Ошибки fec исх вх что это

Поскольку требования к полосе пропускания увеличиваются, а допуск на ошибки и задержку уменьшаются, разработчики систем передачи данных искали новые способы расширения доступной полосы пропускания и повышения качества передачи. Одно из решений на самом деле не ново, но оказалось весьма полезным. Это называется прямым исправлением ошибок (FEC), в течение многих лет этот метод использовался для обеспечения эффективной высококачественной передачи данных по шумным каналам. Сегодня с увеличением пропускной способности передачи данных и увеличением расстояния, давайте узнаем больше о методике FEC в оптических сетях.

Что такое FEC?

Прямая коррекция ошибок (FEC) — это метод цифровой обработки сигналов, используемый для повышения надежности данных. Это делается путем введения избыточных данных, называемых кодом с исправлением ошибок, перед передачей или хранением данных. FEC предоставляет приемнику возможность исправления ошибок без обратного канала для запроса повторной передачи данных. Как мы знаем, иногда оптические сигналы могут ухудшаться из-за некоторых факторов во время передачи, что может привести к неправильной оценке на стороне приемника, возможно, принятию сигнала «1» за сигнал «0» или сигнала «0» за сигнал «1». Если количество ошибок при передаче находится в пределах корректирующей способности (прерывистые ошибки), канальный декодер обнаружит и исправит ложные “0” или “1” для улучшения качества сигнала.

FEC.jpg

Рисунок 1. Принцип работы FEC

Развитие прямого исправления ошибок в оптической связи можно разделить на три поколения. FEC первого поколения представляет собой первое, которое будет успешно использоваться в подводных системах и наземных системах. По мере развития систем WDM в коммерческих системах был установлен более мощный FEC второго поколения. Появление FEC третьего поколения открыло новые перспективы для следующего поколения систем оптической связи.

Каковы типы и особенности FEC?

Типы

В настоящее время практические технологии FEC для SDH (синхронная цифровая иерархия) и DWDM (плотное мультиплексирование с разделением по длине волны) в основном следующие:

In-band FEC. In-band FEC поддерживается стандартом ITU-T G.707. Контролируемые символы кода FEC загружаются с использованием части служебных байтов в кадре SDH. Усиление кодирования невелико (3-4 дБ).Внеполосный FEC. Внеполосный FEC поддерживается стандартом ITU-T G.975/709.

Out-of-band FEC обладает большой избыточностью кодирования, возможностью исправления ошибок, высокой гибкостью и высоким коэффициентом усиления кодирования (5-6 дБ).

Enhanced FEC (EFEC). Enhanced FEC в основном используется в системах оптической связи, где требования к задержке не являются строгими, а требования по усилению кодирования особенно высоки. Хотя процесс кодирования и декодирования EFEC является более сложным и менее применимым в настоящее время, благодаря его преимуществам в производительности, он превратится в практическую технологию и станет основным направлением следующего поколения out-of-band FEC.

Характеристики

FEC уменьшает количество ошибок передачи, расширяет рабочий диапазон и снижает требования к питанию для систем связи. FEC также увеличивает эффективную пропускную способность системы, даже с дополнительными контрольными битами, добавленными к битам данных, устраняя необходимость повторной передачи данных, искаженных случайным шумом.

FEC самостоятельно повышает достоверность данных на приемнике. В рамках системного контекста FEC становится технологией, которую разработчик системы может использовать несколькими способами. Наиболее очевидным преимуществом использования FEC является использование систем с ограниченной мощностью. Однако посредством использования сигнализации более высокого порядка ограничения полосы пропускания также могут быть устранены. Во многих беспроводных системах допустимая мощность передатчика ограничена. Эти ограничения могут быть вызваны соблюдением стандарта или практическими соображениями. FEC позволяет передавать с гораздо более высокими скоростями передачи данных, если доступна дополнительная полоса пропускания.

Применение FEC в 100G сетях

В контексте оптоволоконных сетей FEC используется для определения оптического SNR (OSNR) — одного из ключевых параметров, определяющих, как далеко может пройти длина волны, прежде чем она нуждается в регенерации. FEC особенно важен при скоростях высокоскоростной передачи данных, где требуются усовершенствованные схемы модуляции, чтобы минимизировать дисперсию и соответствие сигнала с частотной сеткой. Без включения FEC транспорт 100G был бы ограничен чрезвычайно короткими расстояниями. Для реализации передачи на большие расстояния (> 2500 км) усиление системы должно быть дополнительно улучшено примерно на 2 дБ. Переход FEC с жесткого решения на мягкое решение восполняет этот пробел в производительности.

Поскольку стремление к все более высоким скоростям передачи продолжается, схемы прямого исправления ошибок (SD-FEC) становятся все более популярными. Хотя для этого может потребоваться около 20% байтов — почти в три раза больше, чем в исходной схеме кодирования RS — выгоды, которые они получают в контексте высокоскоростных сетей, значительны. Например, FEC, который приводит к усилению от 1 до 2 дБ в сети 100G, означает увеличение охвата на 20-40%.

Замечания для FEC в сетях 100G

Что следует учитывать при настройке FEC в 100G сетях? Предлагается обратить внимание на следующие советы.

Метод реализации

Некоторые специальные модули имеют свои собственные функции FEC, такие как FS 100G CFP конвертеры интерфейсов. В то время как 100G QSFP28 оптический модуль в основном полагается на конфигурацию функции FEC на устройстве для реализации исправления ошибок, таких как 100G коммутаторы.

Поддерживает ли коммутатор FEC

Конфигурирование FEC на 100G коммутаторах может быть достигнуто только в том случае, если коммутатор поддерживает его, и не все коммутаторы поддерживают это. В то время как все 100G коммутаторы поддерживают FEC, предоставляемые FS.

Тип коммутатора Тип порта Поддержка FEC или нет
S5850-48S2Q4C 48*10Gb, 2*40Gb, 4*100Gb Да (для оба 40Gb и 100Gb порты)
S8050-20Q4C 20*40Gb, 4*100Gb Да (для оба 40Gb и 100Gb порты)
N8500-48B6C 40*25Gb, 6*100Gb Да (для оба 25Gb и 100Gb порты)
N8500-32C 32*100Gb Да

Таблица 1. Технические характеристики FS 100G коммутаторов

Внимание: для FS 100G коммутаторов функция FEC включена по умолчанию. Если требуется включить его после выключения, можно настроить команду FEC.

Включить ли FEC на QSFP28 100G модулях

Функция FEC — это не просто преимущество, процесс исправления кода ошибки неизбежно приведет к некоторой задержке пакета данных. Поэтому не все QSFP28 100G модули нуждаются в этом. Согласно стандартному протоколу IEEE не рекомендуется включать FEC при использовании QSFP28-LR4-100G модулей, за исключением того, что рекомендуется включать его. Поскольку технология QSFP28 100G модулей варьируется от компании к компании, поэтому ситуация не совсем одинакова. В следующей таблице объясняется, рекомендуется ли включать FEC при использовании FS 100G QSFP28 модулей.

Тип модуля Описание с FEC
QSFP28-SR4-100G 850nm 100m MTP/MPO Модуль для SMF Нет
QSFP28-LR4-100G 1310nm 10km Модуль для SMF Нет
QSFP28-PIR4-100G 1310nm 500m Модуль для SMF Нет
QSFP28-IR4-100G 1310nm 2km Модуль для SMF Да
QSFP28-EIR4-100G 1310nm 10km Модуль для SMF Да
QSFP28-ER4-100G 1310nm 40km Модуль для SMF Да

Таблица 2. Технические характеристики FS 100G QSFP28 модулей

Согласованность функций FEC на обоих концах канала

Функция FEC порта является частью автосогласования. Когда автоматическое согласование порта включено, функция FEC определяется согласованием на обоих концах канала. Если функция FEC включена на одном конце, другой конец должен также включить ее, в противном случае порт не работает.

Стекирование & FEC

Настройка команды FEC не поддерживается, если порт уже настроен как физически стековый порт.Наоборот, порты, которые были настроены с помощью команд FEC, не поддерживают настройку в качестве физического стекового члена.

Заключение

FEC стал критически важной в волоконно-оптической связи, так как магистральные сети увеличиваются в скорости до 40 и 100G, особенно в условиях плохой связи оптического сигнала с шумом. Такие среды становятся более распространенными в высокоскоростных средах, поскольку в сетях используется больше оптических усилителей. Со всеми этими событиями, FEC будет продолжать играть роль в будущих сетях. Для обеспечения нормальной работы сети рекомендуется обратить особое внимание на функцию FEC на оптических модулях, которая поможет вам повысить производительность при передаче данных.

