Ошибки статистического анализа тест

Тест с ответами по теме «Введение в статистический анализ медицинских данных»

Вашему вниманию представляется Тест с ответами по теме «Введение в статистический анализ медицинских данных» в рамках программы НМО: непрерывного медицинского образования для медицинских работников (врачи, медсестры и фармацевты).
Тест с ответами по теме «Введение в статистический анализ медицинских данных» в рамках программы НМО: непрерывного медицинского образования для медицинского персонала высшего и среднего звена (врачи, медицинские сестры и фармацевтические работники) позволяет успешнее подготовиться к итоговой аттестации и/или понять данную тему.

Если хотите проходить тесты быстрее и иметь полный доступ ко всем тестам с ответами по своей специальности, то пользуйтесь НМО тренажером: t.me/nmomed_bot


1. Выбор статистического теста для сравнения групп зависит от

1) распределения признака, по которому сравниваются группы;+
2) числа сопоставляемых групп;+
3) связанности (сопряженности) групп;+
4) числа пациентов в группах.

2. Группы статистически значимо отличаются по относительной частоте показателя, если доверительные интервалы для относительных частот

1) включают 0;
2) включают 1;
3) пересекаются;
4) не пересекаются.+

3. Для оценки сравнительного эффекта лечебного вмешательства, выраженного бинарным признаком, может использоваться такой показатель, как

1) разность абсолютных рисков;+
2) отношение шансов;+
3) относительный риск;+
4) отношение угроз (рисков);
5) разность средних.

4. Для оценки сравнительного эффекта лечебного вмешательства, выраженного временем до клинически значимого события, может использоваться

1) разность средних;
2) разность абсолютных рисков;
3) отношение угроз (рисков);+
4) отношение шансов;
5) относительный риск.

5. Для оценки сравнительного эффекта профилактического вмешательства, выраженного количественным признаком, может использоваться такой показатель, как

1) отношение угроз (рисков);
2) разность абсолютных рисков;
3) отношение шансов;
4) относительный риск;
5) разность средних.+

6. Доверительный интервал — это

1) среднее + стандартная ошибка среднего;
2) интервал от минимального до максимального значения признака;
3) среднее + среднеквадратическое отклонение;
4) интервал, в котором находится истинное значение параметра.+

7. Если доверительный интервал для чувствительности теста включает 50%, тест

1) хороший;
2) приемлемый;
3) бесполезный;+
4) отличный.

8. Какие зависящие от преваленса характеристики диагностического теста Вы знаете?

1) прогностическая ценность положительного результата;+
2) специфичность;
3) прогностическая ценность отрицательного результата;+
4) чувствительность.

9. Какие устойчивые характеристики диагностического теста Вы знаете?

1) чувствительность;+
2) прогностическая ценность отрицательного результата;
3) специфичность;+
4) прогностическая ценность положительного результата.

10. Какой дизайн исследования необходим для оценки точности диагностического метода?

1) рандомизированное контролируемое испытание;
2) когортное исследование;
3) ретроспективное исследование;
4) одномоментное исследование.+

11. Какой дизайн исследования необходим для оценки точности скринингового метода?

1) одномоментное исследование;+
2) когортное исследование;
3) рандомизированное контролируемое испытание;
4) ретроспективное исследование.

12. Какой дизайн исследования необходим для оценки эффективности вакцины?

1) ретроспективное исследование;
2) когортное исследование;
3) одномоментное исследование;
4) рандомизированное контролируемое испытание.+

13. Какой дизайн исследования необходим для оценки эффективности лекарственного препарата?

1) одномоментное исследование;
2) рандомизированное контролируемое испытание;+
3) когортное исследование;
4) ретроспективное исследование.

14. Какой статистический тест используется для сравнения двух несвязанных групп по количественным признакам независимо от вида его распределений в этих группах?

1) тест Стьюдента;
2) ANOVA Фридмана;
3) тест Вилкоксона;
4) тест Манна-Уитни.+

15. Какой статистический тест используется для сравнения двух связанных групп по количественным признакам независимо от вида его распределений в этих группах?

1) тест Стьюдента;
2) тест Манна-Уитни;
3) ANOVA Краскела-Уоллиса;
4) тест Вилкоксона.+

16. Какой статистический тест используется для сравнения трех несвязанных групп по количественным признакам независимо от вида его распределений в этих группах?

1) тест Стьюдента;
2) ANOVA Краскела-Уоллиса;+
3) тест Вилкоксона;
4) тест Манна-Уитни.

17. На каких этапах исследования необходимы знания в области статистического анализа медицинских данных?

1) на этапе анализа данных;+
2) на этапе сбора данных;+
3) ни на одном из перечисленных;
4) на этапе планирования;+
5) на этапе подготовки публикации.+

18. Относительный риск — это

1) отношение разности вероятностей исхода в группах, деленное на вероятность исхода в группе контроля;
2) разность вероятностей исхода в группах;
3) отношение разности вероятностей исхода в группах, деленное на вероятность исхода в основной группе;
4) отношение вероятностей исхода в группах.+

19. Правильная методология исследования определяется

1) минимизацией систематических ошибок;+
2) корректным статистическим анализом данных;+
3) устранением систематических ошибок;
4) объемом выборки пациентов.

20. Проверка статистических гипотез позволяет судить

1) о доверительном интервале для разности абсолютных рисков;
2) о доверительном интервале для относительного риска;
3) о величине статистического различия групп;
4) о факте статистического различия групп.+

21. Прогностическая ценность отрицательного результата теста – это

1) доля истинно-отрицательных результатов среди всех отрицательных результатов теста;+
2) доля истинно-положительных результатов среди всех положительных результатов теста;
3) доля лиц с отрицательным результатом теста среди всех лиц без выявляемого состояния;
4) доля лиц с положительным результатом теста среди всех лиц с выявляемым состоянием.

22. Прогностическая ценность положительного результата теста – это

1) доля истинно-отрицательных результатов среди всех отрицательных результатов теста;
2) доля истинно-положительных результатов среди всех положительных результатов теста;+
3) доля лиц с отрицательным результатом теста среди всех лиц без выявляемого состояния;
4) доля лиц с положительным результатом теста среди всех лиц с выявляемым состоянием.

23. Различаются ли группы статистически, если доверительный интервал для относительного риска включает один?

1) неизвестно;
2) требуются дополнительные исследования;
3) различаются;
4) не различаются.+

24. Различаются ли группы статистически, если доверительный интервал для разности абсолютных рисков не включает ноль?

1) требуются дополнительные исследования;
2) не различаются;
3) различаются;+
4) неизвестно.

25. Скрининг отличается от диагностики тем, что

1) для него важна высокая чувствительность теста;
2) для него важна высокая специфичность теста;+
3) проводится в условиях высокого преваленса;
4) проводится в условиях низкого преваленса.+

26. Специфичность теста – это

1) доля лиц с положительным результатом теста среди всех лиц с выявляемым состоянием;
2) доля истинно-отрицательных результатов среди всех отрицательных результатов теста;
3) доля лиц с отрицательным результатом теста среди всех лиц без выявляемого состояния;+
4) доля истинно-положительных результатов среди всех положительных результатов теста.

