Ошибки при анализе детерминации

Причина и следствие

Важным видом
связей, существующих в природе и обществе,
являются причинные связи, т.е. связи
причин и вызываемых ими эффектов. Под
причиной F эффекта (явления,
события, действия) G чаще всего
понимается: а) совокупность необходимых
и достаточных условий; б) необходимое
условие, добавление которого к уже
существующим условиям вызывает эффект
G. Когда следователь устанавливает,
что причиной пожара оказалась неисправная
электропроводка, то мы имеем дело с
причиной в смысле б). Говоря о причине
в смысле а), нужно учитывать всю
совокупность условий, при которых стало
возможным данное явление, т.е. не только
неисправность электропроводки, но и
наличие воспламеняющейся среды, доступа
кислорода и пр.

Различают сильную
и слабую причинную зависимость. При
сильной причинной
зависимости наличие условий полностью
предопределяет некоторый эффект, при
слабой же он предопределяется
с некоторой вероятностью. Слабую причину
иногда называют генератором, а
вызываемый ею эффект —
продуктом. Генератор (например,
брошенные в землю зерна пшеницы) с
некоторой вероятностью способен
произвести соответствующий продукт
(например, пшеничное поле), и его
возникновение не является достоверным.
Слабая причинная зависимость наблюдается,
как правило, в естественных условиях,
сильная — в
лабораторных или близких к ним.

Обосновывая вывод
о зависимости эффекта G от причины
F, исследователь должен решать
следующие вопросы:

  1. Является ли F
    предшествующим G по времени?

  2. Связаны ли F и
    G
    между собой статистически?

  3. Всякий ли раз
    наличие F сопровождается наличием
    G
    ?

  4. Возможно ли
    появление G без наличия F?

  5. Исключено ли
    правдоподобное альтернативное появление
    G помимо F?

Как каждый по
отдельности, так и в своей совокупности
утвердительные ответы на первый и второй
вопросы устанавливают необходимые
предпосылки обоснования зависимости
G от F. Утвердительный ответ на
третий вопрос означает, что F есть
достаточное условие для появления
эффекта G. Отрицательный ответ на
четвертый вопрос гарантирует тот факт,
что F – необходимая (возможно, не
единственная) причина возникновения
G. Утвердительное решение последнего
вопроса ведет к признанию F не только
необходимой, но и достаточной причиной
эффекта G.

Ошибки при анализе детерминации

Одна из таких
ошибок называется «недостаточное
основание
». Данная ошибка —
результат нарушения требований принципа
достаточного основания, в соответствии
с которыми для принятия некоторого
высказывания необходимо привести другие
высказывания, притом истинные, из которых
рассматриваемое высказывание логически
следует. Чаще всего при этой ошибке в
качестве основания приводятся истинные
высказывания, из которых последнее не
следует.

Ошибка недостаточного
основания часто сопутствует ошибке
«ложного следа». Она случается
при отыскании необходимых и достаточных
оснований. Бывает так, что условия,
которые являются необходимыми или
достаточными, оказываются за рамками
рассматриваемых. По тем или иным
соображениям исследователь может быть
преднамеренно направлен на ложный след,
и приходится тратить немало усилий,
прежде чем ошибка обнаружится. Одна из
местных газет как-то сообщила об остром
отравлении рабочих строительной
организации. Диагносту они дружно
заявили, что причина этой неприятности
— съеденная во
время обеда тюлька. Это была попытка
направить диагноста по ложному следу,
поскольку они не признались, что
предварительно распили бутылку
низкокачественного импортного спирта.