Время на прочтение
4 мин

Количество просмотров 21K

Одним из основных ограничений при проектировании протяженных оптических транспортных сетей является соотношение сигнал-шум (OSNR). WDM-сети должны функционировать в допустимых пределах OSNR, чтобы обеспечить корректную работу систем.

Пороговое значение OSNR является одним из ключевых параметров, определяющих как далеко могут передаваться сигналы без необходимости в 3R-регенерации.

Для формирования каналов передачи данных со скоростью выше 10 Гбит используются сложные механизмы модуляции оптических сигналов для достижения аналогичной дальности передачи каналов связи 1-10 Гбит. Данные форматы модуляции необходимы для минимизации последствий таких оптических явлений, как хроматическая и поляризационная модовая дисперсии, а также для формирования оптического сигнала, соответствующего стандартам ITU 100/50-GHz, который используется в современных DWDM-системах. Недостатком высокоскоростных каналов передачи данных является тот факт, что они требуют существенно более высокого соотношения OSNR, чем обычные системы передачи (1-10 Гбит).

В системах 100 Гбит минимальное значение OSNR должно быть на 10 дБ выше, чем для сигналов в системах 10 Гбит. Без определенной коррекции или компенсации OSNR ограничивает 100G передачу данных до очень коротких расстояний, на данный момент максимальная дальность передачи составляет 40 км по стандартному одномодовому оптоволокну. Однако благодаря современным методам коррекции ошибок ( Forward Error Correction — FEC), особенно алгоритму Soft decision FEC, возможно расширение передачи высокоскоростных сигналов на протяженные расстояния.

Forward Error Correction (FEC) является техникой кодирования/декодирования сигнала с возможностью обнаружения ошибок и коррекцией информации методом упреждения. Таким образом, приемное оборудование может выявлять и исправлять ошибки, возникающие в канале передачи. FEC резко снижает количество битовых ошибок (BER), что позволяет увеличить расстояние передачи сигнала без регенерации.

Существует несколько FEC-алгоритмов кодирования, которые различаются по сложности и производительности. Одним из наиболее распространенных кодов первого поколения FEC является код «Рида-Соломона» (255, 239). Данный код добавляет немного — 7% проверочных байтов и около 6 дБ дополнительного запаса OSNR, но для высокоскоростных оптических сетей увеличение на 6 дБ является улучшенным показателем производительности, увеличивая расстояние между регенераторами примерно в четыре раза.

Некоторые производители предлагают в дополнение к коду «Рида-Соломона» более сложные схемы кодирования второго поколения FEC, например, превентивный параметр для оптических интерфейсов 10G и 40G. Данные алгоритмы, называемые «ультра» FEC или «усиленный» FEC (EFEC), также используют не более 7% объема передаваемого кадра, но в них заложены более сложные алгоритмы кодирования/декодирования, которые и обеспечивают бОльший выигрыш по OSNR — от 2 до 3 дБ, нежели код «Рида-Соломона».

Наряду с разработками первого поколения — «Рида-Соломона FEC» и второго поколения — «EFEC», которые позволили существенно улучшить производительность для 10G- и 40G-сигналов, было разработано более производительное FEC-решение третьего поколения, обеспечивающее увеличенную дальность и оптимальную производительность для высокоскоростных каналов передачи данных 100G.

FEC-решение третьего поколения основано на еще более мощных алгоритмах кодирования/декодирования и итеративного кодирования. В hard decision FEC —блок декодирования определяет «твердое» решение на основе входящего сигнала и иницилизирует один бит информации как «1» или «0» путем сравнения с пороговым значением. Значения выше установленного порога определяются «1», а значения ниже определяются как «0». В декодере используются дополнительные биты для обеспечения более детальной и точной индикации входящего сигнала. Иными словами, декодер не только определяет на основе порогового значения — является ли входящий сигнал «1» или «0», но и обеспечивает фактор надежности «принятия решения». Коэффициент надежности определяется индикатором, показывающим насколько сигнал выше или ниже порогового значения.

Использование коэффициента надежности или «вероятности» битов вместе с более сложными алгоритмами FEC-кодирования третьего поколения позволяет декодеру SD-FEC обеспечить дополнительное повышение OSNR на 1-2 дБ. В то время как увеличение OSNR на 1-2 дБ не звучит внушительно, оно может интерпретироваться как возможное увеличение расстояния на 20-40%, что является существенным показателем для 100G.

Одним из недостатков soft decision FEC является тот факт, что для него требуется ~20 % объема передаваемого кадра, а это более чем в два раза больше, чем занимаемый объем FEC первого и второго поколения.

С увеличением скорости в канале передачи данных с 10G до 100G, требование к OSNR увеличилось на 10 дБ. Без определенного вида компенсации или коррекции протяженность трасс с канальной скоростью 100G будет весьма ограниченной и неэкономичной.

Алгоритмы FEC первого и второго поколения были использованы на 10G и 40G для снижения BER и увеличения расстояния. SD-FEC является алгоритмом кодирования третьего поколения, обеспечивая передачу данных для оптических сетей 100G на бо́льшие расстояния и с бо́льшим ретрансляционным участком.

«Interleaver» redirects here. For the fiber-optic device, see optical interleaver.

In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding[1][2][3] is a technique used for controlling errors in data transmission over unreliable or noisy communication channels.

The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC).[4][5] The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a reverse channel to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth.

The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code.[5]

FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast.
Long-latency connections also benefit; in the case of a satellite orbiting Uranus, retransmission due to errors can create a delay of five hours. FEC is widely used in modems and in cellular networks, as well.

FEC processing in a receiver may be applied to a digital bit stream or in the demodulation of a digitally modulated carrier. For the latter, FEC is an integral part of the initial analog-to-digital conversion in the receiver. The Viterbi decoder implements a soft-decision algorithm to demodulate digital data from an analog signal corrupted by noise. Many FEC decoders can also generate a bit-error rate (BER) signal which can be used as feedback to fine-tune the analog receiving electronics.

FEC information is added to mass storage (magnetic, optical and solid state/flash based) devices to enable recovery of corrupted data, and is used as ECC computer memory on systems that require special provisions for reliability.

The maximum proportion of errors or missing bits that can be corrected is determined by the design of the ECC, so different forward error correcting codes are suitable for different conditions. In general, a stronger code induces more redundancy that needs to be transmitted using the available bandwidth, which reduces the effective bit-rate while improving the received effective signal-to-noise ratio. The noisy-channel coding theorem of Claude Shannon can be used to compute the maximum achievable communication bandwidth for a given maximum acceptable error probability. This establishes bounds on the theoretical maximum information transfer rate of a channel with some given base noise level. However, the proof is not constructive, and hence gives no insight of how to build a capacity achieving code. After years of research, some advanced FEC systems like polar code[3] come very close to the theoretical maximum given by the Shannon channel capacity under the hypothesis of an infinite length frame.

Method

Edit

ECC is accomplished by adding redundancy to the transmitted information using an algorithm. A redundant bit may be a complicated function of many original information bits. The original information may or may not appear literally in the encoded output; codes that include the unmodified input in the output are systematic, while those that do not are non-systematic.

A simplistic example of ECC is to transmit each data bit 3 times, which is known as a (3,1) repetition code. Through a noisy channel, a receiver might see 8 versions of the output, see table below.

Triplet received Interpreted as
000 0 (error-free)
001 0
010 0
100 0
111 1 (error-free)
110 1
101 1
011 1

This allows an error in any one of the three samples to be corrected by «majority vote», or «democratic voting». The correcting ability of this ECC is:

  • Up to 1 bit of triplet in error, or
  • up to 2 bits of triplet omitted (cases not shown in table).

Though simple to implement and widely used, this triple modular redundancy is a relatively inefficient ECC. Better ECC codes typically examine the last several tens or even the last several hundreds of previously received bits to determine how to decode the current small handful of bits (typically in groups of 2 to 8 bits).

Averaging noise to reduce errors

Edit

ECC could be said to work by «averaging noise»; since each data bit affects many transmitted symbols, the corruption of some symbols by noise usually allows the original user data to be extracted from the other, uncorrupted received symbols that also depend on the same user data.

  • Because of this «risk-pooling» effect, digital communication systems that use ECC tend to work well above a certain minimum signal-to-noise ratio and not at all below it.
  • This all-or-nothing tendency – the cliff effect – becomes more pronounced as stronger codes are used that more closely approach the theoretical Shannon limit.
  • Interleaving ECC coded data can reduce the all or nothing properties of transmitted ECC codes when the channel errors tend to occur in bursts. However, this method has limits; it is best used on narrowband data.