27. Тест Хи-квадрат может использоваться для сравнения групп по

1) бинарным признакам;+
2) порядковым признакам;+
3) количественным признакам;
4) качественным признакам.+

28. Точный критерий Фишера может использоваться для сравнения групп по

1) порядковым признакам;
2) количественным признакам;
3) качественным признакам;
4) бинарным признакам.+

29. Чувствительность теста – это

1) доля истинно-положительных результатов среди всех положительных результатов теста;
2) доля истинно-отрицательных результатов среди всех отрицательных результатов теста;
3) доля лиц с отрицательным результатом теста среди всех лиц без выявляемого состояния;
4) доля лиц с положительным результатом теста среди всех лиц с выявляемым состоянием.+

30. Эффект лечебного вмешательства может быть выражен

1) номинальным признаком;
2) количественным признаком;+
3) порядковым признаком;+
4) бинарным признаком.+

Специальности для предварительного и итогового тестирования:

Авиационная и космическая медицина, Акушерство и гинекология, Аллергология и иммунология, Анестезиология-реаниматология, Бактериология, Вирусология, Водолазная медицина, Гастроэнтерология, Гематология, Генетика, Гериатрия, Гигиена детей и подростков, Гигиена питания, Гигиена труда, Гигиеническое воспитание, Дезинфектология, Дерматовенерология, Детская кардиология, Детская онкология, Детская урология-андрология, Детская хирургия, Детская эндокринология, Диетология, Инфекционные болезни, Кардиология, Клиническая лабораторная диагностика, Клиническая фармакология, Колопроктология, Коммунальная гигиена, Косметология, Лабораторная генетика, Лечебная физкультура и спортивная медицина, Лечебное дело, Мануальная терапия, Медико-профилактическое дело, Медико-социальная экспертиза, Медицинская биофизика, Медицинская биохимия, Медицинская кибернетика, Общая врачебная практика (семейная медицина), Общая гигиена, Онкология, Организация здравоохранения и общественное здоровье, Ортодонтия, Остеопатия, Оториноларингология, Офтальмология, Паразитология, Патологическая анатомия, Педиатрия, Педиатрия (после специалитета), Пластическая хирургия, Профпатология, Психиатрия, Психиатрия-наркология, Психотерапия, Пульмонология, Радиационная гигиена, Радиология, Радиотерапия, Ревматология, Рентгенэндоваскулярные диагностика и лечение, Рефлексотерапия, Санитарно-гигиенические лабораторные исследования, Сексология, Сердечно-сосудистая хирургия, Сестринское дело, Скорая медицинская помощь, Социальная гигиена и организация госсанэпидслужбы, Стоматология детская, Стоматология общей практики, Стоматология общей практики (после специалитета), Стоматология ортопедическая, Стоматология терапевтическая, Стоматология хирургическая, Судебно-медицинская экспертиза, Судебно-психиатрическая экспертиза, Сурдология-оториноларингология, Терапия, Токсикология, Торакальная хирургия, Травматология и ортопедия, Трансфузиология, Ультразвуковая диагностика, Управление и экономика фармации, Урология, Фармацевтическая технология, Фармация, Физиотерапия, Фтизиатрия, Функциональная диагностика, Хирургия, Челюстно-лицевая хирургия, Эндокринология, Эндоскопия, Эпидемиология.

Если Вы уважаете наш труд и разделяете наши ценности (помощь медицинским работникам), если Вам хочется внести свой вклад в развитие нашего проекта, поддерживайте нас донатами: вносите свой посильный вклад в общее дело пожертвованиями и финансовой помощью. Чем больше у нас будет ресурсов, тем больше мы сделаем вместе для медицинских работников (Ваших коллег).


Медицина, основанная на доказательствах. Основные понятия

Ошибка при измерении возникает, если[править]

Выберите НЕСКОЛЬКО правильных ответов

группы обследованы в разные периоды времени

в сравниваемых группах используются разные приборы для оценки показателей

в пробе крови возник гемолиз

прибор сломался в ходе исследования

В ретроспективном исследовании сбор данных происходит[править]

Выберите ОДИН правильный ответ

независимо от момента формирования групп

до формирования групп

после формирования групп

одновременно с формированием групп

Лучшим способом формирования групп в проспективном исследовании является[править]

Выберите ОДИН правильный ответ

рандомизация

через одного

произвольный

подбор пар

В сравнительное исследование могут включаться пациенты из[править]

Выберите НЕСКОЛЬКО правильных ответов

трех популяций

двух популяций

четырех популяций

одной популяции

В одномоментном исследовании пациента обследуют[править]

Выберите ОДИН правильный ответ

три раза

два раза

один раз

четыре и более раза

К задачам статистического анализа относятся[править]

Выберите НЕСКОЛЬКО правильных ответов

изучение связей признаков

описательная статистика

сравнение групп

минимизация систематических ошибок

Какой исход является композитным?[править]

Выберите ОДИН правильный ответ

композиция любых двух исходов

композиция двух истинных исходов

композиция объективного и субъективного исходов

композиция истинного и суррогатного исходов

Контролируемое исследование называется так потому, что в нем[править]

Выберите ОДИН правильный ответ

есть контролирующий руководитель

исследователи контролируют состояние больных

есть контрольная группа

есть контроль качества лабораторной службы

Первичным исходом является[править]

Выберите НЕСКОЛЬКО правильных ответов

регистрируемый больным исход

наиболее важный исход

регистрируемый врачом исход

исход, по которому рассчитывается объем выборки в РКИ

Ошибка при отборе — это[править]

Выберите ОДИН правильный ответ

ошибка при применении критериев включения и исключения

исходная несопоставимость групп в проспективном исследовании

неверное распределение пациентов по группам

включение низкокомплаентных пациентов в исследование

В контролируемое исследование включаются пациенты из[править]

Выберите ОДИН правильный ответ

трех популяций

одной популяции

двух популяций

четырех популяций

Наилучшим дизайном исследования для оценки диагностического теста является[править]

Выберите ОДИН правильный ответ

активное одномоментное исследование

ретроспективное исследование случай-контроль

нерандомизированное проспективное исследование

рандомизированное проспективное исследование

Истинным исходом является[править]

Выберите НЕСКОЛЬКО правильных ответов

повышение минеральной плотности кости

выздоровление

смерть

снижение артериального давления

конфликт интересов возможно отсутствует, если[править]

Выберите ОДИН правильный ответ

автор публикации получал гранты от спонсора

автор публикации получал гонорары от спонсора

автор публикации – сотрудник компании-спонсора исследования

исследование проводилось независимой исследовательской компанией

Систематические ошибки чаще всего[править]

Выберите ОДИН правильный ответ

завышают изучаемый эффект

не влияют на изучаемый эффект

занижают изучаемый эффект

Конфликт интересов присутствует, если[править]

Выберите НЕСКОЛЬКО правильных ответов

автор публикации – сотрудник спонсора

спонсор исследования – производитель исследуемого лекарственного препарата

автор публикации получал гранты от спонсора

автор публикации получал гонорары от спонсора

Конфликт интересов — это[править]

Выберите ОДИН правильный ответ

противоречия материальных и нематериальных интересов у одного исследователя

противоречия между врачами-исследователями

противоречия между пациентами

противоречия между врачами-исследователями и пациентами

В пассивном исследовании[править]

Выберите ОДИН правильный ответ

применяется плацебо

вмешательства назначаются в соответствии с целью исследования

вмешательства назначаются по показаниям

вмешательства не назначаются

Объективным исходом является[править]

Выберите НЕСКОЛЬКО правильных ответов

степень пареза верхней конечности

перелом шейки бедра

интенсивность головной боли

повышение минеральной плотности кости

Наилучшим дизайном исследования для оценки эффективности и безопасности лекарственных препаратов является[править]

Выберите ОДИН правильный ответ

рандомизированное проспективное исследование

активное одномоментное исследование

ретроспективное исследование случай-контроль

нерандомизированное проспективное исследование

Субъективным исходом является[править]

