Ошибки операторов чернобыльской аэс

Горький опыт Чернобыля: игнорирование эргономических принципов проектирования привело к катастрофе

25.03.2021 5:00:00

Причины Чернобыльской катастрофы 1986 года связывались с обслуживающим персоналом, руководством станции, дизайном реактора и недостаточности адекватной информации по технике безопасности в советской атомной промышленности. В статье рассматривается ряд проектных ошибок, эксплуатационных дефектов и проявлений человеческого фактора, которые привели к аварии. Анализируется последовательность событий, которая привела к аварии, сложности с дизайном реактора и штанг охлаждения, а также сам ход аварии, рассматриваются эргономические аспекты, и выражается точка зрения, что основной причиной аварии было неадекватное взаимодействие пользователя и машины.

Горький опыт Чернобыля: игнорирование эргономических принципов проектирования привело к катастрофе

Причины Чернобыльской катастрофы 1986 года связывались с обслуживающим персоналом, руководством станции, дизайном реактора и недостаточности адекватной информации по технике безопасности в советской атомной промышленности. В статье рассматривается ряд проектных ошибок, эксплуатационных дефектов и проявлений человеческого фактора, которые привели к аварии. Анализируется последовательность событий, которая привела к аварии, сложности с дизайном реактора и штанг охлаждения, а также сам ход аварии, рассматриваются эргономические аспекты, и выражается точка зрения, что основной причиной аварии было неадекватное взаимодействие пользователя и машины.

     

Источник: pixabay.com.

До сих пор недоступны все сведения о чернобыльской катастрофе. Откровенно говоря, правда до сих пор скрыта за немногословностью, полуправдой, секретностью и даже фальсификацией со стороны органов, которые пекутся только о собственных интересах. Всесторонние изучение причин аварии кажется очень сложной задачей. Основная проблема, с которой сталкивается исследователь,   это необходимость воспроизведения аварии и роли человеческого фактора в ней на основе мельчайших обрывков информации, которая была доступна для изучения. Чернобыльская катастрофа  больше чем серьезная технологическая авария. Часть причин аварии также связана с администрацией и бюрократией. Однако основная цель этой статьи состоит в том, чтобы рассмотреть проектные ошибки, эксплуатационные дефекты и человеческие ошибки, которые привели к чернобыльской катастрофе. 

КОГО ВИНИТЬ В КАТАСТРОФЕ?

Главный проектировщик больших силовых реакторов кипящей воды с трубками давления (РБМК), используемых на Чернобыльской атомной электростанции (АЭС), в 1989 представил свою точку зрения относительно причин чернобыльской аварии. Он объяснил аварию тем фактом, что персонал не соблюдал правильные процедуры или «производственную дисциплину». Он указал на то, что следователи, изучавшие аварию, пришли к тому же выводу. По его словам, «проблема заключалась в работниках, а не в проектировании или производственных сбоях». Руководитель исследований по разработке РБМК поддержал эту точку зрению. Возможность эргономического несоответствия как каузативный фактор не рассматривалась. 

     
Сами операторы выразили разные мнения. Руководитель смены четвертого блока, А.Ф. Акимов, умирая в госпитале в результате получения дозы радиации, превышающей 1,500 рентген (Р) за короткий период времени во время аварии, продолжал говорить своим родителям, что его действия были правильными, и он не мог понять, что пошло не так. Его настойчивость отражала полную уверенность в реакторе, который, как предполагалось, должен был быть полностью безопасным. Акимов также сказал, что ему не за что винить работников смены. Операторы были уверены в том, что их действия соответствует правилам, и не допускали возможность взрыва вообще. (Удивительно то, что возможность того, что реактор станет опасным при определенных условиях, была предусмотрена в правилах по технике безопасности только после чернобыльской катастрофы).

Однако в свете проектных проблем, вскрытых впоследствии, важно, что операторы не могли понять, почему штанги, введенные в центр реактора, вызвали страшный взрыв вместо того, чтобы прекратить ядерную реакцию, как планировалось. Другими словами, в этом случае они действовали правильно в соответствии с инструкциями по обслуживанию и их интеллектуальной моделью системы реактора, но дизайн системы не соответствовал этой модели. 

Шесть человек, представлявших руководство станции, были осуждены за человеческие потери на основании того, что они нарушили правила по технике безопасности для взрывоопасных сооружений. Председатель суда сказал несколько слов о том, как продвигается расследование относительно «тех, кто не смог принять меры, чтобы усовершенствовать дизайн станции». Он также упомянул ответственность должностных лиц департамента, местных властей и медицинских служб. Но в действительности, было ясно, что дело закрыто. За величайшую катастрофу в атомной промышленности никто другой к ответственности не был привлечен. 

     
Однако, необходимо расследовать все каузативные факторы, которые привели к аварии, чтобы извлечь уроки, необходимые для будущей безопасной эксплуатации АЭС. 

     

 

СЕКРЕТНОСТЬ: ИНФОРМАЦИОННАЯ МОНОПОЛИЯ В ИССЛЕДОВАНИЯХ И ПРОМЫШЛЕННОСТИ 

Сбой во взаимоотношениях между пользователем и машиной, который привел к «Чернобылю-86», можно в некоторой степени объяснить политикой секретности, т.е. политикой информационной монополии, которая правила технологическими коммуникациями в советской системе атомной промышленности. Небольшая группа ученых и исследователей получила полные права на определение основных принципов и процедур в ядерной энергетике, которая была монополией, надежно защищенной политикой секретности. В результате этого, заверения советских ученых в отношении абсолютной безопасности АЭС, не вызывали возражений в течение 35 лет, а секретность скрывала некомпетентность гражданских лидеров атомной энергетики.


Случайно недавно стало известно, что эта секретность касалась также информации об аварии на Three Mile Island; обслуживающий персонал советской АЭС не был полностью информирован об этой аварии, были раскрыты только отдельные сведения, которые не противоречили официальной точке зрения на безопасность АЭС. Отчет о человеческих инжиниринговых аспектах аварии на Three Mile Island, представленный автором этой статьи в 1985 году, не был распространен среди тех, кто был связан с безопасностью и надежностью АЭС.

     
Официально не сообщалось ни о каких других авариях, кроме аварий на Армянской и Чернобыльской атомных электростанциях (1982), о которых было кратко упомянуто в газете Правда. Скрывая правдивое положение дел (не позволяя тем самым воспользоваться выводами, извлеченными из анализа аварий), руководители атомной промышленности были на верном пути к Чернобылю-86, пути, который стал еще более гладким за счет того, что насаждалось упрощенное представление о деятельности операторов, а риск эксплуатации АЭС недооценивался. 

Как сказал в 1990 году член Государственного Экспертного Комитета по последствиям чернобыльской аварии: «Чтобы больше не допускать ошибок, мы должны принять наши ошибки и проанализировать их. Очень важно определить, какие ошибки были вызваны нашей неопытностью, а какие были преднамеренной попыткой скрыть правду»

ЧЕРНОБЫЛЬСКАЯ АВАРИЯ 1986 ГОДА

Ошибочное планирование испытания. 25 апреля 1986 года четвертый блок Чернобыльской АЭС (Чернобыль 4) был подготовлен к регулярному обслуживанию. План заключался в том, чтобы выключить установку и провести эксперимент, в ходе которого неработающие системы безопасности не могли получить питании из нормальных источников. Этот тест должен был быть проведен до инициализации Чернобыля 4. Однако Государственный комитет так спешил ввести в действие установку, что решил отложить на неопределенный срок какие-то там «неважные» испытания. Акт приемки был подписан в конце 1982 года. Таким образом, заместитель главного инженера действовал в соответствии с утвержденным ранее планом, который предполагал, что установка совершенно неактивна; его планирование и время испытания полностью базировались на этом предположении. По его собственной инициативе эти испытания не могли проводиться никоим образом.

Источник: pixabay.com.

Программа испытания была одобрена главным инженером. Предполагалось, что энергия во время испытания будет генерироваться турбинным ротором (во время его инерционной ротации). При вращении ротор вырабатывал электрическую энергию, которая могла использоваться при аварии. Общая потеря энергии на атомной станции вызывает остановку всех механизмов, включая насосы, которые использовались для охлаждающей циркуляции в ядре, что в свою очередь приводит к плавлению ядра, что является серьезной аварией. Вышеописанный эксперимент был предназначен для испытания возможности использования некоторых других имеющихся ресурсов  инерционной ротации турбины  для генерации энергии. 

     
Проводить такие испытания на эксплуатируемых установках не запрещено, но при условии, что приняты дополнительные меры предосторожности и разработана адекватная процедура. Программа должна была обеспечивать, что во время всего теста должна была вырабатываться дополнительная энергия. Другими словами, потеря энергии только подразумевалась, но никогда не реализовывалась. Испытание могло быть проведено только после выключения реактора, т.е., когда кнопка «тревоги» нажата, и абсорбирующие стержни были введены в ядро. До этого реактор должен был находиться в стабильном контролируемом состоянии, граница реактивности которого была задана в рабочей процедуре. При этом в ядро должны были быть введены от 28 до 30 абсорбирующих стержней.

     
Программа, одобренная главным инженером Чернобыльской станции, не удовлетворяла ни одному из вышеперечисленных требований. Кроме того, была отключена система аварийного охлаждения ядра (САОЯ), что подвергло опасности установку в течение всего периода испытания (приблизительно четыре часа). При разработке программы инициаторы принимали во внимание возможность запуска САОЯ, которая не позволила бы им завершить выключающее испытание. Отводной метод не был учтен в программе, поскольку турбине больше не требовался пар. Ясно, что занятые в этом эксперименте люди совершенно ничего не знали о физике реактора.

Среди руководителей также, очевидно, были неквалифицированные люди, что объясняет тот факт, что, когда вышеописанная программа была представлена для одобрения ответственным властям в январе 1986 года, она ни одним из них никоим образом не комментировалась. Тому виной может быть притупившееся чувство опасности. Из-за политики секретности, окружавшей атомную технологию, сформировалось мнение, что атомные станции были безопасными и надежными, а их эксплуатация безаварийной. Недостаточная официальная реакция на программу, тем не менее, не насторожила директора Чернобыльской станции. Он решил преступить к испытанию, используя программу, не прошедшую сертифицированную, несмотря на то, что это было запрещено. 


   

Изменение в программе испытаний. При выполнении испытания сотрудники нарушили саму программу, таким образом создав дополнительные возможности для возникновения аварии. Персонал Чернобыльской АЭС допустил шесть грубых ошибок и нарушений. В соответствии с программной САОЯ должна быть деактивирована, что было одной их самых серьезных и смертельно опасных ошибок. Клапаны контроля поступающей воды были выключены и заперты заранее, так что было невозможно открыть их даже вручную. Аварийное охлаждение было специально выключено, чтобы предотвратить возможный термальный шок в результате поступления холодной воды в горячее ядро. Решение базировалось на твердом убеждении в том, что реактор выдержит. «Уверенность» в реакторе подкреплялась десятилетней эксплуатацией установки относительно без сбоев. Было игнорировано даже серьезное предупреждение  частичное плавление ядра в первом блоке Чернобыля в 1982 году. 

     
В соответствии с программной испытания выключение ротора должно было производиться на уровне 700-1000 мегаватт термальной энергии. Такое замедление должно выполняться, когда реактор был выключен, но был выбран другой, более опасный способ: приступить к испытанию, когда реактор еще работал. Это было сделано, чтобы обеспечить 
«чистоту» эксперимента. 

     
При некоторых эксплуатационных условиях становиться необходимо изменить или выключить местный контрольный прибор для кластеров абсорбирующих стержней. При выключении этих местных систем (средства осуществления этого приведены в процедуре для эксплуатации при низком потреблении энергии), старший инженер по контрольным приборам реактора медленно исправлял дисбаланс контрольной системы. В результате этого, энергия упала ниже 30 мегаватт термальной энергии, что привело к отравлению реактора продуктами распада (ксеноном и йодом). При таких событиях практически невозможно восстановить нормальные условия без прерывания испытания и ожидания в течение дня, пока будет преодолено отравление.

Заместитель главного инженера по эксплуатации не хотел прерывать испытания и, накричав на операторов, заставил операторов контрольной комнаты начать поднимать уровень подаваемой энергии (который был стабилизирован на уровне 200 мегаватт термальной энергии). Отравление реактора продолжилось, но дальнейшее увеличение энергии было запрещено из-за невысокого предела эксплуатационной реактивности лишь 30 стержней для большого лучевого реактора рабочего давления (РБМК). Реактор стал практически неконтролируемым и взрывоопасным. Пытаясь предотвратить отравление, операторы вынули несколько штанг, необходимых для поддержания границы безопасности реактивности, тем самым делая систему выключения неэффективной. Тем не менее, было решено продолжать испытание. Очевидно, поведение операторов мотивировалось, главным образом, желанием закончить испытание, как можно быстрее. 

     
Проблемы, вызванные несовершенным дизайном реактора и абсорбирующих штанг. Чтобы лучше понять причины аварии, необходимо указать на основные проектные дефекты абсорбирующих стержней контрольной и выключающей системы. Высота ядра была 7 м, в то время как длина стержней составляла не более 5 м плюс по 1 метр полых частей сверху и снизу. Нижние концы абсорбирующих стержней, которые уходили под ядро при полном введении, были наполнены графитом. С учетом такого дизайна, контрольные стержни входили в ядро после однометровых полых частей, за которыми, наконец, следовали абсорбирующие части. 

