Ошибка рассогласования тау

Публикую первую главу лекций по теории автоматического управления, после которых ваша жизнь уже никогда не будет прежней.

Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.

Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика привествуется.

1. Основные понятия теории управления техническими системами

1.1. Цели, принципы управления, виды систем управления, основные определения, примеры

Развитие и совершенствование промышленного производства (энергетики, транспорта, машиностроения, космической техники и т.д.) требует непрерывного увеличения производительности машин и агрегатов, повышения качества продукции, снижения себестоимости и, особенно в атомной энергетике, резкого повышения безопасности (ядерной, радиационной и т.д.) эксплуатации АЭС и ядерных установок.

Реализация поставленных целей невозможна без внедрения современных систем управления, включая как автоматизированные (с участием человека-оператора), так и автоматические (без участия человека-оператора) системы управления (СУ).

Определение: Управление – это такая организация того или иного технологического процесса, которая обеспечивает достижение поставленной цели.

Теория управления является разделом современной науки и техники. Она базируется (основывается) как на фундаментальных (общенаучных) дисциплинах (например, математика, физика, химия и т.д.), так и на прикладных дисциплинах (электроника, микропроцессорная техника, программирование и т.д.).

Любой процесс управления (автоматического) состоит из следующих основных этапов (элементов):

  • получение информации о задаче управления;
  • получение информации о результате управления;
  • анализ получаемой информации;
  • выполнение решения (воздействие на объект управления).

Для реализации Процесса Управления система управления (СУ) должна иметь:

  • источники информации о задаче управления;
  • источники информации о результатах управления (различные датчики, измерительные устройства, детекторы и т.д.);
  • устройства для анализа получаемой информации и выработки решения;
  • исполнительные устройства, воздействующие на Объект Управления, содержащие: регулятор, двигатели, усилительно-преобразующие устройства и т.д.

Определение: Если система управления (СУ) содержит все перечисленные выше части, то она является замкнутой.

Определение: Управление техническим объектом с использованием информации о результатах управления называется принципом обратной связи.

Схематично такая система управления может быть представлена в виде:


Рис. 1.1.1 — Структура системы управления (СУ)

Если система управления (СУ) имеет структурную схему, вид которой соответствует рис. 1.1.1, и функционирует (работает) без участия человека (оператора), то она называется системой автоматического управления (САУ).

Если СУ функционирует с участием человека (оператора), то она называется автоматизированной СУ.

Если Управление обеспечивает заданный закон изменения объекта во времени независимо от результатов управления, то такое управление совершается по разомкнутому циклу, а само управление называется программным управлением.

К системам, работающим по разомкнутому циклу, относятся промышленные автоматы (конвейерные линии, роторные линии и т.д.), станки с числовым программным управлением (ЧПУ): см. пример на рис. 1.1.2.

Рис.1.1.2 — Пример программного управления

Задающее устройство может быть, например, и “копиром”.

Поскольку в данном примере нет датчиков (измерителей), контролирующих изготавливаемую деталь, то если, например, резец был установлен неправильно или сломался, то поставленная цель (изготовление детали) не может быть достигнута (реализована). Обычно в системах подобного типа необходим выходной контроль, который будет только фиксировать отклонение размеров и формы детали от желаемой.

Автоматические системы управления подразделяются на 3 типа:

  • системы автоматического управления (САУ);
  • системы автоматического регулирования (САР);
  • следящие системы (СС).

САР и СС являются подмножествами САУ ==> ${САР} \subset{САУ}; {СС} \subset {САУ}$.

Определение: Автоматическая система управления, обеспечивающая постоянство какой-либо физической величины (группы величин) в объекте управления называется системой автоматического регулирования (САР).

Системы автоматического регулирования (САР) — наиболее распространенный тип систем автоматического управления.

Первый в мире автоматический регулятор (18-е столетие) – регулятор Уатта. Данная схема (см. рис. 1.1.3) реализована Уаттом в Англии для поддержания постоянной скорости вращения колеса паровой машины и, соответственно, для поддержания постоянства скорости вращения (движения) шкива (ремня) трансмиссии.

В данной схеме чувствительными элементами (измерительными датчиками) являются “грузы” (сферы). «Грузы» (сферы) также “заставляют” перемещаться коромысло и затем задвижку. Поэтому данную систему можно отнести к системе прямого регулирования, а регулятор — к регулятору прямого действия, так как он одновременно выполняет функции и “измерителя” и “регулятора”.

В регуляторах прямого действия дополнительного источника энергии для перемещения регулирующего органа не требуется.

Рис. 1.1.3 — Схема автоматического регулятора Уатта

В системах непрямого регулирования необходимо присутствие (наличие) усилителя (например, мощности), дополнительного исполнительного механизма, содержащего, например, электродвигатель, серводвигатель, гидропривод и т.д.

Примером САУ (системы автоматического управления), в полном смысле этого определения, может служить система управления, обеспечивающая вывод ракеты на орбиту, где управляемой величиной может быть, например, угол между осью ракеты и нормалью к Земле ==> см. рис. 1.1.4.а и рис. 1.1.4.б

1.2. Структура систем управления: простые и многомерные системы

В теории управления техническими системами часто бывает удобно систему разделить на набор звеньев, соединенных в сетевые структуры. В простейшем случае система содержит одно звено, на вход которого подается входной воздействие (вход), на входе получается отклик системы (выход).

В теории Управления Техническими Системам используют 2 основных способа представления звеньев систем управления:

— в переменных “вход-выход”;

— в переменных состояния (более подробно см. разделы 6…7).

Представление в переменных “вход-выход” обычно используется для описания относительно простых систем, имеющих один “вход” (одно управляющее воздействие) и один “выход” (одна регулируемая величина, см. рисунок 1.2.1).

Рис. 1.2.1 – Схематическое представление простой системы управления

Обычно такое описание используется для технически несложных САУ (систем автоматического управления).

В последнее время широкое распространение имеет представление в переменных состояния, особенно для технически сложных систем, в том числе и для многомерных САУ. На рис. 1.2.2 приведено схематичное представление многомерной системы автоматического управления, где u1(t)…um(t) — управляющие воздействия (вектор управления), y1(t)…yp(t) — регулируемые параметры САУ (вектор выхода).

Рис. 1.2.2 — Схематическое представление многомерной системы управленияя

Рассмотрим более детально структуру САУ, представленную в переменных “вход-выход” и имеющую один вход (входное или задающее, или управляющее воздействие) и один выход (выходное воздействие или управляемая (или регулируемая) переменная).

Предположим, что структурная схема такой САУ состоит из некоторого числа элементов (звеньев). Группируя звенья по функциональному принципу (что звенья делают), структурную схему САУ можно привести к следующему типовому виду:


Рис. 1.2.3 — Структурная схема системы автоматического управления

Символом ε(t) или переменной ε(t) обозначается рассогласование (ошибка) на выходе сравнивающего устройства, которое может “работать” в режиме как простых сравнительных арифметических операций (чаще всего вычитание, реже сложение), так и более сложных сравнительных операций (процедур).

Так как y1(t) = y(t)*k1, где k1 — коэффициент усиления, то ==>
ε(t) = x(t) — y1(t) = x(t) — k1*y(t)

Задача системы управления состоит в том (если она устойчива), чтобы “работать” на уничтожение рассогласования (ошибки) ε(t), т.е. ==> ε(t) → 0.

Следует отметить, что на систему управления действуют как внешние воздействия (управляющее, возмущающее, помехи), так и внутренние помехи. Помеха отличается от воздействия стохастичностью (случайностью) своего существования, тогда как воздействие почти всегда детерминировано.

Для обозначения управляющего (задающего воздействие) будем использовать либо x(t), либо u(t).

1.3. Основные законы управления

Если вернуться к последнему рисунку (структурная схема САУ на рис. 1.2.3), то необходимо “расшифровать” роль, которую играет усилительно-преобразующее устройство (какие функции оно выполняет).

Если усилительно-преобразующее устройство (УПУ) выполняет только усиление (или ослабление) сигнала рассогласования ε(t), а именно: $\varepsilon_1(t)=\alpha \cdot \varepsilon(t)$, где $ \alpha $– коэффициент пропорциональности (в частном случае $ \alpha $ = Const), то такой режим управления замкнутой САУ называется режимом пропорционального управления (П-управление).

Если УПУ выполняет формирование выходного сигнала ε1(t), пропорционального ошибке ε(t) и интегралу от ε(t), т.е. $\int_{0}^{t} \varepsilon(t) dt $, то такой режим управления называется пропорционально-интегрирующим (ПИ-управление). ==> $\varepsilon_1(t)=\alpha \cdot \varepsilon(t) + b \cdot \int_{0}^{t} \varepsilon(t) dt$, где b – коэффициент пропорциональности (в частном случае b = Const).

Обычно ПИ-управление используется для повышения точности управления (регулирования).

Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t) и ее производной, то такой режим называется пропорционально-дифференцирующим (ПД-управление): ==> $\varepsilon_1(t)=\alpha \cdot \varepsilon(t) + c \cdot \frac{d \varepsilon(t) }{dt} $

Обычно использование ПД-управления повышает быстродействие САУ

Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t), ее производной, и интегралу от ошибки ==> $\varepsilon_1(t)=\alpha \cdot \varepsilon(t) + b \cdot \int_{0}^{t} \varepsilon(t) + c \cdot \frac{d \varepsilon(t) }{dt} $, то такой режим называетсято такой режим управления называется пропорционально-интегрально-дифференцирующим режимом управления (ПИД-управление).

ПИД-управление позволяет зачастую обеспечить “хорошую” точность управления при “хорошем” быстродействии

1.4. Классификация систем автоматического управления

1.4.1. Классификация по виду математического описания

По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).

Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):

1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:

$a_n \cdot y^{(n)} (t)+ a_{n-1} \cdot y^{(n-1)}(t)+ ...+a_1 \cdot y'(t) + a_0 \cdot y(t) =$

$=b_m \cdot x^{(m)}(t) +b_{m-1} \cdot x^{(m-1)}(t)+ ...+b_1\cdot x'(t) + b_0 \cdot x(t); (1.4.1)$

где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).

Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:

$L(p)\cdot y(t)=N(p)\cdot x(t), (1.4.2)$

где, p = d/dt — оператор дифференцирования; L(p), N(p) — соответствующие линейные дифференциальные операторы, которые равны:

$L(p) = a_n \cdot p^n + a_{n-1} \cdot p^{n-1}+...+a_1 \cdot p+ a_0; a_i (1.4.2.a)$

$N(p) = b_n \cdot p^n + b_{n-1} \cdot p^{n-1}+...+b_1 \cdot p+ b_0; b_i (1.4.2.б)$

2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:

$a_n(t) \cdot y^{(n)} (t)+ a_{n-1}(t) \cdot y^{(n-1)}(t)+ ...+a_1(t) \cdot y'(t) + a_0(t) \cdot y(t) =$

$=b_m(t) \cdot x^{(m)}(t) +b_{m-1}(t) \cdot x^{(m-1)}(t)+ ...+b_1(t)\cdot x'(t) + b_0(t) \cdot x(t); (1.4.3)$

В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).

3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:

$y((k+1)\cdot \Delta t) = f(y(k \cdot \Delta t)), y((k-1)\cdot \Delta t)...$

$...x((k+1) \cdot \Delta t), x(k \cdot \Delta t), x((k-1) \cdot \Delta t)...), (1.4.4)$

где f(…) – линейная функция аргументов; k = 1, 2, 3… — целые числа; Δt – интервал квантования (интервал дискретизации).

Уравнение (1.4.4) можно представить в «компактной» форме записи:

$y^{[k+1]} = f(y^{[k]},y^{[k-1]},y^{[k-2]},...x^{[k+1]},x^{[k]},x^{[k-1]},x^{[k-2]}...). (1.4.5)$

Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).

4) Линейные системы автоматического управления с запаздыванием:

$L(p)\cdot y(t)=N(p)\cdot x(t-\tau), (1.4.6)$

где L(p), N(p) — линейные дифференциальные операторы; τ — время запаздывания или постоянная запаздывания.

Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:

$y(t) = x(t-\tau );$

а графическая иллюстрация его свойств привдена на рис. 1.4.1

Рис. 1.4.1 — Графики входа и выхода звена идеального запаздывания

5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. ==> «Абстрактный» пример такого описания:

$\frac{\partial y(x,t)}{\partial t} + a \cdot \frac{\partial y(x,t)}{\partial x} + b \cdot \frac{\partial^2y(x,t)}{\partial x^2} = Q(x,t) - P(x,t); (1.4.7)$

Система уравнений (1.4.7) описывает динамику линейно распределенной САУ, т.е. регулируемая величина зависит не только от времени, но и от одной пространственной координаты.
Если система управления представляет собой «пространственный» объект, то ==>

$\frac{\partial y(t,\vec{r})}{\partial y}+ a \cdot \frac {\partial y(t,\vec{r})}{\partial \vec{r}} +b \cdot \frac {\partial^2 y(t,\vec{r})}{\partial \vec{r}^2} = Q(t,\vec{r}) -P(t,\vec{r}), (1.4.8)$

где $y(t,\vec{r})$ зависит от времени и пространственных координат, определяемых радиусом-вектором $\vec{r}$

6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных ==> и так далее…

Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…

Для линейных систем выполеняются следующие требования:

  • линейность статической характеристики САУ;
  • линейность уравнения динамики, т.е. переменные в уравнение динамики входят только в линейной комбинации.

Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).

Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов ==>

$\begin {eqnarray} L(p)y(t) \to a_0 \cdot y(0) \\ N(p) x(t) \to b_0 \cdot x(0) \end {eqnarray} \} \Rightarrow a_0 \cdot y(0) = b_0 \cdot x(0) \Rightarrow y = k \cdot х, (k = \frac{b_0}{a_0});$

На рис.1.4.2 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).

Рис. 1.4.2 — Примеры статических линейных и нелинейных характеристик

Нелинейность членов, содержащих производные по времени в уравнениях динамики, может возникнуть при использовании нелинейных математических операций (*, /, $\uparrow ^n$, $\sqrt[n]{}$, sin, ln и т.д.). Например, рассматривая уравнение динамики некоторой «абстрактной» САУ

$a \cdot y''(t)+b \cdot y'(t) \cdot y(t) +c \cdot[y'(t)]^2 + d \cdot y(t) = k \cdot x(t),$

отметим, что в этом уравнении при линейной статической характеристики $(y = \frac{k}{d} \cdot x)$ второе и третье слагаемые (динамические члены) в левой части уравнения — нелинейные, поэтому САУ, описываемая подобным уравнением, является нелинейной в динамическом плане.

1.4.2. Классификация по характеру передаваемых сигналов

По характеру передаваемых сигналов системы автоматического управления (или регулирования) подразделяются:

  • непрерывные системы (системы непрерывного действия);
  • релейные системы (системы релейного действия);
  • системы дискретного действия (импульсные и цифровые).

