Ошибка 3506 wrong cutting area

Номер

Сообщение

Описание

0001

ОШИБКА TH

Во время считывания с устройства ввода обнаружена ошибка TH. Код, вызвавший при считывании ошибку TH, и количество операторов до него от блока можно проверить в окне диагностики.

0002

ОШИБКА TV

Ошибка TV обнаружена в единичном блоке.

Проверка TV может быть отменена присвоением TVC в параметре ном. 0000#0 значения «0».

0003

СЛИШКОМ МНОГО ЗНАКОВ

Данные введены с большим количеством символов, чем разрешено для оператора ЧПУ. Количество допустимых символов варьируется в зависимости от функции и слова.

0004

АДРЕС НЕ НАЙДЕН

Адрес слов(а) ЧПУ + числовое значение не соответствуют формату слова. Данный сигнал тревоги выдается также, если пользовательская макрокоманда не содержит зарезервированного слова или не соответствует синтаксису.

0005

ОТСУТСТВУЮТ ДАННЫЕ ПОСЛЕ АДРЕСА

Адрес слов(а) ЧПУ + числовое значение не соответствуют формату слова. Данный сигнал тревоги выдается также, если пользовательская макрокоманда не содержит зарезервированного слова или не соответствует синтаксису.

0006

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ЗНАКА МИНУС

Знак минус (-) был задан в команде ЧПУ или в системной переменной, где задание знак минус не разрешено.

0007

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ДЕСЯТИЧНОЙ ТОЧКИ

Десятичная точка (.) была задана в адресе, где нельзя задать десятичную точку, либо были заданы две десятичные точки.

0009

НЕВЕРНЫЙ АДРЕС ЧУ

Был задан неверный адрес, либо не задан параметр 1020.

0010

НЕВЕРНЫЙ G-КОД

Задан неиспользуемый G-код.

0011

НУЛЕВАЯ ПОДАЧА (КОМАНДА)

Скорость подачи резания, предписанная F кодом, была задана равной 0. Данный сигнал тревоги порождается также, если задан чрезвычайно малый F-код, предписанный для S-кода в команде жесткого нарезания резьбы, так как инструмент не может нарезать при заданном шаге.

0015

СЛИШКОМ МНОГО ОСЕЙ ОДНОВРЕМЕННО

Команда перемещения была задана для большего числа осей, чем доступно для функции одновременного управления осями.

Либо разделите запрограммированные оси перемещения на два блока.

0020

ПРЕВЫШЕНИЕ ДОПУСКА ПО РАДИУСУ

Была задана дуга, для которой разность по радиусу в начальной и конечной точках превышает значение, заданное в параметре ном. 3410. Проверьте коды центра дуги I, J и K в программе. Траектория инструмента, если в параметре ном. 3410 задано большое значение, представляет собой спираль.

0021

НЕВЕРНЫЙ ВЫБОР ПЛОСКОСТИ

Команды выбора плоскости с G17 по G19 ошибочны. Перепрограммируйте так, чтобы те же 3 основные параллельные оси не были заданы одновременно.

Этот сигнал тревоги порождается также, если задана ось, которая не должна быть указана для обработки плоскости, например, для круговой интерполяции.

Для 0i -TD опция винтовой интерполяции необходима для активации спецификации 3 или более осей для блока G02/G03.

0022

НЕ ОБНАРУЖЕНА КОМАНДА R ИЛИ I, J, K

В команде круговой интерполяции отсутствует радиус дуги R или координата I, J или K расстояния между начальной точкой и центром дуги.

0023

НЕВЕРНАЯ КОМАНДА РАДИУСА

Для команды радиуса дуги R задано отрицательное значение. В серии T дуга с углом более 180° не может быть задана посредством команды R. Измените программу.

0025

КРУГОВОЕ РЕЗАНИЕ В УСКОРЕННОМ РЕЖИМЕ (F0)

F0 (ускоренный подвод при подаче с однозначным F-кодом или обратной подаче) был задан во время круговой интерполяции (G02, G03).

0027

НЕ ЗАДАНЫ ОСИ В G43/G44

Не заданы оси в блоках G43 и G44 для коррекции на длину инструмента типа С.

Коррекция не отменена, но другая ось смещена для коррекции на длину инструмента типа С.

Несколько осей задано для одного блока, когда тип коррекции на длину инструмента — C.

0028

НЕВЕРНЫЙ ВЫБОР ПЛОСКОСТИ

Команды выбора плоскости с G17 по G19 ошибочны. Перепрограммируйте так, чтобы те же 3 основные параллельные оси не были заданы одновременно. Этот сигнал тревоги порождается также, если задана ось, которая не должна быть указана для обработки плоскости, например, для круговой интерполяции.

Для 0i -TD опция винтовой интерполяции необходима для активации спецификации 3 или более осей для блока G02/G03.

0029

НЕВЕРНАЯ ВЕЛИЧИНА КОРРЕКЦИИ

Коррекция с неверным номером

0030

НЕВЕРНЫЙ НОМЕР КОРРЕКЦИИ

Был задан неверный номер коррекции.

0031

НЕВЕРНАЯ КОМАНДА Р В G10

Ввод данных для ном. L команды G10 или соответствующей функции не активирован. Не задан адрес настройки данных, например, P или R. Была задана команда адреса, не связанная с настройкой данных. Адрес меняется вместе с номером L.

Знак или десятичная запятая заданного адреса ошибочны, или заданный адрес находится за пределами диапазона.

0032

НЕВЕРНАЯ ВЕЛИЧИНА КОРРЕКЦИИ В G10

При установке величины коррекции с помощью G10 или при записи величины коррекции с помощью системных переменных величина коррекции оказалась избыточной.

0033

НЕТ ПЕРЕСЕЧЕНИЯ ПРИ КОРРЕКЦИИ НА РЕЖУЩИЙ ИНСТРУМЕНТ

Нет пересечения при расчете пересечения для коррекции на радиус инструмента/на радиус вершины инструмента. Измените программу.

0034

КРУГОВОЕ ДВИЖЕНИЕ В БЛОКЕ ЗАПУСКА/ВЫХОДА ЗАПРЕЩЕНО

При коррекции на радиус инструмента / на радиус вершины инструмента запуск или отмена выполняются в режиме G02 или G03. Измените программу.

0035

НЕЛЬЗЯ ЗАДАТЬ G31

1) Нельзя задать G31. Этот сигнал тревоги генерируется, если не отменен G-код (например, для коррекции на радиус инструмента / на радиус вершины инструмента) группы 07.

2) Пропуск по пределу крутящего момента не был задан в команде пропуска по пределу крутящего момента (G31P98 или P99). Задайте пропуск по пределу крутящего момента в окне РМС или другим способом.

0037

НЕВОЗМОЖНО ИЗМЕНИТЬ ПЛОСКОСТЬ В G41/G42

Плоскость коррекции G17/G18/G19 была изменена в ходе коррекции на режущий инструмент или на радиус вершины инструмента. Измените программу.

0038

СТОЛКНОВЕНИЕ В БЛОКЕ КРУГОВОГО ПЕРЕМЕЩЕНИЯ

Зарез происходит при коррекции на радиус инструмента / на радиус вершины инструмента, так как начальная или конечная точки дуги совпадают с центром дуги. Измените программу.

0039

CHF/CNR НЕ РАЗРЕШЕНЫ В G41, G42

Снятие фаски или скругление угла R заданы при запуске, отмене или переключении между G41 и G42 в командах G41 и G42 (коррекция на радиус вершины инструмента). Программа может привести к зарезу при снятии фаски или скруглении угла. Измените программу.

0041

СТОЛКНОВЕНИЕ ПРИ КОРРЕКЦИИ НА РЕЖУЩИЙ ИНСТРУМЕНТ

При коррекции на радиус инструмента / на радиус вершины инструмента возможно избыточное резание. Измените программу.

0042

G45/G48 НЕ РАЗРЕШЕНЫ ПРИ CRC

Смещение инструмента (от G45 до G48) задано в режиме коррекции на радиус инструмента. Измените программу.

0044

G27-G30 НЕ ДОПУСКАЮТСЯ ПРИ ФИКСИРОВАННОМ ЦИКЛЕ

Одна из команд от G27 до G30 (G29 только для серии M) задана в режиме постоянного цикла. Измените программу.

0045

НЕ НАЙДЕН АДРЕС Q (G73/G83)

В цикле скоростного сверления с периодическим выводом или в цикле сверления с периодическим выводом величина реза за раз не задается адресом Q, либо задано Q0. Измените программу.

0046

НЕВЕРНАЯ КОМАНДА ВОЗВРАТА НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

Ошибка команды возврата во вторую, третью или четвертую референтную позицию. (Ошибка команды P-адреса.)

0050

ЗАПРЕЩЕНО СНЯТИЕ ФАСКИ/ СКРУГЛЕНИЕ УГЛА В БЛОКЕ НАРЕЗАНИЯ РЕЗЬБЫ

Блок снятия фаски или скругления угла задан в блоке нарезания резьбы. Измените программу.

0051

НЕТ ПЕРЕМЕЩЕНИЯ ПОСЛЕ СКРУГЛЕНИЯ УГЛА / СНЯТИЯ ФАСКИ

Неверное перемещение или расстояние перемещения в блоке, идущем за снятием фаски или скруглением угла. Измените программу.

0052

КОД ПОСЛЕ СНЯТИЯ ФАСКИ/СКРУГЛЕНИЯ УГЛА НЕ G01

Блоком, следующим за блоком снятия фаски или блоком скругления угла, является не блок G01 (или вертикальная линия). Измените программу.

0053

СЛИШКОМ МНОГО АДРЕСНЫХ КОМАНД

В командах снятия фаски или скругления угла задано два или более I, J, K и R.

0054

ОБРАБОТКА КОНУСА ПОСЛЕ СНЯТИЯ ФАСКИ/ СКРУГЛЕНИЯ УГЛА НЕ РАЗРЕШЕНА

Блок, в котором задано снятие фаски под заданным углом или скругление угла, включает команду обработки конической поверхности. Измените программу.

0055

ОТСУТСТВУЕТ ВЕЛИЧИНА ПЕРЕМЕЩЕНИЯ ПРИ СНЯТИИ ФАСКИ/ СКРУГЛЕНИИ УГЛА

Расстояние перемещения по оси, заданное в блоке, содержащем снятие фаски или скругление угла, меньше, чем величина снятия фаски или скругления угла. Измените программу.

0056

ОТСУТСТВУЮТ КОНЕЧНАЯ ТОЧКА И УГОЛ ПРИ СНЯТИИ ФАСКИ/ СКРУГЛЕНИИ УГЛА

При прямом программировании размеров чертежа и конечная точка, и угол были заданы в блоке, следующим за блоком, в котором был задан только угол (Aa). Измените программу.

0057

НЕТ РЕШЕНИЯ КОНЦА БЛОКА

В программировании непосредственно по размерам чертежа неверно вычислена конечная точка блока. Измените программу.

0058

НЕ НАЙДЕНА КОНЕЧНАЯ ТОЧКА

В программировании непосредственно по размерам чертежа не найдена конечная точка блока. Измените программу.

0060

НЕ НАЙДЕН ПОРЯДКОВЫЙ НОМЕР

[Внешний ввод данных/вывод данных]

Заданный номер не найден при поиске по номеру программы и по порядковому номеру.

Был выдан запрос на ввод/выод для величины коррекции для данных инструмента, но номер инструмента после включения питания не вводился. Данные инструмента, соответствующие введенному номеру инструмента, не найдены.

[Поиск номера внешней заготовки]

Программа, соответствующую заданной заготовке, не найдена. [Перезапуск программы]

В спецификации порядкового номера перезапуска программы не найден заданный порядковый номер.

0061

КОМАНДА P ИЛИ Q ОТСУТСТВУЕТ В БЛОКЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Не задан адрес Р или Q в команде многократно повторяемого цикла (G70, G71, G72 или G73).

0062

ВЕЛИЧИНА РЕЗАНИЯ НЕВЕРНА В ЦИКЛЕ ЧЕРНОВОГО РЕЗАНИЯ

Был задан ноль или отрицательное значение многократно повторяемого цикла черновой обработки резанием (G71 или G72) в качестве глубины реза.

0063

НЕ НАЙДЕН БЛОК ЗАДАННОГО НОМЕРА ПОСЛЕДОВАТЕЛЬНОСТИ

Не найден порядковый номер, заданный адресами P и Q в команде многократно повторяемого цикла (G70, G71, G72 или G73).

0064

ФОРМА ЧИСТОВОЙ ОБРАБОТКИ НЕ ИЗМЕНЯЕТСЯ МОНОТОННО (ПЕРВЫЕ ОСИ)

В программе чистовой обработки для многократно повторяемого цикла черновой обработки резанием (G71 или G72) команда для первой оси плоскости задавала монотонное увеличение или уменьшение.

0065

G00/G01 НЕ ЯВЛЯЕТСЯ ПЕРВЫМ БЛОКОМ ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ

В первом блоке программы обработки формы, задаваемый P многократно повторяемый стандартный цикл (G70, G71, G72 или G73), G00 или G01 не был заданы.

0066

НЕДОСТУПНАЯ КОМАНДА В БЛОКЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Недоступная команда была обнаружена в командном блоке многократно повторяемых циклов (G70, G71, G72 или G73).

0067

МНОГОКРАТНО ПОВТОРЯЕМЫЕ ЦИКЛЫ НЕ НАХОДЯТСЯ В ПАМЯТИ ПРОГРАММЫ ОБРАБОТКИ ДЕТАЛЕЙ

Команда многократно повторяемого постоянного цикла (G70, G71, G72, или G73) не зарегистрирована в области памяти на магнитных лентах.

0069

ПОСЛЕДНИЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ ЯВЛЯЕТСЯ НЕВЕРНОЙ КОМАНДОЙ

В программе чистовой обработки в многократно повторяемом цикле черновой обработки резанием (G70, G71, G72 или G73) команда снятия фаски или скругления угла R в последнем блоке прерывается на середине.

0070

В ПАМЯТИ ОТСУТСТВУЕТ МЕСТО ДЛЯ ПРОГРАММЫ

Недостаточно памяти.

Удалите ненужные программы и повторите попытку.

0071

ДАННЫЕ НЕ НАЙДЕНЫ

1) Не найден адрес по запросу.

2) При поиске по номеру программы не найдена программа с заданным номером.

3) В спецификации номера блока перезапуска программы не найден заданный номер блока.

Проверьте данные.

0072

ДАННЫЕ НЕ НАЙДЕНЫ

Число программ для хранения превысило 400 (одноконтурная система) или 800 (двухконтурная система серии T). Удалите ненужные программы и выполните регистрацию программы снова.

0073

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Заданный номер программы уже используется. Измените номер программы или удалите ненужные программы и выполните регистрацию программы снова.

0074

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Номер программы не входит в диапазон от 1 до 9999. Измените номер программы.

0075

ЗАЩИТА

Сделана попытка зарегистрировать программу, номер которой защищен. При согласовании программы был неверно введен пароль для защищенной программы. Была предпринята попытка выбора программы, редактируемой в фоновом режиме, в качестве главной программы. Была предпринята попытка вызова программы, редактируемой в фоновом режиме, в качестве подпрограммы.

0076

ПРОГРАММА НЕ НАЙДЕНА

Заданная программа не найдена при вызове подпрограммы или вызове макрокоманды. Коды M, G, T или S вызываются командой P, отличной от команды в M98, M198, G65, G66 или пользовательской макропрограммы типа прерывания, а программа вызывается специальным адресом. Данный сигнал тревоги также порождается, если программа не найдена при данных вызовах.

0077

СЛИШКОМ МНОГО ВЛОЖЕННЫХ ПОДПРОГРАММ, МАКРОПРОГРАММ

Общее число вызовов подпрограмм и пользовательских макрокоманд превышает допустимый диапазон. Во время подпрограммы из внешней памяти был выполнен вызов подпрограммы.

0078

НЕ НАЙДЕН ПОРЯДКОВЫЙ НОМЕР

Заданный порядковый номер не был найден при поиске по порядковому номеру. Не найден порядковый номер, заданный в переходном пункте назначения в GOTO— и M99P—.

0079

НЕСООТВЕТСТВИЕ ПРОГРАММ

Программа в памяти не соответствует программе, хранящейся на ленте. Несколько программ не подлежат непрерывному согласованию, если параметр ном. 2200#3 имеет значение «1». Задайте в параметре ном. 2200#3 значение «0» перед выполнением сопоставления.

0080

НЕПРАВИЛЬНО ВВЕДЕН СИГНАЛ ДОСТИЖЕНИЯ ПОЛОЖЕНИЯ ИЗМЕРЕНИЯ G37

Если выполняется функция измерения длины инструмента (G37), сигнал достижения положения измерения доходит до 1 во фронтальной части, определенной значением £, заданным в параметре ном.6254. Как альтернатива, сигнал не доходит до 1.

Если используется функция автоматической коррекции на инструмент (G36, G37), сигналы достижения положения измерения (XAE1, XAE2) не доходят до 1 в диапазоне, определенном значением £, заданном в параметрах ном.6254 и ном.6255.

0081

НОМ. КОРРЕКЦИИ G37 НЕ ЗАДАН

Функция измерения длины инструмента (G37) задана без задания H кода. Исправьте программу.

Функция автоматической коррекции ни инструмент (G36, G37) задана без задания Т кода. Исправьте программу.

0082

G37 ЗАДАНО С Н-КОДОМ

Функция измерения длины инструмента (G37) задано вместе с Н кодом в том же блоке.

Исправьте программу.

Функция автоматической коррекции на инструмент (G37) задана в одном блоке с Т-кодом.

Исправьте программу.

0083

НЕВЕРНАЯ КОМАНДА ОСИ G37

Была обнаружена ошибка в спецификации оси функции измерения длины инструмента (G37). Как альтернатива, задана команда перемещения как команда приращения. Исправьте программу.

Была обнаружена ошибка в спецификации оси функции автоматической коррекции на инструмент (G36, G37). Как альтернатива, задана команда перемещения как команда приращения.

Исправьте программу.

0085

ОШИБКА ПЕРЕПОЛНЕНИЯ

Следующий символ был получен от устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 1 до того, как он смог считать полученный предварительно символ. Переполнение, ошибка четности или ошибка кадрирования возникли во время считывания интерфейсом устройства считывания/вывода на перфоленту 1. Неверны число битов введенных данных, настройка скорости передачи данных в бодах или номер спецификации устройства ввода/вывода.

0086

DR ОТКЛ.

В ходе процесса ввода/вывода интерфейсом считывания/вывода не перфоленту 1 сигнал готовности ввода набора данных устройства ввода/вывода (DR) был отключен. Возможными причинами являются не включение устройства ввода/вывода, порванный кабель и дефектная печатная плата.

0087

ПЕРЕПОЛНЕНИЕ БУФЕРА

В ходе считывания интерфейс считывающего перфоратора 1, хотя и была дана команда остановки считывания, была введено более 10 символов. Устройство ввода/вывода или печатная плата были дефектными.

0090

НЕ ЗАВЕРШЕН ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

1) Нельзя выполнить возврат на референтную позицию обычным образом, поскольку начальная точка возврата на референтную позицию расположена слишком близко к референтному положению, или скорость слишком низкая. Переместите начальную точку от референтной позиции на достаточное расстояние или задайте достаточно высокую скорость для выполнения возврата на референтную позицию.

2) Была попытка задать нулевое положение для детектора абсолютного положения с помощью возврата на референтную позицию, если необходимо задать нулевую точку.

Проверните двигатель вручную минимум на один оборот и установите нулевое положение датчика абсолютного положения, отключив и снова включив ЧПУ и сервоусилитель.

0091

РУЧНОЙ ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ НЕ ВЫПОЛНЕН ПРИ ОСТАНОВЕ ПОДАЧИ

Невозможно выполнить ручной возврат на референтную позицию, когда автоматическая операция приостановлена. Выполните ручной возврат на референтную позицию, когда автоматическая операция остановлена или сброшена.

0092

ОШИБКА ПРОВЕРКИ ВОЗВРАТА К НАЧАЛУ КООРДИНАТ (G27)

Ось, заданная в G27, не вернулась на референтную позицию. Перепрограммируйте, чтобы ось вернулась на референтную позицию.

0094

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ КООРДИНАТ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы выполнена операция установки системы координат). Выполните надлежащую операцию в соответствии с руководством пользователя.

0095

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ ВНЕШНЕГО СМЕЩЕНИЯ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы изменена величина внешней коррекции начала координат заготовки). Выполните надлежащую операцию в соответствии с руководством пользователя.

0096

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ СМЕЩЕНИЯ ЗАГОТОВКИ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы изменена величина коррекции начала координат заготовки). Выполните надлежащую операцию в соответствии с руководством пользователя.

0097

ЗАПРЕЩЕН ТИП Р (АВТОМАТИЧЕСКОЕ ВЫПОЛНЕНИЕ)

Нельзя указать тип Р при повторном пуске программы. (После включения питания, после аварийного останова или сброса сигналов тревоги 0094 — 0097 автоматическая операция не выполняется). Выполните автоматическую операцию.

0099

ИСПОЛН. MDI НЕ ДОПУСКАЕТСЯ ПОСЛЕ ПОИСКА

После завершения поиска при перезапуске программы с помощью MDI дана команда перемещения.

0109

ОШИБКА ФОРМАТА В G08

В коде G08 после Р задано значение, отличное от 0 или 1, или не задано значение.

0110

ПЕРЕПОЛНЕНИЕ: ЦЕЛАЯ ЧАСТЬ

Целая часть числа вышла за пределы диапазона при арифметических вычислениях.

0111

ПЕРЕПОЛНЕНИЕ: ПЛАВАЮЩ.

Десятичная точка (числовые данные в формате с плавающей точкой) вышла за пределы диапазона при арифметических вычислениях.

0112

ДЕЛЕНИЕ НА НОЛЬ

Была сделана попытка деления на ноль в пользовательской макрокоманде.

0113

НЕВЕРНАЯ КОМАНДА

Запрограммирована функция, которую нельзя использовать в макрокоманде пользователя. Измените программу.

0114

НЕВЕРНЫЙ ФОРМАТ ВЫРАЖЕНИЯ

Формат, используемый в выражении в пользовательском макрооператоре, ошибочный. Ошибка формата записи параметра.

0115

НОМЕР ПЕРЕМЕННОЙ ВНЕ ДИАПАЗОНА

Номер, который нельзя использовать для локальной переменной, общей переменной или системной переменной, заданный в пользовательской макрокоманде.

0116

ПЕРЕМЕННАЯ С ЗАЩИТОЙ ОТ ЗАПИСИ

Была произведена попытка использовать в пользовательской макрокоманде на левой стороне выражение переменной, что можно использовать на правой стороне выражения.

0118

СЛИШКОМ МНОГО ВЛОЖЕНИЙ В СКОБКИ

Слишком много скобок»[ ]» вложено в пользовательской макрокоманде. Уровень вложения, включая функциональные скобки, равен 5.

0119

ЗНАЧЕНИЕ АРГУМЕНТА ВНЕ ДИАПАЗОНА

Значение аргумента функции пользовательской макрокоманды находится вне диапазона.

0122

СЛИШКОМ МНОГО ВЛОЖЕНИЙ МАКРОКОМАНД

В пользовательскую макрокоманду было вложено слишком много вызовов макрокоманд.

0123

НЕВЕРНЫЙ РЕЖИМ ДЛЯ GOTO/WHILE/DO

Оператор GOTO или оператор WHILE-DO обнаружен в главной программе в режиме MDI или прямого ЧПУ.

0124

ОТСУТСТВУЕТ КОНЕЧНЫЙ ОПЕРАТОР

Команда END, соответствующая команде DO, отсутствовала в пользовательской макрокоманде^

0125

ОШИБКА ФОРМАТА МАКРООПЕРАТОРА

Формат, используемый в макрооператоре в пользовательской макрокоманде, ошибочный.

0126

НЕВЕРНЫЙ НОМЕР ЦИКЛА

Номера DO и END в пользовательской макрокоманде ошибочны или превышают допустимый диапазон (диапазон действительных значений: от 1 до 3).

0127

ДУБЛИРОВАНИЕ ОПЕРАТОРА ЧУ, МАКРООПЕРАТОРА

Оператор ЧПУ и макрооператор были заданы в одном блоке.

0128

НЕВЕРНЫЙ ПОРЯДКОВЫЙ НОМЕР МАКРОПРОГРАММЫ

Заданный порядковый номер не найден при поиске порядкового номера. Не найден порядковый номер, заданный как пункт назначения перехода GOTO— и M99P—.

0129

ИСПОЛЬЗОВАНИЕ ‘G’ В КАЧЕСТВЕ АРГУМЕНТА

G используется в качестве аргумента при вызове пользовательской макрокоманды. G нельзя использовать в качестве аргумента.

0130

КОНФЛИКТ ЧПУ И ОСИ РМС

Команда ЧПУ и команда управления осью РМС не были согласованы. Измените программу или цепную схему.

0136

ОСЬ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ ОДНОВРЕМЕНО С ДРУГОЙ ОСЬЮ

Ось позиционирования шпинделя и другая ось заданы в одном блоке.

0137

M-КОД И КОМАНДА ПЕРЕМЕЩЕНИЯ В ОДНОМ БЛОКЕ

т

Ось позиционирования шпинделя и другая ось заданы в одном блоке.

0139

НЕЛЬЗЯ ИЗМЕНИТЬ ОСЬ, УПРАВЛЯЕМУЮ РМС

Ось PMC была выбрана для оси, для которой направляется ось PMC.

0140

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Сделана попытка выбрать или удалить в фоновом режиме программу, выбранную в основном режиме. Выполнить правильную операцию для фоновой версии.

0142

НЕВЕРНЫЙ МАСШТАБ

Коэффициент масштабирования составляет 0 раз или 10000 раз или более. Измените настройку коэффициента масштабирования.

(G51P… или G51I J K… или параметр (ном. 5411 или 5421))

0143

ПЕРЕПОЛНЕНИЕ УПРАВЛЯЮЩИХ ДАННЫХ

Переполнение при хранении внутренних данных ЧПУ. Данный сигнал тревоги также порождается, если результаты внутреннего вычисления масштабирования (серия M), поворота системы координат (серия M) и цилиндрической интерполяции переполняют память данных. Он также порождается в ходе ввода величины ручного вмешательства.

0144

НЕВЕРНО ВЫБРАНА ПЛОСКОСТЬ

Плоскость поворота системы координат и плоскость дуги или компенсации на режущий инструмент должны совпадать. Измените программу.

0145

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ G12.1/G13.1

Номер оси параметров выбора плоскости ном. 5460 (линейная ось) и ном. 5461(ось вращения) в режиме интерполяции в полярных координатах вне диапазонв (от 1 до числа управляемых осей).

0146

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ G-КОДА

При задании или отмене режима интерполяции в полярных координатах G-код должен быть модальной командой G40. В режиме интерполяции в полярных координатах был задан неверный G-код.

В этом режиме могут быть заданы следующие следующие G-коды: G01,G02,G03,G04,G40,G41,G42,G65,G66,G67,

(G90 и G91 для системы G-кодов B или C), G98,G99

0148

ОШИБКА НАСТРОЙКИ

Уровень замедления автоматического изменения скорости подачи при обработке углов находится вне устанавливаемого диапазона оцениваемого угла. Измените параметры (ном.1710-1714)

0149

ОШИБКА ФОРМАТА В G10L3

При регистрации (от G10L3 до G11) данных управления ресурсом инструмента был задан адрес, отличный от Q1, Q2, P1, и P2, или недопустимый адрес.

0150

НЕВЕРНЫЙ НОМЕР ГРУППЫ РЕСУРСА

Номер группы инструментов превысил максимальное допустимое значение. Номер группы инструментов (P после задания G10 L3;) или номер группы, указанный T-кодом управления ресурсом инструмента в программе обработки.

0151

ГРУППА НЕ НАЙДЕНА В ДАННЫХ РЕСУРСА

Группа инструментов, указанная в программе обработки, не задана в данных управления ресурсом инструмента.

0152

ПРЕВЫШЕНО МАКСИМАЛЬНОЕ ЧИСЛО ИНСТРУМЕНТОВ

Число инструментов, зарегистрированных в группе, превысило максимально допустимое число инструментов для регистрации.

01 53

T-КОД НЕ ОБНАРУЖЕН

При регистрации данных ресурса инструмента блок, в котором должен быть задан T-код, не содержит T-кода. Либо, при методе замены инструмента D, задано только M06. Измените программу.

0154

ИНСТРУМЕНТ НЕ ИСПОЛЬЗУЕТСЯ В ГРУППЕ РЕСУРСА

Команда H99, команда D99 или код H/D, заданный параметрами ном. 13265 и ном. 13266, была задана, когда не использовался ни один из входящих в группу инструментов.

0155

НЕВЕРНАЯ КОМАНДА T-КОДА

В программе обработки T-код в блоке, содержащем M06, не соответствует текущей используемой группе. Измените программу.

0156

НЕ НАЙДЕНА КОМАНДА P/L

Команды P и L не заданы в начале программы для настройки группы инструментов. Измените программу.

0157

СЛИШКОМ МНОГО ГРУПП ИНСТРУМЕНТОВ

При регистрации данных управления ресурсом инструмента значения счетчиков блока команды групповой настройки P (номер группы) и L (срок службы инструмента) превысили максимальное число для группы.

0158

ЗНАЧЕНИЕ СРОКА СЛУЖБЫ ИНСТРУМЕНТА ВНЕ ДИАПАЗОНА

Задаваемое значение срока службы слишком большое. Измените настройку.

0159

НЕВЕРНЫЕ ДАННЫЕ РЕСУРСА ИНСТРУМЕНТА

Данные управления ресурсом инструмента повреждены по какой-то причине. Зарегистрируйте данные инструмента в группе инструментов или данные инструмента в группе снова посредством G10L3 или ввода в режиме MDI.

0160

НЕСООТВЕТСТВИЕ М-КОДА ОЖИДАНИЯ

М-код ожидания ошибочный.

Для контуров 1 и 2 заданы различные М-коды ожидания.

0163

НЕВЕРНАЯ КОМАНДА В G68/G69

G68 и G69 не запрограммированы независимо при сбалансированном резании.

0169

НЕВЕРНЫЕ ГЕОМЕТРИЧЕСКИЕ ДАННЫЕ ИНСТРУМЕНТА

Неверные данные о форме инструмента при проверке столкновений. Установите правильные данные или выберите верные данные о форме инструмента.

0175

НЕВЕРНАЯ ОСЬ G07.1

Задана ось, по которой нельзя выполнять цилиндрическую интерполяцию. В блоке G07.1 задана более чем одна ось. Была сделана попытка отмены цилиндрической интерполяции по оси, которая не была в режиме цилиндрической интерполяции.

В режиме цилиндрической интерполяции для задания круговой интерполяции, включая ось вращения (если бит 0 (ROT) параметра ном. 1006 имеет значение 1, и задан параметр ном. 1260), значение параметра оси вращения ном. 1022 для назначения параллельной оси должно быть не 0, а 5, 6 или 7.

0176

ИСПОЛЬЗОВАНИЕ НЕВЕРНОГО G-КОДА (РЕЖИМ G07.1)

Был задан G-код, который не может быть задан в режиме цилиндрической интерполяции. Этот сигнал тревоги также срабатывает, если G-код группы 01 был в задан в модальной группе G00, или был задан код G00. Перед тем, как задать код G00, следует отменить режим цилиндрической интерполяции

0190

ВЫБРАНА НЕВЕРНАЯ ОСЬ (G96)

Неверное значение было задано в P в блоке G96 или в параметре ном. 3770.

0194

КОМАНДА ШПИНДЕЛЯ В СИНХРОННОМ РЕЖИМЕ

Режим управления контуром Cs, команда позиционирования шпинделей или режим жесткого нарезания резьбы метчиком были заданы в режиме синхронного управления шпинделями.

Режим управления контуром Cs или режим жесткого нарезания резьбы метчиком были заданы в режиме синхронного управления шпинделями или простого синхронного управления шпинделями.

0197

ОСЬ С ЗАДАНА В РЕЖИМЕ ШПИНДЕЛЯ

Программа задала перемещение вдоль оси Сб, когда сигнал переключения управления контуром Cs был отключен.

0199

МАКРОСЛОВО НЕ ОПРЕДЕЛЕНО

Использовано не определенное макрослово. Измените макрокоманду пользователя.

0200

НЕВЕРНАЯ КОМАНДА S-КОДА

В режиме жесткого нарезания резьбы метчиком задано значение S, не входящее в диапазон, или не задано совсем. Параметры (ном. 5241 -5243) заданы равными S значению, которое можно задать для жесткого нарезания резьбы. Исправьте параметры или измените программу.

0201

В РЕЖИМЕ ЖЕСТКОГО НАРЕЗАНИЯ РЕЗЬБЫ МЕТЧИКОМ НЕ НАЙДЕНА СКОРОСТЬ ПОДАЧИ

Команда F кода для скорости подачи резания равна нулю.

Если значение F команды гораздо меньше, чем значение команды S, если задана команда жесткого нарезания резьбы метчиком, порождается данный сигнал тревоги. Это происходит потому, что резание невозможно с шагом, заданным программой.

0202

ПЕРЕПОЛНЕНИЕ ПОЛОЖЕНИЯ LSI

В режиме жесткого нарезания резьбы метчиком слишком большая величина распределения импульсов для шпинделей. (Системная ошибка)

0203

ПРОГРАММНОЕ НЕСООТВЕТСТВИЕ ПРИ ЖЕСТКОМ НАРЕЗАНИИ РЕЗЬБЫ МЕТЧИКОМ

В режиме жесткого нарезания резьбы метчиком неверно положение М-кода жесткого режима (М29) или S-команды. Измените программу.

0204

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ

В режиме жесткого нарезания резьбы метчиком между блоком М-кода жесткого режима (М29) и блоком G84 (или G74) задано перемещение по оси. Измените программу.

0205

СИГНАЛ DI ЖЕСТКОГО РЕЖИМА ВЫКЛЮЧЕН

Несмотря на то, что при жестком нарезании резьбы метчиком задан М-код (М29), во время выполнения блока G84 (или G74) не включен сигнал жесткого режим DI (DGN G061.0). Проверьте цепную схему РМС для выяснения причины, по которой сигнал DI не был включен.

0206

НЕЛЬЗЯ ИЗМЕНИТЬ ПЛОСКОСТЬ (ЖЕСТКОЕ НАРЕЗАНИЕ РЕЗЬБЫ)

Переключение плоскости было задано в жестком режиме. Измените программу.

0207

НЕСООТВЕТСТВИЕ ДАННЫХ ЖЕСТКОГО РЕЖИМА

При жестком нарезании резьбы метчиком заданное расстояние -слишком короткое или слишком длинное.

0210

НЕЛЬЗЯ ЗАДАТЬ М198/М99

1) Во время операции по графику была предпринята попытка выполнения команды М198 или М99. Либо во время работы с прямым ЧПУ была предпринята попытка выполнения команды М198. Измените программу.

2) Во время фрезерования глубоких выемок в многократно повторяющемся постоянном цикле была предпринята попытка выполнения команды М99 с помощью макропрерывания.

0213

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

При управлении осью подачи в ходе синхронной работы произошли следующие ошибки.

1) Программа выдала команду перемещения ведомой оси.

2) Программа выдала команду ручной работы ведомой оси.

3) Программа выдала команду автоматического возврата на референтную позицию без задания ручного возврата на референтную позицию после включения питания.

0214

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

В режиме синхронного управления установлена система координат или выполнена коррекция на длину инструмента (серия M) типа смещения. Исправьте программу.

0217

ДУБЛИРОВАНИЕ G51.2 (КОМАНДЫ)

В режиме G51.2 дополнительно задан G51.2. Измените программу.

0218

НЕ НАЙДЕНА КОМАНДА P/Q

В блоке G51.2 не задано P или Q, либо значение команды вне диапазона. Измените программу. Более подробные сведения о причине появления этого сигнала тревоги при полигональной обточке между шпинделями приведены в DGN ном. 471.

0219

НЕЗАВИСИМОЕ ЗАДАНИЕ G51.2/G50.2

G51.2 и 50.2 были заданы в одном блоке для других команд. Изменить программу в другом блоке.

0220

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

При синхронной операции для синхронной оси задано перемещение с помощью программы ЧПУ или интерфейса РМС осевого управления. Измените программу или проверьте цепную схему PMC.

0221

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

Синхронная операция полигональной обработки и контурное осевое управление Cs или сбалансированное резание выполняются одновременно. Измените программу.

0222

РАБОТА С ПРЯМЫМ ЧПУ ПРИ ФОНОВОМ РЕДАКТИРОВАНИИ ЗАПРЕЩЕНА

Ввод и вывод выполняются одновременно с фоновым редактированием. Выполните правильное действие.

0224

ВОЗВРАТ НА НОЛЬ НЕ ЗАВЕРШЕН

Перед запуском автоматической работы не был выполнен возврат на референтрую позицию.

(Только если бит 0 (ZRNx) параметра ном. 1005 имеет значение 0) Выполните возврат на референтную позицию.

0230

R-КОД НЕ ОБНАРУЖЕН

Глубина реза R не задана в блоке, включающем G161. Либо для R задано отрицательное значение.

Измените программу.

0231

НЕВЕРНЫЙ ФОРМАТ В G10 L52

При вводе программируемого параметра возникли ошибки в заданном формате.

0232

СЛИШКОМ МНОГО КОМАНД ДЛЯ ВИНТОВОЙ ОСИ

В режиме винтовой интерполяции заданы две или три оси в качестве винтовых осей.

0233

УСТРОЙСТВО ЗАНЯТО

При попытке использовать устройство, например, устройство, подсоединенное через интерфейс RS-232-C, обнаружено, что оно используется другими пользователями.

0245

В ЭТОМ БЛОКЕ Т-КОД ЗАПРЕЩЕН

Один из G-кодов, G04, G10, G28, G29 (серия M), G30, G50 (серия T) и G53, который не может быть задан в одном блока с T-кодом, был задан с T-кодом.

0247

НАЙДЕНА ОШИБКА В КОДЕ ВЫВОДА ДАННЫХ

При выводе закодированной программы в качестве кода вывода задано EIA. Задайте ISO.

0314

НЕВЕРНАЯ НАСТРОЙКА ПОЛИГОНАЛЬНОЙ ОСИ

Неверно задана ось при полигональной обточке.

Для полигональной обточки:

1) Не задана ось вращения инструмента.

(Параметр ном. 7610)

Для полигональной обточки между шпинделями:

1) Не заданы действительные шпиндели.

(Параметры ном. 7640 — 7643).

2) Шпиндель, не являющийся последовательным шпинделем.

3) Шпиндель не подсоединен.

0315

НЕВЕРНАЯ КОМАНДА УГЛА КРОМКИ В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Неверный угол режущей кромки инструмента задан в многократно повторяемом постоянном цикле резьбонарезания (G76).

0316

НЕВЕРНАЯ ВЕЛИЧИНА РЕЗА В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Минимальная глубина реза больше, чем высота резьбы, задана в многократно повторяемом постоянном цикле резьбонарезания (G76).

0317

НЕВЕРНАЯ КОМАНДА НАРЕЗАНИЯ РЕЗЬБЫ В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Был задан ноль или отрицательное значение в многократно повторяемом постоянном цикле резьбонарезания (G76) в качестве высоты резьбы или глубины реза.

0318

НЕВЕРНАЯ ВЕЛИЧИНА ОТВОДА В ЦИКЛЕ СВЕРЛЕНИЯ

Хотя направления отвода заданы в многократно повторяемом постоянном цикле отрезания (G74 или G75), задано отрицательное значение для Ad.

0319

НЕВЕРНА КОМАНДА КОНЕЧНОЙ ТОЧКИ В ЦИКЛЕ СВЕРЛЕНИЯ

Хотя расстояние перемещения Ai или Ak задано равным 0 в многократно повторяемом постоянном цикле отрезания (G74 или G75), значение, отличное от 0, задано для U или W.

0320

НЕВЕРНАЯ ВЕЛИЧИНА ПЕРЕМЕЩЕНИЯ/ВЕЛИЧИНА РЕЗА В ЦИКЛЕ СВЕРЛЕНИЯ

Было задано отрицательное значение в многократно повторяемом постоянном цикле отрезания (G74 или G75) как Ai или Ak (расстояние перемещения / глубина реза).

0321

НЕВЕРНОЕ ВРЕМЯ ПОВТОРЕНИЯ В ЦИКЛЕ ПОВТОРЕНИЯ СХЕМЫ

Задан нуль или отрицательное значение в многократно повторяемом постоянном замкнутом цикле (G73) в качестве значения времени повторения.

0322

ЧИСТОВАЯ ОБРАБОТКА ПОСЛЕ ЗАПУСКА

Неверная форма, которая после запуска цикла задана в программе обработки для многократно повторяемого постоянного цикла черновой обработки резанием (G71 или G72).

0323

ПЕРВЫЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ЯВЛЯЕТСЯ КОМАНДОЙ ТИПА II

Тип II задан в первом блоке программы обработки, заданном командой P в многократно повторяемом постоянном цикле (G71 или G72). Для G71 задано Z(W). Для G72 задано X(U).

0324

МАКРОПРОГРАММА ТИПА ПРЕРЫВАНИЯ ЗАДАНА В МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛАХ

Макропрограмма типа прерывания была дана в ходе многократно повторяемого постоянного цикла (G70, G71, G72 или G73).

0325

НЕДОСТУПНАЯ КОМАНДА В ПРОГРАММЕ ОБРАБОТКИ ФОРМЫ

Используемая команда была дана в программе обработки для многократно повторяемого постоянного цикла (G70, G71, G72 или G73).

0326

ПОСЛЕДНИЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ СОДЕРЖИТ ПРЯМЫЕ РАЗМЕРЫ ЧЕРТЕЖА

В программе чистовой обработки в многократно повторяемом цикле черновой обработки резанием (G70, G71, G72 или G73) команда прямого ввода размеров чертежа в последнем блоке прерывается на середине.

0327

МОДАЛЬНОЕ СОСТОЯНИЕ, НЕ ДОПУСКАЮЩЕЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Многократно повторяемый постоянный цикл (G70, G71, G72 или G73) был задан в модальном состоянии, в котором нельзя задавать многократно повторяемый постоянный цикл.

0328

НЕВЕРНОЕ РАБОЧЕЕ ПОЛОЖЕНИЕ ПРИ КОРРЕКЦИИ НА РАДИУС ВЕРШИНЫ ИНСТРУМЕНТА

Неверная спецификация для стороны заготовки для коррекции на радиус вершины инструмента (G41 или G42) в многократно повторяемом постоянном цикле (G71 или G72).

0329

ФОРМА ЧИСТОВОЙ ОБРАБОТКИ НЕ ИЗМЕНЯЕТСЯ МОНОТОННО (ВТОРЫЕ ОСИ)

В программе чистовой обработки для многократно повторяемого цикла черновой обработки резанием (G71 или G72) команда для второй оси плоскости задавала монотонное увеличение или уменьшение.

0330

НЕВЕРНАЯ КОМАНДА ОСИ В ПОСТОЯННОМ ЦИКЛЕ ОБТОЧКИ

Ось, отличная от плоскости, задана в постоянном цикле (G90, G92 и. G94).

0334

КОРРЕКЦИЯ ВНЕ РАБОЧЕГО ДИАПАЗОНА

Данные коррекции, которая была вне рабочего диапазона, были заданы. (функция предотвращения неисправности)

0336

КОРРЕКЦИЯ НА ИНСТРУМЕНТ ЗАДАНА БОЛЕЕ, ЧЕМ ДВУМ ОСЯМ

Для коррекции на длину инструмента C была сделана попытка задать коррекцию по другим осям без отмены коррекции. Либо для коррекции на длину инструмента C задано несколько осей в блоке G43 или G44.

0337

ПРЕВЫШЕНИЕ МАКСИМАЛЬНОГО ЗНАЧЕНИЯ ПРИРАЩЕНИЯ

Значение команды превысило максимальную величину приращения. (функция предотвращения неисправности)

0338

ОШИБКА КОНТРОЛЬНОЙ СУММЫ

Неверное значение обнаружено в контрольной сумме. (функция предотвращения неисправности)

0345

НЕВЕРНОЕ ПОЛОЖЕНИЕ ОСИ Z ПРИ СМЕНЕ ИНСТРУМЕНТА

Положение смены инструмента по оси Z неверное.

0346

НЕВЕРНЫЙ НОМЕР ИНСТРУМЕНТА ПРИ СМЕНЕ ИНСТРУМЕНТА

Неверный номер инструмента для смены инструмента.

0347

НЕВЕРНАЯ КОМАНДА СМЕНЫ ИНСТРУМЕНТА В ОДНОМ БЛОКЕ.

Смена инструмент задана дважды или более в одном и том же блоке.

0348

НЕ НАЗНАЧЕНО ПОЛОЖЕНИЕ ОСИ Z ПРИ СМЕНЕ ИНСТРУМЕНТА

Шпиндель смены инструмента по оси Z не задан.

0349

ШПИНДЕЛЬ СМЕНЫ ИНСТРУМЕНТА НЕ ОСТАНАВЛИВАЕТСЯ

Остановка шпинделя смены инструмента не задана.

0350

ОШИБКА ПАРАМЕТРА ИНДЕКСА ЗАДАННОЙ ОСИ СИНХРОННОГО УПРАВЛЕНИЯ

Задан неверный номер оси синхронного управления (параметр ном. 8180).

0351

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, СИНХРОННОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ.

Пока ось при синхронном управлении перемещалась, была сделана попытка запуска или отмены синхронного управления посредством сигнала выбора синхронного управления осью.

0352

ОШИБКА СОСТАВЛЕНИЯ ОСИ СИНХРОННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда:

1) Была произведена попытка выполнить синхронное управление для оси во время синхронного, комплексного или наложенного управления.

2) Была произведена попытка синхронизировать правнука для отношения предок-потомок-внук.

3) Была произведена попытка выполнить синхронное управление, хотя отношение «предок»-«потомок»-«внук» задано не было.

0353

КОМАНДА БЫЛА ДАНА ДЛЯ ОСИ, КОТОРАЯ НЕ МОГЛА ДВИГАТЬСЯ.

T

Данная ошибка произошла, когда:

1) Команда перемещения была выполнена для оси, для которой бит 7 (NUMx) параметра ном. 8163 имел значение 1.

2) Команда перемещения была выполнена для ведомой оси при синхронном управлении.

3) Команда перемещения была выполнена для оси, для которой бит 7 (MUMx) параметра ном. 8162 имел значение 1 при комплексном управлении.

0354

G28 БЫЛО ЗАДАНО С РЕФЕРЕНТНОЙ ПОЗИЦИЕЙ, НЕ ЗАФИКСИРОВАННОЙ В РЕЖИМЕ СИНХРОННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда G28 было задано для ведущей оси при ожидании во время синхронного управления, но референтная позиция не была задана для ведомой оси.

0355

ОШИБКА ПАРАМЕТРА ИНДЕКСА ЗАДАННОЙ ОСИ КОМПЛЕКСНОГО УПРАВЛЕНИЯ.

Задан неверный номер оси комплексного управления (параметр ном. 8183).

0356

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, КОМПЛЕКСНОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ

Пока ось при комплексном управлении перемещалась, была сделана попытка запуска или отмены с помощью сигнала выбора комплексного управления оси.

0357

ОШИБКА СОСТАВЛЕНИЯ ОСИ КОМПЛЕКСНОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда была сделана попытка выполнить комплексное управление для оси во время синхронного, комплексного или наложенного управления.

0359

G28 ЗАДАНО ПРИ НЕФИКСИРОВАННОМ РЕФЕРЕНТНОМ ПОЛОЖЕНИИ В КОМПЛ. РЕЖИМЕ

Данная ошибка произошла, когда команда G28 была задана сложной оси в ходе комплексного управления, но референтная позиция не была задана для другой части составления.

0360

ОШИБКА ЗАДАНИЯ ПАРАМЕТРА ИНДЕКСА ОСИ С НАЛОЖЕННЫМ УПРАВЛЕНИЕМ

Задан неверный номер оси наложенного управления (парам. ном. 8186).

0361

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, НАЛОЖЕННОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ

Пока ось при наложенном управлении перемещалась, была сделана попытка запуска или отмены наложенного управления посредством сигнала выбора наложенного управления осью.

0362

ОШИБКА СОСТАВЛЕНИЯ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда:

1) Была произведена попытка выполнить наложенное управление для оси во время синхронного, комплексного или наложенного управления.

2) Была произведена попытка синхронизировать правнука для отношения предок-потомок-внук.

0363

КОМАНДА G28 ЗАДАНА ДЛЯ ВЕДОМОЙ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ.

Данная ошибка произошла, когда была дана команда G28 для ведомой оси наложенного управления при наложенном управлении.

0364

КОМАНДА G53 ЗАДАНА ДЛЯ ВЕДОМОЙ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ.

Данная ошибка произошла, когда была дана команда G53 для ведомой оси, перемещающейся при наложенном управлении.

0365

СЛИШКОМ МНОГО МАКСИМАЛЬНЫХ НОМЕРОВ ОСИ SV/SP НА КОНТУР

Неверно задано число управляемых осей или шпинделей для использования в одном контуре. Проверьте параметры ном. 981 и ном. 982. Если порождается этот сигнал тревоги, то состояние аварийного останова нельзя сбросить.

0369

ОШИБКА ФОРМАТА G31

1) Не задана ось либо заданы две или более осей в команде переключения по пределу крутящего момента (G31P98/P99).

2) Нельзя задать G31P90.

0370

ОШИБКА G31P/G04Q

1) Заданное значение адреса P для G31 вне диапазона. Адрес P имеет диапазон от 1 до 4 в функции многошагового пропуска.

2) Заданное значение адреса Q для G04 вне диапазона. Адрес Q имеет диапазон от 1 до 4 в функции многошагового пропуска.

3) P1 -4 для G31, или Q1 -4 для G04 было задана без опции функции многошагового пропуска.

4) Для G72 или G74 в постоянных циклах шлифования заданное значение адреса P вне диапазона. Адрес P имеет диапазон от 1 до 4 в функции многошагового пропуска. P1-4 было задано в G72 или G74 несмотря на отсутствие опции функции многошагового пропуска.

0372

НЕ ЗАВЕРШЕН ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

Была сделана попытка выполнить автоматический возврат на референтную позицию на ортогональной оси до завершения возврата на референтную позицию на наклонной оси. Однако, эта попытка не удалась, поскольку не был задан ручной возврат на референтную позицию при управлении наклонной осью или при автоматическом возврате на референтную позицию после включения питания. Сначала вернитесь на референтную позицию по наклонной оси, затем вернитесь на референтную позицию на ортогональной оси.

0373

НЕВЕРНЫЙ СИГНАЛ СКОРОСТНОГО ПРОПУСКА

В командах пропуска (G31, с G31P1 по G31P4) и командах выстоя (G04, с G04Q1 по G04Q4) один и тот же скоростной сигнал выбран в разных контурах^

0375

НЕВОЗМОЖНО УПРАВЛЕНИЕ НАКЛОННОЙ ОСЬЮ (СИНХ:СМЕШ:НАЛОЖ)

Управление осью наклона отключено для данной конфигурации оси.

1) Все задействованные оси при управлении наклонной осью не находятся в режиме синхронного управления. Либо необходимо выполнить настройки для обеспечения синхронного управления между наклонными осями, а также между ортогональными осями.

2) Все задействованные оси при управлении наклонной осью не находятся в режиме комплексного управления. Либо необходимо выполнить настройки для обеспечения комплексного управления между наклонными осями, а также между ортогональными осями.

3) Задействованные оси при управлении наклонной осью находятся в режиме наложенного управления.

0376

ПОСЛЕД. DCL: НЕВЕРНЫЙ ПАРАМЕТР

1) Если параметр ном. 1815#1 имеет значение «1», параметр ном. 2002#3 имеет значение «0»

2) Активирована функция регистрации абсолютной позиции. (Параметр ном.1815#5 имеет значение «1».)

0412

НЕВЕРНЫЙ G-КОД

Использован недопустимый G-код.

0445

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ

Команда позиционирования была выдана в режиме управления скоростью. Проверьте сигнал режима управления скоростью SV (Fn521).

0446

НЕВЕРНАЯ КОМАНДА В G96.1/G96.2/G96.3/G96.4

G96.1, G96.2, G96.3 и G96.4 заданы в блоке, включающем другие команды. Измените программу.

0447

НЕВЕРНЫЕ ДАННЫЕ НАСТРОЙКИ

Шпиндель, управляемый серводвигателем, задан неверно. Проверьте параметры для функции управления шпинделем при помощи серводвигателя.

0455

НЕВЕРНАЯ КОМАНДА ШЛИФОВАНИЯ

В постоянных циклах шлифования:

1) Не совпадают знаки команд I, J и K.

2) Не задана величина перемещения для оси шлифования.

0456

НЕВЕРНЫЙ ПАРАМЕТР ШЛИФОВАНИЯ

Неверно заданы параметры для постоянных циклов шлифования.

Вероятные причины приведены ниже.

1) Неверно задан номер оси шлифования (параметры от ном. 5176 до ном. 5179).

2) Неверно задан номер оси правки (параметры от ном. 5180 до ном. 5183).

3) Совпадают номера осей резания, шлифования и правки (только для серии M).

0601

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ ДЛЯ ШПИНДЕЛЯ С СЕРВОДВИГАТЕЛЕМ

Команда перемещения выполнена для шпинделя, управляемого серводвигателем. Измените программу.

0602

ОШИБКА КОМАНДЫ ВЫБОРА ШПИНДЕЛЯ (ШПИНДЕЛЬ СЕРВОДВИГАТЕЛЯ)

Не был правильно выбран исполнитель для шпинделя, управляемого серводвигателем.

1001

НЕВЕРНЫЙ РЕЖИМ УПРАВЛЕНИЯ ОСЬЮ

Неверный режим управления осью.

1013

НЕВЕРНАЯ ПОЗ. НОМ. ПРОГРАММЫ

Адрес O или N задан в неправильном месте (после макрооператора т. д.).

1014

НЕВЕРНЫЙ ФОРМАТ НОМЕРА ПРОГРАММЫ

Адрес O или N не сопровождается числом.

1016

НЕ НАЙДЕН КОНЕЦ БЛОКА

Код EOB (Конец блока) отсутствует в конце ввода программы в режиме MDI.

1077

ПРОГРАММА ИСПОЛЬЗУЕТСЯ

Сделана попытка исполнения на переднем плане программы, находящейся в режиме фонового редактирования. Редактируемую в настоящее время программу нельзя выполнить, поэтому прекратите редактирование и перезапустите выполнение программы.

1079

НЕ НАЙДЕН ПРОГРАММНЫЙ ФАЙЛ

Программа заданного номера файла не зарегистрирована во внешнем устройстве. (вызов подпрограммы внешнего устройства)

1080

ДУБЛИРОВАНИЕ ВЫЗОВА ПОДПРОГРАММЫ УСТРОЙСТВА

Еще один вызов подпрограммы внешнего устройства был выполнен из подпрограммы, после того как подпрограмма была вызвана подпрограммой внешнего устройства.

1081

ВЫЗОВ ПОДПРОГРАММЫ ВНЕШНЕГО УСТРОЙСТВА ОШИБКА РЕЖИМА

Вызов подпрограммы внешнего устройства невозможен в данном режиме.

1091

ДУБЛИРОВАНИЕ СЛОВА ВЫЗОВА ПОДПРОГРАММЫ

Больше одной команды вызова подпрограммы было задано в одном блоке.

1092

ДУБЛИРОВАНИЕ СЛОВА ВЫЗОВА МАКРОКОМАНДЫ

Больше одной команды вызова макрокоманды было задано в одном блоке.

1093

ДУБЛИРОВАНИЕ СЛОВА ЧУ И М99

Адрес, отличный от O, N, P или L, был задан в том же блоке, что и M99 в состоянии вызова модальной макрокоманды.

1095

СЛИШКОМ МНОГО АРГУМЕНТОВ ТИПА 2

Более десяти наборов аргументов I, J и K задано в аргументах типа-II (A, B, C, I, J, K, I, J, K,…) для пользовательских макрокоманд.

1096

НЕВЕРНОЕ ИМЯ ПЕРЕМЕННОЙ

Было задано неверное имя переменной. Код, который нельзя задать в качестве имени переменной, был задан. Команда [#_OFSxx] не соответствует типу (A или C) текущей используемой памяти коррекции на инструмент.

1097

СЛИШКОМ ДЛИННОЕ ИМЯ ПЕРЕМЕННОЙ

Заданное имя переменной слишком длинное.

1098

ОТСУТСТВУЕТ ИМЯ ПЕРЕМЕННОЙ

Заданное имя переменной нельзя использовать, поскольку оно не зарегистрировано.

1099

НЕВЕРНЫЙ ИНДЕКС[]

Индекс не задан для имени переменной, требующей индекса, заключенного в [ ].

Индекс задан для имени переменной, не требующей индекса, заключенного в [ ].

Значение, заключенное в заданные [ ], не попало в диапазон.

1100

ОТМЕНА БЕЗ МОДАЛЬНОГО ВЫЗОВА

Отмена режима вызова (G67) была задана, хотя режим постоянного вызова макрокоманд (G66) не был включен.

1101

НЕВЕРНОЕ ПРЕРЫВАНИЕ ОПЕРАТОРА ЧПУ

Было произведено прерывание в состоянии, в котором прерывание пользовательской макрокоманды, содержащей команду перемещения, нельзя было выполнить.

1115

ПЕРЕМЕННАЯ С ЗАЩИТОЙ ОТ ЧТЕНИЯ

Была произведена попытка использовать в пользовательской макрокоманде на правой стороне выражение переменной, которое можно использовать только на левой стороне выражения.

1120

НЕВЕРНЫЙ ФОРМАТ АРГУМЕНТА

Заданный аргумент в функции аргумента (ATAN, POW) ошибочен.

1124

ОТСУТСТВУЕТ ОПЕРАТОР DO

Команда DO, соответствующая команде END, отсутствовала в пользовательской макрокоманде.

1125

НЕВЕРНЫЙ ФОРМАТ ВЫРАЖЕНИЯ

Описание выражения в пользовательском макрооператоре содержит ошибку. Ошибка формата программного параметра. Окно, отображенное для ввода периодических данных по техобслуживанию или меню выбора наименований (станков), не соответствует типу данных.

1128

ПОРЯДКОВЫЙ НОМЕР ВНЕ ДИАПАЗОНА

Последовательность ном. пункта назначения при команде перехода в пользовательском макрооператоре GOTO находилась вне диапазона (диапазон действительных значений: от 1 до 99999).

1131

НЕ ХВАТАЕТ ОТКРЫВАЮЩЕЙ СКОБКИ

Число левых скобок ([) меньше числа правых скобок (]) в пользовательском макрооператоре.

1132

НЕ ХВАТАЕТ ЗАКРЫВАЮЩЕЙ СКОБКИ

Число правых скобок ([) меньше числа левых скобок (]) в пользовательском макрооператоре.

1133

ОТСУТСТВУЕТ ‘=’

Знак равенства (=) отсутствует в команде арифметических вычислений в пользовательском макрооператоре.

1134

ОТСУТСТВУЕТ

Отсутствует ограничитель (,) в пользовательском макрооператоре.

1137

ОШИБКА ФОРМАТА ОПЕРАТОРА IF

Формат, используемый в операторе IF в пользовательской макрокоманде, ошибочный.

1138

ОШИБКА ФОРМАТА ОПЕРАТОРА WHILE

Формат, используемый в операторе WHILE в пользовательской макрокоманде, ошибочный.

1139

ОШИБКА ФОРМАТА ОПЕРАТОРА SETVN

Формат, используемый в операторе SETVN в пользовательской макрокоманде, ошибочный.

1141

НЕВЕРНЫЙ СИМВОЛ В ИМЕНИ ПЕРМЕННОЙ

Оператор SETVN в пользовательской макрокоманде относится к символу, который нельзя использовать в имени переменной.

1142

СЛИШКОМ ДЛИННОЕ ИМЯ ПЕРЕМЕННОЙ (SETVN)

Имя переменной, используемой в SETVN операторе в пользовательской макрокоманде, превышает 8 символов.

1143

ОШИБКА ФОРМАТА ОПЕРАТОРА BPRNT/DPRNT

Формат, используемый в операторе BPRNT или в операторе DPRNT, ошибочный.

1144

ОШИБКА ФОРМАТА G10

Ввод данных для ном. L команды G10 или соответствующей функции не активирован.

Адреса задания данных P или R не заданы.

Был задан адрес, не связанный с установкой данных. Какой адрес задать различается в соответствии с L ном.

Знак, десятичная точка или диапазон заданного адреса ошибочны.

1160

ПЕРЕПОЛНЕНИЕ УПРАВЛЯЮЩИХ ДАННЫХ

Переполнение произошло в данных позиции в ЧПУ.

Данный сигнал тревоги также порождается, если целевое положение команды превышает максимальный ход в результате вычислений, таких как преобразование системы координат, коррекция или введение величины ручного вмешательства.

1180

ВСЕ ПАРАЛЛЕЛЬНЫЕ ОСИ В РЕЖИМЕ ОЖИДАНИЯ

Все оси, заданные для автоматической работы, находятся в режиме ожидания.

1196

НЕВЕРНЫЙ ВЫБОР ОСИ СВЕРЛЕНИЯ

Ось сверления, заданная для сверления в постоянном цикле сверления, неверна.

В блоке команды G-кода в постоянном цикле точка Z не задана для оси сверления.

1200

НЕВЕРНЫЙ ВОЗВРАТ НА НОЛЬ ИМПУЛЬСНОГО ШИФРАТОРА

Положение сетки нельзя было подсчитать при возврате на референтную позицию сетки при использовании системы сетки, поскольку сигнал одного оборота не был получен перед отходом от упора замедления.

Данный сигнал тревоги также возникает в том случае, если инструмент не достигает скорости подачи, которая превышает величину погрешности сервосистемы, предварительно заданную в параметре ном. 1841, прежде чем отработает ограничитель хода замедления (сигнал замедления *DEC опять становится «1»).

1202

ОТСУТСТВУЕТ КОМАНДА F В G93

F коды в режиме спецификации обратного времени (G93) не обрабатываются как модальные и должны быть заданы в отдельных блоках.

1223

НЕВЕРНЫЙ ВЫБОР ШПИНДЕЛЯ

Была сделана попытка выполнить команду, применимую к шпинделю, в то время как шпиндель, подлежащий управлению, задан неправильно.

1298

НЕВЕРНОЕ ПРЕОБРАЗОВАНИЕ ДЮЙМЫ/МЕТРИЧЕСКИЕ ЕДИНИЦЫ

Произошла ошибка при преобразовании дюймовых/метрических единиц.

1300

НЕВЕРНЫЙ АДРЕС

Номер оси был задан, хотя параметр не относится к оси при загрузке данных параметров или коррекции межмодульного смещения с ленты или при вводе параметра G10.

Ось ном. нельзя задать в данных коррекции межмодульного смещения.

1301

ОТСУТСТВУЕТ АДРЕС

Номер оси не был задан, хотя параметр относится к оси при загрузке данных параметров или коррекции межмодульного смещения с ленты или при вводе параметра G10.

Или данные ном. адреса ном или адрес задания адреса P или R не заданы.

1302

НЕВЕРНЫЙ НОМЕР ДАННЫХ

Был обнаружен несуществующий номер данных при загрузке данных параметров или коррекции межмодульного смещения с ленты или введением параметра G10.

Данный сигнал тревоги также порождается, если обнаружены недопустимые значения слов.

1303

НЕВЕРНЫЙ НОМЕР ОСИ

Был обнаружен адрес номера оси, превышающий максимальное число управляемых осекй при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1304

СЛИШКОМ МНОГО ЗНАКОВ

Было обнаружено слишком много цифр при загрузке данных параметров или коррекции межмодульного смещения с ленты.

1305

ДАННЫЕ ВНЕ ДИАПАЗОНА

Были обнаружены данные вне диапазона при загрузке данных параметров или коррекции межмодульного смещения с ленты. Значения адресов задания данных, соответствующих L ном., пока ввод данных с помощью G10 был вне диапазона.

Данный сигнал тревоги также порождается, если программируемые слова ЧПУ содержат значения не из диапазона.

1306

ОТСУТСВУЕТ НОМЕР ОСИ

Параметр, требующий указания оси, обнаружен без номера оси (адрес A) при загрузке параметров с перфоленты.

1307

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ЗНАКА МИНУС

Были обнаружены данные с неверным обозначением при загрузке данных параметров или коррекции межмодульного смещения с ленты или введением параметра G10. Знак был задан для адреса, не поддерживающего использование знаков.

1308

ОТСУТСТВУЮТ ДАННЫЕ

Адрес, в конце которого не ставится числовое значение, был обнаружен при загрузке данных параметров или коррекции межмодульного смещения с ленты.

1329

НЕВЕРНЫЙ НОМЕР ГРУППЫ СТАНКОВ

Был обнаружен адрес номера групп станков, превышающий максимальное число управляемых станков при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1330

НЕВЕРНЫЙ НОМЕР ШПИНДЕЛЯ

Был обнаружен адрес номера шпинделя, превышающий максимальное число управляемых шпинделей при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1331

НЕВЕРНЫЙ НОМЕР КОНТУРА

Был обнаружен адрес номера контуров, превышающий максимальное число управляемых контуров при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1332

ОШИБКА БЛОКИРОВКИ ЗАПИСИ ДАННЫХ

Невозможно загрузить данные при загрузке данных параметров, коррекции межмодульного смещения или рабочих координат введении параметра с ленты.

1333

ОШИБКА ЗАПИСИ ДАННЫХ

Не может записать данные при загрузке данных с ленты.

1470

ОТСУТСТВУЮТ ПАРАМЕТРЫ G40.1 -G42.1

Задание параметра, связанное с управлением нормальным направлением, неверное.

Номер оси для оси управления нормальным направлением задан в параметре ном. 5480, но этот номер оси входит в область номеров управляемых осей.

Ось, заданная как ось управления нормальным направлением, не задана как ось вращения (ROTx, бит 0 параметра ном. 1006) = 1 и ном. 1022=0).

Задайте скорость подачи, при которой должно выполняться вращение вокруг оси управления нормальным направлением движения, в параметре ном. 5481, в диапазоне от 1 до 15000 мм/мин.

1508

ДУБЛИРОВАНИЕ М КОДА(ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ДЕЛИТЕЛЬНОПОВОРОТНОГО СТОЛА)

Имеется функция, которой задан такой же М-код. (индексирование делительно-поворотного стола)

1509

ДУБЛИРОВАНИЕ М-КОДА (ОРИЕНТИРОВАНИЕ ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, ориентация)

1510

ДУБЛИРОВАНИЕ М-КОДА (ПОЗИЦИОНИРОВАНИЕ ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, позиционирование)

1511

ДУБЛИРОВАНИЕ М-КОДА (РАЗБЛОКИРОВКА ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, отмена режима)

1533

ПОТЕРЯ ЗНАЧИМОСТИ АДРЕСА F (G95)

Скорость подачи оси сверления отверстий, рассчитанная по кодам F и S, слишком медленная в режиме подачи за один оборот.

1534

ПЕРЕПОЛНЕНИЕ АДРЕСА F (G95)

Скорость подачи оси сверления отверстий, рассчитанная по кодам F и S, слишком быстрая в режиме подачи за один оборот.

1537

ПОТЕРЯ ЗНАЧИМОСТИ АДРЕСА F (ПЕРЕРЕГУЛИРОВАНИЕ)

Скорость, полученная применением перерегулирования к функции F, слишком медленная.

1538

ПЕРЕПОЛНЕНИЕ АДРЕСА F (ПЕРЕРЕГУЛИРОВАНИЕ)

Скорость, полученная применением перерегулирования к функции F, слишком быстрая.

1541

НУЛЕВОЙ S-КОД

«0» был задан в качестве S-кода.

1543

НЕВЕРНАЯ НАСТРОЙКА ПЕРЕДАЧИ

Передаточное число между шпинделем и шифратором положения или заданный номер шифратора положения импульсов неверен в функции позиционирования шпинделей.

1544

S-КОД ПРЕВЫСИЛ МАКСИМУМ

S команда превышает максимальное число вращений шпинделя.

1548

НЕВЕРНЫЙ РЕЖИМ ОСИ

Ось позиционирования шпинделя (серия T)/ ось контурного управления Cs была задана во время переключения режима управления осью.

1561

НЕВЕРНЫЙ УГОЛ ИНДЕКСИРОВАНИЯ

Заданный угол вращения не является целым множителем минимального угла индексирования.

1564

ОСЬ ДЕЛИТЕЛЬНО-ПОВОРОТНОГО СТОЛА СОВМЕСТНО С ДРУГОЙ ОСЬЮ

Ось делительно-поворотного стола и другая ось были заданы в одном блоке.

1567

ДУБЛИРОВАНИЕ КОМАНДЫ ОСИ ДЕЛИТЕЛЬНО-ПОВОРОТНОГО СТОЛА

Индексирование делительно-поворотного стола было задано при перемещении оси, или ось, для которой последовательность индексирования делительно-поворотного стола не была завершена.

1590

ОШИБКА TH

Во время считывания с устройства ввода обнаружена ошибка TH. Код, вызвавший при считывании ошибку TH, и количество операторов до него от блока можно проверить в окне диагностики.

1591

ОШИБКА TV

Ошибка TV обнаружена в единичном блоке. Проверка TV может быть отменена присвоением TVC в параметре ном. 0000#0 значения «0».

1592

КОНЕЦ ЗАПИСИ

Код EOR (Конец записи) задан в середине блока. Данный сигнал тревоги также порождается, если процентное отношение в конце программы ЧПУ считывается. Для функции перезапуска программы данный сигнал тревоги порождается, если заданный блок не найден.

1593

ОШИБКА ЗАДАНИЯ ПАРАМЕТРА EGB

Ошибка в задании параметра, связанного с EGB

1) Неверная настройка SYN, бит 0 параметра ном. 2011.

2) Ведомая ось, заданная G81, не задана как ось вращения. (ROT, бит 0 параметра ном. 1006)

3) Число импульсов за оборот (не задан параметр (ном. 7772 или ном. 7773)).

1594

ОШИБКА ФОРМАТА EGB

Ошибка в формате блока команды EGB

1) T (число зубьев) не задано в блоке G81.

2) В блоке G81 данные, заданные для T, L, P или Q, находятся вне соответствующего диапазона действительных значений.

3) В блоке G81 задана только одна из команд P и Q.

1595

НЕПРАВИЛЬНАЯ КОМАНДА В РЕЖИМЕ EGB

В ходе синхронизации с EGB была дана команда, которую нельзя было давать.

(1) Команда ведомой оси с использованием G27, G28, G29, G30, G33, G53 и т. д.

2) Команда преобразования дюймовых/метрических единиц с использованием G20, G21, и т.д.

1596

ПЕРЕПОЛНЕНИЕ EGB

Возникло переполнение в расчете коэффициента синхронизации.

1805

НЕВЕРНАЯ КОМАНДА

[Устройство ввода/вывода]

Была произведена попытка задать неверную команду в ходе обработки в устройстве ввода/вывода.

[Возврат на референтную позицию G30]

Номера адреса P для задания возврата на 2-ю, 3-ю и 4-ю референтную позицию — не 2, 3 и 4.

[Выстой единичного оборота]

Заданное вращение шпинделя равно «0», если задан выстой единичного оборота.

1806

НЕСООТВЕТСТВИЕ ТИПА УСТРОЙСТВА

Операция, невозможная на устройстве ввода/вывода, которая в настоящий момент выбрана в настройке, была задана. Данный сигнал тревоги также порождается, если перемотка файла задана несмотря на то, что устройство ввода/вывода не является кассетой FANUC.

1807

ОШИБКА НАСТРОЙКИ ПАРАМЕТРА

Задан неверный интерфейс ввода/вывода.

Настройки внешнего устройства ввода/вывода и скорость двоичной передачи, стоповый бит и настройки выбора протокола ошибочны.

1808

УСТРОЙСТВО ОТКРЫТО ДВАЖДЫ

Была сделана попытка открыть устройство, к которому была попытка доступа.

1820

НЕВЕРНОЕ СОСТОЯНИЕ СИГНАЛА DI

1) Предварительно заданный сигнал оси системы координат заготовки был изменен на «1» в состоянии, когда все оси на контуре, включая ось, по которой выполняется преднастройка для осей системы координат заготовки, не были остановлены, или в момент выполнения команды.

2) Когда был задан М-код для выполнения преднастройки с предварительно заданным сигналом для осей системы координат заготовки, не был введен сигнал для каждой оси системы координат заготовки.

3) Активна блокировка вспомогательной функции.

1823

ОШИБКА КАДРА (1)

Стоповый бит символа, полученный от устройства ввода/вывода, соединенный с интерфейсом считывающего перфоратора 1, не был обнаружен.

1830

DR ОТКЛ. (2)

Сигнал готовности ввода набора данных DR устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 2, отключен.

1832

ОШИБКА ПЕРЕПОЛНЕНИЯ (2)

Следующий символ был получен от устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 2 до того, как он смог считать полученный предварительно символ.

1833

ОШИБКА КАДРА (2)

Стоповый бит символа, полученный от устройства ввода/вывода, соединенный с интерфейсом считывающего перфоратора 2, не был обнаружен.

1834

ОШИБКА БУФЕРИЗАЦИИ (2)

ЧПУ получило более 10 символов данных от устройства ввода/ вывода, подключенного к интерфейсу считывающего перфоратора 2, хотя ЧПУ послало код останова (DC3) в ходе принятия данных.

1912

ОШИБКА ДРАЙВЕРА V-УСТРОЙСТВА (ОТКРЫТО)

При управлении драйвером устройства возникла ошибка.

1960

ОШИБКА ДОСТУПА (КАРТА ПАМЯТИ)

Неправильный доступ к карте памяти

Данный сигнал тревоги также порождается в ходе считывания, если считывание осуществляется до конца файла без регистрации кода EOR.

1961

НЕ ГОТОВО (КАРТА ПАМЯТИ)

Плата памяти не готова.

1962

КАРТА ЗАПОЛНЕНА (КАРТА ПАМЯТИ)

Карта памяти заполнена полностью.

1963

КАРТА ЗАЩИЩЕНА (КАРТА ПАМЯТИ)

Карта памяти защищена от записи.

1964

НЕ УСТАНОВЛЕНА (КАРТА ПАМЯТИ)

Невозможна установка карты памяти.

1965

КАТАЛОГ ЗАПОЛНЕН (КАРТА ПАМЯТИ)

Файл нельзя создать в корневом каталоге карты памяти.

1966

ФАЙЛ НЕ НАЙДЕН (КАРТА ПАМЯТИ)

Заданный файл не найден в карте памяти.

1967

ФАЙЛ ЗАЩИЩЕН (КАРТА ПАМЯТИ)

Карта памяти защищена от записи.

1968

НЕВЕРНОЕ ИМЯ ФАЙЛА (КАРТА ПАМЯТИ)

Неверное имя файла карты памяти

1969

НЕВЕРНЫЙ ФОРМАТ (КАРТА ПАМЯТИ)

Проверить имя файла.

1970

НЕВЕРНАЯ КАРТА (КАРТА ПАМЯТИ)

Нельзя использовать эту карту памяти.

1971

ОШИБКА УДАЛЕНИЯ (КАРТА ПАМЯТИ)

Во время удаления информации с карты памяти возникла ошибка.

1972

НИЗКИЙ ЗАРЯД БАТАРЕИ (КАРТА ПАМЯТИ)

Садится батарея карты памяти.

1973

ФАЙЛ УЖЕ СУЩЕСТВУЕТ

Файл, имеющий то же имя, уже существует на карте памяти.

2032

ОШИБКА ВСТРОЕННОЙ СЕТИ ETHERNET/СЕРВЕРА данных

От функции встроенной сети Ethernet/сервера данных вернулось сообщение об ошибке.

Подробные сведения см. в окне сообщений об ошибках встроенной сети Ethernet или сервера данных.

2051

#200-#499 НЕВЕРНЫЙ Р-КОД ОБЩЕГО ВВОДА МАКРОКОМАНД (НЕТ ОПЦИИ)

Была произведена попытка ввести общую переменную пользовательской макрокоманды, не существующей в системе.

2052

#500-#549P ОБЩИЙ ВЫБОР КОДА МАКРОКОМАНДЫ (НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ SETVN)

Нельзя ввести имя переменной.

Нельзя использовать команду SETVN с общими переменными макрокоманды кода P #500 — #549.

2053

НОМЕР #30000 НЕ ИМЕЕТ СООТВЕТСТВИЯ

Была произведена попытка ввести переменную только Р-кода, не существующую в системе.

2054

НОМЕР #40000 НЕ ИМЕЕТ СООТВЕТСТВИЯ

Была произведена попытка ввести расширенную переменную только Р-кода, не существующую в системе.

4010

НЕВЕРНОЕ ДЕЙСТВИТЕЛЬНОЕ ЗНАЧЕНИЕ OBUF:

Действительное значение буфера вывода ошибочно.

5006

СЛИШКОМ МНОГО СЛОВ В ОДНОМ БЛОКЕ

Число слов в блоке превышает максимально допустимое. Максимум 26 слов. Однако эта цифра варьируется в зависимости от опций ЧПУ. Разделите команду на два блока.

5007

СЛИШКОМ БОЛЬШОЕ РАССТОЯНИЕ

Из-за коррекции, вычисления точки пересечения, интерполяции или подобных причин было задано расстояние перемещения, превышающее максимально допустимое расстояние.

Проверьте заданные координаты или величины коррекции.

5009

НУЛЕВОЙ ПАРАМЕТР (ХОЛОСТОЙ ХОД)

Параметр скорости подачи холостого хода ном. 1410 или параметр максимальной скорости рабочей подачи ном. 1430 для каждой оси был установлен на 0.

5010

КОНЕЦ ЗАПИСИ

Код EOR (Конец записи) задан в середине блока. Данный сигнал тревоги также порождается, если процентное отношение в конце программы ЧПУ считывается.

5011

НУЛЕВОЙ ПАРАМЕТР (МАКС. РЕЗАНИЕ)

Параметр максимальной скорости рабочей подачи ном. 1430 был установлен на 0.

5014

НЕ НАЙДЕНЫ ДАННЫЕ ТРАССИРОВКИ

Нельзя произвести трассировку из-за отсутствия данных трассировки.

