP Addr Cfg 3 IP Addr Cfg 4 Subnet Cfg 1 Subnet Cfg 2 Subnet Cfg 3 Subnet Cfg 4 Gateway Cfg 1 Gateway Cfg 2 Gateway Cfg 3 Gateway Cfg 4 Net Rate Cfg 1 Net Rate Cfg 3
Full Name Network Address Selection IP Address Configuration 1 IP Address Configuration 2 IP Address Configuration 3 IP Address Configuration 4 Subnet Configuration 1 Subnet Configuration 2 Subnet Configuration 3 Subnet Configuration 4 Gateway Configuration 1 Gateway Configuration 2 Gateway Configuration 3 Gateway Configuration 4 Net Rate Configuration 1 Net Rate Configuration 3
Port 0: Protection File, Overrides Group
Number 454 455
Display Name Emerg OVRD Mode Emerg Prot OVRD
Full Name Emergency Override Mode ProtectionsOverridenbyEmergencyOverride
Parameter 0:457 [Purge Frequency]
ATTENTION: Unintended parameter value can result due to This Port Only reset. Parameter 0:457 [Purge Frequency] is reset to the default value when a Set Defaults for This Port Only is applied to port 10 or port 11.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
119
Chapter 4 Troubleshooting
Fan Usage by Product
These tables list the fans that are present in each product frame size and enclosure rating.
Fan Type
Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan
Frame 5 Drives
None Present Present None None None None
Frame 6 Drives
None Present Present None None None None
Frame 7 Drives IP21, UL Type 1 Single None Present None Present None None
IP54, UL Type 12 Single None Present None Present None None
Fan Type
Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan
Power Bay Roof Fan
Wire Bay Fan Control Bay Fan
Frame 8 Drives
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Frame 9 Drives
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Frame 10...15 Drives
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Fan Type
Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan
Power Bay Roof Fan
Wire Bay Fan Control Bay Fan
Frame 8 Bus Supplies
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Frame 9 Bus Supplies
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Frame 10...15 Bus Supplies
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
Present
Present
None
Present
Present (with option) Present (with option)
Present
Present
None
None
Fan Type
Control Pod Fan Stirring Fan Heatsink Fan Input Bay Fan Power Bay Roof Fan Wire Bay Fan Control Bay Fan
Frame 8 Common Bus Inverters
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
None
None
None
Present
Present (with option) Present (with option)
Present (with option) Present (with option)
Frame 9 Common Bus Inverters
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
None
None
None
Present
Present (with option) Present (with option)
Present (with option) Present (with option)
Frame 10...15 Common Bus Inverters
IP21, UL Type 1
IP54, UL Type 12
Dual
Dual
None
None
Present
Present
None
None
None
Present
Present (with option) Present (with option)
Present (with option) Present (with option)
120
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Hardware Service Manual
Chapter 4 Troubleshooting
The PowerFlex 750-Series AC Drive Hardware Service Manual, publication 750-TG100, provides schematics and detailed instructions on part replacement for PowerFlex 755T products.
Fault and Alarm Display Codes Common Symptoms and Corrective Actions
Event numbers for PowerFlex 750-Series faults and alarms are displayed in one
of three formats.
· Port 00 (Host Drive) displays the event number only. For example, code 21 `Clr Fault Queue' is displayed as: Fault Code 21.
· Ports 01 through 09 use the format PEEE, indicating port number (P) and event number (EEE). For example, code 1 `Analog In Loss' on an I/O module installed in Port 4 is displayed as: Fault Code 4001.
· Ports 10 through 14 use the format PPEEE, indicating port number (PP) and event number (EEE). For example, code 37 `S OverTemp Alm' on Port 14 is displayed as: Fault Code 14037.
Drive does not start from Start or Run inputs that are wired to the terminal block.
Cause(s)
Indication
Corrective Action
Drive is faulted
Flashing red status light
Clear fault. · Press Stop · Cycle power · `Clear Faults' on the HIM Diagnostic
menu
Incorrect input wiring. See Installation
Instructions, publication 750-IN100, for wiring
examples.
· 2-wire control requires Run, Run Forward, Run Reverse, or Jog input
None
· 3-wire control requires Start and Stop inputs
· Verify 24 Volt Common is connected to Digital
Input Common
Wire inputs correctly.
Incorrect digital input programming. · Mutually exclusive choices have been made
(for example, Jog and Jog Forward) · 2-wire and 3-wire programming may be
conflicting · Start configured without a Stop configured
None
Configure input function.
Flashing yellow status light and `DigIn Cnfg B' or `DigIn Cnfg C' indication on Resolve input function conflicts. LCD HIM. 10:355 [Motor Side Sts 2] shows type 2 alarm(s).
Terminal block does not have control.
None
Check 0:41 [Logic Mask].
Drive does not Start from HIM.
Cause(s) Drive is configured for 2-wire level control. Another device has Manual control. Port does not have control.
Indication None None None
Corrective Action Change 0:101 [Digital In Cfg] to correct control function. -- Change 0:41 [Logic Mask] to enable correct port.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
121
Chapter 4 Troubleshooting
Drive does not respond to changes in speed command.
Cause(s) No value is coming from the source of the command.
Indication LCD HIM Status Line indicates `At Speed' and output is 0 Hz.
Incorrect reference source has been programmed.
None
Incorrect Reference source is being selected via remote device or digital inputs.
None
Corrective Action · If the source is an analog input, check
wiring and use a meter to check for presence of signal · Check 10:1800 [VRef A Sel] for the source of the speed reference · Reprogram 10:1800 [VRef A Sel] for correct source · Check 10:354 [Motor Side Sts 1], bits 12 and 13 for unexpected source selections · Check 0:100 [Digital In Sts], to see if inputs are selecting an alternate source · Check configuration of 173...175 [DI Speed Sel n] functions
Motor and/or drive will not accelerate to commanded speed.
Cause(s) Acceleration time is excessive.
Indication None
Excess load or short acceleration times force the drive into current limit, slowing or stopping None acceleration.
Speed command source or value is not as expected.
None
Programming is preventing the drive output from exceeding limiting values.
None
Corrective Action Reprogram 10:1915/ 1916 [VRef Accel Timen]. Check 10:354 [Motor Side Sts 1], bit 27 to see if the drive is in Current Limit. Remove excess load or reprogram 10:1915/1916 [VRef Accel Timen]. Check for the proper Speed Command using Steps 1 through 7 above. Check 10:1898 [Vel Limit Pos], 10:1899 [Vel Limit Neg], and 10:422 [Maximum Freq] to assure that speed is not limited by programming.
Motor operation is unstable.
Cause(s)
Indication
Motor data was incorrectly entered or Autotune was not performed.
None
Corrective Action
1. Correctly enter motor nameplate data. 2. Perform `Static Tune'or `Rotate Tune'
Autotune procedure. See parameter 10:910 [Autotune].
Drive will not reverse motor direction.
Cause(s) Digital input is not selected for reversing control. Digital input is incorrectly wired.
Indication None None
Direction mode parameter is incorrectly programmed.
None
Motor wiring is improperly phased for reverse. None
A bipolar analog speed command input is incorrectly wired or signal is absent.
None
Corrective Action Check that the DI Reversing function is correctly configured. Check digital input wiring. Reprogram 10:930 [Direction Mode], for analog `Bipolar' or digital `Unipolar' control. Switch any two motor leads. 1. Use meter to check that an analog
input voltage is present. 2. Check bipolar analog signal wiring.
Positive voltage commands forward direction. Negative voltage commands reverse direction.
122
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Testpoint Codes and Functions
Chapter 4 Troubleshooting
Stopping the drive results in a Decel Inhibit fault.
Cause(s) The bus regulation feature is enabled and is halting deceleration due to excessive bus voltage. Excess bus voltage is normally due to excessive regenerated energy or unstable AC line input voltages.
Internal timer has halted drive operation.
Indication Decel Inhibit fault screen. LCD Status Line indicates `Faulted.'
Corrective Action 1. Reprogram parameters 10:116/
117 [Bus Reg Mode n] to eliminate any `Adjust Freq' selection. 2. Disable bus regulation (parameters 10:116/117 [Bus Reg Mode n]) and add a dynamic brake. 3. Correct AC input line instability or add an isolation transformer. 4. Access 10:170 [Dec Inhibit Actn] to select desired fault action. 5. Reset drive.
Problems adding a datalink.
Cause(s) Another device is communicating with the processor.
Indication None
Corrective Action Verify that a PLC is not communication with the drive. Disconnect communication cable or inhibit communication in PLC software.
Select testpoint with a [Testpoint Sel n] parameter. View testpoint values with [Testpoint REAL n] and [Testpoint DINT n] parameters.
Port 9 Testpoint Codes
No. Name
Description
Data Type Units
1 TrqPrvState
The present state of the Torque Proving state machine. DINT
t/f
2 TrqPrvSpdBandTimer
Timer count for the Speed Band function in Torque Proving.
REAL
Sec
3
TrqPrvBrkSlipStartActv
Indicated the Brake Slip start has occurred and is presently active.
DINT
t/f
Port 10 Testpoint Codes
No. Name 1 VRef Ramp In 2 VelRamp Rate 3 Vel Droop 10 PRef Sel Del
11 PRef Sel EGR
12 PRef Ofst In
13 PRef OfstPsn
Description
Data Type Units
Velocity Reference at the input to the ramp and S Curve function.
REAL
PU
This signal is the active rate of change of the velocity
reference. It is produced by the velocity reference
REAL
PU/S
ramp and S curve function.
Velocity Droop offset signal output from droop function.
REAL
PU
The change in 10:1684 [PRef Selected] every
millisecond. It is applied to the input of the Electronic Gear Ratio (EGR) function. Position units are encoder
DINT
Cnts
edge counts.
The output of the Position Reference Electronic Gear
Ratio function. It is similar to the EGR input in that it is a
position change over 1 millisecond. This signal is re-
DINT
C/ms
accumulated to create 10:1686 [Pref EGR Out]. Position
units are encoder edge counts.
The summation of 10:1691 [Psn Offset 1] and
10:1694 [Psn Offset 2]. It is the user input to the Position Reference Offset function. Position units are
DINT
Cnts
encoder edge counts.
The output of the Position Reference Offset function. It
represents the total offset that is to be applied to the Position Reference. Position units are encoder edge
DINT
Cnts
counts.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
123
Chapter 4 Troubleshooting 124
Port 10 Testpoint Codes (Continued)
No. Name 14 PRef OfstOut
15 PRef NF Out
20 LdPsn Fb Del
21 Psn Fb Del
22 PReg LdError
23 LdPsn Geared
30 VRef PID Sel 31 VRef Homing 32 VRef DIR Sel 33 Vref CLmt In 34 VRef SkipOut 35 VRef Psn FF 36 VRef NF In 37 VRef Scaled 38 VRef FLmt In 40 VReg SrvLock 41 aVRegKp
42 aVRegKi 43 VReg Lmt In
Description
Data Type Units
The change in Position Reference Offset that is to be
applied to every millisecond. It is summed with the output of the position reference EGR. Position units are
DINT
Cnts
encoder edge counts.
The output of the Position Reference Notch Filters. It
represents a Position Command change over 1
millisecond. This signal is re-accumulated to create
DINT
Cnts
10:1731 [Position Command]. Position units are encoder
edge counts.
The change in the Load Position Feedback every
millisecond. It is the input to the Load Position Feedback Gear Ratio. Position units are encoder edge
DINT
C/ms
counts.
The change in 10:1746 [Position Fb] every millisecond.
It is subtracted from the output of the Position
Reference Notch Filters. The result of this subtraction when re-accumulated becomes
DINT
C/ms
10:1750 [Position Error]. Position units are encoder
edge counts.
The difference between the output of the Position Reference Notch Filters and the Load Position Feedback Gear Ratio function. Position units are encoder edge counts.
DINT
Cnts
The output of the Load Position Feedback Gear Ratio
function. When re-accumulated this becomes 10:1748 [Psn Load Actual]. Position units are encoder
DINT
Cnts
edge counts.
If this signal is non-zero, then the PID Output Meter has
exclusive control of the Velocity Reference. If this signal is zero, then the Velocity Reference is controlled
DINT
t/f
by 10:1892 [VRef Selected].
Velocity reference signal used for the Homing function. REAL