Еще одна ошибка –
«после этого, значит, по причине
этого»
(лат. Post hoc, ergo
propter hoc
). Источник
этой ошибки —
смешение причинно-следственной связи
с простой последовательностью во
времени. Ясно, что причина должна
предшествовать следствию или совершаться
вместе с ним, но наличие факта,
свидетельствующего, что некоторое
событие произошло после другого или
вместе с ним, не означает, что второе
есть причина первого. В наши дни, например,
продолжается острая идейная борьба
между носителями противоположных
взглядов по многим вопросам истории
нашей страны. Крайне левые, в частности,
защищают тезис о том, что причины победы
советского народа в Великой Отечественной
войне следует искать в чрезвычайных
мерах по созданию промышленности
накануне войны, коллективизации сельского
хозяйства и даже в руководстве страной
со стороны «вождя всех времен и
народов» Сталина. Крайне правые
радикалы заостряют внимание на наших
неудачах, видя их причины в октябрьском
перевороте и приходе к власти большевиков.
Очевидно, оба этих подхода страдают
односторонностью и являются всего лишь
идеологическими штампами.

Наконец, отметим
ошибку, которая называется «смешение
причины и следствия
». Эта ошибка
— постоянный спутник познания сложных
систем. К таким системам относится, в
частности, человеческое общество. В
XVIII- XIX в.в. многие философы, историки,
юристы в качестве фактора, определяющего
частную собственность, изображали
политическую власть, в то время как в
действительности дело обстоит как раз
наоборот. Некоторые современные политики
источник выхода из экономического
кризиса видят в прочной финансовой
системе, в том время как плачевное
состояние последней есть всего лишь
симптом кризиса в производстве.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Preview

Войти

ОШИБКИ ПРИ ИСПОЛЬЗОВАНИИ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ И ДЕТЕРМИНАЦИИ

https://doi.org/10.26896/1028-6861-2018-84-3-68-72

Полный текст:

  • Аннотация
  • Об авторе
  • Список литературы

Аннотация

Коэффициенты корреляции и детерминации широко используют при статистическом анализе данных. При этом достаточно часто допускают те или иные ошибки. Некоторые из них рассмотрены в данной статье. Ограничимся случаем двух переменных. Наиболее часто используют линейный парный коэффициент корреляции Пирсона и непараметрические ранговые коэффициенты Спирмена и Кендалла. Согласно теории измерений коэффициент корреляции Пирсона можно применять к переменным, измеренным в шкале интервалов (и в шкалах с более узкой группой допустимых преобразований, например, в шкале отношений). Его нельзя применять при анализе порядковых данных. Непараметрические ранговые коэффициенты Спирмена и Кендалла предназначены для оценки связи порядковых переменных. Их можно использовать и в шкалах с более узкой группой допустимых преобразований, например, в шкалах интервалов или отношений. Критическое значение при проверке значимости отличия коэффициента корреляции от нуля зависит от объема выборки и приближается к нулю при его росте. Поэтому использование «шкалы Чеддока» некорректно. При применении пассивного эксперимента коэффициенты корреляции можно обоснованно использовать лишь для прогнозирования, но не для управления. Для получения предназначенных для управления вероятностно-статистических моделей необходим активный эксперимент. Как показал С. Н. Бернштейн, влияние выбросов на коэффициент корреляции Пирсона весьма велико. Эффект «вздувания» коэффициента корреляции состоит в том, что при увеличении числа проанализированных наборов предикторов заметно растет максимальный из соответствующих коэффициентов корреляции — показателей качества приближения. Распространенная ошибка состоит в использовании коэффициента детерминации для оценки качества восстановления зависимости методом наименьших квадратов.

Ключевые слова

Об авторе

А. И. Орлов

Институт высоких статистических технологий и эконометрики Московского государственного технического университета им. Н. Э. Баумана.

Россия

Москва.

Список литературы

1. Орлов А. И. Прикладная статистика. — М.: Экзамен, 2006. — 671 с.

2. Орлов А. И. Устойчивость в социально-экономических моделях. — М.: Наука, 1979. — 296 с.

3. Налимов В. В. Теория эксперимента. — М.: Наука, 1971. — 208 с.

4. Ермаков С. М., Бродский В. З., Жиглявский А. А. и др. Математическая теория планирования эксперимента. — М.: Физматлит, 1983. — 392 с.

5. Бернштейн С. Н. Об одном элементарном свойстве коэффициента корреляции / Зап. Харьк. матем. тов. 1932. № 5. С. 65 – 66; Бернштейн С. Н. Собрание сочинений. Т. IV. Теория вероятностей. Математическая статистика. — М.: Наука, 1964. С. 233 – 234.