Выберите НЕСКОЛЬКО правильных ответов

степень пареза верхней конечности

интенсивность головной боли

снижение артериального давления

повышение минеральной плотности кости

Качество статистического анализа зависит от[править]

Выберите НЕСКОЛЬКО правильных ответов

корректности обработки выбывания пациентов

адекватности методов анализа данным и задачам

отсутствия систематических ошибок

правильности вычислений

В проспективном исследовании сбор данных происходит[править]

Выберите ОДИН правильный ответ

до формирования групп

независимо от момента формирования групп

после формирования групп

одновременно с формированием групп

Случайные ошибки — это[править]

Выберите ОДИН правильный ответ

нетипичные значения измеренных показателей

разброс результатов измерений вокруг истинной величины

исходная несопоставимость групп

пропуски в данных пациентов

Динамические исследования бывают[править]

Выберите НЕСКОЛЬКО правильных ответов

активными

одномоментными

проспективными

ретроспективными

Систематическая ошибка измерений возникает при[править]

Выберите ОДИН правильный ответ

большом диапазоне возрастов пациентов

большой вариабельности измерений

использовании неоткалиброванных приборов

некорректном статистическом анализе данных

Суррогатным исходом является[править]

Выберите ОДИН правильный ответ

смерть

перелом шейки бедра

повышение минеральной плотности кости

возникновение острого нарушения мозгового кровообращения

К систематическим ошибкам относятся[править]

Выберите НЕСКОЛЬКО правильных ответов

ошибки при отборе

ошибки из-за вмешивающихся факторов

ошибки при измерении

ошибки статистического анализа

В динамическом исследовании пациента обследуют[править]

один раз

два раза

три раза

четыре и более раз

Ретроспективные исследования имеют следующие недостатки:[править]

пропуски в данных

недостаточное количество показателей

отсутствие единообразия в методах оценки показателей

малое количество пациентов

Ошибки при статистическом анализе: какие бывают и чем вызваны

Статистический анализ данных применительно к медицине – серьёзная наука, которая подчиняется определённым законам. И если им не следовать, результат будет неудовлетворительным. Статическая обработка данных в научном исследовании, продумывается ещё на этапе его планирования. Если же вспомнить о ней только по окончанию основной части работы, то систематизировать полученные данные будет практически невозможно. Даже специалистам будет весьма проблематично выудить из «кучи мусора» действительно важные показатели, чтобы исследователь получил ожидаемый результат. Поэтому, если вы не можете похвастаться высоким уровнем квалификации в биостатистике, обратиться за помощью к профессионалам в данном направлении, стоит ещё до начала экспериментальной работы. Это позволит избежать ошибок, которые могут поставить под сомнение результаты всего процесса.

Статистические ошибки – какими они бывают

Проведение любого эксперимента требует создания статистической выборке. О том, какими они бывают, на каких принципах строятся и их характеристики, вы можете прочесть в нашей статье. Статистическая обработка данных в научном исследовании и проводится на основании результатов, полученных в данных выборках. А затем, перекладывается на всю популяцию.

Объём выборки, напрямую связан с вероятностью появления статистических ошибок. Они бывают первого и второго рода.

  • Статистические ошибки первого рода. Они могут появляться из-за того, что в процессе исследования, осуществляется изучение не всей популяции, а только её части. Таким образом, ошибка первого рода является ошибочным отклонением от нулевой гипотезы. При этом, важно понимать, что собой представляет сама нулевая гипотеза. Это предположение, что все изучаемые группы взяты из одной генеральной совокупности, а значит, любые различия или напротив – связи между ними, являются случайными. По аналогии с диагностическим тестированием, можно говорить, что ошибка первого рода – это ложноположительный результат.
  • Статистические ошибки второго рода. Они являются неверным отклонением альтернативной гипотезы. В свою очередь, альтернативная гипотеза говорит о том, что совпадения или различия между группами не случайны, а обусловлены влиянием изучаемых факторов. Если снова затронуть диагностическую ошибку, то в данном случае, результат будет ложноотрицательным. При таком результате, в силу вступает понятие мощности, определяющее насколько подобранный статистический метод является эффективным для конкретных условий. Для вычисления мощности используется формула 1-β, где β – это вероятность ошибки второго рода.

Что касается ошибки второго рода, то показатель мощности, в большинстве случаев, имеет прямую зависимость от численности выборки. В больших по объёму группах, ниже вероятность ошибки второго рода и выше мощность статистических критериев. Данная зависимость является не менее чем квадратичной. Это значит, что при уменьшении объема выборки в два раза, последует падение мощности не менее чем в 4 раза. При этом, минимально допустимая мощность должна составлять не менее 80%, а максимально допустимый уровень ошибки – не выше 5%.

Стоит учитывать, что чётких границ не существует. Задаются они произвольно и в зависимости от особенностей исследования, его целей и характера, могут быть изменены. В большинстве случаев, научное сообщество произвольное изменение мощности, однако в подавляющем большинстве случаев уровень ошибки первого рода не может превышать 5%.

Особенности процедуры анализа

Статистическая обработка данных в научном исследовании предполагает соблюдение процедуры анализа. Он может осуществляться с использованием двух разновидностей техник – описательной или доказательной, которую ещё называют аналитической. Что касается описательных техник, то с их помощью, данные можно предоставить в компактном и понятном виде. Это могут быть графики, таблицы, абсолютные и относительные частоты, меры центральной тенденции, меры разброса данных и другие. Все они дают характеристику изучаемым выборкам.

Описание групп осуществляется по чётким критериям, и специалисты подбирают их совокупность индивидуально. Таким образом, результат получается максимально объективным. По завершению данного процесса, требуется выявить взаимоотношения между группами и, если это возможно, перенести результаты исследования на всю популяцию. Здесь в дело вступают аналитические методы биостатистики. Традиционно, данный этап специалисты называют «тестирование статистических гипотез».

При тестировании гипотез, все задачи разделяются на две большие группы. Работая с первой, необходимо выявить, есть ли различия между группами по уровню определённого показателя. Например – печеночных трансаминаз среди здоровых реципиентов и людей с подтверждённым гепатитом. А работая со второй группой, наличие связей исследуется уже не по одному, а нескольким параметрам. Для примера – функции печени и иммунной системы.

Если переменная, которая подлежит изучению, является качественной, сравниваются между собой две группы, то эффективно используется критерий «хи-квадрат». Стоит учитывать, что если наблюдений недостаточно, он будет непоказательным. В таком случае, применяются такие методы как поправка Йейтса на непрерывность и точный метод Фишера.

Что касается количественной переменной, то применяется один из двух видов статистических критериев. Так, критерии первого вида основываются на конкретном типе распределения генеральной совокупности и оперируют параметрами этой совокупности. Они имеют название «параметрические». А вот критерии второго вида – непараметрические, основываются на теории о типе распределения генеральной совокупности, и они не используют ее параметры. Иногда, их называют свободными от распределения. При этом важно учитывать, что распределения во всех сравниваемых группах должны быть идентичными, чтобы не получить ложноположительный результат.

This article is about erroneous outcomes of statistical tests. For closely related concepts in binary classification and testing generally, see false positives and false negatives.

