Ошибки при решении задач на проценты

Как решать задачи с процентами: примеры решения

    Содержание

  1. Что такое процент
  2. Как вычесть проценты
  3. Примеры решения задач с процентами
  4. Как рассчитать процентное изменение
  5. Распространенные ошибки при решении задач с процентами

Эта
статья посвящена решению задач на проценты. Ниже рассмотрены некоторые из этих задач.
Большинство задач на проценты связаны с нахождением процента от числа,
нахождением числа в процентах, представлением части в процентах или
представлением отношения между несколькими объектами, числами или величинами в
процентах.

Что такое процент

Процент — это способ расчета того, сколько
чего-то есть по отношению к целому.

Проценты очень широко используются как в математике, так и в
повседневных ситуациях, и они действительно полезны для понимания относительных
величин и привнесения их значимых.

Процент может быть записан несколькими способами. Один
из способов — изобразить его как десятичную дробь. Например, 24% также могут
быть записаны как 0,24. Можно найти десятичную версию процента, разделив
процент на 100.

Вот несколько распространенных способов использования
процентов в повседневной жизни:

  • расчет
    того, насколько хорошо студент сдал тест;
  • выяснение
    того, сколько НДС нужно заплатить при покупке;
  • расчет
    того, сколько оставить в качестве чаевых в ресторане.

Проценты обычно представлены символом %, и
есть несколько основных правил, которые нужно понять, чтобы их правильно
рассчитать.

Процентные задачи —
это общие, повседневные реальные математические задачи. Таким образом, выделяют
три типа решений, о которых следует знать:

  1. Поиск
    процента от целого (отсутствующая переменная — это часть, которая
    составляет заданный процент).
  2. Поиск
    целого из процента (отсутствующей переменной является целое, из которого
    была взята процентная часть).
  3. Поиск
    процента от целого и части (отсутствующей переменной является процентная
    сумма, равная соотношению детали к целому).

Используя процентную формулу, легко понять, как быстро
решить процентные проблемы. Нужно помнить, что общая алгебраическая формула
процента:%?В=П.

Формула
для поиска процента

Как указано, процент — это соотношение
желаемой детали по сравнению со всем продуктом, где100%представляет собой весь процент. Формула для поиска процента может быть записана математически как: П/В
 =%/100

Где:

  • П — это
    часть.
  • В — это
    все.
  • % — это
    процент.

Как вычесть проценты

Чтобы вычесть один процент из другого, просто нужно игнорировать процентные знаки и относиться к ним как к целым числам.

Например, чтобы вычесть 20% из 50%, нужно сделать следующее: 50 – 20 = 30. Ответ — 30%.

Если вычитается процент из целого числа, сначала нужно преобразовать его в десятичную дробь.

Если попросят вычесть 25% из 45 (например, при расчете скидки), то нужно начать с преобразования 25% в десятичную дробь, что составляет 0,25.

как правильно считать проценты?

Чтобы рассчитать сумму, которую следует вычесть, нужно умножить исходное число на десятичную дробь:

45 x 0,25 = 11,25

Затем вычесть эту сумму из базовой цифры:

45 — 11,25 = 33,75

Также можно взять десятичную дробь, вычесть ее из 1, а затем умножить
исходное число на него:

25% = 0,25

1 — 0,25 = 0,75

0,75 x 45 = 33,75

Примеры решения задач с процентами

Решенные образцы
задач с процентами помогут понять, как шаг за шагом решить различные
типы таких задач.

1. На выборах кандидат О получил 75% от общего числа
действительных голосов. Если 15% от общего числа голосов были признаны
недействительными, а общее количество голосов составляет 560000, нужно найти
количество действительных голосов, опрашиваемых в пользу кандидата.

Решение выглядит следующим образом:

Общее
количество недействительных голосов = 15% из 560000

= 15/100 ?
560000

= 8400000/100

= 84000

Общее
количество действительных голосов 560000 — 84000 = 476000

Процент
голосов, проголосовавших за кандидата А = 75%

Следовательно,
количество действительных голосов, проголосовавших за кандидата А = 75% от
476000

= 75/100 ?
476000

= 35700000/100

= 357000

2. У Гриши осталось 2100 рублей после того, как он потратил
30% денег, которые он взял в магазин. Сколько денег он взял с собой?

Пример решения:

Пусть деньги,
которые он взял в магазин, будут м.

Деньги,
которые он потратил = 30% от м

= 30/100 ? м

= 3/10 м

Деньги,
оставшиеся у него = м — 3/10 м = (10 м — 3 м)/10 = 7 м/10

Но деньги
остались у него = 2100 рублей.

Поэтому 7 м/10
= 2100 рублей.

м = 2100
рублей ? 10/7;

м = $ 21000/7;

м = 3000
рублей;

Таким образом,
деньги, которые он взял на покупки, составляют 3000 рублей.

3. Владелец магазина купил 600 яблок и 400 авокадо. Он
обнаружил, что 15% яблок и 8% авокадо были гнилыми. Нужно найти процент фруктов
в хорошем состоянии.

Решение:

Общее
количество купленных фруктов в магазине = 600 + 400 = 1000

Количество
гнилых яблок = 15% от 600

= 15/100 ? 600

= 9000/100

= 90

Количество
гнилых авокадо = 8% от 400

= 8/100 ? 400

= 3200/100

= 32

Следовательно,
общее количество гнилых фруктов = 90 + 32 = 122

Поэтому
количество фруктов в хорошем состоянии = 1000 — 122 = 878

Итак, процент
фруктов в хорошем состоянии = (878/1000 ? 100)%

=
(87800/1000)%

= 87,8%

4. На экзаменах было два
студента. Один из них получил на 9 баллов больше, чем другой, и его оценки
составили 56% от суммы их баллов. Итак, чему равны полученные ими баллы.

Решение: пусть их отметки будут (+
9) и x.

Затем + 9 = 56 (+
9 + x) 100 25 (+ 9) = 14 (2x
 + 9);

3x = 99;

= 33.

Итак, их баллы 42 и 33.

5. . Население города
увеличилось с 1 75 000 до 2 62 500 человек за десятилетие. Среднепроцентный
прирост населения в год?

Решение: увеличение через 10 лет =
(262500 — 175000) = 87500.

Увеличение %= (87500/175000 * 100)=50%

Требуемое среднее = (50/10)% = 5%

Как рассчитать процентное изменение

Процентное изменение равно изменению
данного значения. Можно найти его, разделив все значение на исходное значение,
а затем умножив его на 100. Формула решения задачи на процентное изменение следующая:

Для цены или процентного увеличения:

[(Новая цена — старая цена)/Старая цена] x
100;

Для снижения цены или процента:

[(Старая цена — новая цена)/Старая цена] x
100;

Вот пример увеличения цены/процента:

Телевизор стоил 100 тысяч рублей в прошлом
году, но теперь стоит 125 тысяч рублей. Чтобы определить повышение цены, нужно
вычесть старую цену из новой цены: 125 — 100 = 25. Затем разделить это на
старую цену: 25 разделить на 100 равно 0,25. Затем умножить это число на 100:
0,25 x 100 = 25, или 25%. Таким образом, цена на телевизор выросла на 25% за
последний год.

Пример снижения цены/процента:

В прошлом году телевизор стоил 100 тысяч
рублей, но теперь стоит всего 75 тысяч рублей. Чтобы определить снижение цены, нужно
вычесть новую цену из старой цены: 100 — 75 = 25. Затем разделить это число на
старую цену: 25 разделить на 100 равно 0,25. Затем умножить на 100: 0,25 x 100
= 25 или 25%. Это означает, что телевизор стоит на 25% меньше, чем в предыдущем
году.

Распространенные ошибки при решении задач с процентами

Рассмотрим наиболее распространенные ошибки:

  • При
    сравнении процентов нужно убедиться, что есть общий базовый
    уровень (в противном случае проценты не будут связаны друг с другом).
  • Одной из
    задач, в которой многие часто ошибаются, является увеличение процента
    из года в год. Например, у Алины 10 рублей, и каждый год это число увеличивается
    на 5%. Сколько у нее будет через 3 года? У некоторых людей может
    возникнуть соблазн сложить 5% в течение 3 лет, т.е. 15% и умножить 10 рублей
    на 15%. Это неправильно. Правильный способ решения таких задач — помнить,
    что каждый год начальные 10 рублей увеличивались на 5%. Таким образом, в
    конце первого года у Алины будет 10 рублей x 1,05 = 10,5 рублей. В конце 2
    года у нее будет 10,5 рублей x 1,05 = 11,025 и так далее. Важно добавить в
    каждый из этих шагов, чтобы получить правильный ответ.

Компания «РосДиплом» на протяжении 20 лет занимается студенческими работами и предлагает помощь студентам во всех областях и темах. Наши преимущества: огромный опыт работы, лучшие авторы, собранные со
всех уголков России, гарантии успешной сдачи и оптимальной цены, а также индивидуальный подход к каждому клиенту.

Описание презентации по отдельным слайдам:

  • ОРГАНИЗАЦИЯ РАБОТЫ И ПУТИ УСТРАНЕНИЯ МАТЕМАТИЧЕСКИХ ПРОБЛЕМ СЕМИКЛАССНИКОВ ПР...