Системой непрерывного действия называется такая САУ, в каждом из звеньев которой непрерывному изменению входного сигнала во времени соответствует непрерывное изменение выходного сигнала, при этом закон изменения выходного сигнала может быть произвольным. Чтобы САУ была непрерывной, необходимо, чтобы статические характеристики всех звеньев были непрерывными.

Рис. 1.4.3 — Пример непрерывной системы

Системой релейного действия называется САУ, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина в некоторые моменты процесса управления меняется “скачком” в зависимости от величины входного сигнала. Статическая характеристика такого звена имеет точки разрыва или излома с разрывом.

Рис. 1.4.4 — Примеры релейных статических характеристик

Системой дискретного действия называется система, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина имеет вид отдельных импульсов, появляющиеся через некоторый промежуток времени.

Звено, преобразующее непрерывный сигнал в дискретный сигнал, называется импульсным. Подобный вид передаваемых сигналов имеет место в САУ с ЭВМ или контроллером.

Наиболее часто реализуются следующие методы (алгоритмы) преобразования непрерывного входного сигнала в импульсный выходной сигнал:

  • амплитудно-импульсная модуляция (АИМ);
  • широтно-импульсная модуляция (ШИМ).

На рис. 1.4.5 представлена графическая иллюстрация алгоритма амплитудно-импульсной модуляции (АИМ). В верхней части рис. представлена временная зависимость x(t) — сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис.). Длительность импульсов – одинакова и равна Δ. Амплитуда импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе данного блока.

Рис. 1.4.5 — Реализация амплитудно-импульсной модуляции

Данный метод импульсной модуляции был весьма распространен в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) в 70-х…80-х годах прошлого столетия.

На рис. 1.4.6 представлена графическая иллюстрация алгоритма широтно-импульсной модуляции (ШИМ). В верхней части рис. 1.14 представлена временная зависимость x(t) – сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис. 1.14). Амплитуда всех импульсов – одинакова. Длительность импульса Δt на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе импульсного блока.

Рис. 1.4.6 — Реализация широтно-импульсной модуляции

Данный метод импульсной модуляции в настоящее время является наиболее распространенным в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) и САУ других технических систем.

Завершая данный подраздел, необходимо заметить, что если характерные постоянные времени в других звеньях САУ (САР) существенно больше Δt (на порядки), то импульсная система может считаться непрерывной системой автоматического управления (при использовании как АИМ, так и ШИМ).

1.4.3. Классификация по характеру управления

По характеру процессов управления системы автоматического управления подразделяются на следующие типы:

  • детерминированные САУ, в которых входному сигналу однозначно может быть поставлен в соответствие выходной сигнал (и наоборот);
  • стохастические САУ (статистические, вероятностные), в которых на данный входной сигнал САУ “отвечает” случайным (стохастическим) выходным сигналом.

Выходной стохастический сигнал характеризуется:

  • законом распределения;
  • математическим ожиданием (средним значением);
  • дисперсией (среднеквадратичным отклонением).

Стохастичность характера процесса управления обычно наблюдается в

существенно нелинейных САР

как с точки зрения статической характеристики, так и с точки зрения (даже в большей степени) нелинейности динамических членов в уравнениях динамики.

Рис. 1.4.7 — Распределение выходной величины стохастической САУ

Кроме приведенных основных видов классификации систем управления, существуют и другие классификации. Например, классификация может проводиться по методу управления и основываться на взаимодействии с внешней средой и возможности адаптации САУ к изменению параметров окружающей среды. Системы делятся на два больших класса:

1) Обыкновенные (несамонастраивающиеся) СУ без адаптации; эти системы относятся к разряду простых, не изменяющих свою структуру в процессе управления. Они наиболее разработаны и широко применяются. Обыкновенные СУ подразделяются на три подкласса: разомкнутые, замкнутые и комбинированные системы управления.

2) Самонастраивающиеся (адаптивные) СУ. В этих системах при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (заранее не заданное) изменение параметров управляющего устройства за счет изменения коэффициентов СУ, структуры СУ или даже введения новых элементов.

Другой пример классификации: по иерархическому признаку (одноуровневые, двухуровневые, многоуровневые).

Продолжение здесь:

2. Математическое описание систем автоматического управления 2.1 — 2.3, 2.4 — 2.8, 2.9 — 2.13.
3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (РЕГУЛИРОВАНИЯ).
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ.
3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.
3.3. Апериодическое звено 1–го порядка (инерционное звено). На примере входной камеры ядерного реактора.
3.4. Апериодическое звено 2-го порядка.
3.5. Колебательное звено.
3.6. Инерционно-дифференцирующее звено.
3.7. Форсирующее звено.
3.8. Инерционно-интегрирующее (звено интегрирующее звено с замедлением).
3.9 Изодромное звено (изодром).
3.10 Минимально-фазовые и не минимально-фазовые звенья.
3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности.
4. Структурные преобразования систем автоматического регулирования.
5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР).
6. Устойчивость систем автоматического регулирования. 6.1 Понятие об устойчивости САР. Теорема Ляпунова. 6.2 Необходимые условия устойчивости линейных и линеаризованных САР. 6.3 Алгебраический критерий устойчивости Гурвица.
6.4 Частотный критерий устойчивости Михайлова.
6.5 Частотный критерий устойчивости Найквиста.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Продолжить публикацию лекций по УТС?

Проголосовали 298 пользователей.

Воздержался 21 пользователь.

Вместо введения

Системы автоматического управления (САУ) предназначены для автоматического изменения одного или нескольких параметров объекта управления с целью установления требуемого режима его работы. САУ обеспечивает поддержание постоянства заданных значений регулируемых параметров или их изменение по заданному закону либо оптимизирует определенные критерии качества управления. Например, к таким системам относятся:

  • системы стабилизации,
  • системы программного управления,
  • следящие системы

Это достаточно широкий класс систем, которые можно найти где угодно. Но какое это отношение имеет к Unity3D и вероятно к играм в частности? В принципе прямое: в любой игре так или иначе использующей симуляцию как элемент геймплея реализуются САУ, к таким играм относятся, например, Kerbal Space Programm, Digital Combat Simulator (бывший Lock On), Strike Suit Zero и т.д. (кто знает еще примеры — пишите в комментариях). В принципе любая игра, моделирующая реальные физические процессы, в том числе и просто кинематику с динамикой движения, может реализовывать те или иные САУ — этот подход проще, естественнее, а у разработчика уже есть есть набор готовых инструментов, предоставленных всякими Вышнеградскими, Ляпуновыми, Калманами, Чебышевами и прочими Коломогоровами, поэтому можно обойтись без изобретения велосипеда, т.к. его уже изобрели, да так, что получилась отдельная наука: Теория автоматического управления. Главное тут не переусердствовать. Одна тут только проблема: рассказывают про ТАУ не везде, не всем, зачастую мало и не очень понятно.

Немножко теории

Классическая система автоматического управления представленная на следующем рисунке:

image

Ключевым элементом любой САУ является регулятор представляющий из себя устройство, которое следит за состоянием объекта управления и обеспечивает требуемый закон управления. Процесс управления включает в себя: вычисление ошибки управления или сигнала рассогласования e(t) как разницы между желаемой уставкой (set point или SP) и текущей величиной процесса (process value или PV), после чего регулятор вырабатывает управляющие сигналы (manipulated value или MV).

Одной из разновидностью регуляторов является пропорционально-интегрально-дифференцирующий (ПИД) регулятор, который формирует управляющий сигнал, являющийся суммой трёх слагаемых: пропорционального, интегрального и дифференциального.

image

Где, $e(t)$ ошибка рассогласования, а также, $ P = K_p cdot e(t)$ — пропорциональная, $ I = K_i cdot int_0^t e(tau)dtau$ — интегральная, $D = K_d cdot frac{de(t)}{dt}$ — дифференциальная составляющие (термы) закона управления, который в итоговом виде описывается следующими формулами

$ e(t) = SP(t) - PV(t), $

$ MV(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} + underbrace{K_d cdot frac{de(t)}{dt}}_{D}, $

Пропорциональная составляющая P — отвечает за т.н. пропорциональное управление, смысл которого в том, что выходной сигнал регулятора, противодействует отклонению регулируемой величины (ошибки рассогласования или еще это называют невязкой) от заданного значения. Чем больше ошибка рассогласования, тем больше командное отклонение регулятора. Это самый простой и очевидный закон управления. Недостаток пропорционального закона управления заключается в том, что регулятор никогда не стабилизируется в заданном значении, а увеличение коэффициента пропорциональности всегда приводит к автоколебаниям. Именно поэтому в довесок к пропорциональному закону управления приходиться использовать интегральный и дифференциальный.

Интегральная составляющая I накапливает (интегрирует) ошибку регулирования, что позволяет ПИД-регулятору устранять статическую ошибку (установившуюся ошибку, остаточное рассогласование). Или другими словами: интегральное звено всегда вносит некоторое смещение и если система подвержена некоторыми постоянным ошибкам, то оно их компенсирует (за счет своего смещения). А вот если же этих ошибок нет или они пренебрежительно малы, то эффект будет обратным — интегральная составляющая сама будет вносить ошибку смещения. Именно по этой причине её не используют, например, в задачах сверхточного позиционирования. Ключевым недостатком интегрального закона управления является эффект насыщения интегратора (Integrator windup).

Дифференциальная составляющая D пропорциональна темпу изменения отклонения регулируемой величины и предназначена для противодействия отклонениям от целевого значения, которые прогнозируются в будущем. Примечательно то, что дифференциальная компонента устраняет затухающие колебания. Дифференциальное регулирование особенно эффективно для процессов, которые имеют большие запаздывания. Недостатком дифференциального закона управления является его неустойчивость к воздействую шумов (Differentiation noise).

Таким образом, в зависимости от ситуации могут применятся П-, ПД-, ПИ- и ПИД-регуляторы, но основным законом управления в основном является пропорциональный (хотя в некоторых специфических задачах и могут использоваться исключительно только звенья дифференциаторов и интеграторов).

Казалось бы, вопрос реализации ПИД-регуляторов уже давно избит и здесь на Хабре есть парочка неплохих статей на эту тему в том числе и на Unity3D, также есть неплохая статья PID Without a PhD (перевод) и цикл статей в журнале «Современные технологии автоматизации» в двух частях: первая и вторая. Также к вашим услугам статья на Википедии (наиболее полную читайте в английском варианте). А на форумах коммьюнити Unity3D нет-нет, да и всплывет PID controller как и на gamedev.stackexchange

При вопрос по реализации ПИД-регуляторов несколько глубже чем и кажется. Настолько, что юных самоделкиных, решивших, реализовать такую схему регулирования ждет немало открытий чудных, а тема актуальная. Так что надеюсь сей опус, кому-нибудь да пригодиться, поэтому приступим.

Попытка номер раз

В качестве примера попытаемся реализовать схему регулирования на примере управления поворотом в простенькой космической 2D-аркаде, по шагам, начиная с самого начала (не забыли, что это туториал?).

Почему не 3D? Потому что реализация не измениться, за исключением того, что придется воротить ПИД-регулятор для контроля тангажа, рысканья и крена. Хотя вопрос корректного применения ПИД-регулирования вместе с кватернионами действительно интересный, возможно в будущем его и освящу, но даже в NASA предпочитают углы Эйлера вместо кватернионов, так что обойдемся простенькой моделью на двухмерной плоскости.

Для начала создадим сам объект игровой объект космического корабля, который будет состоять из собственно самого объекта корабля на верхнем уровне иерархии, прикрепим к нему дочерний объект Engine (чисто спецэффектов ради). Вот как это выглядит у меня:

image

А на сам объект космического корабля накидаем в инспекторе всяческих компонент. Забегая вперед, приведу скрин того, как он будет выглядеть в конце:

image
Но это потом, а пока в нем еще нет никаких скриптов, только стандартный джентльменский набор: Sprite Render, RigidBody2D, Polygon Collider, Audio Source (зачем?).

Собственно физика у нас сейчас самое главное и управление будет осуществляться исключительно через неё, в противном случае, применение ПИД-регулятора потеряло бы смысл. Масса нашего космического корабля оставим также в 1 кг, а все коэффициенты трения и гравитации равны нулю — в космосе же.

Т.к. помимо самого космического корабля есть куча других, менее умных космических объектов, то сначала опишем родительский класс BaseBody, который в себе будет содержать ссылки на на наши компоненты, методы инициализации и уничтожения, а также ряд дополнительных полей и методов, например для реализации небесной механики:

BaseBody.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    [RequireComponent(typeof(SpriteRenderer))]
    [RequireComponent(typeof(AudioSource))]
    [RequireComponent(typeof(Rigidbody2D))]
    [RequireComponent(typeof(Collider2D))]

    public class BaseBody : MonoBehaviour
    {
        readonly float _deafultTimeDelay = 0.05f;

[HideInInspector]
        public static List<BaseBody> _bodies = new List<BaseBody>();

        #region RigidBody

        [HideInInspector]
        public Rigidbody2D _rb2d;

        [HideInInspector]
        public Collider2D[] _c2d;

        #endregion

        #region References

        [HideInInspector]
        public Transform _myTransform;

        [HideInInspector]
        public GameObject _myObject;

        /// <summary>
        /// Объект, который появляется при уничтожении
        /// </summary>
        public GameObject _explodePrefab;

        #endregion

        #region  Audio

        public AudioSource _audioSource;

        /// <summary>
        /// Звуки, которые проигрываются при получении повреждения
        /// </summary>
        public AudioClip[] _hitSounds;

        /// <summary>
        /// Звуки, которые проигрываются при появлении объекта
        /// </summary>
        public AudioClip[] _awakeSounds;

        /// <summary>
        /// Звуки, которые воспроизводятся перед смертью
        /// </summary>
        public AudioClip[] _deadSounds;

        #endregion

        #region External Force Variables
        /// <summary>
        /// Внешние силы воздйствующие на объект
        /// </summary>
        [HideInInspector]
        public Vector2 _ExternalForces = new Vector2();

        /// <summary>
        /// Текущий вектор скорости
        /// </summary>
        [HideInInspector]
        public Vector2 _V = new Vector2();

        /// <summary>
        /// Текущий вектор силы гравитации
        /// </summary>
        [HideInInspector]
        public Vector2 _G = new Vector2();
        #endregion

        public virtual void Awake()
        {
            Init();
        }

        public virtual void Start()
        {

        }

        public virtual void Init()
        {
            _myTransform = this.transform;
            _myObject = gameObject;

            _rb2d = GetComponent<Rigidbody2D>();
            _c2d = GetComponentsInChildren<Collider2D>();
            _audioSource = GetComponent<AudioSource>();

            PlayRandomSound(_awakeSounds);

            BaseBody bb = GetComponent<BaseBody>();
            _bodies.Add(bb);
        }

        /// <summary>
        /// Уничтожение персонажа
        /// </summary>
        public virtual void Destroy()
        {
            _bodies.Remove(this);
            for (int i = 0; i < _c2d.Length; i++)
            {
                _c2d[i].enabled = false;
            }
            float _t = PlayRandomSound(_deadSounds);
            StartCoroutine(WaitAndDestroy(_t));
        }

        /// <summary>
        /// Ждем некоторое время перед уничтожением
        /// </summary>
        /// <param name="waitTime">Время ожидания</param>
        /// <returns></returns>
        public IEnumerator WaitAndDestroy(float waitTime)
        {
            yield return new WaitForSeconds(waitTime);

            if (_explodePrefab)
            {
                Instantiate(_explodePrefab, transform.position, Quaternion.identity);
            }

            Destroy(gameObject, _deafultTimeDelay);
        }

        /// <summary>
        /// Проигрывание случайного звука
        /// </summary>
        /// <param name="audioClip">Массив звуков</param>
        /// <returns>Длительность проигрываемого звука</returns>
        public float PlayRandomSound(AudioClip[] audioClip)
        {
            float _t = 0;
            if (audioClip.Length > 0)
            {
                int _i = UnityEngine.Random.Range(0, audioClip.Length - 1);
                AudioClip _audioClip = audioClip[_i];
                _t = _audioClip.length;
                _audioSource.PlayOneShot(_audioClip);
            }
            return _t;
        }

        /// <summary>
        /// Получение урона
        /// </summary>
        /// <param name="damage">Уровень урона</param>
        public virtual void Damage(float damage)
        {
            PlayRandomSound(_hitSounds);
        }

    }
}

Вроде описали все что надо, даже больше чем нужно (в рамках этой статьи). Теперь отнаследуем от него класс корабля Ship, который должен уметь двигаться и поворачивать:

SpaceShip.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();
        public float _rotation = 0f;

        public void FixedUpdate()
        {
            float torque = ControlRotate(_rotation);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(Vector2 rotate)
        {
            float result = 0f;

            return result;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 result = new Vector2();

            return result;

        }
    }
}

Пока в нем нет ничего интересно, на текущий момент это просто класс-заглушка.

