Ошибки измерений как учитываются

[Mon/tm/64]

В тех случаях, когда мониторинг осуществляется в целях оценки степени

соблюдения природоохранных требований, особенно важно осознавать уровень погрешности (недостоверности) измерений в течение всего процесса

мониторинга.

Погрешность измерения – это параметр, связанный с результатом измерений и

характеризующий распределение (дисперсию) значений, которые могут быть обоснованно отнесены к измеряемой величине (т. е. различие между

измеряемыми значениями и действительным значением).

Обычно погрешность измерения выражается в форме соответствующего

интервала (плюс/минус) для измеряемой величины при уровне статистической вероятности 95% (95% доверительного интервала). С практической точки зрения для оценки погрешности особый интерес представляют два вида дисперсии:

«внешняя» (межлабораторная) дисперсия» – воспроизводимость — это разница в результатах измерений, полученных в разных лабораториях при проведении измерений в соответствии с действующими стандартами

(стандартными методами);

• «внутренняя»

(внутрилабораторная) дисперсия

– сходимость

это

разница в

результатах измерений, полученных в одной и

той

же

лаборатории

при проведении измерений в

в соответствии с

одним

действующим стандартов (стандартным методом).

Понятие «внутренней дисперсии» применимо только для сравнения различных результатов измерений, полученных в одной и той же лаборатории в отношении одного и того же процесса и одной и той же измеряемой величины. Во всех остальных случаях для оценки погрешности измерений необходимо оценить

величину «внешней дисперсии».

Если в природоохранном разрешении прямо (или косвенно, через ссылку на соответствующий законодательный акт) определен стандартный метод измерения целевого параметра, то уровень «внешней дисперсии» соответствует уровню погрешности такого стандартного метода измерения.

Если же вопрос о стандартном методе для целевого (включенного в природоохранное разрешение) параметра остается открытым в разрешении, то

уровень «внешней дисперсии» принимается соответствующим уровню погрешности результата измерения. При этом учитывается систематическая

погрешность, которая может существовать между результатами, полученными для одного и того же целевого параметра при использовании разных применимых стандартных методов измерения.

Теоретически такая систематическая погрешность незначительна при условии, что все используемые стандартные методы измерения характеризуются

одинаковой связью с единицами СИ. На практике этого можно достичь с помощью

стандартных сертифицированных образцов или проб (Certified Reference Materials,

37

CRMs). Однако последние, если таковые имеются, могут применяться на стадии анализа в цепи получения данных, но на стадии пробоотбора они применяются

редко.

Во избежание неоднозначного толкования в тексте природоохранного разрешения

должны быть четко описаны методы учета погрешностей. При этом предпочтительными являются краткие согласованные формулировки (например, «результат за вычетом погрешности не должен превышать ПДВ/ПДС» или

«среднее значение N измерений должно быть ниже ПДВ/ПДС»), а не общие формулировки, допускающие различные толкования (например, «как можно ниже

в разумных пределах/в соответствии с практической достижимостью»).

Статистические параметры процедур, применяющихся для оценки уровня соблюдения природоохранных требований, могут влиять на практические аспекты

мониторинга, в том числе на число проб или отдельных измерений, необходимых для достижения определенного уровня достоверности результатов. Если в

разрешении используются примеры для разъяснения процедуры проверки соблюдения природоохранных требований, тогда важно объяснить, что эти примеры не предназначены для ограничения применения рассматриваемого

метода, а служит лишь для иллюстрации.

Определение факторов, влияющих на погрешность, может быть необходимо для уменьшения погрешности измерений в целом, что особенно важно, когда измеряемые величины находятся в непосредственной близости от ПДВ/ПДС. Основными источниками погрешностей являются следующие этапы, связанные с

измерениями, в цепи мониторинга:

план проботбора

собственно пробоотбор

предварительная обработка пробы (например, концентрирование/извлечение вещества на месте)

транспортировка/хранение пробы

обработка пробы (например, извлечение/пробоподготовка и т. д.)

анализ и количественное определение.

Однако необходимо также оценить и иные внешние источники погрешностей, в

том числе:

погрешности измерения технологических потоков веществ при расчете нагрузок

погрешности, связанные с недостатками процесса обработки данных,

например, пропуск некоторых результатов измерений при вычислении ежедневных или иных средних значений

погрешности вследствие разброса результатов, связанные с систематическими различиями, которые могут существовать между

результатами, полученными при применении различных стандартных методов измерения одного и того же целевого параметра

погрешности вследствие использования вторичных методов или

замещающих параметров

погрешности вследствие естественной изменчивости/вариабельности (например, вариабельности технологического процесса или погодных условий).

38

Общий уровень погрешности в конкретных ситуациях вычислить довольно сложно. В ходе подготовки стандартов (например, стандартов CEN, см.

Приложение 2) погрешность можно определить экспериментально посредством проведения межлабораторных испытаний, а затем указать ее в тексте стандартов.