5016

НЕВЕРНАЯ КОМБИНАЦИЯ М-КОДОВ

В блоке заданы М-коды, принадлежащие одной группе. Или же М-код, который необходимо задать в блоке без других М-кодов, задан в блоке вместе с другими М-кодами.

5018

ОШИБКА СКОРОСТИ ШПИНДЕЛЯ ПРИ ПОЛИГОНАЛЬНОЙ ОБРАБОТКЕ

В режиме G51.2 скорость шпинделя или полигональной синхронной оси либо превышает значение фиксации, либо слишком низкая. Таким образом, невозможно поддерживать заданное соотношение скорости вращения.

Для полигональной обточки между шпинделями: Более подробные сведения о причине этого сигнала тревоги см. в DGN ном. 471.

5020

ОШИБКА ПАРАМЕТРА ПЕРЕЗАПУСКА

Недействительное значение задано в параметре ном. 7310, указывающем порядок осей для перемещения по ним инструмента в позицию возобновления обработки на холостом ходу. В этом параметре можно задавать значение в диапазоне от 1 до числа управляемых осей.

5046

НЕВЕРНЫЙ ПАРАМЕТР (КОРРЕКЦИЯ ПРЯМОЛИНЕЙНОСТИ)

Заданное значение параметра, связанное с простой коррекцией

прямолинейности, содержит ошибку.

Возможные причины:

1) Несуществующий номер оси задан в параметре оси перемещения или коррекции.

2) Неправильное соотношение величины номеров точек коррекции прямолинейности.

3) Не обнаружена точка простой коррекции прямолинейности между крайними удаленными точками коррекции в отрицательной и положительной областях.

4) Коррекция на точку коррекции слишком велика или слишком мала.

5064

РАЗЛИЧНЫЕ ЕДИНИЦЫ ОСЕЙ

Круговая интерполяция была задана в плоскости, состоящей из осей, имеющих различные системы приращений.

5065

РАЗЛИЧНЫЕ ЕДИНИЦЫ ОСЕЙ (ОСЬ PMC)

Оси, имеющие различные системы приращений, были заданы в одной и той же группе DI/DO для осевого управления с помощью РМС. Измените настройку параметра ном. 8010.

5073

НЕТ ДЕСЯТИЧНОЙ ТОЧКИ

В адресе, предусматривающем десятичную точку, не задана десятичная точка.

5074

ОШИБКА ДУБЛИРОВАНИЯ АДРЕСА

В одном блоке один и тот же адрес задан два или более раз. Или в одном блоке задано два или более G-кодов, принадлежащих к одной группе.

5110

НЕВЕРНЫЙ G-КОД (РЕЖИМ КОНТ. УПР. AI)

Недопустимый G-код был задан при управлении с расширенным предпросмотром, управлении AI с расширенным предпросмотром или контурном управлении AI.

5131

НЕСОВМЕСТИМАЯ КОМАНДА ЧПУ

Управление осью PMC и интерполяция в полярных координатах были заданы одновременно.

5195

НЕВОЗМОЖНО ОПРЕДЕЛИТЬ НАПРАВЛЕНИЕ

Измерение недействительно при функции прямого ввода измеренного значения коррекции на инструмент B.

[Для 1-контактного ввода]

1) Направление записанных импульсов непостоянно.

Например, состояние останова может быть задано во время режима записи коррекции, может быть введено состояние отключения сервосистемы, или возможно изменение направления.

2) Инструмент перемещается вдоль двух осей (ось X и ось Y). [Для определения направления перемещения при 4-контактном вводе]

1) Направление записанных импульсов непостоянно.

Например, состояние останова может быть задано во время режима записи коррекции, может быть введено состояние отключения сервосистемы, или возможно изменение направления.

2) Инструмент перемещается вдоль двух осей (ось X и ось Z).

3) Направление, указанное сигналом записи коррекции на инструмент, не соответствует направлению перемещения оси.

5220

РЕЖИМ РЕГУЛИРОВКИ РЕФЕРЕНТНОЙ ТОЧКИ

Для линейной шкалы кодировки расстояния I/F параметр автоматического задания референтной точки (ном.1819#2) имеет значение «1». Переместить станок на референтную позицию вручную и выполнить возврат на референтную позицию вручную.

5257

G41/G42 ЗАПРЕЩЕНЫ В РЕЖИМЕ MDI

Коррекция на радиус инструмента/на радиус вершины инструмента была задана в режиме MDI. (В зависимости от настройки параметра MCR (ном. 5008#4))

5303

ОШИБКА СЕНСОРНОЙ ПАНЕЛИ

Сенсорная панель не подключена правильно или не может быть инициализирована при включении питания. Устраните причину, затем снова включите питание.

5305

НЕВЕРНЫЙ НОМЕР ШПИНДЕЛЯ

В функции выбора шпинделя по адресу P для управления несколькими шпинделями,

1) Адрес P не задан.

2) P-код для выбора шпинделя не задан в параметре ном. 3781.

3) Задан неверный G-код, невозможный с командой S_P_;.

4) Многошпиндельное управление не активировано, так как бит 1 (EMS) параметра ном. 3702 имеет значение 1.

5) Номер усилителя шпинделя для каждого шпинделя не задан в параметре ном. 3717.

6) Команда шпинделя выполнена из контура, в котором она запрещена (параметр ном. 11090).

7) Неверная настройка параметра ном. 11090.

5306

ОШИБКА ПЕРЕКЛЮЧЕНИЯ РЕЖИМА

Не удалось выполнить переключение режима при активации. Попытка выполнить быстрый вызов макропрограммы была сделана не в состоянии сброса или во время сброса либо аварийного останова.

5329

М98 И КОМАНДА ЧПУ В ОДНОМ БЛОКЕ

Вызов подпрограммы, не являющейся единичным блоком, был задан в режиме постоянного цикла.

5339

КОМАНДА В НЕВЕРНОМ ФОРМАТЕ ВЫПОЛНЕНА ПРИ

СИНХ./СМЕШ./НАЛОЖ. УПРАВЛЕНИИ.

1. Недействительно значение P, Q или L, заданное посредством G51.4/G50.4/G51.5/G50.5/G51.6/G50.6.

2. Двойное значение задан параметром ном. 12600.

5346

ВОЗВРАТ НА РЕФЕРЕНТНУЮ ТОЧКУ

Не выполнено назначение координат для оси контурного управления

Cs. Выполните ручной возврат на референтную позицию.

1) Если назначение координат Cs выполнено для оси Cs, для которой сигнал состояния референтной позиции оси CsCSPENx имеет значение 0

2) Если данные позиции не отправлены усилителем шпинделя

3) Если состояние отключения сервосистемы введено во время запуска назначения координат оси Cs

4) Если состояние аварийного останова введено во время назначения координат оси Cs

5) Если ось Cs находится в режиме синхронного или наложенного управления

6) Если предпринята попытка отменить комплексное управление для оси Cs во время назначения координат оси Cs

7) Если предпринята попытка запустить синхронное, комплексное или наложенное управление для оси Cs во время назначения координат оси Cs

5362

ПРЕОБРАЗОВАНИЕ ДЮЙМ/ММ В РЕФ. ПОЗ.

Преобразование дюймы/метрические единицы было выполнено в позиции, отличной от референтной позиции. Выполните преобразование дюймы/метрические единицы после возврата на референтную позицию.

5391

НЕВОЗМОЖНО ИСПОЛЬЗОВАТЬ G92

Невозможно задать настройку системы координат заготовки G92.

1) После того, как коррекция на длину инструмента была изменена коррекция по типу смещения на длину инструмента, команда G92 была задана без абсолютной команды.

2) Команда G92 была задана в блоке, содержащем G49.

5395

ПРЕВЫШЕНИЕ КОЛИЧЕСТВА ОСЕЙ CS

Число осей, назначаемых для осевого контурного управления Cs, превышает максимально допустимое в системе число. Проверьте параметр ном. 1023. При возникновении этого сигнала тревоги состояние аварийного останова нельзя сбросить.

5445

НЕВОЗМОЖНО ЗАДАТЬ ПЕРЕМЕЩЕНИЕ В G39

Круговая интерполяция в углу (G39) для коррекции на радиус инструмента/на радиус вершины инструмента задана не отдельно, а с командой перемещения.

5446

ИЗБЕЖАНИЕ В G41/G42 НЕВОЗМОЖНО

Поскольку отсутствует вектор избежания столкновения, функция избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента не работает.

5447

ОПАСНОЕ ИЗБЕЖАНИЕ В G41/G42

Операция функции избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента ведет к опасности.

5448

ИЗБЕЖАНИЕ СТОЛКНОВЕНИЯ В G41/G42

В функции избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента созданный вектор избежания столкновения приводит к последующему столкновению.

A FANUC alarm code, also called a FANUC fault or error code, is how a CNC control indicates there is a problem. This error message could indicate issues with either the machine itself, be that electric or mechanical. The FANUC error code might also indicate an issue with the g-code program. 

Use the list below to interpret what exactly the fault code is trying to communicate. If you require a replacement part, know that MRO Electric stocks thousands of FANUC CNC replacements. Get your new FANUC servo amplifier or check out our FANUC servo motors. To order a replacement part or a repair job, please call 800-691-8511 or email sales@mroelectric.com. Curious about other common FANUC CNC problems? Check out our FAQ here.

• 0i Model A
• 0i/0iMate Model B
• 16/18 Model PB
• 16/18 Model C
• 16i/18i Model A
• 16i/18i Model B
• 16iL Model A
• 20i
• 21 Model B
• 21i Model A
• 21i Model B
• 21i Model A

Alarm
Description

0 PLEASE TURN OFF POWER
A parameter which requires the power off was input, turn off power.

1 TH PARITY ALARM
TH alarm (A character with incorrect parity was input). Correct the tape.

2 TV PARITY ALARM
TV alarm (The number of characters in a block is odd). This alarm will be generated only when the TV check is effective.

3 TOO MANY DIGITS
Data exceeding the maximum allowable number of digits was input. (Refer to the item of max. programmable dimensions.)

4 ADDRESS NOT FOUND
A numeral or the sign “ – ” was input without an address at the beginning of a block. Modify the program.

5 NO DATA AFTER ADDRESS
The address was not followed by the appropriate data but was followed by another address or EOB code. Modify the program.

6 ILLEGAL USE OF NEGATIVE SIGN
Sign “ – ” input error (Sign “ – ” was input after an address with which it cannot be used. Or two or more “ – ” signs were input.) Modify the program.

7 ILLEGAL USE OF DECIMAL POINT
Decimal point “.” input error (A decimal point was input after an address with which it can not be used. Or two decimal points were input.) Modify the program.

9 ILLEGAL ADDRESS INPUT
Unusable character was input in significant area. Modify the program.

10 IMPROPER G–CODE
An unusable G code or G code corresponding to the function not provided is specified. Modify the program.

11 NO FEEDRATE COMMANDED
Feedrate was not commanded to a cutting feed or the feedrate was inadequate. Modify the program.

14 CAN NOT COMMAND G95 (M Series)
A synchronous feed is specified without the option for threading / synchronous feed.

14 ILLEGAL LEAD COMMAND (T Series)
In variable lead threading, the lead incremental and decremental outputted by address K exceed the maximum command value or a command such that the lead becomes a negative value is given. Modify the program.

15 TOO MANY AXES COMMANDED
M Series;An attempt was made to move the machine along the axes, but the number of the axes exceeded the specified number of axes controlled simultaneously. Modify the program.

20 OVER TOLERANCE OF RADIUS
In circular interpolation (G02 or G03), difference of the distance between the start point and the center of an arc and that between the end point and the center of the arc exceeded the value specified in parameter No. 3410.

21 ILLEGAL PLANE AXIS COMMANDED
An axis not included in the selected plane (by using G17, G18, G19) was commanded in circular interpolation. Modify the program.

22 NO CIRCULAR RADIUS
When circular interpolation is specified, neither R (specifying an arc radius), nor I, J, and K (specifying the distance from a start point to the center) is specified.

23 ILLEGAL RADIUS COMMAND (T series)
In circular interpolation by radius designation, negative value was commanded for address R. Modify the program.

25 CANNOT COMMAND F0 IN G02/G03
F0 (fast feed) was instructed by F1 –digit column feed in circular interpolation. Modify the program.

27 NO AXES COMMANDED IN G43/G44
No axis is specified in G43 and G44 blocks for the tool length offset type C. Offset is not canceled but another axis is offset for the tool length offset type C. Modify the program.

28 ILLEGAL PLANE SELECT
In the plane selection command, two or more axes in the same direction are commanded. Modify the program.

29 ILLEGAL OFFSET VALUE
M Series;The offset values specified by H code is too large. Modify the program.

30 ILLEGAL OFFSET NUMBER
M Series;The offset values specified by D/H code for tool length offset, cutter compensation or 3–dimensional cutter compensation is too large. Otherwise, the number specified by P code for the additional workpiece coordinate system is too large. Modify the program.

31 ILLEGAL P COMMAND IN G10
In setting an offset amount by G10, the offset number following address P was excessive or it was not specified. Modify the program.

32 ILLEGAL OFFSET VALUE IN G10
In setting an offset amount by G10 or in writing an offset amount by system variables, the offset amount was excessive.

33 NO SOLUTION AT CRC
M Series: A point of intersection cannot be determined for cutter compensation C. Modify the program. T Series: A point of intersection cannot be determined for tool nose radius compensation. Modify the program.

34 NO CIRC ALLOWED IN ST–UP /EXT BLK
M Series;The start up or cancel was going to be performed in the G02 or G03 mode in cutter compensation C. Modify the program.

35 CAN NOT COMMANDED G39 (M Series)
G39 is commanded in cutter compensation B cancel mode or on the plane other than offset plane. Modify the program.

35 CAN NOT COMMANDED G31
T series;Skip cutting (G31) was specified in tool nose radius compensation mode. Modify the program.

36 CAN NOT COMMANDED G31
Skip cutting (G31) was specified in cutter compensation mode.Modify the program.

37 CAN NOT CHANGE PLANE IN CRC
M seires;G40 is commanded on the plane other than offset plane in cutter compensation B. The plane selected by using G17, G18 or G19 is changed in cutter compensation C mode. Modify the program.

38 INTERFERENCE IN CIRCULAR BLOCK
Overcutting will occur in tool radius/tool nose radius/cutter compensation because the arc start point or end point coincides with the arc center. Modify the program.

39 CHF/CNR NOT ALLOWED IN NRC
Chamfering or corner R was specified with a start–up, a cancel, or switching between G41 and G42 in tool nose radius compensation. The program may cause overcutting to occur in chamfering or corner R. Modify the program.

40 INTERFERENCE IN G90/G94 BLOCK
Overcutting will occur in tool nose radius compensation in canned cycle G90 or G94. Modify the program.

41 INTERFERENCE IN CRC
M seires;Overcutting will occur in cutter compensation C. Two or more blocks are consecutively specified in which functions such as the auxiliary function and dwell functions are performed without movement in the cutter compensation mode. Modify the program.

42 G45/G48 NOT ALLOWED IN CRC
Tool offset (G45 to G48) is commanded in cutter compensation. Modify the program.

44 G27–G30 NOT ALLOWED IN FIXED CYC
One of G27 to G30 is commanded in canned cycle mode.Modify the program.

45 ADDRESS Q NOT FOUND(G73/G83)
In canned cycle G73/G83, the depth of each cut (Q) is not specified. Alternatively,Q0 is specified. Correct the program.

46 ILLEGAL REFERENCE RETURN COMMAND
Other than P2, P3 and P4 are commanded for 2nd, 3rd and 4th reference position return command.

47 ILLEGAL AXIS SELECT
Two or more parallel axes (in parallel with a basic axis) have been specified upon start–up of three–dimensional tool compensation or three–dimensional coordinate conversion.

48 BASIC 3 AXIS NOT FOUND
For startup of three–dimensional tool compensation or three–dimensional coordinate conversion, the three basic axes used when Xp,Yp and Zp are omitted were not specified in parameter No. 1022.

49 ILLEGAL OPERATION (G68/G69)
The commands for three–dimensional coordinate conversion (G68,G69) and tool length compensation (G43, G44, G45) are not nested.Modify the program.

50 CHF/CNR NOT ALLOWED IN THRD BLK
Chamfering or corner R is commanded in the thread cutting block. Modify the program.

51 MISSING MOVE AFTER CHF/CNR
T series;Improper movement or the move distance was specified in the block next to the chamfering or corner R block.Modify the program.

52 CODE IS NOT G01 AFTER CHF/CNR
The block next to the chamfering or corner R block is not G01, G02,or G03.Modify the program.

53 TOO MANY ADDRESS COMMANDS
M series;For systems without the arbitary angle chamfering or corner R cutting, a comma was specified. For systems with this feature, a comma was followed by something other than R or C Correct the program.

54 NO TAPER ALLOWED AFTER CHF/CNR
T series;A block in which chamfering in the specified angle or the corner R was specified includes a taper command. Modify the program.

55 MISSING MOVE VALUE IN CHF/CNR
In chamfering or corner R block, the move distance is less than chamfer or corner R amount. Modify the program.

56 NO END POINT & ANGLE IN CHF/CNR
T series;Neither the end point nor angle is specified in the command for the block next to that for which only the angle is specified (A). In the chamfering comman, I(K) is commanded for the X(Z) axis.

57 NO SOLUTION OF BLOCK END
Block end point is not calculated correctly in direct dimension drawing programming. Modify the program.

58 END POINT NOT FOUND
In a arbitrary angle chamfering or corner R cutting block, a specified axis is not in the selected plane. Correct the program.

59 PROGRAM NUMBER NOT FOUND
In an external program number search, a specified program number was not found. Otherwise, a program specified for searching is being edited in background processing. Alternatively, the program with the program number specified in a one–touch macro call is not found in memory. Check the program number and external signal. Or discontinue the background editing.

60 SEQUENCE NUMBER NOT FOUND
Commanded sequence number was not found in the sequence number search.Check the sequence number.

61 ADDRESS P/Q NOT FOUND IN G70–G73
T series;Address P or Q is not specified in G70, G71, G72, or G73 command. Modify the program.

62 ILLEGAL COMMAND IN G71–G76
T series;1. The depth of cut in G71 or G72 is zero or negative value.;2. The repetitive count in G73 is zero or negative value.;3. the negative value is specified to Δi or Δk is zero in G74 or G75.;4. A value other than zero is specified to address U or W though Δi or Δk is zero in G74 or G75.;5. A negative value is specified to Δd, though the relief direction in G74 or G75 is determined.;6. Zero or a negative value is specified to the height of thread or depth of cut of first time in G76.;7. The specified minimum depth of cut in G76 is greater than the height of thread.;8. An unusable angle of tool tip is specified in G76.;Modify the program.

63 SEQUENCE NUMBER NOT FOUND
T series;The sequence number specified by address P in G70, G71, G72, or G73 command cannot be searched. Modify the program.

64 SHAPE PROGRAM NOT MONOTONOUSLY
T series;A target shape which cannot be made by monotonic machining was specified in a repetitive canned cycle (G71 or G72).

65 ILLEGAL COMMAND IN G71–G73
T series;1. G00 or G01 is not commanded at the block with the sequence number which is specified by address P in G71, G72, or G73 command.;2. Address Z(W) or X(U) was commanded in the block with a sequence number which is specified by address P in G71 or G72, respectively. Modify the program.

66 IMPROPER G–CODE IN G71–G73
T series;An unallowable G code was commanded beween two blocks specified by address P in G71, G72, or G73. Modify the program.

67 CAN NOT ERROR IN MDI MODE
T series;G70, G71, G72, or G73 command with address P and Q. Modify the program.

69 FORMAT ERROR IN G70–G73
T series;The final move command in the blocks specified by P and Q of G70, G71, G72, and G73 ended with chamfering or corner R. Modify the program.

70 NO PROGRAM SPACE IN MEMORY
The memory area is insufficient.Delete any unnecessary programs, then retry.

71 DATA NOT FOUND
The address to be searched was not found.Or the program with specified program number was not found in program number search.Check the data.

72 TOO MANY PROGRAMS
The number of programs to be stored exceeded 63 (basic), 125 (option),200 (option), or 400 (option) or 1000 (option). Delete unnecessary programs and execute program registeration again.

73 PROGRAM NUMBER ALREADY IN USE
The commanded program number has already been used. Change the program number or delete unnecessary programs and execute program registeration again.

74 ILLEGAL PROGRAM NUMBER
The program number is other than 1 to 9999.Modify the program number.

75 PROTECT
An attempt was made to register a program whose number was protected.

76 ADDRESS P NOT DEFINED
Address P (program number) was not commanded in the block which includes an M98, G65, or G66 command. Modify the program.

77 SUB PROGRAM NESTING ERROR
The subprogram was called in five folds. Modify the program.

78 NUMBER NOT FOUND
A program number or a sequence number which was specified by address P in the block which includes an M98, M99, M65 or G66 was not found.The sequence number specified by a GOTO statement was not found. Otherwise, a called program is being edited in background processing.Correct the program, or discontinue the background editing.

79 PROGRAM VERIFY ERROR
In memory or program collation,a program in memory does not agree with that read from an external I/O device. Check both the programs in memory and those from the external device.

80 G37 ARRIVAL SIGNAL NOT ASSERTED
M series;In the automatic tool length measurement function (G37), the measurement position reach signal (XAE, YAE,or ZAE) is not turned on within an area specified in parameter 6254 (value ε).This is due to a setting or operator error.

81 OFFSET NUMBER NOT FOUND IN G37
M series;Tool length automatic measurement (G37) was specified without a H code.(Automatic tool length measurement function) Modify the program.

82 H–CODE NOT ALLOWED IN G37
M series;H code and automatic tool compensation (G37) were specified in the same block. (Automatic tool length measurement function) Modify the program.

82 T–CODE NOT ALLOWED IN G37
T series;T code and automatic tool compensation (G36, G37) were specified in the same block. (Automatic tool compensation function) Modify the program.

83 ILLEGAL AXIS COMMAND IN G37
M series;In automatic tool length measurement, an invalid axis was specified or the command is incremental.Modify the program.

85 COMMUNICATION ERROR
When entering data in the memory by using Reader / Puncher interface,an overrun, parity or framing error was generated. The number of bits of input data or setting of baud rate or specification No. of I/O unit is incorrect.

86 DR SIGNAL OFF
When entering data in the memory by using Reader / Puncher interface,the ready signal (DR) of reader / puncher was off.Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective.

87 BUFFER OVERFLOW
When entering data in the memory by using Reader / Puncher interface,though the read terminate command is specified, input is not interrupted after 10 characters read. I/O unit or P.C.B. is defective.

88 LAN FILE TRANS ERROR (CHANNEL–1)
File data transfer over the OSI–Ethernet was terminated as a result of a transfer error.

89 LAN FILE TRANS ERROR (CHANNEL–2)
File data transfer over the OSI–Ethernet was terminated as a result of a transfer error.

90 REFERENCE RETURN INCOMPLETE
21 Model B;The reference position return cannot be performed normally because the reference position return start point is too close to the reference position or the speed is too slow. Separate the start point far enough from the reference position, or specify a sufficiently fast speed for reference position return. Check the program contents.

91 REFERENCE RETURN INCOMPLETE
In the automatic operation halt state, manual reference position return cannot be performed.

92 AXES NOT ON THE REFERENCE POINT
The commanded axis by G27 (Reference position return check) did not return to the reference position.

94 P TYPE NOT ALLOWED (COORD CHG)
P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the coordinate system setting operation was performed.) Perform the correct operation according to the operator’s manual.

95 P TYPE NOT ALLOWED (EXT OFS CHG)
P type cannot be specified when the program is restarted.(After the automatic operation was interrupted, the external workpiece offset amount changed.) Perform the correct operation according to the User’s manual.

96 P TYPE NOT ALLOWED (WRK OFS CHG)
P type cannot be specified when the program is restarted.(After the automatic operation was interrupted, the workpiece offset amount changed.) Perform the correct operation according to the User’s manual.

97 P TYPE NOT ALLOWED (AUTO EXEC)
P type cannot be directed when the program is restarted.(After power ON, after emergency stop or P/S alarm 94 to 97 were reset, no automatic operation is performed).Perform automatic operation.

98 G28 FOUND IN SEQUENCE RETURN
A command of the program restart was specified without the reference position return operation after power ON or emergency stop, and G28 was found during search. Perform the reference position return.

99 MDI EXEC NOT ALLOWED AFT.SEARCH
After completion of search in program restart, a move command is given with MDI. Move axis before a move command or don’t interrupt MDI operation.

100 PARAMETER WRITE ENABLE
On the PARAMETER(SETTING) screen, PWE(parameter writing enabled) is set to 1. Set it to 0, then reset the system.

101 PLEASE CLEAR MEMORY
The power turned off while rewriting the memory by program edit operation.If this alarm has occurred, press (RESET) while pressing (PROG),and only the program being edited will be deleted.Register the deleted program.

109 FORMAT ERROR IN G08
A value other than 0 or 1 was specified after P in the G08 code, or no value was specified.

110 DATA OVERFLOW
The absolute value of fixed decimal point display data exceeds the allowable range. Modify the program.

111 CALCULATED DATA OVERFLOW
The result of calculation turns out to be invalid, an alarm No.111 is issued. –10 47 to –10 –29, 0, 10 –29 to 10 47 Modify the program.

112 DIVIDED BY ZERO
Division by zero was specified.(including tan 90°) Modify the program.

113 IMPROPER COMMAND
A function which cannot be used in custom macro is commanded. Modify the program.

114 FORMAT ERROR IN MACRO
There is an error in other formats than (Formula). Modify the program.

115 ILLEGAL VARIABLE NUMBER
A value not defined as a variable number is designated in the custom macro. Modify the program.

116 WRITE PROTECTED VARIABLE
The left side of substitution statement is a variable whose substitution is inhibited. Modify the program.

118 PARENTHESIS NESTING ERROR
The nesting of bracket exceeds the upper limit (quintuple). Modify the program.

119 ILLEGAL ARGUMENT
The SQRT argument is negative, BCD argument is negative, or other values than 0 to 9 are present on each line of BIN argument. Modify the program.

122 FOUR FOLD MACRO MODAL–CALL
The macro modal call is specified four fold. Modify the program.

123 CAN NOT USE MACRO COMMAND IN DNC
Macro control command is used during DNC operation. Modify the program.

124 MISSING END STATEMENT
DO – END does not correspond to 1: 1. Modify the program.

125 FORMAT ERROR IN MACRO
(Formula) format is erroneous. Modify the program.

126 ILLEGAL LOOP NUMBER
In DOn, 1 = n = 3 is not established. Modify the program.

127 NC, MACRO STATEMENT IN SAME BLOCK
NC and custom macro commands coexist. Modify the program.

128 ILLEGAL MACRO SEQUENCE NUMBER
The sequence number specified in the branch command was not 0 to 9999. Or, it cannot be searched.Modify the program.

129 ILLEGAL ARGUMENT ADDRESS
An address which is not allowed in (Argument Designation) is used.Modify the program.

130 ILLEGAL AXIS OPERATION
An axis control command was given by PMC to an axis controlled by CNC.Or an axis control command was given by CNC to an axis controlled by PMC. Modify the program.

131 TOO MANY EXTERNAL ALARM MESSAGES
Five or more alarms have generated in external alarm message.Consult the PMC ladder diagram to find the cause.

132 ALARM NUMBER NOT FOUND
No alarm No.concerned exists in external alarm message clear.Check the PMC ladder diagram.

133 ILLEGAL DATA IN EXT. ALARM MSG
Small section data is erroneous in external alarm message or external operator message. Check the PMC ladder diagram.

135 ILLEGAL ANGLE COMMAND
M series;The index table indexing positioning angle was instructed in other than an integral multiple of the value of the minimum angle. Modify the program.

135 SPINDLE ORIENTATION PLEASE
T series;Without any spindle orientation, an attept was made for spindle indexing. Perform spindle orientation.

136 ILLEGAL AXIS COMMAND
M series;In index table indexing.Another control axis was instructed together with the B axis. Modify the program.

136 C/H–CODE & MOVE CMD IN SAME BLK.
T series;A move command of other axes was specified to the same block as spindle indexing addresses C, H. Modify the program.

137 M–CODE & MOVE CMD IN SAME BLK.
A move command of other axes was specified to the same block as M–code related to spindle indexing. Modify the program.

138 SUPERIMPOSED DATA OVERFLOW
The total distribution amount of the CNC and PMC is too large during superimposed control of the extended functions for PMC axis control.

139 CAN NOT CHANGE PMC CONTROL AXIS
An axis is selected in commanding by PMC axis control. Modify the program.

141 CAN NOT COMMAND G51 IN CRC
M series;G51 (Scaling ON) is commanded in the tool offset mode. Modify the program.

142 ILLEGAL SCALE RATE
M series;Scaling magnification is commanded in other than 1 to 999999. Correct the scaling magnification setting (G51 Pp………………… or parameter 5411 or 5421).

143 SCALED MOTION DATA OVERFLOW
M series;The scaling results, move distance, coordinate value and circular radius exceed the maximum command value. Correct the program or scaling mangification.

144 ILLEGAL PLANE SELECTED
M series;The coordinate rotation plane and arc or cutter compensation C plane must be the same. Modify the program.

145 ILLEGAL CONDITIONS IN POLAR COORDINATE INTERPOLATION
The conditions are incorrect when the polar coordinate interpolation starts or it is canceled.;1) In modes other than G40, G12.1/G13.1 was specified.;2) An error is found in the plane selection. Parameters No. 5460 and No. 5461 are incorrectly specified.;Modify the value of program or parameter.

146 IMPROPER G CODE
G codes which cannot be specified in the polar coordinate interpolation mode was specified. See section II to 4.4 and modify the program.

148 ILLEGAL SETTING DATA
M series;Automatic corner override deceleration rate is out of the settable range of judgement angle. Modify the parameters (No.1710 to No.1714)

149 FORMAT ERROR IN G10L3
M series;A code other than Q1,Q2,P1 or P2 was specified as the life count type in the extended tool life management.

150 ILLEGAL TOOL GROUP NUMBER
Tool Group No. exceeds the maximum allowable value. Modify the program.

151 TOOL GROUP NUMBER NOT FOUND
The tool group commanded in the machining program is not set. Modify the value of program or parameter.

152 NO SPACE FOR TOOL ENTRY
The number of tools within one group exceeds the maximum value registerable. Modify the number of tools.

153 T–CODE NOT FOUND
In tool life data registration, a T code was not specified where one should be. Correct the program.

154 NOT USING TOOL IN LIFE GROUP
M series;When the group is not commanded, H99 or D99 was commanded. Correct the program.

155 ILLEGAL T–CODE IN M06
M series;In the machining program, M06 and T code in the same block do not correspond to the group in use. Correct the program.

156 P/L COMMAND NOT FOUND
P and L commands are missing at the head of program in which the tool group is set. Correct the program.

157 TOO MANY TOOL GROUPS
The number of tool groups to be set exceeds the maximum allowable value. (See parameter No. 6800 bit 0 and 1) Modify the program.

158 ILLEGAL TOOL LIFE DATA
The tool life to be set is too excessive. Modify the setting value.

159 TOOL DATA SETTING INCOMPLETE
During executing a life data setting program, power was turned off. Set again.

163 COMMAND G68/G69 INDEPENDENTLY
G68 and G69 are not independently commanded in balance cut. Modify the program.

175 ILLEGAL G107 COMMAND
Conditions when performing circular interpolation start or cancel not correct. To change the mode to the cylindrical interpolation mode, specify the command in a format of “G07.1 rotation to axis name radius of cylinder.”

176 IMPROPER G–CODE IN G107
M series;Any of the following G codes which cannot be specified in the cylindrical interpolation mode was specified.;1) G codes for positioning: G28,, G73, G74, G76, G81 – G89, including the codes specifying the rapid traverse cycle;2) G codes for setting a coordinate system: G52,G92;3) G code for selecting coordinate system: G53 G54–G59 Modify the program.

177 CHECK SUM ERROR (G05 MODE)
Check sum error Modify the program.

178 G05 COMMANDED IN G41/G42 MODE
G05 was commanded in the G41/G42 mode. Correct the program.

179 PARAM. (NO. 7510) SETTING ERROR
The number of controlled axes set by the parameter 7510 exceeds the maximum number. Modify the parameter setting value.

180 COMMUNICATION ERROR (REMOTE BUF)
Remote buffer connection alarm has generated. Confirm the number of cables, parameters and I/O device.

181 FORMAT ERROR IN G81 BLOCK
G81 block format error (hobbing machine);1) T (number of teeth) has not been instructed.;2) Data outside the command range was instructed by either T, L, Q or P.;3) An overflow occurred in synchronization coefficient calculation. Modify the program.

182 G81 NOT COMMANDED
G83 (C axis servo lag quantity offset) was instructed though synchronization by G81 has not been instructed. Correct the program. (hobbing machine)

183 DUPLICATE G83 (COMMANDS)
G83 was instructed before canceled by G82 after compensating for the C axis servo lag quantity by G83. (hobbing machine)

184 ILLEGAL COMMAND IN G81
A command not to be instructed during synchronization by G81 was instructed. (hobbing machine);1) A C axis command by G00, G27, G28, G29, G30, etc. was instructed.;2) Inch/Metric switching by G20, G21 was instructed.

185 RETURN TO REFERENCE POINT
G81 was instructed without performing reference position return after power on or emergency stop. (hobbing machine) Perform reference position return.

186 PARAMETER SETTING ERROR
Parameter error regarding G81 (hobbing machine);1) The C axis has not been set to be a rotary axis.;2) A hob axis and position coder gear ratio setting error Modify the parameter.

187 HOB COMMAND IS NOT ALLOWED
Error in the modal state when G81.4 or G81 is specified;1. The canned cycle mode (G81 to G89) is set.;2. The thread cutting mode is set.;3. The C–axis is under synchronous, composite, or superimposed control.

190 ILLEGAL AXIS SELECT
M series;In the constant surface speed control, the axis specification is wrong. (See parameter No. 3770.) The specified axis command (P) contains an illegal value. Correct the program.

194 SPINDLE COMMAND IN SYNCHRO–MODE
A contour control mode, spindle positioning (Cs–axis control) mode, or rigid tapping mode was specified during the serial spindle synchronous control mode. Correct the program so that the serial spindle synchronous control mode is released in advance.

195 MODE CHANGE ERROR
Switching command to contouring mode, Cs axis control or rigid tap mode or switching to spindle command mode is not correctly completed. (This occurs when the response to switch to the spindle control unit side with regard to the switching command from the NC is incorrect. This alarm is not for the purposes of warning against mistakes in operation, but because continuing operation in this condition can be dangerous it is a P/S alarm.)

197 C–AXIS COMMANDED IN SPINDLE MODE
The program specified a movement along the Cs–axis when the signal CON(DGN=G027#7) was off. Correct the program, or consult the PMC ladder diagram to find the reason the signal is not turned on.

199 MACRO WORD UNDEFINED
Undefined macro word was used. Modify the custom macro.

200 ILLEGAL S CODE COMMAND
In the rigid tap, an S value is out of the range or is not specified. Modify the program.

201 FEEDRATE NOT FOUND IN RIGID TAP
In the rigid tap, no F value is specified. Correct the program.

202 POSITION LSI OVERFLOW
In the rigid tap, spindle distribution value is too large. (System error)

203 PROGRAM MISS AT RIGID TAPPING
In the rigid tap, position for a rigid M code (M29) or an S command is incorrect. Modify the program.

204 ILLEGAL AXIS OPERATION
In the rigid tap, an axis movement is specified between the rigid M code (M29) block and G84 or G74 for M series (G84 or G88 for T series) block. Modify the program.

205 RIGID MODE DI SIGNAL OFF
Rigid mode DI signal is not ON when G84 or G74 for M series (G84 or G88 for T series) is executed though the rigid M code (M29) is specified. Consult the PMC ladder diagram to find the reason the DI signal (DGNG061.1) is not turned on.

206 CAN NOT CHANGE PLANE (RIGID TAP)
M series;Plane changeover was instructed in the rigid mode. Correct the program.

207 RIGID DATA MISMATCH
The specified distance was too short or too long in rigid tapping.

210 CAN NOT COMAND M198/M199
M198 and M199 are executed in the schedule operation. M198 is executed in the DNC operation. Modify the program.;1) The execution of an M198 or M99 command was attempted during scheduled operation. Alternatively, the execution of an M198 command was attempted during DNC operation. Correct the program.;2) The execution of an M99 command was attempted by an interrupt macro during pocket machining in a multiple repetitive canned cycle.

211 G31 (HIGH) NOT ALLOWED IN G99
G31 is commanded in the per revolution command when the high– speed skip option is provided. Modify the program.

212 ILLEGAL PLANE SELECT
M series;The arbitrary angle chamfering or a corner R is commanded or the plane including an additional axis. Correct the program.

213 ILLEGAL COMMAND IN SYNCHRO–MODE
Movement is commanded for the axis to be synchronously controlled. Any of the following alarms occurred in the operation with the simple synchronization control.;1) The program issued the move command to the slave axis.;2) The program issued the manual continuous feed/manual handle feed/incremental feed command to the slave axis.;3) The program issued the automatic reference position return command without specifying the manual reference position return after the power was turned on.;4) The difference between the position error amount of the master and slave axes exceeded the value specified in parameter NO.8313.

214 ILLEGAL COMMAND IN SYNCHRO–MODE
Coordinate system is set or tool compensation of the shift type is executed in the synchronous control. Correct the program.

217 DUPLICATE G51.2 (COMMANDS)
T series;G51.2/G251 is further commanded in the G51.2/G251 mode. Modify the program.

218 NOT FOUND P/Q COMMAND IN G251 (T series)
T series;P or Q is not commanded in the G251 block, or the command value is out of the range. Modify the program.

219 COMMAND G250/G251 INDEPENDENTLY
T series;G251 and G250 are not independent blocks.

220 ILLEGAL COMMAND IN SYNCHR–MODE
T series;In the synchronous operation, movement is commanded by the NC program or PMC axis control interface for the synchronous axis.

221 ILLEGAL COMMAND IN SYNCHR–MODE
T series;Polygon machining synchronous operation and axis control or balance cutting are executed at a time. Modify the program.

222 DNC OP. NOT ALLOWED IN BG.–EDIT
M series;Input and output are executed at a time in the background edition. Execute a correct operation.

224 RETURN TO REFERENCE POINT
M series;Reference position return has not been performed before the automatic operation starts. Perform reference position return only when bit 0 of parameter 1005 is 0.

225 SYNCHRONOUS/MIXED CONTROL ERROR
T series (At two–path);This alarm is generated in the following circumstances. (Searched for during synchronous and mixed control command.;1 When there is a mistake in axis number parameter (No. 1023) setting.;2 When there is a mistake in control commanded. During hobbing synchronization, a command to bring the C–axis under synchronous, composite, or superimposed control is made. Modify the program or the parameter.

226 ILLEGAL COMMAND IN SYNCHRO– MODE
T series (At two–path);A travel command has been sent to the axis being synchronized in synchronous mode. Modify the program or the parameter.

229 CAN NOT KEEP SYNCHRO–STATE
T series;This alarm is generated in the following circumstances.;1 When the synchro/mixed state could not be kept due to system overload.;2 The above condition occurred in CMC devices (hardware) and synchro– state could not be kept.;(This alarm is not generated in normal use conditions.)

230 R CODE NOT FOUND
The infeed quantity R has not been instructed for the G161 block. Or the R command value is negative. Correct the program.

231 ILLEGAL FORMAT IN G10 OR L50
Any of the following errors occurred in the specified format at the programmable– parameter input.;1 Address N or R was not entered.;2 A number not specified for a parameter was entered.;3 The axis number was too large.;4 An axis number was not specified in the axis–type parameter.;5 An axis number was specified in the parameter which is not an axis type. Correct the program.;6 An attempt was made to reset bit 4 of parameter 3202 (NE9) or change parameter 3210 (PSSWD) when they are protected by a password.;Correct the program.

233 DEVICE BUSY
When an attempt was made to use a unit such as that connected via the RS–232–C interface, other users were using it.

239 BP/S ALARM
While punching was being performed with the function for controlling external I/O units,background editing was performed.

240 BP/S ALARM
Background editing was performed during MDI operation

244 P/S ALARM
T series;In the skip function activated by the torque limit signal, the number of accumulated erroneous pulses exceed 32767 before the signal was input. Therefore, the pulses cannot be corrected with one distribution. Change the conditions, such as feed rates along axes and torque limit, and try again.

245 T–CODE NOT ALOWEE IN THIS BLOCK
T series;One of the G codes, G50, G10, and G04, which cannot be specified in the same block as a T code, was specified with a T code.

251 ATC ERROR
This alarm is issued in the following cases;– An M06T_ command contains an unusable T code.;– An M06 command has been specified when the Z machine coordi nate is positive.;– The parameter for the current tool number (No. 7810) is set to 0.;– An M06 command has been specified in canned cycle mode.;– A reference position return command (G27 to G44) and M06 command have been specified in the same block.;– An M06 command has been specified in tool compensation mode (G41 to G44).;– An M06 command has been specified without performing reference position return after power–on or the release of emergency stop.;– The machine lock signal or Z–axis ignore signal has been turned on during tool exchange.;– A pry alarm has been detected during tool exchange. Refer to diagnosis No. 530 to determine the cause. (Only for ROBODRILL)

252 ATC SPINDLE ALARM
An excessive error arose during spindle positioning for ATC. For details, refer to diagnosis No. 531. (Only for ROBODRILL)

253 G05 IS NOT AVAILABLE
M series;Alarm details Binary input operation using high–speed remote buffer (G05) or high– speed cycle machining (G05) has been specified in advance control mode (G08P1). Execute G08P0, to cancel advance control mode, before executing these G05 commands.

4500 REPOSITIONING INHIBITED
A repositioning command was specified in the circular interpolation (G02, G03) mode.

4502 ILLEGAL COMMAND IN BOLT HOLE
In a bolt hole circle (G26) command, the radius (I) was set to zero or a negative value, or the number of holes (K) was set to zero. Alternatively, I, J, or K was not specified.

4503 ILLEGAL COMMAND IN LINE AT ANGLE
In a line-at-angle (G76) command, the number of holes (K) was set to zero or a negative value. Alternatively, I, J, or K was not specified.

4504 ILLEGAL COMMAND IN ARC
In an arc (G77) command, the radius (I) or the number of holes (K) was set to zero or a negative value. Alternatively, I, J, K, or P was not specified.

4505 ILLEGAL COMMAND IN GRID
In a grid (G78, G79) command, the number of holes (P, K) was set to zero or a negative value. Alternatively, I, J, K, or P was not specified.

4506 ILLEGAL COMMAND IN SHARE PROOFS
In a shear proof (G86) command, the tool size (P) was set to zero, or the blanking length (I) was 1.5 times larger than the tool size (P) or less. Alternatively, I, J, or P was not specified.

4507 ILLEGAL COMMAND IN SQUARE
In a square (G87) command, the tool size (P,Q) was set to zero or a negative value, or the blanking length (I, J) was three times larger than the tool size (P, Q) or less. Alternatively, I, J, P, or Q was not specified.

4508 ILLEGAL COMMAND IN RADIUS
In a radius (G88) command, the traveling pitch (Q) or radius (I) was set to zero or a negative value, or the traveling pitch (Q) was greater than or equal to the arc length. Alternatively, I, J, K, P, or Q was not specified.

4509 ILLEGAL COMMAND IN CUT AT ANGLE
In a cut-at-angle (G89) command, the traveling pitch (Q) was set to zero, negative value, or another value larger than or equal to the length (I). Alternatively, I, J, P, or Q was not specified.

4510 ILLEGAL COMMAND IN LINE-PUNCH
In a linear punching (G45) command, the traveling distance was set to zero or a value 1.5 times larger than the tool size (P) or less. Alternatively, P was not specified.

4511 ILLEGAL COMMAND IN CIRCLE-PUNCH
In a circular punching (G46, G47) command, the same position was specified for both start and end points of the arc, radius (R) of the arc was set to zero, or the pitch (Q) was set to a value exceeding the arc length. Alternatively, R or Q was not specified.

4520 T, M INHIBITED IN NIBBLING-MODE
T code, M code, G04, G70 or G75 was specified in the nibbling mode.

4521 EXCESS NIBBLING MOVEMENT (X, Y)
In the nibbling mode, the X-axis or Y-axis traveling distance was larger than or equal to the limit (No. 16188 to 16193).

4522 EXCESS NIBBLING MOVEMENT (C)
In the circular nibbling (G68) or usual nibbling mode, the C-axis traveling distance was larger than or equal to the limit (No. 16194).

4523 ILLEGAL COMMAND IN CIRCLE-NIBBL
In a circular nibbling (G68) command, the traveling pitch (Q) was set to zero, a negative value, or a value larger than or equal to the limit (No. 16186, 16187), or the radius (I) was set to zero or a negative value. Alternatively, I, J, K, P, or Q was not specified.

4524 ILLEGAL COMMAND IN LINE-NIBBL
In a linear nibbling (G69) command, the traveling pitch (Q) was set to zero, negative value, or a value larger than or equal to the limit (No. 16186, 16187). Alternatively, I, J, P, or Q was not specified.

4530 A/B MACRO NUMBER ERROR
The number for storing and calling by an A or B macro was set to a value beyond the range from 1 to 5.

4531 U/V MACRO FORMAT ERROR
An attempt was made to store a macro while storing another macro using a U or V macro. A V macro was specified although the processing to store a macro was not in progress. A U macro number and V macro number do not correspond with each other.

4532 IMPROPER U/V MACRO NUMBER
The number of an inhibited macro (number beyond the range from 01 to 99) was specified in a U or V macro command.

4533 U/V MACRO MEMORY OVERFLOW
An attempt was made to store too many macros with a U or V macro command.

4534 W MACRO NUMBER NOT FOUND
Macro number W specified in a U or V macro command is not stored.

4535 U/V MACRO NESTING ERROR
An attempt was made to call a macro which is defined three times or more using a U or V macro command. An attempt was made to store 15 or more macros in the storage area for macros of number 90 to 99.

4536 NO W, Q COMMAND IN MULTI-PIECE
W or Q was not specified in the command for taking multiple workpieces (G73, G74).

4537 ILLEGAL Q VALUE IN MULTI-PIECE
In the command for taking multiple workpieces (G73, G74), Q is set to a value beyond the range from 1 to 4.

4538 W NO. NOT FOUND IN MULTI-PIECE
Macro number W specified in the command for taking multiple workpieces (G73, G74) is not stored.

4539 MULTI-PIECE SETTING IS ZERO
The command for taking multiple workpieces (G73, G74) was specified although zero is specified for the function to take multiple workpieces (No. 16206 or signals MLP1 and MLP2 (PMC address G231, #0 and #1)).

4540 MULTI-PIECE COMMAND WITHIN MACRO
The command for taking multiple workpieces (G73, G74) was specified when a U or V macro was being stored.

4542 MULTI-PIECE COMMAND ERROR
Although G98P0 was specified, the G73 command was issued. Although G98K0 was specified, the G74 command was issued.

4543 MULTI-PIECE Q COMMAND ERROR
Although G98P0 was specified, the Q value for the G74 command was not 1 or 3. Although G98K0 was specified, the Q value for the G73 command was not 1 or 2.

4544 MULTI-PIECE RESTART ERROR
In the command for resuming taking multiple workpieces, the resume position (P) is set to a value beyond the range from 1 to total number of workpieces to be machined.

4549 ILLEGAL TOOL DATA FORMAT
The quantity of tool data patterns to be saved is too large to fit the usable area (16 KB).

4600 T, C COMMAND IN INTERPOLATION
In the linear interpolation (G01) mode or circular interpolation (G02, G03) mode, a T command or C-axis command was specified.

4601 INHIBITED T, M COMMAND
In the block of G52, G72, G73, or G74, a T or M command was specified.

4602 ILLEGAL T-CODE
The specified T command is not cataloged on the tool register screen.

4603 C AXIS SYNCHRONOUS ERROR
The difference between the position deviation value of C1 axis and C2 axis exceeds the parameter value (No. 16364, 16365) with the C–axis synchronous control function.

4604 ILLEGAL AXIS OPERATION
A C-axis command was specified in the block containing a T command for multiple tools.

4605 NEED ZRN
C–axis synchronization failed.

4630 ILLEGAL COMMAND IN LASER MODE
In the laser mode, a nibbling command or pattern command was specified. In the tracing mode, an attempt was made to make a switch to the punching mode.

4650 IMPROPER G-CODE IN OFFSET MODE
In the cutter compensation mode, an inhibited G code (pattern command, G73, G74, G75, etc.) was specified.

4700 PROGRAM ERROR (OT +)
The value specified in the X-axis move command exceeded the positive value of stored stroke limit 1. (Advance check)

4701 PROGRAM ERROR (OT –)
The value specified in the X-axis move command exceeded the negative value of stored stroke limit 1. (Advance check)

4702 PROGRAM ERROR (OT +)
The value specified in the Y-axis move command exceeded the positive value of stored stroke limit 1. (Advance check)

4703 PROGRAM ERROR (OT –)
The value specified in the Y-axis move command exceeded the negative value of stored stroke limit 1. (Advance check)

4704 PROGRAM ERROR (OT +)
The value specified in the Z-axis move command exceeded the positive value of stored stroke limit 1. (Advance check)

4705 PROGRAM ERROR (OT –)
The value specified in the Z-axis move command exceeded the negative value of stored stroke limit 1. (Advance check)

5000 ILLEGAL COMMAND CODE
The specified code was incorrect in the high–precision contour control (HPCC) mode.

5003 ILLEGAL PARAMETER
There is an invalid parameter.

5004 HPCC NOT READY
(M series) High–precision contour control is not ready.

5006 TOO MANY WORD IN ONE BLOCK
The number of words specified in a block exceeded 26 in the HPCC mode.

5007 TOO LARGE DISTANCE
In the HPCC mode, the machine moved beyond the limit.

5009 PARAMETER ZERO
The maximum feedrate (parameter No. 1422) or the feedrate in dry run (parameter No. 1410) is 0 in the HPCC model.

5010 END OF RECORD
The end of record (%) was specified. I/O is incorrect. modify the program.

5012 G05 P10000 ILLEGAL START UP
Function category: High–precision contour control;Alarm details: G05 P10000 has been specified in a mode from which the system cannot enter HPCC mode.

5013 HPCC: CRC OFS REMAIN AT CANCEL
G05P0 has been specified in G41/G42 mode or with offset remaining

5014 TRACE DATA NOT FOUND
M series;Transfer cannot be performed because no trace data exists.

5018 POLYGON SPINDLE SPEED ERROR
Function category: Polygon turning;Alarm details: In G51.2 mode, the speed of the spindle or polygon synchronous axis either exceeds the clamp value or is too small. The specified rotation speed ratio thus cannot be maintained.

5020 PARAMETER OF RESTART ERROR
An erroneous parameter was specified for restarting a program. A parameter for program restart is invalid.

5030 ILLEGAL COMMAND (G100)
T series;The end command (G110) was specified before the registratioin start command (G101, G102, or G103) was specified for the B–axis.

5031 ILLEGAL COMMAND (G100, G102, G103)
T series;While a registration start command (G101, G102, or G103) was being executed, another registration start command was specified for the B–axis.

5032 NEW PRG REGISTERED IN B–AXS MOVE
T series;While the machine was moving about the B–axis, at attempt was made to register another move command.

5033 NO PROG SPACE IN MEMORY B–AXS
T series;Commands for movement about the B–axis were not registered because of insufficient program memory

5034 PLURAL COMMAND IN G110
T series;Multiple movements were specified with the G110 code for the B–axis.

5035 NO FEEDRATE COMMANDED B–AXS
T series;A feedrate was not specified for cutting feed about the B–axis.

5036 ADDRESS R NOT DEFINED IN G81–G86
T series;Point R was not specified for the canned cycle for the B–axis.

5037 ADDRESS Q NOT DEFINED IN G83
T series;Depth of cut Q was not specified for the G83 code (peck drilling cycle). Alternatively, 0 was specified in Q for the B–axis.

5038 TOO MANY START M–CODE COMMAND
T series;More than six M codes for starting movement about the B–axis were specified.

5039 START UNREGISTERED B–AXS PROG
T series;An attempt was made to execute a program for the B–axis which had not been registered.

5040 CAN NOT COMMANDED B–AXS MOVE
T series;The machine could not move about the B–axis because parameter No.8250 was incorrectly specified, or because the PMC axis system could not be used.

5041 CAN NOT COMMANDED G110 BLOCK
T series;Blocks containing the G110 codes were successively specified in tool– tip radius compensation for the B–axis.

5044 G68 FORMAT ERROR
M series;A G68 command block contains a format error. This alarm is issued in the following cases;1. I, J, or K is missing from a G68 command block (missing coordinate rotation option).;2. I, J, and K are 0 in a G68 command block.;3. R is missing from a G68 command block.

5046 ILLEGAL PARAMETER (ST.COMP)
The parameter settings for straightness compensation contain an error. Possible causes are as follows;1. A parameter for a movement axis or compensation axis contains an axis number which is not used.;2. More than 128 pitch error compensation points exist between the negative and positive end points.;3. Compensation point numbers for straightness compensation are not assigned in the correct order.;4. No straightness compensation point exists between the pitch error compensation points at the negative and positive ends.;5. The compensation value for each compensation point is too large or too small.

5050 ILL–COMMAND IN CHOPPING MODE
A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading.

5051 M–NET CODE ERROR
Abnormal character received (other than code used for transmission)

5052 M–NET ETX ERROR
Abnormal ETX code

5053 M–NET CONNECT ERROR
Connection time monitoring error (parameter No. 175)

5054 M–NET RECEIVE ERROR
Polling time monitoring error (parameter No. 176)

5055 M–NET PRT/FRT ERROR
Vertical parity or framing error

5057 M–NET BOARD SYSTEM DOWN
Transmission timeout error (parameter No. 177) ROM parity error CPU interrupt other than the above

5058 G35/G36 FORMAT ERROR
A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading.

5059 RADIUS IS OUT OF RANGE
A radius exceeding nine digits has been specified for circular interpolation with the center of the arc specified with I, J, and K.

5060 ILLEGAL PARAMETER IN G02.3/G03.3
There is a parameter setting error. Parameter No. 5641 (setting of the linear axis) is not set. The axis set in parameter No. 5641 is not a linear axis. Parameter No. 5642 (setting of a rotation axis) is not set. The axis set in parameter No. 5642 is not a rotation axis. The linear and rotation axes cannot be controlled by the CNC. (The value set in parameter No. 1010 is exceeded.)

5061 ILLEGAL FORMAT IN G02.3/G03.3
The exponential interpolation command (G02.3/G03.3) has a format error. Address I, J, or K is not specified. The value of address I, J, or K is 0.

5062 ILLEGAL COMMAND IN G02.3/G03.3
The value specified in an exponential interpolation command (G02.3/03.3) is illegal. A value that does not allow exponential interpolation is specified. (For example, a negative value is specified in In.)

5063 IS NOT PRESET AFTER REF.
Function category: Workpiece thickness measurement Alarm details The position counter was not preset before the start of workpiece thickness measurement. This alarm is issued in the following cases;(1) An attempt has been made to start measurement without first establishing the origin.;(2) An attempt has been made to start measurement without first presetting the position counter after manual return to the origin.

5064 DIFFERRENT AXIS UNIT (IS–B, IS–C)
Circular interpolation has been specified on a plane consisting of axes having different increment systems.

5065 DIFFERENT AXIS UNIT (PMC AXIS)
Axes having different increment systems have been specified in the same DI/DO group for PMC axis control. Modify the setting of parameter No. 8010.

5067 (HPCC)
HPCC mode cannot be canceled during G51 (scaling) or G68 (coordinate system rotation). Correct the program.

5068 G31 FORMAT ERROR
The continuous high–speed skip command (G31 P90) has one of the following errors;1. The axis along which the tool is moved is not specified.;2. More than one axis is specified as the axis along which the tool is moved.

5069 WHL–C:ILLEGA P–DATA
The P data in selection of the grinding–wheel wear compensation center is illegal.

5073 NO DECIMAL POINT
A decimal point is not specified for a command for which a decimal point must be specified.

5074 ADDRESS DUPLICATION ERROR
The same address has been specified two or more times in a single block. Alternatively, two or more G codes in the same group have been specified in a single block.

5082 DATA SERVER ERROR
This alarm is detailed on the data server message screen.

5085 SMOOTH IPL ERROR 1
A block for specifying smooth interpolation contains a syntax error.

5096 MISMATCH WAITING M–CODE
Different wait codes (M codes) were specified in HEAD1 and HEAD2. Correct the program.

5110 IMPROPER G–CODE
An illegal G code was specified in look–ahead control mode (multi blocks are read in advance). A command was specified for the index table indexing axis in look– ahead control mode (multi blocks are read in advance).

5111 IMPROPER MODAL G–CODE
M series;An illegal G code is left modal when look–ahead control mode was specified.

5112 G08 CAN NOT BE COMMANDED
M series;Look–ahead control (G08) was specified in look–ahead control mode (multi blocks are read in advance).

5113 CAN NOT ERROR IN MDI MODE
Look–ahead control (multi blocks are read in advance) (G05.1) was specified in MDI mode.

5114 NOT STOP POSITION (G05.1 Q1)
At the time of restart after manual intervention, the coordinates at which the manual intervention occurred have not been restored.

5115 SPL: ERROR
There is an error in the specification of the rank. No knot is specified. The knot specification has an error. The number of axes exceeds the limits. Other program errors

5116 SPL: ERROR
There is a program error in a block under look–ahead control. Monotone increasing of knots is not observed. In NURBS interpolation mode, a mode that cannot be used together is specified.

5117 SPL: ERROR
The first control point of NURBS is incorrect.

5118 SPL: ERROR
After manual intervention with manual absolute mode set to on, NURBS interpolation was restarted.

5122 ILLEGAL COMMAND IN SPIRAL
A spiral interpolation or conical interpolation command has an error. Specifically, this error is caused by one of the following;1) L = 0 is specified.;2) Q = 0 is specified.;3) R/, R/, C is specified.;4) Zero is specified as height increment.;5) Three or more axes are specified as the height axes.;6) A height increment is specified when there are two height axes.;7) Conical interpolation is specified when the helical interpolation function is not selected.;8) Q 0 is specified when radius difference 0.;9) Q 0 is specified when radius difference 0.;10) A height increment is specified when no height axis is specified.

5123 OVER TOLERANCE OF END POINT
The difference between a specified end point and the calculated end point exceeds the allowable range (parameter 3471).

5124 CAN NOT COMMAND SPIRAL
A spiral interpolation or conical interpolation was specified in any of the following modes;1) Scaling;2) Programmable mirror image;3) Polar coordinate interpolation In cutter compensation C mode, the center is set as the start point or end point.

5134 FSSB: OPEN READY TIME OUT
Initialization did not place FSSB in the open ready state.

5135 FSSB: ERROR MODE
FSSB has entered error mode.

5136 FSSB: NUMBER OF AMPS IS SMALL
In comparison with the number of controlled axes, the number of amplifiers recognized by FSSB is not enough.

5137 FSSB: CONFIGURATION ERROR
FSSB detected a configuration error.

5138 FSSB: AXIS SETTING NOT COMPLETE
In automatic setting mode, axis setting has not been made yet. Perform axis setting on the FSSB setting screen.

5139 FSSB: ERROR
Servo initialization did not terminate normally. The optical cable may be defective, or there may be an error in connection to the amplifier or another module. Check the optical cable and the connection status.

5155 NOT RESTART PROGRAM BY G05
During servo leaning control by G05, an attempt was made to perform restart operation after feed hold or interlock. This restart operation cannot be performed. (G05 leaning control terminates at the same time.)

5156 ILLEGAL AXIS OPERATION
In look–ahead control mode (multi blocks are read in advance), the controlled axis selection signal (PMC axis control) changes. In look–achead control mode (multi blocks are read in advance), the simple synchronous axis selection signal changes.

5157 PARAMETER ZERO
Zero is set in the parameter for the maximum cutting feedrate (parameter No. 1422 or 1432). Zero is set in the parameter for the acceleration/deceleration before interpolation (parameter No. 1770 or 1771). Set the parameter correctly.

5195 DIRECTION CAN NOT BE JUDGED
When the touch sensor with a single contact signal input is used in the direct input B function for tool offset measurement values, the stored pulse direction is not constant. One of the following conditions exists;· The stop state exists in offset write mode.;· Servo off state;· The direction varies.;· Movement takes place simultaneously along two axes.

5196 ILLEGAL OPERATION (HPCC)
Detach operation was performed in HPCC mode. (If detach operation is performed in HPCC mode, this alarm is issued after the currently executed block terminates.)

5197 FSSB: OPEN TIME OUT
The CNC permitted FSSB to open, but FSSB was not opened.

5198 FSSB: ID DATA NOT READ
Temporary assignment failed, so amplifier initial ID information could not be read.

5199 FINE TORQUE SENSING PARAMETER
A parameter related to the fine torque sensing function is illegal.;· The storage interval is invalid.;· An invalid axis number is set as the target axis. Correct the parameter.

5212 SCREEN COPY: PARAMETER ERROR
There is a parameter setting error. Check that 4 is set as the I/O channel.

5213 SCREEN COPY: COMMUNICATION ERROR
The memory card cannot be used. Check the memory card. (Check whether the memory card is write–protected or defective.)

5214 SCREEN COPY: DATA TRANSFER ERROR
Data transfer to the memory card failed. Check whether the memory card space is insufficient and whether the memory card was removed during data transfer.

5218 ILLEGAL PARAMETER (INCL. COMP)
There is an inclination compensation parameter setting error. Cause;1. The number of pitch error compensation points between the negative (–) end and positive (+) end exceeds 128.;2. The relationship in magnitude among the inclination compensation point numbers is incorrect.;3. An inclination compensation point is not located between the negative (–) end and positive (+) end of the pitch error compensation points.;4. The amount of compensation per compensation point is too large or too small. Correct the parameter.

5219 CAN NOT RETURN
Manual intervention or return is not allowed during three–dimensional coordinate conversion.

5220 REFERENCE POINT ADJUSTMENT MODE
A parameter for automatically set a reference position is set. (Bit 2 of parameter No. 1819 = 1) Perform automatic setting. (Position the machine at the reference position manually, then perform manual reference position return.) Supplementary: Automatic setting sets bit 2 of parameter No. 1819 to 0.

5222 SRAM CORRECTABLE ERROR
The SRAM correctable error cannot be corrected. Cause: A memory problem occurred during memory initialization. Action: Replace the master printed circuit board (SRAM module).

5227 FILE NOT FOUND
A specified file is not found during communication with the built–in Handy File.

5228 SAME NAME USED
There are duplicate file names in the built–in Handy File.

5229 WRITE PROTECTED
A floppy disk in the built–in Handy File is write protected.

5231 TOO MANY FILES
The number of files exceeds the limit during communication with the built–in Handy File.

5232 DATA OVER–FLOW
There is not enough floppy disk space in the built–in Handy File.

5235 COMMUNICATION ERROR
A communication error occurred during communication with the built–in Handy File.

5237 READ ERROR
A floppy disk in the built–in Handy File cannot be read from. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.

5238 WRITE ERROR
A floppy disk in the built–in Handy File cannot be written to. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective.

5242 ILLEGAL AXIS NUMBER
The axis number of the synchronous master axis or slave axis is incorrect. (This alarm is issued when flexible synchronization is turned on.) Alternatively, the axis number of the slave axis is smaller than that of the master axis.

5243 DATA OUT OF RANGE
The gear ratio is not set correctly. (This alarm is issued when flexible synchronization is turned on.)

5244 TOO MANY DI ON
Even when an M code was encountered in automatic operation mode, the flexible synchronization mode signal was not driven on or off. Check the ladder and M codes.

5245 OTHER AXIS ARE COMMANDED
One of the following command conditions was present during flexible synchronization or when flexible synchronization was turned on;1. The synchronous master axis or slave axis is the EGB axis.;2. The synchronous master axis or slave axis is the chopping axis.;3. In reference position return mode

5251 ILLEGAL PARAMETER IN G54.2
A fixture offset parameter (No. 7580 to 7588) is illegal. Correct the parameter.

5252 ILLEGAL P COMMAND IN G54.2
The P value specifying the offset number of a fixture offset is too large. Correct the program.

5257 G41/G42 NOT ALLOWED IN MDI MODE
M series;G41/G42 (cutter compensation C: M series) was specified in MDI mode. (Depending on the setting of bit 4 of parameter No. 5008)

5300 SET ALL OFFSET DATAS AGAIN
After the inch/metric automatic conversion function (OIM: Bit 0 of parameter No. 5006) for tool offset data is enabled or disabled, all the tool offset data must be reset. This message reminds the operator to reset the data. If this alarm is issued, reset all the tool offset data. Operating the machine without resetting the data will result in a malfunction.

5302 ILLEGAL COMMAND IN G68 MODE
A command to set the coordinate system is specified in the coordinate system rotation mode.

5303 TOUCH PANEL ERROR
A touch panel error occurred. Cause;1. The touch panel is kept pressed.;2. The touch panel was pressed when power was turned on. Remove the above causes, and turn on the power again.

5306 MODE CHANGE ERROR
In a one–touch macro call, mode switching at the time of activation is not performed correctly.

5307 INTERNAL DATA OVER FLOW
In the following function, internal data exceeds the allowable range.;1) Improvement of the rotation axis feedrate

5311 FSSB:ILLEGAL CONNECTION
A connection related to FSSB is illegal. This alarm is issued when either of the following is found;1. Two axes having adjacent servo axis numbers (parameter No. 1023), odd number and even number, are assigned to amplifiers to which different FSSB systems are connected.;2. The system does not satisfy the requirements for performing HRV control, and use of two pulse modules connected to different FSSB systems having different FSSB current control cycles is specified.

5321 S–COMP. VALUE OVERFLOW
The straightness compensation value has exceeded the maximum value of 32767.After this alarm is issued, make a manual reference position return.

5400 SPL:ILLEGAL AXIS COMMAND
An axis specified for spline interpolation or smooth interpolation is incorrect. If an axis that is not the spline axis is specified in spline interpolation mode, this alarm is issued. The spline axis is the axis specified in a block containing G06.1 or the next block. For smooth interpolation, the axis specified in G5.1Q2 is incorrect.

5401 SPL:ILLEGAL COMMAND
In a G code mode in which specification of G06.1 is not permitted, G06.1 is specified.

5402 SPL:ILLEGAL AXIS MOVING
A movement is made along an axis that is not the spline interpolation axis. For example, in three–dimensional tool compensation mode using an offset vector of which components are the X–, Y–, and Z–axes, when two–axis spline interpolation is performed with the two spline axes set to the X– and Y–axes, a movement along the Z–axis occurs, resulting in this alarm.

5403 SPL:CAN NOT MAKE VECTOR
Three–dimensional tool compensation vectors cannot be generated.;· When a three–dimensional tool compensation vector is created for the second or subsequent point, that point, previous point, and next point are on the same straight line, and that straight line and the three– dimensional tool compensation vector for the previous point are in parallel.;· When a three–dimensional tool compensation vector is created at the end point of smooth interpolation or spline interpolation, the end point and the point two points before are the same.

5405 ILLEGAL PARAMETER IN G41.2/ G42.2
The parameter setting that determines the relationship between the rotation axis and rotation plane is incorrect.

5406 G41.3/G40 FORMAT ERROR
1) A G41.3 or G40 block contains a move command.;2) A G1.3 block contains a G code or M code for which buffering is suppressed.

5407 ILLEGAL COMMAND IN G41.3
1) A G code that belongs to group 01 except G00 and G01 is specified in G41.3 mode.;2) An offset command (a G code belonging to group 07) is specified in G41.3 mode.;3) The block next to G41.3 (startup) contains no movement.

5408 G41.3 ILLEGAL START_UP
1) In a mode of group 01 except G00 and G01, G41.3 (startup) is specified.;2) At startup, the included angle of the tool direction vector and move direction vector is 0 or 180 degrees.

5409 ILLEGAL PARAMETER IN G41.3
The parameter setting (No. xxxx to xxxx) that determines the relationship between the rotation axis and rotation plane is incorrect.

5411 NURBS:ILLEGAL ORDER
The number of steps is specified incorrectly.

5412 NURBS:NO KNOT COMMAND
No knot is specified. Alternatively, in NURBS interpolation mode, a block not relating to NURBS interpolation is specified.

5413 NURBS:ILLEGAL AXIS COMMAND
An axis not specified with controlled points is specified in the first block.

5414 NURBS:ILLEGAL KNOT
The number of blocks containing knots only is insufficient.

5415 NURBS:ILLEGAL CANCEL
Although NURBS interpolation is not completed yet, the NURBS interpolation mode is turned off.

5416 NURBS:ILLEGAL MODE
A mode that cannot be used with NURBS interpolation mode is specified in NURBS interpolation mode.

5417 NURBS:ILLEGAL MULTI–KNOT
As many knots as the number of steps are not specified at the start and end points.

5418 NURBS:ILLEGAL KNOT VALUE
Knots do not increase in monotone.

5420 ILLEGAL PARAMETER IN G43.4/ G43.5
A parameter related to pivot tool length compensation is incorrect.

5421 ILLEGAL COMMAND IN G43.4/ G43.5
In pivot tool length compensation (type 2) mode, a rotation axis is specified.

5422 EXCESS VELOCITY IN G43.4/ G43.5
As a result of pivot tool length compensation, an attempt was made to move the tool along an axis at a feedrate exceeding the maximum cutting feedrate.

5425 ILLEGAL OFFSET VALUE
The offset number is incorrect.

5430 ILLEGAL COMMAND IN 3–D CIR
In a modal state in which three–dimensional circular interpolation cannot be specified, a three–dimensional circular interpolation (G02.4/G03.4) is specified. Alternatively, in three–dimensional circular interpolation mode, a code that cannot be specified is specified.

5432 G02.4/G03.4 FORMAT ERROR
A three–dimensional circular interpolation command (G02.4/G03.4) is incorrect.

5433 MANUAL INTERVENTION IN 3–D CIR
In three–dimensional circular interpolation mode (G02.4/G03.4), manual intervention was made when the manual absolute switch was on.

5435 PARAMETER OUT OF RANGE
Incorrect parameter setting (set value range)

5436 PARAMETER SETTING ERROR 1
Incorrect parameter setting (setting of the rotation axis)

5437 PARAMETER SETTING ERROR 2
Incorrect parameter setting (setting of the tool axis)

5440 ILLEGAL DRILLING AXIS SELECTED
The drilling axis specified for the drilling canned cycle is incorrect. The G code command block of the canned cycle does not specify the Z point of the drilling axis. When there is a parallel axis with the drilling axis, the parallel axis is also specified at the same time.

5445 CRC:MOTION IN G39
Corner circular interpolation (G39) of cutter compensation is not specified alone but is specified with a move command.

5446 CRC:NO AVOIDANCE
Because there is no interference evade vector, the interference check evade function of cutter compensation cannot evade interference.

5447 CRC:DANGEROUS AVOIDANCE
The interference check evade function of cutter compensation determines that an evade operation will lead to danger.

5448 CRC:INTERFERENCE TO AVD.
In the interference check evade function of cutter compensation, a further interference occurs for an already created interference evade vector.

5452 IMPROPER G–CODE (5AXIS MODE)
A G code that cannot be specified is found. (5–axis mode) This alarm is issued when;1) Three–dimensional cutter compensation (side–face offset and leading– edge offset) is applied during cutter compensation, or cutter compensation is applied during three–dimensional cutter compensation (side–face offset and leading–edge offset).;2) A leading–edge offset of three–dimensional cutter compensation is applied during side–face offsetting of three–dimensional cutter compensation, or a side–face offset of three–dimensional cutter compensation is applied during leading–edge offsetting of three–dimensional cutter compensation.;3) Tool axis direction tool length compensation is applied during tool length compensation, or tool length compensation is applied during tool axis direction tool length compensation.;4) Tool center point control is provided during tool length compensation, or tool length compensation is applied during tool center point control.;5) Tool center point control is provided during tool axis direction tool length compensation, or tool axis direction tool length compensation is applied during tool center point control.;If this alarm is issued, cancel the relevant mode, then specify a different mode.

5453 NOTE: G68 IS CANCELED
When bit 2 of parameter No. 5400 is set to 1, and a reset does not cancel G68, this alarm is issued at the time of program restart. To release this alarm, press RESET and CAN. Once this operation is performed, the alarm will not be issued at the next restart.

5455 ILLEGAL ACC. PARAMETER
A permissible acceleration parameter for optimum torque acceleration/ deceleration is incorrect. The cause is one of the following;1) The ratio of the deceleration rate to the acceleration rate is below the limit.;2) The time required for deceleration to a speed of 0 exceeds the maximum value.

400 SERVO ALARM: n–TH AXIS OVERLOAD
The n–th axis (axis 1–4) overload signal is on. Refer to diagnosis display No. 200, 201 for details.

401 SERVO ALARM: n–TH AXIS VRDY OFF
The n–th axis (axis 1–8) servo amplifier READY signal (DRDY) went off. Refer to procedure of trouble shooting.

402 SERVO ALARM: SV CARD NOT EXIST
The axis control card is not provided.

403 SERVO ALARM: CARD/SOFT MISMATCH
The combination of the axis control card and servo software is illegal.

404 SERVO ALARM: n–TH AXIS VRDY ON
Even though the n–th axis (axis 1–8) READY signal (MCON) went off, the servo amplifier READY signal (DRDY) is still on. Or, when the power was turned on, DRDY went on even though MCON was off.  Check that the servo interface module and servo amp are connected.

405 SERVO ALARM: (ZERO POINT RETURN FAULT)
Position control system fault. Due to an NC or servo system fault in the reference position return, there is the possibility that reference position return could not be executed correctly. Try again from the manual reference position return.

407 SERVO ALARM: EXCESS ERROR
The difference in synchronous axis position deviation exceeded the set value.

409 SERVO ALARM: n AXIS TORQUE ALM
Abnormal load has been detected on the servo motor(s). Alternatively, abnormal spindle motor load has been detected in Cs mode.

410 SERVO ALARM: n–TH AXIS – EXCESS ERROR
The position deviation value when the n–th axis (axis 1–8) stops is larger than the set value. Refer to procedure of trouble shooting.

411 SERVO ALARM: n–TH AXIS – EXCESS ERROR
The position deviation value when the n–th axis (axis 1–8) moves is larger than the set value. Refer to procedure of trouble shooting.

413 SERVO ALARM: n–th AXIS – LSI OVERFLOW
The contents of the error register for the n–th axis (axis 1–8) exceeded ±231 power. This error usually occurs as the result of an improperly set parameters.

414 SERVO ALARM: n–TH AXIS – DETECTION RELATED ERROR
N–th axis (axis 1–4) digital servo system fault. Refer to diagnosis display No. 200, 201, and No.204 for details.

415 SERVO ALARM: n–TH AXIS – EXCESS SHIFT
A speed higher than 524288000 units/s was attempted to be set in the n–th axis (axis 1–8). This error occurs as the result of improperly set CMR.

416 SERVO ALARM: n–TH AXIS – DISCONNECTION
Position detection system fault in the n–th axis (axis 1–4) pulse coder (disconnection alarm). Refer to diagnosis display No. 200, 201 for details.

417 SERVO ALARM: n–TH AXIS – PARAMETER INCORRECT
 

420 SERVO ALARM: n AXIS SYNC TORQUE
 

421 SERVO ALARM: n AXIS EXCESS ER (D)
 

422 SERVO ALARM: n AXIS
 

423 SERVO ALARM: n AXIS
 

430 n AXIS: SV. MOTOR OVERHEAT
 

431 n AXIS: CNV. OVERLOAD
 

432 n AXIS: CNV. LOW VOLT CONTROL
 

433 n AXIS: CNV. LOW VOLT DC LINK
 

434 n AXIS: INV. LOW VOLT CONTROL
 

435 n AXIS: INV. LOW VOLT DC LINK
 

436 n AXIS: SOFTTHERMAL (OVC)
 

437 n AXIS: CNV. OVERCURRENT POWER
 

438 n AXIS: INV. ABNORMAL CURRENT
 

439 n AXIS: CNV. OVER VOLT DC LINK
 

440 n AXIS: CNV. EX DECELERATION POW.
 

