Ошибка управления сау

    1. Виды ошибок регулирования и методы их снижения.

Прямые показатели качества подразделяются
на показатели качества динамического
и установившегося режимов.

Показателями качества динамических
режимов определяются из графика
переходного процесса и основными из
них являются (рис.1.42):

перерегулирование или забросσ,
равный максимуму отклонения значения
переходного процесса относительно
установившегося значения процессаhycm;

— время первой установки t1,
определяемое моментом первого пересечения
графиком переходного процесса
установившегося значенияhycm;

— время переходного процесса tПП,
определяемое момент окончательного
входа графика переходного процесса в
зону допуска, равную±5%от
установившегося значения процессаhycm.

Для всех названных динамических
показателей качества невозможно в общем
случае получить формулы для их расчета.
Это является существенным препятствием
для решения задач анализа и синтеза
САУ.

Показателями качества установившихся
режимов являются ошибки регулирования,
равные абсолютной величине разности
между заданным и фактическим значениями
сигналов САУ и которые в зависимости
от вида входного сигнала САУ подразделяются
на статические (εСТ) и
скоростные ошибки (εСК) и
ошибки (εm)
при отработке гармонического входного
сигнала.

Для
всех названных ошибок регулирования
можно в общем случае получить формулы
их расчета.

Из структурной схемы замкнутой САУ
(рис.1.43) следуют выражения передаточной
функции САУ Wε(p)по ошибке и изображенияε(р)ошибки
регулирования:

Расчет ошибки εmотработки гармонического входного
сигналаx=Xmsinωt
производится по формуле

где
— модуль комплексного числа.

Статическая (εСТ) и
скоростная (εСК) ошибки
равны установившимся значениям оригиналаи,
или в общем виде, по формуле.
Значениевычисляют через изображениеε(р)
по доказываемой в теории операционного
исчисления формуле предельного перехода,

(1.54)

Выражение передаточной функции
разомкнутой САУ в общем случае может
быть приведено к виду:

(1.55)

где К– общий коэффициент усиления
разомкнутой САУ:

ν— порядок астатизма САУ, причемνявляется целым неотрицательным
числом.

Для удобства вычислений по формуле
(1.54) подставим в нее выражение WРАЗ(р)из (1.55) и выполним предельный переход:

(1.56)

Статическая ошибка регулирования εСТрассчитывается при постоянном входном
сигналеx(t)=X=const,
а скоростнаяεСК— при
входном сигналеx=Vt,
изменяющемуся во времени с постоянной
скоростьюV=const.
Далее расчеты статической (εСТ)
и скоростной (εСК) ошибок
выполним раздельно.

Расчеты статической ошибки εСт регулирования

Входной сигнал x(t)=X=constи изображением его является.
В соответствии с (1.56) статическую ошибкуεСТследует вычислять по
формуле

(1.57)

1). Пусть в (1.57) значение порядка νастатизма САУ равно нулю:ν=0. Такая
САУ называется статической. Тогда
статическая ошибкаεСТбудет равна

В статической САУ имеется статическая
ошибка εСТ, которую можно
только уменьшить путем увеличения
общего коэффициента усиленияКразомкнутой САУ, но обратить в ноль ее
нельзя.

2). Пусть в (1.57) значение порядка νастатизма САУ равно 1:ν=1. Такая САУ
называется астатической 1-го порядка.
Тогда статическая ошибкаεСТбудет равна

В астатической САУ 1-го порядка статическая
ошибка εСТравна нулю,
т.е САУ является абсолютно точной. Можно
проверить, что при астатизме САУ выше1, статическая ошибка регулирования
всегда будет нулевой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Качество управления. Ошибка системы. Система автоматической стабилизации скорости вращения электродвигателя

Страницы работы

Фрагмент текста работы

6 Качество управления

Ошибка системы

Любая автоматическая система должна быть не
только устойчивой, но и достаточно точной в работе. В любой реальной системе
невозможно точное равенство задающего воздействия
g
и управляемой величины
y во всё время процесса управления. Возникает
ошибка системы
x=gy. Её можно представить в виде X=Xпуст.,
где
Xп – переходная ошибка, а Хуст. – это ошибка
системы по окончанию переходного процесса. Для определения
Xп приходится
либо находить корни характеристического уравнения, либо использовать критерии
качества, не требующие нахождения ошибки
Xп (частотный критерий качества, интегральный
критерий качества).

6.2 Ошибки САУ в установившемся режиме

Рассмотрим неподвижное состояние, когда g=const ,или f=const. Имеются 2 вида систем: статические и
астатические. Статической системой автоматического управления называется
система, переходная функция которой в разомкнутом состоянии при размыкании по
ошибке имеет вид:

В статических САУ интегрирующие звенья или отсутствуют.
или охвачены обратной связью, т.е. нет множителя
p
в знаменателе.

Рис

Определим ошибку Хуст., если g=g0, f=f0,
тогда            Хуст.=
g0yуст.                    (а),

Но                      yуст.2уст.К2
= (Х1уст.+
f02= (Хуст.К1+f0)K2               
(в).

 Подставим (в) в (а): Хуст.= g01К2
Хуст.2
f0. Хуст.(1+K1K2)= g0K2f0.

Пусть К1К2=К, тогда Хуст.=
(
g0/1+К)-( К2f0/1+К).

        Из выражения (в) следует, что для
уменьшения ошибки от задающего воздействия
g
необходимо увеличивать общий коэффициент передачи звеньев, стоящих до
возмущения (К1) и уменьшать для стоящих после возмущения(
K2). В
статических САУ ошибку от задающего воздействия легко ликвидировать
масштабированием. Этот метод рассмотрим позднее. Исследуем ошибку от
возмущающего воздействия.

Пример: Система автоматической стабилизации скорости вращения
электродвигателя.

Рис

Мн – момент нагрузки.

При изменении Мн меняется скорость вращения
ω, что приводит к изменению
Uтг (напряжения, вырабатываемого тахогенератором). При
правильном выборе знака обратной связи скорость вращения будет меняться
значительно меньше, чем при отсутствии обратной связи. Покажем, что в системе
будет установившаяся ошибка. При изменении момента нагрузки Мн
изменится и момент двигателя, потому что в установившемся режиме
Mдв = Мн.
Mдв меняется при изменении ω или Uдвиг., но Uдвиг. (Uд) при постоянном U может измениться
лишь при изменении
Uтг, т.е. Uд = UUтг. Поэтому при изменении Мн обязательно
меняется ω, т.е. появляется ошибка.

6.3 Оценка динамических
свойств САУ по переходной характеристике

1) Качество оценивается по перерегулированию

σ %= (ym-yуст.)/ yуст.·100%
.

σ %= |10-50|%.