Также опишем базовый(абстрактный) класс для всех контроллеров ввода BaseInputController:

BaseInputController.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public enum eSpriteRotation
    {
        Rigth = 0,
        Up = -90,
        Left = -180,
        Down = -270
    }

    public abstract class BaseInputController : MonoBehaviour
    {
        public GameObject _agentObject;
        public Ship _agentBody; // Ссылка на компонент логики корабля
        public eSpriteRotation _spriteOrientation = eSpriteRotation.Up; //Это связано с нестандартной 
                                                                           // ориентации спрайта "вверх" вместо "вправо"

        public abstract void ControlRotate(float dt);
        public abstract void ControlForce(float dt);

        public virtual void Start()
        {
            _agentObject = gameObject;
            _agentBody = gameObject.GetComponent<Ship>();
        }

        public virtual void FixedUpdate()
        {
            float dt = Time.fixedDeltaTime;
            ControlRotate(dt);
            ControlForce(dt);
        }

        public virtual void Update()
        {
            //TO DO
        }
    }
}

И наконец, класс контроллера игрока PlayerFigtherInput:

PlayerInput.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public class PlayerFigtherInput : BaseInputController
    {
        public override void ControlRotate(float dt)
        {
            // Определяем позицию мыши относительно игрока
            Vector3 worldPos = Input.mousePosition;
            worldPos = Camera.main.ScreenToWorldPoint(worldPos);

            // Сохраняем координаты указателя мыши
            float dx = -this.transform.position.x + worldPos.x;
            float dy = -this.transform.position.y + worldPos.y;

            //Передаем направление
            Vector2 target = new Vector2(dx, dy);
            _agentBody._target = target;

            //Вычисляем поворот в соответствии с нажатием клавиш
            float targetAngle = Mathf.Atan2(dy, dx) * Mathf.Rad2Deg;
            _agentBody._targetAngle = targetAngle + (float)_spriteOrientation;
        }

        public override void ControlForce(float dt)
        {
            //Передаем movement
            _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up 
                + Input.GetAxis("Horizontal") * Vector2.right;
        }
    }
}

Вроде бы закончили, теперь наконец можно перейти к тому, ради чего все это затевалось, т.е. ПИД-регуляторам (не забыли надеюсь?). Его реализация кажется простой до безобразия:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable] // Этот атрибут необходим для того что бы поля регулятора 
                                   // отображались в инспекторе и сериализовывались
    public class SimplePID
    {
        public float Kp, Ki, Kd;

        private float lastError;
        private float P, I, D;

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float dt)
        {
            P = error;
            I += error * dt;
            D = (error - lastError) / dt;
            lastError = error;

            float CO = P * Kp + I * Ki + D * Kd;

            return CO;
        }
    }
}

Значения коэффициентов по умолчанию возьмем с потолка: это будет тривиальный единичный коэффициент пропорционального закона управления Kp = 1, небольшое значение коэффициента для дифференциального закона управления Kd = 0.2, который должен устранить ожидаемые колебания и нулевое значение для Ki, которое выбрано потому, что в нашей программной модели нет никаких статичных ошибок (но вы всегда можете их внести, а потом героически побороться с помощью интегратора).

Теперь вернемся к нашему классу SpaceShip и попробуем заюзать наше творение в качестве регулятора поворота космического корабля в методе ControlRotate:

 public float ControlRotate(Vector2 rotate)
 {
      float MV = 0f;
      float dt = Time.fixedDeltaTime;

      //Вычисляем ошибку
      float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

      //Получаем корректирующее ускорение
      MV = _angleController.Update(angleError, dt);

      return MV;
 }

ПИД-регулятор будет осуществлять точное угловое позиционировая космического корабля только за счет крутящего момента. Все честно, физика и САУ, почти как в реальной жизни.

И без этих ваших Quaternion.Lerp

 if (!_rb2d.freezeRotation)
     rb2d.freezeRotation = true;

 float deltaAngle = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);
 float T = dt *  Mathf.Abs( _rotationSpeed / deltaAngle);

 // Трансформируем угол в вектор
Quaternion rot = Quaternion.Lerp(
                _myTransform.rotation,
                Quaternion.Euler(new Vector3(0, 0, targetAngle)),
                T);

 // Изменяем поворот объекта
 _myTransform.rotation = rot;

Получившейся исходный код Ship.cs под спойлером

using UnityEngine;
using Assets.Scripts.Regulator;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID();

        public void FixedUpdate()
        {
            float torque = ControlRotate(_targetAngle);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(float rotate)
        {
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_angle, rotate);

            //Получаем корректирующее ускорение
            MV = _angleController.Update(angleError, dt);

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            //Кусок кода спецэффекта работающего двигателя ради
            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement;
            return MV;
        }
    }
}

Все? Расходимся по домам?

WTF! Что происходит? Почему корабль поворачивается как-то странно? И почему он так резко отскакивает от других объектов? Неужели этот глупый ПИД-регулятор не работает?

Без паники! Давайте попробуем разобраться что происходит.

В момент получения нового значения SP, происходит резкий (ступенчатый) скачок рассогласования ошибки, которая, как мы помним, вычисляется вот так: $e(t) = SP(t) - PV(t), $ соответственно происходит резкий скачок производной ошибки $frac{de(t)}{dt}$, которую мы вычисляем в этой строчке кода:

D = (error - lastError) / dt;

Можно, конечно, попробовать другие схемы дифференцирования, например, трехточечную, или пятиточечную, или… но все равно это не поможет. Ну вот не любят производные резких скачков — в таких точках функция не является дифференцируемой. Однако поэкспериментировать с разными схемами дифференцирования и интегрирования стоит, но потом и не в этой статье.

Думаю что настал момент построить графики переходного процесса: ступенчатое воздействие от S(t) = 0 в SP(t) = 90 градусов для тела массой в 1 кг, длинной плеча силы в 1 метр и шагом сетки дифференцирования 0.02 с — прям как в нашем примере на Unity3D (на самом деле не совсем, при построении этих графиков не учитывалось, что момент инерции зависит от геометрии твердого тела, поэтому переходный процесс будет немножко другой, но все же достаточно похожий для демонстрации). Все величены на грифике приведены в абсолютных значениях:
image
Хм, что здесь происходит? Куда улетел отклик ПИД-регулятора?

Поздравляю, мы только что столкнулись с таким явлением как «удар» (kick). Очевидно, что в момент времени, когда процесс еще PV = 0, а уставка уже SP = 90, то при численном дифференцировании получим значение производной порядка 4500, которое умножится на Kd=0.2 и сложится с пропорциональным теромом, так что на выходе мы получим значение углового ускорения 990, а это уже форменное надругательство над физической моделью Unity3D (угловые скорости будут достигать 18000 град/с… я думаю это предельное значение угловой скорости для RigidBody2D).

  • Может стоит подобрать коэффициенты ручками, так чтобы скачок был не таким сильным?
  • Нет! Самое лучше чего мы таким образом сможем добиться — небольшая амплитуда скачка производной, однако сам скачок как был так и останется, при этом можно докрутиться до полной неэффективности дифференциальной составляющей.

Впрочем можете поэкспериментировать.

Попытка номер два. Сатурация

Логично, что привод (в нашем случае виртуальные маневровые двигатели SpaceShip), не может отрабатывать сколько угодно большие значения которые может выдать наш безумный регулятор. Так что первое что мы сделаем — сатурируем выход регулятора:

public float ControlRotate(Vector2 rotate, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    //Вычисляем ошибку
    float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

    //Получаем корректирующее ускорение
    CO = _angleController.Update(angleError, dt);

    //Сатурируем
    MV = CO;
    if (MV > thrust) MV = thrust;
    if (MV< -thrust) MV = -thrust;

    return MV;
}

А очередной раз переписанный класс Ship полностью выглядит так

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

            //Получаем корректирующее ускорение
            CO = _angleController.Update(angleError, dt);

            //Сатурируем
            MV = CO;
            if (MV > thrust) MV = thrust;
            if (MV< -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * _thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

Итоговая схема нашего САУ тогда станет уже вот такой
image

При этом уже становится понятно, что выход контроллера CO(t) немного не одно и тоже, что управляемая величина процесса MV(t).

Собственно с этого места можно уже добавлять новую игровую сущность — привод, через которую и будет осуществляться управление процессом, логика работы которой может быть более сложной, чем просто Mathf.Clamp(), например, можно ввести дискретизацию значений (дабы не перегружать игровую физику величинами идущими шестыми после запятой), мертвую зону (опять таки не имеет смысл перегружать физику сверхмалыми реакциями), ввести задержку в упраление и нелинейность (например, сигмоиду) привода, после чего посмотреть, что из этого получится.

Запустив игру, мы обнаружим, что космический корабль стал наконец управляемым:

Если построить графики, то можно увидеть, что реакция контроллера стала уже вот такой:
image
Здесь уже используются нормированные величены, углы поделены на значение SP, а выход контроллера отнормирован относительно максимального значения на котором уже происходит сатурация.

Теперь на графике видно наличие ошибки перерегулирования (overshooting) и затухающие колебания. Уменьшая Kp и увеличивая Kd можно добиться уменьшения колебаний, но зато увеличится время реакции контроллера (скорость поворота корабля). И наоборот, увеличивая Kp и уменьшая Kd — можно добиться увеличения скорости реакции контроллера, но появятся паразитные колебания, которые при определенных (критических) значениях, перестанут быть затухающими.

Ниже приведена известна таблица влияния увеличения параметров ПИД-регулятора (как уменьшить шрифт, а то таблица безе переносов не лезет?):

А общий алгоритм ручной настройки ПИД-регулятора следующий:

  1. Подбираем пропорциональный коэффициенты при отключенных дифференциальных и интегральных звеньях до тех пор пока не начнутся автоколебания.
  2. Постепенно увеличивая дифференциальную составляющую избавляемся от автоколебаний
  3. Если наблюдается остаточная ошибка регулирования (смещение), то устраняем её за счет интегральной составляющей.

Каких-то общих значений параметров ПИД-регулятора нет: конкретные значения зависят исключительно от параметров процесса (его передаточной характеристики): ПИД-регулятор отлично работающий с одним объектом управления окажется неработоспособным с другим. Более того, коэффициенты при пропорциональной, интегральной и дифференциальной составляющих еще и взаимозависимы.

В общем не будем о грустном, дальше нас ждет самое интересное…

Попытка номер три. Еще раз производные

Приделав костыль в виде ограничения значений выхода контроллера мы так и не решили самую главную проблему нашего регулятора — дифференциальная составляющая плохо себя чувствует при ступенчатом изменении ошибки на входе регуляторе. На самом деле есть множество других костылей, например, в момент скачкообразного изменения SP «отключать» дифференциальную составляющую или же поставить фильтры нижних частот между SP(t) и операцией $SP(t)-PV(t)$ за счет которого будет происходить плавное нарастание ошибки, а можно совсем развернуться и впендюрить самый настоящий фильтр Калмана для сглаживания входных данных. В общем костылей много, и добавить наблюдателя конечно хотелось бы, но не в этот раз.

Поэтому снова вернемся к производной ошибки рассогласования и внимательно на неё посмотрим:

$ frac{de(t)}{dt} = frac{d(SP(t)-PV(t))}{dt} = frac{dSP(t)}{dt} - frac{dPV(t)}{dt}, $

Ничего не заметили? Если хорошенько присмотреться, то можно обнаружить, что вообще-то SP(t), не меняется во времени (за исключением моментов ступенчатого изменения, когда регулятор получает новую команду), т.е. её производная равна нулю:

$ frac{dSP(t)}{dt} = 0, $

тогда

$ frac{de(t)}{dt} = - frac{dPV(t)}{dt}, $

Иными словами, вместо производной ошибки, которая дифференцируема не везде мы можем использовать производную от процесса, который в мире классической механики как правило непрерывен и дифференцируем везде, а схема нашей САУ уже приобретет следующий вид:
image

$ e(t) = SP(t) - PV(t), $

$ CO(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} - underbrace{K_d cdot frac{dPV(t)}{dt}}_{D}, $

Модифицируем код регулятора:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable]
    public class SimplePID
    {
        public float Kp, Ki, Kd;
        private float P, I, D;

        private float lastPV = 0f;   

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0f;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float PV, float dt)
        {
            P = error;
            I += error * dt;
            D = -(PV - lastPV) / dt;

            lastPV = PV;

            float CO = Kp * P + Ki * I + Kd * D;

            return CO;
        }
    }
}

И немного изменим метод ControlRotate:

public float ControlRotate(Vector2 rotate, float thrust)
{
     float CO = 0f;
     float MV = 0f;
     float dt = Time.fixedDeltaTime;

     //Вычисляем ошибку
     float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

     //Получаем корректирующее ускорение
     CO = _angleController.Update(angleError, _myTransform.eulerAngles.z, dt);

     //Сатурируем
     MV = CO;
     if (CO > thrust) MV = thrust;
     if (CO < -thrust) MV = -thrust;

     return MV;
}

И-и-и-и… если запустить игру, то обнаружиться, что на самом деле ничего ничего не изменилось с последней попытки, что и требовалось доказать. Однако, если убрать сатурацию, то график реакции регулятора будет выглядеть вот так:
image
Скачок CO(t) по прежнему присутствует, однако он уже не такой большой как был в самом начале, а самое главное — он стал предсказуемым, т.к. обеспечивается исключительно пропорциональной составляющей, и ограничен максимально возможной ошибкой рассогласования и пропорциональным коэффициентом ПИД-регулятора (а это уже намекает на то, что Kp имеет смысл выбрать все же меньше единицы, например, 1/90f), но не зависит от шага сетки дифференцирования (т.е. dt). В общем, я настоятельно рекомендую использовать именно производную процесса, а не ошибки.