Источник: pixabay.com.

На Чернобыле 4 всего было 211 абсорбирующих стержней, 205 из которых были вынуты. Одновременное повторное введение такого большого количества стержней сначала привело к перегрузке реактивности (пик распада), поскольку сначала графитовые концы и полые части вошли в ядро. В стабильном контролируемом реакторе подобная вспышка не была бы опасна, но в случае комбинации негативных условий подобное дополнительное условие могло привести к фатальному исходу, поскольку оно приводит к быстрому нейтронному разгону реактора. Причиной первоначального роста реактивности была инициация кипения воды в ядре. Этот начальный рост реакционной способности отражал один частный недостаток: положительный коэффициент парового пространства, который возник в результате дизайна ядра. Этот проектный недостаток является одной из причин, вызвавших ошибки операторов. 

     
Серьезные проектные просчеты, характерные для реактора и абсорбирующих стержней, в действительности предопределили чернобыльскую аварию. В 1975 году после аварии на ленинградской установке и позже специалисты предупреждали о возможности другой аварии в связи с проектными недостатками ядра. За шесть месяцев до чернобыльской трагедии инспектор по технике безопасности на курской станции отправил в Москву письмо, в котором указал руководителю исследований и главному проектировщику на проектные несоответствия реактора, а также контрольных и защитных стержней. Однако Государственный Контролирующий Комитет по атомной энергетики назвал его замечания необоснованными.


     
Сам ход аварии. Ход событий был следующим. С началом кавитации охлаждающего насоса реактора, которая привела к сниженной скорости потока в ядре, охладитель вскипел в напорных трубках. Только в этот момент руководитель смены нажал кнопку аварийной тревоги. В ответ все контрольные стержни (которые были вынуты) и аварийный стержни опустились в ядро. Однако в ядро сначала вошли графитовые и полые концы стержней, который вызвали рост реактивности; они вошли в ядро только в начале интенсивного образования пара. Подъем температуры реактора также вызвал тот же эффект. Таким образом, в ядре образовалась комбинация сразу трех неблагоприятных условий. Начался немедленный разгон реактора. Это было вызвано, прежде всего, грубыми просчетами в дизайне РБМК. Здесь необходимо вспомнить, что САОЯ не работала, так как она была заперта и закрыта. 

     
Последующие события хорошо известны. Реактор был поврежден. Произошел выброс основной части топлива, графита и других внутриядерных компонент. Уровень радиации вблизи поврежденной установки составлял от 1,000 до 15,000 Р/ч, хотя в некоторых удаленных районах уровни радиации были значительно ниже. 

Сначала работники не могли понять, что произошло, и продолжали говорить, что «это невозможно! Все было сделано правильно».

Источник: pixabay.com.

Эргономические соображения в связи с советским отчетом об аварии. Еще в 1976 году академик П.Л. Капица, казалось, предвидел катастрофу по причинам, учет которых мог бы предотвратить Чернобыль, но его опасения стали известны только в 1989 году. В феврале 1976 года Отчет США по новостям и миру (US News and World Report), еженедельный журнал новостей, опубликовал отчеты о пожаре на атомной установке в Browns Ferry в Калифорнии. Капица был так обеспокоен этой аварий, что он упомянул ее в своем отчете «Глобальные проблемы и энергия», представленном в Стокгольме в мае 1976 года. В частности, Капица сказал: 

     
«Авария показала неадекватность математических методов, используемых для расчета вероятности таких событий, поскольку эти методы не учитывали вероятность, связанную с ошибками человека. Чтобы решить эту проблему, необходимо принять меры для предотвращения того, чтобы какая-либо авария приняла катастрофический оборот».

     
Капица пытался опубликовать свою работу в журнале Наука и Жизнь, но работа была не принята на основании того, что было нежелательно 
«пугать общественность». Шведский журнал Ambio попросил Капицу передать им свою работу, но также долго не публиковал ее. 

     
Академия наук заверила Капицу, что в СССР не может быть таких аварий и в качестве достаточного 
«доказательства» представила ему только что опубликованные Правила по технике безопасности для АЭС. Эти правила содержали, например, такие пункты, как «8.1. Действия персонала в случае ядерной аварии определяются процедурой о действиях по ликвидации последствий аварии»!

После Чернобыля. Как прямой или косвенный результат чернобыльской аварии были разработаны и приняты меры, направленные на безопасную эксплуатацию существующих АЭС и усовершенствование проектирования и строительства будущих станций. В частности, были приняты меры, чтобы аварийная система быстрее срабатывала, и можно было бы исключить любую возможность того, что она будет преднамеренно отключена персоналом. Дизайн абсорбирующих стержней были изменен, и их число было увеличено.
     

Кроме этого, процедура, касающаяся ненормальных условий, которая использовалась операторами до аварии, требовала поддерживать реактор в рабочем состоянии, в то время как нынешняя процедура требует, чтобы в этом случае реактор выключался. Разрабатываются новые реакторы, которые, вообще говоря, действительно по сути своей безопасны. Появились новые области исследования, которые либо игнорировались, либо не существовали до Чернобыля, включая вероятностный анализ безопасности и экспериментальные испытания в лабораторных условиях.

     
Однако, по словам бывшего Министра СССР по атомной энергии и промышленности, В. Коновалова, число сбоев, выключений и инцидентов на атомных установках все еще велико. Исследования показывают, что это происходит, главным образом, из-за плохого качества доставляемых компонент, ошибок человека и неадекватных решений проектных и технических органов. Качество строительных работ и работ по установке также оставляют желать лучшего.

     
Разные модификации и дизайнерские изменения стали общей практикой. В результате этого и в сочетании с неадекватным обучением квалификация работающего персонала остается низкой. Сотрудники должны улучшать свои знания и навыки в ходе своей работы на основе собственного опыта в эксплуатации установки.


   

Эргономические уроки, которые все еще нужно выучить. Даже наиболее эффективная, сложная система безопасности и контроля не сможет обеспечить надежность установки, если не принимать во внимание человеческие факторы. Была проведена работа, связанная с профессиональным обучением персонала во Всесоюзном Научно-исследовательском Институте по АЭС, и планируется дальнейшее расширение этой работы. Однако нужно признать, что инженерная психология все еще не учитывается в дизайне, строительстве, испытаниях и эксплуатации установки. 

     
Бывшее Министерство СССР по атомной энергии в 1988 году ответило на официальный запрос, что в период с 1990 по 2000 гг. не было необходимости в специалистах по инженерной психологии со средним и высшим образованием, поскольку не было соответствующих запросов на такой персонал от атомных станций и предприятий. 

     
Чтобы решить многие проблемы, упомянутые в этой статье, необходимо провести обобщенное исследование и разработку, в которой должны участвовать физики, проектировщики, промышленные инженеры, эксплуатационный персонал, специалисты по инженерной психологии и другим наукам. Организация такой совместной работы повлечет за собой значительные сложности, одной из которых является сохраняющаяся монополия со стороны некоторых ученых (и групп ученых) на 

«правду» об атомной энергии и монополия со стороны рабочего персонала на информацию, касающуюся эксплуатации АЭС. Без наличия полной информации невозможно поставить диагноз АЭС при помощи инженерной психологии и, если необходимо, предложить способы исключения недостатков, а также разработать систему мер для предотвращения аварий. 

На АЭС бывшего Советского Союза современные средства диагностики, контроля и компьютеризации были далеки от принятых международных стандартов; методы контроля за установкой были слишком сложными и запутанными без каких-либо на то причин; нет продвинутых программ подготовки персонала; имеется слабая поддержка со стороны проектировщиков, а руководства по эксплуатации имеют слишком устаревший формат.

Выводы. В сентябре 1990 года, после дальнейших исследований два бывших работника Чернобыля были освобождены из тюрьмы после окончания их срока. Некоторое время спустя, были освобождены все заключенные сотрудники  после того, как они провели в тюрьме определенное время. Многие люди, которые отвечали за надежность и безопасность АЭС, сейчас полагают, что сотрудники действовали правильно, несмотря на то, что эти правильные действия привели к взрыву. Нельзя винить сотрудников Чернобыля за неожиданный масштаб катастрофы. 

     
В попытке идентифицировать тех, кто должен нести ответственность за аварию, суд, в основном, полагался на мнение технических специалистов, которые в данном случае были проектировщиками Чернобыльской атомной электростанции. В результате этого был получен еще один важный опыт (из катастрофы в Чернобыле): до тех пор, пока основным юридическим документом, используемым для идентификации ответственных лиц за аварию на таком сложном предприятии как АЭС, остаются какие-то инструкции по эксплуатации, предложенные и изменяемые исключительно проектировщиками этих предприятий, 

 технически очень сложно установить фактические причины бедствия, а также принять все необходимые меры предосторожности, чтобы избегать аварий в будущем.

Кроме этого, все еще остается вопрос о том, должен ли персонал строго следовать инструкциям по эксплуатации в случае аварии или скорее ему следует опираться на свои знания, опыт или интуицию, которые могут даже противоречить инструкциям или быть бессознательно связаны с угрозой сурового наказания.

     
К сожалению, мы должны констатировать, что вопрос 

«Кто виноват в чернобыльской аварии» так и не прояснен. Ответственных лиц нужно искать среди политиков, физиков, администраторов и операторов, а также среди инженеров  разработчиков. Осуждение простых «стрелочников», как в случае с Чернобылем, или просьбы, обращенные к священникам по поводу освящения работы АЭС святой водой, как было с установкой, на которой происходили инциденты в Смоленске в 1991 году, не могут быть адекватными мерами, направленными на обеспечение и надежную эксплуатацию АЭС.


Источник: pixabay.com.
   

  

   
Те люди, которые считают чернобыльскую катастрофу досадной неприятностью, которая никогда не повторится, должны понять, что человеку присуще делать ошибки, и ошибки делают не только операторы, но и ученые и инженеры. Игнорирование эргономических принципов, связанных с взаимодействием пользователя и машины в технической или промышленной сфере, будет приводить к более частым и более серьезным ошибкам. 

     
Поэтому необходимо проектировать технические установки, как, например, АЭС, так, чтобы возможные ошибки вскрывались до того, как произойдет серьезная авария. Многие эргономические принципы были выведены, в первую очередь, в попытках предотвратить такие ошибки, например, при проектировании индикаторов и контрольных приборов. Однако сегодня эти принципы все еще нарушаются на многих технических установках во всем мире. 

     
Персонал сложных установок должен иметь высокую квалификацию не только для осуществления рутинных операций, но также в отношении процедур, которые должны выполняться в случае отклонений от нормального функционирования. Глубокое понимание физики и технологии, связанные с производственными процессами, поможет сотрудникам лучше реагировать в критических условиях. Подобную квалификацию можно получить только через интенсивное обучение.

     
Постоянное усовершенствование интерфейса пользователя и машины и технических приложений, осуществляемое в результате больших и малых аварий, доказывает, что проблема человеческих ошибок и взаимодействия пользователя и машины все еще далека от решения. 

     
Необходимы постоянные эргономические исследования и последующее приложение полученных результатов, направленные на создание более надежного интерфейса пользователя и машины, особенно с технологиями, которые связаны с энергией большой разрушительной силы, например, ядерной энергией. Чернобыль является серьезным предупреждением того, что может случиться, если люди 

 ученые и инженеры, а также администраторы и политики — будут игнорировать необходимость включения эргономики в процесс проектирования и эксплуатации сложных технических производственных сооружений.

     
Ганс Бликс (Hans Blix), Генеральный директор МАГАТЭ, подчеркнул эту проблему, проведя важное сравнение. Известно изречение, что проблема войны слишком серьезна, чтобы предоставить ее решение лишь генералам. Бликс добавил, 

«что проблемы атомной энергетики слишком серьезны, чтобы оставлять их решение экспертам по атомной энергетике»

ЛИТЕРАТУРНЫЙ ИСТОЧНИК: 

Публикация подготовлена на основе материалов Энциклопедии охраны и безопасности труда МОТ, электронный ресурс: safework.ru.

БЕСПЛАТНАЯ ПОДПИСКА НА ЕЖЕНЕДЕЛЬНЫЙ ОБЗОР
КЛИНСКОГО ИНСТИТУТА ОХРАНЫ И УСЛОВИЙ ТРУДА 

Отборная и актуальная информация на электронную почту

Все публикации

Легенда о чернобыльском «эксперименте»: что на самом деле произошло на АЭС и зачем в СССР соврали о причине катастрофы, предсказанной конструкторами

6 мая 2019 года канал НВО начал показ сериала «Чернобыль». Он рассказывает о крупнейшей атомной катастрофе в Европе, случившейся 26 апреля 1986 года в результате аварии на Чернобыльской АЭС, находившейся на территории Советского Союза. Почему так произошло, зачем СССР сфальсифицировал информацию о трагедии и как конструктор реактора пытался предупредить об опасности — читайте в материале Правила жизни.

В сериале HBO, как и следовало ожидать, полно вымышленных деталей. Например, рассказывается, что городской совет народных депутатов Припяти изолировал город, чтобы не сеять панику, и не дал жителям возможности спастись. На самом деле никакой изоляции не было и эвакуация жителей Припяти случилась уже 27 апреля: объявление припятского городского совета о ней может прослушать каждый.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Это вполне привычное явление: западная киноиндустрия известна забавными ляпами про нашу страну. Куда интереснее то, что «Чернобыль» до сих пор остается плодородной почвой для мифотворчества и в самой России.