6. Колмогоров А. Н. К вопросу о пригодности найденных статистическим путем формул прогноза / Журн. геофиз. 1933. Т. 3. С. 78 – 82; Колмогоров А. Н. Теория вероятностей и математическая статистика. — М.: Наука, 1986. С. 161 – 167.

7. Орлов А. И. Методы поиска наиболее информативных множеств признаков в регрессионном анализе / Заводская лаборатория. Диагностика материалов. 1995. Т. 61. № 1. С. 56 – 58.

8. Орлов А. И. Проблема множественных проверок статистических гипотез / Заводская лаборатория. Диагностика материалов. 1996. Т. 62. № 5. С. 51 – 54.

9. Сердобольский В. И., Орлов А. И. Статистический анализ при большом числе параметров / Программно-алгоритмическое обеспечение прикладного многомерного статистического анализа. Тезисы докладов III Всесоюзной школы-семинара. — М.: ЦЭМИ АН СССР, 1987. С. 151 – 160.

10. Орлов А. И. Организационно-экономическое моделирование: учебник. В 3-х ч. Ч. 1. Нечисловая статистика. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. — 542 с.

11. Орлов А. И. Статистический контроль по двум альтернативным признакам и метод проверки их независимости по совокупности малых выборок / Заводская лаборатория. Диагностика материалов. 2000. Т. 66. № 1. С. 58 – 62.

12. Лойко В. И., Луценко Е. В., Орлов А. И. Современные подходы в наукометрии: монография. — Краснодар: КубГАУ, 2017. — 532 с. https://elibrary.ru/item.asp?id=29306423.

13. Орлов А. И. Статистические пакеты — инструменты исследователя / Заводская лаборатория. Диагностика материалов. 2008. Т. 74. № 5. С. 76 – 78.

Рецензия

Просмотров: 3315

ОШИБКИ ПРИ ИСПОЛЬЗОВАНИИ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ И ДЕТЕРМИНАЦИИ

@inproceedings{2018,
  title={ОШИБКИ ПРИ ИСПОЛЬЗОВАНИИ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ И ДЕТЕРМИНАЦИИ},
  author={А. И. Орлов},
  year={2018},
  url={https://api.semanticscholar.org/CorpusID:125745815}
}

Coefficients of correlation and determination are widely used in statistical analysis of data. Some of the errors attributed to their use are considered in this article. We confine ourselves to the case of two variables. The linear Pearson correlation coefficient and nonparametric rank coefficients of Spearman and Kendall are used most commonly. According to the theory of measurements, the Pearson correlation coefficient can be applied to variables measured in the interval scale (and in scales… 

3 Citations

В машинном обучении различают оценки качества для задачи классификации и регрессии. Причем оценка задачи классификации часто значительно сложнее, чем оценка регрессии.

Содержание

  • 1 Оценки качества классификации
    • 1.1 Матрица ошибок (англ. Сonfusion matrix)
    • 1.2 Аккуратность (англ. Accuracy)
    • 1.3 Точность (англ. Precision)
    • 1.4 Полнота (англ. Recall)
    • 1.5 F-мера (англ. F-score)
    • 1.6 ROC-кривая
    • 1.7 Precison-recall кривая
  • 2 Оценки качества регрессии
    • 2.1 Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)
    • 2.2 Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)
    • 2.3 Коэффициент детерминации
    • 2.4 Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)
    • 2.5 Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)
    • 2.6 Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)
    • 2.7 Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)
  • 3 Кросс-валидация
  • 4 Примечания
  • 5 См. также
  • 6 Источники информации

Оценки качества классификации

Матрица ошибок (англ. Сonfusion matrix)

Перед переходом к самим метрикам необходимо ввести важную концепцию для описания этих метрик в терминах ошибок классификации — confusion matrix (матрица ошибок).
Допустим, что у нас есть два класса и алгоритм, предсказывающий принадлежность каждого объекта одному из классов.
Рассмотрим пример. Пусть банк использует систему классификации заёмщиков на кредитоспособных и некредитоспособных. При этом первым кредит выдаётся, а вторые получат отказ. Таким образом, обнаружение некредитоспособного заёмщика () можно рассматривать как «сигнал тревоги», сообщающий о возможных рисках.