In statistical hypothesis testing, a type I error is the mistaken rejection of a null hypothesis that is actually true. A type I error is also known as a «false positive» finding or conclusion; example: «an innocent person is convicted». A type II error is the failure to reject a null hypothesis that is actually false. A type II error is also known as a «false negative» finding or conclusion; example: «a guilty person is not convicted».[1] Much of statistical theory revolves around the minimization of one or both of these errors, though the complete elimination of either is a statistical impossibility if the outcome is not determined by a known, observable causal process.
By selecting a low threshold (cut-off) value and modifying the alpha (α) level, the quality of the hypothesis test can be increased.[citation needed] The knowledge of type I errors and type II errors is widely used in medical science, biometrics and computer science.[clarification needed]

Intuitively, type I errors can be thought of as errors of commission (i.e., the researcher unluckily concludes that something is the fact). For instance, consider a study where researchers compare a drug with a placebo. If the patients who are given the drug get better than the patients given the placebo by chance, it may appear that the drug is effective, but in fact the conclusion is incorrect.
In reverse, type II errors are errors of omission. In the example above, if the patients who got the drug did not get better at a higher rate than the ones who got the placebo, but this was a random fluke, that would be a type II error. The consequence of a type II error depends on the size and direction of the missed determination and the circumstances. An expensive cure for one in a million patients may be inconsequential even if it truly is a cure.

Definition[edit]

Statistical background[edit]

In statistical test theory, the notion of a statistical error is an integral part of hypothesis testing. The test goes about choosing about two competing propositions called null hypothesis, denoted by H0 and alternative hypothesis, denoted by H1. This is conceptually similar to the judgement in a court trial. The null hypothesis corresponds to the position of the defendant: just as he is presumed to be innocent until proven guilty, so is the null hypothesis presumed to be true until the data provide convincing evidence against it. The alternative hypothesis corresponds to the position against the defendant. Specifically, the null hypothesis also involves the absence of a difference or the absence of an association. Thus, the null hypothesis can never be that there is a difference or an association.

If the result of the test corresponds with reality, then a correct decision has been made. However, if the result of the test does not correspond with reality, then an error has occurred. There are two situations in which the decision is wrong. The null hypothesis may be true, whereas we reject H0. On the other hand, the alternative hypothesis H1 may be true, whereas we do not reject H0. Two types of error are distinguished: type I error and type II error.[2]

Type I error[edit]

The first kind of error is the mistaken rejection of a null hypothesis as the result of a test procedure. This kind of error is called a type I error (false positive) and is sometimes called an error of the first kind. In terms of the courtroom example, a type I error corresponds to convicting an innocent defendant.

Type II error[edit]

The second kind of error is the mistaken failure to reject the null hypothesis as the result of a test procedure. This sort of error is called a type II error (false negative) and is also referred to as an error of the second kind. In terms of the courtroom example, a type II error corresponds to acquitting a criminal.[3]

Crossover error rate[edit]

The crossover error rate (CER) is the point at which type I errors and type II errors are equal. A system with a lower CER value provides more accuracy than a system with a higher CER value.

False positive and false negative[edit]

In terms of false positives and false negatives, a positive result corresponds to rejecting the null hypothesis, while a negative result corresponds to failing to reject the null hypothesis; «false» means the conclusion drawn is incorrect. Thus, a type I error is equivalent to a false positive, and a type II error is equivalent to a false negative.

Table of error types[edit]

Tabularised relations between truth/falseness of the null hypothesis and outcomes of the test:[4]

Table of error types Null hypothesis (H0) is
True False
Decision
about null
hypothesis (H0)
Fail to reject Correct inference
(true negative)

(probability = 1−α)

Type II error
(false negative)
(probability = β)
Reject Type I error
(false positive)
(probability = α)
Correct inference
(true positive)

(probability = 1−β)

Error rate[edit]

The results obtained from negative sample (left curve) overlap with the results obtained from positive samples (right curve). By moving the result cutoff value (vertical bar), the rate of false positives (FP) can be decreased, at the cost of raising the number of false negatives (FN), or vice versa (TP = True Positives, TPR = True Positive Rate, FPR = False Positive Rate, TN = True Negatives).

A perfect test would have zero false positives and zero false negatives. However, statistical methods are probabilistic, and it cannot be known for certain whether statistical conclusions are correct. Whenever there is uncertainty, there is the possibility of making an error. Considering this nature of statistics science, all statistical hypothesis tests have a probability of making type I and type II errors.[citation needed]

  • The type I error rate is the probability of rejecting the null hypothesis given that it is true. The test is designed to keep the type I error rate below a prespecified bound called the significance level, usually denoted by the Greek letter α (alpha) and is also called the alpha level. Usually, the significance level is set to 0.05 (5%), implying that it is acceptable to have a 5% probability of incorrectly rejecting the true null hypothesis.[5]
  • The rate of the type II error is denoted by the Greek letter β (beta) and related to the power of a test, which equals 1−β.[citation needed]

These two types of error rates are traded off against each other: for any given sample set, the effort to reduce one type of error generally results in increasing the other type of error.[citation needed]

The quality of hypothesis test[edit]

The same idea can be expressed in terms of the rate of correct results and therefore used to minimize error rates and improve the quality of hypothesis test. To reduce the probability of committing a type I error, making the alpha value more stringent is quite simple and efficient. To decrease the probability of committing a type II error, which is closely associated with analyses’ power, either increasing the test’s sample size or relaxing the alpha level could increase the analyses’ power.[citation needed] A test statistic is robust if the type I error rate is controlled.

Varying different threshold (cut-off) value could also be used to make the test either more specific or more sensitive, which in turn elevates the test quality. For example, imagine a medical test, in which an experimenter might measure the concentration of a certain protein in the blood sample. The experimenter could adjust the threshold (black vertical line in the figure) and people would be diagnosed as having diseases if any number is detected above this certain threshold. According to the image, changing the threshold would result in changes in false positives and false negatives, corresponding to movement on the curve.[citation needed]

Example[edit]

Since in a real experiment it is impossible to avoid all type I and type II errors, it is important to consider the amount of risk one is willing to take to falsely reject H0 or accept H0. The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H0. Or, if we say, the statistic is performed at level α, like 0.05, then we allow to falsely reject H0 at 5%. A significance level α of 0.05 is relatively common, but there is no general rule that fits all scenarios.

Vehicle speed measuring[edit]

The speed limit of a freeway in the United States is 120 kilometers per hour (75 mph). A device is set to measure the speed of passing vehicles. Suppose that the device will conduct three measurements of the speed of a passing vehicle, recording as a random sample X1, X2, X3. The traffic police will or will not fine the drivers depending on the average speed {\bar {X}}. That is to say, the test statistic

{\displaystyle T={\frac {X_{1}+X_{2}+X_{3}}{3}}={\bar {X}}}

In addition, we suppose that the measurements X1, X2, X3 are modeled as normal distribution N(μ,4). Then, T should follow N(μ,4/3) and the parameter μ represents the true speed of passing vehicle. In this experiment, the null hypothesis H0 and the alternative hypothesis H1 should be

H0: μ=120     against      H1: μ>120.

If we perform the statistic level at α=0.05, then a critical value c should be calculated to solve

{\displaystyle P\left(Z\geqslant {\frac {c-120}{\frac {2}{\sqrt {3}}}}\right)=0.05}

According to change-of-units rule for the normal distribution. Referring to Z-table, we can get

{\displaystyle {\frac {c-120}{\frac {2}{\sqrt {3}}}}=1.645\Rightarrow c=121.9}

Here, the critical region. That is to say, if the recorded speed of a vehicle is greater than critical value 121.9, the driver will be fined. However, there are still 5% of the drivers are falsely fined since the recorded average speed is greater than 121.9 but the true speed does not pass 120, which we say, a type I error.