PU
If this signal is non-zero, then the active direction for
Unipolar Direction Mode will be forward. If this signal is zero, then the active direction for Unipolar Direction
DINT
t/f
Mode will be reverse.
Velocity Reference signal at the input to the Min and Max Velocity Command Limiters.
REAL
PU
Velocity Reference signal at the output of the Skip Band function.
REAL
PU
Velocity feed forward reference signal used when
position control is active. Sums with velocity ramp
REAL
PU
output.
Velocity Reference at the input to the reference notch
filters. The output of these filters is
REAL
PU
10:1925 [Vref Filtered].
Velocity Reference at the output of the multiply block that applies 10:1932 [VRef Scale].
REAL
PU
Velocity Reference signal at the input to the Final velocity limiter. The output of this limiter is 10:1933 [VRef Final].
REAL
PU
Output of the Servo Lock function in the Velocity Regulator. Sums with 10:1951 [Velocity Error].
REAL
PU
Internal proportional gain used in the velocity
regulator. Incorporates gain scaling from Adaptive Tuning and Alternate Feedback. Also includes
REAL
R/S
conversion from Hz to rad/sec.
Internal integral gain used in the velocity regulator.
Incorporates gain scaling from Adaptive Tuning and Alternate Feedback. Also includes Kp gain and
REAL
R/S
conversion from Hz to rad/sec.
Input signal to the Acceleration Limiter in the Velocity Regulator. Units are PU Velocity per second.
REAL
PU/S
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Port 10 Testpoint Codes (Continued)
No. Name
Description
Data Type Units
44 Kj
Scale factor used to convert acceleration signals to
torque signals. Proportional to system inertia. Acceleration units are PU Vel/sec. Torque units are PU
REAL
Sec
motor torque.
50 Trq Scale
Scale factor used to convert acceleration signals to
torque signals. Proportional to system inertia. Acceleration units are rev/sec2. Torque units are
REAL
percent of rated motor torque.
51 TrqRefPosLimActv
Positive limit that is being applied to the Trq Ref Filtered parameter. Result is displayed in Trq Ref Limited parameter.
REAL
Nm
52 TrqRefNegLimActv
Negative limit that is being applied to the Trq Ref Filtered parameter. Result is displayed in Trq Ref Limited parameter.
REAL
Nm
100 EncdrlsCompTestState Encoderless test state.
DINT
n/a
101 IqsRefLmtd
Torque producing Current Reference. Output of the Current Rate Limiter.
REAL
PkA
105 PhsLossAmptdRO
Ratio of second harmonocs amplitdue to sixth harmonics.
DINT
n/a
106 PhsLossDtctCnts
Input phase loss detection counts.
REAL
Cnts
110 OloopOmegaOutput
Electrical speed generated in FV open loop control mode.
REAL
R/S
111 OmegaRotor
Rotor speed generated in FV open loop control mode. REAL
R/S
115 IaFbk
A-phase simultaneously sampled current feedback scaled to units of the system.
REAL
PkA
116 IbFbk
B-phase simultaneously sampled current feedback scaled to units of the system.
REAL
PkA
117 IcFbk
C-phase simultaneously sampled current feedback scaled to units of the system.
REAL
PkA
120
FreqSync Enhanced Delay
This signal indicates the status of the delay when Flying Start function is activated. This is for the CEMF mode of the Flying Start function.
DINT
t/f
121
FreqSync Enhanced State
This signal indicates the status of flying start operating
state. This is for the CEMF mode of the Flying Start
DINT
function.
t/f
This signal indicates the status of flying start operating
122 FreqSync Sweep State state. This is for the Sweep mode of the Flying Start
DINT
t/f
function.
125 PrchrgState
State of the Precharge state machine.
DINT
t/f
130 LineLoss Act
If this signal is non-zero, then a Line Loss condition is
active. If this signal is zero, then a Line Loss condition DINT
t/f
is not active.
135 Power State Handler
The present state being executed by the power state handler.
DINT
t/f
136 PwrStateCmd
Commanded state from the PowerStateMach to the PowerStateHandler.
DINT
t/f
If this signal is non-zero, then a Current Limit Stopping
140 Current Limit Stop Active Sequence is active. If this signal is zero, then a Current DINT
t/f
Limit Stopping Sequence is not active.
141 Sequencer State
The present state of the Sequencer.
DINT
t/f
145 ActvPwmFreq
Active PWM frequency
REAL
Hz
146 MaxJuncTemp
Active max junction temperature used in thermal manager.
REAL
°C
150 TrqRefAtZero
If this signal is non-zero, then the
10:2150 [Trq Ref Filt In] will be forced to a value of
zero. If this signal is zero, then the Torque Reference is
supplied by 10:2076 [Trq Ref Selected] after offset by
DINT
t/f
the Friction Compensation and Torque Step signals.
This signal could become non-zero as part of a stop
sequence or during Autotune.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
125
Chapter 4 Troubleshooting 126
Port 10 Testpoint Codes (Continued)
No. Name 155 RideThruRcvrLvl
156 RideThruStrtLvl 157 VbusUnderVltgLvl 160 Theta_e 161 Theta_r 170 IdSyncFdbk 171 IqSyncFdbk 172 VdSyncFdbk 173 VqSyncFdbk 180 VdsCmd 181 VqsCmd 190 FieldWeakSts 191 FluxRegFdFwd
192 FlxRegOmgLim
193 IdCompMtrnIq 194 IdCompMtrnPu 195 IdCompRegnIq 196 IdCompRegnPu 197 FlxIdSyncRef 198 NegIdsLim 199 PosIdsLim 200 VqsFdbkFltrd 210 FLARPM 211 OmegSlipFilt 212 RsGain 213 SlipGnFltrd 214 SlipGnLatchd 215 SlipGnLmtd
216 SlipLoTrqLim
217 SlipGnMaxLim 218 SlipGnMinLim 219 SlipIntegOut
Description
Data Type Units
This is the level of DC Bus voltage where the PWM can
become active again when power loss has occurred
REAL
VDC
and power is recovered.
This is the level of bus voltage where the PwrLoss mode is triggered.
REAL
VDC
This is the level set to trigger a bus under voltage event.
REAL
VDC
This signal is the Theta_e, the electrical stator angle, in radians.
REAL
Rad
This signal is the Theta_r, the electrical rotor angle, in radians.
REAL
Rad
Flux current feedback.
REAL
PkA
Torque current feedback.
REAL
PkA
This signal is the d-axis voltage feedback.
REAL
PkV
This signal is the q-axis voltage feedback.
REAL
PkV
D-axis voltage command in synchronous reference frame.
REAL
PkV
Q-axis voltage command in synchronous reference frame.
REAL
PkV
If this signal is non-zero, then the field weakening control is active.
DINT
t/f
This signal is the flux regulator output feed forward term.
REAL
PkA
If this signal is non-zero, then the flux regulator is not
active. If this signal is zero, then the flux regulator is
DINT
t/f
active.
This signal displays the corresponding Iq Ref values for IdComp during motoring operation.
REAL
PU
This signal displays the required IdComp values during motoring.
REAL
PU
This signal displays the corresponding Iq Ref values for IdComp during regen operation.
REAL
PU
This signal displays the required IdComp values during regen operation.
REAL
PU
This signal is the d-axis current reference, which is the output of the flux regulator.
REAL
PkA
If this signal is non-zero, then the flux regulator is at negative Id current limit.
DINT
t/f
If this signal is non-zero, then the flux regulator is at positive Id current limit.
DINT
t/f
This signal is the filtered q-axis voltage feedback.
REAL
PkV
This signal is the Slip RPM at full load amps, which is calculated based on the filtered slip gain.
REAL
RPM
This signal is the filtered slip in rad/sec.
REAL
R/S
This signal is the Rs gain, which is calculated based on the filtered slip gain.
REAL
PU
This signal is the filtered slip gain.
REAL
R/S/A
This signal is the latched slip gain in the slip regulator. REAL
R/S/A
This signal is the limited slip gain, which is the slip regulator output.
REAL
R/S/A
If this signal is non-zero, then the slip regulator is not
active because the q-axis current reference is below
DINT
t/f
the set value.
If this signal is non-zero, then the slip regulator is at maximum slip gain limit.
DINT
t/f
If this signal is non-zero, then the slip regulator is at minimum slip gain limit.
DINT
t/f
This signal is the integration term of the slip regulator output.
REAL
R/S/A
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Port 10 Testpoint Codes (Continued)
No. Name
220 SlipPropOut
221 VdsFdbkFltrd 230 IdSyncRef 231 IqSyncRef
232 VdSyncFF_Ref
233 VqSyncFF_Ref
240 LambdaDsSync 241 LambdaDsFilt 242 LambdaQsSync 243 LambdaQsFilt 250 TrqEst 251 TrqEstFltrd 255 ActvCurLim 260 FluxCurMax 261 FluxCurMin 262 LambdaDsRtd
263 MtrRtdTrq
264 SlipGnRtd
Description
Data Type Units
This signal is the proportional term of the slip regulator output.
REAL
R/S/A
This signal is the filtered d-axis voltage feedback.
REAL
PkV
Flux current command.
REAL
PkA
Torque command.
REAL
PkA
This signal is the feed forward d-axis voltage reference.
REAL
PkV
This signal is the feed forward q-axis voltage reference.
REAL
PkV
This signal is the d-axis stator flux.
REAL
VSec
This signal is the filtered d-axis stator flux.
REAL
VSec
This signal is the q-axis stator flux.
REAL
VSec
This signal is the filtered q-axis stator flux.
REAL
VSec
This signal is the estimated torque in N·m.
REAL
Nm
This signal is the filtered estimated torque in N·m.
REAL
Nm
This is the active current limit value.
REAL
PkA
This is the maximum flux current value.
REAL
PkA
This is the minimum flux current value.
REAL
PkA
This signal is the rated d-axis stator flux.
REAL
VSec
This is the motor rated torque value in N·m that is calculated from motor name plate data.
REAL
Nm
This is the rated slip gain value.
REAL
R/S/A
Port 13 Testpoint Codes
No. Display Name 1 VL12Inst 2 VL23Inst 3 VL31Inst 4 VqSyncFdbk
5 VqSyncFilt
6 VqSyncFilt1
7 VdSyncFdbk
8 VdSyncFilt
9 VdSyncFilt1
10 VabFdbkFilt
Description
Data Type Units
The grid line voltage L12 instantaneously sampled voltage feedback scaled to units of the system.
REAL
Volts
The grid line voltage L23 instantaneously sampled voltage feedback scaled to units of the system.
REAL
Volts
The grid line voltage L31 instantaneously sampled voltage feedback scaled to units of the system.
REAL
Volts
The instantaneous value of the grid line voltage q-axis
voltage component in the synchronous reference REAL
Volts
frame scaled to units of the system.
The grid line voltage q-axis voltage component in the
synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 1 ms, and scaled to
REAL
Volts
units of the system.
The grid line voltage q-axis voltage component in the
synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 10 ms, and scaled
REAL
Volts
to units of the system.
The instantaneous value of the grid line voltage d-axis
voltage component in the synchronous reference REAL
Volts
frame scaled to units of the system.
The grid line voltage d-axis voltage component in the
synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 1 ms, and scaled to
REAL
Volts
units of the system.
The grid line voltage d-axis voltage component in the
synchronous reference frame filtered with a low pass filter that has a cutoff frequency of 10 ms, and scaled
REAL
Volts
to units of the system.
The grid line voltage L12 instantaneously sampled
voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the
REAL
Volts
system.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
127
Chapter 4 Troubleshooting 128
Port 13 Testpoint Codes (Continued)
No. Display Name 11 VbcFdbkFilt
12 VcaFdbkFilt 13 IaInst 14 IbInst 15 IcInst 16 I0Fdbk 17 VbusRateLim 18 VbusOptRef 19 VbusRefLoLim 20 VbusRefHiLim 21 VbusLimSts 22 VbusErr 23 VbusRegKi 24 VbusRegKp 25 IqRefVbusReg 26 IqRefComp
27 VqRefComp
28 VdRefComp
29 IdRefComp
30 IqVbusCurLim
31 IdVbusCurLim
32 ILmtUserSts 33 IdRefSts
Description
Data Type Units
The grid line voltage L23 instantaneously sampled
voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the
REAL
Volts
system.
The grid line voltage L31 instantaneously sampled
voltage feedback filtered by a low pass filter that has 0.1 ms cutoff frequency and scaled to units of the
REAL
Volts
system.
A-phase simultaneously sampled current feedback scaled to units of the system.
REAL
A
B-phase simultaneously sampled current feedback scaled to units of the system.
REAL
A
C-phase simultaneously sampled current feedback scaled to units of the system.
REAL
A
The instantaneous value of the zero sequence current/ summation of the feedback currents.
REAL
A
Selected voltage rate of change of the bus voltage, this
value is set by a user parameter in case of manual bus reference and it is set to a very high value when it is in
REAL
V/S
optimized mode.
Optimized value of the DC Bus Reference.
REAL
Volts
The calculated minimum possible value of the DC Bus command.
REAL
Volts
The calculated maximum possible value of the DC Bus command.
REAL
Volts
A status signal indicates if the bus reference is limited. DINT
t/f
The instantaneous error signal between the DC Bus
command and the measured DC bus. This signal is processed through the controller of the bus regulator