Most telecommunication systems use a fixed channel code designed to tolerate the expected worst-case bit error rate, and then fail to work at all if the bit error rate is ever worse.
However, some systems adapt to the given channel error conditions: some instances of hybrid automatic repeat-request use a fixed ECC method as long as the ECC can handle the error rate, then switch to ARQ when the error rate gets too high;
adaptive modulation and coding uses a variety of ECC rates, adding more error-correction bits per packet when there are higher error rates in the channel, or taking them out when they are not needed.

Types of ECC

Edit

 

A block code (specifically a Hamming code) where redundant bits are added as a block to the end of the initial message
 
A continuous code convolutional code where redundant bits are added continuously into the structure of the code word

The two main categories of ECC codes are block codes and convolutional codes.

  • Block codes work on fixed-size blocks (packets) of bits or symbols of predetermined size. Practical block codes can generally be hard-decoded in polynomial time to their block length.
  • Convolutional codes work on bit or symbol streams of arbitrary length. They are most often soft decoded with the Viterbi algorithm, though other algorithms are sometimes used. Viterbi decoding allows asymptotically optimal decoding efficiency with increasing constraint length of the convolutional code, but at the expense of exponentially increasing complexity. A convolutional code that is terminated is also a ‘block code’ in that it encodes a block of input data, but the block size of a convolutional code is generally arbitrary, while block codes have a fixed size dictated by their algebraic characteristics. Types of termination for convolutional codes include «tail-biting» and «bit-flushing».

There are many types of block codes; Reed–Solomon coding is noteworthy for its widespread use in compact discs, DVDs, and hard disk drives. Other examples of classical block codes include Golay, BCH, Multidimensional parity, and Hamming codes.

Hamming ECC is commonly used to correct NAND flash memory errors.[6]
This provides single-bit error correction and 2-bit error detection.
Hamming codes are only suitable for more reliable single-level cell (SLC) NAND.
Denser multi-level cell (MLC) NAND may use multi-bit correcting ECC such as BCH or Reed–Solomon.[7][8] NOR Flash typically does not use any error correction.[7]

Classical block codes are usually decoded using hard-decision algorithms,[9] which means that for every input and output signal a hard decision is made whether it corresponds to a one or a zero bit. In contrast, convolutional codes are typically decoded using soft-decision algorithms like the Viterbi, MAP or BCJR algorithms, which process (discretized) analog signals, and which allow for much higher error-correction performance than hard-decision decoding.

Nearly all classical block codes apply the algebraic properties of finite fields. Hence classical block codes are often referred to as algebraic codes.

In contrast to classical block codes that often specify an error-detecting or error-correcting ability, many modern block codes such as LDPC codes lack such guarantees. Instead, modern codes are evaluated in terms of their bit error rates.

Most forward error correction codes correct only bit-flips, but not bit-insertions or bit-deletions.
In this setting, the Hamming distance is the appropriate way to measure the bit error rate.
A few forward error correction codes are designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes.
The Levenshtein distance is a more appropriate way to measure the bit error rate when using such codes.
[10]

Code-rate and the tradeoff between reliability and data rate

Edit

The fundamental principle of ECC is to add redundant bits in order to help the decoder to find out the true message that was encoded by the transmitter. The code-rate of a given ECC system is defined as the ratio between the number of information bits and the total number of bits (i.e., information plus redundancy bits) in a given communication package. The code-rate is hence a real number. A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code.

The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect. This causes a fundamental tradeoff between reliability and data rate.[11] In one extreme, a strong code (with low code-rate) can induce an important increase in the receiver SNR (signal-to-noise-ratio) decreasing the bit error rate, at the cost of reducing the effective data rate. On the other extreme, not using any ECC (i.e., a code-rate equal to 1) uses the full channel for information transfer purposes, at the cost of leaving the bits without any additional protection.

One interesting question is the following: how efficient in terms of information transfer can an ECC be that has a negligible decoding error rate? This question was answered by Claude Shannon with his second theorem, which says that the channel capacity is the maximum bit rate achievable by any ECC whose error rate tends to zero:[12] His proof relies on Gaussian random coding, which is not suitable to real-world applications. The upper bound given by Shannon’s work inspired a long journey in designing ECCs that can come close to the ultimate performance boundary. Various codes today can attain almost the Shannon limit. However, capacity achieving ECCs are usually extremely complex to implement.

The most popular ECCs have a trade-off between performance and computational complexity. Usually, their parameters give a range of possible code rates, which can be optimized depending on the scenario. Usually, this optimization is done in order to achieve a low decoding error probability while minimizing the impact to the data rate. Another criterion for optimizing the code rate is to balance low error rate and retransmissions number in order to the energy cost of the communication.[13]

Concatenated ECC codes for improved performance

Edit

Classical (algebraic) block codes and convolutional codes are frequently combined in concatenated coding schemes in which a short constraint-length Viterbi-decoded convolutional code does most of the work and a block code (usually Reed–Solomon) with larger symbol size and block length «mops up» any errors made by the convolutional decoder. Single pass decoding with this family of error correction codes can yield very low error rates, but for long range transmission conditions (like deep space) iterative decoding is recommended.

Concatenated codes have been standard practice in satellite and deep space communications since Voyager 2 first used the technique in its 1986 encounter with Uranus. The Galileo craft used iterative concatenated codes to compensate for the very high error rate conditions caused by having a failed antenna.

Low-density parity-check (LDPC)

Edit

Low-density parity-check (LDPC) codes are a class of highly efficient linear block
codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length. Practical implementations rely heavily on decoding the constituent SPC codes in parallel.

LDPC codes were first introduced by Robert G. Gallager in his PhD thesis in 1960,
but due to the computational effort in implementing encoder and decoder and the introduction of Reed–Solomon codes,
they were mostly ignored until the 1990s.

LDPC codes are now used in many recent high-speed communication standards, such as DVB-S2 (Digital Video Broadcasting – Satellite – Second Generation), WiMAX (IEEE 802.16e standard for microwave communications), High-Speed Wireless LAN (IEEE 802.11n),[14] 10GBase-T Ethernet (802.3an) and G.hn/G.9960 (ITU-T Standard for networking over power lines, phone lines and coaxial cable). Other LDPC codes are standardized for wireless communication standards within 3GPP MBMS (see fountain codes).

Turbo codes

Edit

Turbo coding is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the Shannon limit. Predating LDPC codes in terms of practical application, they now provide similar performance.

One of the earliest commercial applications of turbo coding was the CDMA2000 1x (TIA IS-2000) digital cellular technology developed by Qualcomm and sold by Verizon Wireless, Sprint, and other carriers. It is also used for the evolution of CDMA2000 1x specifically for Internet access, 1xEV-DO (TIA IS-856). Like 1x, EV-DO was developed by Qualcomm, and is sold by Verizon Wireless, Sprint, and other carriers (Verizon’s marketing name for 1xEV-DO is Broadband Access, Sprint’s consumer and business marketing names for 1xEV-DO are Power Vision and Mobile Broadband, respectively).

Local decoding and testing of codes

Edit

Sometimes it is only necessary to decode single bits of the message, or to check whether a given signal is a codeword, and do so without looking at the entire signal. This can make sense in a streaming setting, where codewords are too large to be classically decoded fast enough and where only a few bits of the message are of interest for now. Also such codes have become an important tool in computational complexity theory, e.g., for the design of probabilistically checkable proofs.

Locally decodable codes are error-correcting codes for which single bits of the message can be probabilistically recovered by only looking at a small (say constant) number of positions of a codeword, even after the codeword has been corrupted at some constant fraction of positions. Locally testable codes are error-correcting codes for which it can be checked probabilistically whether a signal is close to a codeword by only looking at a small number of positions of the signal.

Interleaving

Edit

«Interleaver» redirects here. For the fiber-optic device, see optical interleaver.

 

A short illustration of interleaving idea

Interleaving is frequently used in digital communication and storage systems to improve the performance of forward error correcting codes. Many communication channels are not memoryless: errors typically occur in bursts rather than independently. If the number of errors within a code word exceeds the error-correcting code’s capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating a more uniform distribution of errors.[15] Therefore, interleaving is widely used for burst error-correction.

The analysis of modern iterated codes, like turbo codes and LDPC codes, typically assumes an independent distribution of errors.[16] Systems using LDPC codes therefore typically employ additional interleaving across the symbols within a code word.[17]

For turbo codes, an interleaver is an integral component and its proper design is crucial for good performance.[15][18] The iterative decoding algorithm works best when there are not short cycles in the factor graph that represents the decoder; the interleaver is chosen to avoid short cycles.