The type II error corresponds to the case that the true speed of a vehicle is over 120 kilometers per hour but the driver is not fined. For example, if the true speed of a vehicle μ=125, the probability that the driver is not fined can be calculated as

{\displaystyle P=(T<121.9|\mu =125)=P\left({\frac {T-125}{\frac {2}{\sqrt {3}}}}<{\frac {121.9-125}{\frac {2}{\sqrt {3}}}}\right)=\phi (-2.68)=0.0036}

which means, if the true speed of a vehicle is 125, the driver has the probability of 0.36% to avoid the fine when the statistic is performed at level α=0.05, since the recorded average speed is lower than 121.9. If the true speed is closer to 121.9 than 125, then the probability of avoiding the fine will also be higher.

The tradeoffs between type I error and type II error should also be considered. That is, in this case, if the traffic police do not want to falsely fine innocent drivers, the level α can be set to a smaller value, like 0.01. However, if that is the case, more drivers whose true speed is over 120 kilometers per hour, like 125, would be more likely to avoid the fine.

Etymology[edit]

In 1928, Jerzy Neyman (1894–1981) and Egon Pearson (1895–1980), both eminent statisticians, discussed the problems associated with «deciding whether or not a particular sample may be judged as likely to have been randomly drawn from a certain population»:[6] and, as Florence Nightingale David remarked, «it is necessary to remember the adjective ‘random’ [in the term ‘random sample’] should apply to the method of drawing the sample and not to the sample itself».[7]

They identified «two sources of error», namely:

(a) the error of rejecting a hypothesis that should have not been rejected, and
(b) the error of failing to reject a hypothesis that should have been rejected.

In 1930, they elaborated on these two sources of error, remarking that:

…in testing hypotheses two considerations must be kept in view, we must be able to reduce the chance of rejecting a true hypothesis to as low a value as desired; the test must be so devised that it will reject the hypothesis tested when it is likely to be false.

In 1933, they observed that these «problems are rarely presented in such a form that we can discriminate with certainty between the true and false hypothesis» . They also noted that, in deciding whether to fail to reject, or reject a particular hypothesis amongst a «set of alternative hypotheses», H1, H2…, it was easy to make an error:

…[and] these errors will be of two kinds:

(I) we reject H0 [i.e., the hypothesis to be tested] when it is true,[8]
(II) we fail to reject H0 when some alternative hypothesis HA or H1 is true. (There are various notations for the alternative).

In all of the papers co-written by Neyman and Pearson the expression H0 always signifies «the hypothesis to be tested».

In the same paper they call these two sources of error, errors of type I and errors of type II respectively.[9]

[edit]

Null hypothesis[edit]

It is standard practice for statisticians to conduct tests in order to determine whether or not a «speculative hypothesis» concerning the observed phenomena of the world (or its inhabitants) can be supported. The results of such testing determine whether a particular set of results agrees reasonably (or does not agree) with the speculated hypothesis.

On the basis that it is always assumed, by statistical convention, that the speculated hypothesis is wrong, and the so-called «null hypothesis» that the observed phenomena simply occur by chance (and that, as a consequence, the speculated agent has no effect) – the test will determine whether this hypothesis is right or wrong. This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the «alternative hypothesis» (which is the original speculated one).

The consistent application by statisticians of Neyman and Pearson’s convention of representing «the hypothesis to be tested» (or «the hypothesis to be nullified») with the expression H0 has led to circumstances where many understand the term «the null hypothesis» as meaning «the nil hypothesis» – a statement that the results in question have arisen through chance. This is not necessarily the case – the key restriction, as per Fisher (1966), is that «the null hypothesis must be exact, that is free from vagueness and ambiguity, because it must supply the basis of the ‘problem of distribution,’ of which the test of significance is the solution.»[10] As a consequence of this, in experimental science the null hypothesis is generally a statement that a particular treatment has no effect; in observational science, it is that there is no difference between the value of a particular measured variable, and that of an experimental prediction.[citation needed]

Statistical significance[edit]

If the probability of obtaining a result as extreme as the one obtained, supposing that the null hypothesis were true, is lower than a pre-specified cut-off probability (for example, 5%), then the result is said to be statistically significant and the null hypothesis is rejected.

British statistician Sir Ronald Aylmer Fisher (1890–1962) stressed that the «null hypothesis»:

… is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis.

— Fisher, 1935, p.19

Application domains[edit]

Medicine[edit]

In the practice of medicine, the differences between the applications of screening and testing are considerable.

Medical screening[edit]

Screening involves relatively cheap tests that are given to large populations, none of whom manifest any clinical indication of disease (e.g., Pap smears).

Testing involves far more expensive, often invasive, procedures that are given only to those who manifest some clinical indication of disease, and are most often applied to confirm a suspected diagnosis.

For example, most states in the USA require newborns to be screened for phenylketonuria and hypothyroidism, among other congenital disorders.

Hypothesis: «The newborns have phenylketonuria and hypothyroidism»

Null Hypothesis (H0): «The newborns do not have phenylketonuria and hypothyroidism»,

Type I error (false positive): The true fact is that the newborns do not have phenylketonuria and hypothyroidism but we consider they have the disorders according to the data.

Type II error (false negative): The true fact is that the newborns have phenylketonuria and hypothyroidism but we consider they do not have the disorders according to the data.

Although they display a high rate of false positives, the screening tests are considered valuable because they greatly increase the likelihood of detecting these disorders at a far earlier stage.

The simple blood tests used to screen possible blood donors for HIV and hepatitis have a significant rate of false positives; however, physicians use much more expensive and far more precise tests to determine whether a person is actually infected with either of these viruses.

Perhaps the most widely discussed false positives in medical screening come from the breast cancer screening procedure mammography. The US rate of false positive mammograms is up to 15%, the highest in world. One consequence of the high false positive rate in the US is that, in any 10-year period, half of the American women screened receive a false positive mammogram. False positive mammograms are costly, with over $100 million spent annually in the U.S. on follow-up testing and treatment. They also cause women unneeded anxiety. As a result of the high false positive rate in the US, as many as 90–95% of women who get a positive mammogram do not have the condition. The lowest rate in the world is in the Netherlands, 1%. The lowest rates are generally in Northern Europe where mammography films are read twice and a high threshold for additional testing is set (the high threshold decreases the power of the test).

The ideal population screening test would be cheap, easy to administer, and produce zero false-negatives, if possible. Such tests usually produce more false-positives, which can subsequently be sorted out by more sophisticated (and expensive) testing.

Medical testing[edit]

False negatives and false positives are significant issues in medical testing.

Hypothesis: «The patients have the specific disease».

Null hypothesis (H0): «The patients do not have the specific disease».

Type I error (false positive): «The true fact is that the patients do not have a specific disease but the physicians judges the patients was ill according to the test reports».

False positives can also produce serious and counter-intuitive problems when the condition being searched for is rare, as in screening. If a test has a false positive rate of one in ten thousand, but only one in a million samples (or people) is a true positive, most of the positives detected by that test will be false. The probability that an observed positive result is a false positive may be calculated using Bayes’ theorem.

Type II error (false negative): «The true fact is that the disease is actually present but the test reports provide a falsely reassuring message to patients and physicians that the disease is absent».

False negatives produce serious and counter-intuitive problems, especially when the condition being searched for is common. If a test with a false negative rate of only 10% is used to test a population with a true occurrence rate of 70%, many of the negatives detected by the test will be false.

This sometimes leads to inappropriate or inadequate treatment of both the patient and their disease. A common example is relying on cardiac stress tests to detect coronary atherosclerosis, even though cardiac stress tests are known to only detect limitations of coronary artery blood flow due to advanced stenosis.

Biometrics[edit]

Biometric matching, such as for fingerprint recognition, facial recognition or iris recognition, is susceptible to type I and type II errors.