REAL
Volts
to generate the current reference command.
The integral gain of the bus voltage regulator.
REAL
AS/V
The proportional gain of the bus voltage regulator. REAL
A/V
The instantaneous value of the active current command generated by the DC bus voltage regulator.
REAL
A
The instantaneous value of the active current (q-axis
current component in the synchronous reference frame) calculated by the LCL steady state
REAL
A
compensation algorithm.
The instantaneous value of the grid line voltage (q-axis
voltage component in the synchronous reference frame) calculated by the LCL steady state
REAL
Volts
compensation algorithm.
The instantaneous value of the grid line voltage (d-axis
voltage component in the synchronous reference frame) calculated by the LCL steady state
REAL
Volts
compensation algorithm.
The instantaneous value of the reactive current (d-axis
current component in the synchronous reference frame) calculated by the LCL steady state
REAL
A
compensation algorithm.
The maximum value of the active current component
for a given DC bus value, line voltage magnitude, and
line reactance, this limit is calculated based on the REAL
A
maximum active power transfer theoretically
achievable between the AFE converter and the grid.
The maximum value of the reactive current component
for a given DC bus value, line voltage magnitude, and
line reactance, this limit is calculated based on the REAL
A
maximum reactive power transfer theoretically
achievable between the AFE converter and the grid.
A status signal that indicates current is limited by the user current limit parameter.
DINT
t/f
A status signal that indicates d-axis current at limit. DINT
t/f
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Port 13 Testpoint Codes (Continued)
No. Display Name 34 IqSyncErr
35 IdSyncErr 36 CurRegKiIq 37 CurRegKpIq 38 CurRegKiId 39 CurRegKpId 40 CurRegqOut 41 CurRegdOut
42 VqSyncRef
43 VdSyncRef 45 CurRegqI 46 CurRegqP 47 VltRefLim
Description
Data Type
The instantaneous error signal between the active current command and the calculated active current. This signal is processed through the controller of the REAL current regulator to generate the reference voltage command.
The instantaneous error signal between the reactive
current command and the calculated reactive current
component. This signal is processed through the
REAL
controller of the current regulator to generate the
reference voltage command.
The integral gain of the current regulator of the active current component.
REAL
The proportional gain of the current regulator of the active current component.
REAL
The integral gain of the current regulator of the reactive current component.
REAL
The proportional gain of the current regulator of the reactive current component.
REAL
The output signal of the current regulator used to
regulate the active current component which includes the effect of both the proportional action and the
REAL
integral action.
The output signal of the current regulator used to
regulate the reactive current component which includes the effect of both the proportional action and
REAL
the integral action.
The final q-axis component of the voltage reference that is connected to the modulator. This component is used along with the d-axis component of the voltage REAL reference to generate the magnitude and the angle of the final voltage reference connected to the modulator.
The final d-axis component of the voltage reference that is connected to the modulator. This component is used along with the q-axis component of the voltage REAL reference to generate the magnitude and the angle of the final voltage reference connected to the modulator.
The output of the integral term of the of the current
regulator used to regulate the active current
REAL
component.
The output of the proportional term of the of the current regulator used to regulate the active current REAL component.
The limited value of the magnitude of the voltage reference used to generate the three phase modulator REAL signals.
Units A
A VSec/A V/A VSec/A V/A Volts Volts
Volts
Volts Volts Volts Volts
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
129
Chapter 4 Troubleshooting
Reset as Shipped
The TotalFORCE control platform has a recovery mode. Use the following procedure if the processor fails to start up.
1. Power down the product. 2. Locate the IP address switches on the main control board. 3. Record the positions of the switches so they can be set back to these
positions at the end of the procedure.
Hundreds Position Tens Position
Ones Position
4. Set all three switches to position 8, for an overall value of 888.
Figure 69 - IP Address Switches Set to 888
Hundreds Position
Tens Position
Ones Position
5. Power up the product. Wait for the STS indicator to turn flashing red and the ENET indicator to turn solid red.
6. Power down the product.
7. Power up the product a second time. Wait for the STS indicator to turn flashing red and the ENET indicator to turn solid red.
8. Power down the product.
9. Set the IP address switches to the positions recorded in step 3.
10. Power up the product.
130
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Chapter 4 Troubleshooting
Configurable LCL Filter Capacitor Failure Response
Review the Attention statement that follows if you intend to configure the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Failure event occurs.
ATTENTION: You must read the following information before you can enable the Line Side Converter to produce an alarm instead of a fault when the LCL Filter Capacitor Failure event occurs. Operating the product (drive or bus supply) during the LCL Capacitor Failure event may damage the LCL filter. This damage may lead to catastrophic product failure and collateral damages. It is your responsibility to configure drive parameters, understand the causes and consequences of LCL capacitor failure, and meet safety requirements in accordance with all applicable codes and standards. If enabling the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Failure event occurs is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the application, set bit 6 `CapFailAlrm' of parameter 13:40 [Conv Options Cfg]. This action removes Fault 24, `CapFailureCfg'. It allows parameter 0:452 [LCLCapFailActn] to be set to 0 `Alarm', enabling an alarm instead of a fault.
Configurable LCL Filter Capacitor Over Resonance Response
Review the Attention statement that follows if you intend to configure the line side converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs.
ATTENTION: You must read the following information before you can enable the Line Side Converter to produce an alarm instead of a fault when the LCL Filter Capacitor Over Resonance event occurs. Operating the product (drive or bus supply) during the LCL Capacitor Over Resonance event may damage the LCL filter. This damage may lead to catastrophic product failure and collateral damages. It is your responsibility to configure drive parameters, understand the causes and consequences of LCL capacitor over resonance, and meet safety requirements in accordance with all applicable codes and standards. If enabling the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the application, set bit 5 `CapORsncAlrm' of parameter 13:40 [Conv Options Cfg]. This action removes Fault 56, `CapOvrRsncCfg'. It allows parameter 0:453 [CapOvrRsncActn] to be set to 0 `Alarm', enabling an alarm instead of a fault.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
131
Chapter 4 Troubleshooting
PowerFlex 755T Lifting/ Torque Proving
Review the Attention statement that follows if you intend to use the TorqProveTM feature without an encoder.
ATTENTION: You must read the following information before you can use TorqProve with no encoder. Encoderless TorqProve must be limited to lifting applications where personal safety is not a concern. Encoders offer additional protection and must be used where personal safety is a concern. Encoderless TorqProve cannot hold a load at zero speed without a mechanical brake and does not offer additional protection if the brake slips/fails. Loss of control in suspended load applications can cause personal injury and/or equipment damage. It is your responsibility to configure drive parameters, test any lifting functionality, and meet safety requirements in accordance with all applicable codes and standards. If encoderless TorqProve is desired, you must certify the safety of the application. To acknowledge that you have read this `Attention' and properly certified the encoderless application, set bit 3 `EnclsTrqProv' of parameter 10:420 [Mtr Options Cfg] to a value of 1. This action removes Alarm 9014 `TP Encls Config' and allows bit 1 `Encoderless' of parameter 9:50 [Trq Prove Cfg] to be changed to 1 enabling encoderless TorqProve.
For information on TorqProve applications, see the PowerFlex 750-Series with TotalFORCE Control reference manual, publication 750-RM100.
132
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
Technical Support Options
Chapter 4 Troubleshooting
What You Need When You Call Tech Support
When you contact Technical Support, please be prepared to provide the following information:
· Order number · Product catalog number and drive series number (if applicable) · Product serial number · Firmware revision number · Fault code listed in 0:610 [Last Fault Code] · Installed options and port assignments · Technical Support Wizard; see page 133 or drive parameter list
Also be prepared with:
· A description of your application · A detailed description of the problem · A brief history of the drive installation · First-time installation, product has not been running · Established installation, product has been running
The data contained in the following parameters will help in initial troubleshooting of a faulted drive. You can use the table below to record the data provided in each parameter listed.
Parameter No. 0:610 10:460 10:461 10:462 10:465 10:466 10:467 13:240 13:241 13:258 13:259 13:260
Parameter Name Last Fault Code Condition Sts A Fault Status A Fault Status B Alarm Status A Alarm Status B Type 2 Alarms Fault Status A Fault Status B Alarm Status A Alarm Status B Type 2 Alarms
Parameter Data
Technical Support Wizards
If you are connected to a drive via Connected Components WorkbenchTM (version 11 or later) software, you can run a Tech Support wizard to gather information that will help diagnose problems with your drive and/or peripheral device. The information gathered by the wizard is saved as a text file and can be emailed to your remote technical support contact.
IMPORTANT The Tech Support wizard cannot be accessed when not connected.
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
133
Chapter 4 Troubleshooting
Notes:
134
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
PowerFlex Drives with TotalFORCE Control Programming Manual
Rockwell Automation Publication 750-PM101A-EN-P - February 2021
135
Rockwell Automation Support
Use these resources to access support information.
Technical Support Center Knowledgebase Local Technical Support Phone Numbers Literature Library Product Compatibility and Download Center (PCDC)
Find help with how-to videos, FAQs, chat, user forums, and product notification updates. Access Knowledgebase articles. Locate the telephone number for your country. Find installation instructions, manuals, brochures, and technical data publications. Download firmware, associated files (such as AOP, EDS, and DTM), and access product release notes.
rok.auto/support rok.auto/knowledgebase rok.auto/phonesupport rok.auto/literature
rok.auto/pcdc
Documentation Feedback
Your comments help us serve your documentation needs better. If you have any suggestions on how to improve our content, complete the form at rok.auto/docfeedback.
Waste Electrical and Electronic Equipment (WEEE)
At the end of life, this equipment should be collected separately from any unsorted municipal waste.
Rockwell Automation maintains current product environmental information on its website at rok.auto/pec.
Allen-Bradley, CIP Security, Connected Components Workbench, DeviceLogix, expanding human possibility, FactoryTalk, PowerFlex, Rockwell Automation, Studio 5000, and TotalFORCE are trademarks of Rockwell Automation, Inc. EtherNet/IP is a trademark of ODVA, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.
Rockwell Otomasyon Ticaret A.. Kar Plaza  Merkezi E Blok Kat:6 34752, çerenkÖy, stanbul, Tel: +90 (216) 5698400 EEE YÖnetmeliine Uygundur
Publication 750-PM101A-EN-P - February 2021
Copyright © 2021 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