    1 слайд

    ОРГАНИЗАЦИЯ РАБОТЫ И ПУТИ УСТРАНЕНИЯ МАТЕМАТИЧЕСКИХ ПРОБЛЕМ СЕМИКЛАССНИКОВ ПРИ РЕШЕНИИ ЗАДАЧ НА ПРОЦЕНТЫ.
    Выполнили учителя математики
    ГБОУ Школы № 402 имени А.Молдагуловой
    Моисеева Евгения Петровна и
    Полякова Наталья Анатольевна

  • Что такое знание?
 Этот простой вопрос  также древен, как и философия. 
В пед...

    2 слайд

    Что такое знание?
    Этот простой вопрос также древен, как и философия.
    В педагогике о знании говорят в двух значениях:
    как о содержании образования (виды знаний, их структура) результате освоения
    школьниками этого
    содержания.

  • ДИАГРАММА ТИПИЧНЫХ ОШИБОК ПРИ НезависимОЙ ДИАГНОСТИКЕ

    3 слайд

    ДИАГРАММА ТИПИЧНЫХ ОШИБОК ПРИ НезависимОЙ ДИАГНОСТИКЕ

  • Типичные ошибки  учащихся1. Вычислительные (45%)
2. Части, доли, проценты (70...

    4 слайд

    Типичные ошибки учащихся
    1. Вычислительные (45%)
    2. Части, доли, проценты (70%)
    3. Задачи на делимость (33%)
    4. Линейные уравнения (38%)
    5. Текстовые задачи (44%)

  • ЦЕЛИ:
научить решать основные задачи на проценты: нахождение процента от вели...

    5 слайд

    ЦЕЛИ:
    научить решать основные задачи на проценты: нахождение процента от величины, нахождение величины по её проценту, нахождение процента одной величины от другой
    расширение и углубление знаний по теме «Проценты»;
    приобретение практических навыков выполнения заданий различного уровня сложности по теме «Проценты»
    способствовать развитию творческой активности учащихся;
    развивать познавательный интерес к предмету путем применения информационных технологий;

  • ЗАДАЧИ:
- формировать навыки самостоятельной работы,  навыки работы со справо...

    6 слайд

    ЗАДАЧИ:
    — формировать навыки самостоятельной работы, навыки работы со справочной литературой, аналитическое мышление, развитие памяти, кругозора, умение преодолевать трудности при решении более сложных задач;
    — акцентировать внимание учащихся на единых требованиях к правилам оформления различных видов заданий на проценты;
    — расширить математические представления учащихся по теме «Проценты»
    — развивать познавательную самостоятельность обучающихся;
    — ликвидировать пробелы в знаниях учащихся ;
    — создавать условия для успешного индивидуального развития ученика.
     создать набор карточек с заданиями каждого уровня сложности

  • Организация работы по устранению пробелов в знаниях учащихся.
эту работу подр...

    7 слайд

    Организация работы по устранению пробелов в знаниях учащихся.

    эту работу подразделяют на этапы:
    выявление ошибок;
    фиксирование ошибок;
    анализ допущенных ошибок;
    планирование работы по устранению пробелов;
    устранение пробелов ;
    меры профилактики.

  • установление внутрипредметных и межпредметных связей, усиление практич...

    8 слайд

    установление внутрипредметных и межпредметных связей, усиление практической и прикладной направленности
    Применение в повседневной жизни
    Денежный контекст
    Формирование правильного понимания того, какая величина составляет 100%

  • Методические рекомендации. Устранение математических затруднений Нахождение...

    9 слайд

    Методические рекомендации.

    Устранение математических затруднений
    Нахождение 1% от «хороших» круглых чисел
    Нахождение 10%, 20%,25% и 50% от «хороших» круглых чисел.
    Восстановление числа по его 1%.
    Восстановление числа по его 10%, 20%,25% и 50%
    Изменение числа на определённое количество %
    Что брать за 100%
    Связь с темой пропорции

  • Уровни сложностизаданий:1. Вступительная задача на усвоение понятия и нахожд...

    10 слайд

    Уровни сложности
    заданий:
    1. Вступительная задача на усвоение понятия и нахождение целого числа % от числа кратного 100
    2. задачи базового уровня
    3.задачи , в которых требуется неоднократное нахождение %
    4. задачи на концентрацию растворов и смесей
    5. №сложные» задачи на %

  • Примеры заданий. Уровень 1 
 Проценты. Листок 1. Введение в тему. 

Один пр...

    11 слайд

    Примеры заданий.

    Уровень 1

    Проценты. Листок 1. Введение в тему.

    Один процент (1%) – это одна сотая часть
    1. Найдите 1% от:
    1) 300
    2) 500 рублей.
    3) 1200 кг
    4) 1000 000 т.

  • Примеры заданий. Уровень 1

    12 слайд

    Примеры заданий.
    Уровень 1

  • Примеры заданий. Уровень 1 .

    13 слайд

    Примеры заданий.
    Уровень 1
    .

  • Примеры заданий. Уровень 2

    14 слайд

    Примеры заданий.
    Уровень 2

  • Примеры заданий. Уровень 2

    15 слайд

    Примеры заданий.
    Уровень 2

  • Примеры заданий. Уровень 3

    16 слайд

    Примеры заданий.
    Уровень 3

  • Примеры заданий. Уровень 4

    17 слайд

    Примеры заданий.
    Уровень 4

  • Примеры заданий. Уровень 5

    18 слайд

    Примеры заданий.
    Уровень 5

  • Примеры заданий. Дидактичекая игра«Цепочка».

    19 слайд

    Примеры заданий.
    Дидактичекая игра
    «Цепочка».

  • Примеры заданий.

  • Диаграмма СРАВНЕНИЯ КОЛИЧЕСТВА ТИПИЧНЫХ ОШИБОК СЕМИКЛАССНИКОВ

    21 слайд

    Диаграмма СРАВНЕНИЯ КОЛИЧЕСТВА ТИПИЧНЫХ ОШИБОК СЕМИКЛАССНИКОВ

  • ВЫВОДЫ:

 материал должен быть представлен как система со своими связями, пос...

    22 слайд

    ВЫВОДЫ:

    материал должен быть представлен как система со своими связями, последовательностью, расширяющимися в процессе преодоления трудностей зонами развития.
    система задач должна включать в себя выполнение учащимися следующих мыслительных операций: сравнение, аналогия, обобщение, систематизация, конкретизация, выделение главного и общего, анализ, синтез, классификация и др.
    Организация учебной деятельности предполагает наличие заданий межпредметного и прикладного характера, творческие задачи, составленные
    учащимися путем видоизменения условий
    данной задачи, принципиально новые задачи,
    составленные учащимися и др.

Чтобы успешно сдать экзамен, подготовку нужно начинать заранее. И если вы не можете самостоятельно определить свои слабые места и проблемы, рекомендуем начать с разбора типичных ошибок ЕГЭ и ОГЭ по математике.

Здесь мы приведем анализ типичных ошибок {{year}} и дадим советы, как их не допустить при сдаче ОГЭ/ЕГЭ по математике. Следите за нашим телеграм-каналом – там мы будем разбирать и другие дисциплины, чтобы помочь вам в поступлении.

Базовый уровень математики

Ошибки в задачах на проценты

Чаще всего их допускают, так как не разбираются в сути процента.

Возьмем пример задачи, когда нужно сначала снизить цену на 25%, а потом повысить ее на 25%. Самая частая ошибка – полагать, что эти проценты будут равны одной и той же сумме. На самом же деле база их зачисления будет совершенно разной.

Ошибки в задачах на проценты

В этом примере 6% участников допустили вариант, что новую цену нужно понизить на 25%. На самом же деле новая цена – это 125% от старой. И вопрос в этой задаче – узнать, сколько будет 100% от старой цены.

Совет: повторить основы расчета процентов, повторить взаимосвязи величин, подумать над способом решения таких задач.

Невнимательное прочтение условия задания

Волнение и психологическое напряжение приводят к тому, что участники часто неправильно понимают условие задания. В итоге – снижение итогового балла по невнимательности, а не по незнанию.

Например:

Невнимательное прочтение условия задания

В 24% участников упомянули те точки, где значение функции (а не производной) положительное. Еще 2% указали номера точек, где производная принимает положительное значение.

Совет: вдумчиво, медленно и несколько раз читайте задание.

Непонимание текста задачи (на повышенном уровне и в практико-ориентированных заданиях)

Учащиеся могут не только неправильно понять, но и вовсе не понять условия. Иногда это происходит из-за незнания величин, единиц их измерения или плохой работы с формулами. Многие просто пропускают эту часть тестирования.

Вот пример задачи:

Её выполнило только 57% участников тестирования. 8% вообще не дали ответа, 6% дали ответ «чем ближе, тем лучше», 4% – «лампочку необходимо поместить в середину разрешенного интервала», еще 4,5% приняли фокус за основной параметр.

Совет: изучайте задания прошлых лет, просите учителя практиковать как можно более разные задачи.

Ошибки в вычислениях

Школьная привычка использовать даже в самых легких примерах калькулятор приводит к плачевному результату на экзамене. Если учащийся не научиться быстро считать в уме или хотя бы на бумаге, во время тестирования он может ошибиться даже в самых простых заданиях. 

Особенно сложно участникам тестирования даются дроби, отрицательные числа, элементарные преобразования выражений и другие проблемы, копившиеся еще с 5 класса.

Совет: если в чем-то не разбираетесь, обязательно отработайте эту тему до автоматизма перед экзаменом, потому что она обязательно попадется.

Ошибки теоретического характера

Это касается фактов по геометрии и алгебре, незнание которых приводит к снижению процента выполнения заданий и базового, и профильного уровней.