Думаю теперь никого не удивит, но таким же макаром можно заменить $K_p cdot e(t)$ на $-K_p cdot PV(t)$, однако останавливаться на этом мы не будем, можете сами поэкспериментировать и рассказать в комментариях, что из этого получилось (самому интересно)

Попытка номер четыре. Альтернативные реализации ПИД-регулятор

Помимо описанного выше идеального представления ПИД-регулятора, на практике часто применяется стандартная форма, без коэффициентов Ki и Kd, вместо которых используются временные постоянные.

Такой подход связан с тем, что ряд методик настройки ПИД-регулятора основан на частотных характеристиках ПИД-регулятора и процесса. Собственно вся ТАУ и крутится вокруг частотных характеристик процессов, поэтому для желающих углубиться, и, внезапно, столкнувшихся с альтернативной номенклатурой, приведу пример т.н. стандартной формы ПИД-регулятора:

$ e(t) = SP(t) - PV(t), $

$ CO(t) =CO_{bias} + K_p cdot Bigl(e(t) + frac{1}{T_i} cdot int_0^t e(tau)dtau - T_d cdot frac{dPV(t)}{dt} Bigl), $

где, $T_d= frac{K_d}{K_p}$ — постоянная дифференцирования, влияющая на прогнозирование состояния системы регулятором,
$T_i = frac{K_p}{K_i}$ — постоянная интегрирования, влияющая на интервал усреднения ошибки интегральным звеном.

Основные принципы настройки ПИД-регулятора в стандартной форме аналогичны идеализированному ПИД-регулятору:

  • увеличение пропорционального коэффициента увеличивает быстродействие и снижает запас устойчивости;
  • с уменьшением интегральной составляющей ошибка регулирования с течением времени уменьшается быстрее;
  • уменьшение постоянной интегрирования уменьшает запас устойчивости;
  • увеличение дифференциальной составляющей увеличивает запас устойчивости и быстродействие

Исходный код стандартной формы, вы можете найти под спойлером

namespace Assets.Scripts.Regulator
{
    [System.Serializable]    
    public class StandartPID
    {
        public float Kp, Ti, Td;
        public float error, CO;
        public float P, I, D;

        private float lastPV = 0f;

        public StandartPID()
        {
            Kp = 0.1f;
            Ti = 10000f;
            Td = 0.5f;
            bias = 0f;
        }

        public StandartPID(float Kp, float Ti, float Td)
        {
            this.Kp = Kp;
            this.Ti = Ti;
            this.Td = Td;
        }

        public float Update(float error, float PV, float dt)
        {
            this.error = error;
            P = error;
            I += (1 / Ti) * error * dt;
            D = -Td * (PV - lastPV) / dt;

            CO = Kp * (P + I + D);
            lastPV = PV;

            return CO;
        }
    }
}

В качестве значений по умолчанию, выбраны Kp = 0.01, Ti = 10000, Td = 0.5 — при таких значениях корабль поворачивается достаточно быстро и обладает некоторым запасом устойчивости.

Помимо такой формы ПИД-регулятора, часто используется т.н. реккурентная форма:

$ CO(t_k)=CO(t_{k-1})+K_pleft[left(1+dfrac{Delta t}{T_i}+dfrac{T_d}{Delta t}right)e(t_k)+left(-1-dfrac{2T_d}{Delta t}right)e(t_{k-1})+dfrac{T_d}{Delta t}e(t_{k-2})right] $

Не будем на ней останавливаться, т.к. она актуальна прежде всего для хардверных программистов, работающих с FPGA и микроконтроллерами, где такая реализация значительно удобнее и эффективнее. В нашем же случае — давайте что-нибудь сваям на Unity3D — это просто еще одна реализация ПИД-контроллера, которая ни чем не лучше других и даже менее понятная, так что еще раз дружно порадуемся как хорошо программировать в уютненьком C#, а не в жутком и страшном VHDL, например.

Вместо заключения. Куда бы еще присобачить ПИД-регулятор

Теперь попробуем немного усложнить управление корабля используя двухконтурное управление: один ПИД-регулятор, уже знакомый нам _angleController, отвечает по прежнему за угловое позиционирование, а вот второй — новый, _angularVelocityController — контролирует скорость поворота:

public float ControlRotate(float targetAngle, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    _angle = _myTransform.eulerAngles.z;

    //Контроллер угла поворота
    float angleError = Mathf.DeltaAngle(_angle, targetAngle);
    float torqueCorrectionForAngle = 
    _angleController.Update(angleError, _angle, dt);

    //Контроллер стабилизации скорости
    float angularVelocityError = -_rb2d.angularVelocity;
    float torqueCorrectionForAngularVelocity = 
        _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

    //Суммарный выход контроллера
    CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

    //Дискретизируем с шагом 100            
    CO = Mathf.Round(100f * CO) / 100f;

    //Сатурируем
    MV = CO;
    if (CO > thrust) MV = thrust;
    if (CO < -thrust) MV = -thrust;

    return MV;
}

Назначение второго регулятора — гашение избыточных угловых скоростей, за счет изменения крутящего момента — это сродни наличию углового трения, которое мы отключили еще при создании игрового объекта. Такая схема управления [возможно] позволит получить более стабильное поведение корабля, и даже обойтись только пропорциональными коэффициентами управления — второй регулятор будет гасить все колебания, выполняя функцию, аналогичную дифференциальной составляющей первого регулятора.

Помимо этого, добавим новый класс ввода игрока — PlayerInputCorvette, в котором повороты буду осуществляться уже за счет нажатия клавиш «вправо-влево», а целеуказание с помощью мыши мы оставим для чего-нибудь более полезного, например, для управления турелью. Заодно у нас теперь появился такой параметр как _turnRate — отвечающий за скорость/отзывчивость поворота (не понятно только куда его поместить лучше в InputCOntroller или все же Ship).

public class PlayerCorvetteInput : BaseInputController
{
     public float _turnSpeed = 90f;

     public override void ControlRotate()
     {
         // Находим указатель мыши
         Vector3 worldPos = Input.mousePosition;
         worldPos = Camera.main.ScreenToWorldPoint(worldPos);

         // Сохраняем относительные координаты указателя мыши
         float dx = -this.transform.position.x + worldPos.x;
         float dy = -this.transform.position.y + worldPos.y;

         //Передаем направление указателя мыши
         Vector2 target = new Vector2(dx, dy);
         _agentBody._target = target;

         //Вычисляем поворот в соответствии с нажатием клавиш
         _agentBody._rotation -= Input.GetAxis("Horizontal") * _turnSpeed * Time.deltaTime;
    }

    public override void ControlForce()
    {            
         //Передаем movement
         _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up;
    }
}

Также для наглядности накидаем на коленках скрипт для отображения отладочной информации

namespace Assets.Scripts.SpaceShooter.UI
{
    [RequireComponent(typeof(Ship))]
    [RequireComponent(typeof(BaseInputController))]
    public class Debugger : MonoBehaviour
    {
        Ship _ship;
        BaseInputController _controller;
        List<SimplePID> _pids = new List<SimplePID>();
        List<string> _names = new List<string>();

        Vector2 _orientation = new Vector2();

        // Use this for initialization
        void Start()
        {
            _ship = GetComponent<Ship>();
            _controller = GetComponent<BaseInputController>();

            _pids.Add(_ship._angleController);
            _names.Add("Angle controller");

            _pids.Add(_ship._angularVelocityController);
            _names.Add("Angular velocity controller");

        }

        // Update is called once per frame
        void Update()
        {
            DrawDebug();
        }

        Vector3 GetDiretion(eSpriteRotation spriteRotation)
        {
            switch (_controller._spriteOrientation)
            {
                case eSpriteRotation.Rigth:
                    return transform.right;
                case eSpriteRotation.Up:
                    return transform.up;
                case eSpriteRotation.Left:
                    return -transform.right;
                case eSpriteRotation.Down:
                    return -transform.up;
            }
            return Vector3.zero;
        }

        void DrawDebug()
        {
            //Направление поворота
            Vector3 vectorToTarget = transform.position 
                + 5f * new Vector3(-Mathf.Sin(_ship._targetAngle * Mathf.Deg2Rad), 
                    Mathf.Cos(_ship._targetAngle * Mathf.Deg2Rad), 0f);

            // Текущее направление
            Vector3 heading = transform.position + 4f * GetDiretion(_controller._spriteOrientation);

            //Угловое ускорение
            Vector3 torque = heading - transform.right * _ship._Torque;

            Debug.DrawLine(transform.position, vectorToTarget, Color.white);
            Debug.DrawLine(transform.position, heading, Color.green);
            Debug.DrawLine(heading, torque, Color.red);
        }

        void OnGUI()
        {
            float x0 = 10;
            float y0 = 100;

            float dx = 200;
            float dy = 40;

            float SliderKpMax = 1;
            float SliderKpMin = 0;
            float SliderKiMax = .5f;
            float SliderKiMin = -.5f;
            float SliderKdMax = .5f;
            float SliderKdMin = 0;

            int i = 0;
            foreach (SimplePID pid in _pids)
            {
                y0 += 2 * dy;

                GUI.Box(new Rect(25 + x0, 5 + y0, dx, dy), "");

                pid.Kp = GUI.HorizontalSlider(new Rect(25 + x0, 5 + y0, 200, 10), 
                    pid.Kp, 
                    SliderKpMin, 
                    SliderKpMax);
                pid.Ki = GUI.HorizontalSlider(new Rect(25 + x0, 20 + y0, 200, 10), 
                    pid.Ki, 
                    SliderKiMin, 
                    SliderKiMax);
                pid.Kd = GUI.HorizontalSlider(new Rect(25 + x0, 35 + y0, 200, 10), 
                    pid.Kd, 
                    SliderKdMin, 
                    SliderKdMax);

                GUIStyle style1 = new GUIStyle();
                style1.alignment = TextAnchor.MiddleRight;
                style1.fontStyle = FontStyle.Bold;
                style1.normal.textColor = Color.yellow;
                style1.fontSize = 9;

                GUI.Label(new Rect(0 + x0, 5 + y0, 20, 10), "Kp", style1);
                GUI.Label(new Rect(0 + x0, 20 + y0, 20, 10), "Ki", style1);
                GUI.Label(new Rect(0 + x0, 35 + y0, 20, 10), "Kd", style1);

                GUIStyle style2 = new GUIStyle();
                style2.alignment = TextAnchor.MiddleLeft;
                style2.fontStyle = FontStyle.Bold;
                style2.normal.textColor = Color.yellow;
                style2.fontSize = 9;

                GUI.TextField(new Rect(235 + x0, 5 + y0, 60, 10), pid.Kp.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 20 + y0, 60, 10), pid.Ki.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 35 + y0, 60, 10), pid.Kd.ToString(), style2);

                GUI.Label(new Rect(0 + x0, -8 + y0, 200, 10), _names[i++], style2);
            }
        }
    }
}

Класс Ship также претерпел необратимые мутации и теперь должен выглядеть вот так:

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);
        public SimplePID _angularVelocityController = new SimplePID(0f,0f,0f);

        private float _torque = 0f;
        public float _Torque
        {
            get
            {
                return _torque;
            }
        }

        private Vector2 _force = new Vector2();
        public Vector2 _Force
        {
            get
            {
                return _force;
            }
        }

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement, _thrust);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Контроллер угла поворота
            float angleError = Mathf.DeltaAngle(_angle, targetAngle);
            float torqueCorrectionForAngle = 
                _angleController.Update(angleError, _angle, dt);

            //Контроллер стабилизации скорости
            float angularVelocityError = -_rb2d.angularVelocity;
            float torqueCorrectionForAngularVelocity = 
                _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

            //Суммарный выход контроллера
            CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

            //Дискретизируем с шагом 100            
            CO = Mathf.Round(100f * CO) / 100f;

            //Сатурируем
            MV = CO;
            if (CO > thrust) MV = thrust;
            if (CO < -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement, float thrust)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

А вот, собственно заключительное видео того, что должно получиться:

К сожалению получилось охватить не все, что хотелось бы, в частности почти не затронут вопрос настройки ПИД-регулятора и практически не освящена интегральная составляющая — фактически приведен пример только для ПД-регулятора. Собственно изначально планировалось несколько больше примеров (круиз-контроль, вращение турели и компенсация вращательного момента), но статья итак уже разбухла, да и вообще:
image

Немного ссылок

  1. Годная статья на английской вики
  2. PID tutorial
  3. ПИД-регуляторы: вопросы реализации. Часть 1
  4. ПИД-регуляторы: вопросы реализации. Часть 2
  5. PID Without a PhD
  6. PID Without a PhD. Перевод
  7. Derivative Action and PID Control
  8. Control System Lab: PID
  9. ПИД-регулятор своими руками
  10. Корректная реализация разностной схемы ПИД регулятора
  11. Программируем квадрокоптер на Arduino (часть 1)
  12. Виртуальный квадрокоптер на Unity + OpenCV (Часть 1)
  13. Поляков К.Ю. Теория автоматического управления для чайников
  14. PID control system analysis, design, and technology
  15. Aidan O’Dwyer. Handbook of PI and PID Controller Tuning Rules (3rd ed.)
  16. PID process control, a “Cruise Control” example
  17. https://www.mathworks.com/discovery/pid-control.html
  18. http://scilab.ninja/study-modules/scilab-control-engineering-basics/module-4-pid-control/
  19. https://sourceforge.net/p/octave/control/ci/default/tree/inst/optiPID.m

Еще немного ссылок на другие примеры
http://luminaryapps.com/blog/use-a-pid-loop-to-control-unity-game-objects/
http://www.habrador.com/tutorials/pid-controller/3-stabilize-quadcopter/
https://www.gamedev.net/articles/programming/math-and-physics/pid-control-of-physics-bodies-r3885/
https://ksp-kos.github.io/KOS/tutorials/pidloops.html

Режимы работы системы

Переходный и
установившийся
.

Любое изменение
воздействий на систему приводит к
изменению её выходного сигнала, однако
из-за присутствия в реальных системах
элементов накапливающих энергию такое
изменение не может произойти мгновенно.