39

2.7. Требования в области мониторинга, подлежащие включению в разрешение, наряду с предельно-допустимыми уровнями выбросов и сбросов (ПДВ/ПДС)

[Mon/tm/64]

Разработчику разрешения рекомендуется проанализировать все изложенное в

предыдущих разделах (2.1 — 2.6), прежде чем принимать решение об установлении значения ПДВ/ПДС в разрешении.

При установлении ПДВ/ПДС в разрешении учитываются три ключевых элемента:

мониторинг ПДВ/ПДС должен быть практически осуществимым

требования в области мониторинга должны быть установлены вместе с ПДВ/ПДС

процедуры проверки соблюдения природоохранных требований также должны

быть оговорены в доступной форме вместе с ПДВ/ПДС.

Для предприятий возможны следующие типы ПДВ/ПДС или эквивалентных показателей:

условия производственного процесса (например, температура сжигания)

характиристики технологического оборудования (например, эффективность

средозащитного/очистного оборудования)

эмиссии, осуществляемые в ходе производственного процесса (например, объемы загрязняющих веществ или их концентрации)

характеристики потоков (например, температура на выходе, скорость газа/жидкости на выходе или расход)

использование ресурсов (например, энергопотребление или выброс

загрязняющих веществ на единицу продукции)

процентный охват (доля) используемых результатов мониторинга (например, минимальный процент результатов мониторинга, подлежащих учету при расчете средних значений).

Важно ясно понимать взаимосвязь между ПДВ/ПДС и программой мониторинга.

Установленные требования в области мониторинга должны охватывать все аспекты, связанные с ПДВ/ПДС. В этом смысле надлежащая практика

предполагает наличие в разрешении следующих позиций:

1.Четкое определение мониторинга как неотъемлемого и имеющего юридическую силу требования, обязательного для выполнения

аналогично ПДВ/ПДС/эквивалентному параметру

2.Четкое и однозначное указание загрязняющих веществ или параметров,

для которых вводятся ограничения. При этом возможна конкретизация

деталей, например, следующих:

при мониторинге летучего вещества следует четко оговорить,

является ли это вещество газообразным компонентом и/или сорбированным твердыми частицами;

40

при мониторинге потребления кислорода в воде следует четко оговорить, какой именно тест будет для этого использоваться,

например, 5-дневнй тест на БПК (БПК5)

при мониторинге твердых частиц следует четко указать

соответствующий диапазон размеров частиц, например, общий, < 10 микрометров и т.д.

3.Четкое указание места отбора проб и проведения измерений. Его

расположение должно соответствовать позициям (таким, например, как устье трубы), для которых установлены соответствующие ограничения

(например, предельно допустимый выброс загрязняющего вещества, г/с). Необходимо предусмотреть соответствующие зоны (участки) и/или точки проведения измерений. С этой целью в природоохранном разрешении

следует также предусмотреть соответствующие требования в отношении необходимых помещений и технических средств, таких как безопасные

платформы для проведения измерений и технологические пробоотборные отверстия.

4.Указание временных характеристик для мониторинга

(продолжительность, время/период осреднения и частота и т.д.) отбора проб и проведения измерений, как разъяснено в разделе 2.5.

5.Анализ обоснованности ПДВ/ПДС с точки зрения доступных методов измерения. Предельные величины должны устанавливаться таким образом,

чтобы имеющиеся методы измерения соответствовали по своим

возможностям мониторингу с целью оценки их соблюдения. Так, например,

пробоотбор для получения обнаруживаемых количеств диоксинов в выбросах из дымовых труб обычно занимает нескольких часов. В этом случае время усреднения должно быть принято равным этой практически применимой продолжительности пробоотбора. Следовательно, при установлении предельных величин следует учитывать технические ограничения соответствующих методов мониторинга, т.е. рассматривать такие факторы, как предел обнаружения, инерционность (время

реагирования), время отбора проб, возможные помехи, общую доступность

методов и возможность использования косвенных показателей.

6.Рассмотрение общего подхода к мониторингу в соответствии с конкретными потребностями (например, масштаб). Полезно предварить подробное описание конкретных методов описанием общего типа

необходимого мониторинга в рамках программы мониторинга для ПДЭ. В

рамках такого общего подхода будут учтены такие факторы, как место, временной график, временной масштаб и реализуемость мониторинга, а

также варианты применения прямых измерений, косвенных показателей, материальных балансов, других расчетных методов и методов с

использованием коэффициентов выбросов/сбросов. Такие общие подходы описаны в главе 5.

7.Описание технических деталей конкретного метода измерения, т.е.

соответствующего стандартного (или альтернативного) метода и единиц измерения. Для повышения надежности и сопоставимости данных при

выборе методов измерения рекомендуется выбирать следующие приоритеты:

стандартные методы, предусмотренные соответствующими

Директивами ЕС (обычно CEN стандарты)

стандарты CEN для соответствующих загрязняющих веществ или

параметров

41

стандарты ISO

иные международные стандарты

национальные стандарты

альтернативные методы, при условии получения предварительного

согласия от компетентного органа, который также может выдвинуть дополнительные требования.

Метод измерения должен быть утвержден, т.е. необходимо определить и зафиксировать в соответствующих документах соответствующие характеристики

этого метода. При необходимости в разрешении могут быть оговорены и детальные характеристики для конкретного метода (погрешность, предел обнаружения, избирательность и т.д.)