441 n AXIS: ABNORMAL CURRENT OFFSET
 

442 n AXIS: CNV. CHARGE FAILURE
 

443 n AXIS: CNV. COOLING FAN FAILURE
 

444 n AXIS: INV. COOLING FAN FAILURE
 

445 n AXIS: SOFT DISCONNECT ALARM
 

446 n AXIS: HARD DISCONNECT ALARM
 

447 n AXIS: HARD DISCONNECT (EXT)
 

448 n AXIS: UNMATCHED FEEDBACK ALARM
 

449 n AXIS: INV. IPM ALARM
 

453 n AXIS: SPC SOFT DISCONNECT ALARM
 

456 n AXIS: ILLEGAL CURRENT LOOP
 

457 n AXIS: ILLEGAL HI HRV (250US)
 

458 n AXIS: CURRENT LOOP ERROR
 

459 n AXIS: HI HRV SETTING ERROR
 

460 n AXIS: FSSB DISCONNECT
 

461 n AXIS: ILLEGAL AMP INTERFACE
 

462 n AXIS: SEND CNC DATA FAILED
 

463 n AXIS: SEND SLAVE DATA FAILED
 

464 n AXIS: WRITE ID DATA FAILED
 

465 n AXIS: READ ID DATA FAILED
 

466 n AXIS: MOTOR/AMP COMBINATION
 

467 n AXIS: ILLEGAL SETTING OF AXIS
 

468 n AXIS: HI HRV SETTING ERROR (AMP)
 

360 n AXIS: ABNORMAL CHECKSUM (INT)
 

361 n AXIS: ABNORMAL PHASE DATA (INT)
 

362 n AXIS: ABNORMAL REV.DATA (INT)
 

363 n AXIS: ABNORMAL CLOCK (INT)
 

364 n AXIS: SOFT PHASE ALARM (INT)
 

365 n AXIS: BROKEN LED (INT)
 

366 n AXIS: PULSE MISS (INT)
 

367 n AXIS: COUNT MISS (INT)
 

368 n AXIS: SERIAL DATA ERROR (INT)
 

369 n AXIS: DATA TRANS. ERROR (INT)
 

380 n AXIS: BROKEN LED (EXT)
 

381 n AXIS: ABNORMAL PHASE (EXT LIN)
 

382 n AXIS: COUNT MISS (EXT)
 

383 n AXIS: PULSE MISS (EXT)
 

384 n AXIS: SOFT PHASE ALARM (EXT)
 

385 n AXIS: SERIAL DATA ERROR (EXT)
 

386 n AXIS: DATA TRANS. ERROR (EXT)
 

387 n AXIS: ABNORMAL ENCODER (EXT)
 

500 OVER TRAVEL: +n
 

501 OVER TRAVEL: –n
 

502 OVER TRAVEL: +n
 

503 OVER TRAVEL: –n
 

504 OVER TRAVEL: +n
 

505 OVER TRAVEL: –n
 

506 OVER TRAVEL: +n
 

507 OVER TRAVEL: –n
 

700 OVERHEAT: CONTROL UNIT
 

701 OVERHEAT: FAN MOTOR
 

704 OVERHEAT: SPINDLE
 

740 RIGID TAP ALARM: EXCESS ERROR
 

741 RIGID TAP ALARM: EXCESS ERROR
 

742 RIGID TAP ALARM: LSI OVER FLOW
 

749 S–SPINDLE LSI ERROR
 

750 SPINDLE SERIAL LINK START FAULT
 

751 FIRST SPINDLE ALARM DETECTION (AL–XX)
 

752 FIRST SPINDLE MODE CHANGE FAULT
 

754 SPINDLE–1 ABNORMAL TORQUE ALM
 

761 SECOND SPINDLE ALARM DETECTION (AL–XX)
 

762 SECOND SPINDLE MODE CHANGE FAULT
 

764 SPINDLE–2 ABNORMAL TORQUE ALM
 

771 SPINDLE–3 ALARM DETECT (AL–XX)
 

772 SPINDLE–3 MODE CHANGE ERROR
 

774 SPINDLE–3 ABNORMAL TORQUE ALM
 

782 SPINDLE–4 MODE CHANGE ERROR
 

784 SPINDLE–4 ABNORMAL TORQUE ALM
 

4800 ZONE: PUNCHING INHIBITED 1
 

4801 ZONE: PUNCHING INHIBITED 2
 

4802 ZONE: PUNCHING INHIBITED 3
 

4803 ZONE: PUNCHING INHIBITED 4
 

4810 ZONE: ENTERING INHIBITED 1 +X
 

4811 ZONE: ENTERING INHIBITED 1 –X
 

4812 ZONE: ENTERING INHIBITED 2 +X
 

4813 ZONE: ENTERING INHIBITED 2 –X
 

4814 ZONE: ENTERING INHIBITED 3 +X
 

4815 ZONE: ENTERING INHIBITED 3 –X
 

4816 ZONE: ENTERING INHIBITED 4 +X
 

4817 ZONE: ENTERING INHIBITED 4 –X
 

4830 ZONE: ENTERING INHIBITED 1 +Y
 

4831 ZONE: ENTERING INHIBITED 1 –Y
 

4832 ZONE: ENTERING INHIBITED 2 +Y
 

4833 ZONE: ENTERING INHIBITED 2 –Y
 

4834 ZONE: ENTERING INHIBITED 3 +Y
 

4835 ZONE: ENTERING INHIBITED 3 –Y
 

4836 ZONE: ENTERING INHIBITED 4 +Y
 

4837 ZONE: ENTERING INHIBITED 4 –Y
 

4870 AUTO SETTING FEED ERROR
 

4871 AUTO SETTING PIECES ERROR
 

4872 AUTO SETTING COMMAND ERROR
 

900 ROM PARITY
 

910 SRAM PARITY: (BYTE 0)
 

911 SRAM PARITY: (BYTE 1)
 

912 DRAM PARITY: (BYTE 0)
 

913 DRAM PARITY: (BYTE 1)
 

914 DRAM PARITY: (BYTE 2)
 

915 DRAM PARITY: (BYTE 3)
 

916 DRAM PARITY: (BYTE 4)
 

917 DRAM PARITY: (BYTE 5)
 

918 DRAM PARITY: (BYTE 6)
 

919 DRAM PARITY: (BYTE 7)
 

920 SERVO ALARM (1–4 AXIS)
 

921 SERVO ALARM (5–8 AXIS)
 

926 FSSB ALARM
 

930 CPU INTERRUPT
 

935 SRAM ECC ERROR
 

950 PMC SYSTEM ALARM
 

951 PMC WATCH DOG ALARM
 

970 NMI OCCURRED IN PMCLSI
 

971 NMI OCCURRED IN SLC
 

972 NMI OCCURRED IN OTHER MODULE
 

973 NON MASK INTERRUPT
 

974 F–BUS ERROR
 

975 BUS ERROR
 

976 L–BUS ERROR
 

я как сервисник работаю с оборудованием нескольких поставщиков, так вот я не могу помнить/знать все ошибки новых станков, находящихся на гарантии или опставленных 5 лет назад.

1. я могу попытаться перевести сообщение об ошибке/ почитать мануал по ней

2. посмотреть логику ее формирования в станке (номера от 1000 до 2999)

3. почитать yellowbook на русском/английском

4. решать вопросы на основании опыта, схем, документации и логики

смысла валить в кучу описание ошибок каждого конкретного станка нету… надо просто знать общий принцип…

если электронщик сутки искал проблему — то:

0. квалификация электронщика

1. это не его станок (станок на гарантии, станок другого цеха и т.д.)

2. схемы не соотвествуют документации и сервисники поставщика не отвечают оперативно.

3. оператор сказал о проблеме простоя станка с утра только к концу смены :)

4. и т.д.

Page 1: EMCO WinNC for Fanuc 31i Mill Software description, software

EMCO GmbH

P.O. Box 131

A-5400 Hallein-Taxach/Austria

Phone ++43-(0)62 45-891-0

Fax ++43-(0)62 45-869 65

Internet: www.emco-world.com

E-Mail: [email protected]

EMCO WinNC for Fanuc 31i MillSoftware description, software release effective from 01.02

Software descriptionWinNC for Fanuc 31i Mill

Ref. no. EN 1846Edition C 2016-02

Original operating instructions

These instructions are also available at any timeon request as electronic copy (.pdf).

0

6

2

10

7080

90

100

110

120

3050

Page 2: EMCO WinNC for Fanuc 31i Mill Software description, software

2 Fanuc 31i Mill

Instructions:Some of the functionality of the EMCO WinNC for Fanuc 31i control software is beyond the scope of these instructions. Emphasis is placed instead on representing the most important functions simply and clearly, in order to achieve the greatest possible learning success.Depending on the machine you are operating with EMCO WinNC for Fanuc 31i, not all functions may be available.

Page 3: EMCO WinNC for Fanuc 31i Mill Software description, software

3 Fanuc 31i Mill

EMCO GmbHTechnical Documentation DepartmentA-5400 HALLEIN, Austria

Preface

The EMCO WinNC for Fanuc 31i software is a component of the EMCO training concept.EMCO WinNC for Fanuc 31i makes it easy to operate CNC lathes/milling machines. Neither is prior knowledge of ISO programming needed.

An interactive contour programming routine means you can define workpiece contours with linear and circular contour elements.

A cycle is programmed interactively, with graphics support. A large number of process-ing cycles, which can be combined freely with each other to form a single program, is available to the user.Individual cycles or the NC programs produced can be simulated graphically on screen.

Some of the functionality of the EMCO WinNC for Fanuc 31i control software is beyond the scope of these instructions. Emphasis is placed instead on representing the most important functions simply and clearly, in order to achieve the greatest possible learning success.

If you have queries about or suggestions for improving these operating instructions, please make direct contact with [name needed!]

All rights reserved. Copying only with permission from EMCO GmbH© EMCO GmbH., Hallein

EC compliance

The CE symbol, together with the EC compliance declaration, certifies that the machine and instructions comply with the directives under which the products are covered.

Page 4: EMCO WinNC for Fanuc 31i Mill Software description, software

4 Fanuc 31i Mill

Content

Table of contents

Preface ……………………………………………………………………………3Table of contents ………………………………………………………………4

A: PrinciplesEMCO milling machine reference points …………………………… A1

N (T) = Tool zero point ……………………………………………….. A1M = Machine zero point ………………………………………………. A1W = Workpiece zero point …………………………………………… A1R = Reference point ……………………………………………………. A1

Milling machine reference system ……………………………………. A2Polar coordinates…………………………………………………………… A3Absolute and incremental workpiece positions…………………… A4Zero point offset …………………………………………………………….. A5Milling operations…………………………………………………………… A7

Down-cut Milling ………………………………………………………… A7Up-cut Milling …………………………………………………………….. A7Down-cut/up-cut milling ………………………………………………. A7

Tool radius compensation ……………………………………………….. A8Tool data ………………………………………………………………………. A9

B: Key descriptionEMCO WinNC for Fanuc 31i control panel ………………………… B1Address and number pad ……………………………………………….. B2Button functions …………………………………………………………….. B3Key description ISO functions …………………………………………. B5Screen layout Manual Guide i ……………………………………….. B10PC keyboard ……………………………………………………………….. B11

Overview button assignment control keyboard ……………… B12Overview Button Assignment Machine Operating Elements B13

Machine control panel ………………………………………………….. B15Key description ……………………………………………………………. B15

Skip (block mask) …………………………………………………….. B15Dry run (test run feed)……………………………………………….. B15Individual piece mode ……………………………………………….. B16Optional stop……………………………………………………………. B16Edit…………………………………………………………………………. B16Handwheel mode (optional) ……………………………………….. B16Reset key (Reset) …………………………………………………….. B16Feed Stop ……………………………………………………………….. B16Feed Start ……………………………………………………………….. B16Single block …………………………………………………………….. B17Cycle stop ……………………………………………………………….. B17Cycle start ……………………………………………………………….. B17Arrow keys ………………………………………………………………. B17Rapid traverse …………………………………………………………. B17Reference point ……………………………………………………….. B17Chip conveyor (Option) ……………………………………………… B17Swing tool drum ……………………………………………………….. B18Manual tool change ………………………………………………….. B18Clamping devices …………………………………………………….. B18Coolant …………………………………………………………………… B18Feed Stop ……………………………………………………………….. B18Feed Start ……………………………………………………………….. B18Types of operation ……………………………………………………. B19Auxiliary OFF …………………………………………………………… B20Auxiliary ON …………………………………………………………….. B20Override switch (feed rate override) ……………………………. B21EMERGENCY SHUTDOWN ……………………………………… B21Key Switch Special Operations Mode………………………….. B21

Multifunction switch for operating modes……………………… B22Key switch……………………………………………………………….. B25Additional clamping device button ………………………………. B25USB connection (USB 2.0) ………………………………………… B25Enable button…………………………………………………………… B25

C: OperationFeed F [mm/min] ……………………………………………………………C1Spindle speed S [rev/min]………………………………………………..C2Types of operation ………………………………………………………….C3Approach reference point ………………………………………………..C5Move slides manually ……………………………………………………..C6Move slides in step-movement …………………………………………C6Program management …………………………………………………….C8

Create program…………………………………………………………..C9Where programs are saved ………………………………………….C9Programming list ……………………………………………………….C10Copy program …………………………………………………………..C12Delete program …………………………………………………………C12Enter comment …………………………………………………………C13Search program ………………………………………………………..C13Delete a number of programs simultaneously ……………….C14Change the sorting sequence ……………………………………..C15Open program…………………………………………………………..C15Change program name ………………………………………………C16Program properties ……………………………………………………C16Program protection ……………………………………………………C17Program input and output on a memory card ………………..C17Search for text from the input line in the program ………….C18Search for and open the program ………………………………..C18Copy marked text into a buffer file ……………………………….C19Move marked text into the buffer file ……………………………..C19Insert text …………………………………………………………………C20Delete highlighted text ……………………………………………….C20Insert marked text into an input line ……………………………..C21Revocation and withdrawal …………………………………………C22Search and replace……………………………………………………C22End program listing ……………………………………………………C23

Program mode ……………………………………………………………..C24Background Editing……………………………………………………C25

Semi-automatic mode……………………………………………………C26Zero point table…………………………………………………………….C28

Setting up workpiece coordinates data …………………………C28Measuring ………………………………………………………………..C29Compute ………………………………………………………………….C29

Graphical simulation ……………………………………………………..C31Screen layout graphical simulation ………………………………C32Softkey functions ………………………………………………………C333D configuration………………………………………………………..C37Shift graphics ……………………………………………………………C38

D: Programming with MANUAL GUIDE iOverview……………………………………………………………………….D1

M-commands ……………………………………………………………..D1Overview ……………………………………………………………………D2

Produce MANUAL GUIDE i program ………………………………..D2Programming set-up ……………………………………………………D3

Raw part definition ………………………………………………………….D6

Page 5: EMCO WinNC for Fanuc 31i Mill Software description, software

5 Fanuc 31i Mill

Content

Cycle overview ………………………………………………………………D7Working with cycles …………………………………………………..D10Data Entry for Machining Cycles …………………………………D12Default values for cycle parameters …………………………….D14Ignore plausibility check for saving ………………………………D15Select dimensions system ………………………………………….D16

Hole machining …………………………………………………………….D17Centre drilling G1100 …………………………………………………D18Drilling G1001 …………………………………………………………..D20Tapping G1002 …………………………………………………………D24Reaming G1003………………………………………………………..D26Boring G1004……………………………………………………………D28

Face machining ……………………………………………………………D31Facing (rough) G1020………………………………………………..D32Facing (finish) G1021 ………………………………………………..D34

Contouring …………………………………………………………………..D37Outer wall (rough) G1060 …………………………………………..D38Outer wall (bottom finish) G1061 …………………………………D44Outer wall (side finish) G1062 …………………………………….D48Outer wall (chamfer) G1063 ……………………………………….D52Inner wall (rough) G1064 ……………………………………………D56Inner wall (bottom finish) G1065 ………………………………….D58Inner wall (side finish) G1066 ……………………………………..D60Inner wall (chamfer) G1067 ………………………………………..D62Partial (rough) G1068 ………………………………………………..D64Partial (bottom finish) G1069 ………………………………………D66Partial (side finish) G1070 ………………………………………….D68Partial (chamfer) G1071 …………………………………………….D70

Pocketing …………………………………………………………………….D73Pocketing (rough) G1040……………………………………………D74Pocketing (bottom finish) G1041 …………………………………D78Pocketing (side finish) G1042 ……………………………………..D80Pocketing (chamfer) G1043 ………………………………………..D82

Figure: Hole position……………………………………………………..D85Random Points G1210 ………………………………………………D86Linear Points (same interval) G1211 ……………………………………………….D88XY Grid points G1213 ………………………………………………..D89XY Rectangle points G1214 ……………………………………….D90XY Circle points G1215 ……………………………………………..D91XY Arc points (same interval) G1216 ……………………………………………….D92XA A-axis Hole Arc G1772 ……………………………………………………………………..D93XA A-axis Hole Free G1773 ……………………………………………………………………..D94

Figure: Front Surface Contour ………………………………………..D95XY Square facing G1220 ……………………………………………D97

Figure: Contouring figure ……………………………………………….D99XY Square convex G1220 ………………………………………..D100XY Circle convex G1221 …………………………………………..D101XY Track convex G1222 …………………………………………..D102XY Polygon convex G1225 ……………………………………….D103XY Free figure convex ……………………………………………..D104Overview of the input elements for free contour programming .D105Input items of line (XY plane) G1201 ………………………….D106Input items for arc (XY plane) G1202, 1203 ………………..D107Input items of chamfer (XY plane) G1204 …………………..D108Input items of corner (XY plane) G1205 ……………………..D108Input items of end of arbitrary figures G1206 ………………D109Symbol representation of the contour elements ………….. D110XA plane free convex figure for cylinder G1700 ………….. D112XY Square concave G1220 ……………………………………… D113XY Circle concave G1221 ………………………………………… D114XY Track concave G1222 ………………………………………… D115XY Polygon concave G1225 …………………………………….. D116XY Free concave figure …………………………………………… D117XA plane free concave figure for cylinder G1700 ………… D118

XY Free open figure ………………………………………………… D119XA plane free open figure for cylinder G1700 ………………D120

Figure: Pocket figure …………………………………………………..D121XY Square concave G1220 ………………………………………D122XY Circle concave G1221 …………………………………………D123XY Track concave G1222 …………………………………………D124XY Polygon concave G1225 ……………………………………..D125XY Free concave figure ……………………………………………D126XA plane free concave figure for cylinder G1700 ………..D127

Sub-routines ………………………………………………………………D130Fixed forms ………………………………………………………………..D131

Creating fixed forms…………………………………………………D132M-code menu ………………………………………………………….D134

E: G code programmingOverview………………………………………………………………………. E1

M-commands …………………………………………………………….. E1Command abbreviations overview………………………………… E2Calculation operators for NC program …………………………… E3

Overview of machine G-commands …………………………………. E4Brief description of G-commands …………………………………….. E7

G00 Rapid traverse…………………………………………………….. E7G01 Straight interpolation ……………………………………………. E8Entering chamfers and radii …………………………………………. E8Direct drawing dimension input…………………………………….. E9G02 Circular interpolation, clockwise…………………………… E11G03 Circular interpolation, counterclockwise………………… E11Helical interpolation ………………………………………………….. E11G04 Dwell time ………………………………………………………… E12G09 Precision stop (block-by-block) ……………………………. E12G17-G19 Plane selection…………………………………………… E13G20 Dimensional data in inches …………………………………. E13G21 Dimensional data in millimetres …………………………… E13G28 Return to reference point ……………………………………. E14Mill radius offset ……………………………………………………….. E15G40 Deselection mill radius offset ………………………………. E15G41 Mill radius offset left …………………………………………… E15G42 Mill radius offset right …………………………………………. E15G43 Tool length offset positive ……………………………………. E18G44 Tool length offset negative ………………………………….. E18G49 Deselection tool length offset ………………………………. E18G50 Deselection scaling factor …………………………………… E18G51 Scaling factor ……………………………………………………. E18G51.1 Mirroring a contour ………………………………………….. E19G50.1 Deselecting mirroring ………………………………………. E19G52 Local coordinates system …………………………………… E20G53 Machine coordinates system ………………………………. E20G54-G59 Zero point offsets 1-6 ………………………………….. E20G61 Precision stop (modally effective) ………………………… E21G64 Cutting mode…………………………………………………….. E21G65 Macro call…………………………………………………………. E22G66 Macro call (modal) …………………………………………….. E23G67 Macro call (modal) End ………………………………………. E23G68 Coordinate system rotation …………………………………. E24Drilling Cycles G73 — G89 ………………………………………….. E25G73 Chip Break Drilling Cycle ……………………………………. E26G74 Left Tapping Cycle …………………………………………….. E26G76 Fine Drilling Cycle ……………………………………………… E27G80 Cancel Drilling Cycles ………………………………………… E27G81 Drilling Cycle ……………………………………………………. E28G82 Drilling Cycle with Dwell ……………………………………… E28G83 Withdrawal Drilling Cycle ……………………………………. E29G84 Tapping Cycle without length compensation ………….. E29G84 Tapping Cycle with length compensation ………………. E30G85 Reaming Cycle………………………………………………….. E30G89 Reaming cycle with dwell time …………………………….. E30G90 Absolute value programming……………………………………….E31

Page 6: EMCO WinNC for Fanuc 31i Mill Software description, software

6 Fanuc 31i Mill

Content

G91 Incremental value programming……………………………………………………………. E31G94 Feed per minute ………………………………………………… E31G95 Feed per revolution ……………………………………………. E31

F: Tool managementTool settings………………………………………………………………….. F1

Tool length offset entry ………………………………………………… F2Tool radius offset entry ………………………………………………… F2Tool wear offset ………………………………………………………….. F3

Tool data ………………………………………………………………………. F4Select tool …………………………………………………………………. F5Tool setting number ……………………………………………………. F6Setting angle, corner angle ………………………………………….. F7Tool correction and tool data input and output ………………… F9

Simulation data ……………………………………………………………..F113D tool ……………………………………………………………………..F11Color select ……………………………………………………………… F12

Measuring tool manually……………………………………………….. F13

G: Program sequencePreconditions …………………………………………………………………G1

NC start……………………………………………………………………..G2NC reset…………………………………………………………………….G2NC stop ……………………………………………………………………..G2

Program start, program stop…………………………………………….G2Repositioning ……………………………………………………………..G3Continue program execution…………………………………………G3Block scan …………………………………………………………………G4

H: Alarms and MessagesMachine Alarms 6000 — 7999 ………………………………………..H1Inputunit alarms 1700 — 1899 ………………………………………H17Axis Controller Alarms ………………………………………………H198000 — 9000, 22000 — 23000, 200000 — 300000 ……………..H19Axis Controller Messages …………………………………………..H26Control alarms 2000 — 5999 ………………………………………..H27

I: Fanuc 31i controller alarmsController alarms 0001 — 88000 ………………………………………I1

W: Accessory FunctionsActivating accessory functions…………………………………….. W1Robotic Interface……………………………………………………….. W1Automatic doors ………………………………………………………… W1Win3D View ……………………………………………………………… W1DNC interface …………………………………………………………… W2

X: EMConfigGeneral …………………………………………………………………….. X1How to start EMConfig ………………………………………………… X2How to activate accessories ………………………………………… X3High Speed Cutting…………………………………………………….. X3Easy2control on screen operation ………………………………… X4Settings …………………………………………………………………….. X4Machine room camera ………………………………………………… X5How to save changes …………………………………………………. X6How to create machine data floppy disk or machine data USB flash drive …………………………………………………………………. X6

Y: External Input DevicesEMCO Control Keyboard USB ………………………………………… Y1

Scope of supply …………………………………………………………. Y1Assembling ……………………………………………………………….. Y2Connection to the PC………………………………………………….. Y3Settings at the PC software …………………………………………. Y3

Easy2control On Screen operation…………………………………… Y4Scope of supply …………………………………………………………. Y4

Operating areas …………………………………………………………….. Y5Machine room camera ……………………………………………………. Y8

Installing the camera…………………………………………………… Y8Operating the camera …………………………………………………. Y9

Z: Software Installation WindowsSystem prerequisites ………………………………………………….. Z1Software installation……………………………………………………. Z1Variants of WinNC ……………………………………………………… Z1Starting WinNC ………………………………………………………….. Z3Terminating WinNC …………………………………………………….. Z3Checks by EmLaunch …………………………………………………. Z4Licence input……………………………………………………………… Z6Licence manager ……………………………………………………….. Z6

Page 7: EMCO WinNC for Fanuc 31i Mill Software description, software

A1 Fanuc 31i Mill

PrinciPles

A: Principles

Points on the machine

Machine reference points

EMCO milling machine reference pointsN (T) = Tool zero point The tool zero point N (T) lies exactly at the cutting point of the spindle axis with the front part of the milling spindle.The tool zero point is the start point for measuring the tools.

N (T)

W

R

M

Instructions:The actual reference points may have been defined at other positions, depending on the machine type. In any case, the information in the operation manual for the relevant machine applies!

M = Machine zero pointThe machine zero point M is an unchangeable reference point defined by the manufacturer.The entire machine is measured from this point.The machine zero point M is the origin of the coordinate system.

W = Workpiece zero pointThe workpiece zero point W can be freely pro-grammed by the user. By programming a work-piece zero point, the origin of the coordinate system will be shifted from the machine zero point M to the workpiece zero point W.The workpiece zero point W is the start point for the measurements in the parts program.

R = Reference pointThe reference point R is a firmly defined point on the machine which is used to calibrate the measurement system. The reference point must be approached each time after the machine is switched on, in order to make the exact distance between the points M and N (T) known to the control system.

Page 8: EMCO WinNC for Fanuc 31i Mill Software description, software

A2 Fanuc 31i Mill

PrinciPles

Milling machine reference systemWith a reference system, you define positions in a plane or in space unambiguously. Positional information always relates to a given point and is described by means of coordinates.In the right-angled system (Cartesian system), three directions are defined as X, Y and Z axes. The axes are perpendicular respectively to one another and intersect in one point, the zero point. One coordinate gives the distance to the zero point in one of these directions. This is how you describe a position in a plane by means of two coordinates and in space by means of three coordinates.

Coordinates that relate to the zero point are described as absolute coordinates. Relative coordinates are related to any other random po-sition (reference point) in the coordinates system. Relative coordinate values are also described as incremental coordinate values.

When machining a workpiece on a milling ma-chine, you refer in general to the Cartesian co-ordinates system. The picture on the left shows how the Cartesian coordinates system is assigned to the machine axes. The three-finger right hand rule serves as an aide memoire: If the middle finger is pointing in the direction of the tool axis from workpiece to tool, then it is pointing in the Z+ direction, the thumb in the X+ direction and the index finger in the Y+. direction.

Coordinates system

Assignment of the rotating axes to the main axes

Page 9: EMCO WinNC for Fanuc 31i Mill Software description, software

A3 Fanuc 31i Mill

PrinciPles

Polar coordinatesIf the production drawing is dimensioned or-thographically, you create the machining program with Cartesian coordinates also. For workpieces with arcs or angles, it is often easier to determine positions with polar coordinates.

In contrast to the Cartesian X, Y and Z coordi-nates, polar coordinates describe only positions in a plane. Polar coordinates have their zero point in the pole.This is how a position in a plane is unambiguously determined by means of:

• Polar coordinates radius (RP): the distance from the pole to the position.

• Polar coordinates angle (AP): The angle be-tween the angle reference axis and the path that connects the pole with the position.

(See picture above left)

Determining the pole and the angle reference axisDetermine the pole by means of two coordinates in the Cartesian coordinate system in one of the three planes. This is also how the angular refer-ence axis for the polar coordinates angle (AP) is assigned unambiguously.

Polar coordinates (plane) Angular reference axis

X/Y (G17) +XY/Z (G19) +YZ/X (G18) +Z

AP3AP2

AP1

RP

RP

RP

Pole

Page 10: EMCO WinNC for Fanuc 31i Mill Software description, software

A4 Fanuc 31i Mill

PrinciPles

Absolute and incremen-tal workpiece positionsAbsolute workpiece positionsIf the coordinates of a position are related to the coordinates zero point (origin), these are de-scribed as absolute coordinates. Each position on a workpiece is determined unambiguously by its absolute coordinates.

Example 1: Drillings with absolute coordinates

Drilling 1 Drilling 2 Drilling 3X = 10 mm X = 30 mm X = 50 mmY = 10 mm Y = 20 mm Y = 30 mm

Incremental workpiece positionsIncremental coordinates refer to the last pro-grammed position of the tool, which serves as the relative (conceptual) zero point. Incremental coordinates describe the actual paths of the tool. Consequently, it is also described as chain measurement.

You mark an incremental dimension by means of an «I» in front of the axis designation.

Example 2: Drillings with incremental coordinates

Absolute coordinates of the drilling 4IX = 10 mmIY = 10 mm

Drilling 5, related to 4 IX = 20 mm IY = 10 mm

Drilling 6, related to 5IX = 20 mmIY = 10 mm

Page 11: EMCO WinNC for Fanuc 31i Mill Software description, software

A5 Fanuc 31i Mill

PrinciPles

Zero point shift of machine zero point M to tool zero point W

MW

Zero point offsetOn EMCO milling machines, the machine zero point «M» is on the left front edge of the machine table. This position is unsuitable as a start point for programming. Using the so-called zero point offset, the coordinate system can be shifted to a suitable point in the machine working area.

A distinction is made between the following zero point offsets:• Machine coordinate systems (MCS) with the

machine zero point M• Basic zero point system (BNS)• Configurable zero point system (CZS)• Workpiece coordinate system (WCS) with work-

piece zero point W.

Machine coordinate system (MCS)After approaching the reference point the NC position displays of the axis coordinates are rela-tive to the machine zero point (M) of the machine coordinate system (MCS).Workpiece change points are defined in the ma-chine coordinate system.

Base zero point (BZS).If a base shift is performed in the machine coor-dinates system (MCS), a base zero point offset is the result (BZS). With this, for example, a palette zero point can be defined.

Configurable zero point system (CZS)Configurable zero point offsetIf a configurable zero point system (G54-G599) is performed from the base zero point system (BZS), a configurable zero point system (CZS) is the result.

Programmable coordinate transformation (Frames)Programmable coordinate transformations (frames) shift the originally selected workpiece coordinate system to another position, to rotate, scale or mirror it.

Workpiece coordinate system (WCS)The program for executing the workpiece is rela-tive to the workpiece zero point (W) of the work-piece coordinate system (WCS).

Page 12: EMCO WinNC for Fanuc 31i Mill Software description, software

A6 Fanuc 31i Mill

PrinciPles

1

2

2 3

3

Machine zero point and workpiece zero point are usually not identical. The distance between the points is the entire zero point offset and is made up of various shifts:

1 With basic offset, the basic zero point offset (BNS) is generated with the range zero point.

2 With variable zero point offset (G54-G599) and with frames, zero point systems are defined for workpiece 1 or workpiece 2.

3 With programmable coordinate transformation (frames), workpiece coordinate systems (WKS) are defined for workpiece 1 or workpiece 2.

Programmable coordinate transformation (Frames)

Programmable coordinate transformation (Frames)

Configurable Zero point offset

Base shiftPalette

Workpiece 1

Workpiece 2

Configurable Zero point offset

Page 13: EMCO WinNC for Fanuc 31i Mill Software description, software

A7 Fanuc 31i Mill

PrinciPles

Milling operationsDown-cut MillingIn down-cut milling, feed direction and cutting direction of the mill are identical.The cut penetrates the surface of the raw part in the material initially.It is advantageous that a larger chamfer angle enables the immediate penetration of the blade into the material. It is not as with up-cut milling, in which a specific sliding cutting path is left behind under pressure and friction.In down-cut milling, the feed force supports the feed drive in the same direction of rotation. With machines with play in the feed drive, jerky move-ments which lead to damage to the cut occur.

Down-cut milling is generally to be preferred if the machine permits it (backlash-free table drive in EMCO CNC machines).

Up-cut MillingIn down-cut milling, feed direction and cutting direction of the mill are identical.The tool’s cuts meet in a very sharp angle (j = 0) on the material.Before the blades penetrate into the material, they slide with increasing contact force a little piece on the surface. After penetration, the chip cross-sec-tion slowly increases and then falls away quickly.

Up-cut milling is preferred with unstable machine conditions (machines constructed conventionally) and should be used with higher rigidity materials.

Down-cut/up-cut millingDown-cut/up-cut milling is a combination of down-cut and up-cut milling.

Down-cut Milling

Up-cut milling

Page 14: EMCO WinNC for Fanuc 31i Mill Software description, software

A8 Fanuc 31i Mill

PrinciPles

Tool radius compensationWithout tool radius compensationIf tool radius compensation is switched off, the tool traces the contour’s central track.

Right-hand tool radius compensationWith right-hand tool radius compensation, the control system automatically calculates the equi-distant tool distance right of the contour in each case for the various tools.

Left-hand tool radius compensationWith left-hand tool radius compensation, the con-trol system automatically calculates the equidis-tant tool distance left of the contour in each case for the various tools.

X

Y

W

X

Y

W

X

Y

W

Without tool radius compensation

Right-hand tool radius compensation

Left-hand tool radius compensation

Page 15: EMCO WinNC for Fanuc 31i Mill Software description, software

A9 Fanuc 31i Mill

PrinciPles

Tool dataThe object of tool data capture is that the software uses the tool tip or the tool centre point and not the tool housing reference point for positioning.

Each tool used for machining must be measured. The distance from the cutting tip to the tool hous-ing reference point must also be determined.

The measured lengths and mill radius can be stored in the tool list.

The mill radius information is only necessary if a mill radius compensation or a milling cycle is selected for the relevant tool!(See chapter F Tool Management)

Tool length

Page 16: EMCO WinNC for Fanuc 31i Mill Software description, software

A10

Page 17: EMCO WinNC for Fanuc 31i Mill Software description, software

B1 Fanuc 31i Mill

Key description

B: Key description

EMCO WinNC for Fanuc 31i control panel

Instructions:Depending on the machine you are operat-ing with EMCO WinNC for Fanuc 31i, not all functions and machine keys may be available.

0

6

2

10

7080

90

100

110

120

3050

Page 18: EMCO WinNC for Fanuc 31i Mill Software description, software

B2 Fanuc 31i Mill

Key description

Address and number pad

Address and number padThe Shift key switches to the second key function (shown in the top left corner of the button).

Example:

Q

Queries

Page 19: EMCO WinNC for Fanuc 31i Mill Software description, software

B3 Fanuc 31i Mill

Key description

Button functionsEnd Of Block.

Delete input

Delete alarm messages, reset CNC (e.g. interruptprogram).

Call context-sensitive help.

Alphanumeric input.

Shift key

Replaces the marked text with the text from the input textbox.

Insert the text from the input textbox after the cursor.

Delete (program, block, word).

Enter word, accept data.

Scroll backwards/forwards

Cursor left/right.

Cursor up/down.

Indicates the current position.

Program functions

Setting and indication of the zero point shift,the tool offsets, wear offsets and variables.

Not populated.

Page 20: EMCO WinNC for Fanuc 31i Mill Software description, software

B4 Fanuc 31i Mill

Key description

Parameter settings and indications, and troubleshooting indications.

Alarm and message display.

Switch to Manual Guide mode.

Page 21: EMCO WinNC for Fanuc 31i Mill Software description, software

B5 Fanuc 31i Mill

Key description

Actual position display

Key description ISO functions

1 Absolute position

2 Relative position

3 Indicate both positions together

1 32

Release overview display

Release overviewDisplays the current WinNC software release

Actual position

Page 22: EMCO WinNC for Fanuc 31i Mill Software description, software

B6 Fanuc 31i Mill

Key description

Alarm and message display.

Alarm and report overview

Displays all alarms and reports

Page 23: EMCO WinNC for Fanuc 31i Mill Software description, software

B7 Fanuc 31i Mill

Key description

Zero point offset, tool correction and customer macro variables setting and display

Tool correction

Zero point offset

• Use the «OPRT» softkey and the «+» expansion button to display the file input and output, data entry and measure and search softkeys.

• The data is saved to the file EXT_WKZ.TXT.• The path to save and read the data is set in EMConfig under the

«Directory exchange» heading.

Page 24: EMCO WinNC for Fanuc 31i Mill Software description, software

B8 Fanuc 31i Mill

Key description

1 Search for tool number

2 Measure tool

3 Coordinates entry

4 Computes current value + entry from entry line

5 Accept value from entry line

6 Delete

7 Tool length data

8 Tool radius data

1 32 4 5 6

7 8

Page 25: EMCO WinNC for Fanuc 31i Mill Software description, software

B9 Fanuc 31i Mill

Key description

Customer macro variables

The «+» expansion button calls up the customer macro variables page

• Use the «OPRT» softkey and the «+» expansion button to display the file input and output, data entry and measure and search softkeys.

• The data is saved to the file MAKRO.TXT.• The path to save and read the data is set in EMConfig under the

«Directory exchange» heading.

Page 26: EMCO WinNC for Fanuc 31i Mill Software description, software

B10 Fanuc 31i Mill

Key description

1 Mode

2 Alarm status

3 Program mode

4 Axis position

5 Residual travel

6 Spindle speed

7 Feed

8 Program name

9 Block number

10 Tool number

11 Spindle speed

12 M-commands

13 Feed display

14 Display of active G-functions

15 Program window

16 Current line number in ISO program window

17 Graphical simulation

18 Message window

19 Keypad buffer

20 Softkey list

For detailed descriptions see chapter «C Oper-ation»

Screen layout Manual Guide i12

910

11 1213

8

14

15

16

3

45 6

7

17

18 19

20

Instructions:For axis position and residual travel:The number of axes varies according to the configuration of the machine.

Page 27: EMCO WinNC for Fanuc 31i Mill Software description, software

B11 Fanuc 31i Mill

Key description

PC

key

boar

d

To

activ

ate

patte

rned

key

func

tions

, the

CT

RL

or A

LT k

eys

mus

t be

pres

sed

at th

e sa

me

time.

Inst

ruct

ions

:T

he m

achi

ne f

unct

ions

in

the

num

eric

al k

ey-

pad

are

only

act

ive

if N

UM

Loc

k is

not

act

ive.

Alt

Gr

Num

Fest

Rol

len

Num

NC

-S

TAR

T

NC

-S

TOP

RE

SE

T

-4+Y

-Y+4

-X+X

+Z -ZDR

YR

UN

SKI

P

OP

TS

TOP

SBL

<% >%

F12

WE

RT

* +~

AS

DG

Ä’ #

Y; ,

: .-

_S

trgS

trgA

ltA

lt G

r

°̂1!

K

2″4$

5%6&

9)]

8(

]

´`

O

F2MD

A

Q@

= 4

= $

=4$

4$A

lt

CA

N

Dru

ck

S-A

bf

Pau

se

Unt

br

Rol

len

F4F1

0F1

1F3AU

TOF1JO

G

> <

F

F8RE

FF9

F6ED

IT

F7RE

PO

S

F5

U

VX

= IN

C 1

000

Alt

7/0=

ß?

/

X

I

JH

MA

UX

NA

UX

BC

P

REF

ALL

-5

+5

INC

Var

INC

100

00IN

C 1

000

INC

100

INC

10

INC

1

= JO

G=

F1JOG

F1JOG

Page 28: EMCO WinNC for Fanuc 31i Mill Software description, software

B12 Fanuc 31i Mill

Key description

Overview button assignment control keyboard

PC button Control system but-ton Check

Entf Delete input

Enter

Conclude input and continue dialog.

Move mark

Upper/lower case

x Single block (SBL)

.. Skip (block mask)

0 Reset key (Reset)

Strg

.. Dry run (test run feed)

Strg

x Optional stop

F1JOG

Indicates the current position

F2MDA

Program functions

F3AUTO Setting and indication of the zero point shift,

tool offsets, wear offsets and variables

F4 Not populated.

F5Parameter settings and indications, and troubleshooting indications.

F6EDIT

Alarm and message display.

F7REPOS

Manual Guide mode

F8REF

Not populated.

Strg F1

JOGCall context-sensitive help

Page 29: EMCO WinNC for Fanuc 31i Mill Software description, software

B13 Fanuc 31i Mill

Key description

PC button Control elements Check

Alt

I Swivel divider

Alt

O Coolant / Purge on / off

Alt

P

Door open / closed

Alt

H Clamp device closed

Alt

J Clamp device open

Alt

K Swivel tool holder

Alt

X Feed Stop

Alt

C Feed Start

Alt

V Spindle Stop

Alt

B Spindle Start

Alt

N Switch auxiliary drives on AUX ON

Alt

M Switch auxiliary drive off AUX OFF

Enter NC start

,NC stop

5 Approach reference point

Instructions:Selecting the machine buttons via the PC keyboard: 1.) Hold «Alt» button down.2.) Press and then release machine button.3.) Release «Alt» button.

Overview Button Assignment Machine Operating Elements

Page 30: EMCO WinNC for Fanuc 31i Mill Software description, software

B14 Fanuc 31i Mill

Key description

PC button Control elements Check

Strg

Strg

+Spindle speed correction

+Override (feed rate override)

Page 31: EMCO WinNC for Fanuc 31i Mill Software description, software

B15 Fanuc 31i Mill

Key description

Machine control panel

Depending on machine configuration, the control panel can differ slightly from what is shown here.

Key description

0

6

2

10

7080

90

100

110

120

3050

Skip (block mask)In Skip mode, program blocks that are marked with an oblique stroke «/» in front of the block number are skipped during the program run (e.g.: /N100).Active when the LED is ON.

Dry run (test run feed)In Dry run mode, positioning movements will be carried out with the feed value stipulated in the «Dry run feed» setting datum.The dry-run feed works instead of the programmed movement commands.Spindle commands are ignored.Active when the LED is ON.

Caution:The dry run feed is higher than the programmed feed.Ensure that no workpiece is clamped before starting dry run mode.When machining parts, ensure that dry run mode is switched off before you start the machine (the LED in the button is OFF).

Page 32: EMCO WinNC for Fanuc 31i Mill Software description, software

B16 Fanuc 31i Mill

Key description

EditToggle into Edit mode.

Handwheel mode (optional)This key enables and disables the connected handwheel (optional).

Reset key (Reset)Pressing the Reset key:interrupts the machining of the current parts program.• deletes monitoring messages unless these are Power On or Recall

alarms.

Individual piece modeThis button makes individual piece mode or constant operation in conjunction with automatic loading equipment available for selection.Individual piece state is the default state when switched on.Active individual piece mode is indicated by illumination of the cor-responding LED on the machine control panel.

Optional stopWhen this function is active (key held down), program processing will stop at blocks in which the M01 special function has been pro-grammed.You start processing again with the NC Start button. If the function is not active, the M01 special function (from the parts program) will be ignored.

• Moves the channel into «Reset» status; this means:- The NC controller remains in synchronism with the machine.- All interim and work stores are deleted (but the content of the

parts program memory is retained).- The control system is in the default position and ready for a new

program sequence.

Feed StopThis button interrupts a programmed carriage movement.

Feed StartThis button continues a programmed but interrupted carriage move-ment.If the main spindle motion was also interrupted, this must be switched on again first.

Page 33: EMCO WinNC for Fanuc 31i Mill Software description, software

B17 Fanuc 31i Mill

Key description

Single blockThis functions allows you to run a parts program block by block.You can enable the Individual Block feature in Automatic mode.

When single block processing is active:• the current block of the parts program is only machined when you

press the NC Start key.• machining stops after a block is executed.• the following block is executed by pressing the NC Start key again.The function can be deselected by pressing the Single Block key again.

Cycle stopAfter pressing the Cycle stop button after the controller has taken over the function, machining of the current parts program is sus-pendedMachining can then be continued by pressing the Cycle start key.

Cycle startAfter pressing the Cycle start key, the selected parts program will be started with the current block.

Arrow keysUse these buttons to move the NC axes in JOG mode.

Depending on the machine configuration, various arrow keys are available

Rapid traverseIf this button is pressed in addition to the arrow keys, the axes con-cerned move in rapid traverse.

Reference pointPressing this button causes the reference points to be approached in the spindle and tool turret axes.

Chip conveyor (Option)Switch on chip conveyor:Forwards: Hold the key down for less than 1 second.Backwards: Hold the key down for longer than 1 second.

The chip conveyor will be switched off after a defined time (approx. 35 seconds).This value is set in the factory.

Page 34: EMCO WinNC for Fanuc 31i Mill Software description, software

B18 Fanuc 31i Mill

Key description

CoolantThis function switches the coolant equipment on or off.

Clamping devicesThese functions activate the clamping device.

Swing tool drumPressing this button causes the tool drum to swivel by one position:

Cycle in the clockwise direction (one position further)

Cycle in the counterclockwise direction (one position back)

Preconditions:• Machine doors closed• «JOG» operating mode• Key switch in «Hand» position

Manual tool changePressing this button starts a manual tool change.The tool clamped in the milling spindle will be removed and replaced with the tool from the currently swivelled-in tool drum.

Preconditions:• Machine doors closed• «JOG» operating mode• Key switch in «Hand» position

Information:• Interrupt the change process by moving the override switch

below 4%.• Cancellation of the change procedure by pressing the reset

button.

Feed StopThis button interrupts a programmed carriage movement.

Feed StartThis button continues a programmed but interrupted carriage move-ment.If the main spindle motion was also interrupted, this must be switched on again first.

Page 35: EMCO WinNC for Fanuc 31i Mill Software description, software

B19 Fanuc 31i Mill

Key description

REPOS — RepositioningBack-positioning, approach contour again in the JOG operating mode

JOGStandard movement of the machine by continuous movement of the axes via the arrow keys or by incremental movement of the axes via the arrow keys or the hand wheel.

MDA — Manual Data AutomaticControl the machine by executing a block or a sequence of blocks. Blocks are entered via the control panel.

AutomaticControl the machine by automatically executing programs.

REF — Reference modeApproaching the reference point (Ref) in the JOG operating mode.

Inc 1 — Incremental feedMove step by step a predefined distance of 1 increment in handwheel/jog mode.Metrical measurement system: Inc 1 corresponds to 1µmImperial (inch-based) measurement system: Inc 1 equates to 0.1 µinch

Inc 10 — Incremental feedMove step by step a predefined distance of 10 increments.Metrical measurement system: Inc 10 corresponds to 10µmImperial (inch-based) measurement system: Inc 10 equates to 1 µinch

Inc 100 — Incremental feedMove step by step a predefined distance of 100 increments.Metrical measurement system: Inc 100 corresponds to 100µmImperial (inch-based) measurement system: Inc 100 equates to 10 µinch

Inc [VAR]Move in steps with a continuously variable increment.

Types of operation

Page 36: EMCO WinNC for Fanuc 31i Mill Software description, software

B20 Fanuc 31i Mill

Key description

Auxiliary OFFThis button switches off the machine’s auxiliary units. Only effective if spindle and program are off.

Auxiliary ONThis button makes the machine’s auxiliary units ready for operation (hydraulics, feed drives, spindle drives, chip conveyor lubricant, coolant).The button must be pressed for around 1 second.Tapping the AUX ON key is a clear function and causes the central lubrication system to perform a lubrication squirt.

Freewheeling before referencingIf the carriage has to be freewheeled before referencing (e.g. from

a position where it is at risk of colliding), press the button and then the corresponding arrow key.

Free swivelling of the tool turretIf the tool turret has to be swivelled freely after an alarm is present,

press the buttons and then .

Information:• The operating modes can be selected via softkeys (PC key-

board) or with the operating mode selector switch = multifunc-tion switch.

• Switching between the metrical measurement system and the imperial (inch-based) measurement system is carried out with the EmConfig utility software (see Chapter X EmConfig).

• Metric is assigned in the imperial measuring system as follows:

Feed:Millimeters in inches:mm/min => inches/minmm/U => inches/U

Constant cutting speed:Meters in feet:m/min => feet/min

Page 37: EMCO WinNC for Fanuc 31i Mill Software description, software

B21 Fanuc 31i Mill

Key description

Override switch (feed rate override)The rotary switch with notch positions enables you to change the programmed feed value F (corresponds to 100%).The set feed value F in % will be shown on the screen.

Adjustment range:0% to 120% of the programmed feed.In rapid traverse 100% will not be exceeded.

No effect with thread commands G33, G63

0

6

2

10

7080

90

100

110

120

3050

EMERGENCY SHUTDOWNPress the red button only in an emergency.

Effects:As a rule, the EMERGENCY SHUTDOWN button will lead to all drives being stopped with the greatest possible braking torque.

To continue working, press the following keys:RESET, AUX ON, doors OPEN and CLOSED.

Key Switch Special Operations ModeThe key switch can be switched to the «AUTOMATIC» or «SET-UP» (hand) position.With this key switch it is possible to perform movements in Jog Mode when the sliding door is open.

Danger:When Special Operations mode is active, the danger of acci-dents is increased.The key for this switch should only be held by persons who have the required knowledge about the dangers and exercise appropriate care.Keep the chip guard door closed even in Set-up mode.Keys should only be used by authorized persons.After work is carried out in Special Operations mode, always withdraw key (accident danger).Observe country-specific safety instructions (e.g.: SUVA, BG, UVV ….).

Page 38: EMCO WinNC for Fanuc 31i Mill Software description, software

B22 Fanuc 31i Mill

Key description

1 Feed override: controls the feed rate equivalent to conventional feed override

2 Spindle override: controls the spindle speed equivalent to conventional spindle override

3 Modes: allows you to select the operating mode using the multifunction operation

4 Close: The user interface is closed. The menu disappears, return to the control surface

5 Settings: opens another level with settings

6 Cursor: shows the actual position in the menu

Multifunction switch for operating modesThe multi-function switch is designed as a rotary switch with a press feature.

Populated function• The user interface is opened by pressing the multifunction opera-

tion. The active function is indicated by a green check-box. • Turning the switch allows you to switch between the functions. The

black bar with the symbols moves to the left or to the right.• Activating a function or a change to a sub-menu is executed by

pressing the button.

The interface offers the following functions:

turn

/ pr

ess

1 3245

6

Overwiew

Note:The functionality of the multifunction operation is depending on the installed software version.

Page 39: EMCO WinNC for Fanuc 31i Mill Software description, software

B23 Fanuc 31i Mill

Key description

1 Settings

2 Background brightness: adjusts the transparency of the back-ground

3 Lock screen: pressing again unlocks the screen.

4 Close: closes the submenu and returns to a higher-level menu.

1

3 2 4

Settings the background brightness

Setting the background trancparency

• By pressing once, a white border around the icon appears. The menu item is activated.

• Now, the transparency of the background can be changed by turn-ing the rotary switch:

Turn to the left: brighter Turn to the right: darker

• Pressing again closes the menu and the white border dissapears.

Page 40: EMCO WinNC for Fanuc 31i Mill Software description, software

B24 Fanuc 31i Mill

Key description

Handwheel function

The handwheel (1) activates the handwheel mode. The parameters for axis and step width (2) are set with the axis- and operating -mode buttons on the machine keyboard.

2

1

Operation

• The electronic handwheel is used to traverse the slides at a defined step width.

• The step width depends on the selected Inc mode: Inc 1, Inc 10, Inc 100.

• There must be one pre-selected Inc mode and an axis defined by a direction key.

• Also refer to «types of operation» und «arrow keys» in chapter B.

Note:In the mode «Inc 1000» the slides cannot be moved with the handwheel. «Inc 1000» operates with «Inc 100».

Page 41: EMCO WinNC for Fanuc 31i Mill Software description, software

B25 Fanuc 31i Mill

Key description

Key switchThe key switch function is machine-specific.

USB connection (USB 2.0)Data is exchanged with the machine (data copying, software instal-lation) via this USB connection.

Enable buttonWhen the door is open, axis movements via the arrow keys and tool turret movements are authorized by pressing the enable button (precondition key switch in SET-UP position).In machines with automated doors (option) pressing the enable switch opens the machine doors.

Additional clamping device buttonThe additional button has the same function as on the machine control panel.(Double movement because of better operation).

Page 42: EMCO WinNC for Fanuc 31i Mill Software description, software

B26

Page 43: EMCO WinNC for Fanuc 31i Mill Software description, software

C1 Fanuc 31i Mill

OperatiOn

C: Operation

Feed F [mm/min]The feed F is the speed in mm/min (feet/min) with which the tool centre point moves on its path. The maximum feed can be different for each machine axis and is defined by machine parameters.

Feed influenceThe feed value F programmed by you corre-sponds to 100%.With this button or with the feed override the set feed value F can be changed in %.

Adjustment range:0% to 120% of the programmed feed.Only the changed percentage and not the result-ing effective value will be shown.In rapid traverse 100% of the maximum rapid traverse feed will not be exceeded.

OR

0

6

2

10

7080

90

100

110

120

3050

Page 44: EMCO WinNC for Fanuc 31i Mill Software description, software

C2 Fanuc 31i Mill

OperatiOn

Spindle speed S [rev/min]Indicate the spindle speed S in revolutions per minute (rpm).

Spindle speed correctionThe spindle speed S programmed by you corre-sponds to 100%.These button combinations or the spindle speed override changes the set spindle speed S in %.

Adjustment range:0% to 120% of the programmed spindle speed.Only the changed percentage and not the result-ing effective value will be shown.

Page 45: EMCO WinNC for Fanuc 31i Mill Software description, software

C3 Fanuc 31i Mill

Key description

Types of operationJOG — JoggingStandard movement of the machine by continuous movement of the axes via the arrow keys or by incremental movement of the axes via the arrow keys or the hand wheel.JOG is used in manual mode as well as for set-up of the machine.

MDA — Semi-automatic mode (Manual Data Automatic)Controlling the machine by executing a block or a sequence of blocks. Block input is performed via the operating panel or the PC keyboard.

AUTO — Automatic modeControlling the machine by automatically executing programs.Here part programs are selected, started, adjusted, deliberately influenced (e.g. individual set) and executed.

Instructions:The modes can be selected via softkeys (PC keyboard) or with the mode selector switch (multifunction switch).

REF — Reference modeApproaching the reference point (Ref) in the JOG operating mode.

REPOS — RepositioningBack-positioning, approach contour again in the JOG operating mode

Page 46: EMCO WinNC for Fanuc 31i Mill Software description, software

C4 Fanuc 31i Mill

Key description

Instructions:Metric is assigned in the imperial measuring system as follows:

Feed:Millimetres in inches:mm/min => inches/minmm/U => inches/U

Constant cutting speed:Meters in feet:m/min => feet/min

Inc 1 — Incremental feedMove step by step a predefined distance of 1 increment in handwheel/jog mode.

Metrical measurement system: Inc 1 equals 1µmImperial (inch-based) measurement system: Inc 1 equals 0.1 µinch

Inc 10 — Incremental feedMove step by step a predefined distance of 10 increments in handwheel/jog mode.

Metrical measurement system: Inc 10 equals 10µmImperial (inch-based) measurement system: Inc 10 equals 1 µinch

Inc 100 — Incremental feedMove step by step a predefined distance of 100 increments in handwheel/jog mode.

Metrical measurement system: Inc 100 equals 100µmImperial (inch-based) measurement system: Inc 100 equals 10 µinch

Inc 1000 — Incremental feedMove step by step a predefined distance of 200 increments in handwheel mode, or 1000 increments in jog mode.

Metrical measurement system: Inc 1000 equals 1000µmImperial (inch-based) measurement system: Inc 1000 equals 100 µinch

Page 47: EMCO WinNC for Fanuc 31i Mill Software description, software

C5 Fanuc 31i Mill

Key description

Approach reference pointThe reference point R is a specified fixed point on the machine. It is used to calibrate the measurement system.The reference point must be approached each time after the machine is switched on or the EMERGENCY STOP button is unlocked, in order to make the exact distance between the machine zero point M and the tool fixture reference point N or T known to the control system.

• Switch to the reference mode REF.

Option A:Reference the axes individuallyPress the +Z and +X buttons.The slides move one another to their reference points, after each has reached the collision-free area.

Instructions:• After reaching the reference points the software limit switches

are active. The reference point position will be shown as the current position on the screen.

• The tailstock (if available) must be at the right end of the bed when referencing the axes, so that the Z-slides do not collide with the tailstock.

Option B:Reference automaticallyPressing the button «Reference point» causes the axes to approach their reference points automatically one after another. First the axes then the tool changer will be referenced.

Page 48: EMCO WinNC for Fanuc 31i Mill Software description, software

C6 Fanuc 31i Mill

Key description

Move slides manuallyThe machine axes are moved manually using the arrow keys.

• Switch to JOG mode.

• The arrow keys buttons move the axes in the corresponding direction as long as the key is pressed.

• The feed speed is set with the override switch.

• If the button is pressed simultaneously, the carriages move in rapid traverse.

Move slides in step-movementThe machine axes can be moved in steps using the direction buttons.• Switch to INC mode.

• The direction buttons move the axes in the corresponding direction by the set step distance each time the button is pressed.

• The feed speed is set with the override switch.

• If the button is pressed simultaneously, the carriages move in rapid traverse.

0

6

2

10

7080

90

100

110

120

3050

Page 49: EMCO WinNC for Fanuc 31i Mill Software description, software

C7 Fanuc 31i Mill

Key description

MDA mode — Semi-automatic modeControl the machine by executing a block or a sequence of blocks. For this the desired movements can be entered via the control key-board in the form of part program sets.

The control system executes the blocks entered after the control button is pressed.

For running an MDA program, the same preconditions are necessary as for fully automatic mode.

AUTO mode — Automatic modeControlling the machine by automatically executing programs.Here part programs are selected, started, adjusted, deliberately influenced (e.g. individual set) and executed.

Preconditions for executing part programs:• The reference point was approached• The part program is loaded into the control system.• The correction values required were checked or entered (e.g. zero

point offsets, tool corrections)• The safety locks are activated (e.g. chip-guard doors closed).

Options in Automatic mode:• Program correction• Block search run• Overstore• Program influence

(see Section G program sequence)

Page 50: EMCO WinNC for Fanuc 31i Mill Software description, software

C8 Fanuc 31i Mill

OperatiOn

Program management• Select «Edit» mode.

1 Creating a new machining program

2 Call program listing

3 Search for text from the input line in the pro-gram

4 Search for and open the program

5 Copy marked text into a buffer file

6 Move marked text into a buffer file

7 Delete marked text

8 Insert marked text into an input line

9 Insert text from a buffer file

10 Forward and Back (extension keys)

Instructions:Alternatively, the buttons on the softkey tool-bar can also be operated with the function keys F1 to F10, e.g.: NEUPRG = F1, EINFUE = F10

1 2 3 4 5 6 7 8 9 1010

Page 51: EMCO WinNC for Fanuc 31i Mill Software description, software

C9 Fanuc 31i Mill

OperatiOn

Where programs are savedPrograms can be saved in and invoked from the control system’s program directory, a local drive or a USB data storage device.

Create programA program consists of a succession of cycles, commands and/or sub-routines.

1 Select «Edit» mode.

2 Press softkey.

3 Enter program or folder name and confirm with «CREATE».

If a program name was allotted previously, an appropriate message will be displayed.

NEWPRG

CREATE

Back folder on top:goes back one level

Program control path:C:WinNC32_FanucFanuc_i.MPRGLIBRARY

OPEN

Instructions:Program names can consist of at least 1 and a maximum of 32 characters. The following characters are allowed: «Zz», «0 to 9», «_» «+» and «.».

The Fanuc standard format for program names is as follows:O1234. If fewer than 4 numbers are entered, those missing are populated with zeroes.

Page 52: EMCO WinNC for Fanuc 31i Mill Software description, software

C10 Fanuc 31i Mill

OperatiOn

Programming list1 Select «Edit» mode.

2 Press softkey.O LIST

1 Creating a new machining program

2 Copy programs

3 Delete programs

4 Enter a comment for a program

5 Search for programs

6 Output of a program to an external memory card

7 Delete a number of programs

8 Change the sorting sequence

9 Open program

10 End program listing

11 Forward and Back (extension keys)

Instructions:The program listing is also available in Automatic and in Simulations modes, albeit with restricted functionality.

1 2 3 4 5 6 7 8 9 1111 10

Page 53: EMCO WinNC for Fanuc 31i Mill Software description, software

C11 Fanuc 31i Mill

OperatiOn

1 2 3 4 5

1 Rename program or folder names

2 Program properties

3 Program protection

4 Open program

5 End program listing

Page 54: EMCO WinNC for Fanuc 31i Mill Software description, software

C12 Fanuc 31i Mill

OperatiOn

Copy program1 Select «Edit» mode.

2 Move mark to the desired program.

3 Copy program.

4 This softkey calls the window for copying pro-grams. After a program name has been entered for the program to be copied (target program name), press the «COPY» softkey to copy the given program.

COPY

Delete program1 Select «Edit» mode.

2 Move mark to the desired program.

3 Delete program.

4 This softkey calls the window for deleting pro-grams. «DO» deletes the given program, «NOT DO» interrupts the delete process.

DELETE

5 Press the softkey to copy.

COPY

5 Press the softkey to delete.

DO

Page 55: EMCO WinNC for Fanuc 31i Mill Software description, software

C13 Fanuc 31i Mill

OperatiOn

Enter comment1 Select «Edit» mode.

2 Move mark to the desired program.

3 Enter comment.

4 This softkey calls the comment entry window. After a comment has been entered for the pro-gram, press the «ALTER» softkey to add the given comment in the program.

EDTCOM

5 Press the softkey to change.

ALTER

Search program1 Select «Edit» mode.

2 Search program.

3 This softkey calls the window for searching pro-grams. After a program name has been entered for the program to be found (target program name), press the «SEARCH» softkey to look for the given program.

SEARCH

4 Press the softkey to search.

SEARCH

Page 56: EMCO WinNC for Fanuc 31i Mill Software description, software

C14 Fanuc 31i Mill

OperatiOn

Delete a number of programs simultaneously1 Select «Edit» mode.

2 Delete a number of programs.

3 This softkey calls the window for deleting a number of programs.

MLOSCH

4 This softkey selects the program to be deleted. Place the cursor on the program to be selected and press «SELECT».

5 This softkey cancels the program selection. Place the cursor on the program whose selec-tion is to be cancelled and press «NOSECT».

6 This softkey selects an area. Place the cursor on the first program in a program sequence that is to be selected, press the «AREA» softkey and then place the cursor on the last program in the program sequence. Now press «SELECT» to define the area.

7 This softkey selects all programs. Pressing the softkey deletes all programs in the relevant folder.

8 Press the softkey to delete.

SELECT

NOSECT

AREA

ALSECT

DELETE

Page 57: EMCO WinNC for Fanuc 31i Mill Software description, software

C15 Fanuc 31i Mill

OperatiOn

Change the sorting sequence1 Select «Edit» mode.

2 Change the sorting sequence.

3 This softkey changes the sorting sequence. You can sort by name, comment, change of date and file size while you click on the area with the mouse.

SRTORD

Open program1 Select «Edit» mode.

2 Open program.

3 This softkey opens the selected program.OPEN

4 Press the softkey to change.

SRTORD

Page 58: EMCO WinNC for Fanuc 31i Mill Software description, software

C16 Fanuc 31i Mill

OperatiOn

Change program name1 Select «Edit» mode.

2 Move mark to the desired program.

3 Change the program or folder name.

4 This softkey calls the window for renaming pro-grams or folders. After a new program name has been entered for the program, press the «CHANGE» softkey to rename the given pro-gram.

5 Change the program or folder name.

RENAME

ALTER

Program properties1 Select «Edit» mode.

2 Move mark to the desired program.

3 Show program properties.

This softkey calls the window to show program properties.

4 End program properties display.

DETAIL

CLOSE

Page 59: EMCO WinNC for Fanuc 31i Mill Software description, software

C17 Fanuc 31i Mill

OperatiOn

Program input and output on a memory card1 Select «Edit» mode.

2 Open dialogue for input and output.

3 The following softkeys are available:

• «INPUT»: Upload file from memory card• «EINP.O»: Upload file and change O- number• «CLEAR»: Delete file• «SEARCH» Search for file• «OUTPUT»: Save file• «RETURN»: End dialogue

M-CARD

Note:The path of the directory from where the con-trol software was installed is set as default.The path can subsequently be changed in EMConfig.

Program protection1 Select «Edit» mode.

2 Move mark to the desired program.

3 Enable write protection for the program.

This softkey enables write protection for a pro-gram. An «R» is added beside the file size. Press the softkey again to cancel write protection once more.

WRPROT

Page 60: EMCO WinNC for Fanuc 31i Mill Software description, software

C18 Fanuc 31i Mill

OperatiOn

Search for text from the input line in the program1 Select «Edit» mode.

2 Enter the text that is to be found in the entry line.

3 Press the «SRCH↑» or «SRCH↓» softkey to start the search. The found text will be marked in yellow.

SRCH↑ SRCH↓

Search for and open the program1 Select «Edit» mode.

2 Enter the program name or number that is to be found in the entry line.

3 Press the «O SRCH» softkey to start the search. If a program has been found, it is opened auto-matically.O SRCH

Instructions:Only the current folder that was finally select-ed under «O LIST» is searched.

Instructions:If «O SRCH» is pressed with empty entry line, the next program of the actual folder is opened.

Page 61: EMCO WinNC for Fanuc 31i Mill Software description, software

C19 Fanuc 31i Mill

OperatiOn

Copy marked text into a buffer file1 Select «Edit» mode.

2 Set the area for copying with the cursor keys (the marked area will be yellow).

3 Press the «COPY» softkey to save the text in the Clipboard.

4 The Clipboard content can be added at another point in the program or in a different program.

COPY

PASTE

Move marked text into the buffer file1 Select «Edit» mode.

2 Set the area for moving with the cursor keys (the marked area will be yellow).

3 Press the «CUT» softkey to move the text from the program into the Clipboard.

4 The Clipboard content can be added at another point in the program or in a different program.

CUT

PASTE

Page 62: EMCO WinNC for Fanuc 31i Mill Software description, software

C20 Fanuc 31i Mill

OperatiOn

Delete highlighted text1 Select «Edit» mode.

2 Set the area for moving with the cursor keys (the marked area will be yellow).

3 This softkey calls the window for deleting a number of programs.

4 The «SELECT» softkey determines the area that is to be deleted. Existing highlights can still be changed here if need be.

5 Confirm the deletion process with «DO» or can-cel it with «NOT DO».

DELETE

SELECT

NOT DODO

Insert text1 Select «Edit» mode.

2 Move the cursor to the point where the text from the Clipboard is to be inserted.

3 This softkey inserst the content of the clipboard at the point after the cursor.

PASTE

Page 63: EMCO WinNC for Fanuc 31i Mill Software description, software

C21 Fanuc 31i Mill

OperatiOn

Insert marked text into an input line1 Select «Edit» mode.

2 Set the area to be inserted moving with the cursor keys (the marked area will be yellow).

3 Press the «KEYPST» softkey to copy the high-lighted text into the input line.

The text can now be changed as you wish.

4 CALC/ALTER replaces the highlighted text in the program with that from the input line.

5 INSERT inserts the text from the input line into the program, after highlighting it.

KEYPST

OR

OR

Instructions:Use the «KEYPST» keyboard input to change very long program comments and parts of customer macro program blocks with ease.

Page 64: EMCO WinNC for Fanuc 31i Mill Software description, software

C22 Fanuc 31i Mill

OperatiOn

Revocation and withdrawal1 Select «Edit» mode.

2 Press the «UNDO» softkey to revert to an editing process.

Press the «REDO» softkey to revoke a change retrospectively (redo).UNDO REDO

Search and replace1 Select «Edit» mode.

2 Press the «SRCH↑» or «SRCH↓» softkey to search for the string to be replaced.

Enter the replacement string value and press «REPL» or «ALL».

Confirm query with «DO» to replace all search strings.

SRCH↑ SRCH↓

REPL ALL

DO NOT DO

Page 65: EMCO WinNC for Fanuc 31i Mill Software description, software

C23 Fanuc 31i Mill

OperatiOn

End program listing1 Select «Edit» mode.

2 Press the «CLOSE» softkey to end the program listing.

CLOSE

Page 66: EMCO WinNC for Fanuc 31i Mill Software description, software

C24 Fanuc 31i Mill

OperatiOn

Program modeSelect «Auto» mode.

The following or supplementary functions from «Edit» mode are available for «Auto» mode.

1 Go to the start of the selected program

2 End program listing

3 Background edit

4 Search for block number

5 Search for and open the program

6 Display Actual position ABSOLUTE, RELA-TIVE and MACHINE

7 Preset relative position

8 Simulation

9 Workpiece coordinates system

10 Tool settings

11 Forward and Back (extension keys)

12 Editor for fixed forms

1 2 3 4 5 6 1111 7 8

Instructions:See chapter F for more information about tool settings: Tool management

9 10 12

Page 67: EMCO WinNC for Fanuc 31i Mill Software description, software

C25 Fanuc 31i Mill

OperatiOn

Background Editing1 Select «Auto» mode.

2 Press «BGEDIT» softkey. While a part is being machined, contents of

other parts programs can be edited.

By clicking the «BGEDIT» softkey in MEM mode, the display switches to the screen for background editing. The program directory for choosing programs is displayed.

BGEDIT

3 Choose the program by using the cursor keys and press the «OPEN» softkey to open the pro-gram.

OPEN

4 Press the extension key, until the «BGEND» softkey appears.

By pressing «BGEND» you exit the screen for background editing. The display changes back to automatic operation screen.

BGEND>

Note:Switching to another operating mode during editing will end the background edit mode.

Page 68: EMCO WinNC for Fanuc 31i Mill Software description, software

C26 Fanuc 31i Mill

OperatiOn

Semi-automatic modeSelect «MDA» mode.

The following or supplementary functions from «Edit» mode are available for «MDA» mode.

1 2 3 4 5 6 1414 7

12 131

8 9 10 11

Page 69: EMCO WinNC for Fanuc 31i Mill Software description, software

C27 Fanuc 31i Mill

OperatiOn

1 Go to the start of the selected program

2 Search for text from the input line in the pro-gram

3 Copy highlighted text into a buffer file

4 Move highlighted text into a buffer file

5 Delete highlighted text

6 Insert highlighted text into an input line

7 Insert text from a buffer file

8 Revoke/Withdraw

9 Workpiece coordinates system

10 Tool settings

11 Editor for fixed forms

12 Display Actual position ABSOLUTE, RELA-TIVE and MACHINE

13 Preset relative position

14 Forward and Back (extension keys)

Instructions:See chapter F for more information about tool settings: Tool management

Page 70: EMCO WinNC for Fanuc 31i Mill Software description, software

C28 Fanuc 31i Mill

OperatiOn

Setting up workpiece coordi-nates data• Select «Edit», «JOG», «MDA» or «AUTO» mode.

• Press softkey.

• «WK SET» opens the workpiece coordinates window in all modes, such as EDIT, JOG, MDA and AUTO.

With milling machines, a window to set the workpiece zero point offset is displayed. The data elements to be set and to be dis-played are the same as with the usual machine data elements.

OR OR OR

WK SET

Zero point table

Workpiece zero point offset

Page 71: EMCO WinNC for Fanuc 31i Mill Software description, software

C29 Fanuc 31i Mill

OperatiOn

MeasuringWorkpiece zero point offset

• Press softkey.

«MESURE» performs subsequent calculations.

Current value of the machine co-ordinates (1) — target value of the workpiece coordinates (2).

MESURE

ComputeWorkpiece zero point offset

• Press softkey.• «+INPUT» performs the following calculation.

Current value (1) + offset (2).

+INPUT

1 2• Conclude measurement with «INPUT».

INPUT

• End computation with «INPUT».

INPUT

1 2

Page 72: EMCO WinNC for Fanuc 31i Mill Software description, software

C30 Fanuc 31i Mill

OperatiOn

Page 73: EMCO WinNC for Fanuc 31i Mill Software description, software

C31 Fanuc 31i Mill

OperatiOn

Graphical simulationUsing the graphical simulation the current pro-gram is fully calculated and the result graphically displayed. This monitors the result of the program-ming without moving the machine axes. Wrongly programmed processing steps are recognized in a timely fashion, preventing the workpiece being mis-processed.

Unmachined part and tool definition

• Definition of the unmachined partsSelect the «BLANK». register card in the «START» menu heading

• Define the toolsSelect the «TOOL DATA» register card in the «T-OFS» menu heading.

There is a precise description of the unmachined parts in Chapter D. Programming Manual Guide i» and the tool definition in chapter «F: Tool Man-agement».

Raw part definition

Tool definition

Instructions:If no new unmachined part is defined, the last defined unmachined part is used.

Page 74: EMCO WinNC for Fanuc 31i Mill Software description, software

C32 Fanuc 31i Mill

OperatiOn

1 Mode

2 Alarm status

3 Program mode

4 Simulation report line

5 Position display of the axes

6 Tool number

Screen layout graphical simulation

13 2

4

5 6

78

9

10

7 Current NC program block

8 Current line number in ISO program window

9 Softkey strip to control simulation.

10 Coloured positioning movements:• Red positioning movement = tool moves in

rapid traverse.• Green positioning movement = tool moves

in machining feed.

Start simulation modeChange to Automatic mode.

The «SIMLAT» softkey opens the SIMULATE-AN-IMATE screen.SIMLAT

Page 75: EMCO WinNC for Fanuc 31i Mill Software description, software

C33 Fanuc 31i Mill

OperatiOn

Softkey functions

Start simulationThe «START» softkey starts the simulation. For the simulation to be started, an NC program must be selected. The name of the open NC program is shown at the top edge of the program window.

START

To start the simulationUse the «REWIND» softkey to reach the NC pro-gram.

REWIND

Stop simulationThis «PAUSE» softkey halts the simulation and the NC program. The simulation can be continued with «START».

PAUSE

Single blockThe «SINGLE» softkey makes a stop after each individual block if the machining is simulated in continuous mode. If the machining simulation is in the stopped state, this softkey starts the ma-chining simulation in single block mode.

SINGLE

Cancel simulationThe «STOP» softkey interrupts the simulation and the NC program. The simulation can be restarted with «START».STOP

Initialize unmachined partThe «INIT»softkey initiallizes the part to be ma-chined, which is used for animation.

INIT

Workpiece collisionThe «INTERF» softkey starts the interference check during the simulation. If the tool cutter collides with a workpiece while in rapid traverse, an alarm pops up and the area with which the tool cutter collided is shown in the same colour as the tool.

INTERF

Page 76: EMCO WinNC for Fanuc 31i Mill Software description, software

C34 Fanuc 31i Mill

OperatiOn

Tool pathPress the «TLPATH» softkey to reveal the SIM-ULATE TOOL PATH strip with the following softkeys:

«DISP», «NODISP» and «DELETE»You use the «DISP» and «NODISP» softkeys to mark only the needed sections of a tool path.

TLPATH

DELETENODISPDISP

Graphics OFFThe «GRPOFF» softkey ends the machining sim-ulation.

GRPOFF

The «DISP» softkey starts the tool path display from the next block.

DISP

The «DISP» softkey suppresses the tool path dis-play from the next block.The toolpath is not shown until the «DISP» softkey is pressed.

NODISP

The «DELETE» softkey deletes the former tool path. On continuing the simulation, the toolpath display is resumed.DELETE

The «ANIME» softkey selects the mode for the machining simulation (animated graphics).

ANIME

Page 77: EMCO WinNC for Fanuc 31i Mill Software description, software

C35 Fanuc 31i Mill

OperatiOn

Scaling and movingThe «LARGE» softkey enlarges the drawing.

The «SMALL» softkey reduces the size of the drawing.

The «AUTO» scales the drawing automatically and matches it to the size of the window.

The «REVERS» softkey moves the viewing point into the opposite position.

The «← MOVE» softkey moves the viewing point to the left. Accordingly, the marked tool path is moved to the right.

The «→ MOVE» softkey moves the viewing point to the right. Accordingly, the marked tool path is moved to the left.

The «→ MOVE» softkey moves the viewing point up. Accordingly, the marked tool path is moved to the left.

The «→ MOVE» softkey moves the viewing point down. Accordingly, the marked tool path is moved up.

The «CENTER» softkey places the centre of the toolpath in the centre of the window.

LARGE

SMALL

AUTO

REVERS

→MOVE

↑MOVE

↓MOVE

CENTER

←MOVE

Page 78: EMCO WinNC for Fanuc 31i Mill Software description, software

C36 Fanuc 31i Mill

OperatiOn

Selecting a graphics coordinates system

The «ROTATE» softkey selects the graphics co-ordinates system.

This softkey selects the XY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis. The viewing point is opposite to that mentioned above.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis.

ROTATE

XY

ZY

YZ

XZ

ZX

ISO XY

ISO XY

ISO YZ

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey executes a clockwise rotation with the screen as the central axis.

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey executes a clockwise rotation with the screen as the central axis.

Page 79: EMCO WinNC for Fanuc 31i Mill Software description, software

C37 Fanuc 31i Mill

OperatiOn

This softkey executes a clockwise rotation with the screen as the central axis.

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey selects the simulation playback speed. There are 5 steps available for the speed.

SPEED+SPEED-

3D configuration

Instructions:The selection of availablesetting options depends on whether a3D viewing licence is available or not.

This softkey starts 3D configuration.3D-

CONFIG

3D configuration

Page 80: EMCO WinNC for Fanuc 31i Mill Software description, software

C38 Fanuc 31i Mill

OperatiOn

Zooming with the mouse

Strg

Shift graphicsPress cursor button to shift the graphics.

Shift

Page 81: EMCO WinNC for Fanuc 31i Mill Software description, software

D1 Fanuc 31i Mill

Programming manualguide i

D: Programming with MANUAL GUIDE i

Instructions:This programming manual describes all functions that can be executed with WinNC.Depending on the machine you are operating with WinNC, not all functions may be available.

Example:The Concept MILL 55 milling machine has no position-controlled main spindle, so it is also not pos-sible to program spindle positions.

OverviewM-commands

M00 Programmed stopM01 Optional stop

M02 End of program

M03 Spindle ON clockwiseM04 Spindle ON counterclockwiseM05 Spindle stop

M06 Perform tool change

M07 Minimal lubrication ONM08 Coolant ONM09 Coolant OFF, minimal lubrication OFF

M10 Divider clamp onM11 Slacken divider clamping

M25 Open clamping deviceM26 Close clamping deviceM27 Swivel dividerM29 Thread tapping without compensation

chuck

M30 End of main program

M51 C-axis mode activationM52 C-axis mode deactivation

M71 Exhaust ONM72 Exhaust OFF

M98 Call subroutineM99 Jump back to calling program

Page 82: EMCO WinNC for Fanuc 31i Mill Software description, software

D2 Fanuc 31i Mill

Programming manualguide i

Produce MANUAL GUIDE i program1 Select «Edit» mode.

2 Press softkey.

3 Enter program or folder name and confirm with «CREATE».

If a program name was allotted previously, an appropriate message will be displayed.

NEWPRG

CREATE

OverviewMANUAL GUIDE i helps you to use CNC con-trollers which are installed in lathes and milling machines.Using a single screen, machining programs can be produced, checked by animation and the ma-chining set up and run.MANUAL GUIDE i uses the ISO code format for machining programs and machining cycles in or-der to implement extended machining processes.

Instructions:Program names can consist of at least 1 and a maximum of 32 characters. The following characters are allowed: «Zz», «0 to 9», «_» «+» and «.».

The Fanuc standard format for program names is as follows:O1234. If fewer than 4 numbers are entered, those missing are populated with zeroes.

Page 83: EMCO WinNC for Fanuc 31i Mill Software description, software

D3 Fanuc 31i Mill

Programming manualguide i

Programming set-up

The new program is entered with the softkeys in the following steps:

• START• CYCLE• END

A cycle is divided into 2 parts:

• Machining conditions• Geometric data

Program start START

1 Press «START» softkey.

CYCLE ENDSTART

START

Instructions:The fixed shapes from form 1 are available for «START».

2 Find the desired selection in the START register card and confirm with «SELECT».

INSERT

Page 84: EMCO WinNC for Fanuc 31i Mill Software description, software

D4 Fanuc 31i Mill

Programming manualguide i

Select unmachined part

1 Press «START» softkey.

2 Select the register card for an unmachined part.

START

3 Select the desired unmachined part and confirm with «SELECT».

SELECT

4 Enter the data for the unmachined part and close the entry with «INSERT».

INSERT

Page 85: EMCO WinNC for Fanuc 31i Mill Software description, software

D5 Fanuc 31i Mill

Programming manualguide i

2 Go to the end of program selection and close the entry with «INSERT».

INSERT

Cycle programming

1 Press «CYCLE» softkey.

There is a precise description of entry and pro-gramming for cycles later in this chapter under «Working with cycles».