Например:

В этой задаче около 8% участников вообще не ответили на поставленное условие, 38% дали ответ с ошибками относительно боковой поверхности конуса, а 12% совершили ошибки в расчёте объёма.

Статистика показывает, что в таких заданиях ошибок гораздо больше, чем в гораздо более сложных профильных заданиях. 

Совет: потренируйтесь перед тестированием. Если ответы не сходятся с ключами, обратитесь за помощью к стороннему специалисту (репетитору или сервису студенческой помощи), чтобы они указали, где вы ошибаетесь.

Ошибки в алгоритмах и методах решения

Этот тип ошибок встречается во всех заданиях.

Например:

Около 15% участников получили нулевые баллы из-за проблем с невнимательным чтением неравенства, непониманием алгоритма решения совокупностей и систем логарифмических неравенств.

Хватает ошибок и в решении дробнорациональных неравенств, когда ученики забывают про знаменатель.

Совет: всегда проверяйте решение. Научитесь правильно находить последовательность в решении алгоритмов.

Ошибки в чтении и построении чертежа

Такое случается, когда ученик не понимает взаимосвязь элементов геометрических конструкций, а также не обладает основными пространственными представлениями. 

Например:

Около 10% участников экзамена сделали ошибки в вычислении углов по их записи, просто перепутав буквы или не понимая, где расположены вершины всех углов. Еще 5% решили, что угол ACD прямой. А 3% увидели в угле ABD равносторонний треугольник. 

Совет: тренируйтесь находить взаимосвязь элементов геометрических конструкций.

Неумение обосновывать и доказывать

14 и 16 задания по стереометрии и планиметрии отличаются повышенным уровнем сложности и требуют развернутого ответа. В каждом по 2 пункта: в первом нужно доказать, во втором – произвести вычисления. 

Самые распространенные ошибки касаются первого пункта, так как у участников выявились проблемы с умением доказывать.

Есть проблемы и в оформлении доказательств. Например:

Основная трудность в отсутствии понимания логики построения доказательства.

Совет: тренируйтесь в доказательной базе, повышайте математическую культуру, учитесь обосновывать выбранные методы и способы их решения.

Ошибки в заданиях по тригонометрии

Из-за невнимательности и неаккуратности, а также отсутствия знаний по большому количеству теоретических фактов и способности их применять на практике, участники совершают частые ошибки в решении тригонометрических заданий.

Например:

Только 34% участников выполнили его. Самые частые ошибки (около 12%) связаны в первую очередь с нахождением тригонометрического знака – чаще всего потеря знака «минус». Еще 22% ждут «красивого» ответа, равного 1 или 2.

Ошибки математического моделирования

В 11 и 17 заданиях проверяют способность учащихся к построению и исследованию простейших математических моделей. 

В текстовых задачах основную роль играет сюжетная часть – она имеет практическую ориентацию. И часто из-за непонимания взаимосвязи величин в этих заданиях допускают ошибки.

Например, в задачах на движение примерно 10% не понимают принципы движения по реке – они умножают собственную скорость на время движения.

Совет: тренируйте текстовые задачи, внимательно читайте условие задачи. 

Профильный уровень

Здесь приведем краткий список трудностей и ошибок участников ЕГЭ по математике:

  1. Задание 2 – учащиеся не понимают разницу в сравнении отрицательных чисел и их моделей.
  2. Задание 6 – не понимают геометрический рисунок (относятся к нему как к чертежу, где соблюдены все размеры).
  3. Задание 7 – отвечают наугад в решениях производных и попытках увидеть ее на чертеже.
  4. Задание 8 – ошибаются в наглядном решении. 
  5. Задание 9 – неправильно применяют свойства степеней, ошибаются в решении логарифмов из-за отсутствия практики.
  6. Задание 12 – ошибаются в задачах с нулями производной.

Как правильно читать задание, чтобы не совершать ошибок по невнимательности

Есть несколько рекомендаций, чтобы избежать ошибок из-за невнимательного прочтения задания. Это и будет алгоритмом решения задачи:

  • прочтите условие;
  • выпишите данные величины, сделайте рисунок в геометрическом задании;
  • установите и запишите отношения и взаимосвязи между известными данными;
  • выпишите что найти, ответ на какой вопрос нужно дать;
  • определите тип задания;
  • сформулируйте содержание и последовательность действий.

Это будет ваш своеобразный чек-лист, который обязательно нужно соблюдать при решении любой задачи, чтобы не допустить обидных ошибок. 

Данные условия важно именно выписывать, а не иметь в виду. Фиксация их в уме чаще всего приводит к записи неправильного ответа.

И еще момент: не приступайте к решению задачи сразу же после ее прочтения. Психологи утверждают, что важно выдержать паузу между стимулом и реакцией – именно при этом условии удастся добиться оптимальных результатов:

  • сориентироваться в условии,
  • обдумать и спланировать ее решение,
  • понять уровень ее сложности и решить, откладывать ли ее решение напоследок. 

Кроме сложности задачи оцените, сколько баллов она принесет и насколько она утомительна. Важно оставить энергию для решения других заданий при сдаче единого государственного экзамена.

Начинайте с самой простой задачи, постепенно продвигаясь к самой сложной. На экзамене важно количество решенных заданий, а не их сложность.

Знание типичных ошибок ЕГЭ и ОГЭ по математике даст вам полную картину того, к каким заданиями нужно готовиться с большим усилием. А чтобы не отвлекаться на другие учебные дела, не забывайте: рядом есть сервис студенческой помощи, который подставит плечо в трудную минуту.

Воронцова Ольга Владимировна,

учитель математики, МБОУ СОШ №80 г. Новосибирска,

630098 г. Новосибирск, ул. Энгельса, 6, e-mail: [email protected]

Роженко Тамара Ивановна,

учитель информатики, МБОУ СОШ №80 г. Новосибирска,

630098 г. Новосибирск, ул. Энгельса, 6, e-mail: [email protected]

Сложности в решении задач на проценты, сплавы и смеси при подготовке к ОГЭ в рамках интегрированного курса по математике и информатике

Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала. Поэтому любой экзамен по математике (ОГЭ или ЕГЭ), любая проверка знаний содержат в качестве основной и, пожалуй, наиболее трудной части решения задач.

Научить решать большинство текстовых задач, содержащихся в открытом банке, можно практически любого выпускника. Конечно, при этом определяющими факторами являются желание и стремление ученика, и владение вычислительными навыками. Мы хотим показать прием решения задач на растворы, смеси и сплавы, не только с помощью математики, но и информатики. Исходя из опыта учителя математики, именно такой тип задач вызывают основные трудности, поэтому их для лучшего усвоения надо рассматривать как на уроках математики, так и на информатике.

В качестве практического материала нами были использованы задачи «от составителей» из «открытого банка заданий».

Существует много способов решения задач на растворы, смеси и сплавы. Мы хотим остановится на одном из них, который, по нашему мнению, самый простой для усвоения решения таких задач – табличный.

Чтобы лучше понимать условия задач, необходимо знать следующие понятия:

1) Что такое концентрация вещества в растворе, смеси, сплаве? Концентрация вещества в растворе (смеси, сплаве) – это отношение массы или объема вещества к массе или объему всего раствора (смеси, сплава). Как правило, концентрация выражается в процентах.

2) Что такое процент? Процент – это сотая доля числа. Она может выражаться либо в виде десятичной дроби, либо в виде процента.

3) Что такое масса раствора, смеси, сплава? Масса раствора (смеси, сплава) равна сумме масс всех составляющих. При смешивании нескольких растворов (смесей, сплавов) масса нового раствора становится равной сумме всех смешанных растворов. Масса растворенного вещества при смешивании двух растворов суммируется.

Задачи на смеси и сплавы бывают двух основных видов:

  1. Две смеси определенной массы с некоторой концентрацией вещества сливают вместе. Нужно определить массу и концентрацию этого вещества в новой смеси.

  2. В некоторый раствор, с некоторой концентрацией вещества, добавляют, например, чистую воду (с нулевой концентрацией этого вещества). Нужно определить, какой стала концентрация вещества.

Алгоритм решения задачи на сплавы, растворы и смеси:

  • изучить условия задачи;

  • выбрать неизвестную величину (обозначить ее буквой);

  • определить все взаимосвязи между данными величинами;

  • составить математическую модель задачи (выбрать способ решения задачи, составить пропорцию или уравнение относительно неизвестной величины) и решить ее;

  • провести анализ результата. 

Рассмотрим несколько задач и решим их с помощью таблицы.

Задача 1. Первый сплав содержит 10% меди, второй – 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

В этой задаче примем за x массу первого сплава и выразим через него второй и третий.

Масса сплава

Процентное содержание вещества

Масса вещества

Первый сплав

x

10%=0,1

0,1 x

Второй сплав

x +3

40%=0,4

0,4 (x+3)

Третий сплав (результат слияния первых двух)

2x+3

30%=0,3

0,3 (2x+3)

Составим и решим уравнение:

0,1x+0,4 (x+3)= 0,3 (2x+3)

0,1х+ 0,4х+1,2=0,6х+0,9

0,3=0,1х

х=3 (кг) масса первого сплава.

2*3+3=9 (кг) масса третьего сплава.

Ответ: масса третьего сплава 9 кг.