Hypothesis: «The input does not identify someone in the searched list of people»

Null hypothesis: «The input does identify someone in the searched list of people»

Type I error (false reject rate): «The true fact is that the person is someone in the searched list but the system concludes that the person is not according to the data».

Type II error (false match rate): «The true fact is that the person is not someone in the searched list but the system concludes that the person is someone whom we are looking for according to the data».

The probability of type I errors is called the «false reject rate» (FRR) or false non-match rate (FNMR), while the probability of type II errors is called the «false accept rate» (FAR) or false match rate (FMR).

If the system is designed to rarely match suspects then the probability of type II errors can be called the «false alarm rate». On the other hand, if the system is used for validation (and acceptance is the norm) then the FAR is a measure of system security, while the FRR measures user inconvenience level.

Security screening[edit]

False positives are routinely found every day in airport security screening, which are ultimately visual inspection systems. The installed security alarms are intended to prevent weapons being brought onto aircraft; yet they are often set to such high sensitivity that they alarm many times a day for minor items, such as keys, belt buckles, loose change, mobile phones, and tacks in shoes.

Here, the null hypothesis is that the item is not a weapon, while the alternative hypothesis is that the item is a weapon.

A type I error (false positive): «The true fact is that the item is not a weapon but the system still alarms».

Type II error (false negative) «The true fact is that the item is a weapon but the system keeps silent at this time».

The ratio of false positives (identifying an innocent traveler as a terrorist) to true positives (detecting a would-be terrorist) is, therefore, very high; and because almost every alarm is a false positive, the positive predictive value of these screening tests is very low.

The relative cost of false results determines the likelihood that test creators allow these events to occur. As the cost of a false negative in this scenario is extremely high (not detecting a bomb being brought onto a plane could result in hundreds of deaths) whilst the cost of a false positive is relatively low (a reasonably simple further inspection) the most appropriate test is one with a low statistical specificity but high statistical sensitivity (one that allows a high rate of false positives in return for minimal false negatives).

Computers[edit]

The notions of false positives and false negatives have a wide currency in the realm of computers and computer applications, including computer security, spam filtering, Malware, Optical character recognition and many others.

For example, in the case of spam filtering the hypothesis here is that the message is a spam.

Thus, null hypothesis: «The message is not a spam».

Type I error (false positive): «Spam filtering or spam blocking techniques wrongly classify a legitimate email message as spam and, as a result, interferes with its delivery».

While most anti-spam tactics can block or filter a high percentage of unwanted emails, doing so without creating significant false-positive results is a much more demanding task.

Type II error (false negative): «Spam email is not detected as spam, but is classified as non-spam». A low number of false negatives is an indicator of the efficiency of spam filtering.

See also[edit]

  • Binary classification
  • Detection theory
  • Egon Pearson
  • Ethics in mathematics
  • False positive paradox
  • False discovery rate
  • Family-wise error rate
  • Information retrieval performance measures
  • Neyman–Pearson lemma
  • Null hypothesis
  • Probability of a hypothesis for Bayesian inference
  • Precision and recall
  • Prosecutor’s fallacy
  • Prozone phenomenon
  • Receiver operating characteristic
  • Sensitivity and specificity
  • Statisticians’ and engineers’ cross-reference of statistical terms
  • Testing hypotheses suggested by the data
  • Type III error

References[edit]

  1. ^ «Type I Error and Type II Error». explorable.com. Retrieved 14 December 2019.
  2. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  3. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  4. ^ Sheskin, David (2004). Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press. p. 54. ISBN 1584884401.
  5. ^ Lindenmayer, David. (2005). Practical conservation biology. Burgman, Mark A. Collingwood, Vic.: CSIRO Pub. ISBN 0-643-09310-9. OCLC 65216357.
  6. ^ NEYMAN, J.; PEARSON, E. S. (1928). «On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference Part I». Biometrika. 20A (1–2): 175–240. doi:10.1093/biomet/20a.1-2.175. ISSN 0006-3444.
  7. ^ C.I.K.F. (July 1951). «Probability Theory for Statistical Methods. By F. N. David. [Pp. ix + 230. Cambridge University Press. 1949. Price 155.]». Journal of the Staple Inn Actuarial Society. 10 (3): 243–244. doi:10.1017/s0020269x00004564. ISSN 0020-269X.
  8. ^ Note that the subscript in the expression H0 is a zero (indicating null), and is not an «O» (indicating original).
  9. ^ Neyman, J.; Pearson, E. S. (30 October 1933). «The testing of statistical hypotheses in relation to probabilities a priori». Mathematical Proceedings of the Cambridge Philosophical Society. 29 (4): 492–510. Bibcode:1933PCPS…29..492N. doi:10.1017/s030500410001152x. ISSN 0305-0041. S2CID 119855116.
  10. ^ Fisher, R.A. (1966). The design of experiments. 8th edition. Hafner:Edinburgh.

Bibliography[edit]

  • Betz, M.A. & Gabriel, K.R., «Type IV Errors and Analysis of Simple Effects», Journal of Educational Statistics, Vol.3, No.2, (Summer 1978), pp. 121–144.
  • David, F.N., «A Power Function for Tests of Randomness in a Sequence of Alternatives», Biometrika, Vol.34, Nos.3/4, (December 1947), pp. 335–339.
  • Fisher, R.A., The Design of Experiments, Oliver & Boyd (Edinburgh), 1935.
  • Gambrill, W., «False Positives on Newborns’ Disease Tests Worry Parents», Health Day, (5 June 2006). [1] Archived 17 May 2018 at the Wayback Machine
  • Kaiser, H.F., «Directional Statistical Decisions», Psychological Review, Vol.67, No.3, (May 1960), pp. 160–167.
  • Kimball, A.W., «Errors of the Third Kind in Statistical Consulting», Journal of the American Statistical Association, Vol.52, No.278, (June 1957), pp. 133–142.
  • Lubin, A., «The Interpretation of Significant Interaction», Educational and Psychological Measurement, Vol.21, No.4, (Winter 1961), pp. 807–817.
  • Marascuilo, L.A. & Levin, J.R., «Appropriate Post Hoc Comparisons for Interaction and nested Hypotheses in Analysis of Variance Designs: The Elimination of Type-IV Errors», American Educational Research Journal, Vol.7., No.3, (May 1970), pp. 397–421.
  • Mitroff, I.I. & Featheringham, T.R., «On Systemic Problem Solving and the Error of the Third Kind», Behavioral Science, Vol.19, No.6, (November 1974), pp. 383–393.
  • Mosteller, F., «A k-Sample Slippage Test for an Extreme Population», The Annals of Mathematical Statistics, Vol.19, No.1, (March 1948), pp. 58–65.
  • Moulton, R.T., «Network Security», Datamation, Vol.29, No.7, (July 1983), pp. 121–127.
  • Raiffa, H., Decision Analysis: Introductory Lectures on Choices Under Uncertainty, Addison–Wesley, (Reading), 1968.

External links[edit]

  • Bias and Confounding – presentation by Nigel Paneth, Graduate School of Public Health, University of Pittsburgh

Проверка корректности А/Б тестов

Время на прочтение
8 мин

Количество просмотров 10K

Хабр, привет! Сегодня поговорим о том, что такое корректность статистических критериев в контексте А/Б тестирования. Узнаем, как проверить, является критерий корректным или нет. Разберём пример, в котором тест Стьюдента не работает.