Любой реальный классификатор совершает ошибки. В нашем случае таких ошибок может быть две:

  • Кредитоспособный заёмщик распознается моделью как некредитоспособный и ему отказывается в кредите. Данный случай можно трактовать как «ложную тревогу».
  • Некредитоспособный заёмщик распознаётся как кредитоспособный и ему ошибочно выдаётся кредит. Данный случай можно рассматривать как «пропуск цели».

Несложно увидеть, что эти ошибки неравноценны по связанным с ними проблемам. В случае «ложной тревоги» потери банка составят только проценты по невыданному кредиту (только упущенная выгода). В случае «пропуска цели» можно потерять всю сумму выданного кредита. Поэтому системе важнее не допустить «пропуск цели», чем «ложную тревогу».

Поскольку с точки зрения логики задачи нам важнее правильно распознать некредитоспособного заёмщика с меткой , чем ошибиться в распознавании кредитоспособного, будем называть соответствующий исход классификации положительным (заёмщик некредитоспособен), а противоположный — отрицательным (заемщик кредитоспособен ). Тогда возможны следующие исходы классификации:

  • Некредитоспособный заёмщик классифицирован как некредитоспособный, т.е. положительный класс распознан как положительный. Наблюдения, для которых это имеет место называются истинно-положительными (True PositiveTP).
  • Кредитоспособный заёмщик классифицирован как кредитоспособный, т.е. отрицательный класс распознан как отрицательный. Наблюдения, которых это имеет место, называются истинно отрицательными (True NegativeTN).
  • Кредитоспособный заёмщик классифицирован как некредитоспособный, т.е. имела место ошибка, в результате которой отрицательный класс был распознан как положительный. Наблюдения, для которых был получен такой исход классификации, называются ложно-положительными (False PositiveFP), а ошибка классификации называется ошибкой I рода.
  • Некредитоспособный заёмщик распознан как кредитоспособный, т.е. имела место ошибка, в результате которой положительный класс был распознан как отрицательный. Наблюдения, для которых был получен такой исход классификации, называются ложно-отрицательными (False NegativeFN), а ошибка классификации называется ошибкой II рода.

Таким образом, ошибка I рода, или ложно-положительный исход классификации, имеет место, когда отрицательное наблюдение распознано моделью как положительное. Ошибкой II рода, или ложно-отрицательным исходом классификации, называют случай, когда положительное наблюдение распознано как отрицательное. Поясним это с помощью матрицы ошибок классификации:

Истинно-положительный (True Positive — TP) Ложно-положительный (False Positive — FP)
Ложно-отрицательный (False Negative — FN) Истинно-отрицательный (True Negative — TN)

Здесь — это ответ алгоритма на объекте, а — истинная метка класса на этом объекте.
Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP).
P означает что классификатор определяет класс объекта как положительный (N — отрицательный). T значит что класс предсказан правильно (соответственно F — неправильно). Каждая строка в матрице ошибок представляет спрогнозированный класс, а каждый столбец — фактический класс.

 # код для матрицы ошибок
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import confusion_matrix
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (англ. Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 # Для расчета матрицы ошибок сначала понадобится иметь набор прогнозов, чтобы их можно было сравнивать с фактическими целями
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687],
 #        [ 1891, 3530]])

Безупречный классификатор имел бы только истинно-поло­жительные и истинно отрицательные классификации, так что его матрица ошибок содержала бы ненулевые значения только на своей главной диа­гонали (от левого верхнего до правого нижнего угла):

 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.metrics import confusion_matrix
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 y_train_perfect_predictions = y_train_5 # притворись, что мы достигли совершенства
 print(confusion_matrix(y_train_5, y_train_perfect_predictions))
 # array([[54579, 0],
 #        [ 0, 5421]])

Аккуратность (англ. Accuracy)

Интуитивно понятной, очевидной и почти неиспользуемой метрикой является accuracy — доля правильных ответов алгоритма:

Эта метрика бесполезна в задачах с неравными классами, что как вариант можно исправить с помощью алгоритмов сэмплирования и это легко показать на примере.

Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно (True Negative = 90, False Positive = 10), и 10 спам-писем, 5 из которых классификатор также определил верно (True Positive = 5, False Negative = 5).
Тогда accuracy:

Однако если мы просто будем предсказывать все письма как не-спам, то получим более высокую аккуратность:

При этом, наша модель совершенно не обладает никакой предсказательной силой, так как изначально мы хотели определять письма со спамом. Преодолеть это нам поможет переход с общей для всех классов метрики к отдельным показателям качества классов.

 # код для для подсчета аккуратности:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import accuracy_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(accuracy_score(y_train_5, y_train_pred)) # == (53892 + 3530) / (53892 + 3530  + 1891 +687)
 
 # 0.9570333333333333

Точность (англ. Precision)

Точностью (precision) называется доля правильных ответов модели в пределах класса — это доля объектов действительно принадлежащих данному классу относительно всех объектов которые система отнесла к этому классу.

Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive.

Полнота (англ. Recall)

Полнота — это доля истинно положительных классификаций. Полнота показывает, какую долю объектов, реально относящихся к положительному классу, мы предсказали верно.

Полнота (recall) демонстрирует способность алгоритма обнаруживать данный класс вообще.

Имея матрицу ошибок, очень просто можно вычислить точность и полноту для каждого класса. Точность (precision) равняется отношению соответствующего диагонального элемента матрицы и суммы всей строки класса. Полнота (recall) — отношению диагонального элемента матрицы и суммы всего столбца класса. Формально:

Результирующая точность классификатора рассчитывается как арифметическое среднее его точности по всем классам. То же самое с полнотой. Технически этот подход называется macro-averaging.

 # код для для подсчета точности и полноты:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import precision_score, recall_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(precision_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 687)
 print(recall_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 1891)
   
 # 0.8370879772350012
 # 0.6511713705958311

F-мера (англ. F-score)

Precision и recall не зависят, в отличие от accuracy, от соотношения классов и потому применимы в условиях несбалансированных выборок.
Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в производство (у кого больше тот и круче). Именно такой метрикой является F-мера.

F-мера представляет собой гармоническое среднее между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.

Данная формула придает одинаковый вес точности и полноте, поэтому F-мера будет падать одинаково при уменьшении и точности и полноты. Возможно рассчитать F-меру придав различный вес точности и полноте, если вы осознанно отдаете приоритет одной из этих метрик при разработке алгоритма:

где принимает значения в диапазоне если вы хотите отдать приоритет точности, а при приоритет отдается полноте. При формула сводится к предыдущей и вы получаете сбалансированную F-меру (также ее называют ).

  • Рис.1 Сбалансированная F-мера,

  • Рис.2 F-мера c приоритетом точности,

  • Рис.3 F-мера c приоритетом полноты,

F-мера достигает максимума при максимальной полноте и точности, и близка к нулю, если один из аргументов близок к нулю.

F-мера является хорошим кандидатом на формальную метрику оценки качества классификатора. Она сводит к одному числу две других основополагающих метрики: точность и полноту. Имея «F-меру» гораздо проще ответить на вопрос: «поменялся алгоритм в лучшую сторону или нет?»

 # код для подсчета метрики F-mera:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 from sklearn.metrics import f1_score
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распознавать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(f1_score(y_train_5, y_train_pred))
 
 # 0.7325171197343846

ROC-кривая

Кривая рабочих характеристик (англ. Receiver Operating Characteristics curve).
Используется для анализа поведения классификаторов при различных пороговых значениях.
Позволяет рассмотреть все пороговые значения для данного классификатора.
Показывает долю ложно положительных примеров (англ. false positive rate, FPR) в сравнении с долей истинно положительных примеров (англ. true positive rate, TPR).