Чернобыльская авария случилась вовсе не из-за «эксперимента», как принято думать, и не из-за ошибок персонала АЭС. Причина катастрофы — два конструктивных просчета при проектировании реактора типа РБМК. Причем важнейший из этих просчетов был выявлен его конструктором, и тот даже направил на Чернобыльскую АЭС соответствующее письмо — но на него никто не обратил внимания.

Суть легенды: операторы плохие, советский реактор — хороший

Катастрофа 26 апреля 1986 года с самого начала скрывалась советским государством, по наивности полагавшим, будто любую неприятную для себя информацию можно спрятать. Но уже 28 апреля того же года стало ясно, что научно-технический прогресс не позволяет держать в тайне такое событие. Утром 28 апреля один из работников шведской АЭС Форсмарк прошел через рамку — и ничтожное количество радиоактивной пыли запустило сигнал тревоги. Шведское национальное атомное агентство быстро прикинуло направление ветра — и «стрелка» на карте указала на СССР. Шведы пригрозили Москве обращением в Международное агентство по атомной энергии, и только тогда СССР был вынужден признать факт катастрофы.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Но милая провинциальная привычка не выносить сор из избы не проходит после одного неприятного урока. Именно поэтому официальные советские отчеты в Международное агентство по атомной энергии — как и показания работников атомной отрасли — были, увы, сфальсифицированы. Это легко видеть по тексту доклада INSAG-1 (International Nuclear Safety Group) от 1987 года и русскоязычной официальной публикации, на которых он основывался. Там утверждали: «Конструкция реакторной установки предусматривала защиту от подобного типа аварий […], персонал отключил ряд технических средств защиты и нарушил важнейшие положения регламента эксплуатации в части безопасности». Якобы это и стало причиной аварии.

Именно в этих докладах 1987 года впервые прозвучало слово «эксперимент»: персонал АЭС якобы ставил эксперимент по работе реактора во внештатных условиях. Запустить этот «эксперимент» можно было, только отключив автоматическую защиту — систему стержней, которые должны «глушить» цепную реакцию при проблемах с охлаждением. Из-за отключения этой защиты персоналом якобы и случилась авария.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Простая аналогия: представьте, что водитель автобуса с пассажирами проводит эксперимент, как его автобус будет вести себя без тормозов, и снимает тормоза, а потом выезжает на трассу. Конечно, в таком варианте без жертв обойтись трудно. Доклады 1987 года показали персонал именно таким невменяемым водителем.

Такое простое и логичное объяснение обладало одним существенным недостатком: это ложь.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Суть аварии

Взорвавшийся 26 апреля четвертый энергоблок Чернобыльской АЭС был на планово-предупредительном ремонте — подвергался регулярной процедуре, обязательной для атомных реакторов. В утвержденной схеме каждого такого ремонта для реакторов типа РБМК (реакторов большой мощности канальных, именно такие стояли на ЧАЭС) есть испытания нештатных режимов работы — как раз чтобы предупредить аварии. На таких испытаниях автоматическую защиту отключали всегда по той простой причине, что иначе многих нештатных режимов работы не добиться. То есть первый отчет INSAG-1 назвал «экспериментом» одну из стандартных проверок, обязательных при планово-предупредительном ремонте.

И снова простая аналогия. При техосмотре из автомобиля сливают моторное масло, для чего нужно выкрутить сливную пробку. Четвертый энергоблок ЧАЭС был автомобилем, на котором персонал по инструкции «скрутил пробку» — остановил защиту реактора. Но если автомобиль при открытой пробке и сливающемся масле вдруг взорвется и убьет немало человек, то никто и никогда не будет обвинять автомеханика. Вопросы возникнут к тому, кто автомобиль делал. Попробуем понять, почему плановое испытательное мероприятие — а вовсе не выдуманный «эксперимент» — привело к аварии.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Из показаний академика Легасова: «Из жерла реактора постоянно истекал такой белый, на несколько сот метров столб продуктов горения, видимо, графита. Внутри реакторного пространства было видно отдельными крупными пятнами мощное малиновое свечение».

Wikipedia

В сердце взорвавшегося чернобыльского реактора цилиндр из двух тысяч тонн графита, пронизанный ~1700 каналами (на фото ниже).


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

По каналам течет вода, замедляющая нейтроны от ядерного топлива до необходимой «рабочей» скорости, потому что на слишком быстрых, незамедленных нейтронах реактор начинает «тормозиться» автоматически. Если же случается авария и реактор начинает перегреваться, по плану вода из каналов испаряется. Водяной пар хуже воды замедляет нейтроны — то есть при перегреве реактор должен сам себя «тормозить», защищаясь от последующего взрыва.

Увы, проектировщики схему рассчитали неточно. Графита в реакторе они заложили слишком много. Поэтому даже без воды графит замедлял нейтроны достаточно — когда вода в каналах закипала от перегрева, разгон реактора продолжался. Продолжим автомобильную аналогию: это как если бы конструкторы автомобиля напутали так, что педаль тормоза на большой скорости работала бы как педаль газа. Это первая и очень большая ошибка создателей РБМК.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Пространство между каналами заполняет две тысячи тонн графита — чистого углерода, который загорелся после взрыва реактора. Использование горючего материала для создания реактора — еще одна, хотя и менее фатальная ошибка проектировщиков.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Но, к сожалению, была еще и вторая ошибка — она-то и привела к катастрофе Чернобыля. При перегреве реактора в него вдвигаются стержни аварийной защиты — из материала, отлично поглощающего нейтроны и за счет этого мгновенно останавливающего цепную реакцию. В РБМК конструкцию стержней продумали плохо. Они вводились в каналы с водой, замедляющей нейтроны, — и вытесняли воду, ускоряя цепную реакцию расщепления урана. Представим, что в вашей машине есть аварийный тормоз, который нажимают, только когда все совсем плохо и речь идет о жизни и смерти. Чернобыльская АЭС была машиной, в которой и аварийный тормоз мог лишь дополнительно поддать газу.

Cхема стержней взорвавшегося реактора из отчета INSAG-7


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Во втором часу ночи 26 апреля персонал ЧАЭС не знал о том, что реактор является саморазгоняющимся, а не самозаглушающимся, — никто не поставил их об этом в известность. Но они умели читать показания приборов. И поэтому увидели, что при снижении количества воды в каналах мощность реактора вдруг начала расти, а не падать. Заметив это, персонал подал команду на ввод аварийных стержней. И первых нескольких секунд их ввода — когда воду уже вытеснило, а «глушащие» части стержней еще не успели войти — хватило, чтобы мощность реактора дополнительно резко подскочила. Возник перегрев, от которого часть каналов реактора деформировалась и заблокировала дальнейшее вдвигание аварийных стержней. Реактор продолжил нагреваться, произошел взрыв, а затем еще один.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Их мощность составляла несколько тонн в тротиловом эквиваленте — значительная часть реактора была разрушена, продукты деления урана взрывом выбросило в атмосферу. Катастрофа свершилась, и главную роль в этом сыграли просчеты тех, кто создавал реактор.

Зачем врали?


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Причины, по которым в СССР решили сделать крайними людей, эксплуатировавших реактор, понять не так сложно. Скажем, ваша промышленность сделала автомобиль, у которого иногда тормоз начинает работать как газ. Водитель на нем об этом не знал и в ходе «торможения» ускорился, отчего въехал в толпу людей. Кого надо за это судить? Можно промышленность, конструкторов и так далее, но это плохой вариант: на бумажках про запуск в серию такого типа реакторов масса начальственных подписей: министры, главные конструкторы — одним словом, большие шишки, люди со связями.

Куда проще обвинить водителя, а в случае ЧАЭС — простых операторов реактора. У них нет связей до самого верха, на них можно списать все что угодно, зато советский атомпром будет на высоте и никому не придется ехать из светлого и просторного московского кабинета на Колыму.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

И все прошло бы как по маслу — в советские побасенки об «эксперименте» безответственных работников АЭС в МАГАТЭ вполне поверили, потому что откуда им было узнать правду, — если бы не развал Союза. Некогда всесильные советские министерства и конструкторские бюро вдруг утратили свои связи в верхах, да и сами верхи радикально изменились.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Тогда-то из бывшего СССР в МАГАТЭ поступила совсем иная информация, на основе которой был выпущен доклад INSAG-7. В его основных выводах признается: «Авария произошла в результате наложения следующих основных факторов: физических характеристик реактора, особенностей конструкции органов регулирования, вывода реактора в нерегламентное состояние». Заметьте: слова о вине персонала пропали полностью. Даже нерегламентное состояние реактора ему не приписывают. Ведь, как показано в том же докладе, приведение реактора в нерегламентное состояние во время планового ремонта не считалось отклонением от требований по его эксплуатации.

Какова роль лжи в Чернобыльской катастрофе?

К чести разработчиков, они раньше других осознали проблему и даже пробовали о ней предупредить.

Как видно из писем (можно почитать полную версию по ссылке), уже за три года до аварии руководство Чернобыльской АЭС было предупреждено о проблемах со стержнями — и о путях их решения. Однако на письмо никто и никак не отреагировал, так велика была вера в «безаварийность» атомной энергетики.

Однако приведенные выше письма — на последней странице видно, что среди их адресатов был и глава Чернобыльской АЭС, — никакого эффекта не имели. Ни один свидетель аварии не помнит, чтобы его знакомили с этим письмом. Такое игнорирование случилось по очень простой причине: в СССР до Чернобыля практически никто ничего не знал о серии аварий в атомной отрасли — например, 1957 года на «Маяке» или 1975 года на Ленинградской АЭС, однотипной с Чернобыльской. Привычка заметать мусор под ковер привела к формированию в стране и мире идеи о том, что атомные реакторы безопасны, что с ними ни делай. Смысл письма конструкторов просто не дошел до директора ЧАЭС: он был уверен, что ничего суперстрашного от описанных в письме проблем быть не может.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Проблема была свойственна не только для СССР: в первой половине 1980-х в международный научный журнал Nature не приняли статью ученых с хорошей репутацией только потому, что она говорила о возможной аварии на АЭС.

Показателен в этом отношении секретный протокол заседания ЦК КПСС от 3.07.1986 года, случайно попавший в открытой доступ из-за перестроечной неразберихи. В нем Горбачев лично выразил недоумение тотальной самоуспокоенностью, царившей в атомной энергетике до Чернобыля:

«Помню и другое: статью в «Правде» к 30-летию первой АЭС. Там: «атомная энергетика может служить эталоном безопасности». И акад. Легасов это подписал. А что на поверку? Грянул Чернобыль, и никто не готов… Директор станции Брюханов был уверен, что ничего не могло произойти… А между тем за 11-ую пятилетку, 104 аварии было на [всех] АЭС, за последние годы было много [более мелких] аварий на Чернобыльской АЭС. Это вас не насторожило?!…

Мы 30 лет слышим от вас [ученых, специалистов, министров. — А. Б.], что все тут [в атомной энергетике. — А. Б.] надежно. И вы рассчитываете, что мы будем смотреть на вас, как на богов. От этого все и пошло. Потому что министерства и все научные центры оказались вне контроля. А кончилось провалом. И сейчас я не вижу, чтобы вы задумывались над выводами. Больше все констатируете факты, а то и стремитесь замазать кое-какие… Во всей системе царил дух угодничества, подхалимажа, групповщины, гонения на инакомыслящих [речь, среди прочих, об академике Доллежале, с 1970-х выступавшем против АЭС в густонаселенных зонах, которого травил атомный мейнстрим. — А. Б.], показуха, личные связи и разные кланы вокруг разных руководителей».


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Можно по-разному относиться к М. С. Горбачеву, но здесь его выводы очень близки к тому, что говорили и специалисты в области «мирного атома». В аудиозаписях академика Легасова (кстати, одного из персонажей сериала НВО) излагается множество неприятных деталей того, как именно борьба кланов и личные связи негативно влияли на безопасность советских реакторов.

Если бы не традиционная советская культура замалчивания неудач и выпячивания достижений, письмо главного конструктора про дефекты в РБМК (и пути их исправления) не прошло бы мимо сознания директора ЧАЭС Брюханова. И катастрофы бы не произошло. Чернобыль случился из-за дефектности не только реактора, но и всей системы втирания очков, замалчивания и искажения реальности, укоренившейся в позднем Советском Союзе.

Был ли усвоен урок?

На сегодня в России работает десять реакторов типа РБМК, и все они имеют нулевые шансы на повторение Чернобыльской катастрофы. Причины очень просты: оба критических недостатка РБМК, взорвавшегося в Чернобыле, были быстро учтены и исправлены (начиная с лета 1986 года). Сейчас концентрация урана в топливе для наших РБМК повышена, за счет чего реактор перестал быть перезамедленным — при перегреве он больше не разгоняется, а, напротив, сам себя тормозит. Исправлена и ошибка в конструкция аварийных стержней: в каналах под ними больше нет воды. Поэтому сейчас аварийный тормоз действительно дает торможение, а не внезапный разгон реактора.


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В атомной отрасли урок Чернобыля усвоен, и благодаря просачиванию информации после развала СССР усвоен достаточно широко.