Задача 2. Смешав 60%-й и 30%-й растворы кислоты и добавив 5 кг чи­стой воды, получили 20%-й раствор кислоты. Если бы вместо 5 кг воды доба­вили 5 кг 90%-го раствора той же кислоты, то получили бы 70%-й раствор кислоты. Сколько килограммов 60%−го раствора использовали для получения смеси?

Для решения этой задачи будем составлять две краткие записи. До слов «если бы вместо 5кг воды…» и после. Примем за х массу первого раствора, а за y – массу второго.

Масса раствора

Процентное содержание вещества

Масса вещества

Первый раствор

x

60%=0,6

0,6 x

Второй раствор

y

30%=0,3

0,3y

Вода

5

0

0

Третий раствор (результат слияния первых двух)

x+y+5

20%=0,2

0,2 (x+y+5)

Составим уравнение с двумя переменными: 0,6 x + 0,3y+ 0= 0,2 (x+y+5)

Масса раствора

Процентное содержание вещества

Масса вещества

Первый раствор

x

60%=0,6

0,6 x

Второй раствор

y

30%=0,3

0,3y

Раствор

5

90%=0,9

4,5

Третий раствор (результат слияния первых двух)

x+y+5

70%=0,7

0,7 (x+y+5)

Составим уравнение с двумя переменными: 0,6 x + 0,3y+ 4,5= 0,7 (x+y+5)

Объединив полученные два уравнения в систему и решив ее, получим x. Это и будет сколько килограммов 60%-го раствора использовали для получения смеси. Ответ: 2 кг.

Для нас важным является практический аспект в решении математических задач, поскольку в настоящее время выпускник, даже хорошо знающий математику, но не умеющий применять математические методы на компьютере, не может считаться успешным. Поэтому необходимо научить детей проводить требуемые вычисления на компьютере.

Наиболее универсальным для решения рассматриваемого класса задач является табличный процессор Excel.

Для решения задачи 1 в электронных таблицах изменим форму расчетов. В начало таблицы поместим известные данные, во второй столбец расчеты, в третий – расчет результата:

A

B

C

D

1

Процентное содержание вещества

Масса сплава

2

Первый сплав

0,1

=C5/C6

3

Второй сплав

0,4

=B3*3

=D2+3 

4

Третий сплав

0,3

=B4*3

 =D2+D3

5

=C3-C4

6

=B4*2-B3-B2

Получаем:

A

B

C

D

Процентное содержание вещества

Масса сплава

1

Первый сплав

0,1

3

2

Второй сплав

0,4

0,9

3

Третий сплав

0,3

1,2

4

0,3

5

0,1

Задачу 2 решаем в Excel матричным методом. используем полученную систему линейных уравнений. Составляем матрицу, помещаем ее в Excel:

A

B

C

D

1

0,4

0,1

1

2

0,1

0,4

1

Для нахождения обратной матрицы используем функцию МОБР:

2,666666667

-0,666666667

-0,666666667

2,666666667

Для умножения обратной матрицы на массив свободных членов используем функцию МУМНОЖ. Получаем массив из двух двоек, которые являются корнями системы уравнений.

Умение решать системы уравнений в Excel – очень полезный навык для учащихся. Они учатся проверять математическое решение на компьютере, искать подходящие методы, что расширяет кругозор и учит решать задачи различными способами.

Таким образом, учащиеся закрепляют знания, полученные на уроках математики и осваивают способы решения задач на компьютере.

Заключение

В задачах этого типа прослеживается системный подход к решению задач. Происходит успешная отработка и закрепление интеллектуальных умений (анализ, синтез, аналогия, обобщение. конкретизация и т.д.). Данная система задач на смеси, растворы и сплавы была апробирована в ходе КПР (контрольно-проверочной работы) по математике в 8 классе в 2016-17 учебном году. Опыт показал, что учащиеся не знавшие вначале, как подойти к решению этих задач, в конце темы успешно заполняли таблицу и получали верный ответ.

Литература:

1. Открытый банк заданий ОГЭ http://www.fipi.ru/content/otkrytyy-bank-zadaniy-oge;

2. https://oge.sdamgia.ru Каталог заданий. Задачи на проценты, сплавы и смеси

3. В.Я. Гельман. Решение математических задач средствами Excel: Практикум. – СПБ.: Питер, 2003.

Дополнение:

В математике есть ряд текстовых задач, которые вызывают затруднение у учащихся при их решении. К таким задачам можно отнести задачи на растворы, смеси и сплавы. Практическое значение этих задач огромно. Встречаются они при изучении смежных дисциплин, например, химии. Самостоятельно справиться с ними могут немногие. Вместе с этим они являются хорошим средством развития мышления учащихся.

Трудности при решении этих задач могут возникать на различных этапах:

  • составления математической модели (уравнения, системы уравнений, неравенства и т. п.;

  • решения полученной модели;

  • анализа математической модели (по причине кажущейся ее неполноты: не хватает уравнения в системе и пр.).

Все сложности преодолимы при тщательном анализе задачи. Основными компонентами в этих задачах являются:

  • масса раствора (смеси, сплава);

  • масса вещества;

  • доля (% содержание) вещества.

При решении большинства задач этого вида, удобнее использовать таблицу, которая нагляднее и короче обычной записи с пояснениями. Зрительное восприятие определенного расположения величин в таблице дает дополнительную информацию, облегчающую процесс решения задачи и её проверки.

Этапы решения задачи:

1. Знакомство учащихся с текстом задач и выделение основных компонентов в них. Заполнение таблицы.

Таблица для решения задач имеет следующий вид:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

2. Составление уравнения и его решение.

3. Анализ полученных данных, ответ на вопрос задачи.

Рассмотрим решение задач с применением таблицы.

Задача 1. В сосуд содержащий 2 кг 80 % -го водного раствора уксуса добавили 3 кг воды. Найдите концентрацию получившегося раствора уксусной кислоты.

Решение:

Наименование веществ, смесей

Масса раствора (смеси, сплава)

М, кг

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m, кг

Исходный раствор

2

80 % = 0,8

0,8·2

Вода

3

Новый раствор

5

х % = 0,01х

0,01х·5

Масса уксусной кислоты не изменилась, тогда получаем уравнение:

0,01х·5 = 0,8·2; 0,05х = 1,6; х = 1,6:0,05; х = 32.

Ответ: 32 %.

Задача 2Сколько нужно добавить воды в сосуд, содержащий 200 г 70 % -го раствора уксусной кислоты, чтобы получить 8 % раствор уксусной кислоты?

Решение:

Наименование веществ, смесей

Масса раствора (смеси, сплава)

М, г

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m, г

Исходный раствор

200

70 %

0,7·200

Вода

х

Новый раствор

200 + х

8 %

0,08(200 + х)

Анализируя таблицу, составляем уравнение :

0,08(200 + х) = 0,7·200; 16 + 0,08х = 140; 0,08х = 124; х = 1550.

Ответ :1,55 кг воды.

Задача 3. Смешали некоторое количество 12% раствора соляной кислоты с таким же количеством 20 % раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Решение:

Наименование веществ, смесей

Масса раствора (смеси, сплава)

М, г

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m, г

I раствор

х

12 %

0,12х

II раствор

х

20 %

0,2х

Смесь

0,32х/2х * 100%

0,12х+ 0,2 х = 0,32х

Анализируя таблицу, получаем :

0,32х/2х * 100% = 16 %

Ответ : 16 %.

Задача 4. Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?

Решение:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

Первый сплав

х

60%

0,6 х

Второй сплав

у

45%

0,45 у

Новый сплав

х + у

55%

0,6 х + 0,45у

Пусть первый сплав взят в количестве x кг, тогда он будет содержать 0,6x кг меди, а второй сплав взят в количестве y кг, тогда он будет содержать 0,45y кг меди. Соединив два этих сплава, получим сплав меди массой x + y, по условию задачи он должен содержать 0,55(x + y) меди. Следовательно, можно составить уравнение: 0,55(x + y) = 0,6 х + 0,45у;

0,55 х + 0,55 у = 0,6 х+ 0,45 у; 0,05 х = 0,1 у . Выразим x через y: х = 2 у.

Следовательно, отношение, в котором нужно взять сплавы 1:2.

Ответ: 1:2

Задача 5. Пер­вый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го спла­ва.

Ре­ше­ние:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

Первый сплав

х

5%

0, 05 х

Второй сплав

х + 4

13%

0,13(х +4)

Новый сплав

2х + 4

10%

0, 05 х + 0,13(х +4)=0,18 х + 0,52

Пусть масса пер­во­го спла­ва x кг. Тогда масса вто­ро­го спла­ва (x + 4) кг, а тре­тье­го — (2x + 4) кг. В пер­вом спла­ве со­дер­жит­ся 0,05x кг меди, а во вто­ром — 0,13(x + 4) кг. По­сколь­ку в тре­тьем спла­ве со­дер­жит­ся 0,1(2x + 4) кг меди, со­ста­вим и решим урав­не­ние: 0,1(2x + 4) = 0,18 х + 0,52; 0,02 х = 0,12; х = 6.

От­ку­да масса тре­тье­го спла­ва равна 16 кг.

Ответ:16 кг.

Задача 6. Сме­ша­ли не­ко­то­рое ко­ли­че­ство 10 % рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 12 % рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

Ре­ше­ние:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

1

х

10%

0, 1 х

2

х

12%

0,12 х

3

(0, 22 х / 2х)* 100 %

0, 1 х + 0,12х =

0,22 х

Пусть взяли х г 10-про­цент­но­го рас­тво­ра, тогда взяли и х г 12-про­цент­но­го рас­тво­ра. Кон­цен­тра­ция рас­тво­ра — масса ве­ще­ства, раз­делённая на массу всего рас­тво­ра.  Кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра равна 0, 22 х / 2х или 11%.