ROC 2.png

Доля FPR — это пропорция отрицательных образцов, которые были некорректно классифицированы как положительные.

,

где TNR — доля истинно отрицательных классификаций (англ. Тrие Negative Rate), пред­ставляющая собой пропорцию отрицательных образцов, которые были кор­ректно классифицированы как отрицательные.

Доля TNR также называется специфичностью (англ. specificity). Следовательно, ROC-кривая изображает чувствительность (англ. seпsitivity), т.е. полноту, в срав­нении с разностью 1 — specificity.

Прямая линия по диагонали представляет ROC-кривую чисто случайного классификатора. Хороший классификатор держится от указанной линии настолько далеко, насколько это
возможно (стремясь к левому верхнему углу).

Один из способов сравнения классификаторов предусматривает измере­ние площади под кривой (англ. Area Under the Curve — AUC). Безупречный клас­сификатор будет иметь площадь под ROC-кривой (ROC-AUC), равную 1, тогда как чисто случайный классификатор — площадь 0.5.

 # Код отрисовки ROC-кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import roc_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5)  # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
 def plot_roc_curve(fpr, tpr, label=None):
     plt.plot(fpr, tpr, linewidth=2, label=label)
     plt.plot([0, 1], [0, 1], 'k--') # dashed diagonal
     plt.xlabel('False Positive Rate, FPR (1 - specificity)')
     plt.ylabel('True Positive Rate, TPR (Recall)')
     plt.title('ROC curve')
     plt.savefig("ROC.png")
 plot_roc_curve(fpr, tpr)
 plt.show()

Precison-recall кривая

Чувствительность к соотношению классов.
Рассмотрим задачу выделения математических статей из множества научных статей. Допустим, что всего имеется 1.000.100 статей, из которых лишь 100 относятся к математике. Если нам удастся построить алгоритм , идеально решающий задачу, то его TPR будет равен единице, а FPR — нулю. Рассмотрим теперь плохой алгоритм, дающий положительный ответ на 95 математических и 50.000 нематематических статьях. Такой алгоритм совершенно бесполезен, но при этом имеет TPR = 0.95 и FPR = 0.05, что крайне близко к показателям идеального алгоритма.
Таким образом, если положительный класс существенно меньше по размеру, то AUC-ROC может давать неадекватную оценку качества работы алгоритма, поскольку измеряет долю неверно принятых объектов относительно общего числа отрицательных. Так, алгоритм , помещающий 100 релевантных документов на позиции с 50.001-й по 50.101-ю, будет иметь AUC-ROC 0.95.

Precison-recall (PR) кривая. Избавиться от указанной проблемы с несбалансированными классами можно, перейдя от ROC-кривой к PR-кривой. Она определяется аналогично ROC-кривой, только по осям откладываются не FPR и TPR, а полнота (по оси абсцисс) и точность (по оси ординат). Критерием качества семейства алгоритмов выступает площадь под PR-кривой (англ. Area Under the Curve — AUC-PR)

PR curve.png

 # Код отрисовки Precison-recall кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import precision_recall_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
 def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
     plt.plot(recalls, precisions, linewidth=2)
     plt.xlabel('Recall')
     plt.ylabel('Precision')
     plt.title('Precision-Recall curve')
     plt.savefig("Precision_Recall_curve.png")
 plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
 plt.show()

Оценки качества регрессии

Наиболее типичными мерами качества в задачах регрессии являются

Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)

MSE применяется в ситуациях, когда нам надо подчеркнуть большие ошибки и выбрать модель, которая дает меньше больших ошибок прогноза. Грубые ошибки становятся заметнее за счет того, что ошибку прогноза мы возводим в квадрат. И модель, которая дает нам меньшее значение среднеквадратической ошибки, можно сказать, что что у этой модели меньше грубых ошибок.

и

Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)

Среднеквадратичный функционал сильнее штрафует за большие отклонения по сравнению со среднеабсолютным, и поэтому более чувствителен к выбросам. При использовании любого из этих двух функционалов может быть полезно проанализировать, какие объекты вносят наибольший вклад в общую ошибку — не исключено, что на этих объектах была допущена ошибка при вычислении признаков или целевой величины.