Остатки техники времен катастрофы в сегодяншней зоне отчуждения

К сожалению, это относится к специалистам по атомной энергетике, но не относится к общественному сознанию. В нем этот урок все еще подается как пример небрежности и халатности операторов АЭС.

Чернобыль как тема всплывает только в большие юбилеи катастрофы. Поэтому особенно вникать в эту тему немодно, и старинные россказни про «эксперимент» и злокозненно-халатных работников АЭС все еще вполне в ходу.

В итоге общество не в курсе главного: авария стала следствием привычки сообщать наверх, что все прекрасно и замечательно. И со временем люди, втирающие очки начальству, лишаются даже минимального контроля со стороны этого самого начальства — а при таком раскладе любая система в конечном итоге пойдет вразнос.

«…ошибки, которые совершили операторы …, сами по себе, являются чудовищными: поведение руководства станции является трудно‑объяснимым; наказание виновников … правильным; потому, что действия не соответствовали нормативным требованиям и показали несоответствие должностным требованиям тех людей, которые действовали в этой обстановке… – это вина должностных лиц.» Академик В.Легасов

Посвящается 35 летней годовщине нашей национальной трагедии и всем участникам этих героических событий.

Содержание

VII. Оперативный запас реактивности из-за ксенонового отравления реактора был значительно меньше нормы.

VIII. Блокировка ряда важнейших защит.

IX. Подключение дополнительного числа насосов.

X. Резкое снижение уровня питательной воды.

XI. Срабатывание защиты по снижению частоты выбегающих ГЦН.

VII. Оперативный запас реактивности из-за ксенонового отравления реактора был значительно меньше нормы. Из 211 стержней по разным оценкам было от 6-8, по свидетельству[i] Комарова – 1,5 стержня, по данным В.Федуленко (ИАЭ им. И.В.Курчатова)[ii] в соответствии с записями на лентах ДРЕГ всего 2 стержня (!) при минимуме -16. Согласно докладу (№1 INSAG-1)[iii] это привело к потере эффективности аварийной зашиты (АЗ) реактора:

«Тем временем реактивность реактора продолжала медленно падать. В 1ч 22 мин 30 с оператор на распечатке программы быстрой оценки запаса реактивности увидел, что оперативный запас реактивности составил значение, требующее немедленной остановки реактора. Тем не менее это персонал не остановило и испытания начались… В 1ч 22мин 30сек запас реактивности составлял всего 6—8 стержней. Это по крайней мере вдвое меньше предельно допустимого запаса, установленного технологическим регламентом эксплуатации. Реактор находился в необычном, нерегламентном состоянии.

…работа персонала с недопустимо малым оперативным запасом реактивности привела к тому, что практически все остальные стержни-поглотители находились в верхней части активной зоны.
В создавшихся условиях допущенные персоналом нарушения привели к существенному снижению эффективности A3[прим.автора -аварийной защиты]».

Согласно докладу ГПАН (1991 г.) это было нарушением Регламента[iv], а именно: «эксплуатация РУ с ОЗР 15 стержней РР и менее в период … ориентировочно, с 01 ч. 00 мин. 26.04.86 г. до момента аварии ( нарушение главы 9 ТР )…»

Хотя реактор был отравлен ксеноном, но в нем были зоны, свободные от стержней и при определенных обстоятельствах (для конкретной аварии – запаривания зоны) в них мог начаться неконтролируемый разгон, что реально и произошло, авария началась в юго-восточном квадранте реактора[v].

Возможно, персоналу ЧАЭС часто приходилось работать в режимах «на грани»…, что подтверждает также показания И.Казачкова[vi], работавшего 25 апреля 1986 г. начальником дневной смены 4-го блока: «Почему ни я, ни мои коллеги не заглушили реактор, когда уменьшилось количество защитных стержней? Да потому, что никто из нас не представлял, что это чревато ядерной аварией… Прецедентов не было. Я работаю на АЭС с 1974 года и видел здесь гораздо более жестокие режимы. А если я аппарат заглушу — мне холку здорово намылят. Ведь мы план гоним… И по этой причине — по количеству стержней — у нас ни разу остановки блока не было.»

VIII. Блокировка ряда важнейших защит. Но с целью предотвращения остановки реактора для продолжения эксперимента в случае неудачи персоналом были заблокированы (согласно Докладу №1 (INSAG-1) для МАГАТЭ[vii]) важнейшие защиты реактора в т.ч. защиты на формирование аварийного сигнала по отключению двух ТГ сразу (что вызвало потерю возможности автоматической остановки реактора), по снижению уровня воды, величины давления в БС (т.е. защита реактора по тепловым параметрам была отключена). Была также отключена и заблокирована вручную (!) аварийная система САОР, обеспечивающая охлаждение реактора в случае аварии, что привело к потере возможности снижения масштаба аварии.

Как заметил[viii] академик А.Александров: «А там [прим.автора — на блоке] не было только защиты от дурака, задумавшего отключить защиту ради своего эксперимента».

Согласно докладу ГПАН (1991 г.) отключение САОР было нарушением Регламента[ix], но не повлияло на возникновение и развитие аварии, так как не было зафиксировано сигналов на автоматическое включение САОР.

По мнению Г.Медведева, САОР была отключена[x] «..из опасения теплового удара по реактору, то есть поступления холодной воды в горячий реактор… САОР была … отключена, задвижки на линии подачи воды в реактор заранее обесточены и закрыты на замок, чтобы в случае надобности не открыть их даже вручную…. Но … Лучше подать холодную воду в горячий реактор, нежели оставить раскаленную активную зону без воды … Ведь когда… реактор останется без охлаждающей воды, 350 кубометров аварийной воды из емкостей САОР, возможно, спасли бы положение, погасив паровой эффект реактивности, самый весомый из всех. Кто знает, какой был бы итог. Но….»

Зачем было ее блокировать ? Как это ни парадоксально, но после аварии Акимов пытался ее включить, попросив об этом Г.Метленко[xi]: «Будь другом, иди в машзал, помоги крутить задвижки. Все обесточено. Вручную каждую открывать или закрывать не менее четырех часов. Диаметры огромные…»

По мнению В.А.Винокурова, к.т.н., ВМИИ[xii]: «Когда начались нестационарные процессы в энергоблоке ночью 26.04.1986, начальник смены, заметив, что верхняя часть ГЦН колеблется с амплитудой 1 м …, дал команду немедленно открыть клапаны аварийной проливки реактора системы САОР, которые, для обеспечения чистоты эксперимента по выбегу турбоагрегата, были закрыты. Одним из двух погибших в первые минуты катастрофы был как раз тот человек, который открывал клапаны аварийного охлаждения реактора.»

«Потом, уже после взрыва, многие специалисты смены блока получили смертельные радиационные поражения при попытках вручную запустить эту самую САОР. Люди, стоя по колено в радиационной контурной воде, крутили маховики ручных задвижек САОР, пытаясь подать в реактор воду для охлаждения.» [xiii] Комментарии излишни.

Вместе с тем, зашиты на формирование режима АЗ-5 по аварийному превышению заданной мощности (АЗМ) и по аварийному увеличению скорости нарастания мощности (АЗСР) не отключались — и они сработали в 1 час 23 мин 41 сек.

Возможности автоматических средств глушения реактора были существенно потеряны[xiv]. С точки рения последующего аварийного процесса, ключевой ошибкой оказался вывод защиты по остановке двух ТГ, что предопределило непредусмотренное программой проведение эксперимента на работающем на мощности реакторе.

А вот еще свидетельство о работе ЧАЭС в режимах «на грани» в части отключения защит по материалам суда[xv]:«Подсудимый Лаушкин, работая с 1982г. государственным инспектором Госатомнадзора СССР (с 1985г. ГАЭН СССР) на Чернобыльской АЭС, преступно халатно относился к исполнению своих служебных обязанностей… Проверки проводил поверхностно, на рабочих местах бывал редко, многие допускаемые персоналом нарушения не вскрывал; терпимо относился к низкой технологической дисциплине, пренебрежительному отношению со стороны персонала и руководства станции к соблюдению норм и правил ядерной безопасности. В результате … на АЭС создалась атмосфера бесконтрольности и безответственности, при которой грубые нарушения норм безопасности не вскрывались и не предупреждались. Только за период времени с 17 января по 2 февраля 1986г. на четвертом энергоблоке ЧАЭС, без разрешения главного инженера, шесть раз выводились из работы автоматические защиты реактора, чем грубо были нарушены требования главы 3 Технологического регламента по эксплуатации блоков Чернобыльской АЭС. Подсудимый Лаушкин, как инспектор по ядерной безопасности, на эти нарушения не реагировал. Безответственное отношение персонала, руководства станции и Лаушкина к обеспечению ядерной безопасности в сочетании с недостаточной профессиональной подготовкой оперативного состава, работающего на сложном энергетическом оборудовании, привели в конечном итоге к аварии 26 апреля 1986 года.»

IX. Подключение дополнительного числа насосов. Другое важнейшее отличие эксперимента заключалось в том, что если ранее в эксперименте участвовало только 2 ГЦН, то в 1986 г. их число решили увеличить до 4, а также подключить насос питательной воды (ПЭН), что еще более увеличивало риски ухудшения охлаждения реактора. При этом общее число работающих насосов составило не 6, а 8. Возможно, это было сделано с целью обеспечить дополнительное охлаждение реактора на случай замедления выбегающих ГЦН.

Если в более ранних испытаниях (1982 и 1984 г.г.) были проблемы в эксперименте при нагрузке 2 ГЦН, то зачем потребовалось еще более увеличить нагрузку, тем самым увеличив риски неуспеха эксперимента?

По мнению В.А.Винокурова, к.т.н., ВМИИ[xvi]: «…в качестве балластной нагрузки для турбогенератора предполагалось использовать резервные ГЦН…это были … трагические ошибки, повлекшие за собой все остальное. »

Подключение дополнительных насосов настолько увеличило поток воды через каналы, что возникла опасность кавитационного срыва ГЦН, привело к захолаживанию реактора и снизило парообразование. Реактор стал работать неустойчиво, уровень воды в барабанах-сепараторах снизился до аварийной отметки. Чтобы избежать останова реактора, персонал глушит ряд защит.

По мнению Г.Медведева[xvii]: «…суммарный расход воды через реактор возрос до 60 тысяч кубических метров в час, при норме 45 тысяч… в час, что является грубым нарушением регламента эксплуатации. При таком режиме работы насосы могут сорвать подачу, возможно возникновение вибрации трубопроводов контура вследствие кавитации (вскипание воды с сильными гидроударами). Резкое увеличение расхода воды через реактор привело к уменьшению парообразования, падению давления пара в барабанах-сепараторах, куда поступает пароводяная смесь из реактора, к нежелательному изменению других параметров.»

Согласно Докладу №1 (INSAG-1) для МАГАТЭ[xviii]: «Операторы пытались вручную поддерживать основные параметры реактора — давление пара и уровень воды в БС — однако в полной мере сделать этого не удалось. В этот период в БС наблюдались провалы по давлению пара на 0,5-0,6 МПа и провалы по уровню воды ниже аварийной уставки. Чтобы избежать остановки реактора в таких условиях, персонал заблокировал сигналы A3 по этим параметрам.»

По мнению доклада ГПАН (1991 г.) рост расхода было нарушением Регламента[xix]: «увеличение расходов по отдельным ГЦН до 7500 м3/ч. ( нарушение пункта 5.8. ТР ).»

С целью стабилизировать уровень воды в БС и давление в контуре за счет охлаждения контурной воды персонал резко (почти в 4 раза) повышает уровень расхода питательной воды в контуре. Устройство автоматического регулирования уровня питательной воды было выключено.

Подключение всех главных циркуляционных насосов (ГЦН) произошло около 1 часа ночи. Реактор стал «захолаживаться», в нем снизилось парообразование, и автоматика стала выводить стержни из активной зоны (01ч 19м 39с — сигнал «1 ПК вверх», мощность реактора падает), тем самым еще более уменьшая ОЗР.

X. Резкое снижение уровня питательной воды.

Когда по мнению оператора параметры реактора пришли в норму, им был резко снижен, практически до нуля, расход питательной воды, что стало роковым шагом, так как привело к увеличению температуры теплоносителя на вход в реактор, т.е. дополнительно повысило производство пара.

По данным доклада INSAG-7(1993 г.)[xx]:

«01 ч 09 мин. резко снижен расход питательной воды до 90 т/ч по правой стороне и до 180 т/ч по левой стороне при общем расходе по контуру 56 000-58 000 т/ч. В резуль­тате температура на всасе [прим. автора — входе] ГЦН составила 280,8°С (левая сторона) и 283,2°С (правая сторона).» Этот уровень — 90 т/ч практически равен нулевому в пределах погрешности приборов. Температура воды на входе в реактор стала близкой к температуре насыщения (кипения).

Но как считает доклад ГПАН (1991 г.)[xxi]: «…это был возврат расхода питательной воды к некоторому среднему расходу, соответствующему мощности реактора 200 МВт и равному, примерно, расходу по 120 т/час. на каждую сторон реактора.»

По мнению [xxii] А.Г. Тарапона, Институт проблем моделирования в энергетике им. Г.Е. Пухова НАНУ (Украина, Киев), процесс аварии начался ранее, сразу после начала испытаний выбега в момент закрытия заслонки СРК и сам аварийный процесс развивался около 15 мин: «Этой записью [прим.автора – резкое снижение расхода питательной воды] было зафиксировано начало кризиса теплообмена второго рода…., при этом интегральная мощность реактора осталась на уровне 200 МВт, что позволяет сделать два вывода: мощность была поднята только в одном (юго-восточном) квадранте, а в других осталась на уровне 13.5 МВт (остаточное тепловыделение); в указанном квадранте полностью прекратился теплообмен.»