Рис2) Быстродействие можно оценивать как время
переходного процесса от момента подачи скачка до момента
tп, начиная с
которого для всех
ttп: |y(t)- yуст. | ≤ Δyуст.Δyуст.=1-5%.

         6.4 Корневые оценки
динамических свойств САУ

     О динамических свойствах САУ можно судить по
расположению полюсов и нулей замкнутой системы управления.

Рис1-й вариант: имеется один вещественный полюс.

;  => .

Чем меньше Т, тем быстрее растёт сигнал на выходе.

РисПри приближении полюса к мнимой оси
быстродействие уменьшается.

2-й вариант: два комплексно сопряжённых полюса.

РисРис; .

Можно показать, что. Перерегулирование зависит от
параметра
этот параметр называется колебательностью. При равном удалении полюсов
от мнимой оси σ % больше в той системе, в которой полюсы дальше отстоят от
вещественной оси. Увеличение μ приводит к возрастанию перерегулирования, чтобы
колебательность системы не превышала заданной величины, полюса должны быть
расположены внутри области, в которой
tgφ=μ.

Рис     Если еще имеется и отрицательный нуль
(корень числителя) – это эквивалентно действию дифференцирующего звена и
колебательность возрастает с приближением нуля к мнимой оси. Добавление
вещественного полюса уменьшает перерегулирование и увеличивает время
переходного процесса. Если имеется несколько полюсов и нулей, но они достаточно
удалены от мнимой оси, то их влиянием можно пренебречь.

  Улучшение качества
правления

   Способы уменьшения ошибки

Общими методами уменьшения ошибки
(повышения точности) САР являются:

1. 
Увеличение
коэффициента усиления K
разомкнутой цепи

2. 
Повышение порядка
астатизма r

3. 
Применение
регулирования по производным

4. 
Включение
масштабирующих устройств на входе или выходе

6.5.1.1 Повышение
точности систем увеличением коэффициента усиления

Метод эффективен, широко применяется, но обычно
увеличение K приводит к
уменьшению запаса устойчивости

  Повышение точности
систем увеличением порядка астатизма

Астатическими называются системы, переходная функция которых в
разомкнутом виде имеет вид: . Степень
r
называется порядком астатизма.

В астатической системе обязательно имеются
интегрирующие звенья.

Кu/p– интегрирующее звено.

Рассмотрим установившееся состояние системы при g=g0, f1=f10, f2=f20. После
окончания переходного процесса
y=yуст. Это может быть только если Х2=0,
иначе интегратор вырабатывал бы возрастающий сигнал Х3. Х21Хуст.+
f10=0. Найдём отсюда   Хуст.=- f10/ К1.

В выражение не входит f2 и К2.
Ошибка астатической системы в режиме неподвижного состояния зависит лишь от
возмущающего воздействия, приложенного до интегрирующего звена. Поэтому
надо создавать системы в которых возмущение приложено после интегрирующего
звена, тогда ошибка равна нулю.

Рис

 Статическую систему ,не имеющую интегрирующих звеньев,
будем называть

Похожие материалы

  • Компенсация инерционности САУ. Методы повышения качества САУ с помощью программы МВТУ
  • Самонастраивающиеся САУ. Виды самонастраивающихся САУ. Самонастраивающиеся системы с моделью
  • Устойчивость линейных САУ. Основные понятия устойчивости. Решение линейного дифференциального уравнения для переходного процесса

Информация о работе

Уважаемый посетитель!

Чтобы распечатать файл, скачайте его (в формате Word).

Ссылка на скачивание — внизу страницы.

ОШИБКИ В СИСТЕМАХ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

— в общем случае это функционалы, характеризующие отклонение показателя качества работы (Ф) системы автоматического управления (САУ) от его заданного или экстремального значения Показатель качества определяется -эконом. требованиями к САУ и может представлять либо совокупность заданных (требуемых) значений регулируемых величин системы, напр., в системах автомат, регулирования (САР), либо некоторую функцию от этих величин (напр., в системах экстремального регулирования или в самонастраивающихся системах). В качестве меры отклонения обычно принимают разность , причем величины, входящие в это выражение, в общем случае векторные. О. в с. а. у. зависят от процесса управления, т. е. являются ф-цией времени Эта зависимость определяет два вида ошибок: динамические (при и установившиеся Динамические О. в

с. а. у. могут оцениваться по значениям, взятым в определенные моменты времени (напр., максимум ошибки в процессе управления), либо по интегральным критериям (напр., среднеквадратичная ошибка , где Т — период наблюдения).

О. в с. а. у. зависят прежде всего от структуры систем, а также от возмущений, действующих на объект управления, от ограниченности управляющего воздействия по величине и мощности, погрешностей в измерительных цепях и т. п. В связи с этим в линейных САУ выделяют вынужденную составляющую ошибки, определяемую действием возмущения на объект управления или задания, и свободную составляющую, определяемую начальным отклонением показателя качества работы САУ. Кроме того, рассматривают О. в с. а. у., связанные с действием случайных сигналов на объект управления и соответствующие оценки этих ошибок (например, математическое ожидание и дисперсия). В следящих САР вынужденная составляющая ошибки определяется изменением задания во времени . При этом помимо основной ошибки разности задания и регулируемой величины, называемой также ошибкой по положению, различают и ее производные по времени 1, 2-го и более высоких порядков, называемые соответственно ошибками по скорости, по ускорению и т. д. Для линейных следящих САР, если задание меняется медленно по сравнению с изменениями импульсной переходной ф-ции системы, вынужденная составляющая ошибки может быть представлена как линейная функция от задания и его производных по времени:

где — порядок той производной задания, которая имеет достаточно малую величину и изменением которой во времени можно пренебречь, коэффициенты ошибок, определяемые как

где передаточная функция системы по ошибке. Пользуясь формулами (1) и (2), можно по передаточной ф-ции систем, по ошибке и по виду зависимости определить характер изменения вынужденной составляющей ошибки. Например, в случае задания и системы с астатизмом 1-го порядка (один нулевой корень передаточной ф-ции) получают т. е. вынужденная составляющая ошибки равна нулю.

С помощью методов автоматического управления теории структура САУ может быть выбрана таким образом, чтобы минимизировать О. в с. а. у. при принятой ее оценке или минимизировать некоторый показатель, связанный с изменением ошибки во времени (напр., время переходного процесса). Путем рационального выбора структуры некоторые виды ошибок САУ могут быть сведены к нулю, напр., установившиеся ошибки в САР при интегральном регулирования законе или динамические ошибки, связанные с действием возмущений на объект управления в некоторых случаях инвариантных систем управления. См. также Астатизм -го порядка, Инвариантность систем автоматического управления.

Лит.: Современные методы проектирования систем автоматического управления. М., 1967; Ивахненко А. Г. Электроавтоматика. К., 1957 [библиогр. с. 440—442]; Воронов А. А. Основы теории автоматического управления, ч. 1. М. Л., 1965 [библиогр. с. 382—392]. Л. М. Бойчук.