Меня зовут Коля, я работаю аналитиком данных в X5 Tech. Мы с Сашей продолжаем писать серию статей по А/Б тестированию, это наша третья статья. Первые две можно посмотреть тут:

  • Стратификация. Как разбиение выборки повышает чувствительность A/Б теста

  • Бутстреп и А/Б тестирование

Корректный статистический критерий

В А/Б тестировании при проверке гипотез с помощью статистических критериев можно совершить одну из двух ошибок:

  • ошибку первого рода – отклонить нулевую гипотезу, когда на самом деле она верна. То есть сказать, что эффект есть, хотя на самом деле его нет;

  • ошибку второго рода – не отклонить нулевую гипотезу, когда на самом деле она неверна. То есть сказать, что эффекта нет, хотя на самом деле он есть.

Совсем не ошибаться нельзя. Чтобы получить на 100% достоверные результаты, нужно бесконечно много данных. На практике получить столько данных затруднительно. Если совсем не ошибаться нельзя, то хотелось бы ошибаться не слишком часто и контролировать вероятности ошибок.

В статистике ошибка первого рода считается более важной. Поэтому обычно фиксируют допустимую вероятность ошибки первого рода, а затем пытаются минимизировать вероятность ошибки второго рода.

Предположим, мы решили, что допустимые вероятности ошибок первого и второго рода равны 0.1 и 0.2 соответственно. Будем называть статистический критерий корректным, если его вероятности ошибок первого и второго рода равны допустимым вероятностям ошибок первого и второго рода соответственно.

Как сделать критерий, в котором вероятности ошибок будут равны допустимым вероятностям ошибок?

Вероятность ошибки первого рода по определению равна уровню значимости критерия. Если уровень значимости положить равным допустимой вероятности ошибки первого рода, то вероятность ошибки первого рода должна стать равной допустимой вероятности ошибки первого рода.

Вероятность ошибки второго рода можно подогнать под желаемое значение, меняя размер групп или снижая дисперсию в данных. Чем больше размер групп и чем ниже дисперсия, тем меньше вероятность ошибки второго рода. Для некоторых гипотез есть готовые формулы оценки размера групп, при которых достигаются заданные вероятности ошибок.

Например, формула оценки необходимого размера групп для гипотезы о равенстве средних:

n > \frac{\left[ \Phi^{-1} \left( 1-\alpha / 2 \right) + \Phi^{-1} \left( 1-\beta \right) \right]^2 (\sigma_A^2 + \sigma_B^2)}{\varepsilon^2}

где \alpha и \beta – допустимые вероятности ошибок первого и второго рода, \varepsilon – ожидаемый эффект (на сколько изменится среднее), \sigma_A и \sigma_B – стандартные отклонения случайных величин в контрольной и экспериментальной группах.

Проверка корректности

Допустим, мы работаем в онлайн-магазине с доставкой. Хотим исследовать, как новый алгоритм ранжирования товаров на сайте влияет на среднюю выручку с покупателя за неделю. Продолжительность эксперимента – одна неделя. Ожидаемый эффект равен +100 рублей. Допустимая вероятность ошибки первого рода равна 0.1, второго рода – 0.2.

Оценим необходимый размер групп по формуле:

import numpy as np
from scipy import stats

alpha = 0.1                     # допустимая вероятность ошибки I рода
beta = 0.2                      # допустимая вероятность ошибки II рода
mu_control = 2500               # средняя выручка с пользователя в контрольной группе
effect = 100                    # ожидаемый размер эффекта
mu_pilot = mu_control + effect  # средняя выручка с пользователя в экспериментальной группе
std = 800                       # стандартное отклонение

# исторические данные выручки для 10000 клиентов
values = np.random.normal(mu_control, std, 10000)

def estimate_sample_size(effect, std, alpha, beta):
    """Оценка необходимого размер групп."""
    t_alpha = stats.norm.ppf(1 - alpha / 2, loc=0, scale=1)
    t_beta = stats.norm.ppf(1 - beta, loc=0, scale=1)
    var = 2 * std ** 2
    sample_size = int((t_alpha + t_beta) ** 2 * var / (effect ** 2))
    return sample_size

estimated_std = np.std(values)
sample_size = estimate_sample_size(effect, estimated_std, alpha, beta)
print(f'оценка необходимого размера групп = {sample_size}')
оценка необходимого размера групп = 784

Чтобы проверить корректность, нужно знать природу случайных величин, с которыми мы работаем. В этом нам помогут исторические данные. Представьте, что мы перенеслись в прошлое на несколько недель назад и запустили эксперимент с таким же дизайном, как мы планировали запустить его сейчас. Дизайн – это совокупность параметров эксперимента, таких как: целевая метрика, допустимые вероятности ошибок первого и второго рода, размеры групп и продолжительность эксперимента, техники снижения дисперсии и т.д.

Так как это было в прошлом, мы знаем, какие покупки совершили пользователи, можем вычислить метрики и оценить значимость отличий. Кроме того, мы знаем, что эффекта на самом деле не было, так как в то время эксперимент на самом деле не запускался. Если значимые отличия были найдены, то мы совершили ошибку первого рода. Иначе получили правильный результат.

Далее нужно повторить эту процедуру с мысленным запуском эксперимента в прошлом на разных группах и временных интервалах много раз, например, 1000.

После этого можно посчитать долю экспериментов, в которых была совершена ошибка. Это будет точечная оценка вероятности ошибки первого рода.

Оценку вероятности ошибки второго рода можно получить аналогичным способом. Единственное отличие состоит в том, что каждый раз нужно искусственно добавлять ожидаемый эффект в данные экспериментальной группы. В этих экспериментах эффект на самом деле есть, так как мы сами его добавили. Если значимых отличий не будет найдено – это ошибка второго рода. Проведя 1000 экспериментов и посчитав долю ошибок второго рода, получим точечную оценку вероятности ошибки второго рода.

Посмотрим, как оценить вероятности ошибок в коде. С помощью численных синтетических А/А и А/Б экспериментов оценим вероятности ошибок и построим доверительные интервалы:

def run_synthetic_experiments(values, sample_size, effect=0, n_iter=10000):
    """Проводим синтетические эксперименты, возвращаем список p-value."""
    pvalues = []
    for _ in range(n_iter):
        a, b = np.random.choice(values, size=(2, sample_size,), replace=False)
        b += effect
        pvalue = stats.ttest_ind(a, b).pvalue
        pvalues.append(pvalue)
    return np.array(pvalues)

def print_estimated_errors(pvalues_aa, pvalues_ab, alpha):
    """Оценивает вероятности ошибок."""
    estimated_first_type_error = np.mean(pvalues_aa < alpha)
    estimated_second_type_error = np.mean(pvalues_ab >= alpha)
    ci_first = estimate_ci_bernoulli(estimated_first_type_error, len(pvalues_aa))
    ci_second = estimate_ci_bernoulli(estimated_second_type_error, len(pvalues_ab))
    print(f'оценка вероятности ошибки I рода = {estimated_first_type_error:0.4f}')
    print(f'  доверительный интервал = [{ci_first[0]:0.4f}, {ci_first[1]:0.4f}]')
    print(f'оценка вероятности ошибки II рода = {estimated_second_type_error:0.4f}')
    print(f'  доверительный интервал = [{ci_second[0]:0.4f}, {ci_second[1]:0.4f}]')

def estimate_ci_bernoulli(p, n, alpha=0.05):
    """Доверительный интервал для Бернуллиевской случайной величины."""
    t = stats.norm.ppf(1 - alpha / 2, loc=0, scale=1)
    std_n = np.sqrt(p * (1 - p) / n)
    return p - t * std_n, p + t * std_n

pvalues_aa = run_synthetic_experiments(values, sample_size, effect=0)
pvalues_ab = run_synthetic_experiments(values, sample_size, effect=effect)
print_estimated_errors(pvalues_aa, pvalues_ab, alpha)
оценка вероятности ошибки I рода = 0.0991
  доверительный интервал = [0.0932, 0.1050]
оценка вероятности ошибки II рода = 0.1978
  доверительный интервал = [0.1900, 0.2056]

Оценки вероятностей ошибок примерно равны 0.1 и 0.2, как и должно быть. Всё верно, тест Стьюдента на этих данных работает корректно.