Acrobat Distiller 21.0 (Windows)

Обновлено: 21 сентября 2023 г. 15:45

Фото ПЧ Allen Bradley PowerFlex40

При работе промышленной электроники Allen Bradley в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы Allen Bradley: PowerFlex, 1305 Series, 1332 Series, 1333 Series, 1334 Series, 1336 Series, 1341 Series, 1351 Series, 1352 Series, 1361 Series, 160 Series,. В свою очередь серия Allen Bradley PowerFlex включает в себя следующие модели: PowerFlex 755T, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex 753, PowerFlex 755, PowerFlex 755T, PowerFlex 70, PowerFlex 700S, PowerFlex 700, PowerFlex 700L, PowerFlex 523, PowerFlex 525, PowerFlex 527, PowerFlex 4M, PowerFlex 4, PowerFlex 40, PowerFlex 40P, PowerFlex 400. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.

Частотные преобразователи Allen Bradley имеют следующие распространенные ошибки:

Наиболее частые ошибки преобразователей Allen Bradley PowerFlex 40:

Ошибка F2 (error F2) — ошибка входа Auxiliary;
Ошибка F3 (error F3) — обрыв фазы на входе;
Ошибка F4 (error F4) — пониженное напряжение;
Ошибка F5 (error F5) — перенапряжение;
Ошибка F6 (error F6) — механическая неисправность двигателя;
Ошибка F7 (error F7) — перегрузка двигателя;
Ошибка F8 (error F8) — перегрев радиатора;
Ошибка F12 (error F12) — аппаратная перегрузка по току;
Ошибка F13 (error F13) — короткое замыкание на землю;
Ошибка F29 (error F29) — ошибка аналогового входа;
Ошибка F33 (error F33) — превышено количество попыток автоматического повторного включения — АПВ;
Ошибка F38 (error F38) — замыкание фазы U на землю на выходе ПЧ;
Ошибка F39 (error F39) — замыкание фазы V на землю на выходе ПЧ;
Ошибка F40 (error F40) — замыкание фазы W на землю на выходе ПЧ;
Ошибка F41 (error F41) — короткое замыкание между фазами UV;
Ошибка F42 (error F42) — короткое замыкание между фазами UW;
Ошибка F43 (error F43) — короткое замыкание между фазами VW;
Ошибка F48 (error F48) — параметры EEPROM были сброшены;
Ошибка F63 (error F63) — перегрузка по току по программной уставке;
Ошибка F64 (error F64) — перегрузка во время работы;
Ошибка F70 (error F70) — неисправность силовой части;
Ошибка F71 (error F71) — ошибка связи;
Ошибка F80 (error F80) — ошибка автонастройки;
Ошибка F81 (error F81) — ошибка связи RS485;
Ошибка F100 (error F100) — ошибка контрольной суммы записанных параметров;
Ошибка F122 (error F122) — ошибка платы ввода-вывода.

Похожие статьи:

  • Типы выходов датчиков
  • Свинцово-кислотные аккумуляторные батареи
  • Ni-Cd аккумуляторные батареи
  • Delta Servo ASDA-A2 ошибки — расшифровка кодов неисправностей сервоприводов
  • Ремонт и поверка установок Тангенс-3М

Время выполнения запроса: 0,00389289855957 секунды.

Allen-Bradley PowerFlex 755 User Manual

  • Contents

  • Table of Contents

  • Bookmarks

Quick Links

User Manual

Original Instructions

PowerFlex 755/755T Integrated Safety — Safe Torque Off

Option Module

Catalog Number 20-750-S3

loading

Related Manuals for Allen-Bradley PowerFlex 755

Summary of Contents for Allen-Bradley PowerFlex 755

  • Page 1
    User Manual Original Instructions PowerFlex 755/755T Integrated Safety — Safe Torque Off Option Module Catalog Number 20-750-S3…
  • Page 2
    Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.
  • Page 3: Table Of Contents

    Configure Safe Torque Off in the Logix Designer Application ..31 and Operation Add a PowerFlex 755 Drive to the Controller Project..33 Rockwell Automation Publication 750-UM004B-EN-P — October 2018…

  • Page 4
    Configure Safe Torque Off in the Logix Designer Application ..54 Add a PowerFlex 755 Drive to the Controller Project..55 Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications.
  • Page 5
    Table of Contents Configure the Drive with Hardwired Safety Connections ..77 Timing Diagrams ……….78 Chapter 7 Monitoring and Troubleshooting Monitor STO Status .
  • Page 6
    Table of Contents Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 7: Summary Of Changes

    Throughout this manual, the PowerFlex 755TL low harmonic drives, PowerFlex 755TR regenerative drives, PowerFlex 755TM drive systems are also referred to as PowerFlex 755T drive products. The PowerFlex 755 drive is used for the examples in this manual. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…

  • Page 8: Terminology

    Preface Terminology Table 1 defines the abbreviations that are used in this manual. Table 1 — Abbreviations and Definitions Abbreviation Full Term Definition 1oo2 One out of Two Refers to the behavioral design of a dual-channel safety system. Classification of the safety-related parts of a control system in respect of their resistance to faults and Category their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection, and/or by their reliability (source ISO 13849).

  • Page 9: Product Firmware And Release Notes

    Preface Product Firmware and Product firmware and release notes are available online within the Product Compatibility and Download Center. Release Notes 1. From the Search bar on http://www.ab.com, choose Compatibility and Downloads. 2. Search for your product. 3. On the search results page, find the firmware and release notes for your product.

  • Page 10: Additional Resources

    Provides information on how to use CompactLogix™ 5380 and Compact GuardLogix 5380 publication 5069-UM001 controllers. You can view or download publications at http://www.rockwellautomation.com/global/literature-library/overview.page. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…

  • Page 11: What Is The Integrated Safety — Safe Torque Off Option Module

    Chapter Safety Concept This chapter provides information on safety considerations for the Integrated Safety — Safe Torque Off option module. Topic Page What Is the Integrated Safety — Safe Torque Off Option Module? Compatible Drives Compatible Safety Controllers Safety Application Requirements Safety Certification Functional Proof Tests PFD and PFH Definitions…

  • Page 12: Compatible Drives

    • PowerFlex 755TM drive systems Integrated STO is via the embedded Ethernet port on the drive only. Device Level Ring (DLR) capability is supported for the PowerFlex 755 when a 20-750-ENETR Dual Port EtherNet/IP option module is used in Tap mode.

  • Page 13: Compatible Safety Controllers

    • For PowerFlex 755 drives, AOP version 4.09 (or later) • For PowerFlex 755T drive products, all AOP versions The following Integrated Motion AOPs are needed: • For PowerFlex 755 drives, Integrated Motion AOP version 18.00.00 (or later) • PowerFlex 755T drive products do not support Integrated Motion at this time.

  • Page 14: Hardwired Mode

    GuardLogix Controller Systems Safety Reference Manuals listed in the Additional Resources on page The TÜV Rheinland group has approved the PowerFlex 755 Integrated Safety Safety Certification — Safe Torque Off option module (catalog number 20-750-S3) as suitable for use in hardwired or integrated safety applications: •…

  • Page 15: Stop Category Definitions

    Safety Concept Chapter 1 IMPORTANT Only qualified, authorized personnel that are trained and experienced in functional safety can plan, implement, and apply functional safety systems. ATTENTION: When designing your system, consider how personnel exit the machine if the door locks while they are in the machine. Additional safeguard devices can be required for your specific application.

  • Page 16: Functional Proof Tests

    Chapter 1 Safety Concept See the ISO 13849-1, IEC 61508, and EN 62061 standards for complete information on requirements for PL and SIL determination. Functional Proof Tests The functional safety standards require that functional proof tests be performed on the equipment that is used in the system. Proof tests are performed at user-defined intervals and are dependent upon PFD and PFH values.

  • Page 17: Pfd And Pfh Data

    EN 61508 and show worst-case values. This table provides data for a 20-year proof test interval and demonstrates the worst-case effect of various configuration changes on the data. Table 2 — PFD and PFH for PowerFlex 755 Drives PowerFlex 755 Drives PowerFlex 755 Drives…

  • Page 18: Considerations For Safety Ratings

    Considerations for Safety The achievable safety rating of an application that uses the Integrated Safety — Safe Torque Off option module that is installed in PowerFlex 755 drives Ratings (firmware revision 13 or later), and PowerFlex 755T drive products are dependent upon many factors, drive options, and the type of motor.

  • Page 19
    Chapter Installation This chapter provides installation, jumper settings, and wiring for the Integrated Safety — Safe Torque Off option module. Topic Page Remove Power from the Drive System Access the Control Pod Set the Safety Jumper Install the Safety Option Module ATTENTION: The following information is a guide for proper installation.
  • Page 20: Remove Power From The Drive System

    Chapter 2 Installation Remove Power from the Before performing any work on the drive, remove all power to the system. Drive System ATTENTION: • Electrical Shock Hazard. Verify that all sources of AC and DC power are de- energized and locked out or tagged out in accordance with the requirements of ANSI/NFPA 70E, Part II.

  • Page 21: Set The Safety Jumper

    SAFETY jumper must be removed or a Safety Jumper In Fault (F213) occurs. IMPORTANT PowerFlex 755 drives (frames 8…10) control boards do not have a SAFETY jumper. If the Integrated Safety — Safe Torque Off option module is installed, the control board hardware ENABLE jumper must be installed.