    1. Виды ошибок регулирования и методы их снижения.

Прямые показатели качества подразделяются
на показатели качества динамического
и установившегося режимов.

Показателями качества динамических
режимов определяются из графика
переходного процесса и основными из
них являются (рис.1.42):

перерегулирование или забросσ,
равный максимуму отклонения значения
переходного процесса относительно
установившегося значения процессаhycm;

— время первой установки t1,
определяемое моментом первого пересечения
графиком переходного процесса
установившегося значенияhycm;

— время переходного процесса tПП,
определяемое момент окончательного
входа графика переходного процесса в
зону допуска, равную±5%от
установившегося значения процессаhycm.

Для всех названных динамических
показателей качества невозможно в общем
случае получить формулы для их расчета.
Это является существенным препятствием
для решения задач анализа и синтеза
САУ.

Показателями качества установившихся
режимов являются ошибки регулирования,
равные абсолютной величине разности
между заданным и фактическим значениями
сигналов САУ и которые в зависимости
от вида входного сигнала САУ подразделяются
на статические (εСТ) и
скоростные ошибки (εСК) и
ошибки (εm)
при отработке гармонического входного
сигнала.

Для
всех названных ошибок регулирования
можно в общем случае получить формулы
их расчета.

Из структурной схемы замкнутой САУ
(рис.1.43) следуют выражения передаточной
функции САУ Wε(p)по ошибке и изображенияε(р)ошибки
регулирования:

Расчет ошибки εmотработки гармонического входного
сигналаx=Xmsinωt
производится по формуле

где
— модуль комплексного числа.

Статическая (εСТ) и
скоростная (εСК) ошибки
равны установившимся значениям оригиналаи,
или в общем виде, по формуле.
Значениевычисляют через изображениеε(р)
по доказываемой в теории операционного
исчисления формуле предельного перехода,

(1.54)

Выражение передаточной функции
разомкнутой САУ в общем случае может
быть приведено к виду:

(1.55)

где К– общий коэффициент усиления
разомкнутой САУ:

ν— порядок астатизма САУ, причемνявляется целым неотрицательным
числом.

Для удобства вычислений по формуле
(1.54) подставим в нее выражение WРАЗ(р)из (1.55) и выполним предельный переход:

(1.56)

Статическая ошибка регулирования εСТрассчитывается при постоянном входном
сигналеx(t)=X=const,
а скоростнаяεСК— при
входном сигналеx=Vt,
изменяющемуся во времени с постоянной
скоростьюV=const.
Далее расчеты статической (εСТ)
и скоростной (εСК) ошибок
выполним раздельно.

Расчеты статической ошибки εСт регулирования

Входной сигнал x(t)=X=constи изображением его является.
В соответствии с (1.56) статическую ошибкуεСТследует вычислять по
формуле

(1.57)

1). Пусть в (1.57) значение порядка νастатизма САУ равно нулю:ν=0. Такая
САУ называется статической. Тогда
статическая ошибкаεСТбудет равна

В статической САУ имеется статическая
ошибка εСТ, которую можно
только уменьшить путем увеличения
общего коэффициента усиленияКразомкнутой САУ, но обратить в ноль ее
нельзя.

2). Пусть в (1.57) значение порядка νастатизма САУ равно 1:ν=1. Такая САУ
называется астатической 1-го порядка.
Тогда статическая ошибкаεСТбудет равна

В астатической САУ 1-го порядка статическая
ошибка εСТравна нулю,
т.е САУ является абсолютно точной. Можно
проверить, что при астатизме САУ выше1, статическая ошибка регулирования
всегда будет нулевой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Качество управления. Ошибка системы. Система автоматической стабилизации скорости вращения электродвигателя

Страницы работы

Фрагмент текста работы

6 Качество управления

Ошибка системы

Любая автоматическая система должна быть не
только устойчивой, но и достаточно точной в работе. В любой реальной системе
невозможно точное равенство задающего воздействия
g
и управляемой величины
y во всё время процесса управления. Возникает
ошибка системы
x=gy. Её можно представить в виде X=Xпуст.,
где
Xп – переходная ошибка, а Хуст. – это ошибка
системы по окончанию переходного процесса. Для определения
Xп приходится
либо находить корни характеристического уравнения, либо использовать критерии
качества, не требующие нахождения ошибки
Xп (частотный критерий качества, интегральный
критерий качества).

6.2 Ошибки САУ в установившемся режиме

Рассмотрим неподвижное состояние, когда g=const ,или f=const. Имеются 2 вида систем: статические и
астатические. Статической системой автоматического управления называется
система, переходная функция которой в разомкнутом состоянии при размыкании по
ошибке имеет вид:

В статических САУ интегрирующие звенья или отсутствуют.
или охвачены обратной связью, т.е. нет множителя
p
в знаменателе.

Рис

Определим ошибку Хуст., если g=g0, f=f0,
тогда            Хуст.=
g0yуст.                    (а),

Но                      yуст.2уст.К2
= (Х1уст.+
f02= (Хуст.К1+f0)K2               
(в).

 Подставим (в) в (а): Хуст.= g01К2
Хуст.2
f0. Хуст.(1+K1K2)= g0K2f0.

Пусть К1К2=К, тогда Хуст.=
(
g0/1+К)-( К2f0/1+К).

        Из выражения (в) следует, что для
уменьшения ошибки от задающего воздействия
g
необходимо увеличивать общий коэффициент передачи звеньев, стоящих до
возмущения (К1) и уменьшать для стоящих после возмущения(
K2). В
статических САУ ошибку от задающего воздействия легко ликвидировать
масштабированием. Этот метод рассмотрим позднее. Исследуем ошибку от
возмущающего воздействия.

Пример: Система автоматической стабилизации скорости вращения
электродвигателя.

Рис

Мн – момент нагрузки.

При изменении Мн меняется скорость вращения
ω, что приводит к изменению
Uтг (напряжения, вырабатываемого тахогенератором). При
правильном выборе знака обратной связи скорость вращения будет меняться
значительно меньше, чем при отсутствии обратной связи. Покажем, что в системе
будет установившаяся ошибка. При изменении момента нагрузки Мн
изменится и момент двигателя, потому что в установившемся режиме
Mдв = Мн.
Mдв меняется при изменении ω или Uдвиг., но Uдвиг. (Uд) при постоянном U может измениться
лишь при изменении
Uтг, т.е. Uд = UUтг. Поэтому при изменении Мн обязательно
меняется ω, т.е. появляется ошибка.

6.3 Оценка динамических
свойств САУ по переходной характеристике

1) Качество оценивается по перерегулированию

σ %= (ym-yуст.)/ yуст.·100%
.