8.В случае производственного экологического мониторинга (и контроля),

т.е. мониторинга, выполняемого промышленным предприятием или

подрядчиком – четкое описание процедуры для периодической проверки единства измерений производственного экологического мониторинга. Для осуществления этой деятельности следует привлекать какую-либо

стороннюю лабораторию, имеющую соответствующую аккредитацию.

9.Указание условий технологического процесса (например, степени использования производственных мощностей), при которых будет осуществляться мониторинг. Если необходимо проводить экологический

мониторинг на объекте в нормальных условиях или в условиях

максимальной нагрузки производственных мощностей, то это должно быть оговорено в виде количественных показателей.

10.Установление четких процедур оценки [компетентными органами] соблюдения установленных требований, т.е. того, как результаты мониторинга будут интерпретированы для оценки соблюдения соответствующих требований (как показано в главе 6), также с учетом

погрешности результатов мониторинга (как разъяснено в разделе 2.6)

11.Определение требований к отчетам по результатам мониторинга,

например, установление требований в отношении того, какие результаты и дополнительная информация должны быть отражены в отчетах – когда, как

и кому они предоставляются. Вопросы отчетности по контролю соблюдения

природоохранных требований более подробно рассмотрены в главе 7.

12.Введение соответствующих требований к обеспечению и контролю качества, направленных на получение надежных, сопоставимых и полных

результатов измерений или оценок, которые поддаются проверке. При этом основные качественные соображения можно сформулировать следующим

образом:

Прослеживаемость связи результатов измерений с параметрами,

определенными компетентными органами, что может, при необходимости,

включать калибровку системы мониторинга.

Техническое обслуживание системы мониторинга.

Для производственного экологического мониторинга (и контроля) – применение признанных систем менеджмента качества и периодические проверки силами сторонних аккредитованных лабораторий.

Сертификация оборудования и аттестация персонала в рамках признанных

систем сертификации.

42

Пересмотр требований к мониторингу для регулярного выявления возможностей их упрощения или улучшения с учетом следующих аспектов:

изменения в ПДВ/ПДС

последние данные о соблюдении природоохранных требований для

конкретного процесса

появление новых методов мониторинга.

Сучетом местных условий возможно появление конкретных требований в дополнение к требованиям, оговоренным в рамках национальных систем

аттестации, принятых в ряде государств-членов ЕС. В своей технической части такие «аттестационные» процедуры основываются на действующей аккредитации в отношении выполняемых целевых измерений.

13.Определение порядка оценки выбросов и сбросов, осуществляемых в случаях отклонения от нормального технологического режима и в

нештатных ситуациях, как предсказуемых (например, при закрытии установки, останове процесса, при техническом обслуживании), так и непредвиденных (например, при перебоях в поставках сырья и энергии или

при возникновении проблем в функционировании средозащитного оборудования). Подходы к оценке таких выбросов рассматриваются в разделе 3.2.

Несмотря на то, что ля описания требований к мониторингу, связанному с

соблюдением ПДВ/ПДС, выбран такой «всеобъемлющий подход», в некоторых

случаях итоговые документы (требования) представляют собой достаточно простые описания обязательств предприятия.

43

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)


где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)


то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


Статья обновлена 10.07.2022

Что такое погрешность измерения

Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.

  1. Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
  2. Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.

Математическая погрешность: формула для каждого типа

Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?

Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась  погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.

Формулы погрешностей вычисляются следующим образом.

Абсолютная погрешность измерений: формула

Формула дает разницу между измеренным и реальным значением.

Формула абсолютной погрешности
Формула абсолютной погрешности

Относительная погрешность: формула

Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому  значению.

Формула относительной погрешности
Формула относительной погрешности

Приведенная погрешность: формула

Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.

Формула приведенной погрешности
Формула приведенной погрешности

Классификация оценочной погрешности

Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.

Классификация оценочной погрешности
Классификация оценочной погрешности

Что такое случайная погрешность

Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.

Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.

Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.

Что такое систематическая погрешность

Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.

В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения. 

Погрешность выборки

Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.

Погрешность структуры

Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.

Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.

Погрешность аудитории

Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.

Погрешность отбора

Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.

Как минимизировать погрешность выборки

  • Знайте свою аудиторию.
    Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам.
  • Разделите аудиторию на группы.
    Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию.
  • Увеличьте размер выборки.
    Больший размер выборки приводит к более точному результату.

Погрешность измерения

Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.

К погрешностям измерения приводят следующие виды ошибок.

Ошибка цели

Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.

Предвзятость ответов

Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.

Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть  или хотят казаться лучше, чем есть на самом деле.

Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.

Предвзятость интервьюера

Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.

Ошибка обработки

Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.

Ошибка ввода

Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.

Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.

Как минимизировать погрешность измерения

  • Предварительно протестируйте.
    Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью.
  • Проводите выборку случайным образом.
    Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка.
  • Тренируйте команду интервьюеров и наблюдателей.
    Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования.
  • Всегда выполняйте проверку сделанных записей.
    Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.

Мир без ошибок  не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.