Среднеквадратичная ошибка подходит для сравнения двух моделей или для контроля качества во время обучения, но не позволяет сделать выводов о том, на сколько хорошо данная модель решает задачу. Например, MSE = 10 является очень плохим показателем, если целевая переменная принимает значения от 0 до 1, и очень хорошим, если целевая переменная лежит в интервале (10000, 100000). В таких ситуациях вместо среднеквадратичной ошибки полезно использовать коэффициент детерминации —

Коэффициент детерминации

Коэффициент детерминации измеряет долю дисперсии, объясненную моделью, в общей дисперсии целевой переменной. Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)

Это коэффициент, не имеющий размерности, с очень простой интерпретацией. Его можно измерять в долях или процентах. Если у вас получилось, например, что MAPE=11.4%, то это говорит о том, что ошибка составила 11,4% от фактических значений.
Основная проблема данной ошибки — нестабильность.

Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)

Примерно такая же проблема, как и в MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня.

Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)

Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)

MASE является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.
Обратите внимание, что в MASE мы имеем дело с двумя суммами: та, что в числителе, соответствует тестовой выборке, та, что в знаменателе — обучающей. Вторая фактически представляет собой среднюю абсолютную ошибку прогноза. Она же соответствует среднему абсолютному отклонению ряда в первых разностях. Эта величина, по сути, показывает, насколько обучающая выборка предсказуема. Она может быть равна нулю только в том случае, когда все значения в обучающей выборке равны друг другу, что соответствует отсутствию каких-либо изменений в ряде данных, ситуации на практике почти невозможной. Кроме того, если ряд имеет тенденцию к росту либо снижению, его первые разности будут колебаться около некоторого фиксированного уровня. В результате этого по разным рядам с разной структурой, знаменатели будут более-менее сопоставимыми. Всё это, конечно же, является очевидными плюсами MASE, так как позволяет складывать разные значения по разным рядам и получать несмещённые оценки.

Недостаток MASE в том, что её тяжело интерпретировать. Например, MASE=1.21 ни о чём, по сути, не говорит. Это просто означает, что ошибка прогноза оказалась в 1.21 раза выше среднего абсолютного отклонения ряда в первых разностях, и ничего более.

Кросс-валидация

Хороший способ оценки модели предусматривает применение кросс-валидации (cкользящего контроля или перекрестной проверки).

В этом случае фиксируется некоторое множество разбиений исходной выборки на две подвыборки: обучающую и контрольную. Для каждого разбиения выполняется настройка алгоритма по обучающей подвыборке, затем оценивается его средняя ошибка на объектах контрольной подвыборки. Оценкой скользящего контроля называется средняя по всем разбиениям величина ошибки на контрольных подвыборках.

Примечания

  1. [1] Лекция «Оценивание качества» на www.coursera.org
  2. [2] Лекция на www.stepik.org о кросвалидации
  3. [3] Лекция на www.stepik.org о метриках качества, Precison и Recall
  4. [4] Лекция на www.stepik.org о метриках качества, F-мера
  5. [5] Лекция на www.stepik.org о метриках качества, примеры

См. также

  • Оценка качества в задаче кластеризации
  • Кросс-валидация

Источники информации

  1. [6] Соколов Е.А. Лекция линейная регрессия
  2. [7] — Дьяконов А. Функции ошибки / функционалы качества
  3. [8] — Оценка качества прогнозных моделей
  4. [9] — HeinzBr Ошибка прогнозирования: виды, формулы, примеры
  5. [10] — egor_labintcev Метрики в задачах машинного обучения
  6. [11] — grossu Методы оценки качества прогноза
  7. [12] — К.В.Воронцов, Классификация
  8. [13] — К.В.Воронцов, Скользящий контроль

Понравилась статья? Поделить с друзьями:
  • Ошибки при амниоцентезе
  • Ошибки правоприменения при юридической квалификации дела
  • Ошибки при алмазном сверлении
  • Ошибки при активном слушании
  • Ошибки при автополиве