σ %= |10-50|%.

Рис2) Быстродействие можно оценивать как время
переходного процесса от момента подачи скачка до момента
tп, начиная с
которого для всех
ttп: |y(t)- yуст. | ≤ Δyуст.Δyуст.=1-5%.

         6.4 Корневые оценки
динамических свойств САУ

     О динамических свойствах САУ можно судить по
расположению полюсов и нулей замкнутой системы управления.

Рис1-й вариант: имеется один вещественный полюс.

;  => .

Чем меньше Т, тем быстрее растёт сигнал на выходе.

РисПри приближении полюса к мнимой оси
быстродействие уменьшается.

2-й вариант: два комплексно сопряжённых полюса.

РисРис; .

Можно показать, что. Перерегулирование зависит от
параметра
этот параметр называется колебательностью. При равном удалении полюсов
от мнимой оси σ % больше в той системе, в которой полюсы дальше отстоят от
вещественной оси. Увеличение μ приводит к возрастанию перерегулирования, чтобы
колебательность системы не превышала заданной величины, полюса должны быть
расположены внутри области, в которой
tgφ=μ.

Рис     Если еще имеется и отрицательный нуль
(корень числителя) – это эквивалентно действию дифференцирующего звена и
колебательность возрастает с приближением нуля к мнимой оси. Добавление
вещественного полюса уменьшает перерегулирование и увеличивает время
переходного процесса. Если имеется несколько полюсов и нулей, но они достаточно
удалены от мнимой оси, то их влиянием можно пренебречь.

  Улучшение качества
правления

   Способы уменьшения ошибки

Общими методами уменьшения ошибки
(повышения точности) САР являются:

1. 
Увеличение
коэффициента усиления K
разомкнутой цепи

2. 
Повышение порядка
астатизма r

3. 
Применение
регулирования по производным

4. 
Включение
масштабирующих устройств на входе или выходе

6.5.1.1 Повышение
точности систем увеличением коэффициента усиления

Метод эффективен, широко применяется, но обычно
увеличение K приводит к
уменьшению запаса устойчивости

  Повышение точности
систем увеличением порядка астатизма

Астатическими называются системы, переходная функция которых в
разомкнутом виде имеет вид: . Степень
r
называется порядком астатизма.

В астатической системе обязательно имеются
интегрирующие звенья.

Кu/p– интегрирующее звено.

Рассмотрим установившееся состояние системы при g=g0, f1=f10, f2=f20. После
окончания переходного процесса
y=yуст. Это может быть только если Х2=0,
иначе интегратор вырабатывал бы возрастающий сигнал Х3. Х21Хуст.+
f10=0. Найдём отсюда   Хуст.=- f10/ К1.

В выражение не входит f2 и К2.
Ошибка астатической системы в режиме неподвижного состояния зависит лишь от
возмущающего воздействия, приложенного до интегрирующего звена. Поэтому
надо создавать системы в которых возмущение приложено после интегрирующего
звена, тогда ошибка равна нулю.

Рис

 Статическую систему ,не имеющую интегрирующих звеньев,
будем называть

Похожие материалы

  • Компенсация инерционности САУ. Методы повышения качества САУ с помощью программы МВТУ
  • Самонастраивающиеся САУ. Виды самонастраивающихся САУ. Самонастраивающиеся системы с моделью
  • Устойчивость линейных САУ. Основные понятия устойчивости. Решение линейного дифференциального уравнения для переходного процесса

Информация о работе

Уважаемый посетитель!

Чтобы распечатать файл, скачайте его (в формате Word).

Ссылка на скачивание — внизу страницы.

ОШИБКИ В СИСТЕМАХ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

— в общем случае это функционалы, характеризующие отклонение показателя качества работы (Ф) системы автоматического управления (САУ) от его заданного или экстремального значения Показатель качества определяется -эконом. требованиями к САУ и может представлять либо совокупность заданных (требуемых) значений регулируемых величин системы, напр., в системах автомат, регулирования (САР), либо некоторую функцию от этих величин (напр., в системах экстремального регулирования или в самонастраивающихся системах). В качестве меры отклонения обычно принимают разность , причем величины, входящие в это выражение, в общем случае векторные. О. в с. а. у. зависят от процесса управления, т. е. являются ф-цией времени Эта зависимость определяет два вида ошибок: динамические (при и установившиеся Динамические О. в

с. а. у. могут оцениваться по значениям, взятым в определенные моменты времени (напр., максимум ошибки в процессе управления), либо по интегральным критериям (напр., среднеквадратичная ошибка , где Т — период наблюдения).

О. в с. а. у. зависят прежде всего от структуры систем, а также от возмущений, действующих на объект управления, от ограниченности управляющего воздействия по величине и мощности, погрешностей в измерительных цепях и т. п. В связи с этим в линейных САУ выделяют вынужденную составляющую ошибки, определяемую действием возмущения на объект управления или задания, и свободную составляющую, определяемую начальным отклонением показателя качества работы САУ. Кроме того, рассматривают О. в с. а. у., связанные с действием случайных сигналов на объект управления и соответствующие оценки этих ошибок (например, математическое ожидание и дисперсия). В следящих САР вынужденная составляющая ошибки определяется изменением задания во времени . При этом помимо основной ошибки разности задания и регулируемой величины, называемой также ошибкой по положению, различают и ее производные по времени 1, 2-го и более высоких порядков, называемые соответственно ошибками по скорости, по ускорению и т. д. Для линейных следящих САР, если задание меняется медленно по сравнению с изменениями импульсной переходной ф-ции системы, вынужденная составляющая ошибки может быть представлена как линейная функция от задания и его производных по времени:

где — порядок той производной задания, которая имеет достаточно малую величину и изменением которой во времени можно пренебречь, коэффициенты ошибок, определяемые как

где передаточная функция системы по ошибке. Пользуясь формулами (1) и (2), можно по передаточной ф-ции систем, по ошибке и по виду зависимости определить характер изменения вынужденной составляющей ошибки. Например, в случае задания и системы с астатизмом 1-го порядка (один нулевой корень передаточной ф-ции) получают т. е. вынужденная составляющая ошибки равна нулю.

С помощью методов автоматического управления теории структура САУ может быть выбрана таким образом, чтобы минимизировать О. в с. а. у. при принятой ее оценке или минимизировать некоторый показатель, связанный с изменением ошибки во времени (напр., время переходного процесса). Путем рационального выбора структуры некоторые виды ошибок САУ могут быть сведены к нулю, напр., установившиеся ошибки в САР при интегральном регулирования законе или динамические ошибки, связанные с действием возмущений на объект управления в некоторых случаях инвариантных систем управления. См. также Астатизм -го порядка, Инвариантность систем автоматического управления.