В самом деле, температура на входе/выходе в каналы в норме составляет 270/284,5[xxiii], фактически же воды температура на входе ГЦН составила 280,8°С (левая сторона) и 283,2°С (правая сторона), что на более 10 градусов выше нормы и примерно соответствует температуре кипящей воды на выходе из каналов 284,5.

Когда персонал блока начал испытания выбега (01ч 23м 04с), для обеспечения выхода генератора на инерционный ход был отключен выход пара на турбину, закрыты СРК (стопорно-регулирующие клапаны). В условиях отсутствия стока пара из БС (барабана-сепаратора, где происходит сепарация пара для подачи на турбину), давление в контуре стало расти. Эксперимент был начат без сброса защиты реактора, защита по отключению обеих турбин была заблокирована[xxiv], чтобы возможно, иметь возможность повторного проведения эксперимента.

В результате резкого увеличения, а затем снижения расхода питательной воды, в контуре реактора были сформированы два последовательных фронта теплоносителя на входе в активную зону: первый с пониженной температурой и, через некоторое время, второй, с температурой приближенной к температуре кипения воды. По роковому стечению обстоятельств последний фронт «прогретого» теплоносителя подошел к входу в активную зону в момент проведения эксперимента.

Согласно докладу ГПАН (1991 г.)[xxv] непосредственно перед испытаниями в 01 ч. 22 мин. 30 с.:

«В создавшихся условиях небольшой прирост мощности реактора (по любой причине) в силу малого недогрева до кипения теплоносителя мог приводить к приросту объёмного паросодержания в нижней части активной зоны… Таким образом, перед началом испытаний параметры активной зоны обусловили повышенную восприимчивость реактора к саморазгонному процессу в нижней части активной зоны… такое состояние создалось не только потому, что имел место повышенный против обычного расход теплоносителя…, а прежде всего малым значением мощности реактора.»

Таким образом, комплекс действий персонала (низкая мощность реактора, подключение дополнительных ГЦН, закрытие СРК и резкое снижение уровня питательной воды и) были самыми важными факторами развития аварии, которые создали предпосылки для развития аварии.

XI. Срабатывание защиты по снижению частоты выбегающих ГЦН.

Ранее эксперимент проводился на мощности 700-1000 мвт, однако нагрузка была более, чем два раза меньше (ранее на выбег подключалось 2 ГЦН, в 1986 – 4 ГЦН и ПЭН). Повлияло ли снижение мощности до 200 МВТ и рост нагрузки на течение эксперимента ?

В момент начала выбега доступ пару закрывался через задвижки — стопорно-регулирующие клапаны СРК, т.е. прекращалась подача пара на турбину, соответственно исчезал источник «раскрутки» ротора турбины. В тоже время, генератор оставался под нагрузкой запитанных от него выбегающих ГЦН и ПЭН (торможение ротора магнитным полем генератора сохранялось). Соответственно, динамика ротора (в первом приближении) определяется запасенной кинетической энергией ротора, которая пропорциональна моменту инерции и квадрату частоты (Е=0.5*I*w^2, то есть определяется геометрией ротора и частотой вращения до выбега — величин практически постоянных при стационарной работе реактора) и торможением со стороны генератора, которое зависит от запитанного генератором оборудования во время выбега. Таким образом. снижение мощности до 200 МВТ не оказывало влияния на продолжительность выбега.

Указывается, что ранее эксперимент не получался из-за проблем в системе возбуждения генерации тока[xxvi]. Проблемы были не в системе возбуждения, а в регуляторе этой системы — он рано отключал возбуждение. От него по проекту не требовалось такого длительного удержания возбуждения при снижении частоты.

В испытаниях до 1985 года система возбуждения при снижении скорости вращения ТГ рано отключала питание насосов, до включения дизель-генератора Н.Карпан провёл испытание с налаженной системой возбуждения по программе.

Согласно одному из самых осведомленных исследователей аварии Константину Чечерову[xxvii], очень важным моментом в развитии аварии явились действия автоматической системы защиты электроэнергетической системы (ЭЭС) блока, не допускающей функционирования ЭЭС собственных нужд реактора при нерегламентных снижениях частоты вращения и напряжения турбогенератора, что было установлено в исследовании НИКИЭТ[xxviii]. В 1986 двигатели ГЦН отключились защитой по напряжению, затем защитой по частоте (АЧР) отключился генератор.

Здесь возникает несколько важных вопросов: 1) почему составители программы, профессиональные электрики, не знали (или не озвучивали информацию) об этих рисках, ведь было совершенно очевидно, что турбина будет замедляться, напряжение будет падать ? 2) почему этот критический эффект не был выявлен при более ранних испытаниях или выявлен, но почему то не учтен ? 3) автоматическое срабатывание защиты электроэнергетической системы блока требует коррекции эксперимента, почему ее не было?

Ответ на второй вопрос, возможно, связан с тем, что в более ранних испытаниях подключаемая нагрузка была меньше более, чем в два раза, процесс замедления оборотов ротора был также как минимум в два раза меньше, т.е. защита по частоте могла срабатывать позже — через 24-30 сек.

В процесс выбега[xxix] происходило снижение частоты вращения выбегающего ТГ-8, что приводило к плавному, но значительному снижению производительности ГЦН (главных циркуляционных насосов). В результате срабатывания первой ступени защиты минимального напряжения (имевшей настройку по напряжению 0,75 Uн и задержку по времени 0,5 — 1,5 с) были отключены в течение 0,7 с четыре из восьми ГЦН (1.23’39,9″ — ГЦН14; 1.2340″ — ГЦН24; 1.23’40,5″ — ГЦН13; 1.23’40,6″ — ГЦН23), уже имевших перед отключением снижение исходной суммарной производительности более 20 %.

После отключения ГЦН , запитанных от ТГ8 защитой по напряжению. произошёл срыв подачи остальных ГЦН из-за кавитации при перегрузке по расходу (недостаточный подпор на всасе[xxx].

В результате происходило следующее:

«1.23’04» — начало испытаний, падение частоты и напряжения питания электродвигателей ГЦН и ПЭН, запитанных от выбегающего ТГ;

1.23’16» — срабатывание защиты по частоте с задержкой 30 с;

1.23’39» — 1.23’40» — отключение четырех ГЦН и ПЭН, запитанных от выбегающего ТГ, по срабатыванию защиты по напряжению;

1.23’46» — отключение собственных нужд блока (всех насосов, всего оборудования, всех приборов, электрического освещения) по срабатыванию защиты по частоте…»

Как мы помним, кнопка АЗ5 по официальным данным была нажата примерно в это же время — 1.23.39 (по телетайпу). Время начала испытаний выбега — 1.23.04.

В этой связи посмотрим крайне интересное свидетельство одного из разработчиков программы бригадного инженера Донтехэнерго Метленко Геннадия Петровича[xxxi]:

«Когда обороты турбины снизились до 2100, а частота соответственно до 35 гц, напряжение 0,7 от номинального, я услышал раскатистый гром, как бывает при гидроударах. Звук шел со стороны машзала. Началась сильная вибрация здания. С потолка посыпался мусор. Было впечатление, что БЩУ разрушается.»

По мнению К.Чечерова и авторов отчета НИКИЭТ, возможности аварии «были заложены в программе испытаний, точнее, в электротехнической схеме этих испытаний и внутренней защите электродвигателей ГЦН от нерегламентных режимов работы.» Как ни странно, текст этой важнейшей работы К.Чечерова практически сложно найти в интернете и она малоизвестна.

Уменьшение расхода как техническую причину начала перегрева ТВС и ТК предполагали и зарубежные, и отечественные эксперты. Самая первая правительственная комиссия, начавшая работу 27 апреля 1986 г. (группа замминсредмаша А.Г.Мешкова[xxxii]), материалы которой до сих пор не опубликованы, сделала вывод [xxxiii]: «авария … произошла в результате неконтролируемого разгона реактора вследствие запаривания ТК активной зоны из-за срыва циркуляции в контуре МПЦ»».

Доклад ГПАН (1991 г.) признает факт отключения ГЦН, который подтверждается данными осциллографирования эксперимента[xxxiv], вместе с тем оспаривает выводы комиссии Мешкова, ссылаясь на то, что анализ теплогидравлического режима работы ГЦН, выполненный в конце мая 1986 г. представителями ОКБМ (разработчика ГЦН), института «Гидропроект» им. С.Я. Жука и ВТИ им. Ф.Э. Дзержинского, якобы не подтвердил предположения о кавитации и срыве ГЦН[xxxv].

Формально такая интерпретация возможно связана с тем, что[xxxvi]: «После разрыва труб каналов расход по всем насосам (по записям на самописцах осциллографов) возрос почти до номинала. Практически вся вода шла в графитовую кладку и из насосов, и из сепараторов и превращалась в пар..»

Автор — бывший сотрудник — НИКИЭТ (мл.н.с.), ВНИИАЭС (руководитель группы)

При написании статьи использована дополненная и отредактированная статья[xxxvii] автора на сайте информационного агентства «ПроАтом», посвященного атомной отрасли, Санкт-Петербург, а также материалы полемики автора на данном сайте с г-ном Н.Штейнбергом, руководителем Комиссии Госпроматомнадзора (ГПАН) СССР, 1991 г.

Автор выражает огромную благодарность всем специалистам, которые в это сложное время решили взять на себя ответственность и публиковали оригинальные статьи (и книги) по данной теме. А также, ряду специалистов по реакторам РБМК, любезно согласившихся обсуждать с автором вопросы, возникших в процессе написания данной статьи, без чего данная работа была бы невозможна. И участникам основных форумов, посвященных аварии на ЧАЭС, которые десятки лет спорили и пытались выяснить истину.

[i] Чернобыль: СВИДЕТЕЛЬСТВО КОМАРОВА https://www.kontinent.org/article.php?aid=454b94b89bdec

[ii] В.М.Федуленко, в 1986 г. начальник лаборатории теплотехнических расчётов канальных реакторов, отд. 33 ИАЭ им. И.В.Курчатова, http://www.proatom.ru/modules.php?file=print&name=News&sid=2814

[iii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[iv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[v] А.Г. Тарапон, РЕКОНСТРУКЦИЯ ПРИЧИНЫ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС И ПРОЦЕССОВ РАЗРУШЕНИЯ РЕАКТОРА И ПОМЕЩЕНИЙ IV ЭНЕРГОБЛОКА, ea.donntu.edu.ua/bitstream/123456789/5597/1/20.pdf

[vi] Юрий Николаевич Щербак, Чернобыль, https://www.litmir.me/br/?b=139550&p=1

[vii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[viii] Правда о Чернобыле лежит… в Москве, Сергей ЯНКОВСКИЙ, Зеркало недели
№ 16 (441) Суббота, 26 Апреля — 7 Мая 2003 года, http://www.diary.ru/~frau-kaufmann/p84462124.htm?oam

[ix] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[x] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xi] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xii] В.А.Винокуров, к.т.н., ВМИИ, Чернобыльская катастрофа: что, как, почему, http://www.proatom.ru/modules.php?name=News&file=article&sid=3183

[xiii] Правда о Чернобыле лежит… в Москве, Сергей ЯНКОВСКИЙ, Зеркало недели
№ 16 (441) Суббота, 26 Апреля — 7 Мая 2003 года, http://www.diary.ru/~frau-kaufmann/p84462124.htm?oam

[xiv] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xv] ЧЕРНОБЫЛЬСКИЙ СУД, https://pripyat-city.ru/wp-content/uploads/2010/12/chernobylsky_sud.pdf

[xvi] В.А.Винокуров, к.т.н., ВМИИ, Чернобыльская катастрофа: что, как, почему, http://www.proatom.ru/modules.php?name=News&file=article&sid=3183

[xvii] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xviii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xix] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xx] ЧЕРНОБЫЛЬСКАЯ АВАРИЯ: ДОПОЛНЕНИЕ К INSAG-1: INSAG-7

[xxi] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxii] А.Г. Тарапон, РЕКОНСТРУКЦИЯ ПРИЧИНЫ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС И ПРОЦЕССОВ РАЗРУШЕНИЯ РЕАКТОРА И ПОМЕЩЕНИЙ IV ЭНЕРГОБЛОКА, https://docplayer.ru/38350815-Rekonstrukciya-prichiny-avarii-na-chernobylskoy-aes-i-processov-razrusheniya-reaktora-i-pomeshcheniy-iv-energobloka.html

[xxiii] Доллежаль Николай Антонович, Емельянов Иван Яковлевич, Канальный ядерный энергетический реактор, Атомиздат, 1980, стр.50

[xxiv] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xxv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxvi] Технические аспекты аварии на 4-м энергоблоке Чернобыльской АЭС, О. Ю. Новосельский, Ю. М. Черкашов, К.П.Чечеров, http://www.rgo-sib.ru/book/articles/142.htm

[xxvii] К.П.Чечеров, РНЦ «Курчатовский институт», РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИЧИНАХ И ПРОЦЕССАХ,АВАРИИ НА 4-М БЛОКЕ ЧАЭС 26 АПРЕЛЯ 1986 г., https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/020/32020472.pdf

[xxviii] Микляев М.С., Грачев В.И., Ионов А.И., Романова КВ., Анализ функционирования электроэнергетической системы АЭС в режиме выбега турбогенератора IV блока ЧАЭС (26 апреля 1986 г.) по данным регистрации параметров и проектной документации. (Отчет) / М: НИКИЭТ, 1995.