  • Page 22: Install The Safety Option Module

    Chapter 2 Installation Figure 2 — PowerFlex 755T Drive Products Jumper Locations (all frame sizes) SAFETY Jumper (jumper is removed) PowerFlex 755T Drive Products Hardware ENABLE Jumper (jumper in place) Install the Safety Option To install the Integrated Safety — Safe Torque Off option module in a drive port, follow these steps: Module 1.

  • Page 23
    Installation Chapter 2 Figure 3 — Tighten Screws PowerFlex 755 Drives Frames 1…7 Shown Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 24
    Chapter 2 Installation Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 25: Description Of Operation

    Chapter Configuration This chapter provides information on how to configure the Integrated Safety — Safe Torque Off option module. Topic Page Description of Operation Out-of-Box State Description of Operation Safe Torque Off (STO) disables the power transistors so that the probability of torque producing switching is sufficiently low for SIL 3.

  • Page 26: Out-Of-Box State

    Chapter 3 Configuration IMPORTANT The Integrated Safety — Safe Torque Off option module does not remove dangerous voltages at the drive output. Before performing any electrical work on the drive or motor, turn off the input power to the drive, and follow all safety procedures.

  • Page 27
    Reset the Drive by Using the Logix Designer Application After the integrated safety connection configuration is applied to the PowerFlex 755 drive at least once, you can follow these steps to restore your PowerFlex 755 drive to the out-of-box state while online.
  • Page 28
    Chapter 3 Configuration 5. Click the Safety tab. 6. Click Reset Ownership. 7. Click the Connection tab. 8. Uncheck Inhibit Module. 9. Click Apply. 10. Click OK. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 29: Description Of Integrated Operation

    • You must add the PowerFlex® drive to the Ethernet network connection in the safety controller I/O tree. The PowerFlex 755 drives and PowerFlex 755T drive product STO function reaction time is 15 ms maximum. Reaction time is the delay between the time when the drive STO function receives the STO request, and when power that produces the motion is removed from the motor.

  • Page 30: Safe Torque Off Assembly Tags

    Chapter 4 Standard I/O – Network STO Programming and Operation Table 5 — Safe Torque Off Network Specifications Attribute Value Safety connection RPI, min 6 ms Input assembly connections Output assembly connections Safe Torque Off Assembly In Network mode, the safety controller controls the integrated STO function through the SO.SafeTorqueOff tag in the safety output assembly: Tags •…

  • Page 31: Configure Safe Torque Off In The Logix Designer Application

    Configure Safe Torque Off in This chapter provides instructions for how to add and configure an Integrated Safety — Safe Torque Off option module in a PowerFlex 755 drive or PowerFlex the Logix Designer 755T drive product in an existing project in the Logix Designer application.

  • Page 32
    Chapter 4 Standard I/O – Network STO Programming and Operation To set up your drive with the 20-750-S3 option card, you must configure the following attributes, in addition to the drive’s IP address, revision, ratings, and power structure settings: Port 4, 5, or 6 Electronic Keying Indicates that all keying attributes must match to establish communication.
  • Page 33: Add A Powerflex 755 Drive To The Controller Project

    3. Follow the appropriate procedure to add and configure an option card and drive: • Add an Option Card to a PowerFlex 755 Drive in I/O Mode on page 34 • Add an Option Card to a PowerFlex 755T Drive Product in I/O…

  • Page 34: I/O Mode

    Chapter 4 Standard I/O – Network STO Programming and Operation Add an Option Card to a PowerFlex 755 Drive in I/O Mode 1. On the New Module dialog box, name your drive. 2. Type the IP Address. 3. Choose the Drive tab.

  • Page 35
    Standard I/O – Network STO Programming and Operation Chapter 4 5. Expand PF750 peripherals list, select card, and click Create. 6. Choose port and Electronic Keying for card and click OK. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 36
    Chapter 4 Standard I/O – Network STO Programming and Operation 7. Choose General Tab and click change to open Module Definition. 8. Choose the Connection type. The 20-750-S3 card appears in the Safety Type field. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 37: I/O Mode

    Standard I/O – Network STO Programming and Operation Chapter 4 9. Configure the drive’s properties: a. Revision b. Electronic Keying c. Drive Ratings d. Rating Options e. Special Types 10. Click OK to return to the New Module or Module Properties dialog box.

  • Page 38
    Chapter 4 Standard I/O – Network STO Programming and Operation 4. Choose the connection type. 5. From the Device Definition Dialog box, choose the Peripherals page and use the Add new peripheral pull-down menu to choose the 20-750- S3 card. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 39: Generate The Safety Network Number (Snn)

    Standard I/O – Network STO Programming and Operation Chapter 4 6. Expand the card entry on the Peripherals page to change the port, if desired, and to choose Electronic Keying method. 7. Click OK to return to the New Module window with drive details. 8.

  • Page 40
    Chapter 4 Standard I/O – Network STO Programming and Operation IMPORTANT If you assign an SNN manually, make sure that the system expansion does not result in duplication of SNN and node address combinations. A warning appears if your project contains duplicate SNN and node address combinations.
  • Page 41: Configure Safety Connections

    Standard I/O – Network STO Programming and Operation Chapter 4 Configure Safety Connections To configure the safety tab, follow these steps. 1. Click the Safety tab in the drive Module Properties dialog box. 2. Adjust the Safety Input Requested Packet Interval (RPI) as desired for your safety system.

  • Page 42
    Chapter 4 Standard I/O – Network STO Programming and Operation 4. Configure the advanced settings as desired. Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign.
  • Page 43: Safety Configuration Signature And Ownership

    Module Properties dialog box) • GuardLogix slot number • GuardLogix safety network number • Path from the GuardLogix safety controller to the PowerFlex 755 drive or PowerFlex 755T drive product • Configuration signature (displayed on the Safety tab of the drive’s…

  • Page 44: Safe Torque Off — Stop Category 0 Example Program

    Chapter 4 Standard I/O – Network STO Programming and Operation Safe Torque Off – Stop This safety task code is an example for a category 0 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 0 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…

  • Page 45: Safe Torque Off — Stop Category 1 Example Program

    Standard I/O – Network STO Programming and Operation Chapter 4 Safe Torque Off – Stop This safety task code is an example for a category 1 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 1 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…

  • Page 46: Falling Edge Reset

    Chapter 4 Standard I/O – Network STO Programming and Operation Falling Edge Reset ISO 13849-1 stipulates that instruction reset functions must occur on falling edge signals. To comply with this requirement, a One Shot Falling (OSF) instruction is used on the reset rung. Then, the OSF instruction Output Bit tag is used as the reset bit for the STO output or enable rungs.

  • Page 47: Safe Torque Off Fault Reset

    Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…

  • Page 48: Understand Integrated Safety Drive Replacement

    State on page 26 for more information. Replacing an entire PowerFlex 755 drive or PowerFlex 755T drive product on an integrated safety network is more involved than replacing standard devices because of the safety network number (SNN). The device number and SNN is the safety Device ID of the device.

  • Page 49
    Standard I/O – Network STO Programming and Operation Chapter 4 Figure 5 — Safety I/O Replacement Options Configure Only When No Safety Signature Exists This setting instructs the GuardLogix controller to configure a safety device only when the safety task does not have a safety task signature, and the replacement device is in out-of-box condition.
  • Page 50
    Chapter 4 Standard I/O – Network STO Programming and Operation Configure Always The GuardLogix controller always attempts to configure a replacement Safety I/O device if the device is in an out-of-box condition, meaning that a safety network number does not exist in the replacement safety device, and the node number and I/O device keying matches the configuration of the controller.
  • Page 51: Requirements

    Chapter Integrated Motion – Network STO Programming and Operation This chapter provides information for network installation and operation of the Integrated Safety — Safe Torque Off option module when used with Integrated Motion. Topic Page Requirements Description of Operation Configure Safe Torque Off in the Logix Designer Application Safe Torque Off –…

  • Page 52: Safe Torque Off Assembly Tags

    • You must add the PowerFlex drive to the Ethernet network connection in the safety controller I/O tree. The PowerFlex 755 drive STO function response time is less than 15 ms. Response time for the drive is the delay between the time the drive STO command receives the CIP Safety™…

  • Page 53
    Integrated Motion – Network STO Programming and Operation Chapter 5 Table 8 — Integrated STO Specifications Attribute Logix Designer Tag Name Type Description [bit] The ConnectionStatus data type contains (1) (2) SI.ConnectionStatus DINT RunMode and ConnectionFault status bits. SI.RunMode BOOL Table 9 for descriptions of the combinations of the RunMode and…
  • Page 54: Configure Safe Torque Off In The Logix Designer Application

    Configure Safe Torque Off in This chapter provides instructions for how to add and configure an Integrated Safety — Safe Torque Off option module in a PowerFlex 755 drive in an existing the Logix Designer project in the Logix Designer application. This chapter is specific to safety and Application does not cover all aspects of drive configuration.

  • Page 55: Add A Powerflex 755 Drive To The Controller Project

    2. Select a PowerFlex 755 drive for Integrated Motion on EtherNet/IP networks (selection catalog number ends in –CM-S3 for drives with network STO option). 3. Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications as described in the following section.

  • Page 56: Configure An Option Card On A Powerflex 755 Drive In Integrated Motion On Ethernet/Ip Network Applications

    Chapter 5 Integrated Motion – Network STO Programming and Operation Configure an Option Card on a PowerFlex 755 Drive in Integrated Motion on EtherNet/IP Network Applications 1. On the New Module dialog box, name the drive. 2. Type the IP Address.

  • Page 57: Generate The Safety Network Number (Snn)

    Integrated Motion – Network STO Programming and Operation Chapter 5 6. Click Safety Definition to configure 20-750-S3 revision and Electronic Keying. 7. Click OK to close the Safety Definition dialog box. 8. Click OK to close the Module Definition dialog box. Note that the Safety Network Number (SNN) is on the General page and that there is a Safety page.

  • Page 58: Configure Safety Connections

    Chapter 5 Integrated Motion – Network STO Programming and Operation 3. Click Generate. 4. Click OK. Configure Safety Connections To configure the safety tab, follow these steps. 1. Click the Safety tab in the drive Module Properties. 2. Adjust the Safety Input Requested Packet Interval (RPI) as desired for your safety system.

  • Page 59
    Integrated Motion – Network STO Programming and Operation Chapter 5 3. Click Advanced… for more advanced settings. 4. Configure the advanced settings as desired. Advanced Reaction Connection Time Description Limit Configuration Settings The RPI specifies the period that data updates over a connection. For example, an input module produces data at the RPI that you assign.
  • Page 60: Safety Configuration Signature And Ownership

    Safety Configuration Signature and Ownership The connection between the controller and the drive is based on the following criteria: • Drive catalog number must be for PowerFlex 755 drives • Drive Safety Network Number (SNN) (displayed in the drive’s Module Properties dialog box.) •…

  • Page 61: Safe Torque Off — Stop Category 0 Example Program

    Integrated Motion – Network STO Programming and Operation Chapter 5 Safe Torque Off – Stop This safety task code is an example for a category 0 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 0 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…

  • Page 62: Safe Torque Off — Stop Category 1 Example Program

    Chapter 5 Integrated Motion – Network STO Programming and Operation Safe Torque Off – Stop This safety task code is an example for a category 1 stop. The STO output is energized if the safety interlocks are satisfied, there are no faults, there is a valid Category 1 Example Program connection, and there is a falling edge on the ‘Safety_Reset’…

  • Page 63: Safety Tags In Standard Routines

    Integrated Motion – Network STO Programming and Operation Chapter 5 instruction is used on the reset rung. Then, the OSF instruction Output Bit tag is used as the reset bit for the STO output or enable rungs. Safety Tags in Standard Routines Tags that are classified as safety tags are either controller-scoped or program- scoped.