Лит.: Современные методы проектирования систем автоматического управления. М., 1967; Ивахненко А. Г. Электроавтоматика. К., 1957 [библиогр. с. 440—442]; Воронов А. А. Основы теории автоматического управления, ч. 1. М. Л., 1965 [библиогр. с. 382—392]. Л. М. Бойчук.

В
любой реальной CАУ
невозможно точное равенство задающего
воздействия g
и управляемой величины y.
Ошибку САУ при этом вычислим согласно
уравнению ошибки как разность этих
воздействий, т.е.:

Учитывая
историю переходных процессов, ошибку
можно представить в виде двух составляющих:
установившейся (статической) и переходной
(динамической):

В
линейных САУ установившаяся (статическая)
ошибка определяется частным решением
её дифференциального уравнения, а
переходная (динамическая) ошибка –
решением однородного дифференциального
уравнения.

Таким
образом, установившуюся ошибку САУ в
неподвижном состоянии называют
статической, а ошибку при переходных
режимах – динамической.

Текущая
ошибка отработки переменного сигнала
называется динамической ошибкой САУ.
Динамическая ошибка системы изменяется
с течением времени. Она зависит от
структуры, параметров и характера
изменения воздействий САУ.

38 Повышение качества и синтез линейных сау

В
системе регулирования по отклонению
установившаяся [ошибка имеет три
составляющие:

(524)

|
где


ошибка воспроизведения задающего
воздействия

ошибка, вызываемая действием возмущений;

ошибка чувствительного элемента,
измеряющего рассогласование

Как
было показано в гл. 4, установившаяся
ошибка может [быть представлена в виде
ряда (4.3). При этом коэффициенты [ошибок
воспроизведения

вычисляют
по передаточной функции

замкнутой
системы для ошибки вос­произведения

Нужно,
заметить, что в статической системе

где
k

передаточный коэффициент разомкнутой
системна;

передаточный коэффициент прямой, цепи
от возмущения

до
выходной координаты у.

Следовательно,
уменьшение установившейся ошибки
постоянных значениях задающего
воздействия и возмущения достигается
увеличением передаточного коэффициента
разом­кнутой системы. Однако с
увеличением статической точности в
большинстве случаев уменьшаются запасы
устойчивости I
и при значительном увеличении k
система
становится неустойчи­вой.

Противоречие
между статической точностью и
устойчиво­стью проиллюстрировано на
рис. 5.9, где сплошными линиями показаны
логарифмические частотные характеристики
разом­кнутой системы с передаточной
функцией

при

Если
пере­даточный коэффициент увеличить
до k
60,
то ЛАЧХ при­нимает положение, показанное
пунктиром. Частота среза уве­личилась
и запас устойчивости по фазе уменьшился
с

до


Столь
малый запас по фазе совершенно недопустим.

При
повышении статической точности путем
увеличения передаточного коэффициента
k
разомкнутой
системы необхо­димы мероприятия для
обеспечения достаточного запаса
устой­чивости. Они будут рассмотрены
в следующем параграфе. Воз­можно,
вообще говоря, создание такой структуры
системы, ко­торая допускает неограниченное
увеличение передаточного коэффициента
k
разом­кнутой
цепи 121.

Другой
путь повы­шения статической точ­ности
— обеспечение астатизма. В астатической
системе младшие коэф­фициенты ошибки
имеют следующие значения:

где
k0

передаточный ко­эффициент разомкнутой
системы называемый в данном случае
добротно­стью системы по скорости
(или коэффициентом доб­ротности
по скорости). Таким образом, в астатической
системе отсутствует уста­новившаяся
ошибка от постоянного задающего
воздействия и постоянных возмущений.

Для
астатизма относительно возмущения
интегрирующее звено должно быть введено
до точки, в которой приложено возмущение
(рис. 5.10).

Влияние
интегрирующего звена на динамические
свойства системы

где
сплошными линиями пока­заны
логарифмические частотные характеристики
системы с пе­редаточной функцией
(5.26). При введении в разомкнутую цепь
этой системы интегрирующего звена
характеристики прини­мают положение,
показанное пунктиром. Фазочастотная
харак­теристика переместилась вниз
на —90°, а амплитудно-частот­ная
характеристика повернулась вокруг
точки а
по
направле­нию часовой стрелки . В
результате запас устойчивости по фазе
уменьшился с

до
недопустимо малого значения

Система
остается устойчивой, но переходный
процесс будет сильно колебательным.
Кроме того, уменьшилась ча­стота среза
и переходные процессы будут более
продолжитель­ными.

Однако
в других ситуациях введение интегрирующего
зве­на может не только не ухудшить, а
даже улучшить динамиче­ские свойства
системы. Пусть, например, посто­янные
времени системы с передаточной функ­цией
(5.26) имеют сле­дующие значения: Т1
=
= 0,05 с, Т2
=
0,0025 с и T3
= 0,001 с. Лога­рифмические частотные
характеристики разомк­нутой системы
показаны

При
введе­нии интегрирующего звена
характеристики принимают положе­ние,
показанное пунк­тирными линиями. В
данном случае ин­тегрирующее звено
уменьшило частоту среза, но запас
устой­чивости по фазе увеличился с

|до

.
Хотя быстродействие системы
уменьшилось, но уменьшилась и
колебательность.

Таким
образом, при повышении статической
точности путем введения интегрирующего
звена могут оказаться необхо­димыми
мероприятия по сохранению запасов
устойчивости САУ.

Значительно
лучшие результаты получают при получении
астатизма с помощью изодромного звена,
т. е- звена с передаточной функцией


постоянная
времени изодрома.

Если
постоянная времени

достаточно
велика, то запас устойчивости может
быть сохранен неизменным. Уменьшение
передаточного коэффициента разомкнутой
системы должно быть скомпенсировано
увеличением коэффициента усиления
усилителя. Следует учитывать, что при
большом значении

могут
увеличиться старшие коэффициенты
ошибки.

Астатизм
САУ относительно задающего воздействия
можно обеспечить более простыми
способами: неединичной обрат­ной
связью и масштабированием [3).

Структурная
схема системы с неединичной обратной
свя­зью показана на рис. 5.13, а.
В
установившемся режиме регу­лируемая
координата связана с постоянным задающим
воздей­ствием соотношением

(5.27)

где
kn

передаточный коэффициент прямой цепи
системы.

Если
выполнить основную обратную связь
системы с коэффициентом

и
система относитель­но задающего
воздействия будет астатической.Структурная
схема системы масштабированием входной
(величины показана на рис. 5.13, б.
Ее
особенность — наличие

усилительного
звена с передаточным ко­эффициентом
m
на входе. В установив­шемся режиме

где
k

передаточный коэффициент разомкнутой
системы.

При
/л = 1 -f-
УЬ
получаем
у
=
g0
и
система является аста­тической
относительно задающего воздействия.