Interleaver designs include:

  • rectangular (or uniform) interleavers (similar to the method using skip factors described above)
  • convolutional interleavers
  • random interleavers (where the interleaver is a known random permutation)
  • S-random interleaver (where the interleaver is a known random permutation with the constraint that no input symbols within distance S appear within a distance of S in the output).[19]
  • a contention-free quadratic permutation polynomial (QPP).[20] An example of use is in the 3GPP Long Term Evolution mobile telecommunication standard.[21]

In multi-carrier communication systems, interleaving across carriers may be employed to provide frequency diversity, e.g., to mitigate frequency-selective fading or narrowband interference.[22]

Example

Edit

Transmission without interleaving:

Error-free message:                                 aaaabbbbccccddddeeeeffffgggg
Transmission with a burst error:                    aaaabbbbccc____deeeeffffgggg

Here, each group of the same letter represents a 4-bit one-bit error-correcting codeword. The codeword cccc is altered in one bit and can be corrected, but the codeword dddd is altered in three bits, so either it cannot be decoded at all or it might be decoded incorrectly.

With interleaving:

Error-free code words:                              aaaabbbbccccddddeeeeffffgggg
Interleaved:                                        abcdefgabcdefgabcdefgabcdefg
Transmission with a burst error:                    abcdefgabcd____bcdefgabcdefg
Received code words after deinterleaving:           aa_abbbbccccdddde_eef_ffg_gg

In each of the codewords «aaaa», «eeee», «ffff», and «gggg», only one bit is altered, so one-bit error-correcting code will decode everything correctly.

Transmission without interleaving:

Original transmitted sentence:                      ThisIsAnExampleOfInterleaving
Received sentence with a burst error:               ThisIs______pleOfInterleaving

The term «AnExample» ends up mostly unintelligible and difficult to correct.

With interleaving:

Transmitted sentence:                               ThisIsAnExampleOfInterleaving...
Error-free transmission:                            TIEpfeaghsxlIrv.iAaenli.snmOten.
Received sentence with a burst error:               TIEpfe______Irv.iAaenli.snmOten.
Received sentence after deinterleaving:             T_isI_AnE_amp_eOfInterle_vin_...

No word is completely lost and the missing letters can be recovered with minimal guesswork.

Disadvantages of interleaving

Edit

Use of interleaving techniques increases total delay. This is because the entire interleaved block must be received before the packets can be decoded.[23] Also interleavers hide the structure of errors; without an interleaver, more advanced decoding algorithms can take advantage of the error structure and achieve more reliable communication than a simpler decoder combined with an interleaver[citation needed]. An example of such an algorithm is based on neural network[24] structures.

Software for error-correcting codes

Edit

Simulating the behaviour of error-correcting codes (ECCs) in software is a common practice to design, validate and improve ECCs. The upcoming wireless 5G standard raises a new range of applications for the software ECCs: the Cloud Radio Access Networks (C-RAN) in a Software-defined radio (SDR) context. The idea is to directly use software ECCs in the communications. For instance in the 5G, the software ECCs could be located in the cloud and the antennas connected to this computing resources: improving this way the flexibility of the communication network and eventually increasing the energy efficiency of the system.

In this context, there are various available Open-source software listed below (non exhaustive).

  • AFF3CT(A Fast Forward Error Correction Toolbox): a full communication chain in C++ (many supported codes like Turbo, LDPC, Polar codes, etc.), very fast and specialized on channel coding (can be used as a program for simulations or as a library for the SDR).
  • IT++: a C++ library of classes and functions for linear algebra, numerical optimization, signal processing, communications, and statistics.
  • OpenAir: implementation (in C) of the 3GPP specifications concerning the Evolved Packet Core Networks.

List of error-correcting codes

Edit

Distance Code
2 (single-error detecting) Parity
3 (single-error correcting) Triple modular redundancy
3 (single-error correcting) perfect Hamming such as Hamming(7,4)
4 (SECDED) Extended Hamming
5 (double-error correcting)
6 (double-error correct-/triple error detect) Nordstrom-Robinson code
7 (three-error correcting) perfect binary Golay code
8 (TECFED) extended binary Golay code
  • AN codes
  • Algebraic geometry code
  • BCH code, which can be designed to correct any arbitrary number of errors per code block.
  • Barker code used for radar, telemetry, ultra sound, Wifi, DSSS mobile phone networks, GPS etc.
  • Berger code
  • Constant-weight code
  • Convolutional code
  • Expander codes
  • Group codes
  • Golay codes, of which the Binary Golay code is of practical interest
  • Goppa code, used in the McEliece cryptosystem
  • Hadamard code
  • Hagelbarger code
  • Hamming code
  • Latin square based code for non-white noise (prevalent for example in broadband over powerlines)
  • Lexicographic code
  • Linear Network Coding, a type of erasure correcting code across networks instead of point-to-point links
  • Long code
  • Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes
  • LT code, which is a near-optimal rateless erasure correcting code (Fountain code)
  • m of n codes
  • Nordstrom-Robinson code, used in Geometry and Group Theory[25]
  • Online code, a near-optimal rateless erasure correcting code
  • Polar code (coding theory)
  • Raptor code, a near-optimal rateless erasure correcting code
  • Reed–Solomon error correction
  • Reed–Muller code
  • Repeat-accumulate code
  • Repetition codes, such as Triple modular redundancy
  • Spinal code, a rateless, nonlinear code based on pseudo-random hash functions[26]
  • Tornado code, a near-optimal erasure correcting code, and the precursor to Fountain codes
  • Turbo code
  • Walsh–Hadamard code
  • Cyclic redundancy checks (CRCs) can correct 1-bit errors for messages at most   bits long for optimal generator polynomials of degree  , see Mathematics of cyclic redundancy checks#Bitfilters

See also

Edit

  • Code rate
  • Erasure codes
  • Soft-decision decoder
  • Burst error-correcting code
  • Error detection and correction
  • Error-correcting codes with feedback
  • Linear code
  • Quantum error correction