  • Page 64: Sto Fault Reset

    To clear the STO Fault condition, a transition from logic 0 to 1 of the SO.Reset tag is required. If the PowerFlex 755 drive safety controller detects a fault, the input assembly tag SI.SafetyFault is set to 1. To reset an Axis.SafetyFault, a Motion Axis Fault Reset (MAFR) command must be issued.

  • Page 65: Troubleshoot The Safe Torque Off Function

    Out-of-Box State on page Replacing a PowerFlex 755 drive that is on an integrated safety network is more complicated than replacing standard devices because of the safety network number (SNN). The device number and SNN make up the safety device’s DeviceID.

  • Page 66: Replace An Integrated Safety Drive In A Guardlogix System

    Chapter 5 Integrated Motion – Network STO Programming and Operation Replace an Integrated Safety Drive in a GuardLogix System When you replace an integrated safety drive, the replacement device must be configured properly and the replacement drives operation be user-verified. ATTENTION: During drive replacement or functional test, the safety of the system must not rely on any portion of the affected drive.

  • Page 67: Motion Direct Commands In Motion Control Systems

    ATTENTION: Enable the Configure Always feature only if the entire integrated safety control system is not being relied on to maintain SIL 3 behavior during the replacement and functional testing of a PowerFlex 755 drive. If other parts of the integrated safety control system are being relied upon to maintain SIL 3, make sure that the controller’s Configure Always feature is…

  • Page 68
    Understand STO Bypass When Using Motion Direct Commands If a Safety-only connection between the GuardLogix safety controller and the PowerFlex 755 drive was established at least once after the drive was received from the factory, the drive does not allow motion while the safety controller is in Program mode by default.
  • Page 69
    Logix Designer Application Warning Messages When the controller is in Run mode, executing safety functions, the PowerFlex 755 drive follows the commands that it receives from the safety controller. The controller reports Safety State = Running and Axis State =…
  • Page 70
    Chapter 5 Integrated Motion – Network STO Programming and Operation When you issue a motion direct command to an axis to produce torque in Program mode, for example MSO or MDS, with the safety connection present to the drive, a warning message is presented before the motion direct command is executed, as shown in Figure Figure 10 — STO Bypass Prompt When the Safety Controller is in Program Mode…
  • Page 71
    Integrated Motion – Network STO Programming and Operation Chapter 5 Figure 11 — Safety State Indications After Controller Transitions to Program Mode (MDC executing) IMPORTANT The persistent warning message text Safe Torque Off bypassed appears when a motion direct command is executed. The warning message persists even after the dialog is closed and reopened as long as the integrated safety drive is in STO Bypass mode.
  • Page 72
    Chapter 5 Integrated Motion – Network STO Programming and Operation Torque Permitted in a Multi-workstation Environment The warning in Figure 12 is displayed to notify a second user working in a multi-workstation environment that the first user has placed the integrated safety drive in the STO state and that the current action is about to bypass the STO state and permit torque.
  • Page 73
    Integrated Motion – Network STO Programming and Operation Chapter 5 Figure 15 — Axis and Safe State Indications on the Motion Console Dialog Box Functional Safety Considerations ATTENTION: Before maintenance work can be performed in Program mode, the developer of the application must consider the implications of allowing motion through motion direct commands and should consider developing logic for runtime maintenance operations to meet the requirements of machine safety operating procedures.
  • Page 74
    Chapter 5 Integrated Motion – Network STO Programming and Operation Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 75: Wiring

    Chapter Hardwired STO Wiring and Operation This chapter provides information for hardwired installation and operation of the Integrated Safety — Safe Torque Off option module. Topic Page Wiring Description of Hardwired Operation Selection of Hardwired Operation Configure the Drive with Hardwired Safety Connections Timing Diagrams Wiring Observe these wiring guidelines when installing the safety option module:…

  • Page 76: Cabling

    Chapter 6 Hardwired STO Wiring and Operation IMPORTANT The National Electrical Code and local electrical codes take precedence over the values and methods provided. Cabling • Safety input wiring must be protected against external damage by cable ducts, conduit, armored cable, or other means. •…

  • Page 77: Description Of Hardwired Operation

    To add the 20-750-S3 peripheral device, and configure the safety connection, see these sections: Hardwired Safety • Add an Option Card to a PowerFlex 755 Drive in I/O Mode on page 34 Connections • Add an Option Card to a PowerFlex 755T Drive Product in I/O Mode…

  • Page 78: Timing Diagrams

    Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…

  • Page 79
    Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 80
    Drive Start Inhibits is parameter 933 in PowerFlex 755 drives and parameter 603 in PowerFlex 755T drive products. Drive Fault Status B is parameter 953 in PowerFlex 755 drives and parameter 462 in PowerFlex 755T drive products. ATTENTION: The STO fault is detected upon demand of the STO function.
  • Page 81: Monitor Sto Status

    Chapter Monitoring and Troubleshooting This chapter provides information for monitoring and troubleshooting the Integrated Safety — Safe Torque Off option module. Topic Page Monitor STO Status Monitor STO With a HIM or Software Monitor STO Status The option module has three status indicators to provide status of the module, safety network, and motion output of the drive.

  • Page 82: Network Status Indicator (Ds2)

    Chapter 7 Monitoring and Troubleshooting Network Status Indicator (DS2) Table 14 provides information for the network status. Table 14 — Network Status LED (DS2) Status State Problem Indicator Not powered/not online Device is not online. No connections Flashing green Device is online but has no connections in the established state. Connected Green Device is online and connections in the established state.

  • Page 83: Monitor Sto With A Him Or Software

    Monitoring and Troubleshooting Chapter 7 Monitor STO With a HIM or This section describes safety-related status information available for viewing with a HIM, drive module properties in the Logix Designer application, or Software Connected Components Workbench™ software. Fault Messages on HIM, Drive Module, and Connected Components Workbench Software The only message displayed for any fault originating from the option card is ‘SAFETY BRD FAULT’…

  • Page 84
    Chapter 7 Monitoring and Troubleshooting For diagnostic purposes, you can also view status attributes by accessing these Host Config parameters (note: these are different than the ‘Device Config’ parameters) from a HIM, Connected Components Workbench software, or the Logix Designer application: •…
  • Page 85
    Monitoring and Troubleshooting Chapter 7 Table 20 — Safety Status [P4] Display Text Description Safety Fault Indicates the existence of a safety fault 0 = no fault 1 = faulted Safety Reset A transition from 0 to 1 resets the safety function. Restart Req Indicates whether a manual restart is required following a stop function, 0 = restart not required…
  • Page 86: Safety Supervisor State

    Chapter 7 Monitoring and Troubleshooting Safety Supervisor State The Safety Supervisor State provides information on the state of the safety connection and the mode of operation. It can be read in the user’s Logix program via the MSG instruction. Table 22 — Safety Supervisor State: MSG Parameter Value Description…

  • Page 87: Integrated Safety — Safe Torque Off Option Module

    Appendix Specifications, Certifications, and CE Conformity This appendix provides general specifications for the Integrated Safety — Safe Torque Off option module. Topic Page Integrated Safety — Safe Torque Off Option Module Specifications Environmental Specifications Certifications Integrated Safety — Safe These specifications apply to the Integrated Safety — Safe Torque Off option module.

  • Page 88: Environmental Specifications

    For detailed information on environmental, pollution degree, and drive enclosure rating specifications, see the technical data publication for your drive. • PowerFlex 755 AC Drives Technical Data, publication 750-TD001 • PowerFlex 750-Series Products with TotalFORCE™ Control Technical…

  • Page 89: Certifications

    EN IEC 62061; Up to Performance Level PLe and Category 3, according to EN ISO 13849-1; When used as described in this PowerFlex 755 Integrated Safety — Safe Torque Off User Manual, publication 750-UM004. (1) See the Product Certification link at http://www.rockwellautomation.com/global/certification/overview.page…

  • Page 90
    Appendix A Specifications, Certifications, and CE Conformity Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 91: Installation Considerations

    Appendix STO Option Module Replacement Considerations This appendix provides a comparison of the differences between the Safe Torque Off option module (catalog number 20-750-S) and the new Integrated Safety — Safe Torque Off option module (catalog number 20-750-S3). Topic Page Installation Considerations Wiring Installation Considerations…

  • Page 92: Wiring

    Appendix B STO Option Module Replacement Considerations Wiring The wiring and terminal blocks for the option modules are different. Safe Torque Off Option Module This section describes the terminal block and power supply for the Safe Torque Off option module. Table 26 — TB2 Terminal Designation Terminal Name Description…

  • Page 93: Parameters And Settings In A Linear List

    Appendix Parameter Data This appendix provides a description of the device config parameters and host config parameters. Parameters and Settings in a This section lists the configurable parameters and their valid settings in numerical order. Linear List Device Config Parameters These parameters are part of the device configuration parameters.

  • Page 94
    Appendix C Parameter Data Table 28 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Extended Status “Self Test” (0) A self test is in progress. USINT Detailed description “FW Update” (1) A firmware update is in progress. of the module status based on Identity “IO Faulted”…
  • Page 95: Host Config Parameters

    Parameter Data Appendix C Table 28 — Device Config Parameters (continued) Display Name Values Description Data Type Full Name Description Safety In Values “In0 Value” (0) Safety Input 0 Value BYTE Current value of the 0 = Off safety inputs. 1 = On “In1 Value”…

  • Page 96
    Appendix C Parameter Data Table 29 — Host Config Parameters (continued) Display Name Values Full Name Description Safety State USINT Provides information on the state of the safety connection and the mode of operation. “Testing” (1) – The safety option module is in self-test “Idle”…
  • Page 97: Index

    STO state reset 64 GuardLogix 5570 13 IP address 34 GuardLogix 5580 13 jumper diagnostics 84 locations documentation Powerflex 755 drives 21 additional resources 10 PowerFlex 755T drive products 22 drive replacement settings 19 integrated safety 48 DS1 81 DS2 81…

  • Page 98
    95 task signature 49 PFD 16 SAFETY BRD FAULT 83 PFD and PFH safety only connection 32 PowerFlex 755 drives 17 shielded cable 76 PowerFlex 755T drive products 17 SI.ConnectionStatus tags 30 pollution degree 88 SI.Status tags 30 power supply…
  • Page 99
    Index status attributes 84 indicators 81 LEDs module status (DS1) 81 motion output status (DS3) 82 network status (DS2) 82 fault condition 47 reset 47 fault messages 83 Circuit Err(3) 83 Discrepancy(102) 83 Mode Conflict(104) 83 Stuck High(5) 83 Stuck Low(4) 83 fault type 83 function response time 29 stop category…
  • Page 100
    Index Notes: Rockwell Automation Publication 750-UM004B-EN-P — October 2018…
  • Page 102
    How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf. Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page. Allen-Bradley, Connected Components Workbench, CompactLogix, ControlLogix, GuardLogix, PowerFlex, Rockwell Automation, Rockwell Software, Studio 5000 Logix Designer, and TotalFORCE are trademarks of Rockwell Automation, Inc.