 Ответ: 11%.

Задача 7. Име­ют­ся два со­су­да, со­дер­жа­щие 4 кг и 16 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чит­ся рас­твор, со­дер­жа­щий 57% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 60% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом рас­тво­ре?

Ре­ше­ние:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М, кг

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

M, кг

Первый раствор

4

х %

0,04 х

Второй раствор

16

у %

0,16 у

Смесь 1

20

57%

0,04 х + 0,16у

Смесь 2

4+4 =8

60 %

0,04х + 0,04 у

Пусть кон­цен­тра­ция пер­во­го рас­тво­ра – х %, кон­цен­тра­ция вто­ро­го рас­тво­ра – y %. Со­ста­вим си­сте­му урав­не­ний со­глас­но усло­вию за­да­чи:

0,57 * 20 = 0,04 х + 0,16у, х = 65,

0,6 * 8 = 0,04х + 0,04 у; у = 55.

Таким об­ра­зом, в пер­вом рас­тво­ре со­дер­жит­ся 0,65 * 4 = 2,6 ки­ло­грам­ма кис­ло­ты

 Ответ: 2,6

Задача 8.  Сме­шав 60% и 30% рас­тво­ры кис­ло­ты и, до­ба­вив 5 кг чи­стой воды, по­лу­чи­ли 20% рас­твор кис­ло­ты. Если бы вме­сто 5 кг воды до­ба­ви­ли 5 кг 90% рас­тво­ра той же кис­ло­ты, то по­лу­чи­ли бы 70% рас­твор кис­ло­ты. Сколь­ко ки­ло­грам­мов 60% рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

Ре­ше­ние:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М, кг

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

M, кг

Первый раствор

х

60 %

0,6 х

Второй раствор

у

30 %

03 у

Смесь 1

х + у +5

20 %

0,6 х + 0,3у

Третий раствор

5

90 %

0,9* 5 = 4,5

Смесь 2

х + у +5

70 %

0,6х + 0,3 у + 4,5

Пусть х кг и у кг — массы пер­во­го и вто­ро­го рас­тво­ров, взя­тые при сме­ши­ва­нии. Тогда (х + у +5) кг — масса по­лу­чен­но­го рас­тво­ра, со­дер­жа­ще­го (0,6 х + 0,3у) кг кис­ло­ты. Кон­цен­тра­ция кис­ло­ты в по­лу­чен­ном рас­тво­ре 20 %, значит 0,2(х + у +5) %. Концентрация кислоты во втором растворе 70 %, значит 0,7 ( х + у + 5) = 0,6х + 0,3 у + 4,5. Решим си­сте­му двух по­лу­чен­ных урав­не­ний:

0 ,2(х + у +5) = 0,6 х + 0,3у,

0,7 ( х + у + 5) = 0,6х + 0,3 у + 4,5;

0,4 х + 0,1 у = 1, х =2,

0,1 х + 0,4 у = 1; у = 2.

Ответ: 2 кг.

Задача 9. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

Первый сплав

х

10%

0, 1 х

Второй сплав

200-х

30%

0,3(200-х)

Новый сплав

200

25%

0, 1 х + 0,3(200-х )= 0,25*200

Решим уравнение: 0, 1 х + 0,3(200-х )= 0,25*200; х = 50.

Масса второго сплава 150 кг.

Ответ: на 100 кг.

 Задача 10. Имеется два куска слитка олова и свинца, содержащие 40% и 60% олова. По сколько граммов от каждого куска надо взять, чтобы получить 600 граммов сплава, содержащего 45% олова?

Решение:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

m

Первый кусок

х

40%

0, 4 х

Второй кусок

600-х

60%

0,6 (600-х)

Новый сплав

600

45%

0, 4 х + 0,6(600-х )= 0,45*600

Решим уравнение: 0, 4 х + 0,6(600-х )= 0,45*600; х = 450.

Ответ:450 кг и 150 кг.

Задача 11.  Кусок сплава меди и цинка массой 36 кг, содержит 45% меди. Сколько килограммов меди нужно добавить к этому куску, чтобы получить новый сплав, содержащий 60% меди?

Решение:

Наименование веществ, растворов, смесей, сплавов

Масса раствора (смеси, сплава)

М, кг

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

M, кг

Первый кусок

36

45%

0, 45 *36 = 16,2

Медь

х

100%

х

Новый сплав

36 + х

60 %

16,2 +х=0,6(36 + х)

Получаем уравнение: 0, 45 х +х=0,6(36 + х), х = 13,5

Ответ: 13,5 кг

Задача 12. Имеется три сосуда. В первый сосуд налили 4 кг 70 % сахарного сиропа, а во второй – 6 кг 40 % сахарного сиропа. Если содержимое первого сосуда смешать с содержимым третьего сосуда, то получим в смеси 55 % содержание сахара, а если содержимое второго сосуда смешать с третьим, то получим 35 % содержание сахара. Найдите массу сахарного в третьем сосуде сиропа и концентрацию сахара в нем.

Решение:

Наименование веществ, смесей

Масса раствора (смеси, сплава)

М, кг

% содержание вещества (доля содержания вещества)

m / M * 100%

Масса вещества

M, кг

I сосуд

4

70 %

0,7·4=2,8

II сосуд

6

40 %

0,4·6 = 2,4

III сосуд

х

у %

0,01ху

I и III сосуды

4+х

55 %

0,55(4+х)

=

2,8+0,01ху

II и III сосуды

6+х

35 %

0,35(6+х)

=

2,4+0,01ху

Итак, получаем систему уравнений :

 

Ответ :1,5 кг сахарного сиропа 15 % концентрации.

Задачи для самостоятельного решения:

13. Име­ют­ся два со­су­да, со­дер­жа­щие 10 кг и 16 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чит­ся рас­твор, со­дер­жа­щий 55% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 61% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом рас­тво­ре?

Ответ: 8,7

14. Име­ют­ся два со­су­да, со­дер­жа­щие 40 кг и 30 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 73% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 72% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

 Ответ: 19,5

15. Име­ют­ся два со­су­да, со­дер­жа­щие 40 кг и 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чит­ся рас­твор, со­дер­жа­щий 33% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 47% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом рас­тво­ре?

Ответ: 2.

16. Име­ют­ся два со­су­да, со­дер­жа­щие 24 кг и 26 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чит­ся рас­твор, со­дер­жа­щий 39% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 40% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом рас­тво­ре?

Ответ: 15,6

17. Име­ют­ся два со­су­да, со­дер­жа­щие 30 кг и 20 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 81% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 83% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

Ответ: 18,6

18. Име­ют­ся два со­су­да, со­дер­жа­щие 22 кг и 18 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чит­ся рас­твор, со­дер­жа­щий 32% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 30% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся в пер­вом рас­тво­ре?

Ответ: 11

19. Име­ют­ся два со­су­да, со­дер­жа­щие 30 кг и 42 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 40% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 37% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

20. Име­ют­ся два со­су­да, со­дер­жа­щие 48 кг и 42 кг рас­тво­ра кис­ло­ты раз­лич­ной кон­цен­тра­ции. Если их слить вме­сте, то по­лу­чим рас­твор, со­дер­жа­щий 42% кис­ло­ты. Если же слить рав­ные массы этих рас­тво­ров, то по­лу­чен­ный рас­твор будет со­дер­жать 40% кис­ло­ты. Сколь­ко ки­ло­грам­мов кис­ло­ты со­дер­жит­ся во вто­ром рас­тво­ре?

21. Сме­ша­ли не­ко­то­рое ко­ли­че­ство 21-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 95-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

 Ответ: 58.

Заключение

В задачах этого типа прослеживается системный подход к решению задач. Происходит успешная отработка и закрепление интеллектуальных умений (анализ, синтез, аналогия, обобщение. конкретизация и т.д.). Данная система задач на смеси, растворы и сплавы была апробирована в ходе КПВ по математике в 8 классе в 2016-17 учебном году. Опыт показал, что учащиеся не знавшие вначале, как подойти к решению этих задач, в конце темы успешно заполняли таблицу и получали верный ответ.

Литература:

1.Открытый банк заданий ОГЭ http://www.fipi.ru/content/otkrytyy-bank-zadaniy-oge;

2. https://oge.sdamgia.ru Каталог заданий. Задачи на проценты, сплавы и смеси

13

ВЫСТУПЛЕНИЕ

на РМО математиков

«Диагностика типичных ошибок

при решении задач»

Учитель математики

МБОУ «Ливенская СОШ №1»

Чебакова Галина Владимировна

Одним из вопросов методики преподавания математики является вопрос формирования у учащихся умений и навыков решения текстовых задач.

Задачи являются материалом для ознакомления учащихся с новыми понятиями, для развития логического мышления, формирования межпредметных связей. Задачи позволяют применять знания, полученные при изучении математики, при решении вопросов, которые возникают в жизни человека. Этапы решения задач являются формами развития мыслительной деятельности.

«На ошибках учатся», — гласит народная мудрость. Но для того, чтобы извлечь урок из негативного опыта, в первую очередь, необходимо увидеть ошибку. К сожалению, школьник зачастую не способен ее обнаружить при решении той или иной задачи.