Program end END

1 Press «END» softkey.

CYCLE

END

Page 86: EMCO WinNC for Fanuc 31i Mill Software description, software

D6 Fanuc 31i Mill

Programming manualguide i

Raw part definitionIf you are machining in a program with a stop point (e.g.: G54) and a transformation (G52 ) to the actual workpiece zero point, the unmachined part must be described from the stop point outwards.

M= Machine zero pointA= Stop pointW= Workpiece zero point

In the following situation, the unmachined part must be described from A outwards

Page 87: EMCO WinNC for Fanuc 31i Mill Software description, software

D7 Fanuc 31i Mill

Programming manualguide i

Cycle overviewThe cycle groups with the Fanuc ManualGuide i cycles defined within them are listed here.

Hole machining• Centre Drilling G1100• Drilling G1101• Tapping G1002• Reaming G1103• Boring G1104

Figure: Hole position• Random points G1210• Linear points G1211• Grid points G1213• Rectangle points G1214• Circle points G1215• Arc points G1216• A-axis hole in cylinder (arc) G1772• A-axis hole in cylinder (free) G1773

Contouring• Outer wall countering rough G1060• Outer wall countering bottom finish G1061• Outer wall countering side finish G1062• Outer wall countering chamfer G1063• Inner wall countering rough G1064• Inner wall countering bottom finish G1065• Inner wall countering side finish G1066• Inner wall countering chamfer G1067• Partial contouring rough G1068• Partial contouring bottom finish G1069• Partial contouring side finish G1070• Partial contouring chamfer G1071

Face machining• Facing rough G1020• Facing finish G1021

Pocketing• Pocketing rough G1040• Pocketing bottom finish G1041• Pocketing side finish G1042• Pocketing chamfer G1043

Page 88: EMCO WinNC for Fanuc 31i Mill Software description, software

D8 Fanuc 31i Mill

Programming manualguide i

Page 89: EMCO WinNC for Fanuc 31i Mill Software description, software

D9 Fanuc 31i Mill

Programming manualguide i

Figure: Facing figure• Square facing G1220

Figure: Contouring figure• Square G1220 convex• Circle G1221 convex• Track G1222 convex• Polygon G1225 convex• Free figure• XA-plane free form convex contour for cylinder

G1700• Square G1220 concave• Circle G1221 concave• Track G1222 concave• Polygon G1225 concave• Free concave figure• XA-plane free form concave contour for cylinder

G1700• Free open figure• XA-plane free form open contour for cylinder

G1700

Figure: Pocket figure• Square concave G1220• Circle concave G1221• Track concave G1222• Polygon concave G1225• Free concave figure• XA-plane free form concave contour for cylinder

G1700

Page 90: EMCO WinNC for Fanuc 31i Mill Software description, software

D10 Fanuc 31i Mill

Programming manualguide i

Define cycle• Select «Edit» mode.

• Create a new program or open an existing pro-gram.

• Select the softkey toolbar for turning or milling cycles with the extension buttons.

• Press softkey.

O LISTNEWPRGOR

< >

START

Working with cyclesFrequently repeated processes, which include several machining steps, are saved in the con-troller as cycles. Some special functions are also available as cycles.

Page 91: EMCO WinNC for Fanuc 31i Mill Software description, software

D11 Fanuc 31i Mill

Programming manualguide i

Pocket milling

Contour machining

Plane machiningDrilling cycles

The dropdown window shows the different cycle groups.

• Drilling• Plane machining• Contour machining• Pocket milling

Select the desired cycle and confirm the selec-tion with the «SELECT» softkey or cancel it with «CANCEL».

• «SELECT» softkey to confirm.

• «CANCEL» softkey to cancel.

SELECT

CANCEL

Page 92: EMCO WinNC for Fanuc 31i Mill Software description, software

D12 Fanuc 31i Mill

Programming manualguide i

Options menu for data entry via softkey.

Tab for entering machining conditions, tool dis-tance and other details.With the cursor keys <←> or <→> you can switch from one tab to another. The chosen active tab is depicted in blue. In the upper right corner of the window «TAB» is displayed.

Entry fields marked with * are optional and are not required to be populated. These entry fields can remain empty.

Softkey for inserting the entered data into the program or for cancelling the data entry.

Data Entry for Machining Cycles

Coloured positioning movements:• Red positioning movement = tool moves in rapid

traverse.• Green positioning movement = tool moves in

machining feed.

For switching tabs with the cursor keys, «TAB ←→» is displayed in the upper right corner of the window.

Page 93: EMCO WinNC for Fanuc 31i Mill Software description, software

D13 Fanuc 31i Mill

Programming manualguide i

For cursor movement inside an entry field «CHAR ←→» is displayed.

• Data entry By actuating the cursor keys <↑> or <↓>, you

can set the cursor on the desired data entry field.

• There are 2 options for data entry: 1. Entering data as numerals. In the lower part of the window, the message

«Enter data» is displayed.

2. Entering data by using softkeys. For these fields an options menu is provided in the softkey bar.

The message «Choose a softkey» is displayed.

The softkey «CHCURS» (change cursor) is dis-played in the data entry windows for the machin-ing cycle, figure and contour programs.This softkey is used to choose, whether the cur-sor keys <←> and <→> are used for switching between the tabs or for moving the cursor inside the entered data in the entry field.

Page 94: EMCO WinNC for Fanuc 31i Mill Software description, software

D14 Fanuc 31i Mill

Programming manualguide i

Default values for cycle param-eters

EMConfig is an auxiliary software to WinNC.WinNC settings can be changed with EMConfig.

Open EMConfig and select the configuration point:

Default values for cycle parameters

The following settings can be reached under the default values heading:

• Persist last entered cycle data remains even after

receiving a control system restart

• Persist until restart last entered cycle data remains received while

the control system is still running

• Do not persist Cycle data is reset to the default values im-

mediately after quitting the cycle

Instructions:If cycles have already been programmed once, then these input values are saved and next time are proposed as default values. This can be unfavourable in training and can therefore be configured via EMConfig.

Page 95: EMCO WinNC for Fanuc 31i Mill Software description, software

D15 Fanuc 31i Mill

Programming manualguide i

Ignore plausibility check for saving

Use this checkbox to activate or deactivate the plausibility check for saving.

Activate this setting to be able to save cycles, despite an er-ror message being present. The corresponding error messages certainly remain in existence, but the «Accept» softkey is available.

Set plausibility check for saving

Page 96: EMCO WinNC for Fanuc 31i Mill Software description, software

D16 Fanuc 31i Mill

Programming manualguide i

Select dimensions system

Use this checkbox to select the metric or imperial measurement system for the controller.

Set metric or imperial measuring system

Instructions:Imperial programs cannot be used with a metric controller (and vice-versa).

Length dimensions imperial

feet *) inch mm m

1 12 304.5 0.304

inch °) feet mm m

1 0.83 25.4 0.0254

Length dimensions metric

m mm inch feet

1 1000 39.37008 3.28084

mm m inch feet

1 0.001 0.0393701 0.0032808

Units table

*) feet: only at constant cutting speed

°) inch: Standard input

Page 97: EMCO WinNC for Fanuc 31i Mill Software description, software

D17 Fanuc 31i Mill

Programming manualguide i

Hole machining• Centre Drilling G1100• Drilling G1101• Tapping G1002• Reaming G1103• Boring G1104

Page 98: EMCO WinNC for Fanuc 31i Mill Software description, software

D18 Fanuc 31i Mill

Programming manualguide i

Centre drilling G1100

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type • [NORMAL]: Without dwell time. (Initial value)• [DWELL]: With dwell time.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R position (radius value, positive value).

F Feed rate Feed speed (positive value)

P* Dwell time Dwell time at the bottom of the drilling. If this is missing, 0 is as-sumed. (In seconds, positive value)

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

1. CENTRE DRILLINGHOLEMACHIN.CYCLE

Page 99: EMCO WinNC for Fanuc 31i Mill Software description, software

D19 Fanuc 31i Mill

Programming manualguide i

Cycle description1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

Tool track

Page 100: EMCO WinNC for Fanuc 31i Mill Software description, software

D20 Fanuc 31i Mill

Programming manualguide i

Drilling G1001

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [NORMAL]: Without dwell time. (Initial value)• [DWELL]: With dwell time.• [PECK]: Deep hole drilling• [H SPED]: With dwell time.

H Go past amount set

• [NOTHIN]: Drilling depth relative to the tool shaft• [SETING]: Drilling depth relative to the tool tipFor the setting [SETING] the parameters U, V, K and the softkey [CALC] are available under Details.

Q* Stroke depth (INCR+) Cut depth executed per cut (radius value, positive value). Only for deep hole drilling and chip breaking.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT- 2]: All movements between borings, including the last return, are made to point I.• [REF.] : All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

2. DRILLINGHOLEMACHIN.CYCLE

Page 101: EMCO WinNC for Fanuc 31i Mill Software description, software

D21 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

U Tool diameter Tool diameter entry

V Nose angle Cutting angle entry

K Go past amount Overrun entry

Cutting condition

Data item Meaning

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 is as-sumed. (In seconds, positive value)Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 102: EMCO WinNC for Fanuc 31i Mill Software description, software

D22 Fanuc 31i Mill

Programming manualguide i

Cycle description: with/without dwell time1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

Cycle description: Long-hole drilling1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the position «Machining start position — Depth of the first cut (D1)».

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

4 The tool is moved in rapid traverse into the po-sition «Machining end position of the preceding cut + retraction clearance (U)».

5 The tool is moved with feed speed (F) into the position «Machining end position — Cut depth compensation cut (Dn)».

6 Steps <3> to <5> are repeated until the final machining end position is reached.

7 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

tool track

tool track

Page 103: EMCO WinNC for Fanuc 31i Mill Software description, software

D23 Fanuc 31i Mill

Programming manualguide i

Cycle description: Chip crushing1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the position «Machining start position — Depth of the first cut (D1)».

3 The tool is moved in rapid traverse into the position «Instantaneous position + retraction clearance (U)».

4 The tool is moved with feed speed (F) into the position «Machining end position — Cut depth compensation cut (Dn)».

5 Steps <3> and <4> are repeated until the ma-chining end position is reached.

6 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

tool track

Page 104: EMCO WinNC for Fanuc 31i Mill Software description, software

D24 Fanuc 31i Mill

Programming manualguide i

Tapping G1002

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type • [NORMAL]: Clockwise tapping.• [REVERS]: Counterclockwise tapping.

R Tap type • [FLOAT]: Thread tapping with compensating chuck.• [RIGID]: Thread tapping without compensating chuck.

D Thread lead Tap pitch (radius value, positive value).

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT- 2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

P* Dwell time Dwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value)

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

3. TAPPINGHOLEMACHIN.CYCLE

Page 105: EMCO WinNC for Fanuc 31i Mill Software description, software

D25 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 Stop spindle.

4 The spindle is turned in the opposite direction.

5 The tool is moved with feed speed (F) into the position «Machining start position + clearance (C)».

6 The spindle changes to the normal direction of rotation.

tool track

Page 106: EMCO WinNC for Fanuc 31i Mill Software description, software

D26 Fanuc 31i Mill

Programming manualguide i

Reaming G1003

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [CUT]: The tool is retracted with feed speedfrom the bottom of the drilling.• [RAPID]: The tool is retracted in rapid traverse from the bottom of the drilling.• [DWELL]: After dwelling at the bottom of the drilling, the tool is retracted with feed speed.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value). Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

4. REAMINGHOLEMACHIN.CYCLE

Page 107: EMCO WinNC for Fanuc 31i Mill Software description, software

D27 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 Stop spindle.

4 The spindle is turned in the opposite direction.

5 The tool is moved with feed speed (F) into the position «Machining start position + clearance (C)».

6 The spindle changes to the normal direction of rotation.

tool track

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

Page 108: EMCO WinNC for Fanuc 31i Mill Software description, software

D28 Fanuc 31i Mill

Programming manualguide i

Boring G1004

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [CUT]: The tool is retracted with feed speedfrom the bottom of the drilling.• [RAPID]: The tool is retracted in rapid traverse from the bottom of the drilling.• [DWELL]: After dwelling at the bottom of the drilling, the tool is retracted with feed speed.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value). Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

5. BORINGHOLEMACHIN.CYCLE

Page 109: EMCO WinNC for Fanuc 31i Mill Software description, software

D29 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved with retraction speed (Fr) into the position «Machining start position + clearance (C)».

tool track

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

Page 110: EMCO WinNC for Fanuc 31i Mill Software description, software

D30 Fanuc 31i Mill

Programming manualguide i

Page 111: EMCO WinNC for Fanuc 31i Mill Software description, software

D31 Fanuc 31i Mill

Programming manualguide i

Face machining• Facing rough G1020• Facing finish G1021

Page 112: EMCO WinNC for Fanuc 31i Mill Software description, software

D32 Fanuc 31i Mill

Programming manualguide i

Facing (rough) G1020

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Thickness Face mill diameter

H* Finish amount Finished dimension in plane machining.

L Cut depth of radius Cut depth in tool radius direction to the next cutting track.

J* Cut depth of axis Cut depth in tool axis direction per cutting process.

F Feed rate radius Feed speed when cutting in toolradius direction.

E Feed rate axis Feed speed when cutting in thetool axis direction.

1. FACING (ROUGH)FACEMACHIN.CYCLE

Page 113: EMCO WinNC for Fanuc 31i Mill Software description, software

D33 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

I 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Cutting method

• [SINGLE]: Cutting in tool radius direction is always done in the same direction.• [ZIGZAG]: Cutting in tool radius direction is done forwards and backwards.

P Path move method

• [PULL]: Return to point R before approaching the start point for the next cutting track (in tool axis direction).• [KEEP]: Direct approach to the start point of the next cutting track without returning to point R.Only if machining method [ZIGZAG]

V Path move feed rate

Traverse speed with which the tool moves to the start point for the next cutting track. If the feed speed is set to 0, the tool is traversed in rapid traverse.Only if machining method [ZIGZAG]

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

M Clearance of radius Distance between the end of the workpiece and the end of the tool in the retraction position (radius value).

A Cutting direction

• [RIGHT]: Cutting is done to the right as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the right.• [LEFT]: Cutting is done to the left as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the left.• [UP]: Cutting is done upwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track up-wards.• [DOWN]: Cutting is done downwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track downwards.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

B Cut shift direction

• [RIGHT]: Cutting is done to the right during the change between two cutting tracks, as shown in the sketch.• [LEFT]: Cutting is done to the left during the change between two cutting tracks, as shown in the sketch.• [UP]: Cutting is done upwards during the change between two cutting tracks, as shown in the sketch.• [DOWN]: Cutting is done downwards during the change between two cutting tracks, as shown in the sketch.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 114: EMCO WinNC for Fanuc 31i Mill Software description, software

D34 Fanuc 31i Mill

Programming manualguide i

Facing (finish) G1021

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

L Cut depth of radius Cut depth in tool radius direction to the next cutting track.

F Feed rate radius Feed speed when cutting in toolradius direction.

E Feed rate axis Feed speed when cutting in thetool axis direction.

2. FACING (FINISH)FACEMACHIN.CYCLE

Page 115: EMCO WinNC for Fanuc 31i Mill Software description, software

D35 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Cutting method

• [SINGLE]: Cutting in tool radius direction is always done in the same direction.• [ZIGZAG]: Cutting in tool radius direction is done forwards and backwards.

P Path move method

• [PULL]: Return to point R before approaching the start point for the next cutting track (in tool axis direction).• [KEEP]: Direct approach to the start point of the next cutting track without returning to point R.Only if machining method [ZIGZAG]

V Path move feed rate

Traverse speed with which the tool moves to the start point for the next cutting track. If the feed speed is set to 0, the tool is traversed in rapid traverse.Only if machining method [ZIGZAG]

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

M Clearance of radius Distance between the end of the workpiece and the end of the tool in the retraction position (radius value).

A Cutting direction

• [RIGHT]: Cutting is done to the right as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the right.• [LEFT]: Cutting is done to the left as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the left.• [UP]: Cutting is done upwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track up-wards.• [DOWN]: Cutting is done downwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track downwards.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

B Cut shift direction

• [RIGHT]: Cutting is done to the right during the change between two cutting tracks, as shown in the sketch.• [LEFT]: Cutting is done to the left during the change between two cutting tracks, as shown in the sketch.• [UP]: Cutting is done upwards during the change between two cutting tracks, as shown in the sketch.• [DOWN]: Cutting is done downwards during the change between two cutting tracks, as shown in the sketch.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 116: EMCO WinNC for Fanuc 31i Mill Software description, software

D36 Fanuc 31i Mill

Programming manualguide i

Page 117: EMCO WinNC for Fanuc 31i Mill Software description, software

D37 Fanuc 31i Mill

Programming manualguide i

Contouring• Outer wall countering rough G1060• Outer wall countering bottom finish G1061• Outer wall countering side finish G1062• Outer wall countering chamfer G1063• Inner wall countering rough G1064• Inner wall countering bottom finish G1065• Inner wall countering side finish G1066• Inner wall countering chamfer G1067• Partial contouring rough G1068• Partial contouring bottom finish G1069• Partial contouring side finish G1070• Partial contouring chamfer G1071

Page 118: EMCO WinNC for Fanuc 31i Mill Software description, software

D38 Fanuc 31i Mill

Programming manualguide i

Outer wall (rough) G1060

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

1. OUTER WALL(ROUGH)CON-

TOURINGCYCLE

Page 119: EMCO WinNC for Fanuc 31i Mill Software description, software

D39 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIK]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 120: EMCO WinNC for Fanuc 31i Mill Software description, software

D40 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1060, G1064 and G1068: The side surface contour of the machining

profile is exhausted. The following tool track is generated.

1 The tool is moved to the above approach start point.

2 The tool is moved to the height of the machin-ing surface.

3 The tool cuts along the side surface contour of the machining profile.

The tool cuts by infeed machining in the tool radius direction until the machining allowance in the tool radius direction is exhausted.

4 Steps <2> and <3> are repeated until the ma-chining allowance in the tool axis direction is exhausted.

5 The tool retracts.

Tool track G1060, G1064, G1068

Infeed machining in tool radius direction

Approach Retract

Infeed machining in the tool axis direction

Page 121: EMCO WinNC for Fanuc 31i Mill Software description, software

D41 Fanuc 31i Mill

Programming manualguide i

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Amount to be cut in the first infeed machining cycle in the tool axis direction — clearance (C) in the tool axis direction» with the feed speed (E) speci-fied for movement in the tool axis direction.

3 The tool approaches in the tool radius direction the start point for the first infeed machining in the tool radius direction.

Retraction cycle description:

1 The tool is moved from the approach end point to the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direc-tion.

Approach G1060, G1064, G1068

Retraction G1060, G1064, G1068

First infeedMachining cycle in tool radius direction

Machining start point

Approach start point

Cut amount F in the first infeed of the machining cycle in tool direction

Clearance C in tool axis direction

Clearance C in tool axis direction

Height of the machining profile surface height

Height of the upper surface of the machining profile

Page 122: EMCO WinNC for Fanuc 31i Mill Software description, software

D42 Fanuc 31i Mill

Programming manualguide i

Page 123: EMCO WinNC for Fanuc 31i Mill Software description, software

D43 Fanuc 31i Mill

Programming manualguide i

Tool radius alignment cycle description: 1 The tool is moved for cutting along the contour

from the first infeed machining cycle start point to the end point with the feed speed (F) spec-ified for single side machining with roughing tool.

2 The tool approaches as follows.

If the infeed machining start point coincides with the infeed machining end point: The tool approaches the next infeed machining start point in the normal direction with the feed speed (F) specified for double-sided machining with the roughing tool.

If the infeed machining start point does not co-

incide with the infeed machining end point: The tool approaches the second infeed machining start point.

3 The tool is moved for cutting along the ma-chining profile contour with the feed speed (F) specified for single side machining with roughing tool.

4 Steps <2> and <3> are repeated until the ma-chining allowance (machining allowance in the tool axis direction) is exhausted.

5 The tool retracts.Infeed machining in the tool radius directionG1060, G1064, G1068

Finishing dimension in tool radius direction

Machiningallowance in tool radiusdirection

Feed speed Fr specified for single sided machin-ing with roughing tool

Start and end points of the first infeed machining cycle (in this case coincident)

Feed speed Fr specified for double sided machin-ing with roughing tool

Retraction from the wall in the toolradius direction at the end of the infeed machining

The amount to be ex-hausted with each infeed machining cycle in the tool radius direction

First infeedmachiningcycle

Second infeedmachining cycle

Third infeed machining cycle

Page 124: EMCO WinNC for Fanuc 31i Mill Software description, software

D44 Fanuc 31i Mill

Programming manualguide i

Outer wall (bottom finish) G1061

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

2. OUTER WALL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 125: EMCO WinNC for Fanuc 31i Mill Software description, software

D45 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 126: EMCO WinNC for Fanuc 31i Mill Software description, software

D46 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1061, G1065 and G1069: The bottom surface of the side surface contour

of the machining profile is machined. The fol-lowing tool track is generated.

1 The tool is moved to the machining profile approach start point.

2 The tool is moved to the height of the machin-ing surface of the machining profile.

3 The tool is moved to cut along the side surface contour of the machining profile.

The tool cuts by infeed machining in the tool radius direction until the machining allowance in the tool radius direction is exhausted.

4 The tool retracts.

Tool track G1061, G1065, G1069

Infeed machiningin the toolradius direction

approach Retract

Page 127: EMCO WinNC for Fanuc 31i Mill Software description, software

D47 Fanuc 31i Mill

Programming manualguide i

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Machining profile bottom surface + machining allowance (Vt) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direction.

3 The tool approaches in the tool radius direction the start point for the infeed machining in the tool radius direction.

Retraction cycle description: 1 The tool is moved from the approach end point

with rapid traverse into the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

Infeed machining in the tool radius direction. This movement is the same as for contour machining (roughing). Details of contour ma-chining (roughing) can be found in the relevant descriptions.Retraction track G1061, G1065, G1069

Approach G1061, G1065, G1069

Firstinfeed machiningcycle in thetool radiusdirection

Start point for machining

Start point for approach

Clearance C in tool axis direction

Height of the uppersurface of themachiningprofile

Clearance C intool axis direction.

Height of the uppersurface of themachiningprofile

Height of thebottom surface of themachining profile

Page 128: EMCO WinNC for Fanuc 31i Mill Software description, software

D48 Fanuc 31i Mill

Programming manualguide i

Outer wall (side finish) G1062

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

3. OUTER WALL(SIDE FINISH)CON-

TOURINGCYCLE

Page 129: EMCO WinNC for Fanuc 31i Mill Software description, software

D49 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 130: EMCO WinNC for Fanuc 31i Mill Software description, software

D50 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1062, G1066 and G1070: 1 The tool is moved to the above approach start

point.

2 The tool is moved to the height of the bottom surface of the machining profile.

3 The tool is moved to cut along the side surface contour of the machining profile.

The machining allowance (Vt) in the tool radius direction is used up in a specified number of finishing machining cycles by infeed machin-ing.

4 The tool retracts.

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Machining profile bottom surface + finishing dimension (S) in the tool axis direction + clearance (C) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direction.

3 The tool traverses into the position «Machining profile bottom surface + finishing dimension (Tt) in the tool axis direction» with the feed speed (Ft) specified for cutting the machining profile.

4 The tool approaches in the tool radius direction the start point for the infeed machining cycle in the tool radius direction.

Tool track G1062, G1066, G1070

Approach G1062, G1066, G1070

Approach Retract

Machining start point

Approach start point

Clearance C in tool axis direction

Height of the uppersurface of themachiningprofile

Page 131: EMCO WinNC for Fanuc 31i Mill Software description, software

D51 Fanuc 31i Mill

Programming manualguide i

Cycle description process: 1 The tool is moved from the approach end point

with rapid traverse into the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

Infeed machining in tool radius direction: The tool moves to the cut start point in the tool ra-

dius direction with the feed speed (F) specified for cutting in the tool radius direction.

2 The tool is moved along the contour from the first infeed machining cycle start point to the first infeed machining end point with the feed speed (F) specified for cutting in the tool radius direction.

3 The tool retracts from the start point for ma-chining in the tool radius direction with the feed speed (F) specified for cutting in the tool radius direction.

4 The tool moves to the next infeed machining cycle start point in accordance with the type of movement specified for infeed machining.

5 Steps <2> to <4> are repeated as often as the number of finishing machining cycles speci-fied.

Retraction G1062, G1066, G1070

Retraction G1062, G1066, G1070

Clearance C intool axis direction.

Height of the uppersurface of themachiningprofile

Feed speed Fspecified for inwards machining

in the toolradius direction

First fine machining cycle

Last finemachining cycle

Feed speed F specified for movement in the tool radius direction

Page 132: EMCO WinNC for Fanuc 31i Mill Software description, software

D52 Fanuc 31i Mill

Programming manualguide i

Outer wall (chamfer) G1063

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

4. OUTER WALL(CHAMFER)CON-

TOURINGCYCLE

Page 133: EMCO WinNC for Fanuc 31i Mill Software description, software

D53 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 134: EMCO WinNC for Fanuc 31i Mill Software description, software

D54 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1063, G1067 and G1071: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (Cr)».

2 The tool is moved into the position «Chamfer-ing amount (C) + ejection path (P)» with the feed speed (F) specified for cutting.

3 The tool cuts into the section to be chamfered to the cut depth (Dr) in the tool radius direction with feed speed (F).

4 The tool performs the finishing machining with the feed speed (F) specified for finishing.

5 The tool is moved in rapid traverse into the position «Cutting start point + clearance (Cr)».

Tool track G1063, G1067, G1071

Page 135: EMCO WinNC for Fanuc 31i Mill Software description, software

D55 Fanuc 31i Mill

Programming manualguide i

Page 136: EMCO WinNC for Fanuc 31i Mill Software description, software

D56 Fanuc 31i Mill

Programming manualguide i

Inner wall (rough) G1064

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

5. INNER WALL(ROUGH)CON-

TOURINGCYCLE

Page 137: EMCO WinNC for Fanuc 31i Mill Software description, software

D57 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 138: EMCO WinNC for Fanuc 31i Mill Software description, software

D58 Fanuc 31i Mill

Programming manualguide i

Inner wall (bottom finish) G1065

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

6. INNER WALL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 139: EMCO WinNC for Fanuc 31i Mill Software description, software

D59 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 140: EMCO WinNC for Fanuc 31i Mill Software description, software

D60 Fanuc 31i Mill

Programming manualguide i

Inner wall (side finish) G1066

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

7. INNER WALL(SIDE FINISH)CON-

TOURINGCYCLE

Page 141: EMCO WinNC for Fanuc 31i Mill Software description, software

D61 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 142: EMCO WinNC for Fanuc 31i Mill Software description, software

D62 Fanuc 31i Mill

Programming manualguide i

Inner wall (chamfer) G1067

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

8. INNER WALL(CHAMFER)CON-

TOURINGCYCLE

Page 143: EMCO WinNC for Fanuc 31i Mill Software description, software

D63 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 144: EMCO WinNC for Fanuc 31i Mill Software description, software

D64 Fanuc 31i Mill

Programming manualguide i

Partial (rough) G1068

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

9. PARTIAL (ROUGH)CON-TOURINGCYCLE

Page 145: EMCO WinNC for Fanuc 31i Mill Software description, software

D65 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 146: EMCO WinNC for Fanuc 31i Mill Software description, software

D66 Fanuc 31i Mill

Programming manualguide i

Partial (bottom finish) G1069

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

10. PARTIAL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 147: EMCO WinNC for Fanuc 31i Mill Software description, software

D67 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 148: EMCO WinNC for Fanuc 31i Mill Software description, software

D68 Fanuc 31i Mill

Programming manualguide i

Partial (side finish) G1070

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

11. PARTIAL(SIDE FINISH)CON-

TOURINGCYCLE

Page 149: EMCO WinNC for Fanuc 31i Mill Software description, software

D69 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 150: EMCO WinNC for Fanuc 31i Mill Software description, software

D70 Fanuc 31i Mill

Programming manualguide i

Partial (chamfer) G1071

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

12. PARTIAL (CHAMFER)CON-TOURINGCYCLE

Page 151: EMCO WinNC for Fanuc 31i Mill Software description, software

D71 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 152: EMCO WinNC for Fanuc 31i Mill Software description, software

D72 Fanuc 31i Mill

Programming manualguide i

Page 153: EMCO WinNC for Fanuc 31i Mill Software description, software

D73 Fanuc 31i Mill

Programming manualguide i

Pocketing• Pocketing rough G1040• Pocketing bottom finish G1041• Pocketing side finish G1042• Pocketing chamfer G1043

Page 154: EMCO WinNC for Fanuc 31i Mill Software description, software

D74 Fanuc 31i Mill

Programming manualguide i

Pocketing (rough) G1040

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T* Bottom thicknessMachining allowance at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

S* Side thickness

Machining allowance at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)Remarks: If side finishing dimension and bottom finishing dimension are ignored, a complete pocket is machined.

L Cut depth of radius Cut depth at the side surface (in tool radius direction)per cutting process (radius value, positive value).

J* Cut depth of axis Cut depth in tool axis direction per cutting process (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

1. POCKETING(ROUGH)POCKET-

INGCYCLE

Page 155: EMCO WinNC for Fanuc 31i Mill Software description, software

D75 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

B Clearance of radius Distance between the pocket wall and the tool retraction position in tool radius direction (radius value, positive value).

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

Z Approach motion • [3 AXIS]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

X Cut depth method • [STRAIT]: Plunging in the form of a straight line.• [HELICL]: Plunging on spiral path (helix).

A* Cut angleAngle under which the tool cuts obliquely or in a spiral into the pocket. The unmachined part is viewed as 0 degrees.(In 1-degree increments, positive value).

Page 156: EMCO WinNC for Fanuc 31i Mill Software description, software

D76 Fanuc 31i Mill

Programming manualguide i

Cycle descriptionThe interior of a pocket machining profile is cut out spirally. The following tool track is generated.

For a pocket machining profile, several island machining profiles and several cavity machining profiles can be defined. Island machining profiles remain unmachined. Cavity machining profiles are bypassed so that they are not machined.

The tool track is produced in a manner such that a collision to be expected with pocket machining profiles or island machining profiles is avoided.

The tool track generated is effective, as retraction in the direction of the tool axis is avoided as far as possible. Infeed machining in the tool axis direction is possible with this tool track.

Only given machine allowances can be used. Machining can be designed either for upcut or for downcut machining. The machining direction around the islands is controlled automatically.

tool track

Page 157: EMCO WinNC for Fanuc 31i Mill Software description, software

D77 Fanuc 31i Mill

Programming manualguide i

Tool track

Tool track

It is possible to cut into the machining profile from the inside and from the outside. If a residue that has not been cut away remains at a corner, it is possible to determine this auto-matically and cut it away.

It can be cut at any angle in the tool axis direction. This also determines the machining start point automatically.

The movement method for tool movement can be selected. However, a cutting depth on the top surface of island machining profiles can also be determined automatically.

In the following pocket machining profile, where the tool can move through the pocket, the tool is lifted off automatically, do that only the pocket area that has to be processed is machined.

If a number of cuts have to be made in the tool axis direction, each area is machined completely before another is started.

If a number of cuts have to be made in the tool axis direction, each area is machined completely before another is started.

Page 158: EMCO WinNC for Fanuc 31i Mill Software description, software

D78 Fanuc 31i Mill

Programming manualguide i

Pocketing (bottom finish) G1041

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thicknessMachining allowance at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth at the side surface (in tool radius direction)per cutting process (radius value, positive value).

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

2. POCKETING(BOTTOM FINISH)POCKET-

INGCYCLE

Page 159: EMCO WinNC for Fanuc 31i Mill Software description, software

D79 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

B Clearance of radius Distance between the pocket wall and the tool retraction position in tool radius direction (radius value, positive value).

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

X Cut depth method • [STRAIT]: Plunging in the form of a straight line.• [HELICL]: Plunging on spiral path (helix).

A* Cut angleAngle under which the tool cuts obliquely or in a spiral into the pocket. The unmachined part is viewed as 0 degrees.(In 1-degree increments, positive value).

Cycle descriptionThe bottom surface of a pocket machining profile is finished spirally. The tool track for this is the same as with pocket milling (roughing).

However, there is no infeed machining in the tool axis direction. Neither is the top surface of island machining profiles machined.

Tool track

Page 160: EMCO WinNC for Fanuc 31i Mill Software description, software

D80 Fanuc 31i Mill

Programming manualguide i

Pocketing (side finish) G1042

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

3. POCKETING(SIDE FINISH)POCKET-

INGCYCLE

Page 161: EMCO WinNC for Fanuc 31i Mill Software description, software

D81 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

P Approach type• [ARC]: The approach to the side surface takes the form ofan arc. The setting is specified as fixed and cannot be changed.

R Approach radius / -distance Radius, if [ARC] is specified.

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type • [ARC]: Retraction from the side surface takes the form of an arc.The setting is specified as fixed and cannot be changed.

X Escape radius / -distance Radius, only if [ARC] is specified.

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Cycle descriptionThe side contour of the pocket and of the island machining profile are finished. The tool track for this is the same as for contour machining (Finish-ing the side surface).

However, the specifications for the following points differ somewhat. There is no infeed ma-chining in the tool radius direction or in the tool axis direction.

Even if you should assume that the tool might collide with a pocket or island machining profile during finishing, no tool track is produced that can prevent this collision.Tool track

Page 162: EMCO WinNC for Fanuc 31i Mill Software description, software

D82 Fanuc 31i Mill

Programming manualguide i

Pocketing (chamfer) G1043

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value).

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value).

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

4. POCKETING(CHAMFER)POCKET-

INGCYCLE

Page 163: EMCO WinNC for Fanuc 31i Mill Software description, software

D83 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

P Approach type• [ARC]: The approach to the side surface takes the form ofan arc. The setting is specified as fixed and cannot be changed.

R Approach radius / -distance Radius, if [ARC] is specified.

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type • [ARC]: Retraction from the side surface takes the form of an arc.The setting is specified as fixed and cannot be changed.

X Escape radius / -distance Radius, only if [ARC] is specified.

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Cycle descriptionThe top surface of the pocket wall is chamfered. The tool track for this is the same as with pocket milling (roughing).

Page 164: EMCO WinNC for Fanuc 31i Mill Software description, software

D84 Fanuc 31i Mill

Programming manualguide i

Page 165: EMCO WinNC for Fanuc 31i Mill Software description, software

D85 Fanuc 31i Mill

Programming manualguide i

Figure: Hole position• Random points G1210• Linear points G1211• Grid points G1213• Rectangle points G1214• Circle points G1215• Arc points G1216• A-axis hole in cylinder (arc) G1772 • A-axis hole in cylinder (free) G1773

Page 166: EMCO WinNC for Fanuc 31i Mill Software description, software

D86 Fanuc 31i Mill

Programming manualguide i

Random Points G1210

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Point 1 X X-coordinates of the first drilling.

V Point 1 Y Y-coordinates of the first drilling.

A* Point 2 X X-coordinates of the second drilling.

C* Point 2 Y Y-coordinates of the second drilling.

D* Point 3 X X-coordinates of the third drilling.

E* Point 3 Y Y-coordinates of the third drilling.

F* Point 4 X X-coordinates of the fourth drilling.

I* Point 4 Y Y-coordinates of the fourth drilling.

J* Point 5 X X-coordinates of the fifth drilling.

K* Point 5 Y Y-coordinates of the fifth drilling.

M* Point 6 X X-coordinates of the sixth drilling.

P* Point 6 Y Y-coordinates of the sixth drilling.

Q* Point 7 X X-coordinates of the seventh drilling.

R* Point 7 Y Y-coordinates of the seventh drilling.

S* Point 8 X X-coordinates of the eighth drilling.

T* Point 8 Y Y-coordinates of the eighth drilling.

1. XY RANDOM POINTSHOLEPOSITIONFIGURE

Instructions:Values should not be entered for all drilling positions. However, if an entry is made, both X and Y coordinates should be entered as a pair for a drilling position.

Page 167: EMCO WinNC for Fanuc 31i Mill Software description, software

D87 Fanuc 31i Mill

Programming manualguide i

Page 168: EMCO WinNC for Fanuc 31i Mill Software description, software

D88 Fanuc 31i Mill

Programming manualguide i

Linear Points (same interval) G1211

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

A* Angle Angle of a straight line to the X-axis (initial value = 0).

D Hole position type

• [LENGTH]: Gives the distance between the first and last drilling and the number of drillings.• [PITCH]: Gives the distance between two adjacent drillings and the number of drillings.

E Length / Pitch

• [LENGTH]: Distance between the first and last drillings (if [LENGTH] is selected for point D). • [PITCH]: Distance between two adjacentdrillings (if [PITCH] is selected for point D).

C Number of hole Number of drillings

2. XY LINEAR POINTS(SAME INTERVAL)HOLE

POSITIONFIGURE

Instructions:It is unnecessary to enter a value for a drainage position.This applies also for cycles G1213 to G1216.

Skip

Data item Meaning

F* Omitting point 1 Point at which no hole is drilled (1)

I* Omitting point 2 Point at which no hole is drilled (2)

J* Omitting point 3 Point at which no hole is drilled (3)

K* Omitting point 4 Point at which no hole is drilled (4)

Page 169: EMCO WinNC for Fanuc 31i Mill Software description, software

D89 Fanuc 31i Mill

Programming manualguide i

XY Grid points G1213

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

U Length for X-axis Length of the first side of the grid (positive value).

W Length for Y-axis Length of the second side of the grid (positive value).

I Number for X-axis Number of drillings on the first side of the grid (positive value).

J Number for Y-axis Number of drillings on the second side of the grid(positive value).

K Angle for X-axis Angle of the first side of the grid (positive value). (Initial value = 0).

M Angle for Y-axis Angle of the second side of the grid (positive value). (Initial value = 90).

3. XY GRID POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

A* Omitting point 1 Point at which no hole is drilled (1)

C* Omitting point 2 Point at which no hole is drilled (2)

D* Omitting point 3 Point at which no hole is drilled (3)

E* Omitting point 4 Point at which no hole is drilled (4)

Page 170: EMCO WinNC for Fanuc 31i Mill Software description, software

D90 Fanuc 31i Mill

Programming manualguide i

XY Rectangle points G1214

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

U Length for X-axis Length of the first side of the grid (positive value).

W Length for Y-axis Length of the second side of the grid (positive value).

I Number for X-axis Number of drillings on the first side of the grid (positive value).

J Number for Y-axis Number of drillings on the second side of the grid(positive value).

K Angle for X-axis Angle of the first side of the grid (positive value). (Initial value = 0).

M Angle for Y-axis Angle of the second side of the grid (positive value). (Initial value = 90).

4. XY RECTANGLE POINTSHOLE

POSITIONFIGURE

Skip

Data item Meaning

A* Omitting point 1 Point at which no hole is drilled (1)

C* Omitting point 2 Point at which no hole is drilled (2)

D* Omitting point 3 Point at which no hole is drilled (3)

E* Omitting point 4 Point at which no hole is drilled (4)

Page 171: EMCO WinNC for Fanuc 31i Mill Software description, software

D91 Fanuc 31i Mill

Programming manualguide i

XY Circle points G1215

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Centre point X X-coordinates of the centre of the circle

V Centre point Y Y-coordinates of the centre of the circle

R Radius Radius of the circle (positive value).

A Start point angle Centre angle to the X-axis of the first drilling(positive or negative value) (initial value = 0).

C Number of hole Number of drillings (positive value).

5. XY CIRCLE POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

D* Omitting point 1 Point at which no hole is drilled (1)

E* Omitting point 2 Point at which no hole is drilled (2)

F* Omitting point 3 Point at which no hole is drilled (3)

I* Omitting point 4 Point at which no hole is drilled (4)

Page 172: EMCO WinNC for Fanuc 31i Mill Software description, software

D92 Fanuc 31i Mill

Programming manualguide i

XY Arc points (same interval) G1216

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Centre point X X-coordinates of the centre of the circle

V Centre point Y Y-coordinates of the centre of the circle

R Radius Radius of the arc (positive value).

A Start point angle Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

C Pitch angle Centre angle between two sequential drillings(positive or negative value).

D Number of hole Number of drillings (positive value).

6. XY ARC POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

E* Omitting point 1 Point at which no hole is drilled (1)

F* Omitting point 2 Point at which no hole is drilled (2)

I* Omitting point 3 Point at which no hole is drilled (3)

J* Omitting point 4 Point at which no hole is drilled (4)

Page 173: EMCO WinNC for Fanuc 31i Mill Software description, software

D93 Fanuc 31i Mill

Programming manualguide i

XA A-axis Hole Arc G1772

Entry fields marked with * are optional and are not required to be pop-ulated.

Machining Hole Position

Data element Meaning

B Basis position Z Z-coordinates of the work piece surface.

Z X-axis position radius X-coordinate of the hole position (positive value).

A Start point angle Centre angle to the X-axis of the first hole (positive or negative value) (initial value = 0).

7. A AXIS HOLE ON CYLIN-DER (ARC POINTS)HOLE

POSITIONFIGURE

Machining Outlet Position

Data element Meaning

C Pitch angle Centre angle between two sequential drillings(positive or negative value).

M Number of holes Number of holes (positive value).

Page 174: EMCO WinNC for Fanuc 31i Mill Software description, software

D94 Fanuc 31i Mill

Programming manualguide i

XA A-axis Hole Free G1773

Entry fields marked with * are optional and are not required to be pop-ulated.

8. A AXIS HOLE ON CYLIN-DER (RANDOM POINTS)HOLE

POSITIONFIGURE

Machining Hole Position

Data element Meaning

B Basis position Z Z-coordinates of the work piece surface.

H X-axis position 1 X-coordinates of the first hole.

V A-axis position 1 A-coordinate of the first hole.

A* X-axis position 2 X-coordinate of the second hole.

C* A-axis position 2 A-coordinate of the second hole.

D* X-axis position 3 X-coordinates of the third hole.

E* A-axis position 3 A-coordinate of the third hole.

F* X-axis position 4 X-coordinate of the fourth hole.

I* A-axis position 4 A-coordinate of the fourth hole.

J* X-axis position 5 X-coordinates of the fifth hole.

K* A-axis position 5 A-coordinate of the fifth hole.

M* X-axis position 6 X-coordinates of the sixth hole.

P* A-axis position 6 A-coordinate of the sixth hole.

Q* X-axis position 7 X-coordinates of the seventh hole.

R* A-axis position 7 A-coordinate of the seventh hole.

S* X-axis position 8 X-coordinates of the eighth hole.

T* A-axis position 8 A-coordinate of the eights hole.

Page 175: EMCO WinNC for Fanuc 31i Mill Software description, software

D95 Fanuc 31i Mill

Programming manualguide i

Figure: Front Surface Contour• Square G1220

Page 176: EMCO WinNC for Fanuc 31i Mill Software description, software

D96 Fanuc 31i Mill

Programming manualguide i

Page 177: EMCO WinNC for Fanuc 31i Mill Software description, software

D97 Fanuc 31i Mill

Programming manualguide i

XY Square facing G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [FACE]: used as contour in plane machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE FACINGFACINGFIGUREFIGURE

Page 178: EMCO WinNC for Fanuc 31i Mill Software description, software

D98 Fanuc 31i Mill

Programming manualguide i

Page 179: EMCO WinNC for Fanuc 31i Mill Software description, software

D99 Fanuc 31i Mill

Programming manualguide i

Figure: Contouring figure• Square G1220 convex• Circle G1221 convex• Track G1222 convex• Polygon G1225 convex• Free figure• XA plane free convex figure for cylinder G1700• Square G1220 concave• Circle G1221 concave• Track G1222 concave• Polygon G1225 concave• Free concave figure• XA plane free concave figure for cylinder G1700• Free open figure• XA plane free open figure for cylinder G1700

Page 180: EMCO WinNC for Fanuc 31i Mill Software description, software

D100 Fanuc 31i Mill

Programming manualguide i

XY Square convex G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE CONVEXCONT.FIGUREFIGURE

Page 181: EMCO WinNC for Fanuc 31i Mill Software description, software

D101 Fanuc 31i Mill

Programming manualguide i

XY Circle convex G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

2. XY CIRCLE CONVEXCONT.FIGUREFIGURE

Page 182: EMCO WinNC for Fanuc 31i Mill Software description, software

D102 Fanuc 31i Mill

Programming manualguide i

XY Track convex G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X Y-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

3. XY TRACK CONVEXCONT.FIGUREFIGURE

Page 183: EMCO WinNC for Fanuc 31i Mill Software description, software

D103 Fanuc 31i Mill

Programming manualguide i

XY Polygon convex G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

4. XY POLYGON CONVEXCONT.FIGUREFIGURE

Corner information

Data item Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius Only for chamfer or arc

Page 184: EMCO WinNC for Fanuc 31i Mill Software description, software

D104 Fanuc 31i Mill

Programming manualguide i

XY Free figure convex

Entry fields marked with * are optional and should not be populated.

5. XY FREE FIGURECONVEXCONT.

FIGUREFIGURE

Startpoint insert

Data item Meaning

T Figure type • [CONVEX]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Instructions:INPUT DATA are elements that are displayed when changing or editing in the data input window. This applies for cycles G1201 to G1206.

Instructions:OUTPUT DATA are elements that are dis-played in ISO code format as the generated program in the program window. You can call these up only for program display purposes. This applies also for cycles G1201 to G1206.

Page 185: EMCO WinNC for Fanuc 31i Mill Software description, software

D105 Fanuc 31i Mill

Programming manualguide i

Overview of the input elements for free contour programming

1 2 3 4 5 6 77

8 9

1 Input elements: Line, arc, radius, chamfer

2 Change contour element

3 Delete contour element

4 Recalculate contour data

5 Generate contour

6 Cancel input

7 Expansion buttons

8 Zoom graphic display in and out

9 Move graphic display

Page 186: EMCO WinNC for Fanuc 31i Mill Software description, software

D106 Fanuc 31i Mill

Programming manualguide i

Element data input

Data item Meaning

D Line direction

The line direction is selected by means of a softkey in the toolbar.• [RIGHT]:• [R-UP]:• [UP]:• [L-UP]:• [LEFT]:• [L-DOWN]:• [DOWN]:• [R-DOWN]:

X* End point X X-coordinates of the line end point.

Y* End point Y Y-coordinates of the line end point.

A* Angle Angle of the straight line

L Last connection• [TANGNT]: Contact with the immediately preceding contour.• [NO SET]: No contact with the immediately preceding contour (initial value).

M Next connection • [NO SET]:No contact with the immediately preceding contour (initial value).

Input items of line (XY plane) G1201

Entry fields marked with * are optional and should not be populated.

Page 187: EMCO WinNC for Fanuc 31i Mill Software description, software

D107 Fanuc 31i Mill

Programming manualguide i

Entry fields marked with * are optional and should not be populated.

Element data input

Data item Meaning

X* End point X X-coordinates of an arc endpointIncremental dimension programming is possible.

Y* End point Y Y-coordinates of an arc endpointIncremental dimension programming is possible.

R* Radius Radius of curvature

CX* Centre point CX X-coordinates of the centre of the arc

CY* Centre point CY Y-coordinates of the centre of the arc

L Last connection • [TANGNT]: Contact with the immediately preceding contour.• [NO SET]: No contact with the immediately preceding contour.

M Next connection • [NO SET]:No contact with the immediately preceding contour (initial value).

U Route type • [SHORT]: An arc with a long route is generated.• [LONG]: An arc with a short route is generated.

Input items for arc (XY plane) G1202, 1203

Page 188: EMCO WinNC for Fanuc 31i Mill Software description, software

D108 Fanuc 31i Mill

Programming manualguide i

Entry fields marked with * are optional and should not be populated.

Entry fields marked with * are optional and should not be populated.

Element data input

Data item Meaning

C Chamfer Chamfer, positive value

Element data input

Data item Meaning

R Corner radius Radius value, positive value

Input items of corner (XY plane) G1205

Input items of chamfer (XY plane) G1204

Page 189: EMCO WinNC for Fanuc 31i Mill Software description, software

D109 Fanuc 31i Mill

Programming manualguide i

Input items of end of arbitrary figures G1206

Close contour• Press softkey.

A dialogue with 2 selections pops up:

• Insert into the current program

• Save as a separate subroutine With this option, you can also select the folder

in which the subroutine is to be saved.

• Enter the next figure This softkey opens the contour editor input

mask. Other free contours can be created.

• «OK» closes the input.

CREATE

NXTFIG

OK

Page 190: EMCO WinNC for Fanuc 31i Mill Software description, software

D110 Fanuc 31i Mill

Programming manualguide i

Symbol representation of the contour elementsContour element Symbol Meaning

Start point Start point of the figure

Straight upStraight down

Straight line in 90° grid

Straight leftStraight right

Straight line in 90° grid

Straight line anywhere

Straight line with arbitrary pitch

Curve rightCurve left Arc

Radius

Chamfer

Instructions:The end of a contour is not a contour element, therefore there is no symbol for it.

Page 191: EMCO WinNC for Fanuc 31i Mill Software description, software

D111 Fanuc 31i Mill

Programming manualguide i

Page 192: EMCO WinNC for Fanuc 31i Mill Software description, software

D112 Fanuc 31i Mill

Programming manualguide i

XA plane free convex figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

6. XA PLANE FREE CONVEX FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Note:For more instructions how to create a free conture, see also «XY square concave G1220».

Start point

Element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 193: EMCO WinNC for Fanuc 31i Mill Software description, software

D113 Fanuc 31i Mill

Programming manualguide i

XY Square concave G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

7. XY SQUARE CONCAVECONT.FIGUREFIGURE

Page 194: EMCO WinNC for Fanuc 31i Mill Software description, software

D114 Fanuc 31i Mill

Programming manualguide i

XY Circle concave G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

8. XY CIRCLE CONCAVECONT.FIGUREFIGURE

Page 195: EMCO WinNC for Fanuc 31i Mill Software description, software

D115 Fanuc 31i Mill

Programming manualguide i

XY Track concave G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X Y-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

9. XY TRACK CONCAVECONT.FIGUREFIGURE

Page 196: EMCO WinNC for Fanuc 31i Mill Software description, software

D116 Fanuc 31i Mill

Programming manualguide i

XY Polygon concave G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

10. XY POLYGON CON-CAVECONT.

FIGUREFIGURE

Corner information

Data item Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius Only for chamfer or arc.

Page 197: EMCO WinNC for Fanuc 31i Mill Software description, software

D117 Fanuc 31i Mill

Programming manualguide i

XY Free concave figure

Entry fields marked with * are optional and should not be populated.

11. XY FREE CONCAVE FIGURECONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 198: EMCO WinNC for Fanuc 31i Mill Software description, software

D118 Fanuc 31i Mill

Programming manualguide i

Note:Description for the input elements see «Free figure convex».

XA plane free concave figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

12. XA PLANE FREE CONCAVE FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [OPEN]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 199: EMCO WinNC for Fanuc 31i Mill Software description, software

D119 Fanuc 31i Mill

Programming manualguide i

XY Free open figure

Entry fields marked with * are optional and should not be populated.

13. XY FREE OPEN FIGURECONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [OPEN]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

P Cutting area • [RIGHT]: right side• [LEFT]: left side

Note:Description for the input elements see «Free figure convex».

Page 200: EMCO WinNC for Fanuc 31i Mill Software description, software

D120 Fanuc 31i Mill

Programming manualguide i

XA plane free open figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

14. XA PLANE FREE OPEN FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

P Cutting area • [RIGHT]: right side• [LEFT]: left side

Note:Description for the input elements see «Free figure convex».

Page 201: EMCO WinNC for Fanuc 31i Mill Software description, software

D121 Fanuc 31i Mill

Programming manualguide i

Figure: Pocket figure• Square concave G1220• Circle concave G1221• Track concave G1222• Polygon concave G1225• Free concave figure• XA plane free open figure for cylinder G1700

Page 202: EMCO WinNC for Fanuc 31i Mill Software description, software

D122 Fanuc 31i Mill

Programming manualguide i

XY Square concave G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE CONCAVEPOCKET

FIGUREFIGURE

Page 203: EMCO WinNC for Fanuc 31i Mill Software description, software

D123 Fanuc 31i Mill

Programming manualguide i

XY Circle concave G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

2. XY CIRCLE CONCAVEPOCKETFIGUREFIGURE

Page 204: EMCO WinNC for Fanuc 31i Mill Software description, software

D124 Fanuc 31i Mill

Programming manualguide i

XY Track concave G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

3. XY TRACK CONCAVEPOCKETFIGUREFIGURE

Page 205: EMCO WinNC for Fanuc 31i Mill Software description, software

D125 Fanuc 31i Mill

Programming manualguide i

XY Polygon concave G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

4. XY POLYGON CONCAVEPOCKET

FIGUREFIGURE

Corner information

Element Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius

Page 206: EMCO WinNC for Fanuc 31i Mill Software description, software

D126 Fanuc 31i Mill

Programming manualguide i

XY Free concave figure

Entry fields marked with * are optional and should not be populated.

5. XY FREE CONCAVE FIGUREPOCKET

FIGUREFIGURE

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Note:Description for the input elements see «Free figure convex».

Page 207: EMCO WinNC for Fanuc 31i Mill Software description, software

D127 Fanuc 31i Mill

Programming manualguide i

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Note:Description for the input elements see «Free figure convex».

XA plane free concave figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

6. XA PLANE FREE CONCAVE FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Page 208: EMCO WinNC for Fanuc 31i Mill Software description, software

D128 Fanuc 31i Mill

Programming manualguide i

Page 209: EMCO WinNC for Fanuc 31i Mill Software description, software

D129 Fanuc 31i Mill

Programming manualguide i

Subroutines

Fixforms

FIXFRM

M-code menuM-CODE

Page 210: EMCO WinNC for Fanuc 31i Mill Software description, software

D130 Fanuc 31i Mill

Programming manualguide i

Sub-routinesFIGURE

SUB-ROUTINE

3 Set the cursor on the subroutine to be selected and open it for machining with the «SELECT» softkey.

4 The register card «SUBROUTINE» lists all cur-rent subroutines that are stored in the directory for the currently open program.

5 A list of programs is shown in a communal fold-er:

CNC_MEM/USER/LIBRARY

6 The softkey «VIEW» shows a preview of the suprogram. Press the softeky again to turn off the preview.

SELECT

CUR F

COM F

VIEW

2 Press softkey and register card

SUB-ROUTINEFIGURE

1 Select «Edit» mode.

Programming

M98 Call subroutineM99 Jump back to the calling program

Example

M98 P1234

Page 211: EMCO WinNC for Fanuc 31i Mill Software description, software

D131 Fanuc 31i Mill

Programming manualguide i

Frequently recurring machining processes can be saved as fixed form and inserted in the NC program.This method saves the user repeated entry of the same machining processes.

Fixed forms

1 Select «Edit» mode.

2 Press softkey.

The predefined fixed forms can be selected by means of the register cards FORM1 to FORM5.

FIXFRM

3 Select the desired Fixform with «INSERT» and insert it into the program.

INSERT

Page 212: EMCO WinNC for Fanuc 31i Mill Software description, software

D132 Fanuc 31i Mill

Programming manualguide i

Creating fixed forms

1 Press softkey «SETING» to open editor for fixed forms.

SETING

4 Press the softkey to create a new fixed form or to process an existing fixed form.

NEW ALTER

5 Press softkey to delete a fixed form.

DELETE

Note:• The fixed form set menu displayed under the

tab «FORM 1» has the same content as the menu displayed under «START».

• The fixed form set menu displayed under the tab «FORM 5» has the same content as the menu displayed under «END».

2 Press «SELECT» to open a pre-defined block for turning or milling.

SELECT

3 Press «CANCEL» to leave the settings menu.

CANCEL

Note:Fixed forms can be created in all operating modes.

Page 213: EMCO WinNC for Fanuc 31i Mill Software description, software

D133 Fanuc 31i Mill

Programming manualguide i

6 Enter or change registration name.

7 Enter or change registration set.

8 Save pre-defined block on external memory card or upload it.

9 Press softkey to open dialogue for saving or uploading.

OUTPUT INPUT

When the special character «?» appears in the parts program, the operator is requested to enter defined data.

11 «TO MNU» Return to the selection of a pre-de-fined block.TO MNU

10 The softkey «STAND.» performs a reset of the fixed forms to the condition after the software installation (corresponds to the condition pre-set by the factory).

Fixed form sets that have been entered or al-tered will be deleted or reset.

STAND.

Example: Tool change for milling

(TOOL CHANGE) T???? M6 (?);G0 G90 G? X? Y? S? M3;

Page 214: EMCO WinNC for Fanuc 31i Mill Software description, software

D134 Fanuc 31i Mill

Programming manualguide i

M-code menu

1 Select «Edit» mode.

2 Open M-code menu.

Select the desired M-code with the cursor keys.M-CODE

3 Pressing the «INSERT» softkey inserts the se-lected M-code into the program directly after the cursor position.

4 Pressing the «INS+;» softkey inserts an End of Block (EOB) directly after the M-code.

If several sequential M-codes are inserted in a block, press the «INS +;» softkey to close the entry.

INSERT

INS+;

Page 215: EMCO WinNC for Fanuc 31i Mill Software description, software

E1 Fanuc 31i Mill

G code proGramminG

E: G code programming

Instructions:This programming manual describes all functions that can be executed with WinNC.Depending on the machine you are operating with WinNC, not all functions may be available.

Example:The Concept MILL 55 milling machine has no position-controlled main spindle, so it is also not pos-sible to program spindle positions.

OverviewM-commands

M00 Programmed stopM01 Optional stop

M02 End of program

M03 Spindle ON clockwiseM04 Spindle ON counterclockwiseM05 Spindle stop

M06 Perform tool change

M07 Minimal lubrication ONM08 Coolant ONM09 Coolant OFF, minimal lubrication OFF

M10 Divider clamp onM11 Slacken divider clamping

M25 Open clamping deviceM26 Close clamping deviceM27 Swivel dividerM29 Thread tapping without compensation

chuck

M30 End of main program

M51 C-axis mode activationM52 C-axis mode deactivation

M71 Exhaust ONM72 Exhaust OFF

M98 Call subroutineM99 Jump back to calling program

Page 216: EMCO WinNC for Fanuc 31i Mill Software description, software

E2 Fanuc 31i Mill

G code proGramminG

Command MeaningAND Logical AND linkDIV Integer divisionDO Loop constructEND Loop constructEQ EqualFUP Round upGE Greater than or equal toGT Greater thanGOTO Loop constructIF Loop constructLT Less thanLE Less than or equal toNE Not equal toOR Logical OR linkPOW PowerTHEN Loop constructWHILE Loop constructXOR Exclusive OR

Command abbreviations overviewPart 1 valid for turning and milling

Page 217: EMCO WinNC for Fanuc 31i Mill Software description, software

E3 Fanuc 31i Mill

G code proGramminG

Command Meaning[, ], *, /, +, -, = Calculation functionsSIN() Sine functionCOS() Cosine functionTAN() Tangent functionASIN() Arc sine functionACOS() Arc cosine functionATAN() Arc tangent function (value)ATAN2(,) Arcurod function (X-section, Y-section)SQRT() Square root functionEXP() Exponential function (base e)LN() Natural logarithmic functionABS() Absolute functionRND() Rounding functionMOD() Modulo functionFIX() DetachROUND Round down

Calculation operators for NC program

Page 218: EMCO WinNC for Fanuc 31i Mill Software description, software

E4 Fanuc 31i Mill

G code proGramminG

Overview of machine G-commands

G-code Group Meaning

G00

01

Rapid traverse

G01 Straight interpolation

G02 Circular interpolation/clockwise

G03 Circular interpolation/counterclockwise

G04

00

Dwell time

G09 Precision stop (block-by-block)

G10 Data setting

G1517

End polar coordinates command

G16 Polar coordinates command

G17

02

XY plane selection

G18 ZX plane selection

G19 YZ plane selection

G2006

Switch to imperial (inches) input

G21 Switch to metric input

G40

07

End mill radius compensation

G41 Left mill radius compensation

G42 Right mill radius compensation

G43

08

Tool length offset plus

G44 Tool length offset minus

G49 Tool length offset end

G5011

End scaling

G51 Scaling

G50.122

End programmable axis mirroring

G51.1 Programmable axis mirroring

G520

Additive zero point offset programming

G53 Zero point offset suppression

G54

14

Workpiece coordinates system 1 selection

G55 Workpiece coordinates system 2 selection

G56 Workpiece coordinates system 3 selection

G57 Workpiece coordinates system 4 selection

Page 219: EMCO WinNC for Fanuc 31i Mill Software description, software

E5 Fanuc 31i Mill

G code proGramminG

G5814

Workpiece coordinates system 5 selection

G59 Workpiece coordinates system 6 selection

G6115

Precision stop (effective modally)

G64 Path control operation

G65 00 Macro call

G6612

Modal macro call

G67 End modal macro call

G68 16 Rotate coordinates system

G73

09

Deep hole boring with chip breaking

G74 Left-hand thread cutting cycle

G76 Fine boring cycle

G80 End fixed cycle

G81 Boring cycle (modal)

G82 Boring cycle with dwell time

G83 Deep hole boring with chip removal

G84 Right-hand thread cutting cycle

G85 Boring cycle with withdrawal (in feed)

G89 Boring cycle with dwell time and withdrawal

G90 Absolute dimension programming

G91 Incremental dimension programming

G9410

Feed in mm/min

G95 Feed in mm/revolution

Code Grp. A Group Meaning

Page 220: EMCO WinNC for Fanuc 31i Mill Software description, software

E6 Fanuc 31i Mill

G code proGramminG

Page 221: EMCO WinNC for Fanuc 31i Mill Software description, software

E7 Fanuc 31i Mill

G code proGramminG

This description is an extract from the programming instructions for the WinNC for Fanuc 31i controller and is considered in first line as a pro-gramming aid.

Brief description of G-commands

G00 Rapid traverse

FormatN…. G00 X… Y… Z…

The carriages are traversed at maximum speed to the programmed objective (tool change position, start point for the next machining process).

Notes

• A programmed carriage feed F is suppressed during G00.

• The rapid traverse speed is set to fixed.

• The feed offset switch is limited to 100%.

Example

absolute G90N40 G00 X70 Y86,5N50 G00 X40 Y56

incremental G91N40 G00 X70 Y86.5N50 G00 G91 X-30 Y-30.5

Absolute and incremental dimensional data

+X

-X

56

30

30,5

40

-Y

+Y

Page 222: EMCO WinNC for Fanuc 31i Mill Software description, software

E8 Fanuc 31i Mill

G code proGramminG

Entering chamfers and radii

Format….N… G01 X… Y… ,C/,RN… G01 X… Y…

Notes

• Programming chamfers and radii is possible only for the active plane in each case. What fol-lows defines the programming for the XY plane (G17).

• The movement which is programmed in the second block must begin with point b in the diagram. With incremental programming, the distance from point b must be programmed.

• In individual block mode, the tool stops first at point c and then at point d.

The following situations cause an error message: • If the travel in one of the two blocks G00/G01 is

so small that no intersection point was gener-ated when the chamfer or radius was entered, error message no. 55 is generated.

• If no G00/G01 command is programmed in the second block, error message no. 51 or 52 is generated

Entering chamfers and radii

G01 Straight interpolation

FormatN… G01 X… Y… Z… F…

Straight line movement with programmed feed speed.Example

absolute G90N.. G94…..N10 G00 X20 Y46N20 G01 X40 Y20.1 F200

incremental G91N.. G94 F200…..N10 G00 X20 Y46N20 G01 G91 X20 Y-25.9

Absolute and incremental values for G01

+X

-X

20,1

40

-Y

+Y

20

25,9

S

E

S.. StartpointE.. Endpoint

+Y530

+X

270

,R 6

,C 3

860

565

d

b c

Page 223: EMCO WinNC for Fanuc 31i Mill Software description, software

E9 Fanuc 31i Mill

G code proGramminG

Commands Tool movements

1

X2… (Y2…) ,A…

Direct drawing dimension input

X , 1 1

A

X

X / 2 2Y Y

Y

Notes

• Missing intersection points must not be calcu-lated.Angles (,A), chamfers (,C) and radii (,R) can be programmed directly into the program.The block after a block with C or R, must be a block with G01.Programming a chamfer is only possible with the comma symbol «,C», otherwise an error message appears because of unauthorized use of the C-axis.

• Input of angles (,A) is possible only with the comfort programming option.

• The following G-commands should not be used for blocks with chamfer or radius:

G-commands in Group 00:G7.1, G10, G11,G52, G53,G73, G74, G76, G77, G78

G-commands in Group 01:G02, G03, G-commands in Group 06:G20, G21

• These must not be used between blocks with chamfer or radius which define the sequence numbers.

Page 224: EMCO WinNC for Fanuc 31i Mill Software description, software

E10 Fanuc 31i Mill

G code proGramminG

Page 225: EMCO WinNC for Fanuc 31i Mill Software description, software

E11 Fanuc 31i Mill

G code proGramminG

Helical interpolation

Normally, only two axes are given for a circle and these also determine the planes in which the circle is.

If a third, vertical axis is given, the movements of the axis carriages are coupled in such a way that a helical line results.The programmed feed speed is not observed on the actual path, but on the circular (projected) path. The third axis, moved in a straight line, is also controlled so that it reaches the end point at the same time as the axes moved in a circle.

G02 Circular interpolation, clockwise

G03 Circular interpolation, counterclockwise

FormatN… G02 X… Y… Z… I… J… K… F…orN… G02 X… Y… Z… R… F…

X,Y, Z, ……. End point of the arc

I,J, K………. Incremental circular parameter (Distance from start point to the

centre of the circle, I is assigned to the X-axis, J to the Y-axis, K to the Z-axis)

R …………… Radius of the arc Circle < semicircle for +R, > semicir-

cle for -R, can be given instead of the parameters I, J, K.

The tool is moved along the defined arc to the objective with the feed programmed under F.

Notes

• You can only run a circular interpolation in the active plane.

• If I, J or K are equal to 0, the relevant parame-ters must not be given. The turning direction for G02, G03 is always considered vertically on the active plane.

G02 and G03 turning directions

Helical curve

G02

G03

G02G03

G17

Z

X Y

G19

G02

G03

G18

S

E

M

R

J

f

Z

X Y

Page 226: EMCO WinNC for Fanuc 31i Mill Software description, software

E12 Fanuc 31i Mill

G code proGramminG

G04 Dwell timeFormatN G04 X [sec]orN G04 P [msec]

The tool is held for the time defined under X or P (in the last position reached) — sharp edges — clean transfers, mill base, precise stop.

Notes• A decimal point cannot be used with the address

P.

• The dwell time begins after the feed speed has reached that of the preceding block «NULL».

ExamplesN75 G04 X2.5 (dwell time = 2.5 sec)N95 G04 P1000 (dwell time = 1 sec = 1000 msec)

G09 Precision stop (block-by-block)FormatN G09

A block will only be processed if the carriages are braked to a stop.In this way the corners will not be rounded and precise transitions achieved.G09 is effective block-by-block

Precision stop active Precision stop not active

Page 227: EMCO WinNC for Fanuc 31i Mill Software description, software

E13 Fanuc 31i Mill

G code proGramminG

G17-G19 Plane selection

Format N.. G17/G18/G19

G17 to G19 determine the planes in which circular interpolation and polar coordinate interpolation can be executed and in which the mill radius offset can be calculated.

The tool offset is executed in the vertical axis on the active plane.

G17 XY planeG18 ZX planeG19 YZ plane

Linear axis

Planes in the workspace

G20 Dimensional data in inches

FormatN.. G20

The G20 programming converts the following data into the imperial measurement system:• Feed F [mm/min, inches/min, mm/rev, inches/

rev]• Offset values (NPV, geometry and wear) [mm,

inches• Traverses [mm, inches]• Current position indication [mm, inches]• Cutting speed [m/min, feet/min]

G21 Dimensional data in milli-metres

FormatN.. G21

Comments and instructions similar to those for G20.

Page 228: EMCO WinNC for Fanuc 31i Mill Software description, software

E14 Fanuc 31i Mill

G code proGramminG

+X

-X

-Y

+YX, Y, Z

(1)

(2)

(1) (2)

Return to reference point

Initialize (move to intermediate position)

Return to reference point

G28 Return to reference point

FormatN… G28 X… Y.. Z…

X, Y, Z, Absolute intermediate coordinates

The G28 command is used to approach the refe-rence point via an intermediate position (X, Y, Z).First the movement to X, Y and Z, then movement to the reference point.

Both movements with G0.

The movement to the intermediate position can be programmed incrementally:

G-Code group B/CG91 G28 X10 Y10 Z10G90

Page 229: EMCO WinNC for Fanuc 31i Mill Software description, software

E15 Fanuc 31i Mill

G code proGramminG

G40 Deselection mill radius off-set

G40 deselects mill radius offset.Deselection is possible only in connection with a straight-line traverse movement (G00, G01).G40 can be programmed in the same block as G00 or G01 or in the preceding block.G40 is usually defined in the withdrawal to the tool change point.

Definition of G41 Mill radius correction left

Radius offset tool path

Definition of G42 Mill radius correction right

G42 Mill radius offset right

If the tool (viewed in the feed direction) is to the right of the contour to be machined, G42 must be programmed.

For instructions see G41!

G41 Mill radius offset left

If the tool (viewed in the feed direction) is to the left of the contour to be machined, G41 must be programmed.So that a radius can be calculated, when selecting the mill radius offset, you must state a D param-eter from the table: Tool correction => TOOL RADIUS OFFSET gaps => GEOMETRY AND WEAR which equals the mill radius, e.g. N.. G41 D..

Notes• A direct switch between G41 and G42 is not

allowed — prior deselection with G40.• Approach in connection with G00 or G01 re-

quired.• The mill radius data is essential, the H param-

eter is effective only until it is deselected with H0 or a different H parameter is programmed.

Mill radius offsetIf mill radius offset is used, a parallel contour path will be calculated by the controller automatically and the mill radius compensated in this way.

Page 230: EMCO WinNC for Fanuc 31i Mill Software description, software

E16 Fanuc 31i Mill

G code proGramminG

R

G40G42

Approach or move away from a corner point from the front

Approach or move way from the side to the rear

Approach or move away from a corner point from behind

For arcs, you always approach on the tangents in the circle start/end point.The approach path to the contour and the path away from the contour must be greater than the mill radius R, otherwise the program will stop with an alarm.If contour elements are less than the mill radius R, contour infringements can occur.

Programmed tool path Actual tool path

Tool paths when selecting/deselecting mill radius offset

RG42

G40

R

G42

G40

Page 231: EMCO WinNC for Fanuc 31i Mill Software description, software

E17 Fanuc 31i Mill

G code proGramminG

Tool path at an inside corner Tool path at an outside corner > 90°

Tool path at an outside corner < 90°

Programmed tool path Actual tool path

R

G42

R

G41

Tool paths in the program sequence with mill radius offset

For arcs, you always approach on the tangents in thecircle start/end point.

If contour elements are less than the mill radius R, contour infringements can occur.

RG42

G41

R

R

G42

G41

Page 232: EMCO WinNC for Fanuc 31i Mill Software description, software

E18 Fanuc 31i Mill

G code proGramminG

G43 Tool length offset positiveG44 Tool length offset negative

FormatN.. G43/G44 H..

G43 and G44 can call up a value from the offsetregister (GEOMT) and add or subtract it as a tool length. This value is added or subtracted for all subsequent Z movements (with active XY plane — G17) in the program.

ExampleN.. G43 H05

The value in line 5 of the table:Tool correction gaps TOOL LENGTH CORREC-TION GEOMETRY AND WEAR is added as tool length to all subsequent Z move-ments.

G50 Deselection scaling factorG51 Scaling factor

FormatN.. G50N.. G51 X.. Y.. Z.. I.. J.. K..

G51 computes all position data to scale, until the scale is deselected with G50. X, Y and Z deter-mines a reference point PB , from which all the dimensions are calculated.I, J and K determine an appropriate scaling factor (in 1/1000) for each axis.

G49 Deselection tool length offset

The positive (G43) or negative (G44) offset is cancelled.

ZPB

G51 X Y Z I2000 J2000 K2000

X Y

Z

Enlarging a contour

Page 233: EMCO WinNC for Fanuc 31i Mill Software description, software

E19 Fanuc 31i Mill

G code proGramminG

G51.1 Mirroring a contourG50.1 Deselecting mirroring

If different scaling factors are given for the indi-vidual axes, the contours are distorted.Circular movements must not be distorted or an alarm will sound.

PB

Y

X

G51 X0 Y0 Z0 I2000 J1000 Z1000

Distorting a contour: X 1:2, Y,Z 1:1

Programmable mirror image

(1) Original image of a programmed command(2) Image symmetrical about a line parallel to the Y-axis and crossing the X-axis at 50(3) Image symmetrical about point (50,50)(4) Image symmetrical about a line parallel to the X-axis and crossing the Y-axis at 50

Page 234: EMCO WinNC for Fanuc 31i Mill Software description, software

E20 Fanuc 31i Mill

G code proGramminG

G52 Local coordinates system

FormatN.. G52 X.. Y.. Z..

G52 offsets the instantaneous coordinate source around the X, Y and Z values. Use this to create a sub-coordinate system to the existing coordinate system.

The programmed offset is maintained until a dif-ferent offset is called.

G53 Machine coordinates sys-tem

FormatN.. G53

The machine zero point is set by itsmanufacturer (EMCO milling machines: at the left front edge of the machine table).

Certain work steps (tool change, measurement position, etc.) are always executed at the same position in the workspace.

G53 disables the zero point offset for a program block ans the coordinate data is related to the machine zero point.

G54-G59 Zero point offsets 1-6

Six positions in the workspace can bepreset as zero points (e.g. points on fixed mount-ed clamping devices). These zero point offsets are called with G54 — G59.

See chapter A Entering zero point offset funda-mentals.

Page 235: EMCO WinNC for Fanuc 31i Mill Software description, software

E21 Fanuc 31i Mill

G code proGramminG

G61 Precision stop (modally effective)

FormatN.. G61

A block will only be processed if the carriages are braked to a stop.In this way the corners will not be rounded and precise transitions achieved.G61 effective until it is deselected with G64.

G64 Cutting mode

FormatN.. G64

The Y-axis is accelerated before reaching the tar-get point in the X-direction. This achieves an even movement during contour transfers. The contour transfer is not an exactly sharp angle (parabola, hyperbola).The contour transfer size is normally within the tolerance range in the drawings.

Precision stop active Precision stop not active

P P0 1

P P0 1

P P0 1

X axis

Y axis

Contour transfer

Spe

ed

Speed characteristic of the carriage with G64

Page 236: EMCO WinNC for Fanuc 31i Mill Software description, software

E22 Fanuc 31i Mill

G code proGramminG

G65 Macro call

G65 calls up a macro with user-defined values. A macro is a subroutine which runs a given opera-tion with values assigned to variable parameters (boring image, contours). FormatG65 Pxxxx Lrrrr Arguments

or G65 Pxxxx Lrrrr Arguments

Xxxx is the macro number (e.g. O0123) • rrrr the repetition value• «program.CNC» is the name of the macro file • Arguments is a list of variable designators and

values.

Arguments for macro calls are given by using the letters A-Z, excluding G, L, N, O and P. Macros are written like normal programs. Howev-er, macro programs can access their arguments with numbers: #1 for A, #2 for B etc. (exceptions: # 4-6 for I-K, # 7-11 for D-H).

A macro can use the negative of an argument with a minus sign in front of the ‘#’. Other computing operations are not supported.Macros can call other macros (up to 4 levels in depth), macro M-functions and sub-routines. Mac-ro M-functions and sub-routines can call macros.

Example for a main program

G65 <TEST.CNC> A5 B3 X4Macro TEST.CNC:G1 X#X Y#A Z-#BThis call will produceG1 X4 Y5 Z-3

Page 237: EMCO WinNC for Fanuc 31i Mill Software description, software

E23 Fanuc 31i Mill

G code proGramminG

G66 Macro call (modal)FormatN.. G66 P.. L..Argument..

P ………….. Program numberL ……………. Number of repetitions (default is 1)Argument … A list of variable designators and

values which are transferred to the macro.

G67 Macro call (modal) EndFormatN.. G67

This function ends the macro call.

ZZ

Example of macro call programming

Page 238: EMCO WinNC for Fanuc 31i Mill Software description, software

E24 Fanuc 31i Mill

G code proGramminG

G68 Coordinate system rotation

FormatN.. G68 X.. Y.. R….N.. G69

G68 ………. Coordinates system rotation ONG69 ………. Coordinates system rotation OFFX / Y ………. Designates the coordinates of the

rotation centre point in the relevant plane.

R …………… Gives the angle of rotation

This function can, for example, change programs by using a rotation command.

Example

N5 G54N10 G43 T10 H10 M6N15 S2000 M3 F300N20 M98 P030100 ; sub-routine callN25 G0 Z50N30 M30

00100 (sub-routine 0100) N10 G91 G68 X10 Y10 R22.5N15 G90 X30 Y10 Z5N20 G1 Z-2N25 X45N30 G0 Z5N35 M99

Y

X(α, β)

G68/G69 coordinates system rotation

Instructions:Rotation takes place in the applicable plane (G17, G18 or G19) in each case.

X

Z(10, 10)

22,5°

22,5°

22,5°

R20

621

Example/Coordinates system rotation

Page 239: EMCO WinNC for Fanuc 31i Mill Software description, software

E25 Fanuc 31i Mill

G code proGramminG

Drilling Cycles G73 — G89

Systematic G98/G99

G98 ……After reaching the drilling depth the tool retracts to the start plane

G99 ……After reaching the drilling depth the tool retracts to the withdrawal plane- defined by the R parameter

Is no G98 or G99 active, the tool retracts to the start plane. If G99 (Withdrawal to the withdrawal plane) is programmed the address R must be programmed. With G98 R need not to be pro-grammed.

The compution of the R parameter is different with incremental and absolute programming:

Absolute programming (G90):R defines the height of the withdrawal plane over the actual workpiece zero point.

Incremental programming (G91):R defines the height of the withdrawal plane re-lated to the last Z position (start position of the drilling cycle). With a negative value for R the withdrawal plane will be below the start position, with a positive value the withdrawal plane will be over the start position.