Процесс, сопровождающий
изменение выходного сигнала как реакция
на изменения воздействий входного
сигнала на систему называется переходным
процессом.

Установившийся
режим

соответствует состоянию динамического
равновесия между воздействиями на
систему входного сигнала с одной стороны
и ее выходными сигналами с другой.

Существование
установившего режима, это обязательное
условие работоспособности системы.

Обобщенная функциональная схема системы автоматического управления

Функциональная
схема САУ
отражает состав системы и характер
взаимодействия её элементов с точки
зрения их выполняемых функций.

При большом
разнообразии конструкций, устройств,
из которых создаются САУ,
все они могут быть объединены с точки
зрения их назначения в несколько групп,
поэтому говорят об обобщенной
функциональной схеме САУ.


МОС

З
– задающее устройство, используется в
случае необходимости масштабирования
входного сигнала ХВХ(t),
либо для удаления посторонних шумов в
этом сигнале;

g(t)
– задающее воздействие;

– сравнивающее
устройство – принцип отрицательной
обратной связи;

ПР
– преобразователь, используется при
необходимости изменения физической
природы сигналов;

У
усилитель, используется для обеспечения
необходимой мощности сигнала подающего
на исполнительное устройство, которое
формирует управляющее воздействие
U(t),
непосредственно подаваемое на ОУ
– объект управления. Результатом
деятельности ОУ
является выходной сигнал ХВЫХ(t).

МОС
– местная о.с., служит для стабилизации
работы усилителя.

Внешняя о.с. через
ИзУ
– измерительное устройство;

У(t)
– управляемая величина, которая несет
информацию о выходном сигнале (Y(t)
=
XВЫХ(t);
Y(t)
~
XВЫХ(t))

Z1(t)
– сигнал МОС;

Х(t)
– сигнал ошибки рассогласования;

Z(t)
– сигнал гл. обр. связи;

X(t)
=
g(t)
Z(t)
— сигнал ошибки рассогласования,
формируется по принципу отрицательной
обратной связи, наличие такого сигнала
— обязательное условие работы САУ.

f(t)
– внешние возмущения на объект управления
ОУ.

Основные функции
обобщенной схемы:

  1. Функция слежения
    – это функция обеспечивается основной
    связью системы, преобразование ХВХ
    в ХВЫХ.

  2. Функция компенсации,
    обеспечивается через внешнюю обратную
    связь, система реагирует на отклонения
    выходного сигнала от предписанного
    ему значения, устраняя возникающие
    отклонения.

Принципы управления

  1. Принцип
    разомкнутого управления

  2. Принцип компенсации

  3. Принцип обратной
    связи

  4. Комбинированный
    принцип

1. Принцип
разомкнутого управления

В этом случае
требуемый закон регулирования
обеспечивается только за счет задающего
воздействия и никакими другими параметрами
системы не контролируется, соответствие
алгоритма функционирования системы,
задающему воздействию, обеспечивается
в этом случае, только за счет жестких
связей всех элементов системы.

Отличительная
особенность

– нет внешней обратной связи, система
разомкнута.

2. По принципу
компенсации
,
вводится дополнительная связь по
внешнему возмущению.

Достоинством
системы
:
быстродействие.

Недостаток:
усложнение систем при необходимости
компенсации нескольких внешних
возмущений.

3. Принцип обратной
связи

Системы, работающие
по принципу обратной связи, работают
по отклонению (изменение выходного
сигнала).

Достоинства:
высокая точность.

Недостаток:
снижения быстродействия.

4. Комбинированный
принцип,
в
таких системах доминирующее внешнее
возмущение и его влияние на точность
работы системы устраняется частью
системы, работающей по принципу
компенсации, а действие остальных
внешних факторов компенсируется через
работу внешней обратной связи.


Главная

»

Самолетостроение

»

Основы теории управления

»

Основные понятия и общие принципы построения автоматических систем. Дать определения и пояснить термины система автоматического управления (САУ), разомкнутые и замнкнутые САУ, сигнал ошибки (рассогласования).

Основные понятия и общие принципы построения автоматических систем. Дать определения и пояснить термины система автоматического управления (САУ), разомкнутые и замнкнутые САУ, сигнал ошибки (рассогласования).

Теория автоматического управления— это дисциплина, изучающая процессы автоматического управления объектами разной физической природы. При этом при помощи математических средств выявляются свойства систем автоматического управления и разрабатываются рекомендации по их проектированию.

Основные понятия:

-Автоматика

-Управление

-Цель

-Объекты:

-Система автоматического управления.

-Устройство

-Объект управления

-Регулирование

-Регулятор

-Задающее воздействие g(t)

-Ошибка регулирования ε(t) = g(t) — y(t),

-Возмущающее воздействие f(t)

САУ- система состоящая из объекта управления и устройства управления, в которой автоматически выполняется заданный процесс.

Разомкнутые САУ

Сущность принципа разомкнутого управления заключается в жестко заданной программе управления. То есть управление осуществляется «вслепую», без контроля результата, основываясь лишь на заложенной в САУ модели управляемого объекта. Примеры таких систем : таймер, блок управления светофора, автоматическая система полива газона, автоматическая стиральная машина и т. п.

В свою очередь различают:

Разомкнутые по задающему воздействию

Разомкнутые по возмущающему воздействию

Замкнутые САУ

В замкнутых системах автоматического регулирования управляющее воздействие формируется в непосредственной зависимости от управляемой величины. Связь входа системы с его выходом называется обратной связью. Сигнал обратной связи вычитается из задающего воздействия. Такая обратная связь называется отрицательной.

Сигнал ошибки ε(t) = g(t) — y(t), разность между требуемым значением регулируемой величины и текущим её значением. Если ε(t) отлична от нуля, то этот сигнал поступает на вход регулятора, который формирует такое регулирующее воздействие, чтобы в итоге с течением времени ε(t) = 0.

2. Классификация динамических звеньев САУ. Обыкновенные и типовые динамические звенья (ДТЗ) САУ.

image

image


Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Действительные
значения регулируемой величины в
реальных САР отличаются от предписанных.
Разность между предписанным и
действительным значениями регулируемой
величины называется ошибкой
регулирования
.

∆xз(t)
= xз
– x(t)
– ошибка регулирования

хз
– предписанное (заданное) значение
управляемой величины;

x(t)
– ее текущее значение

В
процессе функционирования САР может
переходить от одного состояния,
принимаемого за исходное, в другое.
Разность между текущими значениями
регулируемой величины и значением,
соответствующим исходному состоянию,
принято называть отклонением регулируемой
величины

∆x0(t)
= x(t)
– x0(t) (1.3)

где
xo
– значение регулируемой величины в
исходном состоянии.

x0(t)
– исходное значение регулируемой
величины.

Рис.
1.3. Изменение значения регулируемой
величины в процессе регулирования

1.4. Статическое и астатическое регулирование

В
зависимости от того, является или нет
ошибка регулирования функцией возмущающего
воздействия в установившемся режиме,
различают статическое
и астатическое
регулирование.

При
статическом регулировании ошибка
регулирования возрастает с увеличением
значения возмущающего воздействия.
Пример статического регулирования
приведен на рис. 1.4, а).

а)

б)

в)

Рис.
1.4. Пример статического регулятора и
его характеристика (1 – генератор; 2 –
электронный усилитель, 3 – регулировочный
реостат, Uг
– напряжение генератора (регулируемый
параметр);Uзад
– задающее воздействие, которое равно
заданному (предписанному) значению
напряжения генератора; Pг
– активная мощность генератора
(возмущающее воздействие); UИП
– напряжение источника питания; UОВ
– напряжения обмотки возбуждения; ΔU
– входное напряжения электронного
усилителя)

Принцип
действия этого регулятора достаточно
ясно виден из рассмотрения схемы и
особых пояснений не требует. Заметим
лишь, что требуемого возбуждение
генератора 1 осуществляется путем
изменения входного сигнала (ΔU)
электронного усилителя 2. В свою очередь
этот сигнал пропорционален отклонению
регулируемого параметра Uг
от заданного значения Uзад
(ΔU=Uг–Uзад).
Поэтому такое отклонение, т.е. наличие
ΔU,
является неизбежным и должно быть тем
больше, чем больше изменяется величина
внешнего возмущения Pг.
Очевидно, что это отклонение регулируемого
параметра от заданного значения
сохраняется также и в установившемся
режиме.

Рабочая
характеристика (зависимость напряжения
генератора от нагрузки – активной
мощности Pг)
статического регулятора приведена на
рис. 1.4, б).

На
рис. 1.4, в)
показан переходный процесс в системе
при уменьшении нагрузки генератора.

Регулированием
с астатической
характеристикой

называется такое регулирование, при
котором в установившемся состоянии
системы отклонение регулируемого
параметра от заданного значения равно
нулю при любой величине внешнего
возмущения. Равновесие системы имеет
место всегда при заданном значении
регулируемого параметра.

Пример
астатического регулирования приведен
на рис. 1.5, а).

а)

б)

в)

Рис.
1.5. Пример астатического регулятора
и его характеристика (1 – генератор;
2 – электронный усилитель; 3 – якорь
двигателя постоянного тока; 4, 5 –
регулировочные реостаты, Uг
– напряжение генератора (регулируемый
параметр); Uзад
– задающее воздействие, которое равно
заданному (предписанному) значению
напряжения генератора; Pг
– активная мощность генератора
(возмущающее воздействие); UИП1,
UИП2
– напряжения источников питания №1
и №2; UОВ1
и UОВ3
– напряжения обмоток возбуждений
генератора и двигателя; ΔU
– входное напряжения электронного
усилителя; Uвых
–напряжение на выходе электронного
усилителя)

Характеристика
астатического регулятора приведена на
рис. 1.5, б),
а кривая переходного процесса – на рис.
1.5, в).

При
увеличении нагрузки на генераторе, т.е.
увеличении активной мощности генератора
Pг,
уменьшается напряжение на его выводах
Uг,
что приводит к появлению отклонения
регулируемого параметра Uг
от заданного значения Uзад
(ΔU=Uг–Uзад).
Параметр Uзад
задается
регулировочным реостатом 5. При этом
появляется напряжение на якоре двигателя
постоянного тока Uвых,
и двигатель начинает перемещать контакт
регулировочного реостата 4 по часовой
стрелке, что приводит к увеличению тока
возбуждения генератора IОВ1,
а значит, и напряжения на его выводах
Uг.
Параметр Uг
будет увеличиваться до тех пор, пока
ошибка регулирования ΔU
не станет равной 0.

Астатические
САР обеспечивают высокую точность
регулирования. Однако по сравнению со
статическими они являются более сложными
и инерционными, т.е. процессы регулирования
в них являются замедленными.

1.5.
Линейные и нелинейные системы. Линеаризация
уравнений

Системы,
процессы в которых могут быть описаны
линейными дифференциальными уравнениями
с постоянными коэффициентами, называются
линейными.
Для линейных систем применим принцип
суперпозиции, позволяющий рассматривать
независимое прохождение воздействий,
что дает существенное упрощение (рис.
1.6).

Рис.
1.6. Принцип суперпозиции

Нелинейной
называется система, для описания
процессов в которой приходится применять
одно или несколько нелинейных уравнений.
К нелинейным относятся уравнения,
коэффициенты которых зависят от значений
переменных величин или их производных,
а также уравнения, содержащие произведения
или степени (выше первой) этих величин.

Строго
говоря, линейных САУ в технике практически
нет или очень мало. Однако большинство
систем при определенных условиях могут
рассматриваться как линейные. Так, если
оценивать поведение системы при малых
отклонениях величин от исходных значений,
то в большинстве случаев имеющей место
нелинейностью можно пренебречь. Такая
возможность имеет математическое
обоснование.

Пусть
имеем некоторую непрерывную функцию
F(x)
(рис. 1.7).

Если
аргумент X
получил приращение ΔX
от исходного значения Xo,
то функция получит приращение ΔF(X).
Новое значение функции F(X)
можно разложить в ряд Тейлора:

Рис.
1.7. Пример линеаризации нелинейной
функции

При
малых значениях Δx
можно ограничиться только первыми двумя
членами разложения, т.к. остальные имеют
более высокий порядок малости, т.е. можно
считать

,

где
.

Теоретически
это означает, что на интервале ±Δx
(рис. 1.6) кривая F(x)
заменяется прямой линией, являющейся
касательной при x=xo.

Таким
образом, если составлять уравнение
системы не для полных значений величин,
а только для отклонений, то эти уравнения
будут линейными. Такая операция называется
линеаризацией
уравнений
.
Следует, однако, отметить, что это
справедливо только для тех случаев,
когда нелинейные функции являются
непрерывными и имеют непрерывные
производные при x=xo.

Пример
линеаризации нелинейного элемента
системы.

В
качестве типового элемента, уравнение
которого подлежит линеаризации, возьмем
RL-элемент,
часто встречающийся в электрических
системах регулирования и изображенный
на рис. 1.8, а). Пусть входной и выходной
величинами такого элемента являются
напряжения.

а)

б)

Рис.
1.8. Линеаризация нелинейного элемента
системы

Предположим
сначала, что активные сопротивления и
индуктивность не зависят от протекающего
через них тока, т.е. будем считать, что
элемент является линейным.

Тогда
дифференциальное уравнение элемента
в случае, если потокосцепление
катушки
элементазависит от тока линейно, т.е.
если индуктивность L=/i
не зависит от тока и является величиной
постоянной, имеет вид:

Обозначив

и
,
учитывая, что
,
и пользуясь операторной (символической)
формой записи, в которой принято
,
получим:

(1.3)

Предположим
теперь, что в рассматриваемом примере
индуктивность зависит от тока и,
следовательно, элемент является
нелинейным. Тогда уравнение (1.3) для
такого элемента неправомерно, ибо
потокосцепление
зависит от тока нелинейно и, следовательно,
L=/i
есть величина переменная. Для
усатновившегося режима элемента при
входном постоянном напряжении uвх
потокосцепление 0
тоже постоянно во времени и, следовательно,
.
Тогда можно написать:

.

Изменение
входного напряжения повлечет за собой
изменение тока и выходного напряжения.

Текущие
значения uвх
и uвых
и i
можно представить так:

;

;

,

где
Δuвх,
Δuвых
и Δi
– отклонения
соответствующих величин от их
установившихся значений.

Пусть
потокосцепление является нелинейной
функцией тока, как это показано на рис.
1.8, б).
Эту функцию можно разложить в ряд:

(1.4)

При
достаточно малых отклонения тока можно
ограничиться первыми двумя членами
ряда. Величина

определяется тангенсом угла наклона
касательной к кривой, приведенной на
рис. 1.8,б), в
точке с абсциссой i0.

Обозначив
динамическую индуктивность элемента
для тока i0
через Lд,
т. е.
,
можем написать:

.

Так
как
,
то будем иметь:

.

Исходное
уравнение запишется теперь так:

,

или,
подставляя ранее найденное выражение
для uвых0,
получим:

.