Дата публикации: 10.08.2017

Устранение неисправностей преобразователя частоты Allen Bradley PowerFlex 700 начинается с неисправности, возникающей во время работы или запуска. Состояние вашего устройства постоянно контролируется, и любые изменения состояния будут отображаться с клавиатуры. Ошибка — это условие, которое останавливает преобразователь и должно быть исправлено до сброса ошибки и запуска частотника. Ниже приведен список неисправностей и возможных причин. Если неисправность не может быть сброшена, это может означать, что привод PowerFlex 700 нуждается в ремонте.

Fault 29 — Analog In Loss — аналоговый вход сконфигурирован на ошибку при потере сигнала. Потеря сигнала произошла.
Fault 108 — Anlg Cal Chksum — Контрольная сумма, считанная из аналоговых данных калибровки, не соответствует расчетной сумме.
Fault 33 — Ошибки Auto Rstrt — Диск неудачно попытался сбросить ошибку и возобновить выполнение запрограммированного количества [Flt RstRun Tries].
Fault 80 — AutoTune Aborted — функция автонастройки отменена пользователем или произошла ошибка.
Fault 2 — Вспомогательный вход — Блокировка дополнительного входа открыта.
Fault 55 — Cntl Bd Overtemp — датчик температуры на главной панели управления обнаружил чрезмерное нагревание.
Fault 69 — Сопротивление ББ — Сопротивление внутреннего резистора БД выходит за допустимые пределы.
Fault 24 — Запрет торможения — привод не выполняет заданное замедление, потому что он пытается ограничить напряжение на шине.
Fault 64 — Привод OverLoad — Превышен рейтинг привода 110% в течение 1 минуты или 150% в течение 3 секунд.
Fault 49 — Привод питания — не отображается ошибка. Используется как маркер включения питания в очереди сбоев, указывая на то, что мощность привода была циклической.
Fault 79 — Чрезмерная нагрузка — двигатель не достиг скорости в назначенное время во время автонастройки.
Fault 91 — Потеря энкодера — Требуется дифференциальный датчик. Отсутствует один из двух сигналов канала энкодера.
Fault 90 — Encoder Quad Err. Оба канала кодировщика изменили состояние в течение одного тактового цикла.
Fault 900-930 — Fatal Faults — Диагностический код, указывающий на неисправность привода.
Fault 52 — Сброс неисправностей — Не отображается ошибка. Используется как маркер в очереди сбоев, указывающий, что была выполнена функция сброса ошибок.
Fault 51 — Flt QueueCleared — Не отображается ошибка. Используется как маркер в очереди ошибок, указывающий, что была выполнена функция очистки очереди.
Fault 78 — FluxAmpsRef Rang — значение для усилителей потока, определенных процедурой автонастройки, превышает запрограммированный [Motor NP FLA].
Fault 13 — Неисправность заземления — путь тока на землю превышает 25% от номинальной мощности.
Fault 93 — Неисправность аппаратного обеспечения — аппаратное включение отключено (перемычка высока), но логический вывод по-прежнему низкий.
Fault 130 — Ошибка аппаратного обеспечения — Ошибка загрузки массива ворот.
Неисправность 131 — Ошибка аппаратного обеспечения — сбой в двух портах.
Fault 18 — Аппаратное обеспечение PTC — Двигатель PTC (положительный температурный коэффициент) Overtemp.
Fault 10 — Теплоотвод LowTemp — Объявляет слишком низкий температурный режим или открытое устройство NTC (датчик температуры радиатора).
Fault 8 — Теплоотвод OvrTemp — Температура радиатора превышает 100% от [Частота вращения] или составляет менее примерно -19 ° C.
Fault 12 — HW OverCurrent — Выходной ток привода превысил предельный ток оборудования.
Fault 106 — Incompat MCB-PB — Информация о характеристиках привода, хранящаяся на плате питания, несовместима с основной панелью управления.
Fault 121 — Потеря связи ввода-вывода — плата ввода-вывода потеряла связь с Главным управлением.
Fault 122 — Ошибка ввода-вывода — обнаружен ввод-вывод, но не была выполнена последовательность включения питания.
Fault 17 — Потеря входной фазы — пульсация шины постоянного тока превысила заданный уровень.
Fault 77 — IR Volts Range — Calculate «- это авто настройка по умолчанию, а значение, определяемое процедурой авто настройки для ИК-капель, не находится в диапазоне допустимых значений.
Fault 87 — IXo VoltageRange — Напряжение, рассчитанное для индуктивного сопротивления двигателя, превышает 25% от [Motor NP Volts].
Fault 15 — Потеря нагрузки — Ток выходного крутящего момента привода ниже [Уровень потери нагрузки] в течение периода времени, превышающего [Время потери нагрузки].
Fault 7 — Перегрузка двигателя — Отключение внутренней электронной перегрузки.
Fault 16 — Термистор двигателя — Выход термистора выходит за допустимые пределы.
Fault 109 — Контрольная сумма ввода / вывода NVS — ошибка контрольной суммы EEprom.
Fault110 — Неисправность ввода-вывода NVS — ошибка ввода-вывода EEprom.
Fault 21 — Выход PhaseLoss — Ток в одной или нескольких фазах потерян или остается ниже заданного уровня.
Fault 25 — OverSpeed ​​Limit — такие функции, как компенсация скольжения или регулировка шины, попытались добавить настройку выходной частоты больше, чем запрограммировано в [Ограничение скорости].
Fault 5 — OverVoltage — Напряжение шины постоянного тока превысило максимальное значение.
Fault 100 — Параметр Chksum — Контрольная сумма, считанная с доски, не соответствует расчетной сумме.
Fault 48 — Params Defaulted — Приводу было задано указание значений по умолчанию для EEPROM.
Fault 38 — Фаза от U до Grnd. На этом этапе между приводом и двигателем обнаружена фаза на землю.
Fault 39 — Фаза V до Grnd — На этом этапе между приводом и двигателем обнаружена фаза на замыкание на землю.
Fault 40 — Фаза W до Grnd. На этом этапе между приводом и двигателем обнаружена фаза на землю.
Fault 41 — Phase UV Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 42 — Phase VW Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 43 — Phase UW Short — Чрезмерный ток обнаружен между этими двумя выходными клеммами.
Fault 71 — Адаптер порта 1 — У коммуникационной карты есть неисправность.
Fault 72 — Адаптер порта 2 — У карты связи есть неисправность.
Fault 73 — Адаптер порта 3 — У карты связи есть неисправность.
Fault 74 — Порт 4 Адаптер — У коммуникационной карты есть неисправность.
Fault 75 — Порт 5 Адаптер — Ошибка связи с коммуникационной картой.
Fault 76 — Порт 6 Адаптер — У коммуникационной карты есть неисправность.
Fault111 — Power Down — данные EEPROM повреждены при включении питания.
Fault 3 — Потеря мощности — Напряжение шины постоянного тока оставалось ниже 85% от номинала дольше, чем [Время потери мощности].
Fault 70 — Блок питания. Один или несколько выходных транзисторов работают в активной области вместо десатурации. Это может быть вызвано чрезмерным током транзистора или недостаточным напряжением базового привода.
Fault 92 — Pulse In Loss — Z Channel выбран как импульсный вход, и сигнал отсутствует.
Fault 104 — Pwr Brd Chksum1 — Контрольная сумма, считанная с EEPROM, не соответствует контрольной сумме, рассчитанной из данных EEPROM.
Fault 105 — Pwr Brd Chksum2 — Контрольная сумма, считанная с доски, не соответствует расчетной сумме.
Fault 107 — Заменена MCB-PB — Главный блок управления был заменен, и параметры не были запрограммированы.
Fault 28 — См. Руководство — Без энкодера TorqProve был включен, но пользователь не читал и не понимал проблемы приложений без энкодера.
Fault 63 — Pin Shear — запрограммировано [Current Lmt Val].
Fault 88 — Ошибка программного обеспечения — Ошибка установления связи с микропроцессором.
Fault 89 — Ошибка программного обеспечения — ошибка установления связи с микропроцессором.
Fault 36 — SW OverCurrent — выходной ток привода превысил номинальный ток 1 мс. Этот рейтинг больше, чем номинальный ток 3 секунды и меньше, чем уровень сбоя аппаратной максимальной токовой защиты. Обычно он составляет 200-250% от номинальной скорости привода.
Fault 20 — TorqPrv Spd Band — разница между [Commanded Speed] и [Encoder Speed] превысила уровень, установленный в [Spd Dev Band] за период времени, превышающий [Spd Band Integrat].
Fault 9 — Trnsistr OvrTemp — Выходные транзисторы превысили максимальную рабочую температуру.
Fault 4 — UnderVoltage — Напряжение шины постоянного тока упало ниже минимального значения 407 В постоянного тока на входе 400/480 В или 204 В постоянного тока на входе 200/240 В.
Fault 101 — UserSet1 Chksum — контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.
Fault 102 — UserSet2 Chksum — контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.
Fault 103 — UserSet3 Chksum — Контрольная сумма, считанная из набора пользователей, не соответствует расчетной сумме.

Заказать оборудование Allen Bradley

Купить Allen Bradley powerflex ошибки в компании Олниса можно оптом или в розницу. Доставим Allen Bradley powerflex ошибки в любой регион России. Можем предложить точный аналог. Работаем напрямую с производителем, не используя посредников.

При работе промышленной электроники производителя Аллен-Брэдли могут возникать определённые ошибки. Чтобы быстро их устранить, необходима помощь наладчика оборудования или можно самостоятельно ознакомиться с инструкцией. Приборы максимально адаптированы для работы новичков и настроить их не составит большого труда.

Серия Allen Bradley PowerFlex представлена частотными преобразователями. Зная специфику их работы и наименование модельного ряда, можно быстро сориентироваться для устранения ошибок в промышленном секторе:

  • серия PowerFlex 1305;
  • серия PowerFlex 1332;
  • серия PowerFlex 70;
  • серия PowerFlex 700S;
  • серия PowerFlex 1333;
  • серия PowerFlex 1334;
  • серия PowerFlex 1336;
  • серия PowerFlex 1341;
  • серия PowerFlex 1351;
  • серия PowerFlex 527;
  • серия PowerFlex 4M;
  • серия PowerFlex 4;
  • серия PowerFlex 40;
  • серия PowerFlex 40P;
  • серия PowerFlex 1352;
  • серия PowerFlex 1361;
  • серия PowerFlex 160;
  • серия PowerFlex 755T;
  • серия PowerFlex 755 TL;
  • серия PowerFlex 755TR;
  • серия PowerFlex 755TM;
  • серия PowerFlex 753;
  • серия PowerFlex 755;
  • серия PowerFlex 700;
  • серия PowerFlex 700L;
  • серия PowerFlex 523;
  • серия PowerFlex 525;
  • серия PowerFlex 400.