Sequence of movements

1: The tool traverses with rapid speed from the start position (S) to the plane defined by R (R).

2: Cycle-specific drill machining down to end deptht (E).

3: The withdrawal occurs a: with G98 to the start plane (S) and b: with G99 to the withdrawal plane.

Number of repetitions

The K parameter defines the number of repetiti-ons of the cycle.With absolute programming (G90) it would make no sense to drill several times in the same hole.With incremental programming (G91) the tool mo-ves on each time for the distances X and Y. This is a simple way of programming rows of borings.

Make sure that G98 is active!

Withdrawal plane R

start plane

G98 G99

Movements with G98 and G99

Sequence of movements G98, G99

Cycle repetition for a row of holes

R

S

E

1

2

3a

3b

X

Y

X X

YY

Page 240: EMCO WinNC for Fanuc 31i Mill Software description, software

E26 Fanuc 31i Mill

G code proGramminG

QQ

Q

R

start plane

Dwell P

G73 (G98)

Chip break drilling with retraction to the startplane

Chip break drilling with retraction to the withdra-wal plane

QQ

QR

G73

Withdrawal plane

Dwell P

(G99)

G73 Chip Break Drilling Cycle

FormatN… G98(G99) G73 X… Y… Z… (R)… P… Q… F… K…

The tool dips into the work piece for the infeed Q, drives back 0,5 mm to break the chips, dips in again etc. until end depth is reached and retracts with rapid feed.

Applications

deep borings, material with bad cutting property

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole position

Z ……………..Absolute (incremental) drilling depth

R [mm] ……..Absolute (with G91 incremental) value of the withdrawal plane

P [msec] ……Dwell at the hole bottom P1000 = 1 sec

F ……………..Feed rate

Q [mm] ……..Cutting division — infeed per cut

K ……………..Number of repetitions

G74 Left Tapping CycleWith this cycle left threads can be produced. The cycle G74 works like G84 but with reversed tur-ning directions.Tapping chuck without length compensation is activated with M29.See Tapping Cycle G84.

Page 241: EMCO WinNC for Fanuc 31i Mill Software description, software

E27 Fanuc 31i Mill

G code proGramminG

Fine drilling cycle

start plane

Withdrawal plane

Q

G76 Fine Drilling Cycle

Only for machines with oriented spindle stop.FormatN…G98(G99) G76 X… Y… Z… (R)… F… Q… K…

This cycle is for enlarging borings with boring and facing heads.The tool traverses with rapid feed to the withdra-wal plane, with the programmed feed to the end depth, the milling spindle will be stopped oriented, the tool traverses with rapid speed horizontally (Q) off the surface in direction of the positive Y-axis and traverses with rapid speed to the withdra-wal plane (G99) or start plane (G98) and traverses back for the value Q to the original position.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..FeedQ ……………..Horizontal traverse-off valueK ……………..Number of repetitions

G80 Cancel Drilling Cycles

FormatN… G80

The drilling cycles are modal. They have to be cancelled by G80 or another group 1 command (G00, G01, …).

Page 242: EMCO WinNC for Fanuc 31i Mill Software description, software

E28 Fanuc 31i Mill

G code proGramminG

G81 Drilling Cycle

FormatN…G98(G99) G81 X… Y… Z… (R)… F… K…

The tool traverses down to end depth with feed speed and retracts with rapid feed.

Application:Short drillings, material with good cutting pro-perties

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..FeedK ……………..Number of repetitions

Drilling cycle

Drilling cycle with dwell and retraction to the start plane

Start-plane

Withdrawalplane RR

G98 G99

start plane

Dwell P

G82 (G98)

Drilling cycle with dwell and retraction to the withdrawal plane

Withdrawalplane R

Dwell P

G82 (G98)

G82 Drilling Cycle with Dwell

FormatN… G98(G99) G82 X… Y… Z… (R)… P… F… K…

The tool traverses down to end depth with feed speed, dwells turning to clean the hole ground and retracts with rapid feed.

Applications

Short borings, material with good cutting property

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeP [msec] ……Dwell at the hole bottom P1000 = 1 secF ……………..Feed rateK ……………..Number of repetitions

Page 243: EMCO WinNC for Fanuc 31i Mill Software description, software

E29 Fanuc 31i Mill

G code proGramminG

G83 Withdrawal Drilling Cycle

FormatN.. G98(G99) G83 X… Y… Z… (R)… P… Q… F… K…

The tool dips into the work piece for the infeed Q, drives back to the withdrawal plane, to break the chips and remove it from the hole, traverses with rapid speed until 0,5 mm over the previous drilling depth, dips in again for the infeed Q etc. until end depth is reached and retracts with rapid feed.

Applicationsdeep borings, (soft) material with long chips

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeP [msec] ……Dwell at the hole bottom P1000 = 1 secF ……………..Feed rateQ [mm] ……..Cutting division — infeed per cutK ……………..Number of repetitions

G84 Tapping Cycle without length compensation

FormatN.. M29 S… G98(G99) G84 X… Y… Z… (R)… F… P… K…

The tool moves turning clockwise with program-med feed into the workpiece down to drilling depth Z, dwells (P), switches to counterclockwise turning and retracts with feed.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) tapping depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF …………… Feed rate with G94………………….Thread pitch with G95P [msec] ……Dwell at thread ground……………… P 1000 = 1 secK ……………..Number of repetitions

Deep hole drilling with retraction to the withdra-wal plane

Tapping cycle (with G99)

F

P

R

QQ

QG83

Withdrawal plane

Dwell P

(G99)

R

Page 244: EMCO WinNC for Fanuc 31i Mill Software description, software

E30 Fanuc 31i Mill

G code proGramminG

G89 Reaming cycle with dwell time

See G85

The tool moves at feed speed to the final depth and stops for the dwell time P. The retraction to the retraction plane takes place with feed, de-pendent on G98, the start plane is reached with rapid traverse.

R

G85 Reaming Cycle

FormatN… G98 (G99) G85 X… Y… Z… (R)… F… K…

The tool traverses down to end depth with feed speed and retracts to the withdrawal plane with feed. Retraction to withdrawal plane with rapid feed depending on G98.

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..Feed rateK ……………..Number of repetitions

Reaming cycle with withdrawal to the start plane

start plane

G85 (G98)

G84 Tapping Cycle with length compensation

FormatN.. G98(G99) G84 X… Y… Z… (R)… F… P… K…

The tool moves turning clockwise with program-med feed into the workpiece down to drilling depth Z, dwells (P), switches to counterclockwise turning and retracts with feed.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) tapping depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF …………… Feed rate with G94………………….Thread pitch with G95P [msec] ……Dwell at thread ground……………… P 1000 = 1 secK ……………..Number of repetitions

Tapping cycle (with G99)

F

P

R

Page 245: EMCO WinNC for Fanuc 31i Mill Software description, software

E31 Fanuc 31i Mill

G code proGramminG

G90 Absolute value programming

FormatN.. G90

There are two ways to program travels of the tool: the absolute programming, and the incrementalprogramming.In the absolute programming, coordinate value of the end position is programmed.The incremental programming is used to program the amount of a tool movement.

Notes• A direct change between G90 and G91 is also

allowed block by block.• G90 (G91) may also be programmed in conjunc-

tion with other G-functions: (N… G90 G00 X… Y… Z…)

G91 Incremental value programming

FormatN.. G91

Instructions similar to those for G90.

G94 Feed per minute

G94 means all values defined under F (feed) as mm/min.

FormatN.. G94 F…

G95 Feed per revolution

G94 means all values defined under F (feed) as mm/rev.

FormatN.. G95 F…

����

��

��

���

��

��

���

�� ��

Absolute value and increment value programming

Page 246: EMCO WinNC for Fanuc 31i Mill Software description, software

E32

Page 247: EMCO WinNC for Fanuc 31i Mill Software description, software

F1 Fanuc 31i Mill

Tool managemenT

F: Tool management

Tool settings• Press softkey.

• «T-OFS» displays the tool offset data window.

3 register cards are available for selection:

• Tool offset (tool lengths and tool radius com-pensation)

• Tool data• Simulation data

T-OFS

Parameter Meaning

NR Tool number. A maximum of 99 tool offsets is available

Tool length offset

Geometry Entry of the measured geometry data (with default setting device)

Wear Tool wear entry

Tool radius compensation

Geometry Entry of the measured geometry data (with default setting device)

SCHN-wear Tool wear entry

Page 248: EMCO WinNC for Fanuc 31i Mill Software description, software

F2 Fanuc 31i Mill

Tool managemenT

Tool length offset entry

• Press softkey.

«+INPUT» opens the entry mask.

Current value + workpiece geom-etry offset is displayed.

Enter the value calculated previ-ously for the geometry offset.»INPUT» closes the data entry.

+INPUT

Tool radius offset entry• Press softkey.

• «+INPUT» opens the entry mask.

Current value + workpiece ge-ometry offset compensation is displayed.

Enter the value calculated previ-ously for the geometry offset.»INPUT» closes the data entry.

+INPUT

Page 249: EMCO WinNC for Fanuc 31i Mill Software description, software

F3 Fanuc 31i Mill

Tool managemenT

Tool wear offsetTool wear offset entries should be made in the same way as those for tool length and tool radius offsets.

Page 250: EMCO WinNC for Fanuc 31i Mill Software description, software

F4 Fanuc 31i Mill

Tool managemenT

Tool data• Press softkey.

• «T-OFS» displays the tool offset data window.T-OFS

Parameter Description

NR Tool number

Use the softkey to select the tool

TOOL Tool name

SET Setting 1 to 4. The tool tip is defined by the tool mounting position.

NOS ANGLE Cutting angle

Instructions:The available parameters can differ, according to the tool selected.

Page 251: EMCO WinNC for Fanuc 31i Mill Software description, software

F5 Fanuc 31i Mill

Tool managemenT

Select tool• Click on the tool symbol or move the cursor on

to it with the arrow keys and select the wanted tool.

The following tools are available for lathes.

Enter tool name

Softkey bar with the available tools.Scroll the pages forwards and backwards with the expansion button.

Page 252: EMCO WinNC for Fanuc 31i Mill Software description, software

F6 Fanuc 31i Mill

Tool managemenT

Tool setting number• Mark a tool setting number with the cursor for an

instruction window to pop up in the right hand portion of the screen.

For a boring tool, this is: Enter the tool setting number (1 to 4) to make

the setting.

Instructions:The available parameters can differ, accord-ing to the tool selected.

Settings for a boring tool

Settings for a milling tool

Page 253: EMCO WinNC for Fanuc 31i Mill Software description, software

F7 Fanuc 31i Mill

Tool managemenT

Setting angle, corner angle• Mark the tool data with the cursor and an in-

struction window pops up. Enter the tool data here.

When entering in degrees, three integers and one decimal place are allowed.

If you are entering in inches or millimetres, an eight-digit number is allowed. If numbers

with several decimal places are entered, they are rounded to 1 decimal place.

The descriptions and numbers of the elements are dependent on the tool type. Details are in the ta-ble below. Tools that do not need tool data settings are not included.No tool data is required to execute milling cycles.Milling cycles can therefore be executed, although no tool data was set.

Tool type Borer Countersink

Data 1 Tip angle*) Mill diameter

*) the cycle can be machined without a setting.

Tool form data for milling

Page 254: EMCO WinNC for Fanuc 31i Mill Software description, software

F8 Fanuc 31i Mill

Tool managemenT

Cutting position of milling and drilling tools

Milling tools

CountersinkFace milling cutterHigh speed face milling cutterTapSurface milling cutter

Cutting position of drilling and milling tools

Page 255: EMCO WinNC for Fanuc 31i Mill Software description, software

F9 Fanuc 31i Mill

Tool managemenT

Tool correction and tool data input and output

The path to save and read the data is set in EMConfig under the «Directory exchange» heading.

• Press the data output softkey

The default save for tool correc-tion data is in the file TOOLOFST.TXT.You can change the file name, subject to obeying the following restrictions:A maximum of 8 characters and no special characters should be used.The tool data is filed in the file TOOLDB.DAT.

OUTPUT

Page 256: EMCO WinNC for Fanuc 31i Mill Software description, software

F10 Fanuc 31i Mill

Tool managemenT

• Press the data input softkey

Select the desired file and open with «INPUT».

INPUT

Page 257: EMCO WinNC for Fanuc 31i Mill Software description, software

F11 Fanuc 31i Mill

Tool managemenT

Simulation data3D tool3D tools from the tool manager can be imported into the tool list. An independent color assignment for the individual tools can be made .

1 Press softkey.

2 Select simulation data.

3 Double-click the 3D tool to activate the tool selection (drop down menu). Press the space bar to scroll in the tool selection.

4 To deactivate a tool, the blank line (at the very top) must be selected in the drop down menu.

T-OFS

Page 258: EMCO WinNC for Fanuc 31i Mill Software description, software

F12 Fanuc 31i Mill

Tool managemenT

Instructions:If no color is selected, it is taken over from the 3D tool manager. Otherwise a selected color has priority.

Color selectColors can be assigned to tools in order to display them better in the simulation.

1 Double-click the color selection (alternatively use the space bar) to open the color selection window.

2 Predefined colors are stored as basic colors, user defined colors as custom colors

• Create Custom colors: Move the mouse in the colored area to the

required color an click to select. Alternatively the values for R,G,B can be entered manually.

• By clicking «Add to Custom Colors» a new color is added.

3 To deselect a color, select black.

4 Confirm with OK or quit with Cancel.

Page 259: EMCO WinNC for Fanuc 31i Mill Software description, software

F13 Fanuc 31i Mill

Tool managemenT

Measuring tool manuallyScratch method

The workpiece must be clamped in the workspace such that the measuring point on the workpiece with the tool housing reference point can be reached with all measuring tools.

The tool housing reference point for the EMCO Concept Mill 105 is on the reference tool, which must be clamped in position in advance.

If a mechanical meter is used instead of the refer-ence tool, this must be mounted on the machine table.

1 Call «JOG» mode.

2 If you do not use a meter, then place a thin sheet of paper between the workpiece and the milling spindle.

Approach the stationary spindle on the work-piece with the tool housing reference point.

Reduce the feed to 1%, so that the sheet of paper you inserted is still just movable.

3 If you are using a meter, approach this with the tool housing reference point.

4 Press the «ACTPOS» softkey to display the rel-ative coordinates.

5 Press the «PRESET» softkey and enter the value 0 in the Z axis.

ACTPOS

PRESET

Page 260: EMCO WinNC for Fanuc 31i Mill Software description, software

F14 Fanuc 31i Mill

Tool managemenT

6 Accept changes with the «ALTER» softkey.

7 Tilt the workpiece to be measured.

8 Scratch the tool on the workpiece or the meter.

9 Press softkey.

10 Set the cursor to the correct tool number.

11 Press softkey.

12 Set the cursor to Z-AXIS.

13 Press softkey. The tool is now measured in Z.

14 Enter the tool radius geometry under «Cutter compensation».

ALTER

T-OFS

INP.C.

INPUT

Page 261: EMCO WinNC for Fanuc 31i Mill Software description, software

G1 Fanuc 31i Mill

Program sequence

G: Program sequence

PreconditionsSet zero pointsThe zero points used must be measured and entered.

ToolsThe tools used must be measured and entered.The tools must be in the corresponding positions (t) in the tool changer.

Reference pointThe reference point must be approached in all axes.

MachineThe machine must be ready for operation.The workpiece must be securely clamped.Loose parts (spanners, etc.) must be removed from the work area to avoid collisions.The machine doors must be closed at the start of the program.

AlarmsThere must be no alarms pending.

Instructions:During the program sequence the tool data for the tools used may not be changed.

Page 262: EMCO WinNC for Fanuc 31i Mill Software description, software

G2 Fanuc 31i Mill

Program sequence

NC stopThis button stops the NC program run. The sim-ulation can be continued with this «Cycle start» button.

Program start, program stop• Open a program for execution.

• Select «AUTO» mode.

• Open program.

• This softkey opens the selected program.

• Press the «Cycle start» button.

• Stop program with «Cycle stop», continue with «Cycle start».

• Cancel program with «NC reset».

OPEN

NC startFor the NC program run to be started, a Fanuc program must be open. The file name of the cur-rently open program is shown in the centre of the simulation window.

NC resetUse this button to stop the NC program run and reset to the start conditions.

Page 263: EMCO WinNC for Fanuc 31i Mill Software description, software

G3 Fanuc 31i Mill

Program sequence

Repositioning

If a program interruption occurs in automatic mode, e.g. after a tool break, then the tool can be moved away from the contour in manual mode. To avoid later collisions the axes must be moved to a safe position.The coordinates of the interruption position will be saved.The travel difference between the axes that has been brought about in manual mode is shown in the current values window. This travel different is called «Repos shift».

Continue program execution

• Select REPOS mode. Thus the tool can again be brought to the contour of the workpiece.

• Select each axis to be moved one after the other and move to the cancellation position.

• Continue machining in automatic mode again with «Cycle start».

Page 264: EMCO WinNC for Fanuc 31i Mill Software description, software

G4 Fanuc 31i Mill

Program sequence

Block scan• Select «Edit» mode.

• Open program.

Select the appropriate program line from which the program is to start.

• Select «AUTO» mode.

• Press NC start button. The following message appears: «Start in the middle of the Start/Ref program»

Press the NC start button again to confirm.

OPEN

Caution:• All command that are before the selected

line are ignored. • This relates these to the chosen tools, zero

point shifts, etc.

Page 265: EMCO WinNC for Fanuc 31i Mill Software description, software

H1

AlArms And messAges

H: Alarms and MessagesMachine Alarms 6000 — 7999These alarms will be triggered by the machines.There are different alarms for the different machines.The alarms 6000 — 6999 normally must be confirmed with RESET. The alarms 7000 — 7999 are messages which normally will disappear when the releasing situation is finished.

PC MILL 50 / 55 / 100 / 105 / 125 / 155Concept MILL 55 / 105 / 155

6000: EMERGENCY OFFThe EMERGENCY OFF key was pressed. Re-move the endangering situation and restart ma-chine and software.

6001: PLC-CYCLE TIME EXCEEDINGContact EMCO Service.

6002: PLC — NO PROGRAM CHARGEDContact EMCO Service.

6003: PLC — NO DATA UNITContact EMCO Service.

6004: PLC — RAM MEMORY FAILUREContact EMCO Service.

6005: OVERHEAT BRAKEMODULMain drive was braked too often, large changes of speed within a short time. E4.2 active

6006: OVERLOAD BRAKE RESISTORsee 6005

6007: SAFETY CIRCUIT FAULTAxis and main drive contactor with machine switched off not disabled. Contactor got stuck or contact error. E4.7 was not active during switch-on.

6008:MISSING CAN SUBSCRIBERCheck fuses or EMCO customer service.Contact EMCO Service.

6009: SAFETY CIRCUIT FAULTA running CNC program will be interrupted, the auxiliary drives will be stopped, the reference position will be lost.

6010: DRIVE X-AXIS NOT READYThe step motor board is defective or too hot, a fuse or cabling is defective.A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost.Check fuses or contact EMCO service.

6011: DRIVE Y-AXIS NOT READYsee alarm 6010.

6012: DRIVE Z-AXIS NOT READYsee alarm 6010.

6013: MAIN DRIVE NOT READYMain drive power supply defective, main drive too hot, fuse defective.A running program will be stopped, the auxilliary drives will be switched off.Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEEDThis will be released, when the spindle speed is lower than 20 rpm because of overload.Alter cutting data (feed, infeed, spindle speed).The CNC program will be aborted, the auxilliary drives will be stopped.

6019: VICE TIME EXCEEDThe electric vice has not reached a stop position within 30 seconds.The control or the clamping device board are defective, the vice is stuck. Adjust the proximity switches of the stop position.

6020: VICE FAILUREWhen the electric vice is closed, the signal «clamping device clamped» of the clamping de-vice board has failed.The control, the clamping device board or the wiring are defective.

K 2017-07

Page 266: EMCO WinNC for Fanuc 31i Mill Software description, software

H2

AlArms And messAges

6022: CLAMPING DEVICE BOARD DEFECTIVEThe signal «clamping device clamped» is con-stantly released, although no command has been given.Replace the board.

6024: MACHINE DOOR OPENThe door was opened while a machine movement. The program will be aborted.

6027: DOOR LIMIT SWITCH DEFECTIVEThe limit switch of the automatic door is dis-placed, defective, wrong cabled.Contact EMCO service.

6028: DOOR TIMEOUTThe automatic door stucks, the pressured air supply is insufficient, the limit switch is displaced.Check door, pressured air supply, limit switch or contact EMCO service.

6030: NO PART CLAMPEDNo workpiece inserted, vice cheek displaced, control cam displaced, hardware defective.Adjust or contact EMCO service.

6040: TOOL TURRET INDEX FAILUREAfter WZW procedure drum pressed down by Z-axis. Spindle position wrong or mechanical defect. E4.3=0 in lower state

6041: TOOL CHANGE TIMEOUTTool drum stucks (collision?), main drive not ready, fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

6043-6046: TOOL DISK POSITION FAULTPosition error of main drive, error of position supervising (inductive proximity switch defective or disadjusted, drum allowance), fuse defective, hardware defective.The Z axis could have been slipped out of the toothing while the machine was switched off.A running CNC program will be stopped.Contact EMCO service.

6047: TOOL DISK UNLOCKEDTool drum turned out of locked position, inductive proximity switch defective or disadjusted, fuse defective, hardware defective.A running CNC program will be interrupted.Contact EMCO service.When the tool drum is turned out of locked posi-tion (no defect), act as following:

Turn the drum into locking position manuallyChange into MANUAL (JOG) mode.Turn the key switch. Traverse the Z slide upwards, until the alarm disappears.

6048: DIVIDING TIME EXCEEDEDDividing head stucks, insufficient pressured air supply, hardware defective.Check for collision, check pressured air supply or contact EMCO service.

6049: INTERLOCKING TIME EXCEEDEDsee alarm 6048

6050: M25 AT RUNNING MAIN SPINDLECause: Programming mistake in NC program.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Correct NC program

6064: DOOR AUTOMATIC NOT READYCause: pressure failure automatic door automatic door stucks mechanically limit switch for open end position defective security print circuits defect cabling defective fuses defectiveA running program will be aborted.The auxilliary drives will be switched off.Remedy: service automatic door

6069: CLAMPING FOR TANI NOT OPENWhen opening the clamping pressure switch does not fall within 400ms. Pressure switch defec-tive or mechanical problem. E22.3

6070: PRESSURE SWITCH FOR TANI MISS-ING

When closing the clamping pressure switch does not respond. No compressed air or mechanical problem. E22.3

6071: DIVIDING DEVICE NOT READYServo Ready Signal from frequency converter missing. Excess temperature drive TANI or fre-quency converter not ready for operation.

6072: VICE NOT READYAttempt to start the spindle with an open vice or without clamped workpiece.Vice stucks mechanically, insufficient com-pressed air supply, compressed air switch defec-tive, fuse defective, hardware defective.Check the fuses or contact EMCO service.

Page 267: EMCO WinNC for Fanuc 31i Mill Software description, software

H3

AlArms And messAges

6073: DIVIDING DEVICE NOT READYCause: locking switch defective cabling defective fuses defectiveA running program will be aborted.The auxilliary drives will be switched off.Remedy: service automatic dividing device lock the dividing device

6074: DIVIDING TIME EXCEEDEDCause: dividing device stucks mechanically locking switch defective cabling defective fuses defective insufficient compressed-air supply.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Check for collision, check the compressed-

air supply or contact the EMCO service.

6075: M27 AT RUNNING MAIN SPINDLECause: Programming mistake in NC program.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Correct NC program

6110: 5TH AXIS NOT CONNECTEDCause: 4th/5th axis was selected in EMConfig, but

not connected electrically.Remedy: Connect 4th/5th axis or deselect in EM-

Config.

6111: 5TH AXIS CONNECTEDCause: 4th/5th axis was deselected in EMConfig,

but is electrically connected.Remedy: Remove 4th/5th axis from machine or

select in EMConfig.

6112: MOTOR PROTECTION RELEASEDCause: A motor protection switch has triggered.

A possibly active NC program is stopped immediately.

Remedy: Check the device connected to the motor protection switch and switch on again. If recurring, contact EMCO service depart-ment.

7000: INVALID TOOL NUMBER PROGRAMMEDThe tool position was programmed larger than 10.The CNC program will be stopped.Interrupt program with RESET and correct the program.

7001: NO M6 PROGRAMMEDFor an automatic tool change you also have to program a M6 after the T word.

7007: FEED STOP!The axes have been stopped by the robotics in-terface (robotics entry FEEDHOLD).

7016: SWITCH ON AUXILIARY DRIVESThe auxiliary drives are off. Press the AUX ON key for at least 0.5 sec. (to avoid accidentally switching on) to switch on the auxiliary drives.

7017: REFERENCE MACHINEApproach the reference point.When the reference point is not active, manual movements are possible only with key switch at position «setting operation».

7018: TURN KEY SWITCHWith NC-Start the key switch was in position «set-ting operation».NC-Start is locked.Turn the key switch in the position «automatic» to run a program.

7020: SPECIAL OPERATION MODE ACTIVESpecial operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position «setting operation» and the consent key is pressed.Manual traversing the axes is possible with open door. Swivelling the tool turret is not possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SIN-GLE block operation.For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: INITIALIZE TOOL TURRETThe tool turret operating was interrupted.No traversing operation is possible.Press tool turret key in JOG operation. Message occurs after alarm 6040.

7022: INITIALIZE TOOL TURRET!see 7021

7023: WAITING TIME MAIN DRIVE!The LENZE frequency converter has to be sepa-rated from the mains supply for at least 20 sec-onds before you are allowed to switch it on again. This message will appear when the door is quickly openend/ closed (under 20 seconds).

7038: LUBRICATION SYSTEM FAULTThe pressure switch is defective or gagged.NC-Start is locked. This can be reset only by switching off and on the machine.Contact EMCO service.

Page 268: EMCO WinNC for Fanuc 31i Mill Software description, software

H4

AlArms And messAges

7039: LUBRICATION SYSTEM FAULTNot enough lubricant, the pressure switch is defective.NC-Start is locked.Check the lubricant and lubricate manually or contact EMCO service.

7040: MACHINE DOOR OPENThe main drive can not be switched on and NC-Start can not be activated (except special opera-tion mode)Close the machine to run a program.

7042: INITIALIZE MACHINE DOOREvery movement and NC-Start are locked.Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHEDA predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7050: NO PART CLAMPEDAfter switching on or after an the vice is neither at the open position nor at the closed position.NC-Start is locked.Traverse the vice manually on a valid end posi-tion.

7051: DIVIDING HEAD NOT LOCKED!Either the dividing head is in an undefined posi-tion after the machine has been switched on, or the locking signal after a dividing process is missing.Initiate the dividing process, check, respectively adjust the proximity switch for locking.

7054: VICE OPENCause: the workpiece is not clampedWhen switching on the main spindle with M3/M4 alarm 6072 (vice not ready) will be released.Remedy: Clamp

7055: OPEN TOOL CLAMPING SYSTEMA tool is clamped in the main spindle and the control does not recognize the corresponding T number.Eject the tool from the main spindle when the door is open by means of the PC keys «Strg» and » 1 «.

7056: SETTING DATA INCORRECTAn invalid tool number is stored in the setting data.Delete the setting data in the machine directory xxxxx.pls.

7057: TOOLHOLDER OCCUPIEDThe clamped tool cannot be positioned in the tool turret since the position is occupied.Eject the tool from the main spindle when the door is open by means of the PC keys «Strg» and » 1 «.

7058: RETRACTING THE AXESThe position of the tool turret arm cannot be clearly defined during the tool change.Open the machine door, push the tool turret magazine backwards to the stop. Move the milling head in the JOG mode upwards to the Z reference switch and then traverse the reference point.

7087: MOTOR PROTECTION HYDRAULIC CLAMPING RELEASED!

Hydraulic motor is defective, stiff, circuit breaker is set incorrectly.Replace motor or check circuit breaker and re-place if necessary.

7090: ELECTRICAL CABINET OVERRIDE SWITCH ACTIVE

The cabinet door can only be opened when the key switch is switched on without raising an alarm.Switch off key switch.

7107: OTOR PROTECTION RELEASEDA motor protection switch has triggered. A pos-sibly running NC program will be completed. A new NC start will be prevented.Check the device connected to the motor pro-tection switch and switch on again. If recurring, contact EMCO service department.

7270: OFFSET COMPENSATION ACTIVE !Only with PC-MILL 105Offset compensation activated by the following operation sequence.- Reference point not active- Machine in reference mode- Key switch in manual operation- Press STRG (or CTRL) and simultaneously 4This must be carried out if prior to the tool change procedure spindle positioning is not completed (tolerance window too large)

7271: COMPENSATION FINISHED, DATA SAVED !

see 7270

Page 269: EMCO WinNC for Fanuc 31i Mill Software description, software

H5

AlArms And messAges

Page 270: EMCO WinNC for Fanuc 31i Mill Software description, software

H6

AlArms And messAges

6000: EMERGENCY OFFThe EMERGENCY OFF key was pressed.The reference position will be lost, the auxiliary drives will be switched off.Remove the endangering situation and restart machine and software.

6001: PLC-CYCLE TIME EXCEEDINGThe auxiliary drives will be switched off.Contact EMCO Service.

6002: PLC — NO PROGRAM CHARGEDThe auxiliary drives will be switched off.Contact EMCO Service.

6003: PLC — NO DATA UNITThe auxiliary drives will be switched off.Contact EMCO Service.

6004: PLC — RAM MEMORY FAILUREThe auxiliary drives will be switched off.Contact EMCO Service.

6005: K2 OR K3 NOT DE-ENERGIZEDTurn machine on/off. Defective security board.

6006 EMERGENCY-OFF RELAY K1 NOT DE-ENERGIZED

Turn machine on/off. Defective security board.

6007 SAFETY CIRCUIT FAULT

6008: MISSING CAN SUBSCRIBERThe PLC-CAN board is not identified by the con-trol.Check the interface cable and the power supply of the CAN board.

6009: SAFETY CIRCUIT FAULT

6010: DRIVE X-AXIS NOT READYThe step motor board is defective or too hot, a fuse is defective, over- or undervoltage from mains.

A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost.Check fuses or contact EMCO service.

6011: DRIVE Z-AXIS NOT READYsee 6010.

6012: DRIVE Z-AXIS NOT READYsee 6010.

6013: MAIN DRIVE NOT READYMain drive power supply defective or main drive too hot, fuse defective, over- or undervoltage from mains.A running program will be stopped, the auxilliary drives will be switched off.Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEEDThis alarm will be released, when the spindle speed is lower than 20 rpm because of overload.Alter cutting data (feed, infeed, spindle speed).The CNC program will be aborted, the auxiliary drives will be switched off.

6015: NO DRIVEN TOOL SPINDLE SPEEDsee 6014.

6016: AUTOMATIC TOOL TURRET SIGNAL COUPLED MISSING

6017: AUTOMATIC TOOL TURRET SIGNAL UNCOUPLED MISSING

In the tool turret that can be coupled, the position of the coupling and uncoupling magnet is moni-tored by means of two proximity switches. It has to be made sure that the coupling is in the rear stop position so that the tool turret can get to the next tool position. Equally, during operation with driven tools the coupling has to be safe in the front stop position.Check and adjust the cables, the magnet and the stop position proximity switches.

PC TURN 50 / 55 / 105 / 120 / 125 / 155Concept TURN 55 / 60 / 105 / 155 / 250 / 260 / 460Concept MILL 250EMCOMAT E160EMCOMAT E200EMCOMILL C40EMCOMAT FB-450 / FB-600

Page 271: EMCO WinNC for Fanuc 31i Mill Software description, software

H7

AlArms And messAges

6018: AS SIGNALS, K4 OR K5 NOT DE-ENERGIZED

Turn machine on/off. Defective security board.

6019: POWER SUPPLY MODULE NOT READY Turn machine on/off. Power supply module, de-fective axis controller 6020 AWZ drive failure turn machine on/off, defective axis controller.

6020: DRIVEN TOOL DRIVE MALFUNCTIONThe driven tool power supply defective or the driv-en tool drive is too hot, fuse defective, mains over-voltage or undervoltage. A running CNC program will be aborted, the auxiliary drives will be stopped. Check the fuses or contact EMCO service.

6021: COLLET TIME OUTDuring closing of the clamping device the pres-sure switch has not reacted within one second.

6022: CLAMPING DEVICE BOARD DEFEC-TIVE

The signal «clamping device clamped» is con-stantly released, even though no command has been given. Replace the board.

6023: COLLET PRESSURE MONITORINGThe pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).

6024: MACHINE DOOR OPENThe door was opened while a machine movement. The program will be aborted.

6025: GEARBOX COVER NOT CLOSEDThe gearbox cover was opened while a machine movement. A running CNC program will be aborted.Close the cover to continue.

6026: MOTOR PROTECTION COOLANT PUMP RELEASED

6027: DOOR LIMIT SWITCH DEFECTIVEThe limit switch of the automatic door is dis-placed, defective, wrong cabled.Contact EMCO service.

6028: DOOR TIMEOUTThe automatic door stucks, the pressured air supply is insufficient, the limit switch is displaced.Check door, pressured air supply, limit switch or contact EMCO service.

6029: TAILSTOCK QUILL TIME EXCEEDThe tailstock quill does not reach a final position within 10 seconds.Adjust the control and the stop position proximity switches, or the tailstock quill is stuck.

6030: NO PART CLAMPEDNo workpiece inserted, vice cheek displaced, control cam displaced, hardware defective.Adjust or contact EMCO service.

6031: QUILL FAILURE

6032: TOOL CHANGE TIMEOUTsee alarm 6041.

6033: TOOL TURRET SYNC ERRORHardware defective.Contact EMCO service.

6037: CHUCK TIMEOUTThe pressure switch does not react within one second when the clamping device is closed.

6039: CHUCK PRESSURE FAILUREThe pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).

6040: TOOL TURRET INDEX FAILUREThe tool turret is in no locked position, tool turret sensor board defective, cabling defective, fuse defective.A running CNC program will be stopped.Swivel the tool turret with the tool turret key, check fuses or contact EMCO service.

6041: TOOL CHANGE TIMEOUTTool drum stucks (collision?), fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

6042: TOOL TURRET OVERHEATTool turret motor too hot.With the tool turret a max. of 14 swivel procedures a minute may be carried out.

6043: TOOL CHANGE TIMEOUTTool drum stucks (collision?), fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

Page 272: EMCO WinNC for Fanuc 31i Mill Software description, software

H8

AlArms And messAges

6044: BRAKING RESISTANCE — MAIN DRIVE OVERLOADED

Reduce number of speed changes in the program.

6045: TOOL TURRET SYNC MISSINGHardware defective.Contact EMCO service.

6046: TOOL TURRET ENCODER FAULTFuse defective, hardware defective.Check fuses or contact EMCO service.

6048: CHUCK NOT READYAttempt to start the spindle with open chuck or without clamped workpiece.Chuck stucks mechanically, insufficient pressured air supply, fuse defective, hardware defective.Check fuses or contact EMCO service.

6049: COLLET NOT READYsee 6048

6050: M25 DURING SPINDLE ROTATIONWith M25 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6055: NO PART CLAMPEDThis alarm occurs when with rotating spindle the clamping device or the tailstock reach the end position.The workpiece has been pushed out of the chuck or has been pushed into the chuck by the tailstock.Check clamping device settings, clamping forces, alter cutting data.

6056: QUILL NOT READYAttempt to start the spindle or to move an axis or to swivel the tool turret with undefined tailstock position.Tailstock is locked mechanically (collision), in-sufficient pressured air supply, fuse defective, magnetic switch defective.Check for collisions, check fuses or contact EMCO service.

6057: M20/M21 DURING SPINDLE ROTA-TION

With M20/M21 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6058: M25/M26 DURING QUILL FORWARDTo actuate the clamping device in an NC program with M25 or M26 the tailstock must be in back end position.

6059: C-AXIS SWING IN TIMEOUTC-axis does not swivel in within 4 seconds.Reason: not sufficient air pressure, and/or me-chanics stuck.

6060: C-AXIS INDEX FAILUREWhen swivelling in the C-axis the limit switch does not respond.Check pneumatics, mechanics and limit switch.

6064: AUTOMATIC DOOR NOT READYDoor stucks mechanically (collision), insufficient pressured air supply, limit switch defective, fuse defective.Check for collisions, check fuses or contact EMCO service.

6065: LOADER MAGAZINE FAILURELoader not ready.Check if the loader is switched on, correctly con-nected and ready for operation and/or disable loader (WinConfig).

6066: CLAMPING DEVICE FAILURENo compressed air at the clamping deviceCheck pneumatics and position of the clamping device proximity detectors.

6067: NO COMPRESSED AIRTurn the compressed air on, check the setting of the pressure switch.

6068: MAINDRIVE OVERTEMPERATURE

6070: LIMIT SWITCH TAILSTOCK SLEEVE ACTIVE

Cause: The axis arrived in the tailstock sleeve.Remedy: Drive the travel off the tailstock sleeve.

6071: LIMIT SWITCH X AXIS ACTIVECause: The axis arrived to the end switch.Remedy: Drive the axis off the end switch again.

6072: LIMIT SWITCH Z AXIS ACTIVEsee 6071

6073: CHUCK GUARD OPENCause: The chuck guard is open. Remedy: Close the chuck guard.

6074: NO FEEDBACK FROM USB-PLCTurn machine on/off. Check cabling, defective USB board.

6075: AXIS LIMIT SWITCH TRIGGEREDsee 6071

Page 273: EMCO WinNC for Fanuc 31i Mill Software description, software

H9

AlArms And messAges

6076: DRIVE Y-AXIS NOT READYsee 6010

6077 VICE NOT READYCause: Loss of pressure in clamping system.Remedy: Check pressurised air and air ducts.

6078 MOTOR PROTECTION TOOL MAGA-ZINE RELEASED

Cause: Swing intervals are too short.Remedy: Raise swing intervals.

6079 MOTOR PROTECTION TOOL CHANG-ER RELEASED

see 6068

6080 PRESSURE SWITCH FOR TANI MISS-ING

Cause: The pressure switch fails to active when the clamping closes. No pressurised air or mechanical problem.

Remedy: Check pressurised air.

6081 CLAMPING FOR TANI NOT OPENsee 6080

6082 FAULT AS/SIGNALCause: Active Safety-Signal X/Y-controller is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6083 FAULT AS/SIGNALCause: Active Safety-Signal main spindle/Z-

controller is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6084 FAULT AS/SIGNAL UE-MODULCause: Active Safety-Signal Uncontrolled power

supply module is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6085 N=0 RELAY NOT DE-ENERGIZEDCause: Rotation zero relay did not drop.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO (replace relay).

6086 DIFFERENT DOOR-SIGNALS FROM USBPLC AND ACC-PLC

Cause: ACC-PLC and USBSPS receive different door status reports.

Remedy: Delete alarm using the RESET key. If this error reoccurs, contact EMCO.

6087 DRIVE A-AXIS NOT READYsee 6010

6088 PROTECT SWITCH DOOR CONTROL UNIT RELEASED

Cause: Door drive overload.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace motor, drive).

6089 DRIVE B-AXIS NOT READYsee 6010

6090 CHIP CONVEYOR CONTACTOR NOT DE-ENERGIZED

Cause: Chip conveyor guard not down.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace guard).

6091 AUTOMATIC DOOR CONTACTOR NOT DE-ENERGIZED

Cause: Automatic door guard not down.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace guard).

6092 EMERGENCY-OFF EXTERNAL

6093 FAULT AS/SIGNAL A-AXISCause: Active Safety-Signal A control element

faulty.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs several times, contact EMCO.

6095 OVERHEATING IN THE SWITCHGEAR CABINET

Cause: Temperature monitoring responded.Remedy: Check switchgear cabinet filter and fan,

raise triggering temperature, switch ma-chine on and off.

6096 SWITCHGEAR CABINET DOOR OPENCause: Switchgear cabinet door opened without

key switch release.Remedy: Close switchgear cabinet door, switch

machine off and on.

Page 274: EMCO WinNC for Fanuc 31i Mill Software description, software

H10

AlArms And messAges

6097 EMERGENCY-OFF TEST REQUIREDCause: Functional test of Emergency off.Remedy: Press EMERGENCY-OFF button on the

control panel and unlock again. Press Rest-button to acknowledge the emergency stop state.

6098 FLOAT SWITCH HYDRAULIC MISSINGEffect: Auxiliary units are switched off.Meaning: The hydraulic float switch has released.Remedy: Refill hydraulic oil.

6099 PROX. SWITCH SPINDLE-BRAKE 1 MISSING

Effect: Feed stop, Read in lockMeaning: M10 Spindle brake on Inductive proximity

switch stays 0. M11 Spindle brake off Inductive proximity

switch stays 1.Remedy: Check inductive proximity switch, check

magnetiv valve spindle brake.

6100 LOW PRESSURE QUILLEffect: Auxiliary units are switched off.Meaning: At the moment of a spindle start command

the tailstock pressure was not built up or the pressure dropped while spindle run.

Remedy: Check clamping device pressure and pres-sure switch.

Check program.

6101 QUILL -B3 OR -B4 MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for the movement of

the quill was activated, but the switches –B3 and –B4 does not alter its status.

Remedy: Check switches, magnetic valves.

6102 QUILL POSITION ALARM (PART MOVED?)

Effect: Feed stop, Read in lockMeaning: The tailstock target position was overtrav-

elled in AUTOMATIC mode.Remedy: Check tailstock target position, check tech-

nology (clamping device pressure higher, tailstock pressure lower)

6103 QUILL NO BACKPOSITIONEffect: Feed stop, Read in lockMeaning: The magnetic valve for the tailstock was

activated, but the switch for «tailstock back» stays 0.

Remedy: Check magnetic valve, check switch.

6104 LOW PRESSURE CLAMPING EQUIPMENT 1

Effect: Auxiliary units are switched off.Meaning: At the moment of a spindle start command

the clamping pressure was not built up or the clamping pressure dropped while spindle run.

Remedy: Check clamping device pressure and pres-sure switch.

Check program.

6105 CLAMPING EQUIPMENT 1 NOT OPENEffect: Feed stop, Read in lockMeaning: The analogous proximity switch for clamp-

ing device 1 was not actuated.Remedy: Adjust inductive proximity switch (see

«Machine Description — chapter «C Pro-gramming and operation»).

6106 CLAMPING EQUIPMENT 1 NOT CLOSEDEffect: Feed stop, Read in lockMeaning: The pressure switch for «clamping device

closed» does not switch.Remedy: Check pressure switch

6107 LIMIT SWITCH CLAMPING EQUIPMENT 1Effect: Auxiliary units are switched off.Remedy: Adjust clamping device (do not clamp in

end position of the clamping system — see «Machine Description, chapter C Program-ming and Operation»).

6108 PARTS CATCHER FORWARD MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for «collection tray

forward/backward» was activated, but the switch for «collection tray forward/backward» does not alter its status.

Remedy: Check switches, magnetic valves.

6109 PARTS CATCHER ROTATE IN MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for «collection tray in/

out» was activated, but the switch for «col-lection tray in/out» does not alter its status.

Remedy: Check switch, magnetic valve.

6900 USBPLC not availableCause: USB communication with the safety board

could not be established.Remedy: Switch the machine off and on again.

Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

Page 275: EMCO WinNC for Fanuc 31i Mill Software description, software

H11

AlArms And messAges

6901 Error emergency-off relay USBPLCCause: USBPLC EMERGENCY-OFF relay error.Remedy: Switch the machine off and on again.

Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6902 Error standstill monitoring XCause: Unauthorized movement of the X axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6903 Error standstill monitoring ZCause: Unauthorized movement of the Z axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6904 Error alive circuit PLCCause: Error in the connection (Watchdog) of the

safety board with the PLC.Remedy: Delete the alarm with the RESET button and

switch the machine off and on again. Please contact the EMCO after-sales service in case the error occurs repeatedly.

6906 Error overspeed spindleCause: The main spindle speed exceeds the

maximum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales service in case the error occurs repeatedly.

6907 Error enable pulses ER-moduleCause: ACC-PLC did not shutdown the input/

negative feeder-module.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6908 Error standstill monitoring main driveCause: Unexpeced warm up of the main spindle

in the operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6909 Error main drive enable without spindle start

Cause: The release of the control unit of the main spindle was given by the ACC-PLC without the spindle-start key being pressed.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6910 Error standstill monitoring YCause: Unauthorized movement of the Y axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6911 Error standstill axesCause: Unauthorized movement of the axis in the

current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6912 Error overspeed axisCause: The feed of the axes exceeds the maximum permissible value for the current op-erating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6913 Error overspeed XCause: The feed of the X axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6914 Error overspeed YCause: The feed of the Y axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

Page 276: EMCO WinNC for Fanuc 31i Mill Software description, software

H12

AlArms And messAges

6915 Error overspeed ZCause: The feed of the Y axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6916 ERROR: X-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by X axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6917 ERROR: Y-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by Y axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6918 ERROR: Z-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by Z axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6919 ERROR: SPINDLE-INDUCTIVE PROX-IMITY SWITCH DEFECT

Cause: No signal is delivered by main spindle Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6920 INVERSION OF X-DIRECTION TOO LONG «1»Cause: The change in direction of X axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6921 INVERSION OF Y-DIRECTION TOO LONG «1»Cause: The change in direction oY axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6922 INVERSION OF Z-DIRECTION TOO LONG «1»Cause: The change in direction of Z axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6923 DIFFERENT DOOR-SIGNALS FROM USBPLC AND ACC-PLC

Cause: ACC-PLC and USBSPS receive different door status reports.

Remedy: Delete alarm using the RESET key. If this error reoccurs, contact EMCO.

6924 ERROR ENABLE PULSES MAIN DRIVECause: The pulse release on the main spindle

control element was interrupted by the USBSPS, as the PLC did not shut it down in a timely fashion.

Remedy: Cancel alarm with RESET button. If the problem occurs several times, contact EMCO.

6925 GRID PROTECTION ERROR!Cause: Grid protection does not drop out in current

operating state, or does not engage.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6926 MOTOR PROTECTION ERROR!Cause: Motor protection drops out in current op-

erating state.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6927 EMERGENCY OFF ACTIVE ERROR!Cause: Emergency off button was pressed.Remedy: Restart the machine.

6928 TOOL CHANGER SHUTDOWN MONI-TORING ERROR

Cause: Unauthorised tool changer movement in the current operating state.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6929 MACHINE DOOR CLOSING/LOCKING ERROR

Cause: State of the door lock not plausible or door closure unserviceable.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

Page 277: EMCO WinNC for Fanuc 31i Mill Software description, software

H13

AlArms And messAges

6930 BEROS MAIN SPINDLE PLAUSIBILITY ERROR

Cause: Beros main spindle signal different.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6931 MAIN DRIVE QUICK STOP FUNCTION PLAUSIBILITY ERROR

Cause: Main drive actuator does not confirm the quick stop function in the current operating state.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6999 USB-EXTENSION FOR ROBOTIK NOT AVAILABLE

Cause: The USB extension for robotics cannot be addressed by ACC.

Remedy: Contact EMCO.

7000: INVALID TOOL NUMBER PRO-GRAMMED

The tool position was programmed larger than 8.The CNC program will be stopped.Interrupt program with RESET and correct the program.

7007: FEED HOLDIn the robotic mode a HIGH signal is at input E3.7. Feed Stop is active until a low signal is at E3.7.

7016: SWITCH ON AUXILIARY DRIVESThe auxiliary drives are off. Press the AUX ON key for at least 0.5 sec. (to avoid accidentally switching on) to switch on the auxiliary drives (also a lubricating pulse will be released).

7017: REFERENCE MACHINEApproach the reference point.When the reference point is not active, manual movements are possible only with key switch at position «setting operation».

7018: TURN KEY SWITCHWith NC-Start the key switch was in position «set-ting operation».NC-Start is locked.Turn the key switch in the position «automatic» to run a program.

7019: PNEUMATIC LUBRICATION MONI-TORING!

Refill pneumatic oil

7020: SPECIAL OPERATION MODE ACTIVESpecial operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position «setting operation» and the consent key is pressed.Manual traversing the axes is possible with open door. Swivelling the tool turret is possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SIN-GLE block operation.For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: TOOL TURRET NOT LOCKEDThe tool turret operating was interrupted.NC start and spindle start are locked. Press the tool turret key in the RESET status of the control.

7022: COLLECTION DEVICE MONITORINGTime exceed of the swivelling movement.Check the pneumatics, respectively whether the mechanical system is jammed (possibly a work-piece is jammed).

7023: ADJUST PRESSURE SWITCH !During opening and closing of the clamping de-vice the pressure switch has to turn off and on once.Adjust the pressure switch. This alarm does not exist any more for versions starting with PLC 3.10.

7024: ADJUST CLAMPING DEVICE PROXIM-ITY SWITCH !

When the clamping device is open and the posi-tion stop control is active, the respective proximity switch has to feed back that the clamping device is «Open».Check and adjust the clamping device proximity switch, check the cables.

7025 WAITING TIME MAIN DRIVE !The LENZE frequency converter has to be sepa-rated from the mains supply for at least 20 sec-onds before you are allowed to switch it on again. This message will appear when the door is quickly openend/ closed (under 20 seconds).

7026 PROTECTION MAIN MOTOR FAN RE-LEASED!

Page 278: EMCO WinNC for Fanuc 31i Mill Software description, software

H14

AlArms And messAges

7038: LUBRICATION SYSTEM FAULTThe pressure switch is defective or gagged.NC-Start is locked. This alarm can be reset only by switching off and on the machine.Contact EMCO service.

7039: LUBRICATION SYSTEM FAULTNot enough lubricant, the pressure switch is defective.NC-Start is locked.Check the lubricant and lubricate manually or contact EMCO service.

7040: MACHINE DOOR OPENThe main drive can not be switched on and NC-Start can not be activated (except special opera-tion mode)Close the machine to run a program.

7041: GEARBOX COVER OPENThe main spindle cannot be switched on and NC start cannot be activated.Close the gearbox cover in order to start a CNC program.

7042: INITIALIZE MACHINE DOOREvery movement and NC-Start are locked.Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHEDA predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7048: CHUCK OPENThis message shows that the chuck is open. It will disappear if a workpiece will be clamped.

7049: CHUCK — NO PART CLAMPEDNo part is clamped, the spindle can not be switched on.

7050: COLLET OPENThis message shows that the collet is open. It will disappear if a workpiece will be clamped.

7051: COLLET — NO PART CLAMPEDNo part is clamped, the spindle can not be switched on.

7052: QUILL IN UNDEFINED POSITIONThe tailstock is in no defined position.All axis movements, the spindle and the tool tur-ret are locked.Drive the tailstock in back end position or clamp a workpiece with the tailstock.

7053: QUILL — NO PART CLAMPEDThe tailstock reached the front end position. Trav-erse the tailstock back to the back end position to continue.

7054: NO PART CLAMPEDNo part clamped, switch-on of the spindle is locked.

7055: CLAMPING DEVICE OPENThis message indicates that the clamping device is not in clamping state. It disappears as soon as a part is clamped.

7060 RETRACT SLEEVE LIMIT SWITCH !The axis arrived in the tailstock sleeve. Drive the travel off the tailstock sleeve.

7061 RETRACT X AXIS LIMIT SWITCH !The axis arrived to the end switch. Drive the axis off the end switch again.

7062 RETRACT Z AXIS LIMIT SWITCH !see 7061

7063 OIL LEVEL CENTRAL LUBRICATION !Low oil level in central lubrication. Refill oil as per maintenance instructions to the machine.

7064 CHUCK GUARD OPEN !The chuck guard is open. Close the chuck guard.

7065 MOTOR PROTECTION COOLANT PUMP RELEASED !

Overheated coolant pump. Check the coolant pump for ease of motion and presence of dirt. Ensure sufficient amount of coolant fluid in the coolant facility.

7066 CONFIRM TOOL !To confirm the tool change, press T after the change has been completed.

7067 MANUAL OPERATING MODEThe Special Operation key switch is in the Set position (manual).

7068 X AXIS HANDWHEEL ACTIVEThe safety wheel is locked for manual travel movement. The safety wheel locking is monitored by contactless switches. With the manual wheel locked, the axis feed cannot be switched on. For automatic processing of a program, the manual wheel must be released again.

7069 Y AXIS HANDWHEEL ACTIVEsee 7068

Page 279: EMCO WinNC for Fanuc 31i Mill Software description, software

H15

AlArms And messAges

7070 Z AXIS HANDWHEEL ACTIVEsee 7068

7071 VERTICAL TOOL CHANGEThe sheath for manual clamping of the tool holder is monitored by a switch. The switch reports a unaccepted socket wrench or a sheath which was left open. Remove the socket wrench after clamping the tool and close the sheath.

7072 HORIZONTAL TOOL CHANGEThe turning knob for manual tool clamping on the horizontal spindle is monitored by a switch. The switch reports a tightened turning knob. The spindle gets locked. Release the turning knob after clamping the tool.

7073 RETRACT Y AXIS LIMIT SWITCH !see 7061

7074 CHANGE TOOLClamp programmed tool.

7076: SWIVEL UNIT VOR MILLING HEAD UNLOCKED

The milling head is not fully swung. Fix the mill-ing head mechanically (the end switch must be pushed).

7077: ADJUST TOOL TURRETNo valid machine data for tool change are avail-able. Contact EMCO.

7078: POCKET NOT IN HOME POSITIONCancel during tool change. Swing back tool re-cessed in setup operation.

7079: TOOL ARM NOT IN HOME POSITIONsee 7079

7080: INCORRECT TOOL CLAMPED !The tool cone lies beyond tolerance. The clamped tool is twisted by 180°. Bero tool clamping is dis-placed. Check the tool and clamp it again. If this problem occurs with more tools, contact EMCO.

7082: MOTOR PROTECTION CHIP CONVEY-OR RELEASED

The scrap belt is overloaded. Check the conveyor belt for ease of motion and remove jammed scrap.

7083: MAGAZINE IS ACTIVE !A tool has been removed from the non-chaotic tool administration from the main spindle. Fill the tool drum.

7084: VICE OPEN !The vice is not clamped. Clamp the vice.

7085 ROUNDAXIS A MOVE TO 0 DEGRE !Cause: The MOC only shuts down if the A Round

axis is at 0°. When 4.5. is present, a round axis must

be made each time before the machine is switched off.

Remedy: Move round axis to 0°.

7088 SWITCHGEAR CABINET OVERHEAT-ING

Cause: Temperature monitoring responded.Remedy: Check switchgear cabinet filter and fan,

raise trigger temperature.

7089 SWITCHGEAR CABINET DOOR OPENCause: Switchgear cabinet door open.Remedy: Close switchgear cabinet door.

7091 WAIT FOR USB-I2C SPSCause: Communication with the USB-I2C PLC

could not be established.Remedy: If the message does not self-extinguish,

switch off and on the machine. Please contact EMCO service when the message occurs permanently even after power off.

7092 TEST STOP ACTIVECause: Safety test for monitoring the safety func-

tions is active.Remedy: Wait until the safety test is finished.

7093 SET REFERENCE POINTCause: The reference point acknowledge mode

was activated by the operator.

7094 SET X-REFERENCE POINTCause: The reference value of the X axis was

adopted to the acc.esd file.

7095 SET Y-REFERENCE POINTCause: The reference value of the Y axis was

adopted to the acc.esd file.

7096 SET Z-REFERENCE POINTCause: The reference value of the Z axis was

adopted to the acc.esd file.

7097 FEED OVERRIDE 0Cause: The override switch (feed control) was set

by the operator on 0%

Page 280: EMCO WinNC for Fanuc 31i Mill Software description, software

H16

AlArms And messAges

7098 SPINDLE-BRAKE 1 ACTIVEEffect: spindle stop.

7099 QUILL DRIVES FORWARDEffect: Feed stop, Read in lockMeaning: M21 was programmed pressure switch

«tailstock in front position» is not yet 1.Remedy: Disappears with pressure switch front

position.

7100 QUILL DRIVES BACKWARDEffect: Feed stop, Read in lockMeaning: M20 was programmed limit switch «tail-

stock back» is not yet 1Remedy: Disappears with limit switch «back position».

7101 REFERENCE POINT TOOL TURRET MISSING

Effect: Feed stop, Read in lockMeaning: At NC start the tool turret is not referenced.Remedy: Reference tool turret in JOG mode with

tool turret key.

7102 TOOL TURRET IN MOTIONEffect: Tool turret swivels to the programmed

position.

7103 LIMIT-SWITCH CLAMPING EQUIP-MENT 1

Effect: Locking of NC start and main drive start, spindle stop S1

Meaning: The pick-up for the analouge value detects the clamping position as end position.

Remedy: Change clamping range of the clamping device (see «Machine Description — chapter C Programming and Operation»).

7104 QUILL IN INTERMEDIATE POSITIONEffect: Feed hold / read in stop.

7105 SET AWZ REFERENCE POINTEffect: The reference value of the AWZ motor was

transferred to the acc.msd file.

7900 INITIALIZE EMERGENCY OFF!Cause: The emergency off button must be initial-

ized.Remedy: Press and then release emergency off

button.

7901 INITIALIZE MACHINE DOORS!Cause: The machine doors must be initialized.Remedy: Open the machine doors and close them

again.

7906 SET A-REFERENCE POINT Cause: The reference value of the A axis was

adopted to the acc.esd file.

Page 281: EMCO WinNC for Fanuc 31i Mill Software description, software

H17

AlArms And messAges

Inputunit alarms 1700 — 1899These alarms and messages are raised by the control keyboard.

1701 Error in RS232Cause: Serial port settings are invalid or the con-

nection to the serial keyboard were inter-rupted.

Remedy: Check the settings of the serial interface and/or turn keyboard off/on and check the control cable connection.

1703 Ext. keyboard not availableCause: Connection with the external keyboard can

not be made.Remedy: Check the settings of the external keyboard

and/or check the cable connection.

1704 Ext. keyboard: checksum errorCause: Error in the transmission.Remedy: The connection to the keyboard is auto-

matically restored. If this fails, turn off or on the keyboard.

1705 Ext. keyboard: general errorCause: The attached keyboard reported an error.Remedy: Plug the keyboard off and on again.Con-

tact EMCO Customer Service if the error occurs on several occasions.

1706 General USB errorCause: Error in the USB communication.Remedy: Plug the keyboard off and on again.Con-

tact EMCO Customer Service if the error occurs on several occasions

1707 Ext. Keyboard: no LEDsCause: Fehlerhaftes LED-Kommando wurde an

die Tastatur gesandt.Remedy: EMCO-Service kontaktieren.

1708 Ext. Keyboard: unknown commandCause: Unknown command was sent to the key-

board.Remedy: Contact EMCO Customer Service

1710 Installation of Easy2control is damaged!Cause: Incorrect installation of Easy2controlRemedy: Reinstall software and/or contact EMCO

Customer Service

1711 Initialization of Easy2Control failed!Cause: Configuration file onscreen.ini for Easy-

2control is missing.Remedy: Reinstall software and/or contact EMCO

Customer Service.

1712 USB-Dongle for Easy2control could not be found!

Cause: USB-Dongle for Easy2control is not con-nected. Easy2control is displayed but can not be operated.

Remedy: Connect USB-Dongle for Easy2control.

1801 Keytable not found!Cause: The file with the keytable couldn’t be found.Remedy: Reinstall software and/or contact EMCO

Customer Service.

1802 Connection to keyboard lostCause: Connection to the serial keyboard was

interrupted.Remedy: Turn keyboard off/on and check the cable

connection.

Page 282: EMCO WinNC for Fanuc 31i Mill Software description, software

H18

AlArms And messAges

Page 283: EMCO WinNC for Fanuc 31i Mill Software description, software

H19

AlArms And messAges

8000 Fatal Error AC8100 Fatal init error ACCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8101 Fatal init error ACsee 8101.8102 Fatal init error ACsee 8101.8103 Fatal init error ACsee 8101.8104 Fatal system error ACsee 8101.8105 Fatal init error ACsee 8101.8106 No PC-COM card foundCause: PC-COM board can not be accessed (ev.

not mounted).Remedy: Mount board, adjust other address with

jumper8107 PC-COM card not workingsee 8106.8108 Fatal error on PC-COM cardsee 8106.8109 Fatal error on PC-COM cardsee 8106.8110 PC-COM init message missingCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8111 Wrong configuration of PC-COMsee 8110.8113 Invalid data (pccom.hex)see 8110.8114 Programming error on PC-COMsee 8110.8115 PC-COM packet acknowledge missingsee 8110.8116 PC-COM startup errorsee 8110.8117 Fatal init data error (pccom.hex)see 8110.8118 Fatal init error ACsee 8110, ev. insufficient RAM memory

8119 PC interrupt no. not validCause: The PC interrupt number can not be used.Remedy: Find out free interrupt number in the Win-

dows95 system control (allowed: 5,7,10, 11, 12, 3, 4 und 5) and enter this number in WinConfig.

8120 PC interrupt no. unmaskablesee 81198121 Invalid command to PC-COMCause: Internal error or defective cableRemedy: Check cables (screw it); Restart software or

reinstall when necessary, report to EMCO, if repeatable.

8122 Internal AC mailbox overrunCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8123 Open error on record fileCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8124 Write error on record fileCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8125 Invalid memory for record bufferCause: Insufficient RAM, record time exceeding.Remedy: Restart software, ev. remove drivers etc.

to gain more RAM, reduce record time.8126 AC Interpolation overrunCause: Ev. insufficient computer performance.Remedy: Set a longer interrupt time in WinConfig.

This may result in poorer path accuracy.8127 Insufficient memoryCause: Insufficient RAMRemedy: Close other programs, restart software, ev.

remove drivers etc. to gain more RAM.8128 Invalid message to ACCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8129 Invalid MSD data — axisconfig.see 8128.8130 Internal init error ACsee 8128.8130 Internal init error ACsee 8128.

Axis Controller Alarms 8000 — 9000, 22000 — 23000, 200000 — 300000

Page 284: EMCO WinNC for Fanuc 31i Mill Software description, software

H20

AlArms And messAges

8132 Axis accessed by multiple channelssee 8128.8133 Insufficient NC block memory ACsee 8128.8134 Too much center points programmedsee 8128.8135 No centerpoint programmedsee 8128.8136 Circle radius too smallsee 8128.8137 Invalid for Helix specifiedCause: Wrong axis for helix. The combination of

linear and circular axes does not match.Remedy: Program correction.8140 Maschine (ACIF) not respondingCause: Machine off or not connected.Remedy: Switch on machine or connect.8141 Internal PC-COM errorCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8142 ACIF Program errorCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8143 ACIF packet acknowledge missingsee 8142.8144 ACIF startup errorsee 8142.8145 Fatal init data error (acif.hex)see 8142.8146 Multiple request for axissee 8142.8147 Invalid PC-COM state (DPRAM)see 8142.8148 Invalid PC-COM command (CNo)see 8142.8149 Invalid PC-COM command (Len)see 8142.8150 Fatal ACIF errorsee 8142.8151 AC Init Error (missing RPG file)see 8142.8152 AC Init Error (RPG file format)see 8142.8153 FPGA program timeout on ACIFsee 8142.8154 Invalid Command to PC-COMsee 8142.8155 Invalid FPGA packet acknowledgesee 8142 or hardware error on ACIF board (contact EMCO Service).

8156 Sync within 1.5 revol. not foundsee 8142 or Bero hardware error (contact EMCO Service).8157 Data record donesee 8142.8158 Bero width too large (referencing)see 8142 or Bero hardware error (contact EMCO Service).8159 Function not implementedBedeutung: In normal operation this function can

not be executed8160 Axis synchronization lost axis 3..7Cause: Axis spins or slide is locked, axis synchro-

nisation was lostRemedy: Approach reference point8161 X-Axis synchronization lostStep loss of the step motor. Causes:- Axis mechanically blocked- Axis belt defective- Distance of proximity detector too large

(>0,3mm) or proximity detector defective- Step motor defective8162 Y-Axis synchronization lostsee 81618163 Z-Axis synchronization lostsee 81618164 Software limit switch max axis 3..7Cause: Axis is at traverse area endRemedy: Retract axis8168 Software limit overtravel axis 3..7Cause: Axis is at traverse area endRemedy: Retract axis8172 Communication error to machineCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable. Check connection PC — machine, eventu-

ally eliminate distortion sources.8173 INC while NC program is runningRemedy: Stop the program with NC stop or with

Reset. Traverse the axis.8174 INC not allowedCause: At the moment the axis is in motion.Remedy: Wait until the axis stops and then traverse

the axis.8175 MSD file could not be openedCause: Internal errorRemedy: Restart software oder bei Bedarf neu in-

stallieren, report to EMCO, if repeatable.8176 PLS file could not be openedsee 8175.

Page 285: EMCO WinNC for Fanuc 31i Mill Software description, software

H21

AlArms And messAges

8177 PLS file could not be accessedsee 8175.8178 PLS file could not be writtensee 8175.8179 ACS file could not be openedsee 8175.8180 ACS file could not be accessedsee 8175.8181 ACS file could not be writtensee 8175.8183 Gear too highCause: The selected gear step is not allowed at

the machine. 8184 Invalid interpolaton command8185 Forbidden MSD data changesee 8175.8186 MSD file could not be openedsee 8175.8187 PLC program errorsee 8175.8188 Gear command invalidsee 8175.8189 Invalid channel assignementsee 8175.8190 Invalid channel within messagesee 8175.8191 Invalid jog feed unitCause: The machine does not support the rotation

feed in the JOG operating mode.Remedy: Order a software update from EMCO.8192 Invalid axis in commandsee 8175.8193 Fatal PLC errorsee 8175.8194 Thread without lengthCause: The programmed target coordinates are

identical to the starting coordinates.Remedy: Correct the target coordinates.8195 No thread slope in leading axisRemedy: Program thread pitch8196 Too manny axis for threadRemedy: Program max. 2 axes for thread.8197 Thread not long enoughCause: Thread length too short. With transition from one thread to the other

the length of the second thread must be sufficient to produce a correct thread.

Remedy: Longer second thread or replace it by a linear interpolation (G1).

8198 Internal error (to manny threads)see 8175.

8199 Internal error (thread state)Cause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8200 Thread without spindle onRemedy: Switch on spindle8201 Internal thread error (IPO)see 8199.8201 Internal thread error (IPO)see 8199.8203 Fatal AC error (0-ptr IPO)see 8199.8204 Fatal init error: PLC/IPO runningsee 8199.8205 PLC Runtime exceededCause: Insufficient computer performance8206 Invalid PLC M-group initialisationsee 8199.8207 Invalid PLC machine datasee 8199.8208 Invalid application messagesee 8199.8212 Rotation axis not allowedsee 8199.8213 Circle and rotation axis can’t be inter-polated8214 Thread and rotation axis cant’t be in-terpolated8215 Invalid statesee 8199.8216 No rotation axis for rotation axis switchsee 8199.8217 Axis type not valid!Cause: Switching during the rotary axis operating

mode when the spindle is running.Remedy: Stop the spindle and switch over to the

rotary axis operating mode.8218 Referencing round axis without select-ed round axis!see 8199.8219 Thread not allowed without spindle encoder!Cause: Thread cutting, respectively tapping is

only possible with spindles with encoders.8220 Buffer length exceeded in PC send message!see 8199.8221 Spindle release although axis is no spindle!see 8199.

Page 286: EMCO WinNC for Fanuc 31i Mill Software description, software

H22

AlArms And messAges

8222 New master spindle is not validCause: The indicated master spindle is not valid

when switching over to the master spindle.Remedy: Correct the spindle number.8224 Invalid stop modesee 8199.8225 Invalid parameter for BC_MOVE_TO_IO!Cause: The machine is not configurated for touch

probes. A traversing movement with rotary axis is not allowed during touch probe operating mode.

Remedy: Remove the rotary axis movement from the traversing movement.

8226 Rotary axis switch not valid (MSD data)!Cause: The indicated spindle does not have a

rotary axis.8228 Rotary axis switch not allowed while axis move!Cause: The rotary axis has moved during switching

over to the spindle operating mode.Remedy: Stop the rotary axis before switching.8229 Spindle on not allowed while rotary axis is active!8230 Program start not allowed due to active spindle rotation axis!8231 Axis configuration (MSD) for TRANS-MIT not valid!Cause: Transmit is not possible at this machine.8232 Axis configuration (MSD) for TRACYL not valid!Cause: Tracyl is not possible at this machine.8233 Axis not available while TRANSMIT/TRACYL is active!Cause: Programming of the rotary axis is not al-

lowed during Transmit/ Tracyl.8234 Axis control grant removed by PLC while axis interpolates!Cause: Internal errorRemedy: Delete error with reset and inform EMCO.8235 Interpolation invalid while axis control grant is off by PLC!see 8234.8236 TRANSMIT/TRACYL activated while axis or spindle moves!see 8234.8237 Motion through pole in TRANSMIT!Cause: It is not allowed to move through the co-

ordinates X0 Y0 inTransmit.Remedy: Alter the traversing movement.

8238 Speed limit in TRANSMIT exceeded!Cause: The traversing movement gets too close to

the coordinates X0 Y0. In order to observe the programmed feed rate, the maximum speed of the rotary axis would have to be exceeded.

Remedy: Reduce the feed rate. Set the value of the C-axis feed limitation in WinConfig, machine data settings / general machine data/ to 0.2. Thus, the feed rate will be automatically reduced near the coordinates X0 Y0.

The distance to the center is calculated with the following formula:

for CT155/CT325/CT450: F[mm/min] * 0.0016 = distance [mm] for CT250: F[mm/min] * 0.00016 = distance [mm] This applies for rapid traverse in transmit: CT155/250/325: 4200 mm/min CT450: 3,500 mm/min8239 DAU exceeded 10V limit!Cause: Internal errorRemedy: Start the software again or install it anew.

Report the error to EMCO.8240 Function not valid during active trans-formation (TRANSMIT/TRACYL)!Cause: The Jog and INC operating mode are not

possible during Transmit in X/C and during Tracyl in the rotary axis.

8241 TRANSMIT not enabled (MSD)!Cause: Transmit is not possible at this machine.8242 TRACYL not enabled (MSD)!Cause: Tracyl is not possible at this machine.8243 Round axis invalid during active trans-formation!Cause: It is not allowed to program the rotary axis

during Transmit/Tracyl.8245 TRACYL radius = 0!Cause: When selecting Tracyl, a radius of 0 was

used.Remedy: Correct the radius.8246 Offset alignment not valid for this state!see 8239.8247 Offset alignment: MSD file write pro-tected!8248 Cyclic supervision failed!Cause: The communication with the machine

keyboard is interrupted.Remedy: Start the software again or install it anew.

Report the error to EMCO.8249 Axis motion check alarm!see 8239

Page 287: EMCO WinNC for Fanuc 31i Mill Software description, software

H23

AlArms And messAges

8250 Spindle must be rotation axis !see 82398251 Lead for G331/G332 missing !Cause: The threading pitch is missing or the start-

ing coordinates are identical to the target coordinates.

Remedy: Program the threading pitch. Correct the target coordinates.8252 Multiple or no linear axis programmed for G331/G332 !Remedy: Program exactly one linear axis.8253 Speed value for G331/G332 and G96 missing !Cause: No cutting speed has been programmed.Remedy: Program the cutting speed.8254 Value for thread starting point offset not valid!Cause: The thread starting point offset is not within

the range of 0 to 360°.Remedy: Correct the thread starting point offset.8255 Reference point not in valid software limits!Cause: The reference point has been defined

outside the software limit switches.Remedy: Correct the reference points in WinConfig.8256 Spindle speed too low while executing G331/G332!Cause: During tapping the spindle speed has de-

creased. Perhaps the incorrect threading pitch was used or the core drilling is not correct.

Remedy: Correct the threading pitch. Adapt the diameter to the core drilling.

8257 Real Time Module not active or PCI card not found!Cause: ACC could not be started correctly or the

PCI card in the ACC was not recognized.Remedy: Report the error to EMCO.8258 Error allocating Linux data!see 8257.8259 Current thread in sequence not valid!Cause: One block of a thread in sequence has

been programmed without thread G33.Remedy: Correct the program.

8260 Change of leading axis within the thread sequence !Cause: Occurs if the thread run-out of the longitu-

dinal thread is set so that it’s not possible to reach the target point. with the required stopping distance

Remedy: The thread run-out should be at least as large as the pitch. this error also occurs. if the pitch of a thread chain is too large when changing the leading axis.

8261 Missing thread in sequence !Cause: A successive thread has not been pro-

grammed for a thread in sequence, the number has to be in accordance with the SETTHREADCOUNT () that has been defined before.

Remedy: Correct the number of threads in the thread in sequence and add a thread.

8262 Reference marks are not close enough !Cause: The settings of the linear scale have been

changed or the linear scale is defective.Remedy: Correct the settings. Contact EMCO.8263 Reference marks are too close togeth-er!see 8262.8265 No or wrong axis in axis switch com-mand!Cause: Internal error.Remedy: Please contact the EMCO after-sales

service.8266 Invalid toolCause: Programmed tool is not set in magazine.Remedy: Correct tool number and/or load tool in

magazine.8267 Speed difference to highCause: Die Soll- und Istgeschwindigkeit der Achse

weichen zu stark voneinander ab.Remedy: Run the program again with reduced feed.

If this does not remedy the problem, contact EMCO.

8269 USBSPS and ACC speed values or override are differentCause: USBSPS and ACC have diferent rotations

saved.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.8270 Reference switch defectiveCause: The reference switch did not switch within

the specified range.Remedy: Cancel alarm with RESET button. If the

problem occurs several times, contact EMCO.

8271 Tool load in locked place not possibleCause: There was an attempt to swing a tool into

a locked place in the magazine.Remedy: Choose a free, unlocked place in the

magazine and then swing the tool into the magazine.

8272 Old PLC version, update necessaryCause: The PLC version is too old to fully support

randomised tool management.Remedy: Update the PLC.

Page 288: EMCO WinNC for Fanuc 31i Mill Software description, software

H24

AlArms And messAges

8273 Spindle overloadCause: The spindle was overloaded and during

processing the speed fell (to half of the target speed for more than 500ms).

Remedy: Cancel alarm with RESET button. Change the cut data (feed, speed, infeed).

8274 Define tool before loadingCause: The tool must be defined in the tool list

before it is possible to transfer the tool into the spindle.

Remedy: Create the tool in the tool list, then load.8275 Could not read position from absolute encoderCause: The position of an absolute encoder could

not be read.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times8276 Physical axis left the valid travel rangeCause: An axis with absolute encoder is outside

the valid range for travel.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times.8277 Sinamics drive package error activeCause: Error in Sinamics drive.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times.8278 Control not compatible with ACpnCause: The WinNC control is incompatible with

the ACpn machine.Remedy: Install a WinNC control which is compatible

with the Acpn.8279 Connection to drive got lostCause: the connection between Acpn and CU320

was lost.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times8280 Reference point in setting data not equivalent with machine data, please check!Cause: The reference point saved in the AC setting

data does not match the reference point in the machine data (ACC_MSD).

Remedy: Measure the reference point of all axes anew and enter into EMConfig.

8704 Feed override absent, REPOS is not ex-ecuted

Cause: The REPOS command is not executed because the feed override is set to 0%.

Remedy: Change the feed override and restart REPOS.

8705 Tool sorting activeCause: The tools will be re-sorted with random

tool management to facilitate non-random operation (tool 1 at place 1, tool 2 at place 2, etc.).

Remedy: Wait until sorting has finished. The control-ler will delete the report independently.

8706 Check new controller — tool tableCause: The controller was changed with random

tool management active.Remedy: Check the tool or place table to clear the

alarm.8707 Ending with auxiliary drives switched on not possibleCause: An attempt was made to end the control-

ler, although the auxiliary drives are still switched on.

Remedy: Switch off the auxiliary drives and then end the controller.

8710 Initiating communication with drivesCause: Acpn connects to the Sinamics drivesRemedy: Wait until the connection was established.

8712 JOG in X and C deactivated during TransmitCause: JOG in X and C ist not possible at active

Transmit.

22000 Gear change not allowedCause: Gear step change when the spindle is ac-

tive.Remedy: Stop the spindle and carry out a gear step

change.22270 Feed too high (thread)Cause: Thread pitch too large / missing, Feed for

thread reaches 80% of rapid feedRemedy: Program correction, lower pitch or lower

spindle speed for thread

200000 to 300000 are specific to the drives and show up only in combination with the alarm # «8277 Sinamics error».

201699 — „(F) SI P1 (CU): Test of the shutdown path is necessary“Cause: A test of the shutdownpath is necessary.

The machine remains operational.Remedy: The test is performed automatically during

the next restart of the WinNC.235014 TM54F: Teststop necessaryCause: A teststop is necessary.Remedy: Shutdown and restart the WinNC. The test is performed automatically during

restart.

Page 289: EMCO WinNC for Fanuc 31i Mill Software description, software

H25

AlArms And messAges

Page 290: EMCO WinNC for Fanuc 31i Mill Software description, software

H26

AlArms And messAges

Axis Controller Messages

8700 Execute REPOS in all axes before pro-gram startCause: After the program was stopped, the axes

were manipulated with the hand wheel or with the jog keys and then a restart of the program was attempted.

Remedy: Before starting the program again, one should reposition the axes along the contour by executing «REPOS».

8701 No NCStop during offset alignCause: The machine is currently executing an

automatic offset adjustment. NC stop is not possible at this time.

Remedy: Wait until the offset adjustment is finished and then stop the program with NC stop.

8702 No NCStop during positioning after block searchCause: The machine is currently finishing the block

search operation and then it starts to go back to the last programmed position. No NC stop is possible in the meantime.

Remedy: Wait until positioning is finished and then stop the program with NC stop.

8703 Data record doneThe recording of data is finished and the file record.acp has been copied to the installation folder.

8705 Feed-override missing, REPOS will not be executedCause: The spindle was overloaded and during

processing the speed fell (to half of the target speed for more than 500ms).

Remedy: Cancel alarm with RESET button. Change the cut data (feed, speed, infeed).

8706 Tool sorting activeCause: The tools were resorted during randomised

tool management in order to enable non-randomised operation (tool 1 to place 1, tool 2 to place 2, etc.).

Remedy: Wait till the sorting is finished. The message will be deleted automatically by the control system.