Последнее
выражение является линейным дифференциальным
уравнением с постоянными коэффициентами,
которое можно записать в операторной
форме так:

(1.5)

где

и k=1.

Оно
справедливо только для малых отклонений
входной и выходной величины относительно
начального значения uвх0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Вместо введения

Системы автоматического управления (САУ) предназначены для автоматического изменения одного или нескольких параметров объекта управления с целью установления требуемого режима его работы. САУ обеспечивает поддержание постоянства заданных значений регулируемых параметров или их изменение по заданному закону либо оптимизирует определенные критерии качества управления. Например, к таким системам относятся:

  • системы стабилизации,
  • системы программного управления,
  • следящие системы

Это достаточно широкий класс систем, которые можно найти где угодно. Но какое это отношение имеет к Unity3D и вероятно к играм в частности? В принципе прямое: в любой игре так или иначе использующей симуляцию как элемент геймплея реализуются САУ, к таким играм относятся, например, Kerbal Space Programm, Digital Combat Simulator (бывший Lock On), Strike Suit Zero и т.д. (кто знает еще примеры — пишите в комментариях). В принципе любая игра, моделирующая реальные физические процессы, в том числе и просто кинематику с динамикой движения, может реализовывать те или иные САУ — этот подход проще, естественнее, а у разработчика уже есть есть набор готовых инструментов, предоставленных всякими Вышнеградскими, Ляпуновыми, Калманами, Чебышевами и прочими Коломогоровами, поэтому можно обойтись без изобретения велосипеда, т.к. его уже изобрели, да так, что получилась отдельная наука: Теория автоматического управления. Главное тут не переусердствовать. Одна тут только проблема: рассказывают про ТАУ не везде, не всем, зачастую мало и не очень понятно.

Немножко теории

Классическая система автоматического управления представленная на следующем рисунке:

image

Ключевым элементом любой САУ является регулятор представляющий из себя устройство, которое следит за состоянием объекта управления и обеспечивает требуемый закон управления. Процесс управления включает в себя: вычисление ошибки управления или сигнала рассогласования e(t) как разницы между желаемой уставкой (set point или SP) и текущей величиной процесса (process value или PV), после чего регулятор вырабатывает управляющие сигналы (manipulated value или MV).

Одной из разновидностью регуляторов является пропорционально-интегрально-дифференцирующий (ПИД) регулятор, который формирует управляющий сигнал, являющийся суммой трёх слагаемых: пропорционального, интегрального и дифференциального.

image

Где, $e(t)$ ошибка рассогласования, а также, $ P = K_p cdot e(t)$ — пропорциональная, $ I = K_i cdot int_0^t e(tau)dtau$ — интегральная, $D = K_d cdot frac{de(t)}{dt}$ — дифференциальная составляющие (термы) закона управления, который в итоговом виде описывается следующими формулами

$ e(t) = SP(t) - PV(t), $

$ MV(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} + underbrace{K_d cdot frac{de(t)}{dt}}_{D}, $

Пропорциональная составляющая P — отвечает за т.н. пропорциональное управление, смысл которого в том, что выходной сигнал регулятора, противодействует отклонению регулируемой величины (ошибки рассогласования или еще это называют невязкой) от заданного значения. Чем больше ошибка рассогласования, тем больше командное отклонение регулятора. Это самый простой и очевидный закон управления. Недостаток пропорционального закона управления заключается в том, что регулятор никогда не стабилизируется в заданном значении, а увеличение коэффициента пропорциональности всегда приводит к автоколебаниям. Именно поэтому в довесок к пропорциональному закону управления приходиться использовать интегральный и дифференциальный.

Интегральная составляющая I накапливает (интегрирует) ошибку регулирования, что позволяет ПИД-регулятору устранять статическую ошибку (установившуюся ошибку, остаточное рассогласование). Или другими словами: интегральное звено всегда вносит некоторое смещение и если система подвержена некоторыми постоянным ошибкам, то оно их компенсирует (за счет своего смещения). А вот если же этих ошибок нет или они пренебрежительно малы, то эффект будет обратным — интегральная составляющая сама будет вносить ошибку смещения. Именно по этой причине её не используют, например, в задачах сверхточного позиционирования. Ключевым недостатком интегрального закона управления является эффект насыщения интегратора (Integrator windup).

Дифференциальная составляющая D пропорциональна темпу изменения отклонения регулируемой величины и предназначена для противодействия отклонениям от целевого значения, которые прогнозируются в будущем. Примечательно то, что дифференциальная компонента устраняет затухающие колебания. Дифференциальное регулирование особенно эффективно для процессов, которые имеют большие запаздывания. Недостатком дифференциального закона управления является его неустойчивость к воздействую шумов (Differentiation noise).

Таким образом, в зависимости от ситуации могут применятся П-, ПД-, ПИ- и ПИД-регуляторы, но основным законом управления в основном является пропорциональный (хотя в некоторых специфических задачах и могут использоваться исключительно только звенья дифференциаторов и интеграторов).

Казалось бы, вопрос реализации ПИД-регуляторов уже давно избит и здесь на Хабре есть парочка неплохих статей на эту тему в том числе и на Unity3D, также есть неплохая статья PID Without a PhD (перевод) и цикл статей в журнале «Современные технологии автоматизации» в двух частях: первая и вторая. Также к вашим услугам статья на Википедии (наиболее полную читайте в английском варианте). А на форумах коммьюнити Unity3D нет-нет, да и всплывет PID controller как и на gamedev.stackexchange

При вопрос по реализации ПИД-регуляторов несколько глубже чем и кажется. Настолько, что юных самоделкиных, решивших, реализовать такую схему регулирования ждет немало открытий чудных, а тема актуальная. Так что надеюсь сей опус, кому-нибудь да пригодиться, поэтому приступим.

Попытка номер раз

В качестве примера попытаемся реализовать схему регулирования на примере управления поворотом в простенькой космической 2D-аркаде, по шагам, начиная с самого начала (не забыли, что это туториал?).

Почему не 3D? Потому что реализация не измениться, за исключением того, что придется воротить ПИД-регулятор для контроля тангажа, рысканья и крена. Хотя вопрос корректного применения ПИД-регулирования вместе с кватернионами действительно интересный, возможно в будущем его и освящу, но даже в NASA предпочитают углы Эйлера вместо кватернионов, так что обойдемся простенькой моделью на двухмерной плоскости.

Для начала создадим сам объект игровой объект космического корабля, который будет состоять из собственно самого объекта корабля на верхнем уровне иерархии, прикрепим к нему дочерний объект Engine (чисто спецэффектов ради). Вот как это выглядит у меня:

image

А на сам объект космического корабля накидаем в инспекторе всяческих компонент. Забегая вперед, приведу скрин того, как он будет выглядеть в конце:

image
Но это потом, а пока в нем еще нет никаких скриптов, только стандартный джентльменский набор: Sprite Render, RigidBody2D, Polygon Collider, Audio Source (зачем?).

Собственно физика у нас сейчас самое главное и управление будет осуществляться исключительно через неё, в противном случае, применение ПИД-регулятора потеряло бы смысл. Масса нашего космического корабля оставим также в 1 кг, а все коэффициенты трения и гравитации равны нулю — в космосе же.

Т.к. помимо самого космического корабля есть куча других, менее умных космических объектов, то сначала опишем родительский класс BaseBody, который в себе будет содержать ссылки на на наши компоненты, методы инициализации и уничтожения, а также ряд дополнительных полей и методов, например для реализации небесной механики:

BaseBody.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    [RequireComponent(typeof(SpriteRenderer))]
    [RequireComponent(typeof(AudioSource))]
    [RequireComponent(typeof(Rigidbody2D))]
    [RequireComponent(typeof(Collider2D))]

    public class BaseBody : MonoBehaviour
    {
        readonly float _deafultTimeDelay = 0.05f;

[HideInInspector]
        public static List<BaseBody> _bodies = new List<BaseBody>();

        #region RigidBody

        [HideInInspector]
        public Rigidbody2D _rb2d;

        [HideInInspector]
        public Collider2D[] _c2d;

        #endregion

        #region References

        [HideInInspector]
        public Transform _myTransform;

        [HideInInspector]
        public GameObject _myObject;

        /// <summary>
        /// Объект, который появляется при уничтожении
        /// </summary>
        public GameObject _explodePrefab;

        #endregion

        #region  Audio

        public AudioSource _audioSource;

        /// <summary>
        /// Звуки, которые проигрываются при получении повреждения
        /// </summary>
        public AudioClip[] _hitSounds;

        /// <summary>
        /// Звуки, которые проигрываются при появлении объекта
        /// </summary>
        public AudioClip[] _awakeSounds;

        /// <summary>
        /// Звуки, которые воспроизводятся перед смертью
        /// </summary>
        public AudioClip[] _deadSounds;

        #endregion

        #region External Force Variables
        /// <summary>
        /// Внешние силы воздйствующие на объект
        /// </summary>
        [HideInInspector]
        public Vector2 _ExternalForces = new Vector2();

        /// <summary>
        /// Текущий вектор скорости
        /// </summary>
        [HideInInspector]
        public Vector2 _V = new Vector2();

        /// <summary>
        /// Текущий вектор силы гравитации
        /// </summary>
        [HideInInspector]
        public Vector2 _G = new Vector2();
        #endregion

        public virtual void Awake()
        {
            Init();
        }

        public virtual void Start()
        {

        }

        public virtual void Init()
        {
            _myTransform = this.transform;
            _myObject = gameObject;

            _rb2d = GetComponent<Rigidbody2D>();
            _c2d = GetComponentsInChildren<Collider2D>();
            _audioSource = GetComponent<AudioSource>();

            PlayRandomSound(_awakeSounds);

            BaseBody bb = GetComponent<BaseBody>();
            _bodies.Add(bb);
        }

        /// <summary>
        /// Уничтожение персонажа
        /// </summary>
        public virtual void Destroy()
        {
            _bodies.Remove(this);
            for (int i = 0; i < _c2d.Length; i++)
            {
                _c2d[i].enabled = false;
            }
            float _t = PlayRandomSound(_deadSounds);
            StartCoroutine(WaitAndDestroy(_t));
        }

        /// <summary>
        /// Ждем некоторое время перед уничтожением
        /// </summary>
        /// <param name="waitTime">Время ожидания</param>
        /// <returns></returns>
        public IEnumerator WaitAndDestroy(float waitTime)
        {
            yield return new WaitForSeconds(waitTime);

            if (_explodePrefab)
            {
                Instantiate(_explodePrefab, transform.position, Quaternion.identity);
            }

            Destroy(gameObject, _deafultTimeDelay);
        }

        /// <summary>
        /// Проигрывание случайного звука
        /// </summary>
        /// <param name="audioClip">Массив звуков</param>
        /// <returns>Длительность проигрываемого звука</returns>
        public float PlayRandomSound(AudioClip[] audioClip)
        {
            float _t = 0;
            if (audioClip.Length > 0)
            {
                int _i = UnityEngine.Random.Range(0, audioClip.Length - 1);
                AudioClip _audioClip = audioClip[_i];
                _t = _audioClip.length;
                _audioSource.PlayOneShot(_audioClip);
            }
            return _t;
        }

        /// <summary>
        /// Получение урона
        /// </summary>
        /// <param name="damage">Уровень урона</param>
        public virtual void Damage(float damage)
        {
            PlayRandomSound(_hitSounds);
        }

    }
}

Вроде описали все что надо, даже больше чем нужно (в рамках этой статьи). Теперь отнаследуем от него класс корабля Ship, который должен уметь двигаться и поворачивать:

SpaceShip.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();
        public float _rotation = 0f;

        public void FixedUpdate()
        {
            float torque = ControlRotate(_rotation);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(Vector2 rotate)
        {
            float result = 0f;

            return result;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 result = new Vector2();

            return result;

        }
    }
}

Пока в нем нет ничего интересно, на текущий момент это просто класс-заглушка.

Также опишем базовый(абстрактный) класс для всех контроллеров ввода BaseInputController:

BaseInputController.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public enum eSpriteRotation
    {
        Rigth = 0,
        Up = -90,
        Left = -180,
        Down = -270
    }

    public abstract class BaseInputController : MonoBehaviour
    {
        public GameObject _agentObject;
        public Ship _agentBody; // Ссылка на компонент логики корабля
        public eSpriteRotation _spriteOrientation = eSpriteRotation.Up; //Это связано с нестандартной 
                                                                           // ориентации спрайта "вверх" вместо "вправо"

        public abstract void ControlRotate(float dt);
        public abstract void ControlForce(float dt);

        public virtual void Start()
        {
            _agentObject = gameObject;
            _agentBody = gameObject.GetComponent<Ship>();
        }

        public virtual void FixedUpdate()
        {
            float dt = Time.fixedDeltaTime;
            ControlRotate(dt);
            ControlForce(dt);
        }

        public virtual void Update()
        {
            //TO DO
        }
    }
}

И наконец, класс контроллера игрока PlayerFigtherInput:

PlayerInput.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public class PlayerFigtherInput : BaseInputController
    {
        public override void ControlRotate(float dt)
        {
            // Определяем позицию мыши относительно игрока
            Vector3 worldPos = Input.mousePosition;
            worldPos = Camera.main.ScreenToWorldPoint(worldPos);

            // Сохраняем координаты указателя мыши
            float dx = -this.transform.position.x + worldPos.x;
            float dy = -this.transform.position.y + worldPos.y;

            //Передаем направление
            Vector2 target = new Vector2(dx, dy);
            _agentBody._target = target;

            //Вычисляем поворот в соответствии с нажатием клавиш
            float targetAngle = Mathf.Atan2(dy, dx) * Mathf.Rad2Deg;
            _agentBody._targetAngle = targetAngle + (float)_spriteOrientation;
        }

        public override void ControlForce(float dt)
        {
            //Передаем movement
            _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up 
                + Input.GetAxis("Horizontal") * Vector2.right;
        }
    }
}

Вроде бы закончили, теперь наконец можно перейти к тому, ради чего все это затевалось, т.е. ПИД-регуляторам (не забыли надеюсь?). Его реализация кажется простой до безобразия:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable] // Этот атрибут необходим для того что бы поля регулятора 
                                   // отображались в инспекторе и сериализовывались
    public class SimplePID
    {
        public float Kp, Ki, Kd;

        private float lastError;
        private float P, I, D;

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float dt)
        {
            P = error;
            I += error * dt;
            D = (error - lastError) / dt;
            lastError = error;

            float CO = P * Kp + I * Ki + D * Kd;

            return CO;
        }
    }
}

Значения коэффициентов по умолчанию возьмем с потолка: это будет тривиальный единичный коэффициент пропорционального закона управления Kp = 1, небольшое значение коэффициента для дифференциального закона управления Kd = 0.2, который должен устранить ожидаемые колебания и нулевое значение для Ki, которое выбрано потому, что в нашей программной модели нет никаких статичных ошибок (но вы всегда можете их внести, а потом героически побороться с помощью интегратора).