Целенаправленная работа над ошибками требует их систематизации. При этом главную роль должны сыграть группы ошибок, которые объединены общими причинами их появления, общей методикой работы над ними. Такая систематизация ошибок позволяет наметить пути их исправления и предупреждения этих ошибок в дальнейшем.

Широко известны серьезные трудности, которые испытывают учащиеся при решении задач.

1. Ошибки и недочёты, которые обусловлены невниманием к формированию теоретико-множественных представлений учащихся:

  • ошибки, связанные с недостаточно чётким владением понятиями множества, элемента множества, отношения принадлежности, равенства множеств;

  • ошибки, которые возникают в результате недостаточно чёткого владения операциями пересечения и объединения множеств.

2. Ошибки, которые связаны с недостаточной логической подготовкой учащихся:

  • ошибки, связанные с непониманием структуры теоремы;

  • ошибки, которые обусловлены непониманием зависимости между прямой и обратной теоремами;

  • ошибки, связанные с непониманием метода доказательства от противного.

3. Ошибки, которые допускают учащиеся из-за отсутствия и неустойчивости самоконтроля.

  • Первая трудность состоит в математизации предложенного текста, т.е. в составлении математической модели, которая может представлять собой уравнение, неравенство или их систему, диаграмму, график, таблицу, функцию и т.д.

  • Для того, чтобы перевести содержание задачи на математический язык, учащемуся необходимо тщательно изучить и правильно истолковать его, формализовать вопрос задачи, выразив искомые величины через известные величины и введенные переменные.

  • Вторая трудность — составление уравнений и неравенств, связывающих данные величины и переменные, которые вводит учащийся.

  • Третья трудность — это решение полученной системы уравнений или неравенств желательно наиболее рациональным способом.

Проанализируем некоторые типичные ошибки учащихся, допускаемых при решении тренировочных заданий для подготовки к ГИА

  • Зачастую при решении задач на движение учащиеся не обращают внимание на то, что скорость дана в одних единицах измерения, а время или расстояние в других, поэтому логически рассуждение строится верно, но в результате задача не решена. Что очень важно при ГИА, ЕГЭ – 1 части.

  • При сопоставлении текста задачи и уравнения для её решения уч-ся обозначают за х не ту величину, которая предложена им в задании.

(Скорость первого велосипедиста на 3 км/ч больше скорости второго, поэтому на путь длинной 20 км ему потребовалось на 20 мин. Меньше, чем второму. Чему равны скорости велосипедистов? Пусть х км/ч скорость первого велосипедиста.)

Типичные ошибки:

20: (х+3)-20:х=20

  • При решении задач на проценты ( подорожание , скидки) учащиеся повторное изменение величины находят, не применяя правила нахождения части от предыдущей цены, путём сложения и вычитания процентов.

(Магазин закупил на складе футболки и стал продавать их по цене, приносящей доход в 40 % . В конце года цена была снижена на 50 %. Какая цена меньше: та, по которой магазин закупил футболки, или цена в конце года – и на сколько процентов .

Типичные ошибки: 100+40-50=90% Разница на 10 %.))

Рассмотренные ошибки и недочёты типичны на всех ступенях обучения.

Рассмотренные ошибки свидетельствуют о том, что ученики, не справившиеся с решением задач, не смогли представить себе жизненной ситуации, отраженной в задаче, не уяснили отношений между величинами в ней, зависимости между данными и искомым, а поэтому просто механически манипулировали числами.

Почему учащиеся допустили много ошибок при повторном решении знакомых задач? Анализ результатов позволяет сделать вывод о том, что одна из основных причин допускаемых детьми ошибок в решении текстовых задач – неправильная организация первичного восприятия учащимися условия задачи и ее анализа, которые проводятся без должной опоры на жизненную ситуацию, отраженную в задаче, без ее предметного или графического моделирования. Как правило, в процессе анализа используются лишь различные виды краткой записи условия или готовые схемы, а создание модели на глазах у детей или самими детьми в процессе разбора задачи применяется крайне редко. К тому же при фронтальном анализе и решении задачи учитель нередко ограничивается правильными ответами двух-трех учеников, а остальные записывают за ними готовые решения без глубокого их понимания, т.е. не проводятся все этапы работы над задачей.

Для устранения этих недостатков необходимо прежде всего улучшить методику организации первичного восприятия и анализа задачи, чтобы обеспечить осознанный и доказательный выбор арифметического действия всеми учащимися.

Типичные методические ошибки учителя при работе с текстовыми задачами

Ошибка 1. Пропуск этапа анализа условия задачи.

«Прочитайте условие задачи. Кто пойдет к доске?» – такое часто можно видеть на уроке. И сразу начинается оформление решения. Этап анализа отсутствует и в некоторых учебниках, и в решебниках. Может быть, проведение этого этапа обязательно не для всех учащихся. В классе найдутся такие ученики, у которых этап анализа свернут. Они его проходят очень быстро, поэтому сразу видят решение и переходят к его оформлению. Задача педагога – помогать тем, у которых не получается. Решение задачи основывается на тех связях, которые существуют между данными и искомыми величинами. На выделение этих связей и направлен анализ условия задачи. Чтобы помочь учащимся самостоятельно осуществлять анализ условия, преподаватель может предложить им специальные памятки.

Ошибка 2. Пропуск этапа поиска решения.

Пропуск этого этапа ведет к недопониманию учащимися сущности эвристической деятельности, и как результат, к возникновению трудностей при самостоятельном решении задач. В практике обучения традиционной является ситуация, когда учитель вызывает к доске учащегося, который знает, как решить задачу. Однако при личностно ориентированном обучении основная забота учителя должна быть связана с теми, кто испытывает затруднения при самостоятельном решении задач.

Тем же учащимся, которые без учителя могут решать задачи, необходимо подбирать задания, усиливающие их умения и способствующие их развитию (составить задачи на основе справочных данных; рассмотреть другие способы решения предложенной задачи; составить граф-схемы других уравнений по задаче и др.)

Ошибка 3. Пропуск этапа исследования решения.

Зачем нужен этот этап? На этапе исследования выясняем, соответствует ли полученный ответ условию задачи (правдоподобность результата); есть ли другие способы решения; что полезного можно извлечь на будущее из решенной задачи. Последний вопрос позволяет рассматривать каждую задачу как звено в общем умении решать задачи, что ведет к накоплению опыта по решению задач.

Ошибка 4. Смешение этапов анализа и поиска решения.

Чтобы этого избежать, надо точно знать, какую цель мы преследуем на каждом этапе. Цель этапа анализа условия – выявить все имеющиеся связи между данными и искомыми величинами, чему помогает составление таблицы (схемы, рисунка). Цель этапа поиска решения – выбрать метод решения (алгебраический или арифметический) и составить план решения. Цели этапов разные, значит, и смешивать эти этапы никак нельзя.

  • Если для решения задачи выбран алгебраический метод, то поиск ведем по следующим этапам:

определяем условия, которые могут быть основанием для составления уравнения, и выбираем одно из них;

составляем схему уравнения, соответствующего выбранному условию;

определяем, какие величины можно обозначить за х; выбираем одну из них;

определяем, какие величины нужно выразить через х, и находим условия, которые позволяют это сделать.

Завершается этап поиска составлением плана решения задачи.

Ошибка 5. На этапе анализа условия фиксируются не все связи между величинами.

Надо стараться зафиксировать как можно больше таких связей. Почему это важно? Упустив какую-нибудь связь, мы можем потерять:

условие для составления уравнения;

возможность одну величину выразить через другие;

предусмотреть несколько способов решения.

Ошибка 6. Поиск решения задачи алгебраическим методом начинается с выбора переменной.

Обратим внимание на то, что при перечислении этапов, которые мы проходим при поиске решения задачи алгебраическим методом, сначала был назван выбор условия для составления уравнения, затем составление схемы уравнения, и только тогда мы вводим переменную. На практике мы почти везде видим иное: сначала вводят переменную, затем выражают остальные величины через нее и затем составляют уравнение. Вот этот момент настолько «закостенел» в нашем сознании, что от него отказаться очень трудно.

На самом деле, лучше делать «по-новому». Представьте себя на месте ученика в классе. Рассмотрим ситуацию, когда не были проведены этапы анализа и поиска решения, к доске вызван ученик, который знает, как решить задачу, и он начинает: «За х обозначим…» И что же наш ученик, который затрудняется в самостоятельном решении? Мы из решения сделали тайну непостижимую. «Как он угадал, что обозначить за х?» И когда он будет пробовать дома решать задачу, у него сразу закрадывается сомнение: «А вдруг я не угадаю?»

И насколько спокойнее и увереннее чувствует себя наш ученик, если у него есть карточка по проведению анализа и поиска решения задач; он смог составить по условию задачи таблицу; найти несколько условий для составления уравнений; записать схему уравнения для выбранного условия. Ученик знает, что за х можно обозначить любую из неизвестных величин, и, если не получится уравнение по одной схеме, то можно попробовать составить его по другой схеме.

Ошибка 7. Постановка частных, подсказывающих вопросов учащимся.

Очень много зависит от умения ставить (задавать) вопросы учащимся. Вопросы не должны нести в себе подсказку, а подталкивать учащихся к размышлению. Вместо вопросов: «Во сколько туров проходила олимпиада?», «Как распределились посевные площади?», «Какое время находились туристы в пути?», «Какие машины находятся в автопарке?» лучше задавать общие вопросы: «Что происходит по условию задачи?», «Какие объекты участвуют в задаче?», «Какие части можно выделить в задаче?». Вместо вопроса «Можно ли найти такую-то величину?» лучше задать вопрос: «Что можно найти по данным задачи?», поскольку он может вывести на несколько вариантов решения.