8707 New control — please check tool tableCause: The control system was changed when

randomised tool management was active.Remedy: Check the tool or place table to cancel the

alarm.8708 Switch off auxiliary drives for shutdownCause: There was an attempt to shut down the

control system although the auxiliary drives are still switched on.

Remedy: Switch off the auxiliary drives and then shut down the control system.

8709 Insert tool in spindle for loadingCause: During loading a tool must be physically

available in the spindle.Remedy: Clamp tool in the spindle. The message disap-

pears.

Page 291: EMCO WinNC for Fanuc 31i Mill Software description, software

H27

AlArms And messAges

Control alarms 2000 — 5999The alarms are released by the software.

2200 Syntax error in line %s, column %sCause: Syntax error in the program code.

2001 Circle end point invalidCause: The start-middle point and middle-end point

distances differ by more than 3 µm.Remedy: Correct circular arc point.

2300 tracyl without corresponding round-axis invalidCause: Maybe the machine has no rotary axis.

3000 Traverse feed axis manually to position %sRemedy: Move the axis manually to the required

position.

3001 Tool T.. change!Cause: A new tool was programmed in the NC

program.Remedy: Clamp the required tool in the machine.

4001 slot width too smallCause: The tool radius is too large for the slot to

be milled.

4002 slot length to smallCause: The slot length is too small for the slot to

be milled.

4003 length equal zeroCause: Pocket length, pocket width, stud length,

stud width are zero.

4004 slot width too bigCause: The programmed slot width is larger than

the slot length.

4005 depth equal zeroCause: No machining takes place since no effec-

tive cutting depth has been defined.

4006 corner radius too bigCause: The corner radius is too large for the size

of the pocket.

4007 diameter too bigCause: The remaining material (nominal diameter

— diameter of the prebore) /2 is larger than the tool diameter.

4008 diameter too smallCause: The tool diamter is too large for the intended

bore.Remedy: Enlarge the nominal diameter and use a

smaller milling cutter.

4009 length too smallCause: Width and length must be larger than the

double tool radius.

4010 diameter less equal zeroCause: The pocket diameter, the stud diameter,

etc. must not be zero.

4011 blank diameter too bigCause: The diameter of the machined pocket

must be larger than the diameter of the premachined pocket.

4012 blank diameter too smallCause: The diameter of the machined stud must

be smaller than the diameter of the premachined stud.

Fagor 8055 TC/MC Heidenhain TNC 426 CAMConcept EASY CYCLESinumerik OPERATEFanuc 31iHeidenhain TNC 640

Page 292: EMCO WinNC for Fanuc 31i Mill Software description, software

H28

AlArms And messAges

4013 start angle equal to end angleCause: Start angle and end angle for hole pattern

are identical.

4014 tool radius 0 not permittedCause: Tool radius zero is not permitted.Remedy: Select a valid tool.

4015 no outer contour definedCause: The contour file indicated in the cycle was

not found.

4017 tool radius too bigCause: For the programmed machining, a tool

being too large was selected. Therefore, machining is not possible.

4018 allowance must not be 0Cause: There were programmed finishing opera-

tions without finishing offset.

4019 too many iterationsCause: The contour definitions are too complex

for the roughing-out cycle.Remedy: Simplify the contour.

4020 illegal radian correctionCause: An error has occured during the program-

ming of the radius compensation.Remedy: Check the cycle parameters.

4021 can’t calculate parallel contourCause: The control was not able to calculate the

tool radius compensation.Remedy: Check the programmed contour for plausibil-

ity. Maybe contact EMCO.

4022 illegal contour definitionCause: The programmed contour is not suited to

the selected machining.Remedy: Check the programmed contour.

4024 no contour definitionCause: The contour file being defined in the cyle

has not been found.

4025 internal calculation errorCause: An unexpected error has occured during

calculation of the cycle movements.Remedy: Please inform the EMCO after-sales service.

4026 allowance too bigCause: A part of the finishing offset (for several

finishing passes) is larger than the total finishing offset.

Remedy: Correc the finishing offsets.

4028 pitch 0 not permittedCause: The thread was programmed with pitch

zero.

4029 undefinded working modeCause: Internal error (invalid machining type for

the thread).

4030 function not yet supportedCause: Roughing out with pockets is not imple-

mented yet.Remedy: Please inform the EMCO after-sales service.

4031 value not permittedCause: An invalid retracting direction was pro-

grammed during inside turning.

4032 plunging must be definedCause: For the programmed cycle no cutting depth

has been programmed.

4033 radius/chamfer too bigCause: The radius, respectively the chamfer, can-

not be inserted in the programmed contour.Remedy: Reduce the radius, respectively the chamfer.

4034 diameter too bigCause: The programmed starting point and the

machining diameter are contradictory.

4035 diameter too smallCause: The programmed starting point and the

machining diameter are contradictory.

4036 unknown working directionCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4037 unknown working typeCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4038 unknown sub cycleCause: Internal error.Remedy: Please inform the EMCO after-sales service.

Page 293: EMCO WinNC for Fanuc 31i Mill Software description, software

H29

AlArms And messAges

4039 rounding not possibleCause: The programmed radius contradicts the

rest of the cycle parameters.

4042 illegal tool widthCause: The tool width for the cutting-off cycle must

be defined.

4043 groove width too smallCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4044 distance not definedCause: The distance for the multiple grooving cycle

must not be zero.

4045 illegal allowance typeCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4046 invalid speedCause: The spindle speed must be nonzero.

4047 invalid end pointCause: The programmed end point contradicts the

rest of the cycle definition.

4048 tool cut width too smallCause: The cutting edge is too small for the pro-

grammed cutting depth.

4050 invalid distanceCause: The hole patterns do not tally with the

selected distance.

4052 working pattern not possibleCause: Error in the definition of the hole pattern.

The number of bores is contradictory.

4053 invalid start pointCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4055 illegal working directionCause: The machining direction is contradictory

to the rest of the cycle definition.

4057 plunging angle less equal zeroCause: The plunging angle must be between 0

and 90 degree.

4058 chamfer too largeCause: The programmed chamfer is too large for

the pocket cycle.

4062 radius/chamfer too smallCause: The radius, respectively the chamfer,

cannot be machined with the current tool radius.

4066 invalid mill stepCause: The mill step must be greater than zero.

4069 invalid angleCause: An angle of zero degree is not permitted.

4072 plunging too smallCause: For the cycle, a cutting depth has been

selected that leads to extra-long machining time.

4073 invalid clearance angleCause: The clearance angle indicated for the tool

cannot be machined.Remedy: Correct the clearance angle for the tool.

4074 contour-file not foundCause: The contour file indicated in the cycle has

not been found.Remedy: Please select the contour file for the cycle.

4075 not machinable with selected toolCause: The tool is too wide for the programmed

groove.

4076 reciprocating plunge cut impossible (initial move too short)Cause: The first movement of the contour is

shorter than the double tool radius and cannot be therefore used for the swinging delivery.

Remedy: Extend the first movement of the contour.

4077 wrong tool type in grooving or cut-off cylceCause: The wrong tool type was used in the cutting

cycle.Remedy: Use only grooving and punch tools in the

cutting cycles.

4078 radius of helix too smallCause: The pitch of the helix is ≤ 0.Remedy: Program the radius > 0.

4079 pitch of helix too smallCause: The radius of the helix is ≤ 0.Remedy: Program the pitch > 0..

Page 294: EMCO WinNC for Fanuc 31i Mill Software description, software

H30

AlArms And messAges

4080 radius of helix or tool too largeCause: The helical approach cannot be executed

with the selected data for the helix and the current tool radius without a contour breach.

Remedy: Use a tool with a smaller radius or reduce the radius of the helix.

4200 leaving movement is missingCause: No movement after the tool radius com-

pensation was deactivated in the current plane.

Remedy: Insert the departing movement in the current plane after having deactivated the tool radius compensation.

4201 TPC off missingCause: The tool radius compensation has not been

deactivated. Remedy: Deactivate the tool radius compensation.

4202 TPC requires at least three movementsCause: The tool radius compensation requires at

least 3 movements in the current plane in order to calculate the tool radius compen-sation.

4203 approaching movement not possibleCause: It was not possible to calculate the ap-

proaching movement.

4205 leaving movement not possibleCause: It was not possible to calculate the depart-

ing movement.

4208 TPC curve could not be calculatedCause: It was not possible to calculate the tool

radius compensation for the programmed contour.

4209 switching the plane is not allowed when TPC is switched onCause: The programmed plane must not be

changed during the tool radius compensa-tion.

Remedy: Remove the change of planes during the tool radius compensation.

4210 tool path compensation already activatedCause: G41 is active and G42 was programmed or

G42 is active and G41 was programmed.Remedy: Switch tool radius compensation off with G40

before programming the radius compensa-tion again.

4211 Bottleneck detectedCause: In the radius correction calculation some

parts of the contour were omitted, as too large a milling cutter tool was used.

Remedy: Use a smaller milling cutting tool to process the contour completely.

4212 Infeed has been programmed twice dur-ing approachCause: After the approach movement a second

infeed has been programmed, without previously moving to the work plane.

Remedy: First program a movement to the work plane before programming a second infeed.

5000 drill manually now

5001 contour has been adjusted to the pro-grammed clearance angleCause: The programmed contour was adapted to

the programmed clearance angle. Maybe there will remain rest material that cannot be machined with this tool.

5500 3D simulation: Internal errorCause: Internal error inside the 3D simulation.Remedy: Restart the software or, if necessary, report

the error to EMCO customer service.

5502 3D simulation: Tool place invalidCause: Tool place unavailable on the machine

used. Remedy: Correct tool call-up.

5503 3D simulation: Chuck invalid owing to the unmachined part definitionCause: The distance from the front of the unma-

chined part is > the unmachined part length.Remedy: Change the distance.

5505 3D simulation: Unmachined part defini-tion invalidCause: Implausibility in the unmachined part geom-

etry (e.g. expansion in one axis ≤ 0, inside diameter > outside diameter, unmachined part contour not closed, etc.).

Remedy: Correct unmachined part geometry.

5506 3D simulation: STL chuck file has auto-overcutsCause: Error in the chuck description. Remedy: Correct file.

Page 295: EMCO WinNC for Fanuc 31i Mill Software description, software

H31

AlArms And messAges

5507 3D simulation: Pole transit on TRANS-MIT!Cause: Travel comes too close to the X0 Y0 co-

ordinates.Remedy: Change travel.

Page 296: EMCO WinNC for Fanuc 31i Mill Software description, software

H32

Page 297: EMCO WinNC for Fanuc 31i Mill Software description, software

I1

Fanuc 31i controller alarms

I: Fanuc 31i controller alarms

Controller alarms 0001 — 88000The controller triggers these alarms. These are the same alarms as would have occurred on the Fanuc 31i controller.

A 2014-12

0006 ILLEGAL USE OF MINUS SIGN Declaration: Illegal minus sign (-) in a NC com-mand word or a system variable.

0010 IMPROPER G-CODE Declaration: Improper G-Code commanded.The parameter for piercing with continuous circu-lar motion is not effective. The activation signal for piercing with continuous circular motion is «0».

0030 ILLEGAL OFFSET NUMBER Declaration: Illegal offset number specified.Alarm also comes on if, in tool offset memory B, the number of tool form offsets exceeds the max-imum number of tool offset sets.

0051 MISSING MOVE AFTER CNR/CHF Declaration: Improper move or travel in the set after chamfering or rounding. Correct program.

0055 MISSING MOVE VALUE IN CHF/CNRExplanation: In the set for chamfering/rounding, the path is less than the amount of the chamferor rounding. Correct program.

0077 TOO MANY SUB,MACRO NESTINGDeclaration: In total, more subroutines and mac-ro calls have been commanded than allowed.Further subroutine calls during subroutine call from external memory

0114 ILLEGAL EXPRESSION FORMAT Declaration: Format error in a printout of a client macro instruction.The punched tape format parameter is incorrect.

0115 VARIABLE NO. OUT OF RANGE Declaration: A local, global or system variable in a client macro contains an out of range number.A non-existent client macro variable number has

been given in the «EGB axis fadeout» function (G31.8). Or the number of client macro variables for saving jump positions is insufficient.High speed cycle machinings are incorrect. The alarm is triggered in the following cases:1) The program head corresponding to the called machining cycle number is missing.2) The value of the cycle connection information is outside the permitted range (0 to 999).3) The number of data elements in the program head is outside the permitted range (1 to 65535).4) The memory start data variable number of the executable data is outside the per-mitted range (#20000 to #85535/#200000 to #986431/#2000000 to #3999999).5) The memory end data variable number of the executable data is outside the permitted range (#85535/#986431/#3999999).6) The memory start data variable number of the executable data is the same variable number as that used by the program head.

0116 WRITE PROTECTED VARIABLEDeclaration: In a client macro, a variable should be used on the left page of a printout that may only appear on the right page.

0128 ILLEGAL MACRO SEQUENCE NUMBERExplanation: The figure program includes The given set number was not found in the set number search.The set number given in GOTO— and M99P— as the jump destination was not found.

0175 ILLEGAL G07.1 AXIS Declaration: Axis with which cylindrical interpo-lation is impossible. Several axes in a G07.1 set. Cylindrical interpolation is ended for an axis that is not in this mode.Set the axis for cylindrical interpretation in pa-rameter 1022 not on 0, but on 5, 6 or 7 (parallel axis), in order to describe the arc with the rotation axis (ROT parameter 1006#1 on 1, the parameter 1260 is configured).

0310 FILE NOT FOUND Declaration: The file was not found when calling up the subroutine or macro.

Page 298: EMCO WinNC for Fanuc 31i Mill Software description, software

I2

Fanuc 31i controller alarms

0312 ILLEGAL COMMAND IN DIRECT DRAW-ING DIMENSIONS PROGRAMMING Declaration: Illegal command format for direct drawing dimensions programming. An illegal G-Code was used for direct drawing dimensions programming.There are two or more sets without a positioning command between two commands for direct drawing dimensions programming. Decimal point in direct drawing dimensions programming, al-though decimal points must not be used (bit 4 of parameter no. 3405 = 1).

1330 ILLEGAL OFFSET NUMBERDeclaration: Spindle number higher than the number of controlled spindles while loading pa-rameters or lead error offset data from punched tape or with G10.

1960 ACCESS ERROR (MEMORY CARD)Declaration: Illegal memory card access.This alarm is also triggered while reading if the end of the file is reached and no EOR code ‘%’ is found.

3506 WRONG CUTTING AREADeclaration: The cutting area is illegal.Remedy: Change the cutting program so that a correct cutting area is given, so that part contour and raw part contour match with the cutting pro-file.

3507 WRONG CUTTING CONDITION Declaration: The cutting conditions are illegal. Remedy: Change the cutting program so that the cutting conditions, such as feed speed, are normal.

3514 WRONG FIGURE DATA Declaration: The figure data is illegal.Remedy: Change the cutting program so that the figure data is correct.

3516 NO NECESSARY ADDRESSDeclaration: The necessary addresses for a cy-cle cutting command or other 4-digit G-commands were not entered.Remedy: Change the cutting program, e.g. by adding the necessary addresses.

3530 WRONG MACHINING TYPE Explanation: The machining type specification is illegal.Remedy: Change the machining program so that the machining type is appropriate.

3531 WRONG RETURN MODEExplanation: The return mode is illegal.Remedy: Change the machining program so that the return mode is appropriate.

3535 WRONG THREADING LEADDeclaration: The threading lead setting is illegal.Remedy: If, say, a negative value was entered as the threading lead,change the machining program so that the thread-ing lead is correct.

3538 WRONG CUTTING DIRECTIONExplanation: The cutting direction setting is illegal.Remedy: A value was entered that must not be given for turning or other machining directions. Change the machining program so that the ma-chining direction is permitted.

3539 WRONG CUT DEPTH DIRECTION Declaration: The cut depth direction setting is illegal. Remedy: A value was entered that must not be given for turning or other cut depth directions. Change the machining program so that the cut depth direction is permitted.

3541 WRONG CHAMFERING AMOUNTExplanation: The chamfering amount setting is illegal.Remedy: A value was entered that is not permit-ted for chamfering or other chamfer values, e.g. a negative value. Change the machining program so that the chamfering amount is permitted.

3542 WRONG EJECTION STROKEDeclaration: The ejection stroke setting is illegal.Remedy: A value was entered that is not permit-ted for chamfering or other plane area ejection stroke amounts, e.g. a negative value.Change the machining program so that the ejec-tion stroke amount is permitted.

3543 WRONG THICKNESSExplanation: The given machining thickness is illegal.Remedy: A value was entered that is not per-mitted for pocket milling or other machining thicknesses, e.g. a negative value. Change the machining program so that the machining thick-ness is permitted.

Page 299: EMCO WinNC for Fanuc 31i Mill Software description, software

I3

Fanuc 31i controller alarms

3547 WRONG CUTTING DEPTH ANGLEDeclaration: The cutting depth angle is illegal.Remedy: A value was entered that is not per-mitted for pocket milling or other cutting depth angles. Change the machining program so that the cutting depth angle is permitted.

3548 WRONG CLEARANCE Declaration: — The clearance is illegal. Remedy: A clearance value was entered that is illegal, e.g. a negative value. Change the machin-ing program so that the clearance is permitted.

3551 WRONG FINISHING NUMBER Declaration: — The number of finished machining processes is illegal. Remedy: An illegal value for the number of thread cutting processes or for other finished machining process was entered, e.g. 0. Change the ma-chining program so that the number of finished machining processes is permitted.

3552 WRONG APPROACH SETTINGDeclaration: The approach setting is illegal. Remedy: A value was entered that is not per-mitted for contour cutting or other approaches. Change the machining program so that the ap-proach is permitted.

3553 WRONG ESCAPE SETTINGDeclaration: The escape setting is illegal.Remedy: A value was entered that is not permit-ted for contour cutting or other escapes. Change the machining program so that the escape is permitted.

3575 WRONG FIGURE TYPEExplanation: The figure type is illegal.Remedy: A figure type that is not permitted was selected for a figure set.Change the machining program so that the figure type is permitted.

3579 WRONG CORNER SETTING Declaration: The corner rounding setting is il-legal.Remedy: A value for rounding the corner of a figure type that is not permitted was entered. Change the machining program so that the en-tered value is permitted.

3582 WRONG FIGURE RADIUSDeclaration: The figure radius setting is illegal.Remedy: A value for rounding the corner of a figure type that is not permitted was entered.

Change the machining program so that the en-tered value is permitted.

3584 WRONG PITCH SETTINGDeclaration: The pitch setting is illegal.Remedy: A value for a pitch for a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3585 WRONG HOLE/GROOVE NUMBERDeclaration: The number of holes/grooves is illegal.Remedy: A value for the number of holes or grooves in a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3586 WRONG COORDINATE POSITIONDeclaration: The coordinate positions are illegal.Remedy: A value for the coordinates of a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3592 WRONG OMITTED POINTDeclaration: A random figure is not closed.Remedy: A random figure that was entered for plane cutting, pocket milling or turning was not closed. Change the machining program so that there is a closed figure that has identical start and end points.

5010 END OF RECORDDeclaration: The EOR (end of record) code was in the middle of a set. An alarm is also generated if the percent sign is read at the end of the program.

5044 G68 FORMAT ERRORDeclaration: Error in the three-dimensional coor-dinate conversion command:(1) No I, J or K in the three-dimensional coor-dinate conversion command string (without the «Coordinate rotation» option).(2) I, J or K are all 0 in the three-dimensional coordinate conversion command string.(3) No rotating angle R in the three-dimensional coordinate conversion command string.

Page 300: EMCO WinNC for Fanuc 31i Mill Software description, software

I4

Fanuc 31i controller alarms

Page 301: EMCO WinNC for Fanuc 31i Mill Software description, software

W1

WinnC Starting information aCCeSSory funCtionS

W: Accessory Functions

Activating accessory functionsAccording to the machine (turn/mill) the following accessories can be taken into operation:• automatic tailstock• automatic vice/clamping device• Air purge system• Dividing attachment• Robot interface• Automatic doors• Win3D view simulation software• DNC interface

The accessories are activated with EMConfig.

Robotic InterfaceThe robotic interface is used to connect the con-cept machines to an FMS/CIM system.

The most important functions of a concept ma-chine can be automated via the inputs and outputs of an optional hardware module.The following functions can be controlled via the robotic interface:• Program START / STOP• Door open / closed• Quill clamp / back• Clamping device open / closed• Feed STOP

Automatic doorsPreconditions for activation:• The auxiliary drives must be switched on.• The main spindle must be still (M05 or M00) —

this also means that the run-out phase of the main spindle must be ended (program dwell time if required).

• The feed axes must be still.• The tool changer must be still.

Behavior when automatic doors active:

Opening doorThe door can be opened manually, via the robot interface or DNC interface.In addition, the door opens when the following commands are executed in the CNC program:• M00• M01• M02• M30

Closing door:The door can be closed by manually pressing the button via the robot interface. It is not possible to close the door via the DNC interface.

Win3D ViewWin3D View is a 3D simulation for turning and milling, which is offered as an additional option for the WinNC product. Graphical simulations of CNC controls are primarily designed for industrial practice. The Win3D View screen representation goes beyond the industrial standard. Tools, raw parts, clamping devices and the processing steps are represented extremely realistically. The pro-grammed movement paths of the tool are checked by the system for a collision with clamping device and raw part. A warning message is issued when there is danger. This makes possible to have understanding and control of the manufacturing process already on the screen.Win3D View is used to visualize and prevent costly collisions.Win3D View offers the following advantages:• Extremely realistic representation of workpiece• Tool and clamping device collision control• Cut representation• Zoom functions and turning of views• Representation as solid or wireframe model

Note:The functionality of the Win3D-View is de-pending on the control software that is used.

Page 302: EMCO WinNC for Fanuc 31i Mill Software description, software

W2

Accessory Functions Winnc stArting inFormAtion

DNC interfaceThe DNC interface (Distributed Numerical Con-trol) enables the control system (WinNC) to be controlled remotely via a software protocol.The DNC interface is activated with EMConfig, by indicating TCP/IP or a serial interface for the DNC.During the installation of the control software, the DNC interface is enabled and configured, and can be reconfigured with EMConfig later on.

The DNC interface creates a connection between a higher-level computer (production control com-puter, FMS computer, DNS host computer, etc.) and the control computer of an NC machine. After activation of the DNC drive the DNC computer (Master) takes over control of the NC machine (Client). The DNC computer takes over complete control of the manufacturing. The automation fit-tings such as door, chuck (collet), quill, coolant, etc. can be controlled from the DNC computer. The current status of the NC machine is visible on the DNC computer.

The following data can be transferred or loaded via the DNC interface:• NC Start • NC Stop • NC programs *)• Zero point shifts *)• Tool data *)• RESET • Approach reference point • Periphery control • Override data

The DNC interface can be operated with the following CNC control types:• SINUMERIK Operate T and M• FANUC 31i T and M

Further details of the functions and the DNC pro-tocol can be found in the accompanying product documentation.

If the DNC interface is operated with TCP/IP, it will wait for incoming connections on port 5557.

*) not for SINUMERIK Operate and FANUC 31i

Page 303: EMCO WinNC for Fanuc 31i Mill Software description, software

X1

WinnC Starting information EmConfig

X: EMConfig

General

EMConfig is a configuration software for WinNC.EMConfig helps you to alter the settings of WinNC.

The most important settings are:• Control language• System of measurement mm — inch• Activate accessories• Selection of interface for control keyboard

Using EMConfig you can also activate diagnostic functions in case of troubles — that way you get help immediately.

Safety-related parameters are protected by a password. They can only be activated by set-up technicans or by technical support representa-tives.

Note:The settings which are available in EMConfig are depending on the machine and the control that is used.

Page 304: EMCO WinNC for Fanuc 31i Mill Software description, software

X2

EMConfig WinnC Starting inforMation

Change the language of EMConfig

How to start EMConfig

Open EMConfig.

In case several control types are installed, a se-lection box will appear on the screen.

Select the required control type and click OK.

The following settings are only valid for the se-lected control type.

The window for EMConfig appears on the screen.

Icon for EMConfig

Selection box for control type

Here you can change the lan-guage of EMConfig. In order to activate the settings, restart the program.

Note:Select the desired menu item. The appropri-ate function is explained in the text box.

Page 305: EMCO WinNC for Fanuc 31i Mill Software description, software

X3

WinnC Starting information EmConfig

How to activate accessoriesWhen you install accessories on your machine, you need to activate them here.

Activate accessories

High Speed Cutting

On activating this checkbox, High Speed Cutting is turned on.

Activate High Speed Cutting

By using high speed cutting, the setting of the axis controller is adjusted. This gain is only effective until the programmed feed rate of 2500 mm/min and allows contour faithful retrac-tion of the tool path and gen-erating of sharp edges. If the feed is set up to higher than 2500 mm/min, it is auto-matically reset to the normal operating mode and sanded and rounded edges are cre-ated.

Page 306: EMCO WinNC for Fanuc 31i Mill Software description, software

X4

EMConfig WinnC Starting inforMation

Settings

This mask allows you to enable or disable Easy-2control and make settings.

Easy2control on screen opera-tion

Installation and activation using the example of WinNC for Sinumerik Operate.

Easy2control settings

Activating Easy2control

Dial feed-override anddial speed-override:

• Aktive: dial always con-trollable via mouse/touch-screen (even with available hardware- version).

• Inaktive: dial not controlla-ble via mouse/touchscreen.

• Standard: dial controllable via mouse/touchscreen when no hardware-version is available.

Note:If Easy2control is used without the hardware-dongle, the controls are diactivated and an appropriate alarm is output by the controller.However, the virtual keyboard is displayed completely.

When installing the software WinNC for Sinumerik Oper-ate you will be prompted to activate Easy2control. In order to use the Software without restriction, the supplied dongle must be connected to a free USB port.

Page 307: EMCO WinNC for Fanuc 31i Mill Software description, software

X5

WinnC Starting information EmConfig

Activate camera

Machine room camera

The accessory machine room camera is available for all controls which support Easy2control.

Please refer to chapter Y “external input devices” for more information about the installation guide for the the camera.

Danger:Make sure the machine room camera is placed properly in the work area that colli-sions with the tool turret and the axes are avoided.

Attention:The camera may not be operated without the supplied waterproof case.

If the camera is operated without the water-proof case it may be damaged by coolant and chips.

Page 308: EMCO WinNC for Fanuc 31i Mill Software description, software

X6

EMConfig WinnC Starting inforMation

How to save changes

After the settings, the changes must be saved.

Select «Save» or click on the icon.

How to create machine data floppy disk or machine data USB flash drive

After having changed the machine data, the ma-chine data floppy disk or the machine data USB flash drive must be in the appropriate drive.Otherwise your changes cannot be saved and get lost.

After saving the changes, create a machine data floppy disk (MSD) or a machine data USB flash drive.

Note:Input fields highlighted in red indicate inad-missible values. Inadmissible values are not saved in EMConfig.

Page 309: EMCO WinNC for Fanuc 31i Mill Software description, software

Y1

WinnC Starting information ExtErnal input DEviCES

Y: External Input DevicesEMCO Control Keyboard USB

Scope of supply

The scope of supply for a complete control key-board consists of two parts:• Basic case• Key module

VDE BSI UL

Ref. No. Description

X9B 000 Basic unit with USB cable

X9Z 600 TFT Display with screen cable and power supply unit

A4Z 010 Mains cable VDE

A4Z 030 Mains cable BSI

A4Z 050 Mains cable UL

X9Z 050N Key module FAGOR 8055 TC 2 key sheets with keys

X9Z 055N Key module FAGOR 8055 MC 2 key sheets with keys

X9Z 426N Key module HEIDENHAIN 426/430 2 key sheets with keys 1 package exchange keys

X9Z 060 Key module WinNC for SINUMERIK OPERATE 2 key sheets with keys

X9Z 030 Key module WinNC for FANUC 31i 2 key sheets with keys 1 package exchange keys

X9Z 640 Key module Emco WinNC for HEIDENHAIN TNC 640

Page 310: EMCO WinNC for Fanuc 31i Mill Software description, software

Y2

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Assembling• Place the correseponding key sheet with the

clips in the basic case (1).• Pull the key sheet into the basic case, it must

be insertet plainly (2).• Fix the key sheet with the two knurled screws

(3).

Take offPull out carefully the key caps to be exchanged with a fine screw driver or a knife.

Clip onMove the key body in the middle of the recess. Push the key cap vertically down onto the key body, until the key cap snaps in tactily.

Exchange of single key caps

Off works the keyboards are equipped with the keys for turning.The scope of supply includes a package of ex-change key caps to equip the keyboard for mill-ing.If you want to use the control keyboard for milling, you have to exchange a part of the key caps. Ex-change them as shown on the following pages.

Note:The key sheets must not be bended, otherwise the switching function can not be warranted.

Note:For the control type Emco WinNC for HEIDEN-HAIN TNC 640 only a milling version is avail-able.

1

23

123

4

Page 311: EMCO WinNC for Fanuc 31i Mill Software description, software

Y3

WinnC Starting information ExtErnal input DEviCES

6

31

4

7 9

X ZY?

, @

F[ ] & SP

U V WQ

I J K RA

D H B

+ X

+Z

-Z

-X

— 4

+4- Y

+Y

10000

1000

100

101

EDIT

6080

90

100

110

120

864

0

21

10

40 7020

FANUC 31iMExchange key capsfor milling

Connection to the PCThe control keyboard is connected via USB inter-face to the PC.The connection cable USB taking over at the same time the energy supply of the control key-board is situated at the rear side of the control keyboard.

Settings at the PC softwareSetting during new installation of the PC softwareDuring the installation indicate the control key-board and the respective USB interface.

Setting in case of PC software al-ready installedSelect in EMConfig at the INI data settings the USB control keyboard as means of entry and the respective interface USB.Furthermore, set the keyboard type to “New”. Don’t forget to memorize the settings.

Page 312: EMCO WinNC for Fanuc 31i Mill Software description, software

Y4

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Easy2control On Screen operationEasy2control adds a range of attractive applica-tions to the successful interchangeable control system used in EMCO training machines. Suitable for use in machines and simulation workplaces alike, it displays additional control elements di-rectly on the screen and, when used together with a touchscreen monitor, provides the ideal input interface.

Scope of supply

The software for Easy2control is part of the con-trol software. The dongle for a workstation license is delivered:

Ref. No. X9C 111

Technical data for the screen:

16:9 Full-HD Monitor (1920×1080) at the minimum

Currently available controls (T and M):

• Sinumerik Operate• Fanuc 31i• Emco WinNC for Heidenhain TNC 640 (M only)• Emco WinNC for Heidenhain TNC 426 (M only)• Fagor 8055

Note:If a Full HD monitor is used without touch-screen function, the control is operated just with mouse and keyboard.

Page 313: EMCO WinNC for Fanuc 31i Mill Software description, software

Y5

WinnC Starting information ExtErnal input DEviCES

Operating areas

Sinumerik Operate

Fanuc 31i

Machine control panel

Machine control panel

Controller-specific op-eration

Control operation com-plete

Control operation complete

Page 314: EMCO WinNC for Fanuc 31i Mill Software description, software

Y6

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Emco WinNC for Heidenhain TNC 640

Machine control panel

Machine control panel

Controller-specific op-eration

Controller-specific op-eration

Control operation com-plete

Control operation com-plete

Heidenhain TNC 426

Page 315: EMCO WinNC for Fanuc 31i Mill Software description, software

Y7

WinnC Starting information ExtErnal input DEviCES

Note:The screen display, based on customer-spe-cific configurations, may look different.

Refer to the chapter “Key Description” of the respective control description for operation and key function.

Fagor 8055

Machine control panel Control operation com-plete

Page 316: EMCO WinNC for Fanuc 31i Mill Software description, software

Y8

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Installing the camera

Requirement

USB WLAN adapter for the machine.

Setup WLAN

• press NEXT (1) or PREV (2) until an operat-ing mode appears which supports WLAN, e.g. MOVIE. The symbol for WLAN (3) appears in the corner on top left.

• Open EMConfig and activate the camera.

• Connect the WLAN adapter to the USB port to the machine.

• Open windows network and sharing centre (4).

• Select the wireless network, enter the password and finish the connect setup.

The name of the network (5) and the password are supplied together with the camera.

• Open the control software with activated Easy-2control.

Activating WLAN

Connect WLAN

1 3

45

2

Machine room cameraThis accessory can be ordered using the following order number:

Ref. No.: S4Z750

Page 317: EMCO WinNC for Fanuc 31i Mill Software description, software

Y9

WinnC Starting information ExtErnal input DEviCES

Operating the camera

• Click the Easy2control logo to open the sidebar.

Functions of the sidebar• Click the camera symbol to open the preview

window (2).

• Open the operating manual of the control.

• Option for the second screen: — duplicate screen — screen extention to two monitors

• Creates a screenshot of the control in *.png format.

Operating the machine room camera

1

2

Note:The option for the second screen is only avail-able for machines CT/CM 260 and 460.

Attention:The camera may not be operated without the supplied waterproof case.

If the camera is operated without the water-proof case it may be damaged by coolant and chips.

Page 318: EMCO WinNC for Fanuc 31i Mill Software description, software

Y10

Page 319: EMCO WinNC for Fanuc 31i Mill Software description, software

Z1

WinnC Starting information SoftWare inStallation

Z: Software Installation Windows

Variants of WinNCYou can install EMCO WinNC for the following CNC control types:

• WinNC for SINUMERIK Operate T and M• WinNC for FANUC 31i T and M• HEIDENHAIN TNC 426• Emco WinNC for HEIDENHAIN TNC 640• FAGOR 8055 TC and MC• CAMConcept T and M

In case there are several control types installed, a menu appears when starting EM Launch from which you can select the desired type.The following versions can be installed from the WinNC variants:

• Demo licence: The demo licence is valid for 30 days after the

first use. 5 days before the demo licence ex-pires, you can enter another valid licence key (see licence manager)

• Programming station: Programming and operation of the appropriate

CNC control type is simulated by WinNC on your PC.• Single user licence: Authorizes to external programming of CNC-

controlled machine tools on one PC worksta-tion.

• Multi-user licence: Authorizes to external programming of CNC-

controlled machine tools. The multi-user li-cence can be installed on an unlimited number of PC workstations or in a network within the institute registered by the licensor.

• Educational licence version: Is a time-limited multi-licence especially for

schools and educational institutes.

• Machine licence: This licence allows to directly operate a PC-

controlled machine (PC TURN, Concept TURN, PC MILL, Concept MILL) of WinNC as if it was operated by an ordinary CNC control.

System prerequisites

Machine with integrated control PC• All Concept machines• Machines that were converted to ACC• MOC with Windows 7 or higher (32 / 64 Bit)

Machines with included control PC and pro-gramming stations• Windows 7 or higher (32 / 64 Bit)• free hard drive space 400 MB• Programming station: 1*USB, machine version:

2*USB• TCP/IP-capable network card for machine ver-

sion)

Recommended system prerequisites• PC Dual Core• Working memory 4 GB RAM• free hard drive space 2 GB

Software installation• Start Windows• Start the installation application on the USB

stick or your download file.• Follow the instructions from the installation

guide.

For more informations regarding software instal-lation and / or software update please refer to the documentation “short description for WinNC update installation”.

Note:PC TURN and PC MILL have to be equipped with the conversion kit for ACC in order to operate EMCO WinNC.

Page 320: EMCO WinNC for Fanuc 31i Mill Software description, software

Z2

Software inStallation winnC Starting information

Network card (ACC)

Setting the network card for the local connection to the machine:

IP address: 192.168.10.10Subnetmask 255.255.255.0

for:Concept Turn 55Concept Mill 55Concept Turn 105 Concept Mill 105Concept Turn 60

Only for machines with ACC kit:PC Turn 50PC Mill 50PC Turn 100PC Mill 120

Network card type: TCP/IP compatible network card

Connection of the machine to the PC

In case of problems observe the instructions of your operating system (Windows help).

Danger:Removal and installation of the network card must only be carried by skilled personnel.The computer must be disconnected from the power supply (pull the power plug).

Note:During a machine installation one network-card is reserved exclusively for the control of the machine.

Instructions:If the network connection to the machine could not be established at the start, the above adjustments are to be made.

Page 321: EMCO WinNC for Fanuc 31i Mill Software description, software

Z3

WinnC Starting information SoftWare inStallation

Starting WinNCIf you choose AUTO START YES during the in-stallation of your machine version, WinNC starts automatically after switching on the PC.

Otherwise proceed as follows:1 Switch the machine on.

2 Wait for 20 seconds to ensure that the ma-chine operating system is running before the network connection to the PC is established. Otherwise it is possible that no connection can be established.

3 Switch the PC on and start Windows.

4 Click on the start symbol at the bottom.

5 Select program, EMCO and click on WinNC.

6 The start image will be shown on the screen. The licence holder is registered in the start screen.

7 If you have only installed one CNC control type, it starts immediately.

8 If you have installed several CNC control types, the selection menu appears.

9 Select the desired CNC control type (use cur-sor buttons or mouse) and press ENTER to start it.

10 If you use the control keyboard, you can select the desired CNC control type with the cursor buttons or mouse and start with the «NC-Start» button.

Terminating WinNC1 Switch off auxiliary drive with AUX OFF. Only for machine places, not for programming

stations.

2 By simultaneously pressing these buttons WinNC for Sinumerik Operate will be terminated specifically.

This corresponds to Alt+F4 on the PC keyboard.

Selection menu EMLaunch

Note:EMLaunch displays all WinNC und CAMCon-cept controls that are installed in the same directory.

Page 322: EMCO WinNC for Fanuc 31i Mill Software description, software

Z4

Software inStallation winnC Starting information

In the ACC / ACpn-machine version EmLaunch is checking if a machine is available:

During the network configuration, the IP address is not configured correctly and DHCP for auto-matic configuration of the IP address is disabled. Connection to the machine is not possible.

DHCP disabled

IP-address configuration

Setup the connection to the machine

Checks by EmLaunch

It is attempt to configure the IP address automati-cally via DHCP.

The IP configuration is correct and the connection to the machine is checked. Once the machine is available, the selection of the available controls is displayed.

Page 323: EMCO WinNC for Fanuc 31i Mill Software description, software

Z5

WinnC Starting information SoftWare inStallation

Conncection to the machine is OK

The connection to the machine is completed and the corresponding control can be started.

Page 324: EMCO WinNC for Fanuc 31i Mill Software description, software

Z6

Software inStallation winnC Starting information

EMCO Licence Manager

Input window licence key enquiry

Licence managerThe query in the UAC dialog box must be con-firmed with Yes in order to start the Licence Manager.

For the release of additional function groups of exist-ing EMCO software products it is necessary to enter a new licence key (exception: demo licence).

The EMCO Licence Manager (see picture on the bottom on the left) enables the input of further new licence keys. For this purpose select the new product in the selection window and confirm the input.

The next time you start your control software an input window appears and asks you to enter name, address and licence key (see picture on the top left).

Please note that the licence key is asked for each software product individually. The picture on the left shows e.g. the input prompt for the licence key for the software product «Heidenhain TNC 426».

Input licence key:Start the WinNC with the option “Run as Admin-istrator” right after installing the programm or launching the licence manager.

Licence inputAfter the installation of an EMCO software prod-uct, an input window appears during initial opera-tion and asks for name, address and licence key. This input window appears for every software product that is installed. In case a demo licence is desired (see page Z1), please select «DEMO».Then the input window reappears only 5 days be-fore the expiry date of the demo licence. A subse-quent input of a licence key is also possible via the licence manager (see licence manager below).

Run EMCO licence manager as an administrator

Icon Ex Номер ошибки: Ошибка 3506
Название ошибки: Microsoft Access Error 3506
Описание ошибки: The Synchronizer is unable to open the Synchronizer log.
Разработчик: Microsoft Corporation
Программное обеспечение: Microsoft Access
Относится к: Windows XP, Vista, 7, 8, 10, 11

Основы «Microsoft Access Error 3506»

«Microsoft Access Error 3506» обычно является ошибкой (ошибкой), обнаруженных во время выполнения. Разработчики программного обеспечения пытаются обеспечить, чтобы программное обеспечение было свободным от этих сбоев, пока оно не будет публично выпущено. К сожалению, инженеры являются людьми и часто могут делать ошибки во время тестирования, отсутствует ошибка 3506.

Ошибка 3506 также отображается как «The Synchronizer is unable to open the Synchronizer log.». Это распространенная ошибка, которая может возникнуть после установки программного обеспечения. Когда это происходит, конечные пользователи могут сообщить Microsoft Corporation о наличии ошибок «Microsoft Access Error 3506». Microsoft Corporation вернется к коду и исправит его, а затем сделает обновление доступным для загрузки. Чтобы исправить любые документированные ошибки (например, ошибку 3506) в системе, разработчик может использовать комплект обновления Microsoft Access.

В большинстве случаев вы увидите «Microsoft Access Error 3506» во время загрузки Microsoft Access. Мы можем определить происхождение ошибок ошибки 3506 во время выполнения следующим образом:

Ошибка 3506 Crash — Ошибка 3506 остановит компьютер от выполнения обычной программной операции. Когда Microsoft Access не может обеспечить достаточный вывод для данного ввода или действительно не знает, что выводить, он часто путает систему таким образом.

Утечка памяти «Microsoft Access Error 3506» — этот тип утечки памяти приводит к тому, что Microsoft Access продолжает использовать растущие объемы памяти, снижая общую производительность системы. Есть некоторые потенциальные проблемы, которые могут быть причиной получения проблем во время выполнения, с неправильным кодированием, приводящим к бесконечным циклам.

Error 3506 Logic Error — Ошибка программной логики возникает, когда, несмотря на точный ввод от пользователя, производится неверный вывод. Это происходит, когда исходный код Microsoft Corporation вызывает уязвимость при обработке информации.

Microsoft Corporation проблемы файла Microsoft Access Error 3506 в большинстве случаев связаны с повреждением, отсутствием или заражением файлов Microsoft Access. Как правило, решить проблему можно заменой файла Microsoft Corporation. Кроме того, регулярная очистка и оптимизация реестра Windows предотвратит создание неправильных ссылок на пути к файлам Microsoft Corporation, поэтому мы настоятельно рекомендуем регулярно выполнять сканирование реестра.

Ошибки Microsoft Access Error 3506

Microsoft Access Error 3506 Проблемы, связанные с Microsoft Access:

  • «Ошибка Microsoft Access Error 3506. «
  • «Недопустимая программа Win32: Microsoft Access Error 3506»
  • «Возникла ошибка в приложении Microsoft Access Error 3506. Приложение будет закрыто. Приносим извинения за неудобства.»
  • «Файл Microsoft Access Error 3506 не найден.»
  • «Microsoft Access Error 3506 не может быть найден. «
  • «Проблема при запуске приложения: Microsoft Access Error 3506. «
  • «Файл Microsoft Access Error 3506 не запущен.»
  • «Microsoft Access Error 3506 остановлен. «
  • «Ошибка пути программного обеспечения: Microsoft Access Error 3506. «

Ошибки Microsoft Access Error 3506 EXE возникают во время установки Microsoft Access, при запуске приложений, связанных с Microsoft Access Error 3506 (Microsoft Access), во время запуска или завершения работы или во время установки ОС Windows. Документирование проблем Microsoft Access Error 3506 в Microsoft Access является ключевым для определения причины проблем с электронной Windows и сообщения о них в Microsoft Corporation.

Создатели Microsoft Access Error 3506 Трудности

Проблемы Microsoft Access и Microsoft Access Error 3506 возникают из отсутствующих или поврежденных файлов, недействительных записей реестра Windows и вредоносных инфекций.

Особенно ошибки Microsoft Access Error 3506 проистекают из:

  • Недопустимый Microsoft Access Error 3506 или поврежденный раздел реестра.
  • Зазаражение вредоносными программами повредил файл Microsoft Access Error 3506.
  • Microsoft Access Error 3506 злонамеренно удален (или ошибочно) другим изгоем или действительной программой.
  • Другое приложение, конфликтующее с Microsoft Access Error 3506 или другими общими ссылками.
  • Microsoft Access (Microsoft Access Error 3506) поврежден во время загрузки или установки.

Продукт Solvusoft

Загрузка
WinThruster 2023 — Проверьте свой компьютер на наличие ошибок.

Совместима с Windows 2000, XP, Vista, 7, 8, 10 и 11

Установить необязательные продукты — WinThruster (Solvusoft) | Лицензия | Политика защиты личных сведений | Условия | Удаление

B-64254EN/02 APPENDIX C.ALARMS

— 191 —

C.3 THREAD

Alarm

number

Message Cause Countermeasure

3007 WRONG CUTTING CONDITION The spindle speed has been not

specified.

Please specify the spindle speed

on the Set screen or in the in the

COND tab of the thread repair

cycle.

3049 WRONG FINISHING

ALLOWANCE

The thread depth is smaller than

the finishing amount.

Please specify a thread depth

bigger than the finishing amount.

C.4 GROOVE

Alarm

number

Message Cause Countermeasure

3006 WRONG CUTTING AREA The cutting area has been not

correctly specified because the

finish amount values are too large

and/or the corner radius value or

chamfering values are too large.

Please review the values specified

for finishing amount and corner

radius and chamfering.

3060 WRONG TOOL WIDTH The width of the tool E is smaller

than twice the tool tip radius R.

E < 2R

Please modify the tool dimension

in order to respect following

relationship:

E 2R

3061 WRONG PECKING SETTING A pecking cutting has been

specified but the corresponding

return amount has been not

specified.

Please specify a return amount for

pecking cutting.

3084 WRONG PITCH SETTING Multiple grooves have been

specified but the corresponding

pitch between the grooves has

been not specified.

Please specify the pitch value

between the grooves.

Contents Summary of TURN MATE i Operators manual

  • 16000 Channel %1 block %2 invalid value for lifting direction
  • 16005 Channel %1 block %2 invalid value for lifting distance
  • 16010 Channel %1 block %2 machining stop after lift fast
  • 16015 Channel %1 block %2 wrong axis identifier %3
  • 16016 Channel %1 block %2 no retraction position programmed for axis %3
  • 16020 Channel %1 repositioning in block %2 is not possible
  • 16100 Channel %1 block %2 spindle %3 not available in the channel
  • 16105 Channel %1 block %2 spindle %3 cannot be assigned
  • 16110 Channel %1 block %2 spindle %3 for dwell time not in control mode
  • 16120 Channel %1 block %2 invalid index for tool fine compensation
  • 16130 Channel %1 block %2 instruction not allowed with FTOCON
  • 16140 Channel %1 block %2 FTOCON not allowed
  • 16150 Channel %1 block %2 invalid spindle number with PUTFTOCF
  • 16200 Channel %1 block %2 spline and polynominal interpolation not available
  • 16300 Channel %1 block %2 denominator polynominal with zero places within parameter range not allowed
  • 16400 Channel %1 block %2 positioning axis %3 cannot participate in spline
  • 16410 Channel %1 block %2 axis %3 is not a geometry axis
  • 16420 Channel %1 block %2 axis %3 programmed repeatedly
  • 16421 Channel %1 block %2 angle %3 programmed repeatedly in the block
  • 16422 Channel %1 block %2 angle %3 programmed repeatedly in the block
  • 16423 Channel %1 block %2 angle %3 programmed repeatedly in the block
  • 16424 Channel %1 block %2 coordinate %3 programmed repeatedly in the block
  • 16430 Channel %1 block %2 geometry axis %3 cannot traverse as positioning axis in rotated coordinate system
  • 16440 Channel %1 block %2 rotation programmed for non-existent geometry axis
  • 16500 Channel %1 block %2 chamfer or rounding negative
  • 16510 Channel %1 block %2 no facing axis available
  • 16700 Channel %1 block %2 axis %3 invalid feed type
  • 16710 Channel %1 block %2 axis %3 master spindle not programmed
  • 16715 Channel %1 block %2 axis %3 spindle not in standstill
  • 16720 Channel %1 block %2 axis %3 thread lead is zero
  • 16730 Channel %1 block %2 axis %3 wrong parameter
  • 16740 Channel %1 block %2 no geometry axis programmed
  • 16750 Channel %1 block %2 axis %3 SPCON not programmed
  • 16751 Channel %1 block %2 spindle/axis %3 SPCOF not executable
  • 16755 Channel %1 block %2 no stop required
  • 16760 Channel %1 block %2 axis %3 S value missing
  • 16761 Channel %1 block %2 axis/spindle %3 not programmable in the channel
  • 16762 Channel %1 block %2 spindle %3 thread function is active
  • 16763 Channel %1 block %2 axis %3 programmed speed is illegal (zero or negative)
  • 16770 Channel %1 block %2 axis %3 no measuring system available
  • 16771 Channel %1 following axis %2 overlaid movement not enabled
  • 16776 Channel %1 block %2 curve table %3 does not exist for axis %4
  • 16777 Channel %1 block %2 coupling: following axis %3 for lead axis %4 not available
  • 16778 Channel %1 block %2 coupling: Ring coupling at following axis %3 and leading axis %4 impermissible
  • 16779 Channel %1 block %2 coupling: too many couplings for axis %3, see active leading axis %4
  • 16780 Channel %1 block %2 following spindle/axis missing
  • 16781 Channel %1 block %2 master spindle/axis missing
  • 16782 Channel %1 block %2 following spindle/axis %3 not available
  • 16783 Channel %1 block %2 master spindle/axis %3 not available
  • 16785 Channel %1 block %2 identical spindles/axes %3
  • 16787 Channel %1 block %2 coupling parameter not changeable
  • 16788 Channel %1 block %2 cyclic coupling
  • 16789 Channel %1 block %2 multiple link
  • 16790 Channel %1 block %2 Parameter is zero or missing
  • 16791 Channel %1 block %2 parameter is not relevant
  • 16792 Channel %1 block %2 too many couplings for axis/spindle %3
  • 16793 Channel %1 block %2 coupling of axis %3 prohibits transformation change
  • 16794 Channel %1 block %2 coupling of axis/spindle %3 prohibits reference point approach
  • 16795 Channel %1 block %2 string cannot be interpreted
  • 16796 Channel %1 block %2 coupling not defined
  • 16797 Channel %1 block %2 coupling is active
  • 16798 Channel %1 block %2 axis %3 is following axis and prohibits axis container rotation
  • 16799 Channel %1 block %2 axis %3 is master axis and prohibits axis container rotation
  • 16800 Channel %1 block %2 traverse instruction DC/CDC for axis %3 not allowed
  • 16810 Channel %1 block %2 traverse instruction ACP for axis %3 not allowed
  • 16820 Channel %1 block %2 traverse instruction ACN for axis %3 not allowed
  • 16830 Channel %1 block %2 incorrect position programmed for axis/spindle %3
  • 16903 Channel %1 program control: action %2 not allowed in the current state
  • 16904 Channel %1 program control: action %2 not allowed in the current state
  • 16905 Channel %1 program control: action %2 not allowed
  • 16906 Channel %1 program control: action %2 is aborted due to an alarm
  • 16907 Channel %1 action %2 only possible in stop state
  • 16908 Channel %1 action %2 only possible in reset state or at the block end
  • 16909 Channel %1 action %2 not allowed in current mode
  • 16911 Channel %1 mode change is not allowed
  • 16912 Channel %1 program control: action %2 only possible in reset state
  • 16913 Mode group %1 channel %2 mode change: action %3 not allowed
  • 16914 Mode group %1 channel %2 mode change: action %3 not allowed
  • 16915 Channel %1 action %2 not allowed in the current block
  • 16916 Channel %1 repositioning: action %2 not allowed in the current state
  • 16918 Channel %1 for action %2 all channels must be in reset state
  • 16919 Channel %1 action %2 is not allowed due to a pending alarm
  • 16920 Channel %1 action %2 is already active
  • 16921 Channel %1 mode group %2 machine data: channel/mode group assignment not allowed or assigned twice
  • 16922 Channel %1 subprograms: action %2 maximum nesting depth exceeded
  • 16923 Channel %1 program control: action %2 not allowed in the current state
  • 16924 Channel %1 caution: program test modifies tool management data
  • 16925 Channel %1 program control: action %2 not allowed in the current state, action %3 active
  • 16926 Channel %1 channel coordination: action %2 not allowed in block %3, marker %4 is already set
  • 16927 Channel %1 action %2 at active interrupt treatment not allowed
  • 16928 Channel %1 interrupt treatment: action %2 not possible
  • 16930 Channel %1: preceding block and current block %2 must be separated through an executable block
  • 16931 Channel %1 subprograms: action %2 maximum nesting depth exceeded
  • 16932 Channel %1 conflict when activating user data type %2
  • 16933 Channel %1 interrupt treatment: action %2 not allowed in the current state
  • 16934 Channel %1 interrupt treatment: action %2 not possible due to stop
  • 16935 Channel %1 action %2 not possible due to search run
  • 16936 Channel %1 action %2 not possible due to active dry run
  • 16937 Channel %1 action %2 not possible due to program test
  • 16938 Channel %1 action %2 aborted due to active gear change
  • 16939 Channel %1 action %2 rejected due to active gear change
  • 16940 Channel %1 action %2 wait for gear change
  • 16941 Channel %1 action %2 rejected because no program event has been executed yet
  • 16942 Channel %1 start program command action %2 not possible
  • 16943 Channel %1 action %2 not possible due to ASUP
  • 16944 Channel %1 action %2 not possible due to active search blocks
  • 16945 Channel %1 action %2 delayed up to the block end
  • 16946 Channel %1 start via START is not allowed
  • 16947 Channel %1 start via PLC is not allowed
  • 16948 Channel %1 dependent channel %2 still active
  • 16949 Correspondence between marker of channel %1 and channel %2 is invalid.
  • 16950 Channel %1 search run with hold block
  • 16951 Channel %1 search run in a program section that cannot be searched
  • 17000 Channel %1 block %2 maximum number of symbols exceeded
  • 17001 Channel %1 block %2 no memory left for tool/magazine data
  • 17010 Channel %1 block %2 no memory left
  • 17020 Channel %1 block %2 illegal array index 1
  • 17030 Channel %1 block %2 illegal array index 2
  • 17040 Channel %1 block %2 illegal axis index
  • 17050 Channel %1 block %2 illegal value
  • 17055 Channel %1 block %2 GUD variable not existing
  • 17060 Channel %1 block %2 requested data area too large
  • 17070 Channel %1 block %2 data is write-protected
  • 17080 Channel %1 block %2 %3 value below lower limit
  • 17090 Channel %1 block %2 %3 value exceeds upper limit
  • 17095 Channel %1 block %2 invalid value
  • 17100 Channel %1 block %2 digital input/comparator no. %3 not activated
  • 17110 Channel %1 block %2 digital output no. %3 not activated
  • 17120 Channel %1 block %2 analog input no. %3 not activated
  • 17130 Channel %1 block %2 analog output no. %3 not activated
  • 17140 Channel %1 block %2 NCK output %3 is assigned to a function via machine data
  • 17150 Channel %1 block %2 maximum of %3 NCK outputs programmable in the block
  • 17160 Channel %1 block %2 no tool selected
  • 17170 Channel %1 block %2 number of symbols too large
  • 17180 Channel %1 block %2 illegal D number
  • 17181 Channel %1 block %2 T no.= %3, D no.= %4 not existing
  • 17182 Channel %1 block %2 illegal sum correction number
  • 17188 Channel %1 D number %2 defined in tool T no. %3 and %4
  • 17189 Channel %1 D number %2 of tools defined on magazine/location %3 and %4
  • 17190 Channel %1 block %2 illegal T number
  • 17191 Channel %1 block %2 T= %3 not existing, program %4
  • 17192 TO unit %1 invalid tool designation of ‘%2’, duplo no. %3. No more replacement tools possible in ‘%4’.
  • 17193 Channel %1 block %2 the active tool is no longer on toolholder no./spindle no. %3, program %4
  • 17194 Channel %1 block %2 no suitable tool found
  • 17200 Channel %1 block %2 deleting tool data not possible
  • 17202 Channel %1 block %2 deleting magazine data not possible
  • 17210 Channel %1 block %2 access to variable not possible
  • 17212 Channel %1 tool management: Load manual tool %3, duplo no. %2 onto spindle/ toolholder %4
  • 17214 Channel %1 tool management: remove manual tool %3 from spindle/toolholder %2
  • 17216 Channel %1 tool management: remove manual tool from spindle/toolholder %4 and load manual tool %3, duplo no. %2
  • 17220 Channel %1 block %2 tool not existing
  • 17230 Channel %1 block %2 Duplo no. already assigned
  • 17240 Channel %1 block %2 illegal tool definition
  • 17250 Channel %1 block %2 illegal magazine definition
  • 17260 Channel %1 block %2 illegal magazine location definition
  • 17262 Channel %1 block %2 illegal tool adapter operation
  • 17270 Channel %1 block %2 call-by-reference: illegal variable
  • 17500 Channel %1 block %2 axis %3 is not an indexing axis
  • 17501 Channel %1 block %2 indexing axis %3 with Hirth tool system is active
  • 17502 Channel %1 block %2 indexing axis %3 with Hirth tooth system stop is delayed
  • 17503 Channel %1 block %2 indexing axis %3 with Hirth tooth system and axis not referenced
  • 17510 Channel %1 block %2 invalid index for indexing axis %3
  • 17600 Channel %1 block %2 preset on transformed axis %3 not possible
  • 17605 Channel %1 block %2 axis %3 transformation active: inhibits rotation of axis container
  • 17610 Channel %1 block %2 axis %3 involved in the transformation, action cannot be carried out
  • 17620 Channel %1 block %2 approaching fixed point for transformed axis %3 not possible
  • 17630 Channel %1 block %2 referencing for transformed axis %3 not possible
  • 17640 Channel %1 block %2 spindle operation for transformed axis %3 not possible
  • 17650 Channel %1 block %2 machine axis %3 not programmable
  • 17800 Channel %1 block %2 illegally coded position programmed
  • 17900 Channel %1 block %2 axis %3 is no machine axis
  • 18000 Channel %1 block %2 NCK-specific protection zone %3 wrong. Error code %4
  • 18001 Channel %1 block %2 channel-specific protection zone %3 incorrect. Error code %4
  • 18002 Channel %1 block %2 NCK protection zone %3 cannot be activated. Error code %4
  • 18003 Channel %1 block %2 NCK protection zone %3 cannot be activated.Error code %4
  • 18004 Channel %1 block %2 orientation of workpiece-related protection zone %3 does not correspond to the orientation of tool-related protection zone %4
  • 18005 Channel %1 block %2 serious error in definition of NCK-specific protection zone %3
  • 18006 Channel %1 block %2 serious error in definition of channel-specific protection zone %3
  • 18100 Channel %1 block %2 invalid value assigned to FXS[]
  • 18101 Channel %1 block %2 invalid value assigned to FXST[]
  • 18102 Channel %1 block %2 invalid value assigned to FXSW[]
  • 18200 Channel %1 block %2 curve table: block search stop not allowed with definition CTABDEF
  • 18201 Channel %1 block %2 curve table: table %3 does not exist
  • 18202 Channel %1 block %2 curve table: instruction CTABEND without CTABDEF not allowed
  • 18300 Channel %1 block %2 frame: fine shift not possible
  • 18310 Channel %1 block %2 frame: illegal rotation
  • 18311 Channel %1 block %2 frame: illegal instruction
  • 18312 Channel %1 block %2 frame: fine shift not configured
  • 18313 Channel %1 block %2 frame: illegal switchover of geometry axes
  • 18314 Channel %1 block %2 frame: type conflict
  • 18400 Channel %1 block %2 language change not possible:
  • 20000 Channel %1 axis %2 reference cam not reached
  • 20001 Channel %1 axis %2 no cam signal present
  • 20002 Channel %1 axis %2 zero mark not found
  • 20003 Channel %1 axis %2 measuring system error
  • 20004 Channel %1 axis %2 reference mark missing
  • 20005 Channel %1 axis %2 reference point approach aborted
  • 20006 Channel %1 axis %2 reference point creep velocity not reached
  • 20007 Channel %1 axis %2 reference point approach requires 2 measuring systems
  • 20008 Channel %1 axis %2 reference point approach requires second referenced measuring system
  • 20050 Channel %1 axis %2 handwheel mode active
  • 20051 Channel %1 axis %2 handwheel mode not possible
  • 20052 Channel %1 axis %2 already active
  • 20053 Channel %1 axis %2 DRF, FTOCON, external zero point offset not possible
  • 20054 Channel %1 axis %2 wrong index for indexing axis in JOG mode
  • 20055 Channel %1 master spindle not present in JOG mode
  • 20056 Channel %1 axis %2 no revolutional feedrate possible. Axis/spindle %3 stationary
  • 20057 Channel %1 block %2 revolutional feedrate for axis/spindle %3 is <= zero
  • 20058 Channel %1 axis %2 revolutional feedrate: illegal feed source
  • 20060 Channel %1 axis %2 cannot be traversed as geometry axis
  • 20061 Channel %1 axis %2 cannot be traversed as orientation axis
  • 20062 Channel %1 axis %2 already active
  • 20063 Channel %1 axis %2 orientation axes cannot be traversed without transformation
  • 20065 Channel %1 master spindle not defined for geometry axes in JOG mode
  • 20070 Channel %1 axis %2 programmed end position is behind software limit switch %3
  • 20071 Channel %1 axis %2 programmed end position is behind working area limit %3
  • 20072 Channel %1 axis %2 is not an indexing axis
  • 20073 Channel %1 axis %2 cannot be repositioned
  • 20074 Channel %1 axis %2 wrong index position
  • 20075 Channel %1 axis %2 can currently not oscillate
  • 20076 Channel %1 axis %2 oscillating – mode change not possible
  • 20077 Channel %1 axis %2 programmed position is behind software limit switch %3
  • 20078 Channel %1 axis %2 programmed position is behind working area limit %3
  • 20079 Channel %1 axis %2 oscillation path length %3 <= 0
  • 20080 Channel %1 axis %2 no handwheel assigned for overlaid motion
  • 20085 Channel %1 contour handwheel: traverse direction or overtravel of beginning of block not allowed
  • 20090 Axis %1 travel to fixed stop not possible. Check programming and axis data.
  • 20091 Axis %1 has not reached fixed stop
  • 20092 Axis %1 travel to fixed stop still active
  • 20093 Axis %1 standstill monitoring at fixed-stop end point has been triggered
  • 20094 Axis %1 function has been aborted
  • 20095 Axis %1 illegal torque, current torque %2
  • 20096 Axis %1 brake test aborted, additional information %2
  • 20100 Channel %1: invalid configuration for digitizing function
  • 20101 Communication with the digitizer not possible
  • 20102 Channel %1: No or invalid trafo at digitizing active
  • 20103 Channel %1: digitizing module does not support 3+2 axis digitizing
  • 20105 Channel %1: axes stopped by digitizer. Error code: %2
  • 20106 Emergency stop set by the digitizer
  • 20108 Invalid data package received from the digitizer. Error codes: %1, %2
  • 20109 Error in communication with the digitizer: status code of com-circuit: %1
  • 20120 Axis %1: too many compensation relations
  • 20121 Axis %1: Configuration error in compensation table %2
  • 20122 Compensation table %1: invalid axis assignment
  • 20123 Axis %1: different output assignment of multiplied tables
  • 20124 Axis %1: sum of compensation values too large
  • 20125 Axis %1: change of compensation value is too rapid
  • 20130 Channel %1 contour tunnel monitoring
  • 20140 Channel %1 motion synchronous action: traversing of command axis %2 see NC alarm %3
  • 20141 Channel %1 motion synchronous action: illegal axis type
  • 20142 Channel %1 command axis %2: rotation of axis container already enabled
  • 20143 Channel %1 axis %2 command axis cannot be started as it is controlled by the PLC
  • 20144 Channel %1 block %2 motion synchronous action: system variable access not possible
  • 20145 Channel %1 block %2 motion synchronous action: arithmetic error
  • 20146 Channel %1 block %2 motion synchronous action: nesting depth exceeded
  • 20147 Channel %1 block %2 motion synchronous action: command not executable
  • 20148 Channel %1 block %2 motion synchronous action: internal error %3
  • 20149 Channel %1 block %2 motion synchronous action: illegal index
  • 20150 Channel %1 tool management: PLC terminates interrupted command
  • 20160 Channel %1 tool management: PLC can terminate only incorrectly aborted commands
  • 20170 Channel %1 machine data $AC_FIFO invalid
  • 20200 Channel %1 invalid spindle number %2 with tool fine compensation
  • 20201 Channel %1 spindle %2 no tool assigned
  • 20203 Channel %1 no active tool
  • 20204 Channel %1 PUTFTOC command not allowed with FTOCOF
  • 20210 Channel %1 block %3 spindle %2 wrong values for centerless grinding
  • 20211 Channel %1 block %3 spindle %2 support point beyond range limits
  • 21600 Monitoring for ESR active
  • 21610 Channel %1 axis %2 encoder %3 frequency limit exceeded
  • 21611 Channel %1 NC-controlled Extended Stop/Retract triggered
  • 21612 Channel %1 axis %2 VDI signal ‘Servo enable’ reset during motion
  • 21613 Axis %1 measuring system changing
  • 21614 Channel %1 axis %2 hardware limit switch %3
  • 21615 Channel %1 axis %2 taken from traverse mode to follow-up mode
  • 21616 Channel %1 block %2 overlaid motion active at transformation switchover
  • 21617 Channel %1 block %2 transformation does not allow to traverse the pole
  • 21618 Channel %1 as from block %2 transformation active: overlaid motion too great
  • 21619 Channel %1 block %2 transformation active: motion not possible
  • 21650 Channel %1 axis %2 overlaid motion not allowed
  • 21660 Channel %1 block %2 axis %3 conflict between SYNACT: $AA_OFF and CORROF
  • 21665 Channel %1 $AA_TOFF cleared
  • 21670 Channel %1 block %2 illegal change of tool direction with $AA_TOFF active
  • 21700 Channel %1 block %3 axis %2 touch probe already deflected, edge polarity not possible
  • 21701 Channel %1 block %3 axis %2 measurement not possible
  • 21702 Channel %1 block %3 axis %2 measurement aborted
  • 21703 Channel %1 block %3 axis %2 touch probe not deflected, illegal edge polarity
  • 21740 Output value at analog output no. %1 has been limited
  • 21750 Error during output of cam signals via timer
  • 21760 Channel %1 block %2 too many auxiliary functions programmed
  • 21800 Channel %1 workpiece setpoint %2 reached
  • 22000 Channel %1 block %3 spindle %2 change of gear stage not possible
  • 22010 Channel %1 block %3 spindle %2 actual gear stage differs from requested gear stage
  • 22011 Channel %1 block %3 spindle %2 change to programmed gear stage not possible
  • 22012 Channel %1 block %2 leading spindle %3 is in simulation.
  • 22013 Channel %1 block %2 dependent spindle %3 is in simulation.
  • 22014 Channel %1 block %2. The dynamics of leading spindle %3 and dependent spindle %4 is too variably
  • 22020 Channel %1 block %3 spindle %2 gear step change position not reached
  • 22040 Channel %1 block %3 spindle %2 is not referenced with zero marker
  • 22045 Block %2 spindle/axis %3 not available in channel %1 because active in channel %4
  • 22050 Channel %1 block %3 spindle %2 no transition from speed control mode to position control mode
  • 22051 Channel %1 block %3 spindle %2 reference mark not found
  • 22052 Channel %1 block %3 spindle %2 no standstill on block change
  • 22053 Channel %1 block %3 spindle %2 reference mode not supported
  • 22054 Channel %1 block %3 spindle %2 improper punching signal
  • 22055 Channel %1 block %3 spindle %2 configured positioning speed is too high
  • 22060 Channel %1 position control expected for axis/spindle %2
  • 22062 Channel %1 axis %2 reference point approach: zero marker search velocity (MD) is not reached
  • 22064 Channel %1 axis %2 reference point approach: zero marker search velocity (MD) is too high
  • 22065 Channel %1 tool management: Tool motion is not possible, as tool %2 with Duplo no. %3 is not in magazine %4
  • 22066 Channel %1 tool management: Tool change is not possible, as tool %2 with Duplo no. %3 is not in magazine %4
  • 22067 Channel %1 tool management: tool change not possible since there is no tool available in tool group %2
  • 22068 Channel %1 block %2 tool management: no tool available in tool group %3
  • 22069 Channel %1 block %2 tool management: No tool available in tool group %3, program %4
  • 22070 TO unit %1 Please change tool T= %2 into magazine. Repeat data backup
  • 22071 TO unit %1 tool %2 duplo no. %3 is active, but not in the magazine area under consideration
  • 22100 Channel %1 block %3 spindle %2 chuck speed exceeded
  • 22200 Channel %1 spindle %2 axis stopped during tapping
  • 22250 Channel %1 spindle %2 axis stopped during thread cutting
  • 22260 Channel %1 spindle %2 thread might be damaged
  • 22270 Channel %1 block %2 maximum velocity of thread axis at position %3 reached
  • 22275 Channel %1 block %2 zero velocity of thread axis at position %3 reached
  • 22280 Channel %1 in block %2: Prog. acceleration path too short %3, %4 required
  • 22320 Channel %1 block %2 PUTFTOCF command could not be transferred
  • 22321 Channel %1 axis %2 PRESET not allowed during traverse motion
  • 22322 Channel %1 axis %2 PRESET: illegal value
  • 25000 Axis %1 hardware fault of active encoder
  • 25001 Axis %1 hardware fault of passive encoder
  • 25010 Axis %1 pollution of measuring system
  • 25011 Axis %1 pollution of passive encoder
  • 25020 Axis %1 zero mark monitoring of active encoder
  • 25021 Axis %1 zero mark monitoring of passive encoder
  • 25022 Axis %1 encoder %2 warning %3
  • 25030 Axis %1 actual velocity alarm limit
  • 25031 Axis %1 actual velocity warning limit
  • 25040 Axis %1 standstill monitoring
  • 25042 Axis %1 standstill monitoring during torque/force limitation
  • 25050 Axis %1 contour monitoring
  • 25060 Axis %1 speed setpoint limitation
  • 25070 Axis %1 drift value too large
  • 25080 Axis %1 positioning monitoring
  • 25100 Axis %1 measuring system switchover not possible
  • 25105 Axis %1 measuring systems differ considerably
  • 25110 Axis %1 selected encoder not available
  • 25200 Axis %1 requested set of parameters invalid
  • 25201 Axis %1 drive fault
  • 25202 Axis %1 waiting for drive
  • 26000 Axis %1 clamping monitoring
  • 26001 Axis %1 parameterization error: friction compensation
  • 26002 Axis %1 encoder %2 parameterization error: number of encoder marks
  • 26003 Axis %1 parameterization error: lead screw pitch
  • 26004 Axis %1 encoder %2 parameterization error: grid point distance with linear encoders
  • 26005 Axis %1 parameterization error: output rating
  • 26006 Axis %1 encoder %2 encoder type/output type %3 not possible
  • 26007 Axis %1 QEC: invalid coarse step size
  • 26008 Axis %1 QEC: invalid fine step size
  • 26009 Axis %1 QEC: memory overflow
  • 26010 Axis %1 QEC: invalid acceleration characteristic
  • 26011 Axis %1 QEC: invalid measuring periods
  • 26012 Axis %1 QEC: feed forward control not active
  • 26014 Axis %1 machine data %2 invalid value
  • 26015 Axis %1 machine data %2[%3] invalid value
  • 26016 Axis %1 machine data %2 invalid value
  • 26017 Axis %1 machine data %2[%3] invalid value
  • 26018 Axis %1 setpoint output drive %2 used more than once
  • 26019 Axis %1 encoder %2 measurement not possible with this controller module
  • 26020 Axis %1 encoder %2 hardware fault %3 during encoder initialization
  • 26022 Axis %1 encoder %2 measurement with simulated encoder not possible
  • 26024 Axis %1 machine data %2 value changed
  • 26025 Axis %1 machine data %2[%3] value changed
  • 26030 Axis %1 encoder %2 absolute position lost
  • 26031 Axis %1 configuration error master-slave
  • 26032 Axis %1 master-slave not configured
  • 26050 Axis %1 parameter set change from %2 to %3 not possible
  • 26051 Channel %1 in block %2 unanticipated stop crossed in continuous path mode
  • 26052 Channel %1 in block %2: path velocity too high for auxiliary function output
  • 26070 Channel %1 axis %2 cannot be controlled by the PLC, max. number exceeded
  • 26072 Channel %1 axis %2 cannot be controlled by the PLC
  • 26074 Channel %1 switching off PLC control of axis %2 not allowed in the current state
  • 26080 Channel %1 retraction position of axis %2 not programmed or invalid
  • 26081 Channel %1 axis trigger of axis %2 was activated, but axis is not PLC- controlled
  • 26100 Axis %1 drive %2 sign of life missing
  • 26101 Axis %1 drive %2 communication failure
  • 26102 Axis %1 drive %2 sign of life missing
  • 26105 Drive of axis %1 not found
  • 26106 Encoder %2 of axis %1 not found
  • 26110 Independent drive stop/retract triggered
  • 27000 Axis %1 is not safely referenced
  • 27001 Axis %1 error in a monitoring channel, code %2, values: NCK %3, drive %4
  • 27002 Axis %1 test stop is running
  • 27003 Checksum error found: %1 %2
  • 27004 Axis %1, difference safe input %2, NCK %3, drive %4
  • 27005 Axis %1 error in data cross check: static actual value difference
  • 27006 Axis %1 Test ext. pulse deletion running
  • 27007 Axis %1 acceptance test mode is active
  • 27008 Axis %1 SW limit switch deactivated
  • 27010 Axis %1 tolerance for safe standstill exceeded
  • 27011 Axis %1 safe velocity exceeded
  • 27012 Axis %1 safe end position exceeded
  • 27013 Axis %1 safe braking ramp exceeded
  • 27020 Axis %1 stop E triggered
  • 27021 Axis %1 stop D triggered
  • 27022 Axis %1 stop C triggered
  • 27023 Axis %1 stop B triggered
  • 27024 Axis %1 stop A triggered
  • 27030 Axis %1 function not supported on this 611D module
  • 27031 Axis %1 limit value for safe velocity %2 at gear ratio %3 too large (max. %4)
  • 27032 Axis %1 checksum error of safe monitoring. Confirmation and re-test required!
  • 27033 Axis %1 parameterization of MD %2[%3] invalid
  • 27034 Parameterization of MD %1 invalid
  • 27090 Error in data cross check NCK-PLC, %1[%2], NCK: %3; %4 ALSI
  • 27091 Error in data cross check NCK PLC, stop of %1
  • 27092 Communication broken off during NCK PLC data cross check, error detected by %1
  • 27093 Checksum error NCK-SPL, %1, %2, %3
  • 27094 Write access to system variable %1 only allowed from NCK-SPL
  • 27095 %1 SPL protection not activated
  • 27096 SPL start not allowed
  • 27100 At least one axis is not safely referenced
  • 27101 Axis %1 difference in function safe operational stop, NCK: %2 drive: %3
  • 27102 Axis %1 difference in function safe velocity %2, NCK: %3 drive: %4
  • 27103 Axis %1 difference in function safe limit position %2, NCK: %3 drive: %4
  • 27104 Axis %1 difference in function safe cam plus %2, NCK: %3 drive: %4
  • 27105 Axis %1 difference in function safe cam minus %2, NCK: %3 drive: %4
  • 27106 Axis %1 difference in function safe velocity nx, NCK: %2 drive: %3
  • 27107 Axis %1 difference in function cam modulo monitoring, NCK: %2 drive: %3
  • 27124 Stop A triggered at least in 1 axis
  • 27200 PROFIsafe: cycle time %1 [ms] too long
  • 27201 PROFIsafe: MD %1[%2]: bus segment %3 error
  • 27202 PROFIsafe: MD %1[%2]: address %3 error
  • 27203 PROFIsafe: MD %1[%2]: SPL assignment error
  • 27204 PROFIsafe: double assignment MD %1[%2] – MD %3[%4]
  • 27220 PROFIsafe: Number of NCK F modules (%1) <> number of DP modules (%2)
  • 27221 PROFIsafe: NCK F module MD %1[%2] unknown
  • 27222 PROFI safe: S7 F module PROFI safe address %1 unknown
  • 27223 PROFIsafe: NCK F module MD %1[%2] is not a %3 module
  • 27224 PROFIsafe: F module MD %1[%2] – MD %3[%4]: double assignment of PROFIsafe address
  • 27225 PROFIsafe: slave %1, configuration error %2
  • 27240 PROFIsafe: DP M not running up, DP info: %1
  • 27241 PROFIsafe: DP M version different, NCK: %1, PLC: %2
  • 27242 PROFIsafe: F module %1, %2 faulty
  • 27250 PROFIsafe: configuration in DP M changed; error code %1 – %2
  • 27251 PROFIsafe: F module %1, %2 reports error %3
  • 27252 PROFIsafe: Slave %1, sign-of-life error
  • 27253 PROFIsafe: communication fault F master component %1, error %2
  • 27254 PROFIsafe: F module %1, error on channel %2; %3
  • 27255 PROFIsafe: F module %1, general error
  • 27256 PROFIsafe: Current cycle time %1 [ms] > parameterized cycle time
  • 27299 PROFIsafe: Diagnosis %1 %2 %3 %4
  • 28000 NCU link connection to all other NCUs of the link network has been aborted
  • 28001 NCU link connection to the NCU %1 of the link network has been aborted
  • 28002 Error on activation of machine data, NCU network-wide machine data were modified by NCU %1
  • 28004 NCU link: NCU %1 of the link network is not on the bus
  • 28005 NCU link: NCU %1 of the link network not running synchronously
  • 28007 NCU link: conflict in configuration data of NCU %1
  • 28008 NCU link: conflict in timer setting of NCU %1
  • 28009 NCU link: conflict in bus parameters of NCU %1
  • 28010 NCU link: the NCU %1 has not received a message
  • 28011 IPO time insufficient for NCU link. Link cycle time: %1
  • 28012 NCU link: synchronization cycle signal failure %1 times
  • 28020 NCU link: too many link axes configured %1
  • 28030 Serious alarm on NCU %1, axes in follow-up mode
  • 28031 Serious alarm on NCU %1 not yet acknowledged, axes still in follow-up mode
  • 28032 Emergency stop activated on NCU %1, axes in follow-up mode
  • 28033 Emergency stop on NCU % 1, axes still in follow-up mode
  • 29033 Channel %1 axis change of axis %2 not possible, PLC axis movement not yet completed
  • 60000 Channel %1 block %2:
  • 61000 Channel %1 block %2 no tool compensation active
  • 61001 Channel %1 block %2 thread lead incorrect
  • 61002 Channel %1 block %2 machining type wrongly defined
  • 61003 Channel %1 block %2 no feed programmed in the cycle
  • 61004 Channel %1 block %2 configuration geometry axis incorrect
  • 61005 Channel %1 block %2 3rd geometry axis not present
  • 61006 Channel %1 block %2 tool radius too large
  • 61007 Channel %1 block %2 tool radius too small
  • 61009 Channel %1 block %2 active tool number = 0
  • 61010 Channel %1 block %2 finishing allowance too large
  • 61011 Channel %1 block %2 scaling not allowed
  • 61012 Channel %1 block %2 different scaling on the plane
  • 61013 Channel %1 block %2 basic settings were changed, program cannot be executed
  • 61101 Channel %1 block %2 reference plane incorrectly defined
  • 61102 Channel %1 block %2 no spindle direction programmed
  • 61103 Channel %1 block %2 number of drillings is zero
  • 61104 Channel %1 block %2 contour violation of slots/long holes
  • 61105 Channel %1 block %2 cutter radius too large
  • 61106 Channel %1 block %2 number or distance of circular elements
  • 61107 Channel %1 block %2 first drilling depth incorrectly defined
  • 61108 Channel %1 block %2 illegal values for parameters _RAD1 and _DP1
  • 61109 Channel %1 block %2 parameter _CDIR incorrectly defined
  • 61110 Channel %1 block %2 finishing allowance at the base > depth infeed
  • 61111 Channel %1 block %2 infeed width > tool diameter
  • 61112 Channel %1 block %2 tool radius negative
  • 61113 Channel %1 block %2 parameter _CRAD for corner radius too large
  • 61114 Channel %1 block %2 machining direction G41/G42 incorrectly defined
  • 61115 Channel %1 block %2 approach or retract mode (straight line/circle/plane/space) incorrectly defined
  • 61116 Channel %1 block %2 approach or retraction path = 0
  • 61117 Channel %1 block %2 active tool radius <= 0
  • 61118 Channel %1 block %2 length or width = 0
  • 61119 Channel %1 block %2 nominal or core diameter incorrectly programmed
  • 61120 Channel %1 block %2 internal/external thread type not defined
  • 61121 Channel %1 block %2 number of teeth per cutting edge missing
  • 61122 Channel %1 block %2 safety clearance on the plane incorrectly defined
  • 61124 Channel %1 block %2 infeed width is not programmed
  • 61125 Channel %1 block %2 technology selection in parameter _TECHNO incorrectly defined
  • 61126 Channel %1 block %2 thread length too short
  • 61127 Channel %1 block %2 transmission ratio of tapping axis incorrectly defined (machine data)
  • 61128 Channel %1 block %2 dipping angle = 0 for dipping with oscillation or helix
  • 61180 Channel %1 block %2 no name assigned to swivel data block, although MD $MN_MM_NUM_TOOL_CARRIER > 1
  • 61181 Channel %1 block %2 NCK software version unsufficient (missing TOOLCARRIER functionality)
  • 61182 Channel %1 block %2 name of swivel data block unknown
  • 61183 Channel %1 block %2 retraction mode GUD7 _TC_FR beyond value range 0… 2
  • 61184 Channel %1 block %2 no solution possible with current input angle values
  • 61185 Channel %1 block %2 no or incorrect (min > max) rotary axis angle ranges assigned
  • 61186 Channel %1 block %2 rotary axis vectors invalid –> Check installation and start-up of the swivel cycle CYCLE800
  • 61188 Channel %1 block %2 no axis name for the 1st axis assigned -> Check installation and start-up of the swivel cycle CYCLE800
  • 61200 Channel %1 block %2 too many elements in the machining block
  • 61201 Channel %1 block %2 wrong sequence in the machining block
  • 61202 Channel %1 block %2 no technology cycle
  • 61203 Channel %1 block %2 no positioning cycle
  • 61204 Channel %1 block %2 unknown technology cycle
  • 61205 Channel %1 block %2 unknown positioning cycle
  • 61210 Channel %1 block %2 block search element not found
  • 61211 Channel %1 block %2 absolute reference missing
  • 61212 Channel %1 block %2 wrong tool type
  • 61213 Channel %1 block %2 circle radius too small
  • 61214 Channel %1 block %2 no lead programmed
  • 61215 Channel %1 block %2 raw dimension incorrectly programmed
  • 61216 Channel %1 block %2 feed/tooth only possible with milling tools
  • 61217 Channel %1 block %2 cutting speed for tool radius 0 programmed
  • 61218 Channel %1 block %2 feed/tooth programmed, but number of teeth is zero
  • 61222 Channel %1 block %2 plane infeed greater than the tool diameter
  • 61223 Channel %1 block %2 approach path too short
  • 61224 Channel %1 block %2 retract path too short
  • 61225 Channel %1 block %2 swivel data block unknown
  • 61226 Channel %1 block %2 swivel head cannot be exchanged
  • 61230 Channel %1 block %2 tool probe diameter too small
  • 61231 Channel %1 block %2 ShopMill program %3 cannot be executed, as it has not been tested by ShopMill
  • 61232 Channel %1 block %2 loading of magazine tool not possible
  • 61233 Channel %1 block %2: Thread inclination incorrectly defined
  • 61234 Channel %1 block %2 ShopMill subroutine %4 cannot be executed, as it has not been tested by ShopMill
  • 61235 Channel %1 block %2: ShopTurn program %4 cannot be executed, as it has not been tested by ShopTurn.
  • 61236 Channel %1 block %2: ShopTurn subroutine %4 cannot be executed, as it has not been tested by ShopTurn.
  • 61237 Channel %1 block %2: Retraction direction unknown. Manually retract tool!
  • 61238 Channel %1 block %2: Machining direction unknown.
  • 61239 Channel %1 block %2: Tool change point lies in the retraction area!
  • 61240 Channel %1 block %2: Wrong feed type
  • 61241 Channel %1 block %2: No retraction plane defined for this machining direction.
  • 61242 Channel %1 block %2: Wrong machining direction
  • 61243 Channel %1 block %2: Correct tool change point, tool tip is in retraction area!
  • 61244 Channel %1 block %2: Thread lead change results in an undefined thread
  • 61246 Channel %1 block %2: Safety clearance too small
  • 61247 Channel %1 block %2: Blank radius too small
  • 61248 Channel %1 block %2: Infeed too small
  • 61249 Channel %1 block %2: Number of edges too small
  • 61250 Channel %1 block %2: Key width/Edge length too small
  • 61251 Channel %1 block %2: Key width/Edge length too large
  • 61252 Channel %1 block %2: Chamfer/Radius too large
  • 61253 Channel %1 block %2: No finishing allowance programmed
  • 61254 Channel %1 block %2: Error when traversing to fixed stop
  • 61255 Channel %1 block %2: Cut-off error: Tool breakage?
  • 61301 Channel %1 block %2 measuring probe does not switch
  • 61302 Channel %1 block %2 measuring probe collision
  • 61303 Channel %1 block %2 safe area exceeded
  • 61308 Channel %1 block %2 check measuring distance 2a
  • 61309 Channel %1 block %2 check measuring probe type
  • 61310 Channel %1 block %2 scale factor is active
  • 61311 Channel %1 block %2 no D number is active
  • 61316 Channel %1 block %2 center point and radius cannot be determined.
  • 61332 Channel %1 block %2 change tool tip position
  • 61338 Channel %1 block %2 positioning velocity is zero
  • 61601 Channel %1 block %2 finished-part diameter too small
  • 61602 Channel %1 block %2 tool width incorrectly defined
  • 61603 Channel %1 block %2 groove form incorrectly defined
  • 61604 Channel %1 block %2 active tool violates programmed contour
  • 61605 Channel %1 block %2 contour incorrectly programmed
  • 61606 Channel %1 block %2 contour processing error
  • 61607 Channel %1 block %2 starting point incorrectly programmed
  • 61608 Channel %1 block %2 wrong cutting edge position programmed
  • 61609 Channel %1 block %2 form incorrectly defined
  • 61610 Channel %1 block %2 no infeed depth programmed
  • 61611 Channel %1 block %2 no intersection point found
  • 61612 Channel %1 block %2 thread axis cutting not possible
  • 61613 Channel %1 block %2 undercut position incorrectly defined
  • 61800 Channel %1 block %2: External CNC system missing
  • 61801 Channel %1 block %2: Wrong G code selected
  • 61802 Channel %1 block %2: Wrong axis type
  • 61803 Channel %1 block %2 programmed axis not present
  • 61804 Channel %1 block %2: Progr. position exceeds reference point
  • 61805 Channel %1 block %2: The value is absolutely and incrementally programmed
  • 61806 Channel %1 block %2: Incorrect axis assignment
  • 61807 Channel %1 block %2 wrong spindle direction programmed (active)
  • 61808 Channel %1 block %2: The final drilling depth or individual drilling depth is missing
  • 61809 Channel %1 block %2: Impermissible drilling position
  • 61810 Channel %1 block %2: ISO-G code not possible
  • 61811 Channel %1 block %2: Impermissible ISO axis name
  • 61812 Channel %1 block %2: Value(s) in the external cycle call incorrectly defined
  • 61813 Channel %1 block %2: GUD value incorrectly defined
  • 61814 Channel %1 block %2: Polar coordinates not possible with cycle
  • 61815 Channel %1 block %2: G40 not active
  • 61816 Channel %1 block %2: axes are not at the reference point
  • 61817 Channel %1 block %2: The axis coordinates are within the protection zone
  • 61818 Channel %1 block %2: The axis area limit values are identical
  • 62000 Channel %1 block %2:
  • 62100 Channel %1 block %2 no drilling cycle active
  • 62101 Channel %1 block %2: Incorrect cutting direction – G3 is generated
  • 62103 Channel %1 block %2: The finishing allowance is not programmed
  • 62105 Channel %1 block %2 number of columns or lines is zero
  • 62180 Channel %1 block %2 no name assigned to swivel data block although machine data $MN_MM_NUM_TOOL_CARRIER > 1
  • 62181 Channel %1 block %2 NCK software version unsufficient (missing TOOLCARRIER functionality)
  • 62182 Channel %1 block %2: Load swivel head
  • 62183 Channel %1 block %2 retraction mode GUD7 _TC_FR beyond value range 0…2
  • 62184 Channel %1 block %2 no solution possible with current input angle values
  • 62185 Channel %1 block %2 no end stop assigned to rotary axes
  • 62186 Channel %1 block %2 illegal rotary axis vectors
  • 62187 Channel %1 block %2 name of swivel data block unknown
  • 62200 Channel %1 block %2: Start spindle
  • 63000 Channel %1 block %2:
  • 65000 Channel %1 block %2:
  • 66000 Channel %1 block %2:
  • 67000 Channel %1 block %2:
  • 68000 Channel %1 block %2:
  • 70000 Compile cycle alarm
  • 75000 OEM alarm
  • 75005 Channel %1 block %2 CLC: General programming error
  • 75010 Channel %1 block %2 CLC_LIM value exceeds MD limit
  • 75015 Channel %1 block %2 CLC(0) with active TOC
  • 75016 Channel %1 block %2 CLC: orientation changed for TRAFOOF
  • 75020 Channel %1 CLC position offset at lower limit %2
  • 75021 Channel %1 CLC position offset at upper limit %2
  • 75025 Channel %1 CLC stopped because sensor head has been touched
  • 75050 Channel %1 wrong MD configuration, error code %2
  • 75051 Channel %1 CC_COPON CC_COPOFF error code %2
  • 75060 Channel %1 tolerance window exceeded axis %2
  • 75061 Channel %1 coupling active axis %2
  • 75062 Channel %1 axes not in standstill axis %2
  • 75070 Channel %1 wrong machine data for collision protection %2
  • 75071 Channel %1 collision monitoring axis %2
  • 75100 Too many analog axes configured
  • 75110 Axis %1 reached drift limit
  • 75200 Channel %1 wrong MD configuration, %2 incorrect
  • 75210 Channel %1 number of axes/axis assignment inconsistent
  • 75250 Channel %1 tool parameters incorrect
  • 75255 Channel %1 working area error 
  • 75260 Channel %1 block %2 tool parameters incorrect
  • 75265 Channel %1 block %2 working area error
  • 75270 Channel %1 tool parameters incorrect
  • 75275 Channel %1 block %2 working area error
  • 75451 Error with definition of setpoint switchover
  • 75452 Axis %1 setpoint switchover not possible in the current state
  • 75500 Channel %1 wrong configuration
  • 75600 Channel %1 retrace support: wrong MD configuration. Error code %2
  • 75601 Channel %1 block %2 invalid parameter in CC_PREPRE()
  • 75605 Channel %1 retrace support: internal error, error code %2
  • 75606 Channel %1 retraceable contour was shortened
  • 75607 Channel %1 resynchronisation not possible