Теперь вернемся к нашему классу SpaceShip и попробуем заюзать наше творение в качестве регулятора поворота космического корабля в методе ControlRotate:

 public float ControlRotate(Vector2 rotate)
 {
      float MV = 0f;
      float dt = Time.fixedDeltaTime;

      //Вычисляем ошибку
      float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

      //Получаем корректирующее ускорение
      MV = _angleController.Update(angleError, dt);

      return MV;
 }

ПИД-регулятор будет осуществлять точное угловое позиционировая космического корабля только за счет крутящего момента. Все честно, физика и САУ, почти как в реальной жизни.

И без этих ваших Quaternion.Lerp

 if (!_rb2d.freezeRotation)
     rb2d.freezeRotation = true;

 float deltaAngle = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);
 float T = dt *  Mathf.Abs( _rotationSpeed / deltaAngle);

 // Трансформируем угол в вектор
Quaternion rot = Quaternion.Lerp(
                _myTransform.rotation,
                Quaternion.Euler(new Vector3(0, 0, targetAngle)),
                T);

 // Изменяем поворот объекта
 _myTransform.rotation = rot;

Получившейся исходный код Ship.cs под спойлером

using UnityEngine;
using Assets.Scripts.Regulator;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID();

        public void FixedUpdate()
        {
            float torque = ControlRotate(_targetAngle);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(float rotate)
        {
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_angle, rotate);

            //Получаем корректирующее ускорение
            MV = _angleController.Update(angleError, dt);

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            //Кусок кода спецэффекта работающего двигателя ради
            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement;
            return MV;
        }
    }
}

Все? Расходимся по домам?

WTF! Что происходит? Почему корабль поворачивается как-то странно? И почему он так резко отскакивает от других объектов? Неужели этот глупый ПИД-регулятор не работает?

Без паники! Давайте попробуем разобраться что происходит.

В момент получения нового значения SP, происходит резкий (ступенчатый) скачок рассогласования ошибки, которая, как мы помним, вычисляется вот так: $e(t) = SP(t) - PV(t), $ соответственно происходит резкий скачок производной ошибки $frac{de(t)}{dt}$, которую мы вычисляем в этой строчке кода:

D = (error - lastError) / dt;

Можно, конечно, попробовать другие схемы дифференцирования, например, трехточечную, или пятиточечную, или… но все равно это не поможет. Ну вот не любят производные резких скачков — в таких точках функция не является дифференцируемой. Однако поэкспериментировать с разными схемами дифференцирования и интегрирования стоит, но потом и не в этой статье.

Думаю что настал момент построить графики переходного процесса: ступенчатое воздействие от S(t) = 0 в SP(t) = 90 градусов для тела массой в 1 кг, длинной плеча силы в 1 метр и шагом сетки дифференцирования 0.02 с — прям как в нашем примере на Unity3D (на самом деле не совсем, при построении этих графиков не учитывалось, что момент инерции зависит от геометрии твердого тела, поэтому переходный процесс будет немножко другой, но все же достаточно похожий для демонстрации). Все величены на грифике приведены в абсолютных значениях:
image
Хм, что здесь происходит? Куда улетел отклик ПИД-регулятора?

Поздравляю, мы только что столкнулись с таким явлением как «удар» (kick). Очевидно, что в момент времени, когда процесс еще PV = 0, а уставка уже SP = 90, то при численном дифференцировании получим значение производной порядка 4500, которое умножится на Kd=0.2 и сложится с пропорциональным теромом, так что на выходе мы получим значение углового ускорения 990, а это уже форменное надругательство над физической моделью Unity3D (угловые скорости будут достигать 18000 град/с… я думаю это предельное значение угловой скорости для RigidBody2D).

  • Может стоит подобрать коэффициенты ручками, так чтобы скачок был не таким сильным?
  • Нет! Самое лучше чего мы таким образом сможем добиться — небольшая амплитуда скачка производной, однако сам скачок как был так и останется, при этом можно докрутиться до полной неэффективности дифференциальной составляющей.

Впрочем можете поэкспериментировать.

Попытка номер два. Сатурация

Логично, что привод (в нашем случае виртуальные маневровые двигатели SpaceShip), не может отрабатывать сколько угодно большие значения которые может выдать наш безумный регулятор. Так что первое что мы сделаем — сатурируем выход регулятора:

public float ControlRotate(Vector2 rotate, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    //Вычисляем ошибку
    float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

    //Получаем корректирующее ускорение
    CO = _angleController.Update(angleError, dt);

    //Сатурируем
    MV = CO;
    if (MV > thrust) MV = thrust;
    if (MV< -thrust) MV = -thrust;

    return MV;
}

А очередной раз переписанный класс Ship полностью выглядит так

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

            //Получаем корректирующее ускорение
            CO = _angleController.Update(angleError, dt);

            //Сатурируем
            MV = CO;
            if (MV > thrust) MV = thrust;
            if (MV< -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * _thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

Итоговая схема нашего САУ тогда станет уже вот такой
image

При этом уже становится понятно, что выход контроллера CO(t) немного не одно и тоже, что управляемая величина процесса MV(t).

Собственно с этого места можно уже добавлять новую игровую сущность — привод, через которую и будет осуществляться управление процессом, логика работы которой может быть более сложной, чем просто Mathf.Clamp(), например, можно ввести дискретизацию значений (дабы не перегружать игровую физику величинами идущими шестыми после запятой), мертвую зону (опять таки не имеет смысл перегружать физику сверхмалыми реакциями), ввести задержку в упраление и нелинейность (например, сигмоиду) привода, после чего посмотреть, что из этого получится.

Запустив игру, мы обнаружим, что космический корабль стал наконец управляемым:

Если построить графики, то можно увидеть, что реакция контроллера стала уже вот такой:
image
Здесь уже используются нормированные величены, углы поделены на значение SP, а выход контроллера отнормирован относительно максимального значения на котором уже происходит сатурация.

Теперь на графике видно наличие ошибки перерегулирования (overshooting) и затухающие колебания. Уменьшая Kp и увеличивая Kd можно добиться уменьшения колебаний, но зато увеличится время реакции контроллера (скорость поворота корабля). И наоборот, увеличивая Kp и уменьшая Kd — можно добиться увеличения скорости реакции контроллера, но появятся паразитные колебания, которые при определенных (критических) значениях, перестанут быть затухающими.

Ниже приведена известна таблица влияния увеличения параметров ПИД-регулятора (как уменьшить шрифт, а то таблица безе переносов не лезет?):

А общий алгоритм ручной настройки ПИД-регулятора следующий:

  1. Подбираем пропорциональный коэффициенты при отключенных дифференциальных и интегральных звеньях до тех пор пока не начнутся автоколебания.
  2. Постепенно увеличивая дифференциальную составляющую избавляемся от автоколебаний
  3. Если наблюдается остаточная ошибка регулирования (смещение), то устраняем её за счет интегральной составляющей.

Каких-то общих значений параметров ПИД-регулятора нет: конкретные значения зависят исключительно от параметров процесса (его передаточной характеристики): ПИД-регулятор отлично работающий с одним объектом управления окажется неработоспособным с другим. Более того, коэффициенты при пропорциональной, интегральной и дифференциальной составляющих еще и взаимозависимы.

В общем не будем о грустном, дальше нас ждет самое интересное…

Попытка номер три. Еще раз производные

Приделав костыль в виде ограничения значений выхода контроллера мы так и не решили самую главную проблему нашего регулятора — дифференциальная составляющая плохо себя чувствует при ступенчатом изменении ошибки на входе регуляторе. На самом деле есть множество других костылей, например, в момент скачкообразного изменения SP «отключать» дифференциальную составляющую или же поставить фильтры нижних частот между SP(t) и операцией $SP(t)-PV(t)$ за счет которого будет происходить плавное нарастание ошибки, а можно совсем развернуться и впендюрить самый настоящий фильтр Калмана для сглаживания входных данных. В общем костылей много, и добавить наблюдателя конечно хотелось бы, но не в этот раз.

Поэтому снова вернемся к производной ошибки рассогласования и внимательно на неё посмотрим:

$ frac{de(t)}{dt} = frac{d(SP(t)-PV(t))}{dt} = frac{dSP(t)}{dt} - frac{dPV(t)}{dt}, $

Ничего не заметили? Если хорошенько присмотреться, то можно обнаружить, что вообще-то SP(t), не меняется во времени (за исключением моментов ступенчатого изменения, когда регулятор получает новую команду), т.е. её производная равна нулю:

$ frac{dSP(t)}{dt} = 0, $

тогда

$ frac{de(t)}{dt} = - frac{dPV(t)}{dt}, $

Иными словами, вместо производной ошибки, которая дифференцируема не везде мы можем использовать производную от процесса, который в мире классической механики как правило непрерывен и дифференцируем везде, а схема нашей САУ уже приобретет следующий вид:
image

$ e(t) = SP(t) - PV(t), $

$ CO(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} - underbrace{K_d cdot frac{dPV(t)}{dt}}_{D}, $

Модифицируем код регулятора:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable]
    public class SimplePID
    {
        public float Kp, Ki, Kd;
        private float P, I, D;

        private float lastPV = 0f;   

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0f;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float PV, float dt)
        {
            P = error;
            I += error * dt;
            D = -(PV - lastPV) / dt;

            lastPV = PV;

            float CO = Kp * P + Ki * I + Kd * D;

            return CO;
        }
    }
}

И немного изменим метод ControlRotate:

public float ControlRotate(Vector2 rotate, float thrust)
{
     float CO = 0f;
     float MV = 0f;
     float dt = Time.fixedDeltaTime;

     //Вычисляем ошибку
     float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

     //Получаем корректирующее ускорение
     CO = _angleController.Update(angleError, _myTransform.eulerAngles.z, dt);

     //Сатурируем
     MV = CO;
     if (CO > thrust) MV = thrust;
     if (CO < -thrust) MV = -thrust;

     return MV;
}

И-и-и-и… если запустить игру, то обнаружиться, что на самом деле ничего ничего не изменилось с последней попытки, что и требовалось доказать. Однако, если убрать сатурацию, то график реакции регулятора будет выглядеть вот так:
image
Скачок CO(t) по прежнему присутствует, однако он уже не такой большой как был в самом начале, а самое главное — он стал предсказуемым, т.к. обеспечивается исключительно пропорциональной составляющей, и ограничен максимально возможной ошибкой рассогласования и пропорциональным коэффициентом ПИД-регулятора (а это уже намекает на то, что Kp имеет смысл выбрать все же меньше единицы, например, 1/90f), но не зависит от шага сетки дифференцирования (т.е. dt). В общем, я настоятельно рекомендую использовать именно производную процесса, а не ошибки.

Думаю теперь никого не удивит, но таким же макаром можно заменить $K_p cdot e(t)$ на $-K_p cdot PV(t)$, однако останавливаться на этом мы не будем, можете сами поэкспериментировать и рассказать в комментариях, что из этого получилось (самому интересно)

Попытка номер четыре. Альтернативные реализации ПИД-регулятор

Помимо описанного выше идеального представления ПИД-регулятора, на практике часто применяется стандартная форма, без коэффициентов Ki и Kd, вместо которых используются временные постоянные.

Такой подход связан с тем, что ряд методик настройки ПИД-регулятора основан на частотных характеристиках ПИД-регулятора и процесса. Собственно вся ТАУ и крутится вокруг частотных характеристик процессов, поэтому для желающих углубиться, и, внезапно, столкнувшихся с альтернативной номенклатурой, приведу пример т.н. стандартной формы ПИД-регулятора:

$ e(t) = SP(t) - PV(t), $

$ CO(t) =CO_{bias} + K_p cdot Bigl(e(t) + frac{1}{T_i} cdot int_0^t e(tau)dtau - T_d cdot frac{dPV(t)}{dt} Bigl), $

где, $T_d= frac{K_d}{K_p}$ — постоянная дифференцирования, влияющая на прогнозирование состояния системы регулятором,
$T_i = frac{K_p}{K_i}$ — постоянная интегрирования, влияющая на интервал усреднения ошибки интегральным звеном.

Основные принципы настройки ПИД-регулятора в стандартной форме аналогичны идеализированному ПИД-регулятору:

  • увеличение пропорционального коэффициента увеличивает быстродействие и снижает запас устойчивости;
  • с уменьшением интегральной составляющей ошибка регулирования с течением времени уменьшается быстрее;
  • уменьшение постоянной интегрирования уменьшает запас устойчивости;
  • увеличение дифференциальной составляющей увеличивает запас устойчивости и быстродействие

Исходный код стандартной формы, вы можете найти под спойлером

namespace Assets.Scripts.Regulator
{
    [System.Serializable]    
    public class StandartPID
    {
        public float Kp, Ti, Td;
        public float error, CO;
        public float P, I, D;

        private float lastPV = 0f;

        public StandartPID()
        {
            Kp = 0.1f;
            Ti = 10000f;
            Td = 0.5f;
            bias = 0f;
        }

        public StandartPID(float Kp, float Ti, float Td)
        {
            this.Kp = Kp;
            this.Ti = Ti;
            this.Td = Td;
        }

        public float Update(float error, float PV, float dt)
        {
            this.error = error;
            P = error;
            I += (1 / Ti) * error * dt;
            D = -Td * (PV - lastPV) / dt;

            CO = Kp * (P + I + D);
            lastPV = PV;

            return CO;
        }
    }
}

В качестве значений по умолчанию, выбраны Kp = 0.01, Ti = 10000, Td = 0.5 — при таких значениях корабль поворачивается достаточно быстро и обладает некоторым запасом устойчивости.

Помимо такой формы ПИД-регулятора, часто используется т.н. реккурентная форма:

$ CO(t_k)=CO(t_{k-1})+K_pleft[left(1+dfrac{Delta t}{T_i}+dfrac{T_d}{Delta t}right)e(t_k)+left(-1-dfrac{2T_d}{Delta t}right)e(t_{k-1})+dfrac{T_d}{Delta t}e(t_{k-2})right] $

Не будем на ней останавливаться, т.к. она актуальна прежде всего для хардверных программистов, работающих с FPGA и микроконтроллерами, где такая реализация значительно удобнее и эффективнее. В нашем же случае — давайте что-нибудь сваям на Unity3D — это просто еще одна реализация ПИД-контроллера, которая ни чем не лучше других и даже менее понятная, так что еще раз дружно порадуемся как хорошо программировать в уютненьком C#, а не в жутком и страшном VHDL, например.