[xxix] К.П.Чечеров, РНЦ «Курчатовский институт», РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИЧИНАХ И ПРОЦЕССАХ,АВАРИИ НА 4-М БЛОКЕ ЧАЭС 26 АПРЕЛЯ 1986 г., https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/020/32020472.pdf

[xxx] О.Ю.Новосельский, Куда делся графит, http://www.proatom.ru/modules.php?name=News&file=article&sid=9010

[xxxi] Н.В. Карпан, ЧЕРНОБЫЛЬ МЕСТЬ МИРНОГО АТОМА, Глава 6,

http://www.physiciansofchernobyl.org.ua/rus/books/Karpan.html

[xxxii] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxxiii] ФилимонцееЮ.Н., Иванов B.C., Конвиз B.C., Куклин В.З., СурбаА.С, Мешков А.Г., Будылин Б.В., Черкашов Ю.М.,Калугин А.К, Полушкин К.К., Федуленко В.М., Василевский В.П., Сироткин А.П., Сидоренко В.А., Алексеев М.П.,Митрофанов Ю. Ф. Акт расследования причин аварии на энергоблоке № 4 Чернобыльской АЭС, происшедшей 26 апреля 1986 г., ЧАЭС, учетн. № 97 ПУ 05 мая 1986 г.

[xxxiv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxxv] Анализ режима работы ГЦН в предварительный период и в первой фазе аварии на 4-ом блоке ЧАЭС. Отчет ОКБМ и ИАЭ им. И.В. Курчатова, инв. № 333/1-360-89.

[xxxvi] В.М.Федуленко, О причинах и развитии аварии на 4-м блоке ЧАЭС, http://www.proatom.ru/modules.php?file=print&name=News&sid=2814

[xxxvii] Трагедия на ЧАЭС: как эксперимент закончился катастрофой, http://www.proatom.ru/modules.php?name=News&file=article&sid=9143&mode=flat&order=1&thold=0

«…ошибки, которые совершили операторы …, сами по себе, являются чудовищными: поведение руководства станции является трудно‑объяснимым; наказание виновников … правильным; потому, что действия не соответствовали нормативным требованиям и показали несоответствие должностным требованиям тех людей, которые действовали в этой обстановке… – это вина должностных лиц.» Академик В.Легасов

Посвящается 35 летней годовщине нашей национальной трагедии и всем участникам этих героических событий.

Содержание

VII. Оперативный запас реактивности из-за ксенонового отравления реактора был значительно меньше нормы.

VIII. Блокировка ряда важнейших защит.

IX. Подключение дополнительного числа насосов.

X. Резкое снижение уровня питательной воды.

XI. Срабатывание защиты по снижению частоты выбегающих ГЦН.

VII. Оперативный запас реактивности из-за ксенонового отравления реактора был значительно меньше нормы. Из 211 стержней по разным оценкам было от 6-8, по свидетельству[i] Комарова – 1,5 стержня, по данным В.Федуленко (ИАЭ им. И.В.Курчатова)[ii] в соответствии с записями на лентах ДРЕГ всего 2 стержня (!) при минимуме -16. Согласно докладу (№1 INSAG-1)[iii] это привело к потере эффективности аварийной зашиты (АЗ) реактора:

«Тем временем реактивность реактора продолжала медленно падать. В 1ч 22 мин 30 с оператор на распечатке программы быстрой оценки запаса реактивности увидел, что оперативный запас реактивности составил значение, требующее немедленной остановки реактора. Тем не менее это персонал не остановило и испытания начались… В 1ч 22мин 30сек запас реактивности составлял всего 6—8 стержней. Это по крайней мере вдвое меньше предельно допустимого запаса, установленного технологическим регламентом эксплуатации. Реактор находился в необычном, нерегламентном состоянии.

…работа персонала с недопустимо малым оперативным запасом реактивности привела к тому, что практически все остальные стержни-поглотители находились в верхней части активной зоны.
В создавшихся условиях допущенные персоналом нарушения привели к существенному снижению эффективности A3[прим.автора -аварийной защиты]».

Согласно докладу ГПАН (1991 г.) это было нарушением Регламента[iv], а именно: «эксплуатация РУ с ОЗР 15 стержней РР и менее в период … ориентировочно, с 01 ч. 00 мин. 26.04.86 г. до момента аварии ( нарушение главы 9 ТР )…»

Хотя реактор был отравлен ксеноном, но в нем были зоны, свободные от стержней и при определенных обстоятельствах (для конкретной аварии – запаривания зоны) в них мог начаться неконтролируемый разгон, что реально и произошло, авария началась в юго-восточном квадранте реактора[v].

Возможно, персоналу ЧАЭС часто приходилось работать в режимах «на грани»…, что подтверждает также показания И.Казачкова[vi], работавшего 25 апреля 1986 г. начальником дневной смены 4-го блока: «Почему ни я, ни мои коллеги не заглушили реактор, когда уменьшилось количество защитных стержней? Да потому, что никто из нас не представлял, что это чревато ядерной аварией… Прецедентов не было. Я работаю на АЭС с 1974 года и видел здесь гораздо более жестокие режимы. А если я аппарат заглушу — мне холку здорово намылят. Ведь мы план гоним… И по этой причине — по количеству стержней — у нас ни разу остановки блока не было.»

VIII. Блокировка ряда важнейших защит. Но с целью предотвращения остановки реактора для продолжения эксперимента в случае неудачи персоналом были заблокированы (согласно Докладу №1 (INSAG-1) для МАГАТЭ[vii]) важнейшие защиты реактора в т.ч. защиты на формирование аварийного сигнала по отключению двух ТГ сразу (что вызвало потерю возможности автоматической остановки реактора), по снижению уровня воды, величины давления в БС (т.е. защита реактора по тепловым параметрам была отключена). Была также отключена и заблокирована вручную (!) аварийная система САОР, обеспечивающая охлаждение реактора в случае аварии, что привело к потере возможности снижения масштаба аварии.

Как заметил[viii] академик А.Александров: «А там [прим.автора — на блоке] не было только защиты от дурака, задумавшего отключить защиту ради своего эксперимента».

Согласно докладу ГПАН (1991 г.) отключение САОР было нарушением Регламента[ix], но не повлияло на возникновение и развитие аварии, так как не было зафиксировано сигналов на автоматическое включение САОР.

По мнению Г.Медведева, САОР была отключена[x] «..из опасения теплового удара по реактору, то есть поступления холодной воды в горячий реактор… САОР была … отключена, задвижки на линии подачи воды в реактор заранее обесточены и закрыты на замок, чтобы в случае надобности не открыть их даже вручную…. Но … Лучше подать холодную воду в горячий реактор, нежели оставить раскаленную активную зону без воды … Ведь когда… реактор останется без охлаждающей воды, 350 кубометров аварийной воды из емкостей САОР, возможно, спасли бы положение, погасив паровой эффект реактивности, самый весомый из всех. Кто знает, какой был бы итог. Но….»

Зачем было ее блокировать ? Как это ни парадоксально, но после аварии Акимов пытался ее включить, попросив об этом Г.Метленко[xi]: «Будь другом, иди в машзал, помоги крутить задвижки. Все обесточено. Вручную каждую открывать или закрывать не менее четырех часов. Диаметры огромные…»

По мнению В.А.Винокурова, к.т.н., ВМИИ[xii]: «Когда начались нестационарные процессы в энергоблоке ночью 26.04.1986, начальник смены, заметив, что верхняя часть ГЦН колеблется с амплитудой 1 м …, дал команду немедленно открыть клапаны аварийной проливки реактора системы САОР, которые, для обеспечения чистоты эксперимента по выбегу турбоагрегата, были закрыты. Одним из двух погибших в первые минуты катастрофы был как раз тот человек, который открывал клапаны аварийного охлаждения реактора.»

«Потом, уже после взрыва, многие специалисты смены блока получили смертельные радиационные поражения при попытках вручную запустить эту самую САОР. Люди, стоя по колено в радиационной контурной воде, крутили маховики ручных задвижек САОР, пытаясь подать в реактор воду для охлаждения.» [xiii] Комментарии излишни.

Вместе с тем, зашиты на формирование режима АЗ-5 по аварийному превышению заданной мощности (АЗМ) и по аварийному увеличению скорости нарастания мощности (АЗСР) не отключались — и они сработали в 1 час 23 мин 41 сек.

Возможности автоматических средств глушения реактора были существенно потеряны[xiv]. С точки рения последующего аварийного процесса, ключевой ошибкой оказался вывод защиты по остановке двух ТГ, что предопределило непредусмотренное программой проведение эксперимента на работающем на мощности реакторе.

А вот еще свидетельство о работе ЧАЭС в режимах «на грани» в части отключения защит по материалам суда[xv]:«Подсудимый Лаушкин, работая с 1982г. государственным инспектором Госатомнадзора СССР (с 1985г. ГАЭН СССР) на Чернобыльской АЭС, преступно халатно относился к исполнению своих служебных обязанностей… Проверки проводил поверхностно, на рабочих местах бывал редко, многие допускаемые персоналом нарушения не вскрывал; терпимо относился к низкой технологической дисциплине, пренебрежительному отношению со стороны персонала и руководства станции к соблюдению норм и правил ядерной безопасности. В результате … на АЭС создалась атмосфера бесконтрольности и безответственности, при которой грубые нарушения норм безопасности не вскрывались и не предупреждались. Только за период времени с 17 января по 2 февраля 1986г. на четвертом энергоблоке ЧАЭС, без разрешения главного инженера, шесть раз выводились из работы автоматические защиты реактора, чем грубо были нарушены требования главы 3 Технологического регламента по эксплуатации блоков Чернобыльской АЭС. Подсудимый Лаушкин, как инспектор по ядерной безопасности, на эти нарушения не реагировал. Безответственное отношение персонала, руководства станции и Лаушкина к обеспечению ядерной безопасности в сочетании с недостаточной профессиональной подготовкой оперативного состава, работающего на сложном энергетическом оборудовании, привели в конечном итоге к аварии 26 апреля 1986 года.»

IX. Подключение дополнительного числа насосов. Другое важнейшее отличие эксперимента заключалось в том, что если ранее в эксперименте участвовало только 2 ГЦН, то в 1986 г. их число решили увеличить до 4, а также подключить насос питательной воды (ПЭН), что еще более увеличивало риски ухудшения охлаждения реактора. При этом общее число работающих насосов составило не 6, а 8. Возможно, это было сделано с целью обеспечить дополнительное охлаждение реактора на случай замедления выбегающих ГЦН.

Если в более ранних испытаниях (1982 и 1984 г.г.) были проблемы в эксперименте при нагрузке 2 ГЦН, то зачем потребовалось еще более увеличить нагрузку, тем самым увеличив риски неуспеха эксперимента?

По мнению В.А.Винокурова, к.т.н., ВМИИ[xvi]: «…в качестве балластной нагрузки для турбогенератора предполагалось использовать резервные ГЦН…это были … трагические ошибки, повлекшие за собой все остальное. »

Подключение дополнительных насосов настолько увеличило поток воды через каналы, что возникла опасность кавитационного срыва ГЦН, привело к захолаживанию реактора и снизило парообразование. Реактор стал работать неустойчиво, уровень воды в барабанах-сепараторах снизился до аварийной отметки. Чтобы избежать останова реактора, персонал глушит ряд защит.

По мнению Г.Медведева[xvii]: «…суммарный расход воды через реактор возрос до 60 тысяч кубических метров в час, при норме 45 тысяч… в час, что является грубым нарушением регламента эксплуатации. При таком режиме работы насосы могут сорвать подачу, возможно возникновение вибрации трубопроводов контура вследствие кавитации (вскипание воды с сильными гидроударами). Резкое увеличение расхода воды через реактор привело к уменьшению парообразования, падению давления пара в барабанах-сепараторах, куда поступает пароводяная смесь из реактора, к нежелательному изменению других параметров.»

Согласно Докладу №1 (INSAG-1) для МАГАТЭ[xviii]: «Операторы пытались вручную поддерживать основные параметры реактора — давление пара и уровень воды в БС — однако в полной мере сделать этого не удалось. В этот период в БС наблюдались провалы по давлению пара на 0,5-0,6 МПа и провалы по уровню воды ниже аварийной уставки. Чтобы избежать остановки реактора в таких условиях, персонал заблокировал сигналы A3 по этим параметрам.»

По мнению доклада ГПАН (1991 г.) рост расхода было нарушением Регламента[xix]: «увеличение расходов по отдельным ГЦН до 7500 м3/ч. ( нарушение пункта 5.8. ТР ).»

С целью стабилизировать уровень воды в БС и давление в контуре за счет охлаждения контурной воды персонал резко (почти в 4 раза) повышает уровень расхода питательной воды в контуре. Устройство автоматического регулирования уровня питательной воды было выключено.

Подключение всех главных циркуляционных насосов (ГЦН) произошло около 1 часа ночи. Реактор стал «захолаживаться», в нем снизилось парообразование, и автоматика стала выводить стержни из активной зоны (01ч 19м 39с — сигнал «1 ПК вверх», мощность реактора падает), тем самым еще более уменьшая ОЗР.