Pages: 1 2 3

 USER INFO 0000    Recorder is ready for operating
 ERROR 0001    Recorder in test run – No exposure possible
 ERROR 0800    Recorder hardware defective
 ERROR 0801    The inserted diskette is not the system diskette for this recorder
 ERROR 0802    The graphics display could not be initialized
 ERROR 0803    The material reception unit (collecting cassette or on-line device connected) has not been selected
 ERROR 0804    Supply cassette not inserted
 ERROR 0805    Collecting cassette not inserted
 ERROR 0806    Material feed error
 ERROR 0807    Collecting cassette has not been emptied
 ERROR 0808    Material feed into the material reception unit (collecting cassette or connected on-line device) not  possible 
 ERROR 0809    An error occurred in the recorder cutting device
 ERROR 080A    Supply cassette is empty
 ERROR 080D    Internal error
 ERROR 080E    An error occurred during the automatic material position and width recognition
 ERROR 080F    The on-line processor is not switched on
 ERROR 0810    On-line processor not ready
 ERROR 0811    The on-line processor is not connected to the on-line recorder interface
 ERROR 0812    Power supply error – An error occurred in the negative 12 Volt power supply;
 ERROR 0813    Power supply error – An error occurred in the positive 12 Volt power supply
 ERROR 0814    Power supply error – An error occurred in the negative 15 Volt power supply
 ERROR 0815    Power supply error – An error occurred in the positive 15 Volt power supply
 ERROR 0816    Power supply error – An error occurred in the first negative 2 Volt power supply
 ERROR 0817    Power supply error – An error occurred in the negative 5.2 Volt power supply
 ERROR 0818    Power supply error – An error occurred in the positive 7.5 Volt power supply
 ERROR 0819    Power supply error – An error occurred in the positive 24 Volt power supply
 ERROR 081A    Power supply error – An error occurred in the second negative 2 Volt power supply
 ERROR 081B    Power supply error – An error occurred in the positive 28 Volt power supply
 ERROR 081C    Power supply error – An error occurred in one of the power supply modules
 ERROR 081D    The recorder could not be initialized
 ERROR 081F    The supply cassette does not belong to this recorder
 ERROR 0900    The communication with the laser unit is interrupted
 ERROR 1001    No more memory available to create a SPEEDWAY message
 ERROR 2000    The recorder hardware could not be reset
 ERROR 2001    The recorder hardware could not be initialized
 ERROR 2002    The recorder hardware could not be reset
 ERROR 2003    The recorder hardware could not be initialized
 ERROR 2004    The recorder hardware could not be initialized
 ERROR 2005    The recorder hardware could not be initialized
 ERROR 2007    The recorder hardware could not be initialized
 ERROR 2008    The SPEEDWAY link is interrupted
 ERROR 2009    The SPEEDWAY link is interrupted
 ERROR 200A    The SPEEDWAY link is interrupted
 ERROR 200B    The system memory for SPEEDWAY communication could not be released
 ERROR 200C    An error occurred in the program sequence
 ERROR 3101    An internal error occurred when calling up the material control
 ERROR 3102    An internal error occurred when calling up the material control
 ERROR 3103    An internal error occurred when calling up the material control
 ERROR 3104    An internal error occurred when calling up the material control
 ERROR 3105    An internal error occurred when calling up the material control
 ERROR 3106    The material feed length exceeds the maximum feed length
 ERROR 3107    The material type, which is selected in the material parameter MATERIAL_TYPE, isn’t supported by the recorder
 ERROR 3108    The material thickness (in combination with the selected material type) isn’t supported by the recorder. The thickness is selected in the material parameter MATERIAL_THICKNESS
 ERROR 3109    The measured material width (in combination with the selected material thickness and material type) isn’t supported by the recorder
 ERROR 3110    The VAR_MAT_CONTROL-parameters (PID 681-700) in the static parameters do not have the defined format or they are corrupted
 ERROR 3200    An error occurred when initializing the punch
 ERROR 3201    An error occurred when selecting the punches
 ERROR 3202    An error occurred during the punching
 ERROR 3300    An error occurred during the transport of the residual material – The supply cassette is empty
 ERROR 3301    An error occurred during the transport of the residual material – The supply cassette is empty
 ERROR 3302    An error occurred during the transport of the residual material – The supply cassette is empty
 ERROR 3400    The residual material measurement is incorrect
 ERROR 3401    The residual material measurement is incorrect
 ERROR 3402    The residual material measurement is incorrect
 ERROR 3500    An error occurred during the material transport
 ERROR 3501    An error occurred when loading the material
 ERROR 3502    An error occurred during the material transport
 ERROR 3503    An error occurred during the material transport
 ERROR 3504    An error occurred during the material transport
 ERROR 3505    An error occurred during the material transport
 ERROR 3506    An error occurred during the material transport
 ERROR 3507    An error occurred when loading the material
 ERROR 3508    An error occurred when loading the material. The end of material has been recognized
 ERROR 3509    An error occurred when loading the material. The end of material has been recognized
 ERROR 350A    An error occurred during the loading process. Material jam has occurred
 ERROR 350B    An error occurred during the loading process. Material jam has occurred
 ERROR 350C    An error occurred during the loading process. There is residual material in the recorder trough. The end of material has been recognized
 ERROR 350D    An error occurred during the unloading process
 ERROR 350F    An error occurred during the unloading process
 ERROR 3510    An error occurred during the unloading process
 ERROR 3511    An error occurred during the unloading process
 ERROR 3512    An error occurred during the unloading process
 ERROR 3515    An error was detected during material feed. Material jam occured
 ERROR 3516    An error was detected during material feed. Material jam in the output unit of the recorder has occured
 ERROR 3600    An internal error occurred when transferring the parameters
 ERROR 3601    An internal error occurred when transferring the parameters
 ERROR 3602    An internal error occurred when transferring the parameters
 ERROR 3700    A problem occurred in the material guide system
 ERROR 3701    A problem occurred in the material guide system
 ERROR 3702    A problem occurred in the material guide system
 ERROR 3703    A problem occurred in the material guide system
 ERROR 3704    A problem occurred in the material guide system
 ERROR 3705    A problem occurred in the material guide system
 ERROR 3706    A problem occurred in the material guide system
 ERROR 4000    Parameter set-up error 
 ERROR 4001    An error occurred during the initialization of the recorder hardware
 ERROR 4002    SlowScan feed error
 ERROR 4003    SlowScan feed error
 ERROR 4004    An error occurred in the SlowScan feed unit
 ERROR 4005    The dust cover and (or) the side panel are not closed
 ERROR 4006    The dust cover and (or) the side panel are not closed
 ERROR 4007    Material jam in the recorder
 ERROR 4008    An error occurred during the material width measurement
 ERROR 6000    An error occurred when accessing the non-volatile memory of the supply cassette
 ERROR 6001    An error occurred when accessing the non-volatile memory of the supply cassette
 ERROR 6002    An internal error occurred when accessing the non-volatile memory of the supply cassette
 ERROR 6003    A non-volatile memory is missing in the recorder
 ERROR 6004    The supply cassette has not been inserted
 ERROR 6005    An internal error occurred when accessing the non-volatile memories
 ERROR 6006    An internal error occurred when accessing the non-volatile memories
 ERROR 6007    An error occurred when accessing the non-volatile memories
 ERROR 6008    An error occurred when accessing the non-volatile memories
 ERROR 6009    An internal error occurred when accessing the non-volatile memories
 ERROR 7000    Internal operating system error
 ERROR 7001    Internal operating system error
 ERROR 7002    Internal operating system error
 ERROR 7003    Internal operating system error
 ERROR 7004    Internal operating system error
 ERROR 7005    Internal operating system error
 ERROR 7006    Internal operating system error
 ERROR 7800    No diskette or the wrong diskette has been inserted
 ERROR 7801    Diskette error: File cannot be opened
 ERROR 7802    Diskette error: File cannot be found
 ERROR 7803    Diskette error: File cannot be read
 ERROR 7804    Diskette error: File cannot be written
 ERROR 7805    Diskette error: File cannot be created
 ERROR 7806    Diskette error: File cannot be deleted
 ERROR 7807    Diskette error: File cannot be renamed
 ERROR 7808    Diskette error: Directory cannot be changed
 ERROR 7809    Diskette error: Directory cannot be created
 ERROR 780A    Diskette error: Diskette is write-protected
 ERROR 780B    The inserted diskette is no UPDATE diskette
 ERROR 780C    The inserted diskette is no recorder system diskette
 ERROR 7C3D    EEPROM Data read error has occured
 ERROR 7C3E    AC-fault greater than 50 milliseconds
 ERROR 7C40    A transmission error on LASERWAY has occured
 ERROR 7C41    The laser power is outside the ready range
 ERROR 7C42    Laser power mode – an adjust timeout has occured
 ERROR 7C43    Laser power supply – an over-temperature error on the passbank has occured
 ERROR 7C44    Laser module – the current limit is reached
 ERROR 7C45    Diode module safety loop test – a bad voltage was detected
 ERROR 7C46    Diode module safety loop check – a logic-fault was detected
 ERROR 7C47    Diode module safety check 2 – a bad voltage was detected
 ERROR 7C48    Diode module safety check 2 – a logic-fault was detected
 ERROR 7C49    Diode module safety check 1 – a bad voltage was detected
 ERROR 7C4A    Diode module safety check 1 – a logic-fault was detected
 ERROR 7C51    Diode module – the EEPROM data is not available
 ERROR 7C52    Diode module – a EEPROM data write failure has occured
 ERROR 7C53    Laser module – a bad microprocessor configuration was detected
 ERROR 7C54    Laser module – a failure of the cooling system was detected
 ERROR 7C55    Laser module – a failure of the heater system was detected
 ERROR 7C58    Diode module – the thermistor is shorted
 ERROR 7C59    Diode module – the thermistor is open
 ERROR 7C5B    Diode module – an over-temperature error has occured ( > 37.5 C)
 ERROR 7C5C    Diode module – an under-temperature error has occured ( < 7.5 C)
 ERROR 7C5D    Laser module – the current limit PASSBANK is reached (2)
 ERROR 7C5E    Laser module – the current limit PASSBANK is reached (1)
 ERROR 7C5F    The laser module safety loop is open
 ERROR 7C62    The diode module relay is closed but should be open
 ERROR 7C63    The diode module relay is open but should be closed
 ERROR 8000    Internal error
 ERROR 8001    Internal error
 ERROR 8002    An error occurred in the recorder hardware
 ERROR 8003    An error occurred in the recorder hardware
 ERROR 8004    An error occurred in the recorder hardware
 ERROR 8005    An error occurred in the recorder hardware
 ERROR 8100    A parameter set-up error occurred in the optics unit
 ERROR 8101    A parameter set-up error occurred in the optics unit
 ERROR 8102    A parameter set-up error occurred in the optics unit
 ERROR 8110    An error occurred in the optics unit of the recorder
 ERROR 8111    An error occurred in the optics unit of the recorder
 ERROR 8112    An error occurred in the optics unit of the recorder
 ERROR 8120    An error occurred in the optics unit of the recorder
 ERROR 8121    A parameter set-up error occurred in the optics unit
 ERROR 8122    A parameter set-up error occurred in the optics unit
 ERROR 8200    An error occurred in the mirror motor unit
 ERROR 8201    A parameter set-up error of the mirror motor unit occurred
 ERROR 8202    An error occurred in the mirror motor unit
 ERROR 8203    An error occurred in the mirror motor unit
 ERROR 8204    An error occurred in the mirror motor unit
 ERROR 8205    An error occurred in the mirror motor unit
 ERROR 8300    The voltage monitoring recognized an error
 ERROR 8301    The voltage monitoring recognized an error
 ERROR 8302    The voltage monitoring recognized an error
 ERROR 8303    The temperature monitoring of the optics unit recognized an error
 ERROR 8304    The temperature monitoring of the optics unit recognized an error
 ERROR 8310    An internal error occurred
 ERROR 83F1    An error occurred when preparing the optics for exposure
 WARNING A600    The recorder is in test operation mode
 WARNING AC00    The selected material is not in the supply cassette
 USER INFO CC00    The image data have not been all processed during the exposure
 USER INFO CC01    The *.RIF initialization file cannot be read from the diskette
 USER INFO CC02    The recorder hardware and software are incompatible
 USER INFO CC03    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC04    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC05    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC06    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC07    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC08    The recorder received an unacceptable application parameter from the RIP
 USER INFO CC09    The recorder received an unacceptable application parameter from the RIP
 USER INFO D000    There is no diskette in the drive
 USER INFO D001    The diskette in the drive is defective or has a wrong format, e.g. DD(720KB)

Page 1: EMCO WinNC for Fanuc 31i Mill Software description, software

EMCO GmbH

P.O. Box 131

A-5400 Hallein-Taxach/Austria

Phone ++43-(0)62 45-891-0

Fax ++43-(0)62 45-869 65

Internet: www.emco-world.com

E-Mail: [email protected]

EMCO WinNC for Fanuc 31i MillSoftware description, software release effective from 01.02

Software descriptionWinNC for Fanuc 31i Mill

Ref. no. EN 1846Edition C 2016-02

Original operating instructions

These instructions are also available at any timeon request as electronic copy (.pdf).

0

6

2

10

7080

90

100

110

120

3050

Page 2: EMCO WinNC for Fanuc 31i Mill Software description, software

2 Fanuc 31i Mill

Instructions:Some of the functionality of the EMCO WinNC for Fanuc 31i control software is beyond the scope of these instructions. Emphasis is placed instead on representing the most important functions simply and clearly, in order to achieve the greatest possible learning success.Depending on the machine you are operating with EMCO WinNC for Fanuc 31i, not all functions may be available.

Page 3: EMCO WinNC for Fanuc 31i Mill Software description, software

3 Fanuc 31i Mill

EMCO GmbHTechnical Documentation DepartmentA-5400 HALLEIN, Austria

Preface

The EMCO WinNC for Fanuc 31i software is a component of the EMCO training concept.EMCO WinNC for Fanuc 31i makes it easy to operate CNC lathes/milling machines. Neither is prior knowledge of ISO programming needed.

An interactive contour programming routine means you can define workpiece contours with linear and circular contour elements.

A cycle is programmed interactively, with graphics support. A large number of process-ing cycles, which can be combined freely with each other to form a single program, is available to the user.Individual cycles or the NC programs produced can be simulated graphically on screen.

Some of the functionality of the EMCO WinNC for Fanuc 31i control software is beyond the scope of these instructions. Emphasis is placed instead on representing the most important functions simply and clearly, in order to achieve the greatest possible learning success.

If you have queries about or suggestions for improving these operating instructions, please make direct contact with [name needed!]

All rights reserved. Copying only with permission from EMCO GmbH© EMCO GmbH., Hallein

EC compliance

The CE symbol, together with the EC compliance declaration, certifies that the machine and instructions comply with the directives under which the products are covered.

Page 4: EMCO WinNC for Fanuc 31i Mill Software description, software

4 Fanuc 31i Mill

Content

Table of contents

Preface ……………………………………………………………………………3Table of contents ………………………………………………………………4

A: PrinciplesEMCO milling machine reference points …………………………… A1

N (T) = Tool zero point ……………………………………………….. A1M = Machine zero point ………………………………………………. A1W = Workpiece zero point …………………………………………… A1R = Reference point ……………………………………………………. A1

Milling machine reference system ……………………………………. A2Polar coordinates…………………………………………………………… A3Absolute and incremental workpiece positions…………………… A4Zero point offset …………………………………………………………….. A5Milling operations…………………………………………………………… A7

Down-cut Milling ………………………………………………………… A7Up-cut Milling …………………………………………………………….. A7Down-cut/up-cut milling ………………………………………………. A7

Tool radius compensation ……………………………………………….. A8Tool data ………………………………………………………………………. A9

B: Key descriptionEMCO WinNC for Fanuc 31i control panel ………………………… B1Address and number pad ……………………………………………….. B2Button functions …………………………………………………………….. B3Key description ISO functions …………………………………………. B5Screen layout Manual Guide i ……………………………………….. B10PC keyboard ……………………………………………………………….. B11

Overview button assignment control keyboard ……………… B12Overview Button Assignment Machine Operating Elements B13

Machine control panel ………………………………………………….. B15Key description ……………………………………………………………. B15

Skip (block mask) …………………………………………………….. B15Dry run (test run feed)……………………………………………….. B15Individual piece mode ……………………………………………….. B16Optional stop……………………………………………………………. B16Edit…………………………………………………………………………. B16Handwheel mode (optional) ……………………………………….. B16Reset key (Reset) …………………………………………………….. B16Feed Stop ……………………………………………………………….. B16Feed Start ……………………………………………………………….. B16Single block …………………………………………………………….. B17Cycle stop ……………………………………………………………….. B17Cycle start ……………………………………………………………….. B17Arrow keys ………………………………………………………………. B17Rapid traverse …………………………………………………………. B17Reference point ……………………………………………………….. B17Chip conveyor (Option) ……………………………………………… B17Swing tool drum ……………………………………………………….. B18Manual tool change ………………………………………………….. B18Clamping devices …………………………………………………….. B18Coolant …………………………………………………………………… B18Feed Stop ……………………………………………………………….. B18Feed Start ……………………………………………………………….. B18Types of operation ……………………………………………………. B19Auxiliary OFF …………………………………………………………… B20Auxiliary ON …………………………………………………………….. B20Override switch (feed rate override) ……………………………. B21EMERGENCY SHUTDOWN ……………………………………… B21Key Switch Special Operations Mode………………………….. B21

Multifunction switch for operating modes……………………… B22Key switch……………………………………………………………….. B25Additional clamping device button ………………………………. B25USB connection (USB 2.0) ………………………………………… B25Enable button…………………………………………………………… B25

C: OperationFeed F [mm/min] ……………………………………………………………C1Spindle speed S [rev/min]………………………………………………..C2Types of operation ………………………………………………………….C3Approach reference point ………………………………………………..C5Move slides manually ……………………………………………………..C6Move slides in step-movement …………………………………………C6Program management …………………………………………………….C8

Create program…………………………………………………………..C9Where programs are saved ………………………………………….C9Programming list ……………………………………………………….C10Copy program …………………………………………………………..C12Delete program …………………………………………………………C12Enter comment …………………………………………………………C13Search program ………………………………………………………..C13Delete a number of programs simultaneously ……………….C14Change the sorting sequence ……………………………………..C15Open program…………………………………………………………..C15Change program name ………………………………………………C16Program properties ……………………………………………………C16Program protection ……………………………………………………C17Program input and output on a memory card ………………..C17Search for text from the input line in the program ………….C18Search for and open the program ………………………………..C18Copy marked text into a buffer file ……………………………….C19Move marked text into the buffer file ……………………………..C19Insert text …………………………………………………………………C20Delete highlighted text ……………………………………………….C20Insert marked text into an input line ……………………………..C21Revocation and withdrawal …………………………………………C22Search and replace……………………………………………………C22End program listing ……………………………………………………C23

Program mode ……………………………………………………………..C24Background Editing……………………………………………………C25

Semi-automatic mode……………………………………………………C26Zero point table…………………………………………………………….C28

Setting up workpiece coordinates data …………………………C28Measuring ………………………………………………………………..C29Compute ………………………………………………………………….C29

Graphical simulation ……………………………………………………..C31Screen layout graphical simulation ………………………………C32Softkey functions ………………………………………………………C333D configuration………………………………………………………..C37Shift graphics ……………………………………………………………C38

D: Programming with MANUAL GUIDE iOverview……………………………………………………………………….D1

M-commands ……………………………………………………………..D1Overview ……………………………………………………………………D2

Produce MANUAL GUIDE i program ………………………………..D2Programming set-up ……………………………………………………D3

Raw part definition ………………………………………………………….D6

Page 5: EMCO WinNC for Fanuc 31i Mill Software description, software

5 Fanuc 31i Mill

Content

Cycle overview ………………………………………………………………D7Working with cycles …………………………………………………..D10Data Entry for Machining Cycles …………………………………D12Default values for cycle parameters …………………………….D14Ignore plausibility check for saving ………………………………D15Select dimensions system ………………………………………….D16

Hole machining …………………………………………………………….D17Centre drilling G1100 …………………………………………………D18Drilling G1001 …………………………………………………………..D20Tapping G1002 …………………………………………………………D24Reaming G1003………………………………………………………..D26Boring G1004……………………………………………………………D28

Face machining ……………………………………………………………D31Facing (rough) G1020………………………………………………..D32Facing (finish) G1021 ………………………………………………..D34

Contouring …………………………………………………………………..D37Outer wall (rough) G1060 …………………………………………..D38Outer wall (bottom finish) G1061 …………………………………D44Outer wall (side finish) G1062 …………………………………….D48Outer wall (chamfer) G1063 ……………………………………….D52Inner wall (rough) G1064 ……………………………………………D56Inner wall (bottom finish) G1065 ………………………………….D58Inner wall (side finish) G1066 ……………………………………..D60Inner wall (chamfer) G1067 ………………………………………..D62Partial (rough) G1068 ………………………………………………..D64Partial (bottom finish) G1069 ………………………………………D66Partial (side finish) G1070 ………………………………………….D68Partial (chamfer) G1071 …………………………………………….D70

Pocketing …………………………………………………………………….D73Pocketing (rough) G1040……………………………………………D74Pocketing (bottom finish) G1041 …………………………………D78Pocketing (side finish) G1042 ……………………………………..D80Pocketing (chamfer) G1043 ………………………………………..D82

Figure: Hole position……………………………………………………..D85Random Points G1210 ………………………………………………D86Linear Points (same interval) G1211 ……………………………………………….D88XY Grid points G1213 ………………………………………………..D89XY Rectangle points G1214 ……………………………………….D90XY Circle points G1215 ……………………………………………..D91XY Arc points (same interval) G1216 ……………………………………………….D92XA A-axis Hole Arc G1772 ……………………………………………………………………..D93XA A-axis Hole Free G1773 ……………………………………………………………………..D94

Figure: Front Surface Contour ………………………………………..D95XY Square facing G1220 ……………………………………………D97

Figure: Contouring figure ……………………………………………….D99XY Square convex G1220 ………………………………………..D100XY Circle convex G1221 …………………………………………..D101XY Track convex G1222 …………………………………………..D102XY Polygon convex G1225 ……………………………………….D103XY Free figure convex ……………………………………………..D104Overview of the input elements for free contour programming .D105Input items of line (XY plane) G1201 ………………………….D106Input items for arc (XY plane) G1202, 1203 ………………..D107Input items of chamfer (XY plane) G1204 …………………..D108Input items of corner (XY plane) G1205 ……………………..D108Input items of end of arbitrary figures G1206 ………………D109Symbol representation of the contour elements ………….. D110XA plane free convex figure for cylinder G1700 ………….. D112XY Square concave G1220 ……………………………………… D113XY Circle concave G1221 ………………………………………… D114XY Track concave G1222 ………………………………………… D115XY Polygon concave G1225 …………………………………….. D116XY Free concave figure …………………………………………… D117XA plane free concave figure for cylinder G1700 ………… D118

XY Free open figure ………………………………………………… D119XA plane free open figure for cylinder G1700 ………………D120

Figure: Pocket figure …………………………………………………..D121XY Square concave G1220 ………………………………………D122XY Circle concave G1221 …………………………………………D123XY Track concave G1222 …………………………………………D124XY Polygon concave G1225 ……………………………………..D125XY Free concave figure ……………………………………………D126XA plane free concave figure for cylinder G1700 ………..D127

Sub-routines ………………………………………………………………D130Fixed forms ………………………………………………………………..D131

Creating fixed forms…………………………………………………D132M-code menu ………………………………………………………….D134

E: G code programmingOverview………………………………………………………………………. E1

M-commands …………………………………………………………….. E1Command abbreviations overview………………………………… E2Calculation operators for NC program …………………………… E3

Overview of machine G-commands …………………………………. E4Brief description of G-commands …………………………………….. E7

G00 Rapid traverse…………………………………………………….. E7G01 Straight interpolation ……………………………………………. E8Entering chamfers and radii …………………………………………. E8Direct drawing dimension input…………………………………….. E9G02 Circular interpolation, clockwise…………………………… E11G03 Circular interpolation, counterclockwise………………… E11Helical interpolation ………………………………………………….. E11G04 Dwell time ………………………………………………………… E12G09 Precision stop (block-by-block) ……………………………. E12G17-G19 Plane selection…………………………………………… E13G20 Dimensional data in inches …………………………………. E13G21 Dimensional data in millimetres …………………………… E13G28 Return to reference point ……………………………………. E14Mill radius offset ……………………………………………………….. E15G40 Deselection mill radius offset ………………………………. E15G41 Mill radius offset left …………………………………………… E15G42 Mill radius offset right …………………………………………. E15G43 Tool length offset positive ……………………………………. E18G44 Tool length offset negative ………………………………….. E18G49 Deselection tool length offset ………………………………. E18G50 Deselection scaling factor …………………………………… E18G51 Scaling factor ……………………………………………………. E18G51.1 Mirroring a contour ………………………………………….. E19G50.1 Deselecting mirroring ………………………………………. E19G52 Local coordinates system …………………………………… E20G53 Machine coordinates system ………………………………. E20G54-G59 Zero point offsets 1-6 ………………………………….. E20G61 Precision stop (modally effective) ………………………… E21G64 Cutting mode…………………………………………………….. E21G65 Macro call…………………………………………………………. E22G66 Macro call (modal) …………………………………………….. E23G67 Macro call (modal) End ………………………………………. E23G68 Coordinate system rotation …………………………………. E24Drilling Cycles G73 — G89 ………………………………………….. E25G73 Chip Break Drilling Cycle ……………………………………. E26G74 Left Tapping Cycle …………………………………………….. E26G76 Fine Drilling Cycle ……………………………………………… E27G80 Cancel Drilling Cycles ………………………………………… E27G81 Drilling Cycle ……………………………………………………. E28G82 Drilling Cycle with Dwell ……………………………………… E28G83 Withdrawal Drilling Cycle ……………………………………. E29G84 Tapping Cycle without length compensation ………….. E29G84 Tapping Cycle with length compensation ………………. E30G85 Reaming Cycle………………………………………………….. E30G89 Reaming cycle with dwell time …………………………….. E30G90 Absolute value programming……………………………………….E31

Page 6: EMCO WinNC for Fanuc 31i Mill Software description, software

6 Fanuc 31i Mill

Content

G91 Incremental value programming……………………………………………………………. E31G94 Feed per minute ………………………………………………… E31G95 Feed per revolution ……………………………………………. E31

F: Tool managementTool settings………………………………………………………………….. F1

Tool length offset entry ………………………………………………… F2Tool radius offset entry ………………………………………………… F2Tool wear offset ………………………………………………………….. F3

Tool data ………………………………………………………………………. F4Select tool …………………………………………………………………. F5Tool setting number ……………………………………………………. F6Setting angle, corner angle ………………………………………….. F7Tool correction and tool data input and output ………………… F9

Simulation data ……………………………………………………………..F113D tool ……………………………………………………………………..F11Color select ……………………………………………………………… F12

Measuring tool manually……………………………………………….. F13

G: Program sequencePreconditions …………………………………………………………………G1

NC start……………………………………………………………………..G2NC reset…………………………………………………………………….G2NC stop ……………………………………………………………………..G2

Program start, program stop…………………………………………….G2Repositioning ……………………………………………………………..G3Continue program execution…………………………………………G3Block scan …………………………………………………………………G4

H: Alarms and MessagesMachine Alarms 6000 — 7999 ………………………………………..H1Inputunit alarms 1700 — 1899 ………………………………………H17Axis Controller Alarms ………………………………………………H198000 — 9000, 22000 — 23000, 200000 — 300000 ……………..H19Axis Controller Messages …………………………………………..H26Control alarms 2000 — 5999 ………………………………………..H27

I: Fanuc 31i controller alarmsController alarms 0001 — 88000 ………………………………………I1

W: Accessory FunctionsActivating accessory functions…………………………………….. W1Robotic Interface……………………………………………………….. W1Automatic doors ………………………………………………………… W1Win3D View ……………………………………………………………… W1DNC interface …………………………………………………………… W2

X: EMConfigGeneral …………………………………………………………………….. X1How to start EMConfig ………………………………………………… X2How to activate accessories ………………………………………… X3High Speed Cutting…………………………………………………….. X3Easy2control on screen operation ………………………………… X4Settings …………………………………………………………………….. X4Machine room camera ………………………………………………… X5How to save changes …………………………………………………. X6How to create machine data floppy disk or machine data USB flash drive …………………………………………………………………. X6

Y: External Input DevicesEMCO Control Keyboard USB ………………………………………… Y1

Scope of supply …………………………………………………………. Y1Assembling ……………………………………………………………….. Y2Connection to the PC………………………………………………….. Y3Settings at the PC software …………………………………………. Y3

Easy2control On Screen operation…………………………………… Y4Scope of supply …………………………………………………………. Y4

Operating areas …………………………………………………………….. Y5Machine room camera ……………………………………………………. Y8

Installing the camera…………………………………………………… Y8Operating the camera …………………………………………………. Y9

Z: Software Installation WindowsSystem prerequisites ………………………………………………….. Z1Software installation……………………………………………………. Z1Variants of WinNC ……………………………………………………… Z1Starting WinNC ………………………………………………………….. Z3Terminating WinNC …………………………………………………….. Z3Checks by EmLaunch …………………………………………………. Z4Licence input……………………………………………………………… Z6Licence manager ……………………………………………………….. Z6

Page 7: EMCO WinNC for Fanuc 31i Mill Software description, software

A1 Fanuc 31i Mill

PrinciPles

A: Principles

Points on the machine

Machine reference points

EMCO milling machine reference pointsN (T) = Tool zero point The tool zero point N (T) lies exactly at the cutting point of the spindle axis with the front part of the milling spindle.The tool zero point is the start point for measuring the tools.

N (T)

W

R

M

Instructions:The actual reference points may have been defined at other positions, depending on the machine type. In any case, the information in the operation manual for the relevant machine applies!

M = Machine zero pointThe machine zero point M is an unchangeable reference point defined by the manufacturer.The entire machine is measured from this point.The machine zero point M is the origin of the coordinate system.

W = Workpiece zero pointThe workpiece zero point W can be freely pro-grammed by the user. By programming a work-piece zero point, the origin of the coordinate system will be shifted from the machine zero point M to the workpiece zero point W.The workpiece zero point W is the start point for the measurements in the parts program.

R = Reference pointThe reference point R is a firmly defined point on the machine which is used to calibrate the measurement system. The reference point must be approached each time after the machine is switched on, in order to make the exact distance between the points M and N (T) known to the control system.

Page 8: EMCO WinNC for Fanuc 31i Mill Software description, software

A2 Fanuc 31i Mill

PrinciPles

Milling machine reference systemWith a reference system, you define positions in a plane or in space unambiguously. Positional information always relates to a given point and is described by means of coordinates.In the right-angled system (Cartesian system), three directions are defined as X, Y and Z axes. The axes are perpendicular respectively to one another and intersect in one point, the zero point. One coordinate gives the distance to the zero point in one of these directions. This is how you describe a position in a plane by means of two coordinates and in space by means of three coordinates.

Coordinates that relate to the zero point are described as absolute coordinates. Relative coordinates are related to any other random po-sition (reference point) in the coordinates system. Relative coordinate values are also described as incremental coordinate values.

When machining a workpiece on a milling ma-chine, you refer in general to the Cartesian co-ordinates system. The picture on the left shows how the Cartesian coordinates system is assigned to the machine axes. The three-finger right hand rule serves as an aide memoire: If the middle finger is pointing in the direction of the tool axis from workpiece to tool, then it is pointing in the Z+ direction, the thumb in the X+ direction and the index finger in the Y+. direction.

Coordinates system

Assignment of the rotating axes to the main axes

Page 9: EMCO WinNC for Fanuc 31i Mill Software description, software

A3 Fanuc 31i Mill

PrinciPles

Polar coordinatesIf the production drawing is dimensioned or-thographically, you create the machining program with Cartesian coordinates also. For workpieces with arcs or angles, it is often easier to determine positions with polar coordinates.

In contrast to the Cartesian X, Y and Z coordi-nates, polar coordinates describe only positions in a plane. Polar coordinates have their zero point in the pole.This is how a position in a plane is unambiguously determined by means of:

• Polar coordinates radius (RP): the distance from the pole to the position.

• Polar coordinates angle (AP): The angle be-tween the angle reference axis and the path that connects the pole with the position.

(See picture above left)

Determining the pole and the angle reference axisDetermine the pole by means of two coordinates in the Cartesian coordinate system in one of the three planes. This is also how the angular refer-ence axis for the polar coordinates angle (AP) is assigned unambiguously.

Polar coordinates (plane) Angular reference axis

X/Y (G17) +XY/Z (G19) +YZ/X (G18) +Z

AP3AP2

AP1

RP

RP

RP

Pole

Page 10: EMCO WinNC for Fanuc 31i Mill Software description, software

A4 Fanuc 31i Mill

PrinciPles

Absolute and incremen-tal workpiece positionsAbsolute workpiece positionsIf the coordinates of a position are related to the coordinates zero point (origin), these are de-scribed as absolute coordinates. Each position on a workpiece is determined unambiguously by its absolute coordinates.

Example 1: Drillings with absolute coordinates

Drilling 1 Drilling 2 Drilling 3X = 10 mm X = 30 mm X = 50 mmY = 10 mm Y = 20 mm Y = 30 mm

Incremental workpiece positionsIncremental coordinates refer to the last pro-grammed position of the tool, which serves as the relative (conceptual) zero point. Incremental coordinates describe the actual paths of the tool. Consequently, it is also described as chain measurement.

You mark an incremental dimension by means of an «I» in front of the axis designation.

Example 2: Drillings with incremental coordinates

Absolute coordinates of the drilling 4IX = 10 mmIY = 10 mm

Drilling 5, related to 4 IX = 20 mm IY = 10 mm

Drilling 6, related to 5IX = 20 mmIY = 10 mm

Page 11: EMCO WinNC for Fanuc 31i Mill Software description, software

A5 Fanuc 31i Mill

PrinciPles

Zero point shift of machine zero point M to tool zero point W

MW

Zero point offsetOn EMCO milling machines, the machine zero point «M» is on the left front edge of the machine table. This position is unsuitable as a start point for programming. Using the so-called zero point offset, the coordinate system can be shifted to a suitable point in the machine working area.

A distinction is made between the following zero point offsets:• Machine coordinate systems (MCS) with the

machine zero point M• Basic zero point system (BNS)• Configurable zero point system (CZS)• Workpiece coordinate system (WCS) with work-

piece zero point W.

Machine coordinate system (MCS)After approaching the reference point the NC position displays of the axis coordinates are rela-tive to the machine zero point (M) of the machine coordinate system (MCS).Workpiece change points are defined in the ma-chine coordinate system.

Base zero point (BZS).If a base shift is performed in the machine coor-dinates system (MCS), a base zero point offset is the result (BZS). With this, for example, a palette zero point can be defined.

Configurable zero point system (CZS)Configurable zero point offsetIf a configurable zero point system (G54-G599) is performed from the base zero point system (BZS), a configurable zero point system (CZS) is the result.

Programmable coordinate transformation (Frames)Programmable coordinate transformations (frames) shift the originally selected workpiece coordinate system to another position, to rotate, scale or mirror it.

Workpiece coordinate system (WCS)The program for executing the workpiece is rela-tive to the workpiece zero point (W) of the work-piece coordinate system (WCS).

Page 12: EMCO WinNC for Fanuc 31i Mill Software description, software

A6 Fanuc 31i Mill

PrinciPles

1

2

2 3

3

Machine zero point and workpiece zero point are usually not identical. The distance between the points is the entire zero point offset and is made up of various shifts:

1 With basic offset, the basic zero point offset (BNS) is generated with the range zero point.

2 With variable zero point offset (G54-G599) and with frames, zero point systems are defined for workpiece 1 or workpiece 2.

3 With programmable coordinate transformation (frames), workpiece coordinate systems (WKS) are defined for workpiece 1 or workpiece 2.

Programmable coordinate transformation (Frames)

Programmable coordinate transformation (Frames)

Configurable Zero point offset

Base shiftPalette

Workpiece 1

Workpiece 2

Configurable Zero point offset

Page 13: EMCO WinNC for Fanuc 31i Mill Software description, software

A7 Fanuc 31i Mill

PrinciPles

Milling operationsDown-cut MillingIn down-cut milling, feed direction and cutting direction of the mill are identical.The cut penetrates the surface of the raw part in the material initially.It is advantageous that a larger chamfer angle enables the immediate penetration of the blade into the material. It is not as with up-cut milling, in which a specific sliding cutting path is left behind under pressure and friction.In down-cut milling, the feed force supports the feed drive in the same direction of rotation. With machines with play in the feed drive, jerky move-ments which lead to damage to the cut occur.

Down-cut milling is generally to be preferred if the machine permits it (backlash-free table drive in EMCO CNC machines).

Up-cut MillingIn down-cut milling, feed direction and cutting direction of the mill are identical.The tool’s cuts meet in a very sharp angle (j = 0) on the material.Before the blades penetrate into the material, they slide with increasing contact force a little piece on the surface. After penetration, the chip cross-sec-tion slowly increases and then falls away quickly.

Up-cut milling is preferred with unstable machine conditions (machines constructed conventionally) and should be used with higher rigidity materials.

Down-cut/up-cut millingDown-cut/up-cut milling is a combination of down-cut and up-cut milling.

Down-cut Milling

Up-cut milling

Page 14: EMCO WinNC for Fanuc 31i Mill Software description, software

A8 Fanuc 31i Mill

PrinciPles

Tool radius compensationWithout tool radius compensationIf tool radius compensation is switched off, the tool traces the contour’s central track.

Right-hand tool radius compensationWith right-hand tool radius compensation, the control system automatically calculates the equi-distant tool distance right of the contour in each case for the various tools.

Left-hand tool radius compensationWith left-hand tool radius compensation, the con-trol system automatically calculates the equidis-tant tool distance left of the contour in each case for the various tools.

X

Y

W

X

Y

W

X

Y

W

Without tool radius compensation

Right-hand tool radius compensation

Left-hand tool radius compensation

Page 15: EMCO WinNC for Fanuc 31i Mill Software description, software

A9 Fanuc 31i Mill

PrinciPles

Tool dataThe object of tool data capture is that the software uses the tool tip or the tool centre point and not the tool housing reference point for positioning.

Each tool used for machining must be measured. The distance from the cutting tip to the tool hous-ing reference point must also be determined.

The measured lengths and mill radius can be stored in the tool list.

The mill radius information is only necessary if a mill radius compensation or a milling cycle is selected for the relevant tool!(See chapter F Tool Management)

Tool length

Page 16: EMCO WinNC for Fanuc 31i Mill Software description, software

A10

Page 17: EMCO WinNC for Fanuc 31i Mill Software description, software

B1 Fanuc 31i Mill

Key description

B: Key description

EMCO WinNC for Fanuc 31i control panel

Instructions:Depending on the machine you are operat-ing with EMCO WinNC for Fanuc 31i, not all functions and machine keys may be available.

0

6

2

10

7080

90

100

110

120

3050

Page 18: EMCO WinNC for Fanuc 31i Mill Software description, software

B2 Fanuc 31i Mill

Key description

Address and number pad

Address and number padThe Shift key switches to the second key function (shown in the top left corner of the button).

Example:

Q

Queries

Page 19: EMCO WinNC for Fanuc 31i Mill Software description, software

B3 Fanuc 31i Mill

Key description

Button functionsEnd Of Block.

Delete input

Delete alarm messages, reset CNC (e.g. interruptprogram).

Call context-sensitive help.

Alphanumeric input.

Shift key

Replaces the marked text with the text from the input textbox.

Insert the text from the input textbox after the cursor.

Delete (program, block, word).

Enter word, accept data.

Scroll backwards/forwards

Cursor left/right.

Cursor up/down.

Indicates the current position.

Program functions

Setting and indication of the zero point shift,the tool offsets, wear offsets and variables.

Not populated.

Page 20: EMCO WinNC for Fanuc 31i Mill Software description, software

B4 Fanuc 31i Mill

Key description

Parameter settings and indications, and troubleshooting indications.

Alarm and message display.

Switch to Manual Guide mode.

Page 21: EMCO WinNC for Fanuc 31i Mill Software description, software

B5 Fanuc 31i Mill

Key description

Actual position display

Key description ISO functions

1 Absolute position

2 Relative position

3 Indicate both positions together

1 32

Release overview display

Release overviewDisplays the current WinNC software release

Actual position

Page 22: EMCO WinNC for Fanuc 31i Mill Software description, software

B6 Fanuc 31i Mill

Key description

Alarm and message display.

Alarm and report overview

Displays all alarms and reports

Page 23: EMCO WinNC for Fanuc 31i Mill Software description, software

B7 Fanuc 31i Mill

Key description

Zero point offset, tool correction and customer macro variables setting and display

Tool correction

Zero point offset

• Use the «OPRT» softkey and the «+» expansion button to display the file input and output, data entry and measure and search softkeys.

• The data is saved to the file EXT_WKZ.TXT.• The path to save and read the data is set in EMConfig under the

«Directory exchange» heading.

Page 24: EMCO WinNC for Fanuc 31i Mill Software description, software

B8 Fanuc 31i Mill

Key description

1 Search for tool number

2 Measure tool

3 Coordinates entry

4 Computes current value + entry from entry line

5 Accept value from entry line

6 Delete

7 Tool length data

8 Tool radius data

1 32 4 5 6

7 8

Page 25: EMCO WinNC for Fanuc 31i Mill Software description, software

B9 Fanuc 31i Mill

Key description

Customer macro variables

The «+» expansion button calls up the customer macro variables page

• Use the «OPRT» softkey and the «+» expansion button to display the file input and output, data entry and measure and search softkeys.

• The data is saved to the file MAKRO.TXT.• The path to save and read the data is set in EMConfig under the

«Directory exchange» heading.

Page 26: EMCO WinNC for Fanuc 31i Mill Software description, software

B10 Fanuc 31i Mill

Key description

1 Mode

2 Alarm status

3 Program mode

4 Axis position

5 Residual travel

6 Spindle speed

7 Feed

8 Program name

9 Block number

10 Tool number

11 Spindle speed

12 M-commands

13 Feed display

14 Display of active G-functions

15 Program window

16 Current line number in ISO program window

17 Graphical simulation

18 Message window

19 Keypad buffer

20 Softkey list

For detailed descriptions see chapter «C Oper-ation»

Screen layout Manual Guide i12

910

11 1213

8

14

15

16

3

45 6

7

17

18 19

20

Instructions:For axis position and residual travel:The number of axes varies according to the configuration of the machine.

Page 27: EMCO WinNC for Fanuc 31i Mill Software description, software

B11 Fanuc 31i Mill

Key description

PC

key

boar

d

To

activ

ate

patte

rned

key

func

tions

, the

CT

RL

or A

LT k

eys

mus

t be

pres

sed

at th

e sa

me

time.

Inst

ruct

ions

:T

he m

achi

ne f

unct

ions

in

the

num

eric

al k

ey-

pad

are

only

act

ive

if N

UM

Loc

k is

not

act

ive.

Alt

Gr

Num

Fest

Rol

len

Num

NC

-S

TAR

T

NC

-S

TOP

RE

SE

T

-4+Y

-Y+4

-X+X

+Z -ZDR

YR

UN

SKI

P

OP

TS

TOP

SBL

<% >%

F12

WE

RT

* +~

AS

DG

Ä’ #

Y; ,

: .-

_S

trgS

trgA

ltA

lt G

r

°̂1!

K

2″4$

5%6&

9)]

8(

]

´`

O

F2MD

A

Q@

= 4

= $

=4$

4$A

lt

CA

N

Dru

ck

S-A

bf

Pau

se

Unt

br

Rol

len

F4F1

0F1

1F3AU

TOF1JO

G

> <

F

F8RE

FF9

F6ED

IT

F7RE

PO

S

F5

U

VX

= IN

C 1

000

Alt

7/0=

ß?

/

X

I

JH

MA

UX

NA

UX

BC

P

REF

ALL

-5

+5

INC

Var

INC

100

00IN

C 1

000

INC

100

INC

10

INC

1

= JO

G=

F1JOG

F1JOG

Page 28: EMCO WinNC for Fanuc 31i Mill Software description, software

B12 Fanuc 31i Mill

Key description

Overview button assignment control keyboard

PC button Control system but-ton Check

Entf Delete input

Enter

Conclude input and continue dialog.

Move mark

Upper/lower case

x Single block (SBL)

.. Skip (block mask)

0 Reset key (Reset)

Strg

.. Dry run (test run feed)

Strg

x Optional stop

F1JOG

Indicates the current position

F2MDA

Program functions

F3AUTO Setting and indication of the zero point shift,

tool offsets, wear offsets and variables

F4 Not populated.

F5Parameter settings and indications, and troubleshooting indications.

F6EDIT

Alarm and message display.

F7REPOS

Manual Guide mode

F8REF

Not populated.

Strg F1

JOGCall context-sensitive help

Page 29: EMCO WinNC for Fanuc 31i Mill Software description, software

B13 Fanuc 31i Mill

Key description

PC button Control elements Check

Alt

I Swivel divider

Alt

O Coolant / Purge on / off

Alt

P

Door open / closed

Alt

H Clamp device closed

Alt

J Clamp device open

Alt

K Swivel tool holder

Alt

X Feed Stop

Alt

C Feed Start

Alt

V Spindle Stop

Alt

B Spindle Start

Alt

N Switch auxiliary drives on AUX ON

Alt

M Switch auxiliary drive off AUX OFF

Enter NC start

,NC stop

5 Approach reference point

Instructions:Selecting the machine buttons via the PC keyboard: 1.) Hold «Alt» button down.2.) Press and then release machine button.3.) Release «Alt» button.

Overview Button Assignment Machine Operating Elements

Page 30: EMCO WinNC for Fanuc 31i Mill Software description, software

B14 Fanuc 31i Mill

Key description

PC button Control elements Check

Strg

Strg

+Spindle speed correction

+Override (feed rate override)

Page 31: EMCO WinNC for Fanuc 31i Mill Software description, software

B15 Fanuc 31i Mill

Key description

Machine control panel

Depending on machine configuration, the control panel can differ slightly from what is shown here.

Key description

0

6

2

10

7080

90

100

110

120

3050

Skip (block mask)In Skip mode, program blocks that are marked with an oblique stroke «/» in front of the block number are skipped during the program run (e.g.: /N100).Active when the LED is ON.

Dry run (test run feed)In Dry run mode, positioning movements will be carried out with the feed value stipulated in the «Dry run feed» setting datum.The dry-run feed works instead of the programmed movement commands.Spindle commands are ignored.Active when the LED is ON.

Caution:The dry run feed is higher than the programmed feed.Ensure that no workpiece is clamped before starting dry run mode.When machining parts, ensure that dry run mode is switched off before you start the machine (the LED in the button is OFF).

Page 32: EMCO WinNC for Fanuc 31i Mill Software description, software

B16 Fanuc 31i Mill

Key description

EditToggle into Edit mode.

Handwheel mode (optional)This key enables and disables the connected handwheel (optional).

Reset key (Reset)Pressing the Reset key:interrupts the machining of the current parts program.• deletes monitoring messages unless these are Power On or Recall

alarms.

Individual piece modeThis button makes individual piece mode or constant operation in conjunction with automatic loading equipment available for selection.Individual piece state is the default state when switched on.Active individual piece mode is indicated by illumination of the cor-responding LED on the machine control panel.

Optional stopWhen this function is active (key held down), program processing will stop at blocks in which the M01 special function has been pro-grammed.You start processing again with the NC Start button. If the function is not active, the M01 special function (from the parts program) will be ignored.

• Moves the channel into «Reset» status; this means:- The NC controller remains in synchronism with the machine.- All interim and work stores are deleted (but the content of the

parts program memory is retained).- The control system is in the default position and ready for a new

program sequence.

Feed StopThis button interrupts a programmed carriage movement.

Feed StartThis button continues a programmed but interrupted carriage move-ment.If the main spindle motion was also interrupted, this must be switched on again first.

Page 33: EMCO WinNC for Fanuc 31i Mill Software description, software

B17 Fanuc 31i Mill

Key description

Single blockThis functions allows you to run a parts program block by block.You can enable the Individual Block feature in Automatic mode.

When single block processing is active:• the current block of the parts program is only machined when you

press the NC Start key.• machining stops after a block is executed.• the following block is executed by pressing the NC Start key again.The function can be deselected by pressing the Single Block key again.

Cycle stopAfter pressing the Cycle stop button after the controller has taken over the function, machining of the current parts program is sus-pendedMachining can then be continued by pressing the Cycle start key.

Cycle startAfter pressing the Cycle start key, the selected parts program will be started with the current block.

Arrow keysUse these buttons to move the NC axes in JOG mode.

Depending on the machine configuration, various arrow keys are available

Rapid traverseIf this button is pressed in addition to the arrow keys, the axes con-cerned move in rapid traverse.

Reference pointPressing this button causes the reference points to be approached in the spindle and tool turret axes.

Chip conveyor (Option)Switch on chip conveyor:Forwards: Hold the key down for less than 1 second.Backwards: Hold the key down for longer than 1 second.

The chip conveyor will be switched off after a defined time (approx. 35 seconds).This value is set in the factory.

Page 34: EMCO WinNC for Fanuc 31i Mill Software description, software

B18 Fanuc 31i Mill

Key description

CoolantThis function switches the coolant equipment on or off.

Clamping devicesThese functions activate the clamping device.

Swing tool drumPressing this button causes the tool drum to swivel by one position:

Cycle in the clockwise direction (one position further)

Cycle in the counterclockwise direction (one position back)

Preconditions:• Machine doors closed• «JOG» operating mode• Key switch in «Hand» position

Manual tool changePressing this button starts a manual tool change.The tool clamped in the milling spindle will be removed and replaced with the tool from the currently swivelled-in tool drum.

Preconditions:• Machine doors closed• «JOG» operating mode• Key switch in «Hand» position

Information:• Interrupt the change process by moving the override switch

below 4%.• Cancellation of the change procedure by pressing the reset

button.

Feed StopThis button interrupts a programmed carriage movement.

Feed StartThis button continues a programmed but interrupted carriage move-ment.If the main spindle motion was also interrupted, this must be switched on again first.

Page 35: EMCO WinNC for Fanuc 31i Mill Software description, software

B19 Fanuc 31i Mill

Key description

REPOS — RepositioningBack-positioning, approach contour again in the JOG operating mode

JOGStandard movement of the machine by continuous movement of the axes via the arrow keys or by incremental movement of the axes via the arrow keys or the hand wheel.

MDA — Manual Data AutomaticControl the machine by executing a block or a sequence of blocks. Blocks are entered via the control panel.

AutomaticControl the machine by automatically executing programs.

REF — Reference modeApproaching the reference point (Ref) in the JOG operating mode.

Inc 1 — Incremental feedMove step by step a predefined distance of 1 increment in handwheel/jog mode.Metrical measurement system: Inc 1 corresponds to 1µmImperial (inch-based) measurement system: Inc 1 equates to 0.1 µinch

Inc 10 — Incremental feedMove step by step a predefined distance of 10 increments.Metrical measurement system: Inc 10 corresponds to 10µmImperial (inch-based) measurement system: Inc 10 equates to 1 µinch

Inc 100 — Incremental feedMove step by step a predefined distance of 100 increments.Metrical measurement system: Inc 100 corresponds to 100µmImperial (inch-based) measurement system: Inc 100 equates to 10 µinch

Inc [VAR]Move in steps with a continuously variable increment.

Types of operation

Page 36: EMCO WinNC for Fanuc 31i Mill Software description, software

B20 Fanuc 31i Mill

Key description

Auxiliary OFFThis button switches off the machine’s auxiliary units. Only effective if spindle and program are off.

Auxiliary ONThis button makes the machine’s auxiliary units ready for operation (hydraulics, feed drives, spindle drives, chip conveyor lubricant, coolant).The button must be pressed for around 1 second.Tapping the AUX ON key is a clear function and causes the central lubrication system to perform a lubrication squirt.

Freewheeling before referencingIf the carriage has to be freewheeled before referencing (e.g. from

a position where it is at risk of colliding), press the button and then the corresponding arrow key.

Free swivelling of the tool turretIf the tool turret has to be swivelled freely after an alarm is present,

press the buttons and then .

Information:• The operating modes can be selected via softkeys (PC key-

board) or with the operating mode selector switch = multifunc-tion switch.

• Switching between the metrical measurement system and the imperial (inch-based) measurement system is carried out with the EmConfig utility software (see Chapter X EmConfig).

• Metric is assigned in the imperial measuring system as follows:

Feed:Millimeters in inches:mm/min => inches/minmm/U => inches/U

Constant cutting speed:Meters in feet:m/min => feet/min

Page 37: EMCO WinNC for Fanuc 31i Mill Software description, software

B21 Fanuc 31i Mill

Key description

Override switch (feed rate override)The rotary switch with notch positions enables you to change the programmed feed value F (corresponds to 100%).The set feed value F in % will be shown on the screen.

Adjustment range:0% to 120% of the programmed feed.In rapid traverse 100% will not be exceeded.

No effect with thread commands G33, G63

0

6

2

10

7080

90

100

110

120

3050

EMERGENCY SHUTDOWNPress the red button only in an emergency.

Effects:As a rule, the EMERGENCY SHUTDOWN button will lead to all drives being stopped with the greatest possible braking torque.

To continue working, press the following keys:RESET, AUX ON, doors OPEN and CLOSED.

Key Switch Special Operations ModeThe key switch can be switched to the «AUTOMATIC» or «SET-UP» (hand) position.With this key switch it is possible to perform movements in Jog Mode when the sliding door is open.

Danger:When Special Operations mode is active, the danger of acci-dents is increased.The key for this switch should only be held by persons who have the required knowledge about the dangers and exercise appropriate care.Keep the chip guard door closed even in Set-up mode.Keys should only be used by authorized persons.After work is carried out in Special Operations mode, always withdraw key (accident danger).Observe country-specific safety instructions (e.g.: SUVA, BG, UVV ….).

Page 38: EMCO WinNC for Fanuc 31i Mill Software description, software

B22 Fanuc 31i Mill

Key description

1 Feed override: controls the feed rate equivalent to conventional feed override

2 Spindle override: controls the spindle speed equivalent to conventional spindle override

3 Modes: allows you to select the operating mode using the multifunction operation

4 Close: The user interface is closed. The menu disappears, return to the control surface

5 Settings: opens another level with settings

6 Cursor: shows the actual position in the menu

Multifunction switch for operating modesThe multi-function switch is designed as a rotary switch with a press feature.

Populated function• The user interface is opened by pressing the multifunction opera-

tion. The active function is indicated by a green check-box. • Turning the switch allows you to switch between the functions. The

black bar with the symbols moves to the left or to the right.• Activating a function or a change to a sub-menu is executed by

pressing the button.

The interface offers the following functions:

turn

/ pr

ess

1 3245

6

Overwiew

Note:The functionality of the multifunction operation is depending on the installed software version.

Page 39: EMCO WinNC for Fanuc 31i Mill Software description, software

B23 Fanuc 31i Mill

Key description

1 Settings

2 Background brightness: adjusts the transparency of the back-ground

3 Lock screen: pressing again unlocks the screen.

4 Close: closes the submenu and returns to a higher-level menu.

1

3 2 4

Settings the background brightness

Setting the background trancparency

• By pressing once, a white border around the icon appears. The menu item is activated.

• Now, the transparency of the background can be changed by turn-ing the rotary switch:

Turn to the left: brighter Turn to the right: darker

• Pressing again closes the menu and the white border dissapears.

Page 40: EMCO WinNC for Fanuc 31i Mill Software description, software

B24 Fanuc 31i Mill

Key description

Handwheel function

The handwheel (1) activates the handwheel mode. The parameters for axis and step width (2) are set with the axis- and operating -mode buttons on the machine keyboard.

2

1

Operation

• The electronic handwheel is used to traverse the slides at a defined step width.

• The step width depends on the selected Inc mode: Inc 1, Inc 10, Inc 100.

• There must be one pre-selected Inc mode and an axis defined by a direction key.

• Also refer to «types of operation» und «arrow keys» in chapter B.

Note:In the mode «Inc 1000» the slides cannot be moved with the handwheel. «Inc 1000» operates with «Inc 100».

Page 41: EMCO WinNC for Fanuc 31i Mill Software description, software

B25 Fanuc 31i Mill

Key description

Key switchThe key switch function is machine-specific.

USB connection (USB 2.0)Data is exchanged with the machine (data copying, software instal-lation) via this USB connection.

Enable buttonWhen the door is open, axis movements via the arrow keys and tool turret movements are authorized by pressing the enable button (precondition key switch in SET-UP position).In machines with automated doors (option) pressing the enable switch opens the machine doors.

Additional clamping device buttonThe additional button has the same function as on the machine control panel.(Double movement because of better operation).

Page 42: EMCO WinNC for Fanuc 31i Mill Software description, software

B26

Page 43: EMCO WinNC for Fanuc 31i Mill Software description, software

C1 Fanuc 31i Mill

OperatiOn

C: Operation

Feed F [mm/min]The feed F is the speed in mm/min (feet/min) with which the tool centre point moves on its path. The maximum feed can be different for each machine axis and is defined by machine parameters.

Feed influenceThe feed value F programmed by you corre-sponds to 100%.With this button or with the feed override the set feed value F can be changed in %.

Adjustment range:0% to 120% of the programmed feed.Only the changed percentage and not the result-ing effective value will be shown.In rapid traverse 100% of the maximum rapid traverse feed will not be exceeded.

OR

0

6

2

10

7080

90

100

110

120

3050

Page 44: EMCO WinNC for Fanuc 31i Mill Software description, software

C2 Fanuc 31i Mill

OperatiOn

Spindle speed S [rev/min]Indicate the spindle speed S in revolutions per minute (rpm).

Spindle speed correctionThe spindle speed S programmed by you corre-sponds to 100%.These button combinations or the spindle speed override changes the set spindle speed S in %.

Adjustment range:0% to 120% of the programmed spindle speed.Only the changed percentage and not the result-ing effective value will be shown.

Page 45: EMCO WinNC for Fanuc 31i Mill Software description, software

C3 Fanuc 31i Mill

Key description

Types of operationJOG — JoggingStandard movement of the machine by continuous movement of the axes via the arrow keys or by incremental movement of the axes via the arrow keys or the hand wheel.JOG is used in manual mode as well as for set-up of the machine.

MDA — Semi-automatic mode (Manual Data Automatic)Controlling the machine by executing a block or a sequence of blocks. Block input is performed via the operating panel or the PC keyboard.

AUTO — Automatic modeControlling the machine by automatically executing programs.Here part programs are selected, started, adjusted, deliberately influenced (e.g. individual set) and executed.

Instructions:The modes can be selected via softkeys (PC keyboard) or with the mode selector switch (multifunction switch).

REF — Reference modeApproaching the reference point (Ref) in the JOG operating mode.

REPOS — RepositioningBack-positioning, approach contour again in the JOG operating mode

Page 46: EMCO WinNC for Fanuc 31i Mill Software description, software

C4 Fanuc 31i Mill

Key description

Instructions:Metric is assigned in the imperial measuring system as follows:

Feed:Millimetres in inches:mm/min => inches/minmm/U => inches/U

Constant cutting speed:Meters in feet:m/min => feet/min

Inc 1 — Incremental feedMove step by step a predefined distance of 1 increment in handwheel/jog mode.

Metrical measurement system: Inc 1 equals 1µmImperial (inch-based) measurement system: Inc 1 equals 0.1 µinch

Inc 10 — Incremental feedMove step by step a predefined distance of 10 increments in handwheel/jog mode.

Metrical measurement system: Inc 10 equals 10µmImperial (inch-based) measurement system: Inc 10 equals 1 µinch

Inc 100 — Incremental feedMove step by step a predefined distance of 100 increments in handwheel/jog mode.

Metrical measurement system: Inc 100 equals 100µmImperial (inch-based) measurement system: Inc 100 equals 10 µinch

Inc 1000 — Incremental feedMove step by step a predefined distance of 200 increments in handwheel mode, or 1000 increments in jog mode.

Metrical measurement system: Inc 1000 equals 1000µmImperial (inch-based) measurement system: Inc 1000 equals 100 µinch

Page 47: EMCO WinNC for Fanuc 31i Mill Software description, software

C5 Fanuc 31i Mill

Key description

Approach reference pointThe reference point R is a specified fixed point on the machine. It is used to calibrate the measurement system.The reference point must be approached each time after the machine is switched on or the EMERGENCY STOP button is unlocked, in order to make the exact distance between the machine zero point M and the tool fixture reference point N or T known to the control system.

• Switch to the reference mode REF.

Option A:Reference the axes individuallyPress the +Z and +X buttons.The slides move one another to their reference points, after each has reached the collision-free area.

Instructions:• After reaching the reference points the software limit switches

are active. The reference point position will be shown as the current position on the screen.

• The tailstock (if available) must be at the right end of the bed when referencing the axes, so that the Z-slides do not collide with the tailstock.

Option B:Reference automaticallyPressing the button «Reference point» causes the axes to approach their reference points automatically one after another. First the axes then the tool changer will be referenced.

Page 48: EMCO WinNC for Fanuc 31i Mill Software description, software

C6 Fanuc 31i Mill

Key description

Move slides manuallyThe machine axes are moved manually using the arrow keys.

• Switch to JOG mode.

• The arrow keys buttons move the axes in the corresponding direction as long as the key is pressed.

• The feed speed is set with the override switch.

• If the button is pressed simultaneously, the carriages move in rapid traverse.

Move slides in step-movementThe machine axes can be moved in steps using the direction buttons.• Switch to INC mode.

• The direction buttons move the axes in the corresponding direction by the set step distance each time the button is pressed.

• The feed speed is set with the override switch.

• If the button is pressed simultaneously, the carriages move in rapid traverse.

0

6

2

10

7080

90

100

110

120

3050

Page 49: EMCO WinNC for Fanuc 31i Mill Software description, software

C7 Fanuc 31i Mill

Key description

MDA mode — Semi-automatic modeControl the machine by executing a block or a sequence of blocks. For this the desired movements can be entered via the control key-board in the form of part program sets.

The control system executes the blocks entered after the control button is pressed.

For running an MDA program, the same preconditions are necessary as for fully automatic mode.

AUTO mode — Automatic modeControlling the machine by automatically executing programs.Here part programs are selected, started, adjusted, deliberately influenced (e.g. individual set) and executed.

Preconditions for executing part programs:• The reference point was approached• The part program is loaded into the control system.• The correction values required were checked or entered (e.g. zero

point offsets, tool corrections)• The safety locks are activated (e.g. chip-guard doors closed).

Options in Automatic mode:• Program correction• Block search run• Overstore• Program influence

(see Section G program sequence)

Page 50: EMCO WinNC for Fanuc 31i Mill Software description, software

C8 Fanuc 31i Mill

OperatiOn

Program management• Select «Edit» mode.

1 Creating a new machining program

2 Call program listing

3 Search for text from the input line in the pro-gram

4 Search for and open the program

5 Copy marked text into a buffer file

6 Move marked text into a buffer file

7 Delete marked text

8 Insert marked text into an input line

9 Insert text from a buffer file

10 Forward and Back (extension keys)

Instructions:Alternatively, the buttons on the softkey tool-bar can also be operated with the function keys F1 to F10, e.g.: NEUPRG = F1, EINFUE = F10

1 2 3 4 5 6 7 8 9 1010

Page 51: EMCO WinNC for Fanuc 31i Mill Software description, software

C9 Fanuc 31i Mill

OperatiOn

Where programs are savedPrograms can be saved in and invoked from the control system’s program directory, a local drive or a USB data storage device.

Create programA program consists of a succession of cycles, commands and/or sub-routines.

1 Select «Edit» mode.

2 Press softkey.

3 Enter program or folder name and confirm with «CREATE».

If a program name was allotted previously, an appropriate message will be displayed.

NEWPRG

CREATE

Back folder on top:goes back one level

Program control path:C:\WinNC32_Fanuc\Fanuc_i.M\PRG\LIBRARY\

OPEN

Instructions:Program names can consist of at least 1 and a maximum of 32 characters. The following characters are allowed: «Zz», «0 to 9», «_» «+» and «.».

The Fanuc standard format for program names is as follows:O1234. If fewer than 4 numbers are entered, those missing are populated with zeroes.

Page 52: EMCO WinNC for Fanuc 31i Mill Software description, software

C10 Fanuc 31i Mill

OperatiOn

Programming list1 Select «Edit» mode.

2 Press softkey.O LIST

1 Creating a new machining program

2 Copy programs

3 Delete programs

4 Enter a comment for a program

5 Search for programs

6 Output of a program to an external memory card

7 Delete a number of programs

8 Change the sorting sequence

9 Open program

10 End program listing

11 Forward and Back (extension keys)

Instructions:The program listing is also available in Automatic and in Simulations modes, albeit with restricted functionality.

1 2 3 4 5 6 7 8 9 1111 10

Page 53: EMCO WinNC for Fanuc 31i Mill Software description, software

C11 Fanuc 31i Mill

OperatiOn

1 2 3 4 5

1 Rename program or folder names

2 Program properties

3 Program protection

4 Open program

5 End program listing

Page 54: EMCO WinNC for Fanuc 31i Mill Software description, software

C12 Fanuc 31i Mill

OperatiOn

Copy program1 Select «Edit» mode.

2 Move mark to the desired program.

3 Copy program.

4 This softkey calls the window for copying pro-grams. After a program name has been entered for the program to be copied (target program name), press the «COPY» softkey to copy the given program.

COPY

Delete program1 Select «Edit» mode.

2 Move mark to the desired program.

3 Delete program.

4 This softkey calls the window for deleting pro-grams. «DO» deletes the given program, «NOT DO» interrupts the delete process.