References

Edit

  1. ^ Charles Wang; Dean Sklar; Diana Johnson (Winter 2001–2002). «Forward Error-Correction Coding». Crosslink. The Aerospace Corporation. 3 (1). Archived from the original on 14 March 2012. Retrieved 5 March 2006.
  2. ^ Charles Wang; Dean Sklar; Diana Johnson (Winter 2001–2002). «Forward Error-Correction Coding». Crosslink. The Aerospace Corporation. 3 (1). Archived from the original on 14 March 2012. Retrieved 5 March 2006. How Forward Error-Correcting Codes Work]
  3. ^ a b Maunder, Robert (2016). «Overview of Channel Coding».
  4. ^ Glover, Neal; Dudley, Trent (1990). Practical Error Correction Design For Engineers (Revision 1.1, 2nd ed.). CO, USA: Cirrus Logic. ISBN 0-927239-00-0.
  5. ^ a b Hamming, Richard Wesley (April 1950). «Error Detecting and Error Correcting Codes». Bell System Technical Journal. USA: AT&T. 29 (2): 147–160. doi:10.1002/j.1538-7305.1950.tb00463.x. S2CID 61141773.
  6. ^ «Hamming codes for NAND flash memory devices» Archived 21 August 2016 at the Wayback Machine. EE Times-Asia. Apparently based on «Micron Technical Note TN-29-08: Hamming Codes for NAND Flash Memory Devices». 2005. Both say: «The Hamming algorithm is an industry-accepted method for error detection and correction in many SLC NAND flash-based applications.»
  7. ^ a b «What Types of ECC Should Be Used on Flash Memory?» (Application note). Spansion. 2011. Both Reed–Solomon algorithm and BCH algorithm are common ECC choices for MLC NAND flash. … Hamming based block codes are the most commonly used ECC for SLC…. both Reed–Solomon and BCH are able to handle multiple errors and are widely used on MLC flash.
  8. ^ Jim Cooke (August 2007). «The Inconvenient Truths of NAND Flash Memory» (PDF). p. 28. For SLC, a code with a correction threshold of 1 is sufficient. t=4 required … for MLC.
  9. ^ Baldi, M.; Chiaraluce, F. (2008). «A Simple Scheme for Belief Propagation Decoding of BCH and RS Codes in Multimedia Transmissions». International Journal of Digital Multimedia Broadcasting. 2008: 1–12. doi:10.1155/2008/957846.
  10. ^ Shah, Gaurav; Molina, Andres; Blaze, Matt (2006). «Keyboards and covert channels». USENIX. Retrieved 20 December 2018.
  11. ^ Tse, David; Viswanath, Pramod (2005), Fundamentals of Wireless Communication, Cambridge University Press, UK
  12. ^ Shannon, C. E. (1948). «A mathematical theory of communication» (PDF). Bell System Technical Journal. 27 (3–4): 379–423 & 623–656. doi:10.1002/j.1538-7305.1948.tb01338.x. hdl:11858/00-001M-0000-002C-4314-2.
  13. ^ Rosas, F.; Brante, G.; Souza, R. D.; Oberli, C. (2014). «Optimizing the code rate for achieving energy-efficient wireless communications». Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). pp. 775–780. doi:10.1109/WCNC.2014.6952166. ISBN 978-1-4799-3083-8.
  14. ^ IEEE Standard, section 20.3.11.6 «802.11n-2009» Archived 3 February 2013 at the Wayback Machine, IEEE, 29 October 2009, accessed 21 March 2011.
  15. ^ a b Vucetic, B.; Yuan, J. (2000). Turbo codes: principles and applications. Springer Verlag. ISBN 978-0-7923-7868-6.
  16. ^ Luby, Michael; Mitzenmacher, M.; Shokrollahi, A.; Spielman, D.; Stemann, V. (1997). «Practical Loss-Resilient Codes». Proc. 29th Annual Association for Computing Machinery (ACM) Symposium on Theory of Computation.
  17. ^ «Digital Video Broadcast (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other satellite broadband applications (DVB-S2)». En 302 307. ETSI (V1.2.1). April 2009.
  18. ^ Andrews, K. S.; Divsalar, D.; Dolinar, S.; Hamkins, J.; Jones, C. R.; Pollara, F. (November 2007). «The Development of Turbo and LDPC Codes for Deep-Space Applications». Proceedings of the IEEE. 95 (11): 2142–2156. doi:10.1109/JPROC.2007.905132. S2CID 9289140.
  19. ^ Dolinar, S.; Divsalar, D. (15 August 1995). «Weight Distributions for Turbo Codes Using Random and Nonrandom Permutations». TDA Progress Report. 122: 42–122. Bibcode:1995TDAPR.122…56D. CiteSeerX 10.1.1.105.6640.
  20. ^ Takeshita, Oscar (2006). «Permutation Polynomial Interleavers: An Algebraic-Geometric Perspective». IEEE Transactions on Information Theory. 53 (6): 2116–2132. arXiv:cs/0601048. Bibcode:2006cs……..1048T. doi:10.1109/TIT.2007.896870. S2CID 660.
  21. ^ 3GPP TS 36.212, version 8.8.0, page 14
  22. ^ «Digital Video Broadcast (DVB); Frame structure, channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)». En 302 755. ETSI (V1.1.1). September 2009.
  23. ^ Techie (3 June 2010). «Explaining Interleaving». W3 Techie Blog. Retrieved 3 June 2010.
  24. ^ Krastanov, Stefan; Jiang, Liang (8 September 2017). «Deep Neural Network Probabilistic Decoder for Stabilizer Codes». Scientific Reports. 7 (1): 11003. arXiv:1705.09334. Bibcode:2017NatSR…711003K. doi:10.1038/s41598-017-11266-1. PMC 5591216. PMID 28887480.
  25. ^ Nordstrom, A.W.; Robinson, J.P. (1967), «An optimum nonlinear code», Information and Control, 11 (5–6): 613–616, doi:10.1016/S0019-9958(67)90835-2
  26. ^ Perry, Jonathan; Balakrishnan, Hari; Shah, Devavrat (2011). «Rateless Spinal Codes». Proceedings of the 10th ACM Workshop on Hot Topics in Networks. pp. 1–6. doi:10.1145/2070562.2070568. hdl:1721.1/79676. ISBN 9781450310598.

Further reading

Edit

  • MacWilliams, Florence Jessiem; Sloane, Neil James Alexander (2007) [1977]. Written at AT&T Shannon Labs, Florham Park, New Jersey, USA. The Theory of Error-Correcting Codes. North-Holland Mathematical Library. Vol. 16 (digital print of 12th impression, 1st ed.). Amsterdam / London / New York / Tokyo: North-Holland / Elsevier BV. ISBN 978-0-444-85193-2. LCCN 76-41296. (xxii+762+6 pages)
  • Clark, Jr., George C.; Cain, J. Bibb (1981). Error-Correction Coding for Digital Communications. New York, USA: Plenum Press. ISBN 0-306-40615-2.
  • Arazi, Benjamin (1987). Swetman, Herb (ed.). A Commonsense Approach to the Theory of Error Correcting Codes. MIT Press Series in Computer Systems. Vol. 10 (1 ed.). Cambridge, Massachusetts, USA / London, UK: Massachusetts Institute of Technology. ISBN 0-262-01098-4. LCCN 87-21889. (x+2+208+4 pages)
  • Wicker, Stephen B. (1995). Error Control Systems for Digital Communication and Storage. Englewood Cliffs, New Jersey, USA: Prentice-Hall. ISBN 0-13-200809-2.
  • Wilson, Stephen G. (1996). Digital Modulation and Coding. Englewood Cliffs, New Jersey, USA: Prentice-Hall. ISBN 0-13-210071-1.
  • «Error Correction Code in Single Level Cell NAND Flash memories» 2007-02-16
  • «Error Correction Code in NAND Flash memories» 2004-11-29
  • Observations on Errors, Corrections, & Trust of Dependent Systems, by James Hamilton, 2012-02-26
  • Sphere Packings, Lattices and Groups, By J. H. Conway, Neil James Alexander Sloane, Springer Science & Business Media, 2013-03-09 – Mathematics – 682 pages.

External links

Edit

  • Morelos-Zaragoza, Robert (2004). «The Correcting Codes (ECC) Page». Retrieved 5 March 2006.
  • lpdec: library for LP decoding and related things (Python)

Введение

В качестве примера можно привести повсеместно распространенные технологии Ethernet+TCP/IP. В случае беспроводных сетей разработчики наряду с теми или иными способами обнаружения ошибок дополнительно применяют средства их исправления.

Общая идея как обнаружения, так и исправления ошибок основывается на использовании избыточных кодов. Простейший пример — это введение так называемого «бита четности» — такой прием позволяет обнаружить единичную ошибку.

На передающей стороне значение бита четности определяется следующим правилом: при четном количестве единиц в блоке информации проверочный бит должен быть равен нулю, в противном случае — единице. Таким образом, общее количество единиц в блоке (включая избыточный бит) должно быть четным. Если на приемной стороне количество единиц оказалось нечетным, этот блок считается поврежденным. Добавление одного бита фактически увеличивает число возможных кодовых слов в два раза, но при этом только половина из них является допустимо, разрешенными, а другая половина в силу обозначенных правил невозможна, запрещена.

Декодер, встретив какую-либо комбинацию битов, которая входит в число невозможных, делает вывод, что кодовое слово было передано с ошибкой. Более сложные схемы основаны на аналогичной идее, но подразумевают большее количество добавочных битов и более сложные правила формирования их комбинаций; при этом эти правила дают возможность на приемной стороне определить, какой именно бит (или биты) были повреждены.

Поскольку применение рассматриваемых методов обнаружения и/или коррекции ошибок связано с передачей дополнительных проверочных битов, то совершенно ясно, что применение средств такого рода оправданно именно в ситуациях, когда велика вероятность сбоя при передаче — в противном случае введение дополнительных данных приведет лишь к уменьшению полезной пропускной способности канала передачи.

Общая теория помехоустойчивых кодов (кодов с исправлением ошибок) изложена в книге [1]. В англоязычной литературе схемы кодирования с избыточностью с целью исправления ошибок называются FEC (сокращение от Forward Error Correction). С общими сведениями о способах обнаружения и коррекции ошибок можно ознакомиться, например, в RFC2354 [2].

В соответствии с описанием стандарта nanoNET [3] передаваемые данные подвергаются многоступенчатой побитовой обработке (рис. 1).

Битовые преобразования в трансмиттере и ресивере

Рис. 1. Битовые преобразования в трансмиттере и ресивере

После формирования кадра (составления заголовков и записи данных в трансивер) и получения команды начать передачу вычисляются контрольные суммы заголовков кадра CRC1 и поля данных CRC2. Затем (при включении соответствующей опции) поле данных и контрольная сумма CRC2 шифруются с помощью 128-битного ключа. После этого весь кадр подвергается так называемому скремблированию (перемешиванию битов) — это делается для минимизации вероятности появления длинных цепочек нулей и повышения надежности передачи. Далее битовая последовательность проходит через описанную ниже схему помехоустойчивого кодирования FEC и только потом преобразуется в чирп-сигналы (импульсы длительностью 1 мкс с наполнением возрастающей и (или) убывающей частотой).

На приемной стороне процесс происходит в обратном порядке, то есть сначала из помехоустойчивого кода получаются информационные биты, возможно, с исправлением ошибок, затем производится процедура, обратная перемешиванию, расшифровка и проверка контрольных сумм. При этом контрольное суммирование и перемешивание являются обязательными стадиями (скремблирование рекомендовано к применению), в то время как шифрование и помехоустойчивое кодирование таковыми не являются (помечены на рис. 1 серым фоном).