Измерительные каналы систем автоматизации могут включать в себя несколько средств измерений различных типов, например датчики, измерительные преобразователи, модули аналогового и частотного ввода и вывода [1]. Погрешность такой системы желательно определять экспериментальным путём [2], однако это не всегда возможно или целесообразно. В таких случаях используют расчётный метод.

Исходные данные для расчёта

Исходными данными для расчёта погрешности измерительных каналов являются [3]:

  • метрологические характеристики средств измерений;

  • погрешность метода измерений (методическая погрешность);

  • характеристики влияющих величин (например, окружающая температура, влажность);

  • характеристики измеряемого сигнала.

ГОСТ 8.009-84 [4] для всех типов средств измерений устанавливает следующий комплекс метрологических характеристик, который указывается в эксплуатационной документации на средства измерений:

  • систематическая составляющая основной погрешности;

  • среднеквадратическое отклонение случайной составляющей основной погрешности;

  • дополнительная погрешность для каждой из влияющих величин;

  • динамическая погрешность.

Некоторые средства измерений обладают гистерезисом – для них, кроме перечисленных погрешностей, указывается случайная составляющая основной погрешности, вызванной гистерезисом.

Основная погрешность может быть указана без разделения её на части (на систематическую, случайную и погрешность от гистерезиса), и этот вариант является наиболее распространённым. Случайную составляющую указывают в случае, когда она больше 10% от систематической [4].

Дополнительная погрешность указывается в виде функции влияния внешнего фактора на основную погрешность или её составляющие: систематическую и случайную. Обычно эта функция представляет собой линейную зависимость, и тогда указывается только коэффициент влияния, например 0,05%/°С.

Динамическая погрешность указывается с помощью одной из следующих характеристик: импульсная, переходная, амплитудно-частотная и фазочастотная, амплитудно-фазовая характеристика, передаточная функция. Для минимально-фазовых цепей указывается только амплитудно-частотная характеристика, поскольку фазочастотная однозначно может быть получена из амплитудно-частотной характеристики.

Для расчёта методической погрешности могут быть указаны сопротивления проводов, среднеквадратическое значение или спектральная плотность помех в них, ёмкость, индуктивность и сопротивление источника сигнала, а также другие факторы, которые возникают при создании системы, включающей средства и объект измерений.

Характеристики измеряемого сигнала задаются в виде функции от времени или функции спектральной плотности. Для случайного входного сигнала задаётся спектральная плотность мощности или автокорреляционная функция. Во многих случаях для оценки погрешности бывает достаточно знания скорости нарастания входного сигнала.

Коэффициент корреляции

При расчёте погрешности измерительного канала возникает задача суммирования погрешностей средств измерений, которые являются случайными величинами. Способ суммирования будет различным в зависимости от того, являются ли случайные величины статистически зависимыми. Понятие статистической зависимости иллюстрирует рис. 1: если с ростом одной случайной величины X в среднем увеличивается (или уменьшается) и вторая (Y), то между этими величинами имеется статистическая зависимость. Для её количественного описания используются понятия ковариации или коэффициента корреляции.

Рассмотрим суммирование двух случайных погрешностей X и Y с нулевым математическим ожиданием (то есть центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:

 

где D[•] и M[•] – операторы дисперсии и математического ожидания; σx, σy – среднеквадратические отклонения случайных величин X и Y. Величина

называется ковариацией («совместной вариацией») случайных величин X и Y.

Ковариацию дискретных случайных величин можно оценить по их дискретным значениям X = {x1,…xN} и Y = {y1,…yN} с помощью формулы среднего арифметического:

Коэффициентом корреляции Rxy называют отношение ковариации к произведению среднеквадратических отклонений σx и σy случайных величин X и Y:

Когда случайные величины независимы, их коэффициент корреляции равен нулю (Rxy = 0), и такие величины называются некоррелированными. Если коэффициент корреляции равен единице (Rxy = 1), то между величинами X и Y имеется не статистическая, а функциональная зависимость.

Используя понятие среднеквадратического отклонения σx = √D[X], уравнение (1) можно записать в виде:

Здесь знак минус используется, когда случайные величины вычитаются, например, если находится разность напряжений двух измерительных каналов. При этом наличие корреляции между каналами частично уменьшает погрешность разности.

В случае когда случайные величины статистически независимы (Rxy = 0), выражение (5) упрощается:

Такое суммирование называют геометрическим, поскольку оно выполняется аналогично нахождению гипотенузы прямоугольного треугольника.

Если коэффициент корреляции Rxy = +1, то

Если коэффициент корреляции равен Rxy = –1, то

это означает, что при нахождении суммы случайных величин отрицательный коэффициент корреляции уменьшает итоговую погрешность, а при нахождении разности – увеличивает.

Если случайные величины не центрированы и имеют математические ожидания mx и my, то коэффициент корреляции можно оценить как

На рис. 1 показаны примеры статистической зависимости между случайными величинами при сильной (а) и слабой (б) корреляции. Точки на графике (значения случайной величины) могут группироваться очень близко к прямой линии, которая аппроксимирует эту зависимость, и тогда статистиче­ская зависимость приближается к детерминированной. Степень отличия статистической зависимости от детерминированной характеризуют коэффициентом корреляции Rxy.