X. Резкое снижение уровня питательной воды.

Когда по мнению оператора параметры реактора пришли в норму, им был резко снижен, практически до нуля, расход питательной воды, что стало роковым шагом, так как привело к увеличению температуры теплоносителя на вход в реактор, т.е. дополнительно повысило производство пара.

По данным доклада INSAG-7(1993 г.)[xx]:

«01 ч 09 мин. резко снижен расход питательной воды до 90 т/ч по правой стороне и до 180 т/ч по левой стороне при общем расходе по контуру 56 000-58 000 т/ч. В резуль­тате температура на всасе [прим. автора — входе] ГЦН составила 280,8°С (левая сторона) и 283,2°С (правая сторона).» Этот уровень — 90 т/ч практически равен нулевому в пределах погрешности приборов. Температура воды на входе в реактор стала близкой к температуре насыщения (кипения).

Но как считает доклад ГПАН (1991 г.)[xxi]: «…это был возврат расхода питательной воды к некоторому среднему расходу, соответствующему мощности реактора 200 МВт и равному, примерно, расходу по 120 т/час. на каждую сторон реактора.»

По мнению [xxii] А.Г. Тарапона, Институт проблем моделирования в энергетике им. Г.Е. Пухова НАНУ (Украина, Киев), процесс аварии начался ранее, сразу после начала испытаний выбега в момент закрытия заслонки СРК и сам аварийный процесс развивался около 15 мин: «Этой записью [прим.автора – резкое снижение расхода питательной воды] было зафиксировано начало кризиса теплообмена второго рода…., при этом интегральная мощность реактора осталась на уровне 200 МВт, что позволяет сделать два вывода: мощность была поднята только в одном (юго-восточном) квадранте, а в других осталась на уровне 13.5 МВт (остаточное тепловыделение); в указанном квадранте полностью прекратился теплообмен.»

В самом деле, температура на входе/выходе в каналы в норме составляет 270/284,5[xxiii], фактически же воды температура на входе ГЦН составила 280,8°С (левая сторона) и 283,2°С (правая сторона), что на более 10 градусов выше нормы и примерно соответствует температуре кипящей воды на выходе из каналов 284,5.

Когда персонал блока начал испытания выбега (01ч 23м 04с), для обеспечения выхода генератора на инерционный ход был отключен выход пара на турбину, закрыты СРК (стопорно-регулирующие клапаны). В условиях отсутствия стока пара из БС (барабана-сепаратора, где происходит сепарация пара для подачи на турбину), давление в контуре стало расти. Эксперимент был начат без сброса защиты реактора, защита по отключению обеих турбин была заблокирована[xxiv], чтобы возможно, иметь возможность повторного проведения эксперимента.

В результате резкого увеличения, а затем снижения расхода питательной воды, в контуре реактора были сформированы два последовательных фронта теплоносителя на входе в активную зону: первый с пониженной температурой и, через некоторое время, второй, с температурой приближенной к температуре кипения воды. По роковому стечению обстоятельств последний фронт «прогретого» теплоносителя подошел к входу в активную зону в момент проведения эксперимента.

Согласно докладу ГПАН (1991 г.)[xxv] непосредственно перед испытаниями в 01 ч. 22 мин. 30 с.:

«В создавшихся условиях небольшой прирост мощности реактора (по любой причине) в силу малого недогрева до кипения теплоносителя мог приводить к приросту объёмного паросодержания в нижней части активной зоны… Таким образом, перед началом испытаний параметры активной зоны обусловили повышенную восприимчивость реактора к саморазгонному процессу в нижней части активной зоны… такое состояние создалось не только потому, что имел место повышенный против обычного расход теплоносителя…, а прежде всего малым значением мощности реактора.»

Таким образом, комплекс действий персонала (низкая мощность реактора, подключение дополнительных ГЦН, закрытие СРК и резкое снижение уровня питательной воды и) были самыми важными факторами развития аварии, которые создали предпосылки для развития аварии.

XI. Срабатывание защиты по снижению частоты выбегающих ГЦН.

Ранее эксперимент проводился на мощности 700-1000 мвт, однако нагрузка была более, чем два раза меньше (ранее на выбег подключалось 2 ГЦН, в 1986 – 4 ГЦН и ПЭН). Повлияло ли снижение мощности до 200 МВТ и рост нагрузки на течение эксперимента ?

В момент начала выбега доступ пару закрывался через задвижки — стопорно-регулирующие клапаны СРК, т.е. прекращалась подача пара на турбину, соответственно исчезал источник «раскрутки» ротора турбины. В тоже время, генератор оставался под нагрузкой запитанных от него выбегающих ГЦН и ПЭН (торможение ротора магнитным полем генератора сохранялось). Соответственно, динамика ротора (в первом приближении) определяется запасенной кинетической энергией ротора, которая пропорциональна моменту инерции и квадрату частоты (Е=0.5*I*w^2, то есть определяется геометрией ротора и частотой вращения до выбега — величин практически постоянных при стационарной работе реактора) и торможением со стороны генератора, которое зависит от запитанного генератором оборудования во время выбега. Таким образом. снижение мощности до 200 МВТ не оказывало влияния на продолжительность выбега.

Указывается, что ранее эксперимент не получался из-за проблем в системе возбуждения генерации тока[xxvi]. Проблемы были не в системе возбуждения, а в регуляторе этой системы — он рано отключал возбуждение. От него по проекту не требовалось такого длительного удержания возбуждения при снижении частоты.

В испытаниях до 1985 года система возбуждения при снижении скорости вращения ТГ рано отключала питание насосов, до включения дизель-генератора Н.Карпан провёл испытание с налаженной системой возбуждения по программе.

Согласно одному из самых осведомленных исследователей аварии Константину Чечерову[xxvii], очень важным моментом в развитии аварии явились действия автоматической системы защиты электроэнергетической системы (ЭЭС) блока, не допускающей функционирования ЭЭС собственных нужд реактора при нерегламентных снижениях частоты вращения и напряжения турбогенератора, что было установлено в исследовании НИКИЭТ[xxviii]. В 1986 двигатели ГЦН отключились защитой по напряжению, затем защитой по частоте (АЧР) отключился генератор.

Здесь возникает несколько важных вопросов: 1) почему составители программы, профессиональные электрики, не знали (или не озвучивали информацию) об этих рисках, ведь было совершенно очевидно, что турбина будет замедляться, напряжение будет падать ? 2) почему этот критический эффект не был выявлен при более ранних испытаниях или выявлен, но почему то не учтен ? 3) автоматическое срабатывание защиты электроэнергетической системы блока требует коррекции эксперимента, почему ее не было?

Ответ на второй вопрос, возможно, связан с тем, что в более ранних испытаниях подключаемая нагрузка была меньше более, чем в два раза, процесс замедления оборотов ротора был также как минимум в два раза меньше, т.е. защита по частоте могла срабатывать позже — через 24-30 сек.

В процесс выбега[xxix] происходило снижение частоты вращения выбегающего ТГ-8, что приводило к плавному, но значительному снижению производительности ГЦН (главных циркуляционных насосов). В результате срабатывания первой ступени защиты минимального напряжения (имевшей настройку по напряжению 0,75 Uн и задержку по времени 0,5 — 1,5 с) были отключены в течение 0,7 с четыре из восьми ГЦН (1.23’39,9″ — ГЦН14; 1.2340″ — ГЦН24; 1.23’40,5″ — ГЦН13; 1.23’40,6″ — ГЦН23), уже имевших перед отключением снижение исходной суммарной производительности более 20 %.

После отключения ГЦН , запитанных от ТГ8 защитой по напряжению. произошёл срыв подачи остальных ГЦН из-за кавитации при перегрузке по расходу (недостаточный подпор на всасе[xxx].

В результате происходило следующее:

«1.23’04» — начало испытаний, падение частоты и напряжения питания электродвигателей ГЦН и ПЭН, запитанных от выбегающего ТГ;

1.23’16» — срабатывание защиты по частоте с задержкой 30 с;

1.23’39» — 1.23’40» — отключение четырех ГЦН и ПЭН, запитанных от выбегающего ТГ, по срабатыванию защиты по напряжению;

1.23’46» — отключение собственных нужд блока (всех насосов, всего оборудования, всех приборов, электрического освещения) по срабатыванию защиты по частоте…»

Как мы помним, кнопка АЗ5 по официальным данным была нажата примерно в это же время — 1.23.39 (по телетайпу). Время начала испытаний выбега — 1.23.04.

В этой связи посмотрим крайне интересное свидетельство одного из разработчиков программы бригадного инженера Донтехэнерго Метленко Геннадия Петровича[xxxi]:

«Когда обороты турбины снизились до 2100, а частота соответственно до 35 гц, напряжение 0,7 от номинального, я услышал раскатистый гром, как бывает при гидроударах. Звук шел со стороны машзала. Началась сильная вибрация здания. С потолка посыпался мусор. Было впечатление, что БЩУ разрушается.»

По мнению К.Чечерова и авторов отчета НИКИЭТ, возможности аварии «были заложены в программе испытаний, точнее, в электротехнической схеме этих испытаний и внутренней защите электродвигателей ГЦН от нерегламентных режимов работы.» Как ни странно, текст этой важнейшей работы К.Чечерова практически сложно найти в интернете и она малоизвестна.

Уменьшение расхода как техническую причину начала перегрева ТВС и ТК предполагали и зарубежные, и отечественные эксперты. Самая первая правительственная комиссия, начавшая работу 27 апреля 1986 г. (группа замминсредмаша А.Г.Мешкова[xxxii]), материалы которой до сих пор не опубликованы, сделала вывод [xxxiii]: «авария … произошла в результате неконтролируемого разгона реактора вследствие запаривания ТК активной зоны из-за срыва циркуляции в контуре МПЦ»».

Доклад ГПАН (1991 г.) признает факт отключения ГЦН, который подтверждается данными осциллографирования эксперимента[xxxiv], вместе с тем оспаривает выводы комиссии Мешкова, ссылаясь на то, что анализ теплогидравлического режима работы ГЦН, выполненный в конце мая 1986 г. представителями ОКБМ (разработчика ГЦН), института «Гидропроект» им. С.Я. Жука и ВТИ им. Ф.Э. Дзержинского, якобы не подтвердил предположения о кавитации и срыве ГЦН[xxxv].

Формально такая интерпретация возможно связана с тем, что[xxxvi]: «После разрыва труб каналов расход по всем насосам (по записям на самописцах осциллографов) возрос почти до номинала. Практически вся вода шла в графитовую кладку и из насосов, и из сепараторов и превращалась в пар..»

Автор — бывший сотрудник — НИКИЭТ (мл.н.с.), ВНИИАЭС (руководитель группы)

При написании статьи использована дополненная и отредактированная статья[xxxvii] автора на сайте информационного агентства «ПроАтом», посвященного атомной отрасли, Санкт-Петербург, а также материалы полемики автора на данном сайте с г-ном Н.Штейнбергом, руководителем Комиссии Госпроматомнадзора (ГПАН) СССР, 1991 г.

Автор выражает огромную благодарность всем специалистам, которые в это сложное время решили взять на себя ответственность и публиковали оригинальные статьи (и книги) по данной теме. А также, ряду специалистов по реакторам РБМК, любезно согласившихся обсуждать с автором вопросы, возникших в процессе написания данной статьи, без чего данная работа была бы невозможна. И участникам основных форумов, посвященных аварии на ЧАЭС, которые десятки лет спорили и пытались выяснить истину.