Недостаток
этих способов в том, что астатизм
обеспечива­ется только при сохранении
указанных соотношений между пе­редаточными
коэффициентами. Неточное определение
переда­точного коэффициента какого-либо
элемента системы и его изменение в
процессе эксплуатации ведут к появлению
стати­ческой ошибки. Астатизм,
достигнутый введением интегрирую­щего
или изодромного звена, сохраняется и
при изменении па­раметров системы.
Однако нужно иметь в виду, что введение
двух интегрирующих звеньев в систему,
состоящую из усили­тельных, апериодических
и колебательных звеньев, сделает ее
структурно-неустойчивой. Возможно
обеспечение астатизма и более высокого
порядка. При этом из-за введения большого
числа интегрирующих или изодромных
звеньев и мероприятий, обеспечивающих
требуемые динамические свойства,
структура САУ значительно усложняется.

Компенсация
внешнего воздействия (обеспечение
инвари­антности). Рассмотренные выше
способы улучшения статиче­ских и
динамических свойств системы связаны
лишь с изме­нениями параметров
элементов САУ и структуры ее отдельных
участков, но при этом не затрагивают
принципа действия си­стемы.

Помимо
принципа регулирования по отклонению
сущест­вует принцип регулирования
по внешнему воздействию. Значительный
эффект дает их одновременное ис­пользование.
В этом случае системы называются
комбиниро­ванными. Кроме замкнутого
контура они имеют дополнитель­ную
цепь влияния внешнего воздействия —
возмущения или задающего.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

The deviation of the output of control system from desired response during steady state is known as steady state error. It is represented as $e_{ss}$. We can find steady state error using the final value theorem as follows.

$$e_{ss}=lim_{t to infty}e(t)=lim_{s to 0}sE(s)$$

Where,

E(s) is the Laplace transform of the error signal, $e(t)$

Let us discuss how to find steady state errors for unity feedback and non-unity feedback control systems one by one.

Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity negative feedback.

Steady State Negative Error

Where,

  • R(s) is the Laplace transform of the reference Input signal $r(t)$
  • C(s) is the Laplace transform of the output signal $c(t)$

We know the transfer function of the unity negative feedback closed loop control system as

$$frac{C(s)}{R(s)}=frac{G(s)}{1+G(s)}$$

$$Rightarrow C(s)=frac{R(s)G(s)}{1+G(s)}$$

The output of the summing point is —

$$E(s)=R(s)-C(s)$$

Substitute $C(s)$ value in the above equation.

$$E(s)=R(s)-frac{R(s)G(s)}{1+G(s)}$$

$$Rightarrow E(s)=frac{R(s)+R(s)G(s)-R(s)G(s)}{1+G(s)}$$

$$Rightarrow E(s)=frac{R(s)}{1+G(s)}$$

Substitute $E(s)$ value in the steady state error formula

$$e_{ss}=lim_{s to 0} frac{sR(s)}{1+G(s)}$$

The following table shows the steady state errors and the error constants for standard input signals like unit step, unit ramp & unit parabolic signals.

Input signal Steady state error $e_{ss}$ Error constant

unit step signal

$frac{1}{1+k_p}$

$K_p=lim_{s to 0}G(s)$

unit ramp signal

$frac{1}{K_v}$

$K_v=lim_{s to 0}sG(s)$

unit parabolic signal

$frac{1}{K_a}$

$K_a=lim_{s to 0}s^2G(s)$

Where, $K_p$, $K_v$ and $K_a$ are position error constant, velocity error constant and acceleration error constant respectively.

Note − If any of the above input signals has the amplitude other than unity, then multiply corresponding steady state error with that amplitude.

Note − We can’t define the steady state error for the unit impulse signal because, it exists only at origin. So, we can’t compare the impulse response with the unit impulse input as t denotes infinity.

Example

Let us find the steady state error for an input signal $r(t)=left( 5+2t+frac{t^2}{2} right )u(t)$ of unity negative
feedback control system with $G(s)=frac{5(s+4)}{s^2(s+1)(s+20)}$

The given input signal is a combination of three signals step, ramp and parabolic. The following table shows the error constants and steady state error values for these three signals.

Input signal Error constant Steady state error

$r_1(t)=5u(t)$

$K_p=lim_{s to 0}G(s)=infty$

$e_{ss1}=frac{5}{1+k_p}=0$

$r_2(t)=2tu(t)$

$K_v=lim_{s to 0}sG(s)=infty$

$e_{ss2}=frac{2}{K_v}=0$

$r_3(t)=frac{t^2}{2}u(t)$

$K_a=lim_{s to 0}s^2G(s)=1$

$e_{ss3}=frac{1}{k_a}=1$

We will get the overall steady state error, by adding the above three steady state errors.

$$e_{ss}=e_{ss1}+e_{ss2}+e_{ss3}$$

$$Rightarrow e_{ss}=0+0+1=1$$

Therefore, we got the steady state error $e_{ss}$ as 1 for this example.

Steady State Errors for Non-Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having nonunity negative feedback.

Non Unity

We can find the steady state errors only for the unity feedback systems. So, we have to convert the non-unity feedback system into unity feedback system. For this, include one unity positive feedback path and one unity negative feedback path in the above block diagram. The new block diagram looks like as shown below.

Unity Negative State

Simplify the above block diagram by keeping the unity negative feedback as it is. The following is the simplified block diagram.

Simplified Negative Diagram

This block diagram resembles the block diagram of the unity negative feedback closed loop control system. Here, the single block is having the transfer function $frac{G(s)}{1+G(s)H(s)-G(s)}$ instead of $G(s)$. You can now calculate the steady state errors by using steady state error formula given for the unity negative feedback systems.

Note − It is meaningless to find the steady state errors for unstable closed loop systems. So, we have to calculate the steady state errors only for closed loop stable systems. This means we need to check whether the control system is stable or not before finding the steady state errors. In the next chapter, we will discuss the concepts-related stability.

1. Точность САУ

2. План

1 Общие положения
2 Понятие о типовых режимах САУ
3 Теорема о предельном значении оригинала и
методика определения установившихся
ошибок
4 Ошибки статических и астатических САУ в
типовых режимах
5 Ошибки САУ при произвольных входных
сигналах (коэффициенты ошибок)
6 Методы повышения точности САУ

3. 1 Общие положения

Точность является важнейшим критерием
качества систем. В настоящее время
практически все многочисленные
элементы любых технических систем
изготавливаются автоматически т.е. с
помощью САУ. Таким образом точность
САУ определяет качество продукции,
товаров, их надежность,
энергопотребление, долговечность и т.д.
и т.п.