Прямая линия, проведённая таким образом, что сумма квадратов отклонений значений случайной величины от этой линии минимальна, называется линией среднеквадратической регрессии. Тангенс угла наклона этой линии называется коэффициентом регрессии. Уравнение линии регрессии можно получить методом наименьших квадратов; оно имеет вид [1]:

y = A(x – mx) + my,                                                                      

где A – коэффициент регрессии. Коэффициент регрессии вычисляется через коэффициент корреляции Rxy и среднеквадратические отклонения σy и σx как

Коэффициент корреляции приобретает ясный физический смысл, если статистические переменные центрировать (вычесть математическое ожидание) и нормировать на величину среднеквадратического отклонения. Поскольку среднеквадратические отклонения нормированных величин равны единице, то коэффициент корреляции (9) становится равен тангенсу наклона линии среднеквадратической регрессии.

Статистическая зависимость между погрешностями средств измерений в общем случае нелинейная, однако этой нелинейностью обычно пренебрегают.

Точечные и интервальные оценки погрешности

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относятся математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью P. Она называется доверительной вероятностью, или надёжностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрирует рис. 2. Здесь использованы следующие обозначения: ∆ – по-грешность измерения; р(∆) – плотность распределения по-грешностей; Φ(∆) – функция распределения погрешностей,

 

Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины ∆ описывается функцией

где σ – среднеквадратическая погрешность.

Если погрешность измерения ∆ находится внутри интервала ∆1 < ∆ < ∆2, то вероятность этого события вычисляется как

В наиболее типичном случае симметричных границ (–∆0 < ∆ < ∆0) получим

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал –∆0 < ∆ < ∆0, который содержит в себе погрешность измеряемого параметра ∆, то вероятность того, что погрешность ∆ не выходит за границы интервала, можно найти по формуле (12) для нормального закона распределения. Вероятность P(–∆0 < ∆ < ∆0) называют также надёжностью оценки погрешности и обозначают символом γ:

Для вычисления функции распределения удобно использовать пакеты Mathcad, MATLAB. С их помощью из формулы (13) несложно найти величину доверительного интервала [–∆0, +∆0], если задана величина надёжности γ.

Для ∆0 = σ доверительная вероятность равна γ = 68,3%, для ∆0 = 2σ она уже равна γ = 95,3%, для ∆0 = 3σ составляет γ = 99,7% и для ∆0 = 4σ достигает γ = 99,994%.

Для увеличения надёжности оценки погрешности измерений или для сужения доверительного интервала при заданной надёжности можно использовать усреднение результатов многократных измерений. Поскольку оценка среднеквадратической погрешности результата усреднения σср равна    [1], где σx – среднеквадратическая погрешность средства измерений, N – количество однократных измерений, то, подставив в (13) вместо σ величину σср, получим

Эта формула позволяет найти количество однократных измерений N, которое необходимо усреднить для получения требуемого доверительного интервала [–∆0, +∆0] при заданной надёжности γ или требуемой надёжности γ при заданном доверительном интервале [–∆0, +∆0]. Поскольку формула (14) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путём усреднения результатов многократных измерений имеет множество ограничений [1].

Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге [5]. Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учёте факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

Погрешность метода измерений

Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

  • сопротивление кабелей;

  • соотношение между входным импедансом средства измерений и выходным импедансом датчика;

  • качество экранирования и заземления, мощность источников помех;

  • погрешность метода косвенных, совместных или совокупных измерений;

  • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;

  • погрешность обработки результатов измерений программ­ным обеспечением.

Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная ранее перечисленными факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы, и тогда они переходят в разряд инструментальных.

Для расчёта или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

Погрешность программного обеспечения

Погрешность программного обеспечения (ПО) [6, 7] оценивается как разность между результатами измерений, полученными данным ПО и эталонным ПО. Под эталонным по-нимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ра-нее аттестованное ПО.

К основным источникам погрешностей ПО отно­сятся:

  • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;

  • ошибки в алгоритме решения измерительной задачи;

  • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;

  • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;

  • ошибки преобразования форматов данных;

  • ошибки округления и др.

Надёжность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтённых при аттестации погрешностей.

Достоверность измерений

В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными, несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организаций.

Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. На­пример, после монтажа системы измерения температуры в силосе элеватора следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

Приведём несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5°С. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5°С, что позволяет квалифицировать результат измерения как недостоверный.

Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным, и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10°С вслед­-ствие помех, наведённых передатчиком в сигнальных кабелях системы.

Пример 3. В автоматизированной системе для измерения па­раметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Проведённые приёмо-сдаточные испытания системы не позволили выявить эту ошибку.

В результате погрешность измерений вследствие наведённой помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Проведённые приёмо-сдаточные испытания не позволили выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [8] описан пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которых искали несколько лет.

Пример 7. При расчёте погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для её расчёта не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процессе приёмо-сдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превысила расчётную.

В приведённых примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию, она может появляться в особых условиях эксплуатации. Это приводит к снижению достоверности измерений, несмотря на высокую инструментальную точность использованных технических средств.

Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

Термин «достоверность» иногда используется во втором его значении – для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [9] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность [1]. Следует различать эти два значения одного и того же термина.

Методы суммирования погрешностей

Перед суммированием все погрешности делятся на следующие группы:

  • систематические и случайные;

  • в группе случайных – на коррелированные и некоррелированные;

  • аддитивные и мультипликативные;

  • основные и дополнительные.

Такое деление необходимо потому, что систематические и случайные погрешности, а также коррелированные и некоррелированные суммируются по-разному, а аддитивные по-грешности нельзя складывать с мультипликативными.

Если некоторые погрешности указаны в виде доверительных интервалов, то перед суммированием их нужно представить в виде среднеквадратических отклонений [1].

Дополнительные погрешности могут складываться с основными либо перед суммированием погрешностей, либо на заключительном этапе, в зависимости от поставленной задачи. Второй вариант часто предпочтительнее, поскольку он позволяет оценивать погрешность всего измерительного канала в зависимости от величины внешних влияющих факторов в конкретных условиях эксплуатации.

При последовательном соединении нескольких средств измерений погрешности, проходя через измерительный канал с передаточной функцией (функцией преобразования) f(x), могут усиливаться или ослабляться. Для учёта этого эффекта используют коэффициенты влияния, которые определяются как .

 

Все погрешности перед суммированием приводят к выходу (или входу) измерительного канала путём умножения (деления) на коэффициент влияния. В дальнейшем будем предполагать, что такое приведение уже выполнено.

Погрешности средств измерений являются случайными величинами, поэтому при их суммировании в общем случае необходимо учитывать соответствующие законы распределения. На практике пользуются более грубыми упрощёнными методами, разработанными математической статистикой.

Математическое ожидание погрешностей средств измерений, как правило, равно нулю. Если это не так, то его (в виде поправки) складывают с систематической составляющей погрешности. В средствах автоматизации введение поправки выполняется автоматически с помощью микроконтроллера, входящего в состав средств измерений. Математическое ожидание случайной составляющей всегда равно нулю, поскольку при нормировании метрологических характеристик его относят к систематической составляющей.

Наиболее полное определение итоговой погрешности измерительного канала состояло бы в нахождении функции распределения суммы нескольких погрешностей измерения. Однако функция распределения суммы случайных величин находится с помощью операции свёртки [10], что приводит к значительным практическим трудностям. Поэтому для оценки итоговой погрешности ограничиваются только суммированием дисперсий погрешностей.

Погрешности суммируют по однородным группам, затем находят общую погрешность, используя геометрическое суммирование для случайных погрешностей и алгебраическое для детерминированных.

Существует три способа суммирования погрешностей:

  • алгебраический      (15)

    где i – номер погрешности, N – их количество;

  • геометрический

    где σi – среднеквадратическое значение i-й погрешности;

  • с учётом корреляции
     

В этой формуле j ≠ i потому, что члены с j = i уже учтены в сумме NΣi=1 σi2 , а граница j < i установлена для того, чтобы суммировать только члены, лежащие ниже диагонали корреляционной матрицы, поскольку вследствие её симметричности Rijσiσj + Rjiσjσi = 2Rijσiσj.

При Rij = +1 выражение (17) переходит в формулу алгебраического суммирования:

где σi складываются со своими знаками, то есть коррелированные погрешности с противоположными знаками частично взаимно компенсируются, если их коэффициент корреляции равен единице.

При Rij = –1 погрешности вычитают попарно в соответствии с (8):

то есть при отрицательной корреляции погрешности частично компенсируются, если они имеют один и тот же знак.

Учитывая, что получить удовлетворительные оценки коэффициентов корреляции довольно трудно, используют следующий приём: при |Rij| ≥ 0,7 считают, что |Rij| = 1, при |Rij| < 0,7 полагают |Rij| = 0 [9, 10].

Систематические погрешности

В наиболее типовом случае систематические составляющие основных погрешностей средств измерений суммируются геометрически по формуле (16), поскольку они являются случайными величинами.

Формулы геометрического суммирования были получены для среднеквадратических погрешностей [1]. Поэтому, если комплекс метрологических характеристик средств измерений включает предел допускаемых значений систематической составляющей основной погрешности ∆os без указания среднеквадратического значения (по ГОСТ 8.009-84 [4]), то соответствующее ему среднеквадратическое значение находят в соответствии с рекомендациями РД 50-453-84 [11] по формуле

Эта формула справедлива, если нет оснований полагать, что функция распределения данной погрешности является несимметричной и имеет несколько максимумов.

Метрологическая инструкция МИ 2232-2000 [12] рекомендует иную формулу – половину предела допускаемой погрешности.