Отметим, что трансиверы nanoNET можно конфигурировать на прием или передачу как с использованием корректирующих кодов, так и без их использования. При этом в передаваемом кадре не содержится никаких сведений о том, подвергался ли он такому кодированию FEC или нет. Это означает, что для того чтобы передатчик и приемник, выражаясь образно, «разговаривали на одном языке», нужно, чтобы они были одинаковым образом сконфигурированы в плане использования или неиспользования FEC.

Для кодирования FEC с возможностью исправления ошибок передачи трансиверы nanoNET используют классический код Хэмминга (7,4), то есть к каждой четверке информационных битов добавляется 3 проверочных, общая длина кодового слова равна 7. Из теории корректирующих кодов известно, что такой код имеет минимальное кодовое расстояние 3, и, следовательно, приемник способен либо исправить одиночную ошибку, либо обнаружить двойную. Особенностью реализации помехоустойчивого кодирования в передатчиках рассматриваемого стандарта является совместное кодирование двух соседних полубайтов за счет перемежения битов кодовых слов, полученных при кодировании этих двух полубайтов: сначала кодируется один полубайт, то есть из комбинации битов (b0, b1, b2, b3) получается кодовое слово:

(символами bi обозначены информационные биты, а символами Pk – проверочные биты), затем кодируется другой полубайт, получается кодовое слово:

далее эти два кодовых слова перемежаются следующим образом:

Это позволяет исправлять двойные ошибки в результирующем 14-разрядном кодовом слове даже в том случае, если эти ошибки произошли в соседних битах. Данное свойство особенно важно при использовании четверичной системы счисления, которая используется в nanoNET для кодирования одного символа данных двумя битами и позволяет передавать данные на скорости 2 Мбит/с.

Регистры модулей nanoPAN, связанные с FEC

FEC, CRC2 type, Symbols and Modulation (адрес 0х39 — регистр, отвечающий за включение FEC, тип контрольной суммы CRC2, систему модуляции и длину символа):

TxRxMode — выбор режима (Auto или Transparent, по умолчанию TxRxMode=0=Auto).

TxRxFwdEc — включение или выключение FEC, по умолчанию TxRxFwdEc=0, FEC отключен.

TxRxCrcType — указание типа контрольной суммы данных.

TxRxData Rate – выбор битовой скорости передачи (500 или 1000 Ksps, по умолчанию TxRxDataRate=0, 1000 Ksps).

TxRxMod System — выбор способа модуляции (двоичная или четверичная, по умолчанию TxRxModSystem=0, двоичная).

Receive FEC Single Bit Error Count (адреса 0х57 и 0х58 — регистры, в которых содержится число единичных ошибок, исправленных в предыдущем принятом кадре).

0x57:

0x57:

RxFec1BitErr — 15-разрядное число единичных ошибок, встретившихся в предыдущем принятом кадре. Этот регистр содержит корректную информацию только в случае, если бит TxRxFwdEc в регистре 0х39 выставлен в значение 1).

Регулирование амплитуды выходного сигнала

Для сбора статистики по функционированию режима FEC использовалась возможность управления силой выходного сигнала в трансиверах nanoPAN. Для этого перед стартом передачи необходимо было занести число от 0 до 63 в младшие шесть байтов регистров RfTxOutputPower с адресами 0x2A и 0x2B (первый соответствует управлению силой сигнала для кадров с данными, второй предназначен для служебных кадров). В документации на NA1TR8 [4] приводится зависимость выходной мощности сигнала от значения, записанного в указанном регистре (рис. 2).

Зависимость мощности выходного сигнала от значения, записанного в регистр RfTxOutputPower

Рис. 2. Зависимость мощности выходного сигнала от значения, записанного в регистр RfTxOutputPower

Таким образом, трансиверы поддерживают 19 градаций мощности сигнала, которые соответствуют значениям (0, 1, 2, 3, 4, 5, 21, 22, 23, 39, 40, 41, 57, 58, 59, 60, 61, 62, 63) в регистре RfTxOutputPower.

Порядок проведения экспериментов

В предыдущих статьях авторов [5, 6] было описано некоторое количество экспериментов по определению условий и качества радиосвязи с использованием трансиверов nanoNET. На основе программного обеспечения, использовавшегося ранее, для изучения условий применения коррекции ошибок FEC была создана новая версия программы. Она загружалась и исполнялась в микроконтроллерах ATmega32L и управляла работой двух радиомодулей nanoNET по интерфейсу SPI. Также с ее помощью результаты измерений отсылались по com-порту в персональный компьютер.

В начале цикла измерений узел-мастер в течение 10 секунд посылал узлу-слейву кадры длиной 128 байт на максимальной выходной мощности. В журнал работы заносилось как значение общего количества отосланных кадров, так и количество кадров, на которые удаленный узел прислал подтверждение о приеме. Каждый кадр передавался не более чем c тремя ретрансмиссиями, которые автоматически осуществлялись в случае неуспешного приема.

После 10-секундного периода узел-мастер последовательно посылал узлу-слейву кадры, постепенно уменьшая амплитуду сигнала со значения 63 до 0, и фиксировал количество ретрансмиссий. Если счетчик попыток передачи пакета для текущей мощности сигнала равнялся трем, это означало, что пакет так и не был доставлен адресату (узлу-слейву). Пакеты подтверждения о приеме посылались всегда на максимальной мощности (63).

Типичная запись в журнале эксперимента выглядела следующим образом.

FEC off и FEC on — выключение и включение режима коррекции ошибок соответственно.

SENT=3973 — количество отправленных за 10 секунд кадров по 128 байтов (на максимальной мощности сигнала).

OK=3973 — количество переданных пакетов, на которые было получено подтверждение о приеме.

RTC: 000004395914 — временная метка регистрации данных (аппаратная поддержка в трансиверах Nanonet).

Строчка, обозначенная синим цветом на рис. 3, содержит набор цифр, каждая из которых обозначает уровень мощности отправленного информационного кадра. Всего 19 градаций — от 18 (написана только восьмерка, а единица для компактности в записи в журнале опущена) до 0.

Пример записей в журнале о двух последовательных измерениях

Рис. 3. Пример записей в журнале о двух последовательных измерениях

Следующие три (для увеличения достоверности) строки соответствуют сериям отправки кадров с уменьшающейся силой сигнала.

Каждый символ в этих строчках обозначает количество ретрансмиссий, которое потребовалось для подтвержденной передачи. Если их не было, то есть кадр был передан с первой попытки, вставлялся пробел.

Например, в первой серии кадры с уровнем мощности 18, 17, 16 и т. д. до 9 отсылались с первой попытки. А вот при уровне сигнала в 9 условных единиц потребовалась одна дополнительная ретрансмиссия; далее на восьмом уровне мощности две ретрансмиссии, а затем вообще не было зарегистрировано безошибочных передач.

Другими словами, пока сигнал узла-мастера был достаточно сильным (соответствующие значения регистра RfTxOutputPower лежали в диапазоне от 63 до 39), узел-слейв подтверждал прием каждого пакета. Как только уровень мощности стал равным 9, начали появляться проблемы с приемом. А для уровней сигнала от 7 до 0 вообще не было зарегистрировано ни одной успешной передачи.

То есть чем хуже были условия приема-передачи, тем ближе к началу третьей строки возникали цифры 1, 2 и 3.

Пользуясь таким журналом, можно ввести некий новый параметр, характеризующий необходимую (минимальную) амплитуду выходного сигнала, достаточную для успешной передачи в конкретных условиях. Его можно назвать пороговой мощностью между безошибочным и ошибочным приемом. Для приведенного выше примера (первая серия) таким порогом было 9. Чем ниже порог, тем более стабильная была передача при неизменной мощности радиосигнала.

Таким образом, качество радиосвязи в проведенных экспериментах контролировалось двумя параметрами: процентом безошибочных передач для кадров, отосланных на максимальной мощности, и усредненной по трем значениям пороговой мощностью успешной передачи.

Результаты экспериментов

    1. Сравнивая последовательные серии посылок с включенной (FEC on) и выключенной (FEC off, рис. 3) коррекцией ошибок, можно сразу заметить, что включение коррекции ошибок позволяет повысить надежность передачи при неизменном уровне мощности сигнала на стороне передатчика.
    2. На рис. 4 отражена диаграмма распределений процента успешных передач (отношение OK/SENT для кадров, отправленных на максимальной мощности) от пороговой мощности между безошибочным и ошибочным приемом (пороговая мощность выступает в качестве параметра условий радиопередачи «хорошо-плохо»). Данный график не имеет прямого отношения к коррекции данных, однако очень важен в практическом плане.