4. 2 Понятие о типовых режимах САУ

Точность САУ принято оценивать по величине
ошибок в типовых режимах. Типовыми
называются режимы просто описываемые
математически и имеющие четкий
физический смысл. К ним относятся:
— режим покоя, когда х(t)=const;
— режим линейно-нарастающих сигналов, когда
х(t)=a*t, где а=const;
— режим гармонических входных сигналов,
когда х(t)=A*sinωt.

5.

ε
Итак, нам необходимо вычислить
установившуюся ошибку ε(t) при t→∞,
при типовых режимах и по ней можно
будет судить о точности САУ.

6. 3 Теорема о предельном значении оригинала и методика определения установившихся ошибок

Сформулируем для этого теорему о
предельном значении оригинала:
limX(t)=limX(s),
t→ ∞
s→ 0
т.е. предел оригинала при t→∞ равен
пределу изображения по Лапласу при
s→0.

7.

Передаточная функция САУ по ошибке:
( s)
1
F (s)
x( s ) 1 w p ( s )
Итак, чтобы определить установившуюся (при t→ ∞)
ошибку САУ нужно:
— Найти x(s) зная x(t)
— Определить Fε(s)
— Найти ε(s)= X(s) * Fε (s)
— Определить εуст= lim ε(s)
S→0

8. 4 Ошибки статических и астатических САУ в типовых режимах

Рассмотрим ошибки САУ в типовых режимах:
1. Ошибка САУ в покое (статическая ошибка)
X(t)=X0=const X(s)=X0
K
Пусть W p ( s )
— статическая
(T1S 1)(T2 S 1)
САУ, поскольку в знаменателе нет
множителя S, т.е. интегрирующего элемента
в системе

9.

По теореме о предельном значении аргумента
1
ст lim (t ) lim (s) (s) * F (s) (s) *
t
s 0
1 Wp ( s)
Подставляя Wp(s) в (1) получим:
X 0 (T1S 1)(T2 S 1)
X0
ст lim
s 0 (T S 1)(T S 1) K
1 K
1
2
(1)

10.

Статическая ошибка в
статической САУ в
(1+К) раз меньше
входной величины.
y(t)
X0
εст
t

11.

Пусть теперь
— астатическая САУ (есть
интегратор, т.е.
множитель S в знаменателе передаточной
функции)
K
W p ( s)
S (T1S 1)
ст
X 0 *1
X 0 S (TS 1)
lim (s) lim
lim
0
s 0
s 0 1 W ( s )
s 0 K S (TS 1)
p

12.

Таким образом,
статическая ошибка
в астатической САУ
равна 0
y(t)
X0
εст=0
t

13.

2. Второй типовой режим — движение с постоянной
скоростью (скоростная ошибка)
x(t)=at
a=cost
x( s)
a
s
Пусть:
K
W p ( s)
— статическая САУ
(T1S 1)(T2 S 1)
Тогда:
a (T1S 1)(T2 S 1)
(
t
)
lim
t a s 0 s K (T1S 1)(T2 S 1)

14.

x(t)=at
εα→∞
y(t)
α
t
tgα=a
Ошибка в статической
САУ при линейнонарастающем входном
сигнале x(t)=at
возрастает до ∞.
Т.о. статические САУ в
таком режиме не
работоспособны.

15.

Пусть теперь
K
Wp ( s)
S (TS 1)
— астатическая САУ
Тогда
S ( ST 1)
a
a
*
t a ( t ) lims 0(s) lim
s 0 s
K S (TS 1) K

16.

a
a
K
x(t)
y(t)
t
Т.о. в астатических
САУ при x(t)=at
a=const
устанавливается
ошибка в “К” раз
меньше чем “a”, т.е.
они работоспособны
в таких режимах.

17. 3. Третий режим — гармонических входных сигналов.

Пусть x(t)=xmsinωkt
xm,ωk – амплитуда и
частота “качки”.
x(s)
ε(s)
Wp(S)
y(s)

18. Определим амплитуду εm ошибки САУ в этом режиме.

Для этого найдем:
1
( s)
F ( s)
1 W p ( s ) x( s )
— ПФ САУ по ошибке
Подставим S=jωk
X ( j k )
( j k )
1 Wp ( j k )
(1)

19. Выражение (1) справедливо и для амплитуд, т.е.

m
xm
Xm
1 W p ( j k ) W p ( j k )
Откуда следует:
W p ( j k )
Ак
20 lg
xm
xm
(2)
m
Прологарифмируем (2):
L(ω)
m
ω
ω=ωk
Ак – контрольная точка
20 lg W p ( j k ) 20 lg
xm
m
(3)

20.

Из (3) следует, что САУ будет иметь амплитуду
ошибки не более допустимой εдоп, если
20 lg W p ( j k ) L( k ) 20 lg
xm
доп

21. Т.о. чтобы ошибка САУ в гармоническом режиме не превышала допустимой εдоп необходимо:

1. Определить положение контрольной точки
Ак с координатами:
xm
ω=ωк и 20 lg
доп
2. Обеспечить прохождение L(ω) выше
контрольной точки Ак

22. 5 Ошибки САУ при произвольных входных сигналах (коэффициенты ошибок)

Пусть на вход САУ действует сигнал x(t)
произвольной формы. Чтобы определить
ошибку ε(t) в этом случае найдем вначале ее
изображение.
x(s)
ε(s)
Wp(S)
y(s)

23.

( s)
Поскольку:
1
F ( s)
x( s ) 1 W p ( s )
(1)
То:
x( s )
( s)
1 Wp ( s)
(2)
Разложим далее Fε(s) по возрастающим
степеням S в ряд, тогда (2) можно записать в
виде:
C2 2 C3 3
( s ) C0 C1S S S x( s )
2!
3!
(3)

24.

При нулевых начальных условиях
S p
d
dt
и переходя в (3) к оригиналам можно записать
2
dx(t ) C2 d x(t )
(t ) C0 x(t ) C1 *
*
2
dt 2! dt
Величины С0, С1, С2 … называются
коэффициентами ошибок САУ.
(4)

25. Чтобы определить ошибку САУ при произвольной форме входного сигнала x(t) необходимо:

1. Определить передаточную функцию
САУ по ошибке Fε(s);
2. Разложить в ряд Fε(s) путем деления
ее числителя на знаменатель и найти
коэффициенты С0, С1, С2 …;
3. Подставить коэффициенты ошибок в
(4) и найти установившуюся ошибку
ε(t).

26. Пример

Найти ошибку в САУ при:
Если:
bt 2
x(t ) x0 at
2
K
W p (s)
S (T1S 1)(T2 S 1)

27. Решение:

1.Найдем
1
F (s)
1 Wp ( s)
1
S (T1S 1)(T2 S 1)
T1T2 S 3 (T1 T2 ) S 2 S
F ( s)
1 W p ( s) K S (T1S 1)(T2 S 1) T1T2 S 3 (T1 T2 ) S 2 S K

28. 2. Разложим (1) в степенной ряд путем деления числителя на знаменатель

S (T1 T2 ) S T1T2 S
2


3
1
1
S S 2 * (T1 T2 ) S 3 …
K
K
1 2
T T 3
T1 T2 S T1T2 1 2 S …
K
K
1 2
T1 T2 S …
K
K S (T1 T2 )S 2 T1T2 S 3
1 2
1 1
S * T1 T2 S
K
K K

29.