Выбор способа суммирования систематических составляющих основных погрешностей не является однозначным, и это связано с отсутствием полной информации о законе распределения. Дело в том, что причиной существования основной погрешности является как технологический разброс параметров электронных компонентов, так и нескомпенсированная нелинейность. Технологический разброс обычно является случайным, и на этом основании систематическая составляющая погрешности может рассматриваться как случайная величина на множестве средств измерений одного и того же типа. Поэтому в формулах для расчёта погрешностей она учитывается геометрически. Однако нелинейность передаточной характеристики средства измерений (нелинейность АЦП, нормирующих усилителей, термопар) у всех экземпляров приборов одного типа будет иметь примерно один и тот же вид, величину и знак. Например, погрешность, вызванная нелинейностью, в начале шкалы может быть положительной, в середине шкалы – отрицательной, у верхнего предела шкалы – опять положительной, и так для всех экземпляров приборов одного типа. Поэтому погрешности, обусловленные нелинейностью, должны суммироваться алгебраически.

В современных модулях аналогового ввода используется автоматическая калибровка, позволяющая уменьшить случайную компоненту систематической погрешности, и в этом случае преобладающей является детерминированная погрешность нелинейности.

Поскольку ГОСТ 8.009-84 [4] не предусматривает нормирование таких тонких нюансов поведения погрешностей, выбор способа суммирования начинает зависеть не от технических, а от политических факторов. Если фактическая погрешность окажется выше расчётной и это повлечёт за собой угрозу жизни людей, большой экономический ущерб, техногенную катастрофу и т. п. [12], то суммирование погрешностей выполняют алгебраически, причём используют не среднеквадратические отклонения, а пределы допустимых значений погрешности.

Если известен знак систематической погрешности, то его учитывают при суммировании.

Для наиболее ответственных применений следует использовать средства измерений, для которых указана погрешность без разделения на случайную и систематическую компоненты, поскольку в этом случае погрешность указана с доверительной вероятностью, равной единице. Если же ис-пользуются средства измерений, для которых указана случайная составляющая, то для них рассчитывают величину погрешности при доверительной вероятности, равной единице. Это условие существенно завышает требования к точности средства измерений.

Алгебраическое суммирование часто даёт слишком завышенную оценку погрешности. Поэтому МИ 2232-2000 [12] предусматривает промежуточный вариант между формулами геометрического и алгебраического суммирования:

где K – поправочный коэффициент, равный 1,2 для наиболее важных параметров устройств аварийной защиты и блокировки, контроля за соблюдением требований техники безопасности и экологической безопасности, контроля характеристик готовой продукции [12].

Для конкретных экземпляров приборов могут быть указаны не номинальные характеристики (имеющие одну и ту же величину для всех приборов данного типа), а индивидуальные. В этом случае систематическая погрешность является не случайной, а детерминированной величиной, поэтому должна учитываться в итоговой погрешности измерительного канала алгебраически.

Случайные составляющие погрешностей

Случайные составляющие основной погрешности средств измерений по ГОСТ 8.009-84 [4] задаются своими среднеквадратическими отклонениями, поэтому их суммирование выполняется непосредственно по формуле геометрического суммирования (16).

Если случайная погрешность является коррелированным случайным процессом [1] и задана в виде функции автокорреляции R(t) или спектральной плотности мощности S(f), то сначала находят среднеквадратическое значение случайной составляющей погрешности. Для этого используют формулу:

где fв – верхняя граничная частота полосы пропускания всего измерительного канала или цифрового фильтра, используемого при обработке полученных данных. Если задана функция автокорреляции, то спектральную плотность мощности находят по формуле, учитывающей корреляцию [1].

Случайная составляющая погрешности может быть уменьшена в несколько раз (в зависимости от величины фликкер-шума) путём усреднения результатов многократных измерений [1].

Дополнительные погрешности

Дополнительные погрешности задаются в виде функции влияния внешних факторов (температуры, влажности, напряжения питания) на основную погрешность измерения, или, в случае линейной функции влияния, они характеризуются коэффициентом влияния. Например, может быть задано, что основная погрешность увеличивается на +0,05% при изменении напряжения питания на +20%.

Если задан диапазон изменения влияющих величин, в качестве их математического ожидания для расчётов с помощью функции влияния берут их среднее значение [11].

Среднеквадратическое отклонение дополнительной погрешности для линейной функции влияния находят по формуле [11]:

где Kξ – коэффициент влияния внешнего фактора; ξ1, ξ2 – нижняя и верхняя границы изменения влияющей величины.

Дополнительная погрешность может увеличивать как систематическую, так и случайную составляющую основной погрешности. Для этого функции влияния задаются раздельно на каждую составляющую.

Если известно, что дополнительные погрешности нескольких средств измерений коррелируют (например, синхронно возрастают при увеличении напряжения питания в сети или температуры окружающей среды), то такие погрешности суммируют как коррелированные величины с учётом коэффициента корреляции в соответствии с (17) – (19).

Дополнительные погрешности считаются несущественными, если их сумма составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Динамические погрешности

Динамическая погрешность при известном входном сигнале является детерминированной. Она обычно приводит к занижению показаний измерительного прибора. Суммирование таких погрешностей выполняется алгебраически.

Подробнее об оценке динамической погрешности см. [1, 10].

Динамическая погрешность считается несущественной, если она составляет менее 17% от наибольшего возможного значения инструментальной погрешности в рабочих условиях эксплуатации [4].