Распределение p-value

Выше рассмотрели случай, когда тест контролирует вероятность ошибки первого рода при фиксированном уровне значимости. Если решим изменить уровень значимости с 0.1 на 0.01, будет ли тест контролировать вероятность ошибки первого рода? Было бы хорошо, если тест контролировал вероятность ошибки первого рода при любом заданном уровне значимости. Формально это можно записать так:

Для любого \alpha \in [0, 1] выполняется \mathbb{P}(pvalue < \alpha | H_0) = \alpha.

Заметим, что в левой части равенства записано выражение для функции распределения p-value. Из равенства следует, что функция распределения p-value в точке X равна X для любого X от 0 до 1. Эта функция распределения является функцией распределения равномерного распределения от 0 до 1. Мы только что показали, что статистический критерий контролирует вероятность ошибки первого рода на заданном уровне для любого уровня значимости тогда и только тогда, когда при верности нулевой гипотезы p-value распределено равномерно от 0 до 1.

При верности нулевой гипотезы p-value должно быть распределено равномерно. А как должно быть распределено p-value при верности альтернативной гипотезы? Из условия для вероятности ошибки второго рода \mathbb{P}(pvalue \geq \alpha | H_1) = \beta следует, что \mathbb{P}(pvalue < \alpha | H_1) = 1 - \beta.

Получается, график функции распределения p-value при верности альтернативной гипотезы должен проходить через точку [\alpha, 1 - \beta], где \alpha и \beta – допустимые вероятности ошибок конкретного эксперимента.

Проверим, как распределено p-value в численном эксперименте. Построим эмпирические функции распределения p-value:

import matplotlib.pyplot as plt

def plot_pvalue_distribution(pvalues_aa, pvalues_ab, alpha, beta):
    """Рисует графики распределения p-value."""
    estimated_first_type_error = np.mean(pvalues_aa < alpha)
    estimated_second_type_error = np.mean(pvalues_ab >= alpha)
    y_one = estimated_first_type_error
    y_two = 1 - estimated_second_type_error
    X = np.linspace(0, 1, 1000)
    Y_aa = [np.mean(pvalues_aa < x) for x in X]
    Y_ab = [np.mean(pvalues_ab < x) for x in X]

    plt.plot(X, Y_aa, label='A/A')
    plt.plot(X, Y_ab, label='A/B')
    plt.plot([alpha, alpha], [0, 1], '--k', alpha=0.8)
    plt.plot([0, alpha], [y_one, y_one], '--k', alpha=0.8)
    plt.plot([0, alpha], [y_two, y_two], '--k', alpha=0.8)
    plt.plot([0, 1], [0, 1], '--k', alpha=0.8)

    plt.title('Оценка распределения p-value', size=16)
    plt.xlabel('p-value', size=12)
    plt.legend(fontsize=12)
    plt.grid()
    plt.show()

plot_pvalue_distribution(pvalues_aa, pvalues_ab, alpha, beta)

P-value для синтетических А/А тестах действительно оказалось распределено равномерно от 0 до 1, а для синтетических А/Б тестов проходит через точку [\alpha, 1 - \beta].

Кроме оценок распределений на графике дополнительно построены четыре пунктирные линии:

  • диагональная из точки [0, 0] в точку [1, 1] – это функция распределения равномерного распределения на отрезке от 0 до 1, по ней можно визуально оценивать равномерность распределения p-value;

  • вертикальная линия с x=\alpha – пороговое значение p-value, по которому определяем отвергать нулевую гипотезу или нет. Проекция на ось ординат точки пересечения вертикальной линии с функцией распределения p-value для А/А тестов – это вероятность ошибки первого рода. Проекция точки пересечения вертикальной линии с функцией распределения p-value для А/Б тестов – это мощность теста (мощность = 1 — \beta). 

  • две горизонтальные линии – проекции на ось ординат точки пересечения вертикальной линии с функцией распределения p-value для А/А и А/Б тестов.

График с оценками распределения p-value для синтетических А/А и А/Б тестов позволяет проверить корректность теста для любого значения уровня значимости.

Некорректный критерий

Выше рассмотрели пример, когда тест Стьюдента оказался корректным критерием для случайных данных из нормального распределения. Может быть, все критерии всегда работаю корректно, и нет смысла каждый раз проверять вероятности ошибок?

Покажем, что это не так. Немного изменим рассмотренный ранее пример, чтобы продемонстрировать некорректную работу критерия. Допустим, мы решили увеличить продолжительность эксперимента до 2-х недель. Для каждого пользователя будем вычислять стоимость покупок за первую неделю и стоимость покупок за второю неделю. Полученные стоимости будем передавать в тест Стьюдента для проверки значимости отличий. Положим, что поведение пользователей повторяется от недели к неделе, и стоимости покупок одного пользователя совпадают.

def run_synthetic_experiments_two(values, sample_size, effect=0, n_iter=10000):
    """Проводим синтетические эксперименты на двух неделях."""
    pvalues = []
    for _ in range(n_iter):
        a, b = np.random.choice(values, size=(2, sample_size,), replace=False)
        b += effect
        # дублируем данные
        a = np.hstack((a, a,))
        b = np.hstack((b, b,))
        pvalue = stats.ttest_ind(a, b).pvalue
        pvalues.append(pvalue)
    return np.array(pvalues)

pvalues_aa = run_synthetic_experiments_two(values, sample_size)
pvalues_ab = run_synthetic_experiments_two(values, sample_size, effect=effect)
print_estimated_errors(pvalues_aa, pvalues_ab, alpha)
plot_pvalue_distribution(pvalues_aa, pvalues_ab, alpha, beta)
оценка вероятности ошибки I рода = 0.2451
  доверительный интервал = [0.2367, 0.2535]
оценка вероятности ошибки II рода = 0.0894
  доверительный интервал = [0.0838, 0.0950]

Получили оценку вероятности ошибки первого рода около 0.25, что сильно больше уровня значимости 0.1. На графике видно, что распределение p-value для синтетических А/А тестов не равномерно, оно отклоняется от диагонали. В этом примере тест Стьюдента работает некорректно, так как данные зависимые (стоимости покупок одного человека зависимы). Если бы мы сразу не догадались про зависимость данных, то оценка вероятностей ошибок помогла бы нам понять, что такой тест некорректен.

Итоги

Мы обсудили, что такое корректность статистического теста, посмотрели, как оценить вероятности ошибок на исторических данных и привели пример некорректной работы критерия.

Таким образом:

  • корректный критерий – это критерий, у которого вероятности ошибок первого и второго рода равны допустимым вероятностям ошибок первого и второго рода соответственно;

  • чтобы критерий контролировал вероятность ошибки первого рода для любого уровня значимости, необходимо и достаточно, чтобы p-value при верности нулевой гипотезы было распределено равномерно от 0 до 1.

Понравилась статья? Поделить с друзьями:
  • Ошибки стат наблюдения это
  • Ошибки стиралки самсунг даймонд
  • Ошибки ситроен с5 2008
  • Ошибки старые учтены
  • Ошибки стиралка самсунг расшифровка