Задавая вопросы, учитель не должен вести учащихся к своему решению; нужно рассмотреть все пути решения, выслушать и обсудить все варианты.

2.Для осуществления целенаправленных мер по исправлению и предупреждению ошибок учителю необходимо систематически изучать ошибки учащихся, выявлять наиболее устойчивые и типичные из них, вести учёт распространённых и индивидуальных ошибок учащихся. Знание учителем типичных ученических ошибок, а также причин их возникновения и проявления даёт ему возможность предвидеть и предупреждать их появление. Достичь этого можно путём подбора таких упражнений, которые препятствуют образованию односторонних ассоциаций и неправильных обобщений.

Ошибки учащихся, которые регистрирует и учитывает учитель, помогают ему установить, что не понимают учащиеся, что ими плохо усвоено; это даёт возможность учителю своевременно ликвидировать пробелы в знаниях учащихся и внести соответствующие коррективы в дальнейшее преподавание с целью предупреждения повторения аналогичных ошибок.

Чтобы определить сущность допускаемых учащимися ошибок, необходимо проследить ход рассуждений, который приводит к такому ошибочному решению, установить этап, на котором зарождаются такие ошибки. Как показывает опыт, часто учащемуся непонятен не весь материал, а лишь какая-то его часть. Выявив, что именно непонятно ученику, можно сосредоточить на этом материале всё внимание, не отвлекаясь на те моменты, которые уже усвоены.

Допускаемые учеником ошибки свидетельствуют не только о недостатках его знаний, но и о потенциальных возможностях. Ошибки служат также показателем проблем, которые могут быть поставлены перед учеником, а иногда они приводят к созданию проблемных ситуаций, которые необходимы в данный момент для развития действий.

Ни в коем случае нельзя снижать оценок ученикам за ошибки в процессе поиска. Очень важно приучить их не бояться допускаемых ошибок. Ошибки, допускаемые учениками, надо исправлять тактично, обоснованно, привлекая к этой работе самих учащихся.

Боязнь допустить ошибку сковывает инициативу ученика. Боясь ошибиться, он не будет сам решать поставленную проблему, а станет ждать помощи от учителя. Он будет решать только лёгкие проблемы. Но без такого самостоятельного решения задач с последовательно нарастающей сложностью не может происходить интеллектуальное развитие. Во многих случаях по этой причине учащиеся проявляют робость и интеллектуальную пассивность, что в дальнейшем приводит к неуспеваемости.

Очень оживлённо воспринимаются учащимися “Задачи на выявление ошибки”. Речь идёт не только о софизмах, но и об ошибках, которые допускают сами школьники. Не нужно специально исправлять каждое ошибочное утверждение школьника. Лучше поставить это утверждение на обсуждение всего класса и добиться осознанного исправления ошибки. Если они и не допускают ошибок, то всё же нередко целесообразно проверить, насколько они “устойчивы” против типичных ошибок.

Например: Найти ошибки:

Процесс отыскания и исправления ошибок самими учащимися под руководством учителя можно сделать поучительным для учащихся, в результате чего изучение и анализ ошибок становится эффективным средством в развитии познавательного интереса к изучению математики.

Для исправления и предупреждения многих ошибок важно сформировать у школьников навыки самоконтроля. Эти навыки состоят из двух частей: а) умения обнаружить ошибку; в) умения её объяснить и исправить.

В процессе обучения применяются несколько приёмов самоконтроля, которые помогают обнаружить допущенные ошибки и своевременно их исправить. К ним относятся:

  • проверка вычисления и тождественного преобразования путём выполнения обратного действия или преобразования;

  • проверка правильности решения задач путём составления и решения задач, обратных к данной;

  • оценка результата решения задачи с точки зрения здравого смысла;

  • проверка аналитического решения графическим .

Выработке навыков самоконтроля помогает и приём приближённой оценки ожидаемого результата. Установление возможных пределов ожидаемого ответа предупреждает недочёты типа описок, пропуска цифр.

Например, рассмотрим задачу: “За неделю завод выпустил 130 холодильников, выполнив месячный план на 25%. Сколько холодильников должен выпустить завод за месяц по плану”.

Пусть решение ученика выглядит так: . Ошибка становится очевидной, если перед решением ученик прикинет в уме: “За неделю завод выпустил 130 холодильников. Следовательно, за месяц он выпустит больше. Значит, ответ должен быть больше, чем 130”. Такая прикидка в уме полезна при решении задач с дробными числами и процентами.

В жизненной практике в чертежах, схемах, расчётах, с которыми ребята будут встречаться, могут быть и ошибки. Если не научить их критически относиться к данным, то могут быть и аварии, и брак, и серьёзные упущения в работе. Чтобы этого избежать, необходимо формировать у учащихся умение анализировать данные, способность обнаруживать встречающиеся ошибки и обосновывать ошибочность положения.

Польский математик Г. Штейнгауз, отмечая большое значение работы над математическими ошибками для активизации мыслительной деятельности учащихся, пишет:

Если учащегося заверить, что в предложенном ему доказательстве есть ошибка, то можно быть уверенным даже без специальной проверки, что материал будет изучен полностью и очень тщательно”. Поэтому составление списка математических ошибок и использование его в учебных целях является одним из важных факторов повышения эффективности обучения.

Таким образом, важную роль в предупреждении ошибок играет продуманная организация изучения нового материала. Изучение нового материала надо строить так, чтобы ученик был активным участником этого процесса. Не надо бояться, если при первом изложении материала им будут допускаться ошибки, высказываться необоснованные выводы. Важно, чтобы те или иные ошибки в понимании материала исправлялись в зародыше, чтобы ученики воспринимали материал осознанно.

Такому подходу к изучению нового материала способствует создание проблемной ситуации и решение её учащимися под руководством учителя. На таких уроках ученики проходят через следующие стадии: поиск нового, возможное появление ошибок в процессе поиска нового, обоснованное опровержение этих ошибок, снова поиски, в результате которых приходят к правильной догадке, и, наконец, доказательство составленного в поисках предложения. Всё это способствует развитию математического мышления.

Текстовые задача — это способ стимулирования мыслительной активности. Считаю необходимым сформировать такой подход к задаче, при котором задача выступает как объект тщательного изучения, а ее решение — как объект конструирования и изобретения. Необходимо построить процесс обучения математике так, чтобы обеспечить успешное овладение учащимися методами и приемами решения задач и создать условия для формирования у них ряда общенаучных умений — таких, как анализ, синтез, обобщение, сравнение, аналогия.

Необходимо организовать деятельность учащихся на учебном занятии таким образом, чтобы она способствовала формированию исследовательской культуры.

Предлагаю на занятии несколько приемов организации интенсивной мыслительной деятельности, которые используются мною на различных этапах процесса обучения: при актуализации знаний, первичном усвоении материала, его осмыслении, применении и обобщении.

Это можно сделать на следующем содержании материала:

  1. Правоцирующие задачи.

Это задачи, условия которых содержат упоминания, указания, намеки или другие побудители, подталкивающие учащихся к выбору ошибочного пути решения или неверного ответа. Попадая в заранее подготовленную ловушку, ученик испытывает досаду, сожаление оттого, что не придал особого значения тем нюансам условия, из-за которых он угодил в неловкое положение. Простое сообщение о том, что учащиеся, как правило, допускают в заданиях такого-то рода ошибки, несравнимо менее действенно. Ибо оно, несмотря на общность, не является для конкретно взятого ученика личностно значимым, поскольку, во-первых, события, о которых сообщается, происходили когда-то давно, в прошлом, не сейчас, а во-вторых, каждый из учащихся наивно полагает, что в число неудачников сам он не попадает.

Дидактическая ценность этих задач в том, что они служат предупреждением от различного рода ошибок и заблуждений.

Провоцирующие задачи обладают высоким развивающим потенциалом, они способствуют воспитанию одного из важнейших качеств мышления- критичности, приучают к анализу воспринимаемой информации, ее разносторонней оценке, повышают интерес школьников к занятиям математикой.

Я использую такие разновидности провоцирующих задач:

  1. условия, в которых навязывают неверный ответ;

  2. условия, которые подсказывают неверный путь решения;

  3. условия, вводящие в заблуждение из-за неоднозначности трактовки и т.д.

В качестве примера приведу задачи, побуждающие выбор неверного способа решения.

Тройка лошадей проскакала 15 км. Сколько километров проскакала каждая лошадь?

Или, на уроке в 6 классе по теме «Простые и составные числа» предлагаю задание: «Какие из чисел 205, 206, 207, 208, 209, 210 являются простыми?»

2.Задачи стандартные с нестандартным решением.

Это задачи, при предъявлении которых учащиеся не знают заранее ни способа их решений, ни того, на какой учебный материал опирается решение. Иными словами, учащиеся в ходе решения таких задач должны провести поиск плана решения задачи, установить, какой теоретический материал дает ключ к тому или иному решению. Незначительная обработка условий той или иной задачи из учебника, изменение места и времени ее постановки существенно меняют ее дидактическую значимость, оставляя неизменным практическое содержание.

Проиллюстрирую сказанное примером. Стандартная задача для учащихся 7 класса: «В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Сколько фазанов и кроликов в клетке?». Данную задачу предлагаю решить не алгебраическим способом, приводя к стандартному уравнению, а арифметическим. Таким образом, по существу, данную задачу превращаем в нестандартную для шестиклассников и даже семиклассников.