[i] Чернобыль: СВИДЕТЕЛЬСТВО КОМАРОВА https://www.kontinent.org/article.php?aid=454b94b89bdec

[ii] В.М.Федуленко, в 1986 г. начальник лаборатории теплотехнических расчётов канальных реакторов, отд. 33 ИАЭ им. И.В.Курчатова, http://www.proatom.ru/modules.php?file=print&name=News&sid=2814

[iii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[iv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[v] А.Г. Тарапон, РЕКОНСТРУКЦИЯ ПРИЧИНЫ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС И ПРОЦЕССОВ РАЗРУШЕНИЯ РЕАКТОРА И ПОМЕЩЕНИЙ IV ЭНЕРГОБЛОКА, ea.donntu.edu.ua/bitstream/123456789/5597/1/20.pdf

[vi] Юрий Николаевич Щербак, Чернобыль, https://www.litmir.me/br/?b=139550&p=1

[vii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[viii] Правда о Чернобыле лежит… в Москве, Сергей ЯНКОВСКИЙ, Зеркало недели
№ 16 (441) Суббота, 26 Апреля — 7 Мая 2003 года, http://www.diary.ru/~frau-kaufmann/p84462124.htm?oam

[ix] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[x] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xi] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xii] В.А.Винокуров, к.т.н., ВМИИ, Чернобыльская катастрофа: что, как, почему, http://www.proatom.ru/modules.php?name=News&file=article&sid=3183

[xiii] Правда о Чернобыле лежит… в Москве, Сергей ЯНКОВСКИЙ, Зеркало недели
№ 16 (441) Суббота, 26 Апреля — 7 Мая 2003 года, http://www.diary.ru/~frau-kaufmann/p84462124.htm?oam

[xiv] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xv] ЧЕРНОБЫЛЬСКИЙ СУД, https://pripyat-city.ru/wp-content/uploads/2010/12/chernobylsky_sud.pdf

[xvi] В.А.Винокуров, к.т.н., ВМИИ, Чернобыльская катастрофа: что, как, почему, http://www.proatom.ru/modules.php?name=News&file=article&sid=3183

[xvii] Григорий Медведев. Чернобыльская тетрадь, М Известия 1989г., http://lib.ru/MEMUARY/CHERNOBYL/medvedev.txt

[xviii] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xix] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xx] ЧЕРНОБЫЛЬСКАЯ АВАРИЯ: ДОПОЛНЕНИЕ К INSAG-1: INSAG-7

[xxi] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxii] А.Г. Тарапон, РЕКОНСТРУКЦИЯ ПРИЧИНЫ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС И ПРОЦЕССОВ РАЗРУШЕНИЯ РЕАКТОРА И ПОМЕЩЕНИЙ IV ЭНЕРГОБЛОКА, https://docplayer.ru/38350815-Rekonstrukciya-prichiny-avarii-na-chernobylskoy-aes-i-processov-razrusheniya-reaktora-i-pomeshcheniy-iv-energobloka.html

[xxiii] Доллежаль Николай Антонович, Емельянов Иван Яковлевич, Канальный ядерный энергетический реактор, Атомиздат, 1980, стр.50

[xxiv] Информация об аварии на Чернобыльской АЭС и её последствиях,
подготовленная для МАГАТЭ, Доклад №1 (INSAG-1), http://magate-1.narod.ru/vvedenie.html

[xxv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxvi] Технические аспекты аварии на 4-м энергоблоке Чернобыльской АЭС, О. Ю. Новосельский, Ю. М. Черкашов, К.П.Чечеров, http://www.rgo-sib.ru/book/articles/142.htm

[xxvii] К.П.Чечеров, РНЦ «Курчатовский институт», РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИЧИНАХ И ПРОЦЕССАХ,АВАРИИ НА 4-М БЛОКЕ ЧАЭС 26 АПРЕЛЯ 1986 г., https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/020/32020472.pdf

[xxviii] Микляев М.С., Грачев В.И., Ионов А.И., Романова КВ., Анализ функционирования электроэнергетической системы АЭС в режиме выбега турбогенератора IV блока ЧАЭС (26 апреля 1986 г.) по данным регистрации параметров и проектной документации. (Отчет) / М: НИКИЭТ, 1995.

[xxix] К.П.Чечеров, РНЦ «Курчатовский институт», РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ПРИЧИНАХ И ПРОЦЕССАХ,АВАРИИ НА 4-М БЛОКЕ ЧАЭС 26 АПРЕЛЯ 1986 г., https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/020/32020472.pdf

[xxx] О.Ю.Новосельский, Куда делся графит, http://www.proatom.ru/modules.php?name=News&file=article&sid=9010

[xxxi] Н.В. Карпан, ЧЕРНОБЫЛЬ МЕСТЬ МИРНОГО АТОМА, Глава 6,

http://www.physiciansofchernobyl.org.ua/rus/books/Karpan.html

[xxxii] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxxiii] ФилимонцееЮ.Н., Иванов B.C., Конвиз B.C., Куклин В.З., СурбаА.С, Мешков А.Г., Будылин Б.В., Черкашов Ю.М.,Калугин А.К, Полушкин К.К., Федуленко В.М., Василевский В.П., Сироткин А.П., Сидоренко В.А., Алексеев М.П.,Митрофанов Ю. Ф. Акт расследования причин аварии на энергоблоке № 4 Чернобыльской АЭС, происшедшей 26 апреля 1986 г., ЧАЭС, учетн. № 97 ПУ 05 мая 1986 г.

[xxxiv] О причинах и обстоятельствах аварии на 4 блоке чернобыльской АЭС 26 апреля 1986 г., Доклад Комиссии Госпроматомнадзора СССР, http://www.pseudology.org/razbory/GAN/index.htm

[xxxv] Анализ режима работы ГЦН в предварительный период и в первой фазе аварии на 4-ом блоке ЧАЭС. Отчет ОКБМ и ИАЭ им. И.В. Курчатова, инв. № 333/1-360-89.

[xxxvi] В.М.Федуленко, О причинах и развитии аварии на 4-м блоке ЧАЭС, http://www.proatom.ru/modules.php?file=print&name=News&sid=2814

[xxxvii] Трагедия на ЧАЭС: как эксперимент закончился катастрофой, http://www.proatom.ru/modules.php?name=News&file=article&sid=9143&mode=flat&order=1&thold=0

Все мы знаем, что 26 апреля 1986 года произошла авария на Чернобыльской АЭС и что виновным в ней был признан персонал атомной станции. Одновременно с этим, сейчас основной причиной взрыва считаются конструктивные недостатки реактора, о чем со ссылкой на официальные документы повествует предыдущий пост о причинах аварии. Как же так? Неужели были осуждены невиновные?

8320d84-56

Ниже рассмотрим обвинения, которые предъявлялись персоналу ЧАЭС на суде и позже в популярной литературе. Их пять:
1. Выведение защитных механизмов, которые должны были предотвратить аварию.
2. Отклонение от программы испытаний.
3. Подъем мощности реактора после ее провала.
4. Несоблюдение необходимого оперативного запаса реактивности.
5. Включение всех главных циркуляционных насосов и превышение расхода воды по ним.

Итак, первое. Выведение защитных механизмов (защит). В общественном сознании это обвинение формулируется как:»Операторы отключили защиту, которая не дала бы реактору взорваться». На самом деле, в энергоблоке предусмотрено большое количество аварийных защит (АЗ), которые глушат реактор при отклонении от определенных заданных параметров. Например, защиты по уровню воды в различных механизмах, по давлению пара, и т. д. Часть этих защит выполнена отключаемой или настраиваемой силами оперативного персонала. При одних условиях работы защиты включаются, при других выключаются. 26 апреля 1986 года все манипуляции с защитами были выполнены согласно руководящим документам, и на процесс возникновения и развития аварии это не повлияло.

Исключением была настройка защиты по уровню  воды в барабан-сепараторах, она должна была быть другой. Посмотрим, что по этому поводу говорит ИНСАГ-7, отчет МАГАТЭ о причинах аварии:
«Блокировка сигнала аварийного останова реактора по уровню воды и давлению пара в барабанах-сепараторах могла бы быть допустимой, однако этого не произошло; ИНСАГ считает, что это не повлияло бы на возникновение аварии, и к тому же в любом случае существовала другая система защиты.»
Один из осужденных работников ЧАЭС, заместитель главного инженера Анатолий Дятлов в своей книге описывает это более просто:
«Был бы заглушен реактор при срабатывании защиты — неизвестно, потому что трудно сказать, когда защита стала неработоспособной. Даже будь точно известно: если бы АЗ по уровню была переключена, то при его
отклонении в 01 час 00 минут реактор был бы благополучно заглушен — ни о чем не говорит. Работу реактора на «если» нельзя строить. Ведь не из-за отклонения уровня произошла авария, а совсем по другим причинам. Да и защита
по снижению уровня теплоносителя в барабан-сепараторах до -1100 мм оставалась введенной.
Таким образом, аварийные зашиты реактора были в полном объеме для такого режима, кроме защиты по уровню в барабан-сепараторах -она была — 1100 мм вместо — 600 мм.»

Все это означает, что причина аварии кроется не в отключении или неверной настройке защит. А даже если бы это и не было так, возникает вопрос, почему разработчиками не была создана такая система защиты, которая безопасно глушит реактор в любом случае, вне зависимости от действий оперативного персонала.

Второе. Отклонение от программы испытаний. «Сотрудники станции делали не как было написано, а как было им удобнее, потому-то все так и закончилось». Имеется в виду проведение испытаний на мощности 200 МВт, а не 700, как предусматривала программа испытаний. Тут нужно понимать два момента. Во-первых, в результате провала мощности перед началом испытаний, восстановить ее значение до 700 МВт было сложно, если вообще возможно (хронологию событий читаем в великолепной книге Н. В. Карпана). Во-вторых, испытания предусматривали глушение реактора. Но при невозможности их проведения все равно следовало глушить реактор, так как блок шел на планово-предупредительный ремонт. При этом, испытания турбины можно провести и на уровне мощности 200 МВт.

Таким образом, проведение испытаний на мощности, не предусмотренной программой, являлось мерой вынужденной и полностью обоснованной. Претензии к персоналу по этому пункту беспочвенны, ведь он поступил правильно: заглушил реактор, что и требовалось сделать в любом случае.

Третье. Подъем мощности после ее провала. «Взялись поднимать мощность, чего нельзя было делать». Предлагаю открыть регламент эксплуатации энергоблока и поискать там инструкции на случай резкого падения мощности в процессе нормальной эксплуатации, не связанной с его аварийной остановкой или выводом на мощность после ремонта. Не найдете. Подъем мощности не был запрещен руководящими документами.

Отдельно стоит остановиться на том, что реактор продолжительное время эксплуатировался на мощности ниже 700 МВт. ИНСАГ-7 прямо рассматривает этот вопрос:
«Заявлялось, что длительная эксплуатация реактора на уровнях мощности ниже 700 МВт(тепл.) запрещена. Это заявление основывалось на неправильной информации. Такое запрещение должно было существовать, однако в тот момент его не было.»

Сделаем вывод, что руководящие документы были написаны с ошибками, и не предусматривали всех возможных состояний реактора. Это вина разработчиков документации но не персонала, который в итоге получил неправильные инструкции.

Четвертое. Несоблюдение необходимого оперативного запаса реактивности (ОЗР). «Сотрудники станции вывели из активной зоны много управляющих стержней, что сделало аварию возможной». Сначала рассмотрим, что же такое ОЗР. Вот ссылка на Википедию. Грубо говоря, это понятие в данном случае можно понимать как количество эффективных стержней управления и защиты, погруженных в активную зону полностью. Если это количество было меньше 15, реактор следовало немедленно глушить.

До сих пор ОЗР на момент аварии достоверно неизвестен. Дело в том, что он считался второстепенным параметром, в связи с чем разработчиками было допущено две ошибки:
1. Оператору текущий ОЗР не был известен. На рабочем месте его индикации не было, оператор при необходимости должен был запрашивать его расчет, после чего узнать ОЗР с запаздыванием в несколько минут.
2. Системы аварийной защиты по уровню ОЗР не было.
Показателен тот факт, что 25 апреля 1986 года  в 07 ч 10 мин вычислительная система показала ОЗР равным 13,2 стержня. При этом, такие показатели никого не взволновали, так как о важности этого параметра для безопасности не знали. Также сразу после аварии нижний уровень ОЗР был поднят до уровня 30 стержней, то есть признаны ядерноопасными те режимы, которые до аварии считались вполне нормальными.
Кстати говоря, работать некоторое время разрешалось и при неработающей вычислительной системе, что отражено в пункте 10.4 регламента.

В процессе расследования причин аварии оказалось, что ОЗР является важнейшим параметром безопасности, хотя ранее это не было известно. Игнорирование важности ОЗР стало важной причиной аварии. При этом, аварийной защиты по уровню ОЗР не было, а персонал не имел представления о его влиянии на безопасность. И не сотрудники станции в этом виноваты.

И, наконец, пятое. Включение всех главных циркуляционных насосов (ГЦН) и превышение расхода воды по ним. «В нарушение инструкций, сотрудники включили все ГЦН, а по некоторым из них допускали превышение расхода воды, что создало условия для саморазгона реактора». На объяснении этих процессов останавливаться не будем, ограничившись отсылкой к ИНСАГ-7 и прилагаемому к нему докладу ГПАН, где все подробно расписано. Остановимся непосредственно на влиянии их на возникновение аварии. Во-первых, включение восьми насосов не было запрещено и вполне могло применяться персоналом. Во-вторых, превышение расхода по ГЦН действительно является ошибкой. Эта ошибка могла вызвать неэффективность насосов или их поломку. Но этого не произошло, как и не произошло никаких отклонений контролируемых параметров активной зоны, связанных с работой ГЦН.

Из всех рассмотреных фактов можно сделать вывод, что, хотя оперативным персоналом допускались некоторые нарушения в работе, не они стали первопричиной катастрофы. Стало быть, сотрудники станции в возникновении аварии не виноваты. Почему же их осудили? А потому, что признание недочетов конструкции стало бы ударом для советской ядерной энергетики, это не дало бы возможности советским инженерам строить атомные станции за рубежом, нанесло бы дополнительный ущерб престижу государства. Пришлось искать стрелочников, и их нашли. Далеко не первый случай, когда справедливость приносится в жертву государственным интересам.

Настоятельно рекомендуемая литература:
1. ИНСАГ-7, доклад МАГАТЭ о причинах аварии.
2. Карпан Н.В. Чернобыль. Месть мирного атома.

Просто рекомендуемая литература:
1. Дятлов А.С. Чернобыль. Как это было.
2. Доаварийный регламент эксплуатации третьего и четвертого энергоблоков
3. Расшифровки магнитофонных записей В.А. Легасова.
4. Щербак Ю.Н. Чернобыль.

Понравилась статья? Поделить с друзьями:
  • Ошибки опасности осложнения регионарной анестезии
  • Ошибки операторов колл центра примеры
  • Ошибки округления имеют
  • Ошибки опалубки для ленточного фундамента
  • Ошибки оператора при бронировании