Ограничимся первыми тремя членами
ряда, т.к. входной сигнал X(t) имеет
лишь три не нулевых первых
производных.

30.

3. Итак:
1
1 2
T1T2
F ( s ) S
2 S
K
K
K
(5)
Сопоставляя (5) и (4) имеем коэффициенты
ошибок:
T1T2
1
1
С0=0
C2 2
2 (6)
C1
K
K
K

31.

4. Определим далее производные от X(t):
bt 2
x(t ) x0 at
2
dx(t )
a bt
dt
d 2 x(t )
b
dt
(7)

32.

5. Подставляя коэффициенты С0, С1, С2… и
производные (7) в (4) получим:
1
1
T1T2
(t ) * (a bt )
2 *b
K
K
K
Т.е. ошибка с течением времени будет
нарастать до ∞ из-за члена “bt”.

33. 6 Методы повышения точности САУ

Анализируя выражения для
коэффициентов ошибок отметим, что:
1. Все коэффициенты обратнопропорциональны коэффициенту К –
усиления системы;
2. Чем выше порядок астатизма “v” тем
большее количество первых
коэффициентов ошибок равны 0

34. ВНИМАНИЕ

Порядок астатизма “v” определяется числом
интегрирующих звеньев в контуре системы.
Формально “v” равно показателю степени
множителя S в знаменателе передаточной
функции wp.
N ( s)
wp v
S M ( s)

35. 1. Первый способ повышения точности САУ – увеличение К

Т.о. самым универсальным способом
повышения точности САУ являются
увеличение коэффициента К усиления
системы. При этом все коэффициенты
ошибок уменьшаются, а это означает, что
система во всех режимах работы будет иметь
меньшие ошибки. Однако этот способ
снижает запасы устойчивости системы и рано
или поздно приводит к полной потере
устойчивости. Это можно показать на
примере критерия Найквиста.

36.

Im
K2>K1
К1
К2
-1;j0
wp(jω)
Re

37. 2. Способ повышения точности САУ – путем увеличения астатизма “v”

Этот способ исключает первые коэффициенты в
ряду ошибок. Действительно:
v=0 (статическая САУ)
Все коэффициенты не
равны 0, т.е. с0≠0 с1≠0
с2≠0 …, т.е. статическая
система в любых
режимах работы, в т.ч. и
в покое будет иметь
ошибки

38.

v=1 (астатическая САУ
с астатизмом
первого порядка)
с0=0 с1≠0 с2≠0 …, т.е.
такая система не
будет иметь ошибки
в режиме покоя.
v=2 (астатическая САУ
с астатизмом
второго порядка)
с0=0 с1=0 с2≠0 с3≠0 …,
такая система не
будет иметь ошибок
не только в режиме
покоя, но и при
линейнонарастающем
сигнале

39.

К сожалению, этот способ также снижает
запасы устойчивости САУ. Действительно:
Im
v=2
Re
-1;j0
v=0
v=1
По критерию Найквиста системы при v=0, v=1
могут быть как устойчивыми так и не
устойчивыми, но при v=2 они становятся не
устойчивыми при любых коэффициентах К.

40. 3. Повышение точности САУ с использованием принципов комбинированного управления.

Принцип комбинированного управления
состоит в том, что в дополнение к принципу
обратной связи реализуется принцип
управления по возмущению. V(t)
Измеритель
x(t)
y(t)
Регулятор
Объект

41.

Здесь сочетается (комбинируются) оба
названных принципа:
— Управление по возмущению (за счет
измерения возмущения v(t) и выработки
дополнительного управляющего сигнала
компенсирующего действия возмущения);
— Управление по отклонению или принцип
обратной связи реализуется за счет главной
отрицательной обратной связи и сигнала
рассогласования и регулятора.

42.

Рассмотрим следящую систему с
комбинированным управлением и найдем
передаточную функцию обычной системы
эквивалентной по точности.
W3(S)
y(s)
x(s)
W1(s)
W2(S)

Wэ(S)

43.

Для этого приравняем их передаточные функции.
wэ (s)
y(s) w1 (s)w2 (s)
w2 (s)
F (s)
w3 (s)
x(s) 1 w1 (s)w2 (s)
1 w1 (s)w2 (s) 1 wэ (s)
(1)

44.

Из (1) после некоторых преобразований можно
получить:
w1 ( s) w3 ( s)
wэ ( s) w2 ( s) *
1 w3 ( s) w2 ( s)
(2)
Как видно из последнего выражения, при:
1
w3 ( s )
w2 ( s )
wэ(s)=∞
Условие (3) называется условием полной
инвариантности.
(3)

45.

Это означает, что ошибка рассматриваемой
комбинированной следящей системы будет
равна 0 в любых режимах работы поскольку:
( s)
1
F ( s )
0
x( s ) 1 wэ ( s )

46.

Достоинство принципа комбинированного
управления в том, что он не изменяет
(не ухудшает) устойчивости и качества
переходных процессов. Однако,
реализовать точно условие полной
инвариантности практически
невозможно.

47. ПРИМЕР

Пусть:
K
w2 ( s)
S (T1S 1)(T2 S 1)
Найдем:
1
S (T1S 1)(T2 S 1) 1
T1 T2 2 T1T2 3
w3 ( s)
S
S
S
w2 ( s)
K
K
K
K

48.

Структурная схема такой комбинированной
следящей системы имеет вид:
III
II
I
T1T2
S3
K
T1 T2 2
S
K
1
S
K
x(s)
w1(s)
K
S (T1S 1)(T2 S 1)
y(s)

49.

Итак, чтобы точно реализовать условие полной
инвариантности в нашем примере необходимо:
• реализовать канал I (тахогенератор)
• реализовать канал II (это 2-ая производная от угла)
• реализовать канал III (это 3-ая производная от угла)
Точно это сделать практически нельзя. Кроме того, в
реальных САУ имеется множество нелинейностей,
которые мы не учитывали при выводе условия
полной инвариантности.
Поэтому часто используют частично-инвариантные
САУ, т.е. САУ не имеющие ошибок лишь в некоторых
режимах.

Понравилась статья? Поделить с друзьями:
  • Ошибка сомнительного позиционирования означает что
  • Ошибка солярис р0304 хендай солярис
  • Ошибка ф29 протерм пантера
  • Ошибка управления равна
  • Ошибка ф28 протерм пантера