Allen Bradley powerflex ошибки

Кодировка ошибки и ее значение

Для всех вышеперечисленных частотников наиболее характерны следующие шифры ошибок:

  • сбой F2 – ошибка входа в Auxiliary;
  • сбой F3 – нарушение или обрыв фазы сети при подключении;
  • сбой F4 – слишком низкий показатель электронапряжения в сети;
  • сбой F5 – слишком высокий показатель электронапряжения в сети;
  • сбой F6 – поломка двигателя, есть механические повреждения, мешающие нормальной работе устройства;
  • сбой F7 – перегрузка электромотора напряжением, опасность;
  • сбой F8 – начинает перегреваться радиатор;
  • сбой F12 – пиковый скачок напряжения с прицельным электроударом на аппарат;
  • сбой F13 – произошло короткое замыкание контакта заземления;
  • сбой F29 – аналоговый вход неисправен;
  • сбой F33 – невозможно переподключиться автоматически, превышен лимит авто запроса;
  • сбои в диапазоне F38-43 – сигнализируют о нарушениях работы фаз U, V, W и их коннекта между собой;
  • сбой F48 – аварийный сброс всех предустановленных автонастроек;
  • сбой F63 – сбой установки ПО;
  • сбой F64 – внезапная перезагрузка в процессе работы –неисправность системы;
  • сбой F70 – силовая часть аппарата вышла из строя;
  • сбой F71 – нарушена обратная связь с контролирующим устройством;
  • сбой F80 – автоматические корректировки более работают, требуется перезагрузка системы;
  • error F81 – неисправен порт RS-485;
  • сбой F100 – отказ подсчета суммы записанных параметров;
  • сбой F122 – плата ввода/вывода вышла из строя.

Это основной перечень, который легко устранить, следуя руководству по эксплуатации преобразователей частоты Аллен-Брэдли.

Allen Bradley powerflex ошибки

Покупка в «Олниса»

Выбор конкретного устройства и его настройка – задача специалиста или работника, ответственного за контроль прибора. Оригинальные устройства с длительной гарантией работы и полным сервисным обслуживанием на протяжении 12 месяцев от момента покупки вы найдете в нашем онлайн-каталоге.

Все приборы Allen Bradley можно приобрести с доставкой по России или любому другому городу на территории СНГ.

alegor

здесь недавно
здесь недавно
Сообщения: 5
Зарегистрирован: 08 окт 2022, 13:32
Имя: Игорь
город/регион: ВОЛЖСКИЙ

Power flex 400 ОШИБКИ f5 f13

Сообщение

alegor » 08 окт 2022, 14:11

Выдает ошибки 1) перенапряжение на шине DC F5 и параметр b005 завышенное напряжения и к тому же плавает плюс минус 100 в (в действительности все нормально)
2) короткое замыкание выхода F13 но силовые модули исправны кз физически нет.
также индикация температуры B014 повышенная температура 60 градусов и плавает также плюс минус 30 и не реагирует на отключение датчика температуры.
При сбросе всех ошибок остается F13 кз выхода потом снова появляется F5 превышение напряжения.
похоже все указывает на глюк процессорной части.
что с этим можно сделать?
схему бы..)
где купить?
модель 22C-D072A103 SERIA A

Ryzhij

почётный участник форума
почётный участник форума
Сообщения: 5370
Зарегистрирован: 07 окт 2011, 09:12
Имя: Гаско Вячеслав Эриевич
Страна: Россия
город/регион: Рязань
Благодарил (а): 422 раза
Поблагодарили: 614 раз

Power flex 400 ОШИБКИ f5 f13

Сообщение

Ryzhij » 10 окт 2022, 14:46

Посмотреть внимательно на проект, и решить вопрос с необходимостью и исправностью тормозных реостатов. И тормозного ключа тоже.

—————————————————
«У человека в душе дыра размером с Бога, и каждый заполняет её как может.» (Жан-Поль Сартр)
«Ту пустоту, которая остаётся в душе, когда в ней нет Бога, и весь мир не может заполнить.» (святитель Николай Сербский)

13 апреля 2023 г. 09:43

Фото ПЧ Allen Bradley PowerFlex40

При работе промышленной электроники Allen Bradley в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Наиболее частое использование в промышленном оборудовании получили следующие частотные преобразователи фирмы Allen Bradley: PowerFlex, 1305 Series, 1332 Series, 1333 Series, 1334 Series, 1336 Series, 1341 Series, 1351 Series, 1352 Series, 1361 Series, 160 Series,. В свою очередь серия Allen Bradley PowerFlex включает в себя следующие модели: PowerFlex 755T, PowerFlex 755TL, PowerFlex 755TR, PowerFlex 755TM, PowerFlex 753, PowerFlex 755, PowerFlex 755T, PowerFlex 70, PowerFlex 700S, PowerFlex 700, PowerFlex 700L, PowerFlex 523, PowerFlex 525, PowerFlex 527, PowerFlex 4M, PowerFlex 4, PowerFlex 40, PowerFlex 40P, PowerFlex 400. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.

Частотные преобразователи Allen Bradley имеют следующие распространенные ошибки:

Наиболее частые ошибки преобразователей Allen Bradley PowerFlex 40:

Ошибка F2 (error F2) — ошибка входа Auxiliary;
Ошибка F3 (error F3) — обрыв фазы на входе;
Ошибка F4 (error F4) — пониженное напряжение;
Ошибка F5 (error F5) — перенапряжение;
Ошибка F6 (error F6) — механическая неисправность двигателя;
Ошибка F7 (error F7) — перегрузка двигателя;
Ошибка F8 (error F8) — перегрев радиатора;
Ошибка F12 (error F12) — аппаратная перегрузка по току;
Ошибка F13 (error F13) — короткое замыкание на землю;
Ошибка F29 (error F29) — ошибка аналогового входа;
Ошибка F33 (error F33) — превышено количество попыток автоматического повторного включения — АПВ;
Ошибка F38 (error F38) — замыкание фазы U на землю на выходе ПЧ;
Ошибка F39 (error F39) — замыкание фазы V на землю на выходе ПЧ;
Ошибка F40 (error F40) — замыкание фазы W на землю на выходе ПЧ;
Ошибка F41 (error F41) — короткое замыкание между фазами UV;
Ошибка F42 (error F42) — короткое замыкание между фазами UW;
Ошибка F43 (error F43) — короткое замыкание между фазами VW;
Ошибка F48 (error F48) — параметры EEPROM были сброшены;
Ошибка F63 (error F63) — перегрузка по току по программной уставке;
Ошибка F64 (error F64) — перегрузка во время работы;
Ошибка F70 (error F70) — неисправность силовой части;
Ошибка F71 (error F71) — ошибка связи;
Ошибка F80 (error F80) — ошибка автонастройки;
Ошибка F81 (error F81) — ошибка связи RS485;
Ошибка F100 (error F100) — ошибка контрольной суммы записанных параметров;
Ошибка F122 (error F122) — ошибка платы ввода-вывода.

Контакты

Время выполнения запроса: 0,00232911109924 секунды.

askino

Рекомендуемые сообщения

  •  #1

Доброго времени суток! Имеется частотный преобразователь Allen Bradley Power Flex 40, мощность 0.75 квт, 220 в. Работал без сбоев до недавнего времени на токарном станке. Без всякой причины выдал ошибку F013 (замыкание одной из фаз на землю). Был проверен двигатель, попробовал подключать другие двигатели- та же ошибка, причем ошибка начала появляться чаще, и теперь появляется примерно через минуту работы ПЧ, без подключения двигателя она также высвечивается. Проверил все конденсаторы, протянул гайки, осмотрел на предмет повреждений платы ПЧ. Частотник рабочий, водой не заливался, внутри даже пыли нет. Может у кого есть опыт в ремонте этих приборов или есть какие-нибудь предположения? Я уже морально подготовился к замене привода, буду рад любому совету.

Поделиться сообщением


Ссылка на сообщение
  •  #2

Allen Bradley Power Flex 40 достаточно редкая вещь для использования в личных целях. Скорее всего неисправен сам ПЧ, его силовой модуль, ремонт на такие мощности ПЧ не рентабелен, ремонт может иметь стоимость нового ПЧ. Если сами сможете диагностировать и определить точно неисправность а потом отремонтировать — это одни затраты, а если искать мастера на стороне это уже совсем другие затраты. И в принципе , решать вам, да вы уже и готовы к замене.

Поделиться сообщением


Ссылка на сообщение
  •  #3

Полностью с вами согласен. В сети удивительно мало информации по этим частотникам. Нашел упоминание на зарубежном форуме о такой аномалии в приборах выпускавшихся до 2013 года, AB чинила их по гарантии. Что-то подсказывает что транзисторная сборка у меня цела, но проверить без выпайки не могу, грешил на датчики Холла, но это не они. Собственно в ремонт отдавать не хочу, сборка стоит дороже, чем я его купил, да и нет в наших краях толковых мастеров.

Поделиться сообщением


Ссылка на сообщение
  •  #4

Эти ПЧ шли в основном для нефтехима, чистый америкос,силовая часть похожа на ПЧ LENZE 8200 Vector. Сделаны неплохо и работают долго, ломаются крайне редко.

Поделиться сообщением


Ссылка на сообщение
  •  #5

В моем случае сборка вроде китайская, но качественная. Самое обидное, что отработал он только 1700 часов (судя по внутреннему счетчику), мост целый, на шине постоянного тока стабильно 315 вольт. И насколько удалось прозвонить на клеммах- сборка igbt тоже впорядке, это так еще и потому, что пч работает, хоть и выдает потом ошибку. Данная ошибка означает именно короткое на землю где-то в управляющих цепях, а не замыкание одной из выходных фаз. Похоже на какой-то глюк, который программа интерпретирует как утечка в заземление. Попробую поискать инфу по LENZE 8200, может что подобное попадется.

Поделиться сообщением


Ссылка на сообщение
  •  #6

Инфы не найдете, скорее всего один из силовых ключей неисправен, есть у них такая штука как микропробой канала, после микропробоя канал имеет свойство частично восстанавливаться и работать какое то время. Защита у них работает быстро и отрубает управление ключами не допуская полного разрушения структуры канала. Либо датчик тока какой то дает ложное срабатывание.

Поделиться сообщением


Ссылка на сообщение
  •  #7

Да уж, я так понимаю убедиться в этом можно лишь заменив сборку на заведомо рабочую. На счет датчиков, считаю проблема не в них, т.к. частотник и без всякого тока на выходных клеммах выдает ошибку. Спасибо вам, Павел, за помощь. Буду подыскивать новый преобразователь.

Поделиться сообщением


Ссылка на сообщение
  •  #8

Дело в том, что кроме датчиков тока на выходных фазах, есть ещё датчики тока шины постоянного тока, по ним и идет диагностика короткого на землю.

Поделиться сообщением


Ссылка на сообщение
  •  #9

Думаю что и такая причина возможна. При разборке не заметил чтобы после мостика были вообще какие-то датчики.

Поделиться сообщением


Ссылка на сообщение

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Войти

Уже есть аккаунт? Войти в систему.

Войти


  • Последние посетители

      0 пользователей онлайн

    Ни одного зарегистрированного пользователя не просматривает данную страницу

Понравилась статья? Поделить с друзьями:
  • Powerflex 753 коды ошибок
  • Powerpoint ошибка при доступе к файлу
  • Powerflex 525 ошибки
  • Popcur1006 альфа банк ошибка
  • Powerdirector ошибка при сохранении