Задачи такого плана всегда органически связаны с изучаемым материалом. Допуская нестандартное решение, приучаю школьников не довольствоваться шаблоном, а нацеливаю на вдумчивый подход, воспитываю стремление как можно лучше выполнить порученное дело. Они развивают гибкость, рациональность, целенаправленность математического мышления и ценны тем, что дается возможность каждому ученику с любой структурой мышления проявить себя.

3. Проблемные задачи.

Это задачи, алгоритм решения которых неизвестен до начала решения. Главное в том, чтобы открыть способ решения и убедиться в его пригодности. Следует иметь в виду, что определить, является данная задача проблемной или нет, можно только относительно конкретного школьника, только с учетом его знаний и умений в момент постановки задачи.

Задачи такого плана решаются исследовательским методом и этим очень интересны для учащихся. Ведь исследование предполагает творчество. Проблемы, которые ставятся перед учащимися, могут иметь разнообразный характер: введение в новую тему, решение задачи новым более эффективным способом, связь известного учебного материала с новым и т.д.

При подборе проблемных задач учитываю знания учащихся и уровень развития их логического мышления, поскольку непосильная задача порождает неуверенность в своих силах и в дальнейшем отвращение от решения любых задач, а излишне простая вводит в заблуждение относительно уровня собственных знаний и умений, не стимулирует поисковую деятельность.

Самое главное- это суметь правильно поставить вопрос, заинтриговать учащихся, создать проблему, а не дать ответ, решив ее. Учащиеся познают понятия, закономерности, теории в ходе поиска, наблюдения, анализа фактов, мыслительной деятельности, результатом чего является знание.

Приведу пример задачи из темы «Смежные углы» (геометрия 7 класс).

Найти два смежных угла, один из которых больше другого на прямой угол.

Возможны различные варианты решения, в частности, алгебраический и геометрический. Здесь проблемный характер проявляется в неявной форме, но ученики понимают непригодность геометрического способа решения.

Другой пример. В 5 классе в ходе изучения темы «Сравнение десятичных дробей» предлагаю вариант решения задания на сравнение дробей 0,31 и 0,6 ученика Петрова. Если целые части дробей равны, сравним дробные части: 316, значит, 0,310,6. Согласны ли вы с таким решением? Начинается обсуждение, поиск, анализ решения.

  1. Логические задачи.(задачи-шутки, таблицы, верные и неверные утверждения, здравый смысл)

Это задачи, ведущие к формированию важнейших характеристик творческих способностей: беглость мысли, гибкость ума, оригинальность, любознательность, умение выдвигать и разрабатывать гипотезы.

Опыт работы показывает, что глубокие, прочные и, главное, осознанные знания могут получить все школьники, если развивать у них не столько память, сколько логическое мышление. Логика учит, как нужно рассуждать, чтобы наше мышление было определенным, связанным, последовательным, доказательным и непротиворечивым. В математике приходится путем рассуждений выводить разнообразные формулы, числовые закономерности, правила, доказывать теоремы.

Основные методы решения логических задач:

  • метод рассуждения;

  • метод таблицы;

  • метод граф;

  • метод кругов Эйлера;

  • комбинированный метод.

Метод рассуждений сопровождаю схемами, чертежами, краткими записями, вырабатывая умения выбирать информацию, пользоваться правилом перебора.

Так, при изучении темы «Степень» в 7 классе, я даю задание: запишите степени x, x2, x3, x4, x5, x6, x7, x8, x9 в пустые клетки квадрата так, чтобы произведение их по любой горизонтали, вертикали и диагонали было равно x в 15 степени. Можно рассказать о магическом квадрате, тогда задача станет еще интереснее для учеников.

X5

Таблицы хорошо применять тогда, когда устанавливается соответствие между двумя множествами (можно и между тремя множествами), когда количество элементов во множествах одинаково и неодинаково. Перед составлением таблиц отрабатываю правила их заполнения.

Например, в 5 классе знакомлю детей с задачей Пуассона (на переливание). Некто имеет 12 пинт сока (пинта- 0,57л) и желает подарить половину своему другу, но у него нет сосуда в 6 пинт, а есть два сосуда в 8 и 5 пинт. Каким образом можно налить 6 пинт сока в сосуд емкостью 8 пинт?

Решение.

Ходы

0

1

2

3

4

5

6

7

12 пинт

12

4

4

9

9

1

1

6

8 пинт

8

3

3

8

6

6

5 пинт

5

3

3

5

Логические связи, при помощи которых была выстроена общая схема решения задачи, помогут учащимся без труда решить подобного рода задачу.

Введение серии таких задач в содержание урока считаю необходимым. Это позволит стереть явную границу между занимательным и учебным материалом. Особенно целесообразно использовать задачи тогда, когда есть опасность неприятия учащимися какого-либо учебного задания; при прохождении сложных тем; при выработке умений и навыков учащихся, когда требуется выполнить значительное количество однотипных упражнений; при изучении материала, подлежащего прочному запоминанию.

Для каждой задачи, которую предполагаю использовать на уроке, прежде выясняю: будет ли она интересна классу, органично ли войдет в структуру урока, будет ли ее использование эффективным. Практика показала: учебный навык, на формирование которого направлена та или иная задача, вырабатывается быстрее, ибо он связан с продуктивной мыслительной деятельностью ученика.

При работе над провоцирующими, проблемными, логическими и стандартными с нестандартным решением задачами наиболее эффективной считаю групповую, парную, индивидуальную, фронтальную работу.

Приведу пример. Расстояние от реки до турбазы туристы рассчитывали пройти за 6 часов. Однако после 2 часов пути они уменьшили скорость на 0,5 км/ч и в результате опоздали на турбазу на 30 мин. С какой скоростью шли туристы первоначально?

Работа над задачей предполагает следующие действия учителя:

  1. Предъявление задачи (читает учитель).

  2. Определение вида задачи (творческая группа).

  3. Выделение гипотез (индивидуальная самостоятельная работа).

  4. Обмен мнениями (в творческой группе).

  5. Формулировка предположительного ответа (в паре).

  6. Проверка ответа на достоверность (фронтальная работа).

Или, задача. Определить площадь равнобедренной трапеции, у которой основания равны 12см и 20см, а диагонали взаимно перпендикулярны.

  1. Предъявление задачи (творческие группы составляют задачи по готовому чертежу).

  2. Выделение гипотез (работа в парах).

  3. Обмен мнениями (фронтальная работа).

  4. Формулировка предположительного ответа (индивидуальная работа).

  5. Проверка ответа на достоверность (индивидуальная работа).

Обязательным этапом на уроке является устный и письменный счет. Целями устного счета являются, во-первых, совершенствование в вычислительных навыков, во-вторых, развитие творческого мышления учащихся.

На своих уроках я стараюсь разнообразить формы и методы устной работы:

— устный счет в начале, в середине, в конце урока;

  • устная форма проверки домашнего задания;

  • устная форма творческой работы;

  • устные самостоятельная и контрольная работы;

  • уроки устной работы.

Работая устно, воспитываю у учащихся навыки сознательного усвоения изучаемого материала, приучаю ценить и экономить время, развиваю желание поиска рациональных путей решения задачи. В этих целях использую такие приемы, развивающие творческие способности, как «Зашифрованные задания», «Найди ошибку», «Восстановление»,

«Выбор», «Задачи- сказки», детские презентации на устный счёт, математические листы с задачами, изготовленные самими учащимися, ребусы, кроссворды, которые учащиеся составляют самостоятельно.

Обязательно провожу подробный анализ результатов работы и коррекцию знаний. Объявляя количество набранных баллов, полученных за олимпиадное задание, называю ребят, которые представили самые «красивые» решения. При этом опираюсь на формулу «красивой» задачи по В.Г. Болтянскому: красивая задача = непредсказуемость + непредполагаемость +неожиданность + удивительная простота + простота + фантазия + революционный шаг + удивление + оптимизм + труд + …

Таким образом, решение текстовых задач не случайно всегда волновало учителей, методистов, да и самих учащихся и их родителей.

Во-первых, нельзя решить задачу, не поняв ее содержание. Следовательно, умение решать текстовые задачи свидетельствует об одной из самых важных способностей человека — способности понимать текст. Правы те учителя, которые добиваются понимания текста не только на уроках чтения, но и на уроках математики. Критерием понимания задачи является факт решения задачи.

Поэтому решение текстовых задач — это деятельность, весьма важная для общего развития. Обучая решать текстовые задачи, мы приучаем ориентироваться в ситуациях, делаем человека более компетентным. Конечно, для этого нужно резко расширить тематику задач, давать детям задачи, разнообразные по тематике, а не только «на скорость», «на работу», «на покупки».

Решение текстовых задач способствует, с одной стороны, закреплению на практике приобретённых умений и навыков, с другой стороны, развитию логического мышления учащихся.

Наблюдается активизация их мыслительной деятельности. При правильной организации работы у учащихся развивается активность, наблюдательность, находчивость, сообразительность, смекалка, развивается абстрактное мышление, умение применять теорию к решению конкретных задач.

Понравилась статья? Поделить с друзьями:
  • Ошибки при реставрации зуба
  • Ошибки при решении задач на умножение
  • Ошибки при рентгене легких отзывы
  • Ошибки при реорганизации
  • Ошибки при ремонте советы бывалых