      Рис. 4. Процент безошибочных передач кадров длиной 128 байтов в зависимости от порогового уровня выходного сигнала на передающей стороне и включения или выключения коррекции ошибок FEC

При построении сетей датчиков и других распределенных систем одним из актуальных вопросов оказывается управление энергопотреблением. Главным инструментом в этом случае является варьирование мощности выходного сигнала (чем больше его амплитуда и потребляемый ток, тем больше зона уверенного приема). Кроме этого, намеренное уменьшение мощности иногда используется для снижения вероятности возникновения коллизий и сетевых проблем типа «скрытый узел».

Для организации надежной радиосвязи по возможности без ретрансмиссий необходимо обеспечить уровень потерь не выше 5–10%. Тогда для осуществления передачи потребуется максимум одна ретрансмиссия.

Поэтому можно утверждать, что после тестирования канала радиосвязи и оценки пороговой мощности независимо от того, включена коррекция FEC или нет, если трансиверы связываются между собой в условиях с пороговыми уровнями сигнала не выше 10 в условных единицах, это почти гарантирует малоошибочную передачу. В случаях осуществления связи с уровнями сигнала 15–17 процент успешных передач резко падает, а при уровне 18 связь крайне нестабильная (рис. 4).

Использование тестирования линий таким способом может помочь при проектировании маршрутов в сложных радиосетях типа mesh (ячеистая).

    1. На рис. 5 представлены данные 64 измерений. Для каждой точки в обоих режимах (FEC on и FEC off) собиралась информация о количестве безошибочных передач и пороговом (минимальном) уровне мощности сигнала на передающей стороне, необходимом для успешной доставки кадра по назначению. Разница между измерениями заключалась в подборе внешних условий прохождения радиосигналов путем отключения антенн и изменения расстояния между источником и приемником кадров.

      Количество безошибочных передач кадров за 10 секунд (левая ось) и соответствующий ему пороговый уровень выходного сигнала на передающей стороне (правая ось) при включенной и выключенной коррекции ошибок FEC для 64 точек измерений

      Рис. 5. Количество безошибочных передач кадров за 10 секунд (левая ось) и соответствующий ему пороговый уровень выходного сигнала на передающей стороне (правая ось) при включенной и выключенной коррекции ошибок FEC для 64 точек измерений

После набора данных они были отсортированы по убыванию значений количества безошибочно переданных кадров для режима с выключенной коррекцией ошибок FEC (монотонно убывающая кривая из сплошных квадратов на рис. 5, левая ось). Ей соответствует почти монотонно возрастающая линия с полыми квадратами. При пороговых уровнях мощности до 10 (правая ось для полых квадратов), уровень безошибочных передач достаточно высок, а уже после 13-й точки по горизонтальной оси начинает снижаться.

Подобная картина наблюдается и для кривых с ромбами (включенный FEC). До 33-й точки количество успешных передач максимально, тогда как с увеличением пороговой мощности выше 10 процент потерь также увеличивается. Разница в максимальных значениях количества отосланных кадров за 10 секунд для включенного и выключенного режима коррекции ошибок составляет примерно 40%, что объясняется увеличением времени передачи из-за введенных в поток дополнительных битов, обеспечивающих избыточность. Другими словами, при включении опции FEC скорость передачи падает примерно в 1,4 раза, что, однако, резко повышает надежность связи и, соответственно, увеличивает зону уверенного приема. При сравнении значений двух кривых с полыми квадратами и ромбами можно отметить, что при одних и тех же условиях (для одной точки на графике) кривая с квадратами находится выше, в среднем, примерно на 4 деления по правой шкале. Это говорит о том, что благодаря коррекции ошибок можно из более слабого физического входного сигнала «добыть» информационную составляющую без использования дополнительных аппаратных усилителей и средств радиочастотной фильтрации.

Приняв во внимание график (рис. 6), полученный в ходе экспериментов [6], можно заметить, что уменьшение пороговой мощности, достаточной для установления связи, на 4 единицы примерно соответствует 60 метрам увеличения максимального расстояния между узлами, что предс тавляется очень серьезной цифрой.

Зависимость минимального уровня мощности (в соответствии со значением регистра RfTxOutputPower)

Рис. 6. Зависимость минимального уровня мощности (в соответствии со значением регистра RfTxOutputPower)

Заключение

Как уже было показано, введение аппаратной коррекции ошибок практически всегда позволяет достичь более устойчивой связи. «Платой» за это является уменьшение пропускной способности радиоканала.

В заключение необходимо отметить, что включение опции FEС не избавляет от ошибок, оно лишь помогает некоторые из них исправить. Даже если FEC-декодер вследствие случайности помех не определит наличие ошибки (например, строенная, счетверенная), то это почти наверняка будет определено на приемной стороне при CRC-декодировании.


Авторы благодарят Д. А. Екимова (Петрозаводский государственный университет) за высказанные критические замечания.

Данное исследование проведено в рамках проекта «Научно-образовательный центр по фундаментальным проблемам приложений физики низкотемпературной плазмы» (RUX0-013-PZ-06), поддерживаемого Министерством образования и науки РФ, Американским фондом гражданских исследований и развития (CRDF) и Правительством Республики Карелия, а также частично финансировалось Техническим Научно-исследовательским Центром Финляндии (VTT) в рамках договорных работ.

Литература

  1. Мак-Вильямс Ф. Дж., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки. М.: Радио и связь, 1979.
  2. RFC 2354. Options for Repair of Streaming Media. June 1998. 
  3. NanoNET PHY and MAC System Specifi cations, ver.1.04. Nanotron Technologies GmbH, Alt-Moabit 60, 10555 Berlin, Germany. NA-03-0101-0230-1.04.
  4. NanoNET TRX (NA1TR8) Transceiver Datasheet, ver. 2.07. Nanotron Technologies GmbH, Alt-Moabit 60, 10555 Berlin, Germany. NA-03-0111-0239-2.07.
  5. Мощевикин А. П. Исследование скорости передачи данных в беспроводных сетях Nanonet // Беспроводные технологии. 2006, № 3.
  6. Жиганов Е. Д., Красков С. Е., Мощевикин А. П. Исследование условий применимости приемопередатчиков стандарта Nanonet в беспроводных сетях датчиков // Беспроводные технологии. 2007, № 1, 2.
  7. Nanonet TRX (NA1TR8) Transceiver Register Description, ver. 1.06. Nanotron Technologies GmbH, Alt-Moabit 60, 10555 Berlin, Germany. NA-03-0100-0246-1.06.

Когда мы читаем статью, если есть опечатка, скажем два слова в неправильном порядке, нам не составит труда понять исходный текст. Но если орфографических ошибок будет слишком много, читателям будет сложно понять статью. В настоящее время информация не может быть получена правильно и эффективно.

FEC (Forward Error Correction) работает по аналогичному принципу. Сигналы кодируются как «0» и «1» для передачи с неизбежным ухудшением качества и кодами ошибок. Когда этот уровень ошибки находится в пределах возможностей коррекции ошибок FEC, система может обеспечить безошибочный прием и, следовательно, без необходимости повторной передачи.

Код Хэмминга, вероятно, первая форма FEC, была впервые изобретена Ричардом Хэммингом в 1950 году. Во время работы в Bell Labs его раздражали частые ошибки в перфокартах (которые в то время использовались для записи и передачи данных), поэтому он разработал метод кодирования для выявления и исправления ошибок, что позволило избежать необходимости копировать и повторно отправлять карты.

Двумя важными направлениями развития волоконно-оптической связи являются увеличение скорости передачи и увеличение дальности передачи. По мере увеличения скорости передачи все больше факторов ограничивают расстояние передачи во время передачи сигнала. Хроматическая дисперсия, нелинейные эффекты, поляризационная модовая дисперсия и другие факторы влияют на одновременное усиление двух направлений. Отраслевые эксперты предложили функцию прямого исправления ошибок, чтобы уменьшить влияние этих неблагоприятных факторов.

В оптических системах передачи основная роль FEC заключается в снижении допустимого значения OSNR системы. Если мы сравним систему оптической передачи с процессом чтения, FEC улучшает понимание читателем, обогащает его различающий опыт и в некоторой степени допускает больше ошибок в статье.

принципиальная схема ФЭК

Рисунок 1: схематическая диаграмма функции FEC

Поэтому мы определяем FEC (упреждающая коррекция ошибок) как способность, которая гарантирует, что система связи все еще может обеспечивать безошибочную передачу под влиянием шума и других ухудшений. По сути, FEC представляет собой процесс кодирования и декодирования, а результат работы алгоритма отправляется в виде дополнительной информации вместе с данными от передатчика. Повторяя тот же алгоритм на дальнем конце, приемник может обнаруживать однобитовые ошибки и исправлять их (исправимые ошибки) без повторной передачи данных.