Нахождение итоговой погрешности

После суммирования погрешностей по группам, как это было описано ранее, результат измерения обычно выражают в виде:

где x0 – измеренное значение; ∆ – сумма всех погрешностей, которые складывались алгебраически, то есть детерминированных погрешностей (детерминированные погрешности могут быть прибавлены к измеренной величине в качестве поправки); σ – сумма всех случайных погрешностей, которые складывались геометрически, в том числе с учётом корреляционных связей: 

где σΣсист – сумма всех систематических погрешностей измерительного канала; σΣслуч – сумма всех случайных погрешностей; σΣдоп – сумма всех дополнительных погрешностей; σΣметод – сумма всех случайных составляющих методических погрешностей, включая погрешность программного обеспечения. Детерминированные составляющие методических погрешностей учитываются в слагаемом ∆.

Вместо среднеквадратического отклонения может быть указан предел допустимых значений. Однако должно быть явно указано, какая именно оценка погрешности использована, поскольку доверительные вероятности для предела допустимых значений (единица) и для среднеквадратического отклонения (0,68) существенно отличаются.

Случайная, систематическая и дополнительная погрешности могут быть указаны раздельно. МИ 1317-2004 [13] рекомендует «вместе с результатом измерений представлять характеристики его погрешности или их статистические оценки». Поэтому состав характеристик погрешности может быть выбран в каждом конкретном случае индивидуально, в зависимости от смысла решаемой задачи.

При выполнении многократных измерений результат должен также содержать указание на количество измерений, использованных при усреднении, и интервал времени, в течение которого были выполнены измерения [13].

Поскольку выражение для суммы дисперсий случайных величин (1) получено независимо от закона распределения, геометрическое суммирование погрешностей даёт правильное значение дисперсии независимо от законов распределения отдельных составляющих. Однако при этом ничего нельзя сказать о функции распределения суммарной погрешности, в том числе о надёжности (доверительной вероятности) полученного результата. Тем не менее, поскольку при суммировании пяти и более погрешностей закон распределения суммы близок к нормальному независимо от законов распределения отдельных слагаемых [10], то, зная среднеквадратическое отклонение итоговой погрешности, можно использовать нормальный закон распределения для указания доверительного интервала и доверительной вероятности результата измерений.

Нахождение погрешности измерительного канала в условиях недостатка исходных данных

При оценке погрешности измерительных каналов средств автоматизации следует по возможности использовать экспериментальный метод. Однако в случаях когда это невозможно или экономически нецелесообразно, делают расчёт по изложенной ранее методике. Типичной проблемой, которая при этом возникает, является отсутствие некоторых исходных данных. В этой ситуации метрологическая инструкция МИ 2232-2000 [12] рекомендует использовать следующие «значения по умолчанию»:

  • среднеквадратическое значение погрешности принимается равным половине предела допускаемых значений погрешности;

  • математическое ожидание основной и дополнительной погрешности принимается равным нулю;

  • корреляция между отдельными составляющими погрешности отсутствует;

  • случайная составляющая погрешности измерений является некоррелированной случайной величиной (белым шумом) или вырождается в систематическую погрешность;

  • функции распределения внешних влияющих величин предполагаются равномерными или нормальными;

  • считается, что инерционные свойства средств измерений не оказывают влияния на погрешность измерений. ●

Литература

  1. Денисенко В.В. Компьютерное управление технологическим процессом, экспериментом, оборудованием. – М. : Горячая линия – Телеком, 2009. – 608 с.

  2. МИ 2440-97. ГСИ. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов (взамен МИ 2313-94).

  3. ГОСТ 23222-88. Характеристики точности выполнения предписанной функции средств автоматизации. Требования к нормированию. Общие методы контроля.

  4. ГОСТ 8.009-84. Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений.

  5. Тутубалин В.Н. Теория вероятностей и случайных процессов. Основы математического аппарата и прикладные аспекты. – М. : Изд-во МГУ, 1992. – 400 с.

  6. МИ 2955-2005. ГСИ. Типовая методика аттестации программного обеспечения средств измерений и порядок её проведения.

  7. МИ 2891-2004. ГСИ. Общие требования к программному обеспечению средств измерений.

  8. Burleson J. Wiring and grounding to prevent power quality problems with industrial equipment // Textile, Fiber and Film Industry Technical Conference, 8–9 May 1991. – Pp. 5/1–5/6.

  9. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. – Л. : Энергоатомиздат, 1991. – 304 с.

  10. Орнатский П.П. Теоретические основы информационно-измерительной техники. – 2-е изд. – Киев : Вища школа, 1983. – 455 с.

  11. РД 50-453-84. Методические указания. Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчёта.

  12. МИ 2232-2000. ГСИ. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации.

  13. МИ 1317-2004. ГСИ. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров (взамен ГОСТ 8.011-72, МИ 1317-86).

Понравилась статья? Поделить с друзьями:
  • Ошибки интернет маркетинг
  • Ошибки измерений бывают следующих видов
  • Ошибки измерений и способы их устранения
  • Ошибки интервьюера при проведении отборочного интервью
  • Ошибки императора человечества