Вместо заключения. Куда бы еще присобачить ПИД-регулятор

Теперь попробуем немного усложнить управление корабля используя двухконтурное управление: один ПИД-регулятор, уже знакомый нам _angleController, отвечает по прежнему за угловое позиционирование, а вот второй — новый, _angularVelocityController — контролирует скорость поворота:

public float ControlRotate(float targetAngle, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    _angle = _myTransform.eulerAngles.z;

    //Контроллер угла поворота
    float angleError = Mathf.DeltaAngle(_angle, targetAngle);
    float torqueCorrectionForAngle = 
    _angleController.Update(angleError, _angle, dt);

    //Контроллер стабилизации скорости
    float angularVelocityError = -_rb2d.angularVelocity;
    float torqueCorrectionForAngularVelocity = 
        _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

    //Суммарный выход контроллера
    CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

    //Дискретизируем с шагом 100            
    CO = Mathf.Round(100f * CO) / 100f;

    //Сатурируем
    MV = CO;
    if (CO > thrust) MV = thrust;
    if (CO < -thrust) MV = -thrust;

    return MV;
}

Назначение второго регулятора — гашение избыточных угловых скоростей, за счет изменения крутящего момента — это сродни наличию углового трения, которое мы отключили еще при создании игрового объекта. Такая схема управления [возможно] позволит получить более стабильное поведение корабля, и даже обойтись только пропорциональными коэффициентами управления — второй регулятор будет гасить все колебания, выполняя функцию, аналогичную дифференциальной составляющей первого регулятора.

Помимо этого, добавим новый класс ввода игрока — PlayerInputCorvette, в котором повороты буду осуществляться уже за счет нажатия клавиш «вправо-влево», а целеуказание с помощью мыши мы оставим для чего-нибудь более полезного, например, для управления турелью. Заодно у нас теперь появился такой параметр как _turnRate — отвечающий за скорость/отзывчивость поворота (не понятно только куда его поместить лучше в InputCOntroller или все же Ship).

public class PlayerCorvetteInput : BaseInputController
{
     public float _turnSpeed = 90f;

     public override void ControlRotate()
     {
         // Находим указатель мыши
         Vector3 worldPos = Input.mousePosition;
         worldPos = Camera.main.ScreenToWorldPoint(worldPos);

         // Сохраняем относительные координаты указателя мыши
         float dx = -this.transform.position.x + worldPos.x;
         float dy = -this.transform.position.y + worldPos.y;

         //Передаем направление указателя мыши
         Vector2 target = new Vector2(dx, dy);
         _agentBody._target = target;

         //Вычисляем поворот в соответствии с нажатием клавиш
         _agentBody._rotation -= Input.GetAxis("Horizontal") * _turnSpeed * Time.deltaTime;
    }

    public override void ControlForce()
    {            
         //Передаем movement
         _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up;
    }
}

Также для наглядности накидаем на коленках скрипт для отображения отладочной информации

namespace Assets.Scripts.SpaceShooter.UI
{
    [RequireComponent(typeof(Ship))]
    [RequireComponent(typeof(BaseInputController))]
    public class Debugger : MonoBehaviour
    {
        Ship _ship;
        BaseInputController _controller;
        List<SimplePID> _pids = new List<SimplePID>();
        List<string> _names = new List<string>();

        Vector2 _orientation = new Vector2();

        // Use this for initialization
        void Start()
        {
            _ship = GetComponent<Ship>();
            _controller = GetComponent<BaseInputController>();

            _pids.Add(_ship._angleController);
            _names.Add("Angle controller");

            _pids.Add(_ship._angularVelocityController);
            _names.Add("Angular velocity controller");

        }

        // Update is called once per frame
        void Update()
        {
            DrawDebug();
        }

        Vector3 GetDiretion(eSpriteRotation spriteRotation)
        {
            switch (_controller._spriteOrientation)
            {
                case eSpriteRotation.Rigth:
                    return transform.right;
                case eSpriteRotation.Up:
                    return transform.up;
                case eSpriteRotation.Left:
                    return -transform.right;
                case eSpriteRotation.Down:
                    return -transform.up;
            }
            return Vector3.zero;
        }

        void DrawDebug()
        {
            //Направление поворота
            Vector3 vectorToTarget = transform.position 
                + 5f * new Vector3(-Mathf.Sin(_ship._targetAngle * Mathf.Deg2Rad), 
                    Mathf.Cos(_ship._targetAngle * Mathf.Deg2Rad), 0f);

            // Текущее направление
            Vector3 heading = transform.position + 4f * GetDiretion(_controller._spriteOrientation);

            //Угловое ускорение
            Vector3 torque = heading - transform.right * _ship._Torque;

            Debug.DrawLine(transform.position, vectorToTarget, Color.white);
            Debug.DrawLine(transform.position, heading, Color.green);
            Debug.DrawLine(heading, torque, Color.red);
        }

        void OnGUI()
        {
            float x0 = 10;
            float y0 = 100;

            float dx = 200;
            float dy = 40;

            float SliderKpMax = 1;
            float SliderKpMin = 0;
            float SliderKiMax = .5f;
            float SliderKiMin = -.5f;
            float SliderKdMax = .5f;
            float SliderKdMin = 0;

            int i = 0;
            foreach (SimplePID pid in _pids)
            {
                y0 += 2 * dy;

                GUI.Box(new Rect(25 + x0, 5 + y0, dx, dy), "");

                pid.Kp = GUI.HorizontalSlider(new Rect(25 + x0, 5 + y0, 200, 10), 
                    pid.Kp, 
                    SliderKpMin, 
                    SliderKpMax);
                pid.Ki = GUI.HorizontalSlider(new Rect(25 + x0, 20 + y0, 200, 10), 
                    pid.Ki, 
                    SliderKiMin, 
                    SliderKiMax);
                pid.Kd = GUI.HorizontalSlider(new Rect(25 + x0, 35 + y0, 200, 10), 
                    pid.Kd, 
                    SliderKdMin, 
                    SliderKdMax);

                GUIStyle style1 = new GUIStyle();
                style1.alignment = TextAnchor.MiddleRight;
                style1.fontStyle = FontStyle.Bold;
                style1.normal.textColor = Color.yellow;
                style1.fontSize = 9;

                GUI.Label(new Rect(0 + x0, 5 + y0, 20, 10), "Kp", style1);
                GUI.Label(new Rect(0 + x0, 20 + y0, 20, 10), "Ki", style1);
                GUI.Label(new Rect(0 + x0, 35 + y0, 20, 10), "Kd", style1);

                GUIStyle style2 = new GUIStyle();
                style2.alignment = TextAnchor.MiddleLeft;
                style2.fontStyle = FontStyle.Bold;
                style2.normal.textColor = Color.yellow;
                style2.fontSize = 9;

                GUI.TextField(new Rect(235 + x0, 5 + y0, 60, 10), pid.Kp.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 20 + y0, 60, 10), pid.Ki.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 35 + y0, 60, 10), pid.Kd.ToString(), style2);

                GUI.Label(new Rect(0 + x0, -8 + y0, 200, 10), _names[i++], style2);
            }
        }
    }
}

Класс Ship также претерпел необратимые мутации и теперь должен выглядеть вот так:

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);
        public SimplePID _angularVelocityController = new SimplePID(0f,0f,0f);

        private float _torque = 0f;
        public float _Torque
        {
            get
            {
                return _torque;
            }
        }

        private Vector2 _force = new Vector2();
        public Vector2 _Force
        {
            get
            {
                return _force;
            }
        }

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement, _thrust);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Контроллер угла поворота
            float angleError = Mathf.DeltaAngle(_angle, targetAngle);
            float torqueCorrectionForAngle = 
                _angleController.Update(angleError, _angle, dt);

            //Контроллер стабилизации скорости
            float angularVelocityError = -_rb2d.angularVelocity;
            float torqueCorrectionForAngularVelocity = 
                _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

            //Суммарный выход контроллера
            CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

            //Дискретизируем с шагом 100            
            CO = Mathf.Round(100f * CO) / 100f;

            //Сатурируем
            MV = CO;
            if (CO > thrust) MV = thrust;
            if (CO < -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement, float thrust)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

А вот, собственно заключительное видео того, что должно получиться:

К сожалению получилось охватить не все, что хотелось бы, в частности почти не затронут вопрос настройки ПИД-регулятора и практически не освящена интегральная составляющая — фактически приведен пример только для ПД-регулятора. Собственно изначально планировалось несколько больше примеров (круиз-контроль, вращение турели и компенсация вращательного момента), но статья итак уже разбухла, да и вообще:
image

Немного ссылок

  1. Годная статья на английской вики
  2. PID tutorial
  3. ПИД-регуляторы: вопросы реализации. Часть 1
  4. ПИД-регуляторы: вопросы реализации. Часть 2
  5. PID Without a PhD
  6. PID Without a PhD. Перевод
  7. Derivative Action and PID Control
  8. Control System Lab: PID
  9. ПИД-регулятор своими руками
  10. Корректная реализация разностной схемы ПИД регулятора
  11. Программируем квадрокоптер на Arduino (часть 1)
  12. Виртуальный квадрокоптер на Unity + OpenCV (Часть 1)
  13. Поляков К.Ю. Теория автоматического управления для чайников
  14. PID control system analysis, design, and technology
  15. Aidan O’Dwyer. Handbook of PI and PID Controller Tuning Rules (3rd ed.)
  16. PID process control, a “Cruise Control” example
  17. https://www.mathworks.com/discovery/pid-control.html
  18. http://scilab.ninja/study-modules/scilab-control-engineering-basics/module-4-pid-control/
  19. https://sourceforge.net/p/octave/control/ci/default/tree/inst/optiPID.m

Еще немного ссылок на другие примеры
http://luminaryapps.com/blog/use-a-pid-loop-to-control-unity-game-objects/
http://www.habrador.com/tutorials/pid-controller/3-stabilize-quadcopter/
https://www.gamedev.net/articles/programming/math-and-physics/pid-control-of-physics-bodies-r3885/
https://ksp-kos.github.io/KOS/tutorials/pidloops.html

К системам автоматического регулирования (САР) предъявляются требования не только
устойчивости процессов регулирования. Для работоспособности системы не менее необходимо, чтобы процесс автоматического регулирования осуществлялся при обеспечении определенных показателей качества процесса управления.

Если исследуемая САР является устойчивой, возникает вопрос о том, насколько качественно происходит регулирование в этой системе и удовлетворяет ли оно технологическим требованиям обьекта управления.На практике качество регулирования определяется визуально по графику переходной характеристики. Однако, имеются точные но более сложные математические методы, дающие конкретные числовые значения (которые не рассматриваются в данной методике).

Классификация показателей качества состоит из нескольких групп:

  • прямые — определяемые непосредственно по переходной характеристике процесса,
  • корневые — определяемые по корням характеристического полинома,
  • частотные — по частотным характеристикам,
  • интегральные — получаемые путем интегрирования функций.

Прямыми показателями качества процесса управления, определяемые непосредственно по
переходной характеристике являются:

  1. Установившееся значение выходной величины Yуст,
  2. Степень затухания ?,
  3. Время достижения первого максимума tmax,
  4. Время регулирования tp,
  5. Ошибка регулирования Ест (статистическая или среднеквадратическая составляющие),
  6. Перерегулирование у,
  7. Динамический коэффициент регулирования Rd,
  8. Показатель колебательности М.

Например, переходная характеристика, снятая на объекте управления при отработке ступенчатого воздействия, имеет колебательный вид и представлена на рис.1.

Рисунок 1 — Определение показателей качества по переходной характеристике

Установившееся значение выходной величины Yуст

Установившееся значение выходной величины Yуст определяется по переходной характеристике,представленной на рис.1.

Степень затухания ?

Степень затухания ? определяется по формуле:

где А1 и А3 — соответственно 1-я и 3-я амплитуды переходной характеристики рис.1.

Время достижения первого максимума tmax

Время достижения первого максимума tmax определяется по переходной характеристике,представленной на рис.1.

Время регулирования tp

Время регулирования tp определяется согласно рис.1 следующим образом:Находится допустимое отклонение Д, например, задано Д = 5%Yуст и строится «зона» толщиной 2 Д(см. рис.1). Время tp соответствует последней точке пересечения Y(t) с данной границей. То есть время,когда колебания регулируемой величины перестают превышать 5 % от установившегося значения.
Настройки регулятора необходимо выбирать так, чтобы обеспечить минимально возможное значение общего времени регулирования, либо минимальное значение первой полуволны переходного процесса.

В непрерывных системах с типовыми регуляторами это время бывает минимальным при так называемых оптимальных апериодических переходных процессах. Дальнейшего уменьшения времени регулирования до абсолютного минимума можно достичь при использовании специальных оптимальных по быстродействию систем регулирования.

Ошибка регулирования Ест

Статическая ошибка регулирования Ест = Ув — Ууст, где Ув — входная величина (см. рис.1).В некоторых САР наблюдается ошибка, которая не исчезает даже по истечении длительногоинтервала времени — это статическая ошибка регулирования Ест. Данная ошибка не должна превышатьнекоторой наперед заданной величины. У регуляторов с интегральной составляющей ошибки в установившемся состоянии теоретическиравны нулю, но практически незначительные ошибки могут существовать из-за наличия зоннечувствительности в элементах системы.

Перерегулирование у

Величина перерегулирования у зависит от вида отрабатываемого сигнала.При отработке ступенчатого воздействия (по сигналу задания) – см. рис.1 величина перерегулирования у определяется по формуле:

где значения величин Ymax и Yуст определяются согласно рис.1.

При отработке возмущающего воздействия, величина перерегулирования у определяется изсоотношения:

где значения величин Xm и X1 определяются согласно рис. 2.

Рисунок 2 — График переходного процесса при отработке возмущения

Динамический коэффициент регулирования Rd

Динамический коэффициент регулирования Rd определяется из формулы:

где значения величин Y1 и Y0 определяются согласно рис. 3.

Рисунок 3 — К понятию динамического коэффициента регулирования

Величина динамического коэффициента Rd характеризует степень воздействия регулятора напроцесс, т.е. степень понижения динамического отклонения в системе с регулятором и без него.

Показатель колебательности М

Показатель колебательности M характеризует величину максимума модуля частотной передаточной функции замкнутой системы (на частоте резонанса) и, тем самым, характеризует колебательные свойства системы. Показатель колебательности наглядно иллюстрируется на рисунке 4.

Рисунок 4 — График модуля частотной передаточной функции замкнутой системы

Условно считается, что значение М=1,5-1,6 является оптимальным для промышленных САР, т.к. вэтом случае у обеспечивается в районе от 20% до 40%. При увеличении значения M колебательность всистеме возрастает.

В некоторых случаях нормируется полоса пропускания системы щп, которая соответствует уровню усиления в замкнутой системе 0,05. Чем больше полоса пропускания, тем больше быстродействие замкнутой системы. Однако при этом повышается чувствительность системы к шумам в канале измерения и возрастает дисперсия ошибки регулирования.

Понравилась статья? Поделить с друзьями:
  • Ошибка р3102 фольксваген кадди
  • Ошибка распознавания tof следующий tof не найден
  • Ошибка р3100 форд
  • Ошибка р2714 тойота рав 4
  • Ошибка рассинхронизация датчиков коленвала и распредвала