Чтобы измерить эту возможность, необходимо сосредоточиться на четырех параметрах FEC: допуске BER до коррекции, выигрыше кодирования (CG), служебной нагрузке (OH) и чистом выигрыше кодирования (NCG). Давайте взглянем на определение выигрыша кодирования NCG: оно определяет разницу между значением Q, соответствующим определенному уровню BER (например, 1 × 10-15), и значением Q (дБ), соответствующим уровню предварительной коррекции. BER толерантность.

выигрыш от кодирования между определенным уровнем BEC с FEC и без FEC

Рисунок 2: выигрыш от кодирования между определенным уровнем BEC с FEC и без FEC

NCG можно сравнить с разницей в способности исправлять и получать правильную информацию между новичком и экспертом. Вообще говоря, существует два типа технологий FEC: внутриполосная FEC и внеполосная FEC.

  • Внутриполосный FEC: определяется стандартом ITU-T G.707. Он использует служебный байт кадра SDH для переноса символа FEC и в основном используется в системе SDH.
  • Внеполосный FEC: поддерживается стандартом ITU-T G.975/709. G.975 рекомендуется для FEC подводной оптической кабельной системы с использованием RS (255, 239), а G.709 модифицирован в соответствии с кодом FEC G.975.

В системе DWDM/OTN мы в основном используем внеполосную технологию FEC. В G.709 FEC Рида-Соломона (RS-FEC) определен для системы OTN, которая расположена в служебной части FEC уровня OTUk, и ее расположение показано на следующем рисунке.

расположение RS-FEC в G.709

Рисунок 3: расположение RS-FEC в G.709

В настоящее время FEC разработана для многих поколений.

  • Первое поколение FEC в основном использует циклические коды или алгебраические коды, такие как коды RS (255, 239), определенные ITU-T G.975, которые часто называют стандартными FEC.
  • Второе поколение FEC в основном использует каскадные коды для построения FEC, такие как RS+RS или RS+BCH. Существует два типа FEC: расширенный FEC (EFEC) и дополнительный FEC (AFEC).
  • FEC третьего поколения использует мягкое решение или итерационные методы, такие как блочный турбокод и код проверки на четность с низкой плотностью LDPC.

Три поколения FEC

Рисунок 4: Три поколения FEC

В технологиях FEC первого и второго поколения при декодировании обычно используется только алгебраическая структура кода. Двоичная последовательность подается в декодер демодулятором, то есть демодулятор выполняет только решение 0, 1 по полученной последовательности. Этот метод декодирования называется Hard-Decision (HD-FEC). Различные виды жесткого решения FEC сравниваются следующим образом:

Кодирование Алгоритм кодирования Усиление кодирования Линейная скорость Стандарт
Внеполосный FEC RS (255,239 XNUMX) 5 ~ 7dB 10.7Gbps G.709
Расширенный FEC RS (255,238 XNUMX)
RS (245,210 XNUMX)
7 ~ 9dB 12.5Gbps Нет
Advanced-FEC RS (255,238 XNUMX)
МПБ (900,860 XNUMX)
МПБ (500,491 XNUMX)
7 ~ 9dB 10.7 Гбит / с. G.709

Таблица XNUMX: Сравнение трех различных типов FEC с жестким решением

Мягкое решение, используемое в третьем поколении FEC (SD-FEC), представляет собой вероятностный метод декодирования. Он выполняет многобитовое квантование дискретизированного напряжения на выходе демодулятора, а затем отправляет его в декодер для декодирования алгебраической структуры кода.

Принципиальная схема технологии мягких решений

Рисунок 5: Схематическая диаграмма технологии мягкого принятия решений

Как показано на рисунке выше, жесткое решение использует только одно пороговое значение для квантования одного бита, в то время как мягкое решение использует несколько пороговых значений для квантования восстановленных символов, получая однобитовую информацию плюс несколько битовую информацию о вероятности (достоверности). Это эквивалентно добавлению «Может быть» между «ДА» и «НЕТ». При том же коэффициенте накладных расходов усиление SD-FEC NCG на 1–1.5 дБ выше, чем у HFEC с жестким решением.

Накладные расходы HD SD Дополнительный NCG
(HD>SD)
0.07 10.00dB 11.10dB 1.10dB
0.15 10.95dB 12.20dB 1.25dB
0.25 11.60dB 12.90dB 1.30dB

Таблица XNUMX: сравнение NCG SD-FEC и HD-FEC

В настоящее время SD-FEC или гибридный метод кодирования, такой как SD-FEC и EFEC/HFEC, в основном используется в системах с разделением по длине волны 100G и выше. Взяв в качестве примера определение LDPC на конференции LOFC, его служебные данные и NCG показаны в следующей таблице.

Тип ФЭК Оверхед ОН NCG
ЭФЕК+LDPC 0.205 10.8dB
LDPC 0.2 11.3dB
LDPC+СС 0.11 10.2dB
LDPC+СС 0.2 11.5dB
МПБ+LDPC 0.255 12.0dB

Таблица XNUMX: накладные расходы и NCG различных FEC

Из приведенной выше таблицы мы, кажется, выводим правило: чем выше служебная информация, используемая FEC, тем выше выигрыш от кодирования.

FEC подходит для высокоскоростной связи (25G, 40G и 100G, особенно 40G и 100G). Во время передачи оптический сигнал ухудшается из-за других факторов, что приводит к неправильной оценке на принимающей стороне. Он может ошибочно принять сигнал «1» за сигнал «0» или сигнал «0» за сигнал «1». Функция FEC формирует информационный код в код с возможностью исправления ошибок с помощью канального кодера на передающей стороне, а канальный декодер на принимающей стороне декодирует полученный код. Декодер обнаружит и исправит ошибку, чтобы улучшить качество сигнала, если количество ошибок, генерируемых при передаче, находится в пределах возможностей исправления ошибок (прерывистые ошибки).

Оптический модуль 100G QSFP28 и функция FEC

Функция FEC неизбежно вызовет некоторые задержки пакетов в процессе исправления битовых ошибок, поэтому не все 100G QSFP28 оптические модули должны включить эту функцию. Согласно стандартному протоколу IEEE, при использовании 100G QSFP28 LR4 оптический модуль, не рекомендуется включать FEC, и рекомендуется для других оптических модулей.

Оптические модули 100G QSFP28 разных компаний отличаются в некоторых аспектах. В следующей таблице показано, рекомендуется ли включать функцию FEC при использовании оптического модуля FiberMall 100G QSFP28.

Номер модели Описание товара С ФЭК
КСФП28-100Г-СР4 Модуль приемопередатчика 100G QSFP28 SR4 850nm 100m MTP/MPO MMF DDM НЕТ
КСФП28-100Г-ЛР4 Модуль приемопередатчика 100G QSFP28 LR4 1310nm (LAN WDM) 10 км LC SMF DDM НЕТ
КСФП28-100Г-ПСМ4 Модуль приемопередатчика 100G QSFP28 PSM4 1310nm 500m MTP/MPO SMF DDM НЕТ
КСФП28-100Г-ИР4 Модуль приемопередатчика LC SMF DDM 100G QSFP28 IR4 1310nm (CWDM4) 2 км Да
КСФП28-100Г-4ВДМ-10 Модуль приемопередатчика 100G QSFP28 4WDM 10 км LC SMF DDM Да
КСФП28-100Г-ЭР4 Модуль приемопередатчика LC SMF DDM 100G QSFP28 ER4 Lite 1310nm (LAN WDM) 40 км Да

Таблица четвертая: Вткак использовать FEC в FiberMall 100G QSFP28

Согласованность функций FEC на обоих концах канала

Функция FEC интерфейса является частью автосогласования. Когда на интерфейсе включено автосогласование, функция FEC определяется двумя концами канала посредством согласования. Если на одном конце включена функция FEC, на другом конце также должна быть включена функция FEC.

 Стекирование и функция FEC

Если интерфейс настроен как физический порт-член стека, команда FEC не поддерживается. И наоборот, интерфейс, настроенный с помощью команды FEC, не может быть настроен как физический порт-член стека.

Сопутствующие товары:

Похожие посты:

  1. Оптический трансивер Silicon Photonics (SiPh): вопросы и ответы
  2. Последние достижения технологии 50G PON (пассивная оптическая сеть) в 2021 году
  3. 3 факта о технологии PON (пассивная оптическая сеть)
  4. Возможна ли оптическая передача за пределами диапазонов C и L?

Понравилась статья? Поделить с друзьями:
  • Ошибки p0011 и p0014 опель астра j
  • Ошибки epson lx 300
  • Ошибки fragments на коммутаторе
  • Ошибки bms скания 5 серии
  • Ошибки emotron vfx