DELETE

5 Press the softkey to copy.

COPY

5 Press the softkey to delete.

DO

Page 55: EMCO WinNC for Fanuc 31i Mill Software description, software

C13 Fanuc 31i Mill

OperatiOn

Enter comment1 Select «Edit» mode.

2 Move mark to the desired program.

3 Enter comment.

4 This softkey calls the comment entry window. After a comment has been entered for the pro-gram, press the «ALTER» softkey to add the given comment in the program.

EDTCOM

5 Press the softkey to change.

ALTER

Search program1 Select «Edit» mode.

2 Search program.

3 This softkey calls the window for searching pro-grams. After a program name has been entered for the program to be found (target program name), press the «SEARCH» softkey to look for the given program.

SEARCH

4 Press the softkey to search.

SEARCH

Page 56: EMCO WinNC for Fanuc 31i Mill Software description, software

C14 Fanuc 31i Mill

OperatiOn

Delete a number of programs simultaneously1 Select «Edit» mode.

2 Delete a number of programs.

3 This softkey calls the window for deleting a number of programs.

MLOSCH

4 This softkey selects the program to be deleted. Place the cursor on the program to be selected and press «SELECT».

5 This softkey cancels the program selection. Place the cursor on the program whose selec-tion is to be cancelled and press «NOSECT».

6 This softkey selects an area. Place the cursor on the first program in a program sequence that is to be selected, press the «AREA» softkey and then place the cursor on the last program in the program sequence. Now press «SELECT» to define the area.

7 This softkey selects all programs. Pressing the softkey deletes all programs in the relevant folder.

8 Press the softkey to delete.

SELECT

NOSECT

AREA

ALSECT

DELETE

Page 57: EMCO WinNC for Fanuc 31i Mill Software description, software

C15 Fanuc 31i Mill

OperatiOn

Change the sorting sequence1 Select «Edit» mode.

2 Change the sorting sequence.

3 This softkey changes the sorting sequence. You can sort by name, comment, change of date and file size while you click on the area with the mouse.

SRTORD

Open program1 Select «Edit» mode.

2 Open program.

3 This softkey opens the selected program.OPEN

4 Press the softkey to change.

SRTORD

Page 58: EMCO WinNC for Fanuc 31i Mill Software description, software

C16 Fanuc 31i Mill

OperatiOn

Change program name1 Select «Edit» mode.

2 Move mark to the desired program.

3 Change the program or folder name.

4 This softkey calls the window for renaming pro-grams or folders. After a new program name has been entered for the program, press the «CHANGE» softkey to rename the given pro-gram.

5 Change the program or folder name.

RENAME

ALTER

Program properties1 Select «Edit» mode.

2 Move mark to the desired program.

3 Show program properties.

This softkey calls the window to show program properties.

4 End program properties display.

DETAIL

CLOSE

Page 59: EMCO WinNC for Fanuc 31i Mill Software description, software

C17 Fanuc 31i Mill

OperatiOn

Program input and output on a memory card1 Select «Edit» mode.

2 Open dialogue for input and output.

3 The following softkeys are available:

• «INPUT»: Upload file from memory card• «EINP.O»: Upload file and change O- number• «CLEAR»: Delete file• «SEARCH» Search for file• «OUTPUT»: Save file• «RETURN»: End dialogue

M-CARD

Note:The path of the directory from where the con-trol software was installed is set as default.The path can subsequently be changed in EMConfig.

Program protection1 Select «Edit» mode.

2 Move mark to the desired program.

3 Enable write protection for the program.

This softkey enables write protection for a pro-gram. An «R» is added beside the file size. Press the softkey again to cancel write protection once more.

WRPROT

Page 60: EMCO WinNC for Fanuc 31i Mill Software description, software

C18 Fanuc 31i Mill

OperatiOn

Search for text from the input line in the program1 Select «Edit» mode.

2 Enter the text that is to be found in the entry line.

3 Press the «SRCH↑» or «SRCH↓» softkey to start the search. The found text will be marked in yellow.

SRCH↑ SRCH↓

Search for and open the program1 Select «Edit» mode.

2 Enter the program name or number that is to be found in the entry line.

3 Press the «O SRCH» softkey to start the search. If a program has been found, it is opened auto-matically.O SRCH

Instructions:Only the current folder that was finally select-ed under «O LIST» is searched.

Instructions:If «O SRCH» is pressed with empty entry line, the next program of the actual folder is opened.

Page 61: EMCO WinNC for Fanuc 31i Mill Software description, software

C19 Fanuc 31i Mill

OperatiOn

Copy marked text into a buffer file1 Select «Edit» mode.

2 Set the area for copying with the cursor keys (the marked area will be yellow).

3 Press the «COPY» softkey to save the text in the Clipboard.

4 The Clipboard content can be added at another point in the program or in a different program.

COPY

PASTE

Move marked text into the buffer file1 Select «Edit» mode.

2 Set the area for moving with the cursor keys (the marked area will be yellow).

3 Press the «CUT» softkey to move the text from the program into the Clipboard.

4 The Clipboard content can be added at another point in the program or in a different program.

CUT

PASTE

Page 62: EMCO WinNC for Fanuc 31i Mill Software description, software

C20 Fanuc 31i Mill

OperatiOn

Delete highlighted text1 Select «Edit» mode.

2 Set the area for moving with the cursor keys (the marked area will be yellow).

3 This softkey calls the window for deleting a number of programs.

4 The «SELECT» softkey determines the area that is to be deleted. Existing highlights can still be changed here if need be.

5 Confirm the deletion process with «DO» or can-cel it with «NOT DO».

DELETE

SELECT

NOT DODO

Insert text1 Select «Edit» mode.

2 Move the cursor to the point where the text from the Clipboard is to be inserted.

3 This softkey inserst the content of the clipboard at the point after the cursor.

PASTE

Page 63: EMCO WinNC for Fanuc 31i Mill Software description, software

C21 Fanuc 31i Mill

OperatiOn

Insert marked text into an input line1 Select «Edit» mode.

2 Set the area to be inserted moving with the cursor keys (the marked area will be yellow).

3 Press the «KEYPST» softkey to copy the high-lighted text into the input line.

The text can now be changed as you wish.

4 CALC/ALTER replaces the highlighted text in the program with that from the input line.

5 INSERT inserts the text from the input line into the program, after highlighting it.

KEYPST

OR

OR

Instructions:Use the «KEYPST» keyboard input to change very long program comments and parts of customer macro program blocks with ease.

Page 64: EMCO WinNC for Fanuc 31i Mill Software description, software

C22 Fanuc 31i Mill

OperatiOn

Revocation and withdrawal1 Select «Edit» mode.

2 Press the «UNDO» softkey to revert to an editing process.

Press the «REDO» softkey to revoke a change retrospectively (redo).UNDO REDO

Search and replace1 Select «Edit» mode.

2 Press the «SRCH↑» or «SRCH↓» softkey to search for the string to be replaced.

Enter the replacement string value and press «REPL» or «ALL».

Confirm query with «DO» to replace all search strings.

SRCH↑ SRCH↓

REPL ALL

DO NOT DO

Page 65: EMCO WinNC for Fanuc 31i Mill Software description, software

C23 Fanuc 31i Mill

OperatiOn

End program listing1 Select «Edit» mode.

2 Press the «CLOSE» softkey to end the program listing.

CLOSE

Page 66: EMCO WinNC for Fanuc 31i Mill Software description, software

C24 Fanuc 31i Mill

OperatiOn

Program modeSelect «Auto» mode.

The following or supplementary functions from «Edit» mode are available for «Auto» mode.

1 Go to the start of the selected program

2 End program listing

3 Background edit

4 Search for block number

5 Search for and open the program

6 Display Actual position ABSOLUTE, RELA-TIVE and MACHINE

7 Preset relative position

8 Simulation

9 Workpiece coordinates system

10 Tool settings

11 Forward and Back (extension keys)

12 Editor for fixed forms

1 2 3 4 5 6 1111 7 8

Instructions:See chapter F for more information about tool settings: Tool management

9 10 12

Page 67: EMCO WinNC for Fanuc 31i Mill Software description, software

C25 Fanuc 31i Mill

OperatiOn

Background Editing1 Select «Auto» mode.

2 Press «BGEDIT» softkey. While a part is being machined, contents of

other parts programs can be edited.

By clicking the «BGEDIT» softkey in MEM mode, the display switches to the screen for background editing. The program directory for choosing programs is displayed.

BGEDIT

3 Choose the program by using the cursor keys and press the «OPEN» softkey to open the pro-gram.

OPEN

4 Press the extension key, until the «BGEND» softkey appears.

By pressing «BGEND» you exit the screen for background editing. The display changes back to automatic operation screen.

BGEND>

Note:Switching to another operating mode during editing will end the background edit mode.

Page 68: EMCO WinNC for Fanuc 31i Mill Software description, software

C26 Fanuc 31i Mill

OperatiOn

Semi-automatic modeSelect «MDA» mode.

The following or supplementary functions from «Edit» mode are available for «MDA» mode.

1 2 3 4 5 6 1414 7

12 131

8 9 10 11

Page 69: EMCO WinNC for Fanuc 31i Mill Software description, software

C27 Fanuc 31i Mill

OperatiOn

1 Go to the start of the selected program

2 Search for text from the input line in the pro-gram

3 Copy highlighted text into a buffer file

4 Move highlighted text into a buffer file

5 Delete highlighted text

6 Insert highlighted text into an input line

7 Insert text from a buffer file

8 Revoke/Withdraw

9 Workpiece coordinates system

10 Tool settings

11 Editor for fixed forms

12 Display Actual position ABSOLUTE, RELA-TIVE and MACHINE

13 Preset relative position

14 Forward and Back (extension keys)

Instructions:See chapter F for more information about tool settings: Tool management

Page 70: EMCO WinNC for Fanuc 31i Mill Software description, software

C28 Fanuc 31i Mill

OperatiOn

Setting up workpiece coordi-nates data• Select «Edit», «JOG», «MDA» or «AUTO» mode.

• Press softkey.

• «WK SET» opens the workpiece coordinates window in all modes, such as EDIT, JOG, MDA and AUTO.

With milling machines, a window to set the workpiece zero point offset is displayed. The data elements to be set and to be dis-played are the same as with the usual machine data elements.

OR OR OR

WK SET

Zero point table

Workpiece zero point offset

Page 71: EMCO WinNC for Fanuc 31i Mill Software description, software

C29 Fanuc 31i Mill

OperatiOn

MeasuringWorkpiece zero point offset

• Press softkey.

«MESURE» performs subsequent calculations.

Current value of the machine co-ordinates (1) — target value of the workpiece coordinates (2).

MESURE

ComputeWorkpiece zero point offset

• Press softkey.• «+INPUT» performs the following calculation.

Current value (1) + offset (2).

+INPUT

1 2• Conclude measurement with «INPUT».

INPUT

• End computation with «INPUT».

INPUT

1 2

Page 72: EMCO WinNC for Fanuc 31i Mill Software description, software

C30 Fanuc 31i Mill

OperatiOn

Page 73: EMCO WinNC for Fanuc 31i Mill Software description, software

C31 Fanuc 31i Mill

OperatiOn

Graphical simulationUsing the graphical simulation the current pro-gram is fully calculated and the result graphically displayed. This monitors the result of the program-ming without moving the machine axes. Wrongly programmed processing steps are recognized in a timely fashion, preventing the workpiece being mis-processed.

Unmachined part and tool definition

• Definition of the unmachined partsSelect the «BLANK». register card in the «START» menu heading

• Define the toolsSelect the «TOOL DATA» register card in the «T-OFS» menu heading.

There is a precise description of the unmachined parts in Chapter D. Programming Manual Guide i» and the tool definition in chapter «F: Tool Man-agement».

Raw part definition

Tool definition

Instructions:If no new unmachined part is defined, the last defined unmachined part is used.

Page 74: EMCO WinNC for Fanuc 31i Mill Software description, software

C32 Fanuc 31i Mill

OperatiOn

1 Mode

2 Alarm status

3 Program mode

4 Simulation report line

5 Position display of the axes

6 Tool number

Screen layout graphical simulation

13 2

4

5 6

78

9

10

7 Current NC program block

8 Current line number in ISO program window

9 Softkey strip to control simulation.

10 Coloured positioning movements:• Red positioning movement = tool moves in

rapid traverse.• Green positioning movement = tool moves

in machining feed.

Start simulation modeChange to Automatic mode.

The «SIMLAT» softkey opens the SIMULATE-AN-IMATE screen.SIMLAT

Page 75: EMCO WinNC for Fanuc 31i Mill Software description, software

C33 Fanuc 31i Mill

OperatiOn

Softkey functions

Start simulationThe «START» softkey starts the simulation. For the simulation to be started, an NC program must be selected. The name of the open NC program is shown at the top edge of the program window.

START

To start the simulationUse the «REWIND» softkey to reach the NC pro-gram.

REWIND

Stop simulationThis «PAUSE» softkey halts the simulation and the NC program. The simulation can be continued with «START».

PAUSE

Single blockThe «SINGLE» softkey makes a stop after each individual block if the machining is simulated in continuous mode. If the machining simulation is in the stopped state, this softkey starts the ma-chining simulation in single block mode.

SINGLE

Cancel simulationThe «STOP» softkey interrupts the simulation and the NC program. The simulation can be restarted with «START».STOP

Initialize unmachined partThe «INIT»softkey initiallizes the part to be ma-chined, which is used for animation.

INIT

Workpiece collisionThe «INTERF» softkey starts the interference check during the simulation. If the tool cutter collides with a workpiece while in rapid traverse, an alarm pops up and the area with which the tool cutter collided is shown in the same colour as the tool.

INTERF

Page 76: EMCO WinNC for Fanuc 31i Mill Software description, software

C34 Fanuc 31i Mill

OperatiOn

Tool pathPress the «TLPATH» softkey to reveal the SIM-ULATE TOOL PATH strip with the following softkeys:

«DISP», «NODISP» and «DELETE»You use the «DISP» and «NODISP» softkeys to mark only the needed sections of a tool path.

TLPATH

DELETENODISPDISP

Graphics OFFThe «GRPOFF» softkey ends the machining sim-ulation.

GRPOFF

The «DISP» softkey starts the tool path display from the next block.

DISP

The «DISP» softkey suppresses the tool path dis-play from the next block.The toolpath is not shown until the «DISP» softkey is pressed.

NODISP

The «DELETE» softkey deletes the former tool path. On continuing the simulation, the toolpath display is resumed.DELETE

The «ANIME» softkey selects the mode for the machining simulation (animated graphics).

ANIME

Page 77: EMCO WinNC for Fanuc 31i Mill Software description, software

C35 Fanuc 31i Mill

OperatiOn

Scaling and movingThe «LARGE» softkey enlarges the drawing.

The «SMALL» softkey reduces the size of the drawing.

The «AUTO» scales the drawing automatically and matches it to the size of the window.

The «REVERS» softkey moves the viewing point into the opposite position.

The «← MOVE» softkey moves the viewing point to the left. Accordingly, the marked tool path is moved to the right.

The «→ MOVE» softkey moves the viewing point to the right. Accordingly, the marked tool path is moved to the left.

The «→ MOVE» softkey moves the viewing point up. Accordingly, the marked tool path is moved to the left.

The «→ MOVE» softkey moves the viewing point down. Accordingly, the marked tool path is moved up.

The «CENTER» softkey places the centre of the toolpath in the centre of the window.

LARGE

SMALL

AUTO

REVERS

→MOVE

↑MOVE

↓MOVE

CENTER

←MOVE

Page 78: EMCO WinNC for Fanuc 31i Mill Software description, software

C36 Fanuc 31i Mill

OperatiOn

Selecting a graphics coordinates system

The «ROTATE» softkey selects the graphics co-ordinates system.

This softkey selects the XY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects the ZY plane.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis. The viewing point is opposite to that mentioned above.

This softkey selects an equiangular coordinates system with the plus direction the upwards Z-axis.

ROTATE

XY

ZY

YZ

XZ

ZX

ISO XY

ISO XY

ISO YZ

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey executes a clockwise rotation with the screen as the central axis.

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey executes a clockwise rotation with the screen as the central axis.

Page 79: EMCO WinNC for Fanuc 31i Mill Software description, software

C37 Fanuc 31i Mill

OperatiOn

This softkey executes a clockwise rotation with the screen as the central axis.

This softkey executes a counterclockwise rotation with the screen as the central axis.

This softkey selects the simulation playback speed. There are 5 steps available for the speed.

SPEED+SPEED-

3D configuration

Instructions:The selection of availablesetting options depends on whether a3D viewing licence is available or not.

This softkey starts 3D configuration.3D-

CONFIG

3D configuration

Page 80: EMCO WinNC for Fanuc 31i Mill Software description, software

C38 Fanuc 31i Mill

OperatiOn

Zooming with the mouse

Strg

Shift graphicsPress cursor button to shift the graphics.

Shift

Page 81: EMCO WinNC for Fanuc 31i Mill Software description, software

D1 Fanuc 31i Mill

Programming manualguide i

D: Programming with MANUAL GUIDE i

Instructions:This programming manual describes all functions that can be executed with WinNC.Depending on the machine you are operating with WinNC, not all functions may be available.

Example:The Concept MILL 55 milling machine has no position-controlled main spindle, so it is also not pos-sible to program spindle positions.

OverviewM-commands

M00 Programmed stopM01 Optional stop

M02 End of program

M03 Spindle ON clockwiseM04 Spindle ON counterclockwiseM05 Spindle stop

M06 Perform tool change

M07 Minimal lubrication ONM08 Coolant ONM09 Coolant OFF, minimal lubrication OFF

M10 Divider clamp onM11 Slacken divider clamping

M25 Open clamping deviceM26 Close clamping deviceM27 Swivel dividerM29 Thread tapping without compensation

chuck

M30 End of main program

M51 C-axis mode activationM52 C-axis mode deactivation

M71 Exhaust ONM72 Exhaust OFF

M98 Call subroutineM99 Jump back to calling program

Page 82: EMCO WinNC for Fanuc 31i Mill Software description, software

D2 Fanuc 31i Mill

Programming manualguide i

Produce MANUAL GUIDE i program1 Select «Edit» mode.

2 Press softkey.

3 Enter program or folder name and confirm with «CREATE».

If a program name was allotted previously, an appropriate message will be displayed.

NEWPRG

CREATE

OverviewMANUAL GUIDE i helps you to use CNC con-trollers which are installed in lathes and milling machines.Using a single screen, machining programs can be produced, checked by animation and the ma-chining set up and run.MANUAL GUIDE i uses the ISO code format for machining programs and machining cycles in or-der to implement extended machining processes.

Instructions:Program names can consist of at least 1 and a maximum of 32 characters. The following characters are allowed: «Zz», «0 to 9», «_» «+» and «.».

The Fanuc standard format for program names is as follows:O1234. If fewer than 4 numbers are entered, those missing are populated with zeroes.

Page 83: EMCO WinNC for Fanuc 31i Mill Software description, software

D3 Fanuc 31i Mill

Programming manualguide i

Programming set-up

The new program is entered with the softkeys in the following steps:

• START• CYCLE• END

A cycle is divided into 2 parts:

• Machining conditions• Geometric data

Program start START

1 Press «START» softkey.

CYCLE ENDSTART

START

Instructions:The fixed shapes from form 1 are available for «START».

2 Find the desired selection in the START register card and confirm with «SELECT».

INSERT

Page 84: EMCO WinNC for Fanuc 31i Mill Software description, software

D4 Fanuc 31i Mill

Programming manualguide i

Select unmachined part

1 Press «START» softkey.

2 Select the register card for an unmachined part.

START

3 Select the desired unmachined part and confirm with «SELECT».

SELECT

4 Enter the data for the unmachined part and close the entry with «INSERT».

INSERT

Page 85: EMCO WinNC for Fanuc 31i Mill Software description, software

D5 Fanuc 31i Mill

Programming manualguide i

2 Go to the end of program selection and close the entry with «INSERT».

INSERT

Cycle programming

1 Press «CYCLE» softkey.

There is a precise description of entry and pro-gramming for cycles later in this chapter under «Working with cycles».

Program end END

1 Press «END» softkey.

CYCLE

END

Page 86: EMCO WinNC for Fanuc 31i Mill Software description, software

D6 Fanuc 31i Mill

Programming manualguide i

Raw part definitionIf you are machining in a program with a stop point (e.g.: G54) and a transformation (G52 ) to the actual workpiece zero point, the unmachined part must be described from the stop point outwards.

M= Machine zero pointA= Stop pointW= Workpiece zero point

In the following situation, the unmachined part must be described from A outwards

Page 87: EMCO WinNC for Fanuc 31i Mill Software description, software

D7 Fanuc 31i Mill

Programming manualguide i

Cycle overviewThe cycle groups with the Fanuc ManualGuide i cycles defined within them are listed here.

Hole machining• Centre Drilling G1100• Drilling G1101• Tapping G1002• Reaming G1103• Boring G1104

Figure: Hole position• Random points G1210• Linear points G1211• Grid points G1213• Rectangle points G1214• Circle points G1215• Arc points G1216• A-axis hole in cylinder (arc) G1772• A-axis hole in cylinder (free) G1773

Contouring• Outer wall countering rough G1060• Outer wall countering bottom finish G1061• Outer wall countering side finish G1062• Outer wall countering chamfer G1063• Inner wall countering rough G1064• Inner wall countering bottom finish G1065• Inner wall countering side finish G1066• Inner wall countering chamfer G1067• Partial contouring rough G1068• Partial contouring bottom finish G1069• Partial contouring side finish G1070• Partial contouring chamfer G1071

Face machining• Facing rough G1020• Facing finish G1021

Pocketing• Pocketing rough G1040• Pocketing bottom finish G1041• Pocketing side finish G1042• Pocketing chamfer G1043

Page 88: EMCO WinNC for Fanuc 31i Mill Software description, software

D8 Fanuc 31i Mill

Programming manualguide i

Page 89: EMCO WinNC for Fanuc 31i Mill Software description, software

D9 Fanuc 31i Mill

Programming manualguide i

Figure: Facing figure• Square facing G1220

Figure: Contouring figure• Square G1220 convex• Circle G1221 convex• Track G1222 convex• Polygon G1225 convex• Free figure• XA-plane free form convex contour for cylinder

G1700• Square G1220 concave• Circle G1221 concave• Track G1222 concave• Polygon G1225 concave• Free concave figure• XA-plane free form concave contour for cylinder

G1700• Free open figure• XA-plane free form open contour for cylinder

G1700

Figure: Pocket figure• Square concave G1220• Circle concave G1221• Track concave G1222• Polygon concave G1225• Free concave figure• XA-plane free form concave contour for cylinder

G1700

Page 90: EMCO WinNC for Fanuc 31i Mill Software description, software

D10 Fanuc 31i Mill

Programming manualguide i

Define cycle• Select «Edit» mode.

• Create a new program or open an existing pro-gram.

• Select the softkey toolbar for turning or milling cycles with the extension buttons.

• Press softkey.

O LISTNEWPRGOR

< >

START

Working with cyclesFrequently repeated processes, which include several machining steps, are saved in the con-troller as cycles. Some special functions are also available as cycles.

Page 91: EMCO WinNC for Fanuc 31i Mill Software description, software

D11 Fanuc 31i Mill

Programming manualguide i

Pocket milling

Contour machining

Plane machiningDrilling cycles

The dropdown window shows the different cycle groups.

• Drilling• Plane machining• Contour machining• Pocket milling

Select the desired cycle and confirm the selec-tion with the «SELECT» softkey or cancel it with «CANCEL».

• «SELECT» softkey to confirm.

• «CANCEL» softkey to cancel.

SELECT

CANCEL

Page 92: EMCO WinNC for Fanuc 31i Mill Software description, software

D12 Fanuc 31i Mill

Programming manualguide i

Options menu for data entry via softkey.

Tab for entering machining conditions, tool dis-tance and other details.With the cursor keys <←> or <→> you can switch from one tab to another. The chosen active tab is depicted in blue. In the upper right corner of the window «TAB» is displayed.

Entry fields marked with * are optional and are not required to be populated. These entry fields can remain empty.

Softkey for inserting the entered data into the program or for cancelling the data entry.

Data Entry for Machining Cycles

Coloured positioning movements:• Red positioning movement = tool moves in rapid

traverse.• Green positioning movement = tool moves in

machining feed.

For switching tabs with the cursor keys, «TAB ←→» is displayed in the upper right corner of the window.

Page 93: EMCO WinNC for Fanuc 31i Mill Software description, software

D13 Fanuc 31i Mill

Programming manualguide i

For cursor movement inside an entry field «CHAR ←→» is displayed.

• Data entry By actuating the cursor keys <↑> or <↓>, you

can set the cursor on the desired data entry field.

• There are 2 options for data entry: 1. Entering data as numerals. In the lower part of the window, the message

«Enter data» is displayed.

2. Entering data by using softkeys. For these fields an options menu is provided in the softkey bar.

The message «Choose a softkey» is displayed.

The softkey «CHCURS» (change cursor) is dis-played in the data entry windows for the machin-ing cycle, figure and contour programs.This softkey is used to choose, whether the cur-sor keys <←> and <→> are used for switching between the tabs or for moving the cursor inside the entered data in the entry field.

Page 94: EMCO WinNC for Fanuc 31i Mill Software description, software

D14 Fanuc 31i Mill

Programming manualguide i

Default values for cycle param-eters

EMConfig is an auxiliary software to WinNC.WinNC settings can be changed with EMConfig.

Open EMConfig and select the configuration point:

Default values for cycle parameters

The following settings can be reached under the default values heading:

• Persist last entered cycle data remains even after

receiving a control system restart

• Persist until restart last entered cycle data remains received while

the control system is still running

• Do not persist Cycle data is reset to the default values im-

mediately after quitting the cycle

Instructions:If cycles have already been programmed once, then these input values are saved and next time are proposed as default values. This can be unfavourable in training and can therefore be configured via EMConfig.

Page 95: EMCO WinNC for Fanuc 31i Mill Software description, software

D15 Fanuc 31i Mill

Programming manualguide i

Ignore plausibility check for saving

Use this checkbox to activate or deactivate the plausibility check for saving.

Activate this setting to be able to save cycles, despite an er-ror message being present. The corresponding error messages certainly remain in existence, but the «Accept» softkey is available.

Set plausibility check for saving

Page 96: EMCO WinNC for Fanuc 31i Mill Software description, software

D16 Fanuc 31i Mill

Programming manualguide i

Select dimensions system

Use this checkbox to select the metric or imperial measurement system for the controller.

Set metric or imperial measuring system

Instructions:Imperial programs cannot be used with a metric controller (and vice-versa).

Length dimensions imperial

feet *) inch mm m

1 12 304.5 0.304

inch °) feet mm m

1 0.83 25.4 0.0254

Length dimensions metric

m mm inch feet

1 1000 39.37008 3.28084

mm m inch feet

1 0.001 0.0393701 0.0032808

Units table

*) feet: only at constant cutting speed

°) inch: Standard input

Page 97: EMCO WinNC for Fanuc 31i Mill Software description, software

D17 Fanuc 31i Mill

Programming manualguide i

Hole machining• Centre Drilling G1100• Drilling G1101• Tapping G1002• Reaming G1103• Boring G1104

Page 98: EMCO WinNC for Fanuc 31i Mill Software description, software

D18 Fanuc 31i Mill

Programming manualguide i

Centre drilling G1100

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type • [NORMAL]: Without dwell time. (Initial value)• [DWELL]: With dwell time.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R position (radius value, positive value).

F Feed rate Feed speed (positive value)

P* Dwell time Dwell time at the bottom of the drilling. If this is missing, 0 is as-sumed. (In seconds, positive value)

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

1. CENTRE DRILLINGHOLEMACHIN.CYCLE

Page 99: EMCO WinNC for Fanuc 31i Mill Software description, software

D19 Fanuc 31i Mill

Programming manualguide i

Cycle description1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

Tool track

Page 100: EMCO WinNC for Fanuc 31i Mill Software description, software

D20 Fanuc 31i Mill

Programming manualguide i

Drilling G1001

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [NORMAL]: Without dwell time. (Initial value)• [DWELL]: With dwell time.• [PECK]: Deep hole drilling• [H SPED]: With dwell time.

H Go past amount set

• [NOTHIN]: Drilling depth relative to the tool shaft• [SETING]: Drilling depth relative to the tool tipFor the setting [SETING] the parameters U, V, K and the softkey [CALC] are available under Details.

Q* Stroke depth (INCR+) Cut depth executed per cut (radius value, positive value). Only for deep hole drilling and chip breaking.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT- 2]: All movements between borings, including the last return, are made to point I.• [REF.] : All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

2. DRILLINGHOLEMACHIN.CYCLE

Page 101: EMCO WinNC for Fanuc 31i Mill Software description, software

D21 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

U Tool diameter Tool diameter entry

V Nose angle Cutting angle entry

K Go past amount Overrun entry

Cutting condition

Data item Meaning

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 is as-sumed. (In seconds, positive value)Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 102: EMCO WinNC for Fanuc 31i Mill Software description, software

D22 Fanuc 31i Mill

Programming manualguide i

Cycle description: with/without dwell time1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

Cycle description: Long-hole drilling1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the position «Machining start position — Depth of the first cut (D1)».

3 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

4 The tool is moved in rapid traverse into the po-sition «Machining end position of the preceding cut + retraction clearance (U)».

5 The tool is moved with feed speed (F) into the position «Machining end position — Cut depth compensation cut (Dn)».

6 Steps <3> to <5> are repeated until the final machining end position is reached.

7 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

tool track

tool track

Page 103: EMCO WinNC for Fanuc 31i Mill Software description, software

D23 Fanuc 31i Mill

Programming manualguide i

Cycle description: Chip crushing1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the position «Machining start position — Depth of the first cut (D1)».

3 The tool is moved in rapid traverse into the position «Instantaneous position + retraction clearance (U)».

4 The tool is moved with feed speed (F) into the position «Machining end position — Cut depth compensation cut (Dn)».

5 Steps <3> and <4> are repeated until the ma-chining end position is reached.

6 The tool is moved in rapid traverse into the position «Machining start position + clearance (C)».

tool track

Page 104: EMCO WinNC for Fanuc 31i Mill Software description, software

D24 Fanuc 31i Mill

Programming manualguide i

Tapping G1002

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type • [NORMAL]: Clockwise tapping.• [REVERS]: Counterclockwise tapping.

R Tap type • [FLOAT]: Thread tapping with compensating chuck.• [RIGID]: Thread tapping without compensating chuck.

D Thread lead Tap pitch (radius value, positive value).

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT- 2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

P* Dwell time Dwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value)

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

3. TAPPINGHOLEMACHIN.CYCLE

Page 105: EMCO WinNC for Fanuc 31i Mill Software description, software

D25 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 Stop spindle.

4 The spindle is turned in the opposite direction.

5 The tool is moved with feed speed (F) into the position «Machining start position + clearance (C)».

6 The spindle changes to the normal direction of rotation.

tool track

Page 106: EMCO WinNC for Fanuc 31i Mill Software description, software

D26 Fanuc 31i Mill

Programming manualguide i

Reaming G1003

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [CUT]: The tool is retracted with feed speedfrom the bottom of the drilling.• [RAPID]: The tool is retracted in rapid traverse from the bottom of the drilling.• [DWELL]: After dwelling at the bottom of the drilling, the tool is retracted with feed speed.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value). Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

4. REAMINGHOLEMACHIN.CYCLE

Page 107: EMCO WinNC for Fanuc 31i Mill Software description, software

D27 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 Stop spindle.

4 The spindle is turned in the opposite direction.

5 The tool is moved with feed speed (F) into the position «Machining start position + clearance (C)».

6 The spindle changes to the normal direction of rotation.

tool track

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

Page 108: EMCO WinNC for Fanuc 31i Mill Software description, software

D28 Fanuc 31i Mill

Programming manualguide i

Boring G1004

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

W Machining type

• [CUT]: The tool is retracted with feed speedfrom the bottom of the drilling.• [RAPID]: The tool is retracted in rapid traverse from the bottom of the drilling.• [DWELL]: After dwelling at the bottom of the drilling, the tool is retracted with feed speed.

I Ref.point mode

• [INIT-1]: When traversing between borings, the return is made to reference point R. At the end, the return is made to point I. (Initial value).• [INIT-2]: All movements between borings, including the last return, are made to point I.• [REF]: All movements between borings, including the last return, are made to point R.

J I Point I point coordinates.

L Cut depth Drilling depth (radius value, negative value)

C Clearance Distance between workpiece surface and R-position(Radius value, positive value)

F Feed rate Feed speed (positive value)

P* Dwell timeDwell time at the bottom of the drilling. If this is missing, 0 isassumed. (In seconds, positive value). Only in machining type [DWELL].

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

5. BORINGHOLEMACHIN.CYCLE

Page 109: EMCO WinNC for Fanuc 31i Mill Software description, software

D29 Fanuc 31i Mill

Programming manualguide i

Cycle description: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (C)».

2 The tool is moved with feed speed (F) into the machining end position.

3 The tool is moved with retraction speed (Fr) into the position «Machining start position + clearance (C)».

tool track

Detail

Data item Meaning

A* Start cut depth The start feed S applies for the start cut depth A

S* Start feed rate Feed speed at start

D* End cut depth The end feed E applies for the end cut depth D

E* End feed rate Feed speed at end

Page 110: EMCO WinNC for Fanuc 31i Mill Software description, software

D30 Fanuc 31i Mill

Programming manualguide i

Page 111: EMCO WinNC for Fanuc 31i Mill Software description, software

D31 Fanuc 31i Mill

Programming manualguide i

Face machining• Facing rough G1020• Facing finish G1021

Page 112: EMCO WinNC for Fanuc 31i Mill Software description, software

D32 Fanuc 31i Mill

Programming manualguide i

Facing (rough) G1020

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Thickness Face mill diameter

H* Finish amount Finished dimension in plane machining.

L Cut depth of radius Cut depth in tool radius direction to the next cutting track.

J* Cut depth of axis Cut depth in tool axis direction per cutting process.

F Feed rate radius Feed speed when cutting in toolradius direction.

E Feed rate axis Feed speed when cutting in thetool axis direction.

1. FACING (ROUGH)FACEMACHIN.CYCLE

Page 113: EMCO WinNC for Fanuc 31i Mill Software description, software

D33 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

I 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Cutting method

• [SINGLE]: Cutting in tool radius direction is always done in the same direction.• [ZIGZAG]: Cutting in tool radius direction is done forwards and backwards.

P Path move method

• [PULL]: Return to point R before approaching the start point for the next cutting track (in tool axis direction).• [KEEP]: Direct approach to the start point of the next cutting track without returning to point R.Only if machining method [ZIGZAG]

V Path move feed rate

Traverse speed with which the tool moves to the start point for the next cutting track. If the feed speed is set to 0, the tool is traversed in rapid traverse.Only if machining method [ZIGZAG]

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

M Clearance of radius Distance between the end of the workpiece and the end of the tool in the retraction position (radius value).

A Cutting direction

• [RIGHT]: Cutting is done to the right as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the right.• [LEFT]: Cutting is done to the left as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the left.• [UP]: Cutting is done upwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track up-wards.• [DOWN]: Cutting is done downwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track downwards.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

B Cut shift direction

• [RIGHT]: Cutting is done to the right during the change between two cutting tracks, as shown in the sketch.• [LEFT]: Cutting is done to the left during the change between two cutting tracks, as shown in the sketch.• [UP]: Cutting is done upwards during the change between two cutting tracks, as shown in the sketch.• [DOWN]: Cutting is done downwards during the change between two cutting tracks, as shown in the sketch.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 114: EMCO WinNC for Fanuc 31i Mill Software description, software

D34 Fanuc 31i Mill

Programming manualguide i

Facing (finish) G1021

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

L Cut depth of radius Cut depth in tool radius direction to the next cutting track.

F Feed rate radius Feed speed when cutting in toolradius direction.

E Feed rate axis Feed speed when cutting in thetool axis direction.

2. FACING (FINISH)FACEMACHIN.CYCLE

Page 115: EMCO WinNC for Fanuc 31i Mill Software description, software

D35 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Cutting method

• [SINGLE]: Cutting in tool radius direction is always done in the same direction.• [ZIGZAG]: Cutting in tool radius direction is done forwards and backwards.

P Path move method

• [PULL]: Return to point R before approaching the start point for the next cutting track (in tool axis direction).• [KEEP]: Direct approach to the start point of the next cutting track without returning to point R.Only if machining method [ZIGZAG]

V Path move feed rate

Traverse speed with which the tool moves to the start point for the next cutting track. If the feed speed is set to 0, the tool is traversed in rapid traverse.Only if machining method [ZIGZAG]

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

M Clearance of radius Distance between the end of the workpiece and the end of the tool in the retraction position (radius value).

A Cutting direction

• [RIGHT]: Cutting is done to the right as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the right.• [LEFT]: Cutting is done to the left as shown in the sketch. If both directions are selected, cutting is done in the first cutting track to the left.• [UP]: Cutting is done upwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track up-wards.• [DOWN]: Cutting is done downwards as shown in the sketch. If both directions are selected, cutting is done in the first cutting track downwards.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

B Cut shift direction

• [RIGHT]: Cutting is done to the right during the change between two cutting tracks, as shown in the sketch.• [LEFT]: Cutting is done to the left during the change between two cutting tracks, as shown in the sketch.• [UP]: Cutting is done upwards during the change between two cutting tracks, as shown in the sketch.• [DOWN]: Cutting is done downwards during the change between two cutting tracks, as shown in the sketch.

The actual cutting direction is determined by the coordinates axis, which is shown in the sketch.

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 116: EMCO WinNC for Fanuc 31i Mill Software description, software

D36 Fanuc 31i Mill

Programming manualguide i

Page 117: EMCO WinNC for Fanuc 31i Mill Software description, software

D37 Fanuc 31i Mill

Programming manualguide i

Contouring• Outer wall countering rough G1060• Outer wall countering bottom finish G1061• Outer wall countering side finish G1062• Outer wall countering chamfer G1063• Inner wall countering rough G1064• Inner wall countering bottom finish G1065• Inner wall countering side finish G1066• Inner wall countering chamfer G1067• Partial contouring rough G1068• Partial contouring bottom finish G1069• Partial contouring side finish G1070• Partial contouring chamfer G1071

Page 118: EMCO WinNC for Fanuc 31i Mill Software description, software

D38 Fanuc 31i Mill

Programming manualguide i

Outer wall (rough) G1060

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

1. OUTER WALL(ROUGH)CON-

TOURINGCYCLE

Page 119: EMCO WinNC for Fanuc 31i Mill Software description, software

D39 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIK]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 120: EMCO WinNC for Fanuc 31i Mill Software description, software

D40 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1060, G1064 and G1068: The side surface contour of the machining

profile is exhausted. The following tool track is generated.

1 The tool is moved to the above approach start point.

2 The tool is moved to the height of the machin-ing surface.

3 The tool cuts along the side surface contour of the machining profile.

The tool cuts by infeed machining in the tool radius direction until the machining allowance in the tool radius direction is exhausted.

4 Steps <2> and <3> are repeated until the ma-chining allowance in the tool axis direction is exhausted.

5 The tool retracts.

Tool track G1060, G1064, G1068

Infeed machining in tool radius direction

Approach Retract

Infeed machining in the tool axis direction

Page 121: EMCO WinNC for Fanuc 31i Mill Software description, software

D41 Fanuc 31i Mill

Programming manualguide i

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Amount to be cut in the first infeed machining cycle in the tool axis direction — clearance (C) in the tool axis direction» with the feed speed (E) speci-fied for movement in the tool axis direction.

3 The tool approaches in the tool radius direction the start point for the first infeed machining in the tool radius direction.

Retraction cycle description:

1 The tool is moved from the approach end point to the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direc-tion.

Approach G1060, G1064, G1068

Retraction G1060, G1064, G1068

First infeedMachining cycle in tool radius direction

Machining start point

Approach start point

Cut amount F in the first infeed of the machining cycle in tool direction

Clearance C in tool axis direction

Clearance C in tool axis direction

Height of the machining profile surface height

Height of the upper surface of the machining profile

Page 122: EMCO WinNC for Fanuc 31i Mill Software description, software

D42 Fanuc 31i Mill

Programming manualguide i

Page 123: EMCO WinNC for Fanuc 31i Mill Software description, software

D43 Fanuc 31i Mill

Programming manualguide i

Tool radius alignment cycle description: 1 The tool is moved for cutting along the contour

from the first infeed machining cycle start point to the end point with the feed speed (F) spec-ified for single side machining with roughing tool.

2 The tool approaches as follows.

If the infeed machining start point coincides with the infeed machining end point: The tool approaches the next infeed machining start point in the normal direction with the feed speed (F) specified for double-sided machining with the roughing tool.

If the infeed machining start point does not co-

incide with the infeed machining end point: The tool approaches the second infeed machining start point.

3 The tool is moved for cutting along the ma-chining profile contour with the feed speed (F) specified for single side machining with roughing tool.

4 Steps <2> and <3> are repeated until the ma-chining allowance (machining allowance in the tool axis direction) is exhausted.

5 The tool retracts.Infeed machining in the tool radius directionG1060, G1064, G1068

Finishing dimension in tool radius direction

Machiningallowance in tool radiusdirection

Feed speed Fr specified for single sided machin-ing with roughing tool

Start and end points of the first infeed machining cycle (in this case coincident)

Feed speed Fr specified for double sided machin-ing with roughing tool

Retraction from the wall in the toolradius direction at the end of the infeed machining

The amount to be ex-hausted with each infeed machining cycle in the tool radius direction

First infeedmachiningcycle

Second infeedmachining cycle

Third infeed machining cycle

Page 124: EMCO WinNC for Fanuc 31i Mill Software description, software

D44 Fanuc 31i Mill

Programming manualguide i

Outer wall (bottom finish) G1061

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

2. OUTER WALL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 125: EMCO WinNC for Fanuc 31i Mill Software description, software

D45 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 126: EMCO WinNC for Fanuc 31i Mill Software description, software

D46 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1061, G1065 and G1069: The bottom surface of the side surface contour

of the machining profile is machined. The fol-lowing tool track is generated.

1 The tool is moved to the machining profile approach start point.

2 The tool is moved to the height of the machin-ing surface of the machining profile.

3 The tool is moved to cut along the side surface contour of the machining profile.

The tool cuts by infeed machining in the tool radius direction until the machining allowance in the tool radius direction is exhausted.

4 The tool retracts.

Tool track G1061, G1065, G1069

Infeed machiningin the toolradius direction

approach Retract

Page 127: EMCO WinNC for Fanuc 31i Mill Software description, software

D47 Fanuc 31i Mill

Programming manualguide i

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Machining profile bottom surface + machining allowance (Vt) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direction.

3 The tool approaches in the tool radius direction the start point for the infeed machining in the tool radius direction.

Retraction cycle description: 1 The tool is moved from the approach end point

with rapid traverse into the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

Infeed machining in the tool radius direction. This movement is the same as for contour machining (roughing). Details of contour ma-chining (roughing) can be found in the relevant descriptions.Retraction track G1061, G1065, G1069

Approach G1061, G1065, G1069

Firstinfeed machiningcycle in thetool radiusdirection

Start point for machining

Start point for approach

Clearance C in tool axis direction

Height of the uppersurface of themachiningprofile

Clearance C intool axis direction.

Height of the uppersurface of themachiningprofile

Height of thebottom surface of themachining profile

Page 128: EMCO WinNC for Fanuc 31i Mill Software description, software

D48 Fanuc 31i Mill

Programming manualguide i

Outer wall (side finish) G1062

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

3. OUTER WALL(SIDE FINISH)CON-

TOURINGCYCLE

Page 129: EMCO WinNC for Fanuc 31i Mill Software description, software

D49 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 130: EMCO WinNC for Fanuc 31i Mill Software description, software

D50 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1062, G1066 and G1070: 1 The tool is moved to the above approach start

point.

2 The tool is moved to the height of the bottom surface of the machining profile.

3 The tool is moved to cut along the side surface contour of the machining profile.

The machining allowance (Vt) in the tool radius direction is used up in a specified number of finishing machining cycles by infeed machin-ing.

4 The tool retracts.

Approach cycle description: 1 The tool moves in rapid traverse into the

position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

2 The tool traverses into the position «Machining profile bottom surface + finishing dimension (S) in the tool axis direction + clearance (C) in the tool axis direction» with the feed speed (E) specified for movement in the tool axis direction.

3 The tool traverses into the position «Machining profile bottom surface + finishing dimension (Tt) in the tool axis direction» with the feed speed (Ft) specified for cutting the machining profile.

4 The tool approaches in the tool radius direction the start point for the infeed machining cycle in the tool radius direction.

Tool track G1062, G1066, G1070

Approach G1062, G1066, G1070

Approach Retract

Machining start point

Approach start point

Clearance C in tool axis direction

Height of the uppersurface of themachiningprofile

Page 131: EMCO WinNC for Fanuc 31i Mill Software description, software

D51 Fanuc 31i Mill

Programming manualguide i

Cycle description process: 1 The tool is moved from the approach end point

with rapid traverse into the position «Height of the upper surface of the machining profile + clearance (C) in the tool axis direction».

Infeed machining in tool radius direction: The tool moves to the cut start point in the tool ra-

dius direction with the feed speed (F) specified for cutting in the tool radius direction.

2 The tool is moved along the contour from the first infeed machining cycle start point to the first infeed machining end point with the feed speed (F) specified for cutting in the tool radius direction.

3 The tool retracts from the start point for ma-chining in the tool radius direction with the feed speed (F) specified for cutting in the tool radius direction.

4 The tool moves to the next infeed machining cycle start point in accordance with the type of movement specified for infeed machining.

5 Steps <2> to <4> are repeated as often as the number of finishing machining cycles speci-fied.

Retraction G1062, G1066, G1070

Retraction G1062, G1066, G1070

Clearance C intool axis direction.

Height of the uppersurface of themachiningprofile

Feed speed Fspecified for inwards machining

in the toolradius direction

First fine machining cycle

Last finemachining cycle

Feed speed F specified for movement in the tool radius direction

Page 132: EMCO WinNC for Fanuc 31i Mill Software description, software

D52 Fanuc 31i Mill

Programming manualguide i

Outer wall (chamfer) G1063

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

4. OUTER WALL(CHAMFER)CON-

TOURINGCYCLE

Page 133: EMCO WinNC for Fanuc 31i Mill Software description, software

D53 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UPCUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWNCUT] Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 134: EMCO WinNC for Fanuc 31i Mill Software description, software

D54 Fanuc 31i Mill

Programming manualguide i

Cycle description for G1063, G1067 and G1071: 1 The tool is moved in rapid traverse into the

position «Machining start position + clearance (Cr)».

2 The tool is moved into the position «Chamfer-ing amount (C) + ejection path (P)» with the feed speed (F) specified for cutting.

3 The tool cuts into the section to be chamfered to the cut depth (Dr) in the tool radius direction with feed speed (F).

4 The tool performs the finishing machining with the feed speed (F) specified for finishing.

5 The tool is moved in rapid traverse into the position «Cutting start point + clearance (Cr)».

Tool track G1063, G1067, G1071

Page 135: EMCO WinNC for Fanuc 31i Mill Software description, software

D55 Fanuc 31i Mill

Programming manualguide i

Page 136: EMCO WinNC for Fanuc 31i Mill Software description, software

D56 Fanuc 31i Mill

Programming manualguide i

Inner wall (rough) G1064

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

5. INNER WALL(ROUGH)CON-

TOURINGCYCLE

Page 137: EMCO WinNC for Fanuc 31i Mill Software description, software

D57 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 138: EMCO WinNC for Fanuc 31i Mill Software description, software

D58 Fanuc 31i Mill

Programming manualguide i

Inner wall (bottom finish) G1065

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

6. INNER WALL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 139: EMCO WinNC for Fanuc 31i Mill Software description, software

D59 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 140: EMCO WinNC for Fanuc 31i Mill Software description, software

D60 Fanuc 31i Mill

Programming manualguide i

Inner wall (side finish) G1066

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

7. INNER WALL(SIDE FINISH)CON-

TOURINGCYCLE

Page 141: EMCO WinNC for Fanuc 31i Mill Software description, software

D61 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 142: EMCO WinNC for Fanuc 31i Mill Software description, software

D62 Fanuc 31i Mill

Programming manualguide i

Inner wall (chamfer) G1067

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

8. INNER WALL(CHAMFER)CON-

TOURINGCYCLE

Page 143: EMCO WinNC for Fanuc 31i Mill Software description, software

D63 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 144: EMCO WinNC for Fanuc 31i Mill Software description, software

D64 Fanuc 31i Mill

Programming manualguide i

Partial (rough) G1068

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

J* Cut depth of axis

Cut depth in tool axis direction per cutting process (radius value, positive value).Standard is (Machining dimension at bottom — Finishing dimension at bottom).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

9. PARTIAL (ROUGH)CON-TOURINGCYCLE

Page 145: EMCO WinNC for Fanuc 31i Mill Software description, software

D65 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

M 1st feed override % The feed override value for the first cut is stipulated as 100% fixed and cannot be changed.

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 146: EMCO WinNC for Fanuc 31i Mill Software description, software

D66 Fanuc 31i Mill

Programming manualguide i

Partial (bottom finish) G1069

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thickness Finishing dimension at the bottom in side surface machining (Radius value, positive value)

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth per side surface machining process (in tool radius direction) (radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

10. PARTIAL(BOTTOM FINISH)CON-

TOURINGCYCLE

Page 147: EMCO WinNC for Fanuc 31i Mill Software description, software

D67 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 148: EMCO WinNC for Fanuc 31i Mill Software description, software

D68 Fanuc 31i Mill

Programming manualguide i

Partial (side finish) G1070

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Side thickness Side surface machining allowance (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

B* Number of finishingNumber of cuts during finishing (positive value)Depth per cut = (superfluous side thickness)/(number of finishing cuts)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

11. PARTIAL(SIDE FINISH)CON-

TOURINGCYCLE

Page 149: EMCO WinNC for Fanuc 31i Mill Software description, software

D69 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 150: EMCO WinNC for Fanuc 31i Mill Software description, software

D70 Fanuc 31i Mill

Programming manualguide i

Partial (chamfer) G1071

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value)

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value)

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

12. PARTIAL (CHAMFER)CON-TOURINGCYCLE

Page 151: EMCO WinNC for Fanuc 31i Mill Software description, software

D71 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of the unmachined part for machining and the machining start point (point R) in the direction of the tool axis (radius value)

P Approach type

• [ARC]: The approach to the side surface takes the form of an arc.• [TANGEN]: The approach to the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: The approach to the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

R Approach radius / -distanceRadius, only if [ARC] is specified. Length of a straight line, if [TANGEN] or [VERTIC] is specified. (Radius value, positive value)

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type

• [ARC]: Retraction from the side surface takes the form of an arc.• [TANGEN]: Retraction from the side surface takes the form of a straight line tangential to the first contour in side surface machining.• [VERTIC]: Retraction from the side surface takes the form of a straight line at right angles to the first contour in side surface ma-chining.

X Escape radius / -distance Radius, only if [ARC] is specified. Length of a straight line, if [TAN-GEN] or [VERTIC] is specified. (Radius value, positive value)

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Page 152: EMCO WinNC for Fanuc 31i Mill Software description, software

D72 Fanuc 31i Mill

Programming manualguide i

Page 153: EMCO WinNC for Fanuc 31i Mill Software description, software

D73 Fanuc 31i Mill

Programming manualguide i

Pocketing• Pocketing rough G1040• Pocketing bottom finish G1041• Pocketing side finish G1042• Pocketing chamfer G1043

Page 154: EMCO WinNC for Fanuc 31i Mill Software description, software

D74 Fanuc 31i Mill

Programming manualguide i

Pocketing (rough) G1040

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T* Bottom thicknessMachining allowance at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

S* Side thickness

Machining allowance at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)Remarks: If side finishing dimension and bottom finishing dimension are ignored, a complete pocket is machined.

L Cut depth of radius Cut depth at the side surface (in tool radius direction)per cutting process (radius value, positive value).

J* Cut depth of axis Cut depth in tool axis direction per cutting process (radius value, positive value).

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

1. POCKETING(ROUGH)POCKET-

INGCYCLE

Page 155: EMCO WinNC for Fanuc 31i Mill Software description, software

D75 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

B Clearance of radius Distance between the pocket wall and the tool retraction position in tool radius direction (radius value, positive value).

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

Z Approach motion • [3 AXIS]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

X Cut depth method • [STRAIT]: Plunging in the form of a straight line.• [HELICL]: Plunging on spiral path (helix).

A* Cut angleAngle under which the tool cuts obliquely or in a spiral into the pocket. The unmachined part is viewed as 0 degrees.(In 1-degree increments, positive value).

Page 156: EMCO WinNC for Fanuc 31i Mill Software description, software

D76 Fanuc 31i Mill

Programming manualguide i

Cycle descriptionThe interior of a pocket machining profile is cut out spirally. The following tool track is generated.

For a pocket machining profile, several island machining profiles and several cavity machining profiles can be defined. Island machining profiles remain unmachined. Cavity machining profiles are bypassed so that they are not machined.

The tool track is produced in a manner such that a collision to be expected with pocket machining profiles or island machining profiles is avoided.

The tool track generated is effective, as retraction in the direction of the tool axis is avoided as far as possible. Infeed machining in the tool axis direction is possible with this tool track.

Only given machine allowances can be used. Machining can be designed either for upcut or for downcut machining. The machining direction around the islands is controlled automatically.

tool track

Page 157: EMCO WinNC for Fanuc 31i Mill Software description, software

D77 Fanuc 31i Mill

Programming manualguide i

Tool track

Tool track

It is possible to cut into the machining profile from the inside and from the outside. If a residue that has not been cut away remains at a corner, it is possible to determine this auto-matically and cut it away.

It can be cut at any angle in the tool axis direction. This also determines the machining start point automatically.

The movement method for tool movement can be selected. However, a cutting depth on the top surface of island machining profiles can also be determined automatically.

In the following pocket machining profile, where the tool can move through the pocket, the tool is lifted off automatically, do that only the pocket area that has to be processed is machined.

If a number of cuts have to be made in the tool axis direction, each area is machined completely before another is started.

If a number of cuts have to be made in the tool axis direction, each area is machined completely before another is started.

Page 158: EMCO WinNC for Fanuc 31i Mill Software description, software

D78 Fanuc 31i Mill

Programming manualguide i

Pocketing (bottom finish) G1041

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

T Bottom thicknessMachining allowance at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

L Cut depth of radius Cut depth at the side surface (in tool radius direction)per cutting process (radius value, positive value).

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

2. POCKETING(BOTTOM FINISH)POCKET-

INGCYCLE

Page 159: EMCO WinNC for Fanuc 31i Mill Software description, software

D79 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

B Clearance of radius Distance between the pocket wall and the tool retraction position in tool radius direction (radius value, positive value).

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

X Cut depth method • [STRAIT]: Plunging in the form of a straight line.• [HELICL]: Plunging on spiral path (helix).

A* Cut angleAngle under which the tool cuts obliquely or in a spiral into the pocket. The unmachined part is viewed as 0 degrees.(In 1-degree increments, positive value).

Cycle descriptionThe bottom surface of a pocket machining profile is finished spirally. The tool track for this is the same as with pocket milling (roughing).

However, there is no infeed machining in the tool axis direction. Neither is the top surface of island machining profiles machined.

Tool track

Page 160: EMCO WinNC for Fanuc 31i Mill Software description, software

D80 Fanuc 31i Mill

Programming manualguide i

Pocketing (side finish) G1042

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

K* Side finish amount Finishing dimension at the side surface. The unmachined part is viewed as 0 degrees. (Radius value, positive value)

H* Bottom finish amountFinishing dimension at the bottom in side surface machining The unmachined part is viewed as 0 degrees. (Radius value, positive value)

F Feed rate single cutFeed speed when cutting with only one side of the cut of a shaft mill. With this feed speed, cutting takes place in the retraction process and on the face, except during on-cutting.

V Feed rate both cut Feed speed when cutting with the entire face of a shaft mill. This feed speed is used for on-cutting.

E Feed rate axis Feed speed when cutting in the tool axis direction to the bottom while machining side surfaces.

3. POCKETING(SIDE FINISH)POCKET-

INGCYCLE

Page 161: EMCO WinNC for Fanuc 31i Mill Software description, software

D81 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

P Approach type• [ARC]: The approach to the side surface takes the form ofan arc. The setting is specified as fixed and cannot be changed.

R Approach radius / -distance Radius, if [ARC] is specified.

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type • [ARC]: Retraction from the side surface takes the form of an arc.The setting is specified as fixed and cannot be changed.

X Escape radius / -distance Radius, only if [ARC] is specified.

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Cycle descriptionThe side contour of the pocket and of the island machining profile are finished. The tool track for this is the same as for contour machining (Finish-ing the side surface).

However, the specifications for the following points differ somewhat. There is no infeed ma-chining in the tool radius direction or in the tool axis direction.

Even if you should assume that the tool might collide with a pocket or island machining profile during finishing, no tool track is produced that can prevent this collision.Tool track

Page 162: EMCO WinNC for Fanuc 31i Mill Software description, software

D82 Fanuc 31i Mill

Programming manualguide i

Pocketing (chamfer) G1043

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

S Chamfer Chamfer length (radius value, positive value).

H Ejection stroke Distance between the tip of the chamfering tool and the actual cut-ting position in the tool axis direction (radius value, positive value).

F Feed rate radius Feed speed when cutting in tool radius direction

E Feed rate axis Feed speed when cutting in the tool axis direction

4. POCKETING(CHAMFER)POCKET-

INGCYCLE

Page 163: EMCO WinNC for Fanuc 31i Mill Software description, software

D83 Fanuc 31i Mill

Programming manualguide i

Detail

Data item Meaning

W Upcut / downcut

• [UP CUT]: Machining is done by upcut milling, in which the tool turns clockwise.• [DWN CUT]: Machining is done by downcut milling, in which the tool turns clockwise.

C Clearance of axisDistance between the surface of an unmachined partto be machined and the machining start point (point R)in the tool axis direction (radius value, positive value).

P Approach type• [ARC]: The approach to the side surface takes the form ofan arc. The setting is specified as fixed and cannot be changed.

R Approach radius / -distance Radius, if [ARC] is specified.

A* Approach angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value)

Q Escape type • [ARC]: Retraction from the side surface takes the form of an arc.The setting is specified as fixed and cannot be changed.

X Escape radius / -distance Radius, only if [ARC] is specified.

Y* Escape angle Centre angle of the arc, only if [ARC] is specified.The standard value is 90 degrees. (positive value).

Z Approach motion • [3 AXES]: The tool is moved from the instantaneous position to the machining start point in 3-axis synchronous mode.

Cycle descriptionThe top surface of the pocket wall is chamfered. The tool track for this is the same as with pocket milling (roughing).

Page 164: EMCO WinNC for Fanuc 31i Mill Software description, software

D84 Fanuc 31i Mill

Programming manualguide i

Page 165: EMCO WinNC for Fanuc 31i Mill Software description, software

D85 Fanuc 31i Mill

Programming manualguide i

Figure: Hole position• Random points G1210• Linear points G1211• Grid points G1213• Rectangle points G1214• Circle points G1215• Arc points G1216• A-axis hole in cylinder (arc) G1772 • A-axis hole in cylinder (free) G1773

Page 166: EMCO WinNC for Fanuc 31i Mill Software description, software

D86 Fanuc 31i Mill

Programming manualguide i

Random Points G1210

Entry fields marked with * are optional and should not be populated.

Cutting condition

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Point 1 X X-coordinates of the first drilling.

V Point 1 Y Y-coordinates of the first drilling.

A* Point 2 X X-coordinates of the second drilling.

C* Point 2 Y Y-coordinates of the second drilling.

D* Point 3 X X-coordinates of the third drilling.

E* Point 3 Y Y-coordinates of the third drilling.

F* Point 4 X X-coordinates of the fourth drilling.

I* Point 4 Y Y-coordinates of the fourth drilling.

J* Point 5 X X-coordinates of the fifth drilling.

K* Point 5 Y Y-coordinates of the fifth drilling.

M* Point 6 X X-coordinates of the sixth drilling.

P* Point 6 Y Y-coordinates of the sixth drilling.

Q* Point 7 X X-coordinates of the seventh drilling.

R* Point 7 Y Y-coordinates of the seventh drilling.

S* Point 8 X X-coordinates of the eighth drilling.

T* Point 8 Y Y-coordinates of the eighth drilling.

1. XY RANDOM POINTSHOLEPOSITIONFIGURE

Instructions:Values should not be entered for all drilling positions. However, if an entry is made, both X and Y coordinates should be entered as a pair for a drilling position.

Page 167: EMCO WinNC for Fanuc 31i Mill Software description, software

D87 Fanuc 31i Mill

Programming manualguide i

Page 168: EMCO WinNC for Fanuc 31i Mill Software description, software

D88 Fanuc 31i Mill

Programming manualguide i

Linear Points (same interval) G1211

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

A* Angle Angle of a straight line to the X-axis (initial value = 0).

D Hole position type

• [LENGTH]: Gives the distance between the first and last drilling and the number of drillings.• [PITCH]: Gives the distance between two adjacent drillings and the number of drillings.

E Length / Pitch

• [LENGTH]: Distance between the first and last drillings (if [LENGTH] is selected for point D). • [PITCH]: Distance between two adjacentdrillings (if [PITCH] is selected for point D).

C Number of hole Number of drillings

2. XY LINEAR POINTS(SAME INTERVAL)HOLE

POSITIONFIGURE

Instructions:It is unnecessary to enter a value for a drainage position.This applies also for cycles G1213 to G1216.

Skip

Data item Meaning

F* Omitting point 1 Point at which no hole is drilled (1)

I* Omitting point 2 Point at which no hole is drilled (2)

J* Omitting point 3 Point at which no hole is drilled (3)

K* Omitting point 4 Point at which no hole is drilled (4)

Page 169: EMCO WinNC for Fanuc 31i Mill Software description, software

D89 Fanuc 31i Mill

Programming manualguide i

XY Grid points G1213

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

U Length for X-axis Length of the first side of the grid (positive value).

W Length for Y-axis Length of the second side of the grid (positive value).

I Number for X-axis Number of drillings on the first side of the grid (positive value).

J Number for Y-axis Number of drillings on the second side of the grid(positive value).

K Angle for X-axis Angle of the first side of the grid (positive value). (Initial value = 0).

M Angle for Y-axis Angle of the second side of the grid (positive value). (Initial value = 90).

3. XY GRID POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

A* Omitting point 1 Point at which no hole is drilled (1)

C* Omitting point 2 Point at which no hole is drilled (2)

D* Omitting point 3 Point at which no hole is drilled (3)

E* Omitting point 4 Point at which no hole is drilled (4)

Page 170: EMCO WinNC for Fanuc 31i Mill Software description, software

D90 Fanuc 31i Mill

Programming manualguide i

XY Rectangle points G1214

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Start point X X-coordinates of the start point (first drilling) on a straight line.

V Start point Y Y-coordinates of the start point (first drilling) on a straight line.

U Length for X-axis Length of the first side of the grid (positive value).

W Length for Y-axis Length of the second side of the grid (positive value).

I Number for X-axis Number of drillings on the first side of the grid (positive value).

J Number for Y-axis Number of drillings on the second side of the grid(positive value).

K Angle for X-axis Angle of the first side of the grid (positive value). (Initial value = 0).

M Angle for Y-axis Angle of the second side of the grid (positive value). (Initial value = 90).

4. XY RECTANGLE POINTSHOLE

POSITIONFIGURE

Skip

Data item Meaning

A* Omitting point 1 Point at which no hole is drilled (1)

C* Omitting point 2 Point at which no hole is drilled (2)

D* Omitting point 3 Point at which no hole is drilled (3)

E* Omitting point 4 Point at which no hole is drilled (4)

Page 171: EMCO WinNC for Fanuc 31i Mill Software description, software

D91 Fanuc 31i Mill

Programming manualguide i

XY Circle points G1215

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Centre point X X-coordinates of the centre of the circle

V Centre point Y Y-coordinates of the centre of the circle

R Radius Radius of the circle (positive value).

A Start point angle Centre angle to the X-axis of the first drilling(positive or negative value) (initial value = 0).

C Number of hole Number of drillings (positive value).

5. XY CIRCLE POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

D* Omitting point 1 Point at which no hole is drilled (1)

E* Omitting point 2 Point at which no hole is drilled (2)

F* Omitting point 3 Point at which no hole is drilled (3)

I* Omitting point 4 Point at which no hole is drilled (4)

Page 172: EMCO WinNC for Fanuc 31i Mill Software description, software

D92 Fanuc 31i Mill

Programming manualguide i

XY Arc points (same interval) G1216

Entry fields marked with * are optional and should not be populated.

Hole position

Data item Meaning

B Base position Z Z-coordinates of the workpiece surface.

H Centre point X X-coordinates of the centre of the circle

V Centre point Y Y-coordinates of the centre of the circle

R Radius Radius of the arc (positive value).

A Start point angle Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

C Pitch angle Centre angle between two sequential drillings(positive or negative value).

D Number of hole Number of drillings (positive value).

6. XY ARC POINTSHOLEPOSITIONFIGURE

Skip

Data item Meaning

E* Omitting point 1 Point at which no hole is drilled (1)

F* Omitting point 2 Point at which no hole is drilled (2)

I* Omitting point 3 Point at which no hole is drilled (3)

J* Omitting point 4 Point at which no hole is drilled (4)

Page 173: EMCO WinNC for Fanuc 31i Mill Software description, software

D93 Fanuc 31i Mill

Programming manualguide i

XA A-axis Hole Arc G1772

Entry fields marked with * are optional and are not required to be pop-ulated.

Machining Hole Position

Data element Meaning

B Basis position Z Z-coordinates of the work piece surface.

Z X-axis position radius X-coordinate of the hole position (positive value).

A Start point angle Centre angle to the X-axis of the first hole (positive or negative value) (initial value = 0).

7. A AXIS HOLE ON CYLIN-DER (ARC POINTS)HOLE

POSITIONFIGURE

Machining Outlet Position

Data element Meaning

C Pitch angle Centre angle between two sequential drillings(positive or negative value).

M Number of holes Number of holes (positive value).

Page 174: EMCO WinNC for Fanuc 31i Mill Software description, software

D94 Fanuc 31i Mill

Programming manualguide i

XA A-axis Hole Free G1773

Entry fields marked with * are optional and are not required to be pop-ulated.

8. A AXIS HOLE ON CYLIN-DER (RANDOM POINTS)HOLE

POSITIONFIGURE

Machining Hole Position

Data element Meaning

B Basis position Z Z-coordinates of the work piece surface.

H X-axis position 1 X-coordinates of the first hole.

V A-axis position 1 A-coordinate of the first hole.

A* X-axis position 2 X-coordinate of the second hole.

C* A-axis position 2 A-coordinate of the second hole.

D* X-axis position 3 X-coordinates of the third hole.

E* A-axis position 3 A-coordinate of the third hole.

F* X-axis position 4 X-coordinate of the fourth hole.

I* A-axis position 4 A-coordinate of the fourth hole.

J* X-axis position 5 X-coordinates of the fifth hole.

K* A-axis position 5 A-coordinate of the fifth hole.

M* X-axis position 6 X-coordinates of the sixth hole.

P* A-axis position 6 A-coordinate of the sixth hole.

Q* X-axis position 7 X-coordinates of the seventh hole.

R* A-axis position 7 A-coordinate of the seventh hole.

S* X-axis position 8 X-coordinates of the eighth hole.

T* A-axis position 8 A-coordinate of the eights hole.

Page 175: EMCO WinNC for Fanuc 31i Mill Software description, software

D95 Fanuc 31i Mill

Programming manualguide i

Figure: Front Surface Contour• Square G1220

Page 176: EMCO WinNC for Fanuc 31i Mill Software description, software

D96 Fanuc 31i Mill

Programming manualguide i

Page 177: EMCO WinNC for Fanuc 31i Mill Software description, software

D97 Fanuc 31i Mill

Programming manualguide i

XY Square facing G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [FACE]: used as contour in plane machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE FACINGFACINGFIGUREFIGURE

Page 178: EMCO WinNC for Fanuc 31i Mill Software description, software

D98 Fanuc 31i Mill

Programming manualguide i

Page 179: EMCO WinNC for Fanuc 31i Mill Software description, software

D99 Fanuc 31i Mill

Programming manualguide i

Figure: Contouring figure• Square G1220 convex• Circle G1221 convex• Track G1222 convex• Polygon G1225 convex• Free figure• XA plane free convex figure for cylinder G1700• Square G1220 concave• Circle G1221 concave• Track G1222 concave• Polygon G1225 concave• Free concave figure• XA plane free concave figure for cylinder G1700• Free open figure• XA plane free open figure for cylinder G1700

Page 180: EMCO WinNC for Fanuc 31i Mill Software description, software

D100 Fanuc 31i Mill

Programming manualguide i

XY Square convex G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE CONVEXCONT.FIGUREFIGURE

Page 181: EMCO WinNC for Fanuc 31i Mill Software description, software

D101 Fanuc 31i Mill

Programming manualguide i

XY Circle convex G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

2. XY CIRCLE CONVEXCONT.FIGUREFIGURE

Page 182: EMCO WinNC for Fanuc 31i Mill Software description, software

D102 Fanuc 31i Mill

Programming manualguide i

XY Track convex G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X Y-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

3. XY TRACK CONVEXCONT.FIGUREFIGURE

Page 183: EMCO WinNC for Fanuc 31i Mill Software description, software

D103 Fanuc 31i Mill

Programming manualguide i

XY Polygon convex G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONVEX]: used as outside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

4. XY POLYGON CONVEXCONT.FIGUREFIGURE

Corner information

Data item Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius Only for chamfer or arc

Page 184: EMCO WinNC for Fanuc 31i Mill Software description, software

D104 Fanuc 31i Mill

Programming manualguide i

XY Free figure convex

Entry fields marked with * are optional and should not be populated.

5. XY FREE FIGURECONVEXCONT.

FIGUREFIGURE

Startpoint insert

Data item Meaning

T Figure type • [CONVEX]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Instructions:INPUT DATA are elements that are displayed when changing or editing in the data input window. This applies for cycles G1201 to G1206.

Instructions:OUTPUT DATA are elements that are dis-played in ISO code format as the generated program in the program window. You can call these up only for program display purposes. This applies also for cycles G1201 to G1206.

Page 185: EMCO WinNC for Fanuc 31i Mill Software description, software

D105 Fanuc 31i Mill

Programming manualguide i

Overview of the input elements for free contour programming

1 2 3 4 5 6 77

8 9

1 Input elements: Line, arc, radius, chamfer

2 Change contour element

3 Delete contour element

4 Recalculate contour data

5 Generate contour

6 Cancel input

7 Expansion buttons

8 Zoom graphic display in and out

9 Move graphic display

Page 186: EMCO WinNC for Fanuc 31i Mill Software description, software

D106 Fanuc 31i Mill

Programming manualguide i

Element data input

Data item Meaning

D Line direction

The line direction is selected by means of a softkey in the toolbar.• [RIGHT]:• [R-UP]:• [UP]:• [L-UP]:• [LEFT]:• [L-DOWN]:• [DOWN]:• [R-DOWN]:

X* End point X X-coordinates of the line end point.

Y* End point Y Y-coordinates of the line end point.

A* Angle Angle of the straight line

L Last connection• [TANGNT]: Contact with the immediately preceding contour.• [NO SET]: No contact with the immediately preceding contour (initial value).

M Next connection • [NO SET]:No contact with the immediately preceding contour (initial value).

Input items of line (XY plane) G1201

Entry fields marked with * are optional and should not be populated.

Page 187: EMCO WinNC for Fanuc 31i Mill Software description, software

D107 Fanuc 31i Mill

Programming manualguide i

Entry fields marked with * are optional and should not be populated.

Element data input

Data item Meaning

X* End point X X-coordinates of an arc endpointIncremental dimension programming is possible.

Y* End point Y Y-coordinates of an arc endpointIncremental dimension programming is possible.

R* Radius Radius of curvature

CX* Centre point CX X-coordinates of the centre of the arc

CY* Centre point CY Y-coordinates of the centre of the arc

L Last connection • [TANGNT]: Contact with the immediately preceding contour.• [NO SET]: No contact with the immediately preceding contour.

M Next connection • [NO SET]:No contact with the immediately preceding contour (initial value).

U Route type • [SHORT]: An arc with a long route is generated.• [LONG]: An arc with a short route is generated.

Input items for arc (XY plane) G1202, 1203

Page 188: EMCO WinNC for Fanuc 31i Mill Software description, software

D108 Fanuc 31i Mill

Programming manualguide i

Entry fields marked with * are optional and should not be populated.

Entry fields marked with * are optional and should not be populated.

Element data input

Data item Meaning

C Chamfer Chamfer, positive value

Element data input

Data item Meaning

R Corner radius Radius value, positive value

Input items of corner (XY plane) G1205

Input items of chamfer (XY plane) G1204

Page 189: EMCO WinNC for Fanuc 31i Mill Software description, software

D109 Fanuc 31i Mill

Programming manualguide i

Input items of end of arbitrary figures G1206

Close contour• Press softkey.

A dialogue with 2 selections pops up:

• Insert into the current program

• Save as a separate subroutine With this option, you can also select the folder

in which the subroutine is to be saved.

• Enter the next figure This softkey opens the contour editor input

mask. Other free contours can be created.

• «OK» closes the input.

CREATE

NXTFIG

OK

Page 190: EMCO WinNC for Fanuc 31i Mill Software description, software

D110 Fanuc 31i Mill

Programming manualguide i

Symbol representation of the contour elementsContour element Symbol Meaning

Start point Start point of the figure

Straight upStraight down

Straight line in 90° grid

Straight leftStraight right

Straight line in 90° grid

Straight line anywhere

Straight line with arbitrary pitch

Curve rightCurve left Arc

Radius

Chamfer

Instructions:The end of a contour is not a contour element, therefore there is no symbol for it.

Page 191: EMCO WinNC for Fanuc 31i Mill Software description, software

D111 Fanuc 31i Mill

Programming manualguide i

Page 192: EMCO WinNC for Fanuc 31i Mill Software description, software

D112 Fanuc 31i Mill

Programming manualguide i

XA plane free convex figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

6. XA PLANE FREE CONVEX FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Note:For more instructions how to create a free conture, see also «XY square concave G1220».

Start point

Element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 193: EMCO WinNC for Fanuc 31i Mill Software description, software

D113 Fanuc 31i Mill

Programming manualguide i

XY Square concave G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

7. XY SQUARE CONCAVECONT.FIGUREFIGURE

Page 194: EMCO WinNC for Fanuc 31i Mill Software description, software

D114 Fanuc 31i Mill

Programming manualguide i

XY Circle concave G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

8. XY CIRCLE CONCAVECONT.FIGUREFIGURE

Page 195: EMCO WinNC for Fanuc 31i Mill Software description, software

D115 Fanuc 31i Mill

Programming manualguide i

XY Track concave G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X Y-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

9. XY TRACK CONCAVECONT.FIGUREFIGURE

Page 196: EMCO WinNC for Fanuc 31i Mill Software description, software

D116 Fanuc 31i Mill

Programming manualguide i

XY Polygon concave G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Data item Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

10. XY POLYGON CON-CAVECONT.

FIGUREFIGURE

Corner information

Data item Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius Only for chamfer or arc.

Page 197: EMCO WinNC for Fanuc 31i Mill Software description, software

D117 Fanuc 31i Mill

Programming manualguide i

XY Free concave figure

Entry fields marked with * are optional and should not be populated.

11. XY FREE CONCAVE FIGURECONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 198: EMCO WinNC for Fanuc 31i Mill Software description, software

D118 Fanuc 31i Mill

Programming manualguide i

Note:Description for the input elements see «Free figure convex».

XA plane free concave figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

12. XA PLANE FREE CONCAVE FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [OPEN]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Page 199: EMCO WinNC for Fanuc 31i Mill Software description, software

D119 Fanuc 31i Mill

Programming manualguide i

XY Free open figure

Entry fields marked with * are optional and should not be populated.

13. XY FREE OPEN FIGURECONT.

FIGUREFIGURE

Start point

Element Meaning

T Figure type • [OPEN]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position Z Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

P Cutting area • [RIGHT]: right side• [LEFT]: left side

Note:Description for the input elements see «Free figure convex».

Page 200: EMCO WinNC for Fanuc 31i Mill Software description, software

D120 Fanuc 31i Mill

Programming manualguide i

XA plane free open figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

14. XA PLANE FREE OPEN FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

P Cutting area • [RIGHT]: right side• [LEFT]: left side

Note:Description for the input elements see «Free figure convex».

Page 201: EMCO WinNC for Fanuc 31i Mill Software description, software

D121 Fanuc 31i Mill

Programming manualguide i

Figure: Pocket figure• Square concave G1220• Circle concave G1221• Track concave G1222• Polygon concave G1225• Free concave figure• XA plane free open figure for cylinder G1700

Page 202: EMCO WinNC for Fanuc 31i Mill Software description, software

D122 Fanuc 31i Mill

Programming manualguide i

XY Square concave G1220

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

U Length for X-axis Side length in X-axis direction(Radius value, positive value)

W Length for Y-axis Centre angle to the X-axis of the first drilling (positive or negative value) (initial value = 0).

R* Corner radius Radius for corner rounding (radius value, positive value).

A* Angle Gradient of a rectangular contour to the X-axis(positive or negative value).

1. XY SQUARE CONCAVEPOCKET

FIGUREFIGURE

Page 203: EMCO WinNC for Fanuc 31i Mill Software description, software

D123 Fanuc 31i Mill

Programming manualguide i

XY Circle concave G1221

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a circular contour.

V Centre point Y Y-coordinates of the centre point of a circular contour.

R Radius Radius of a circular contour (radius value, positive value)

2. XY CIRCLE CONCAVEPOCKETFIGUREFIGURE

Page 204: EMCO WinNC for Fanuc 31i Mill Software description, software

D124 Fanuc 31i Mill

Programming manualguide i

XY Track concave G1222

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of the left semicircle.

V Centre point Y Y-coordinates of the centre point of the left semicircle.

U Between distance Distance between the centre points of the right andleft semicircles (radius value, positive value).

R Radius Radius of the left and right semicircles(Radius value, positive value)

A* Angle Gradient of an oval contour to the X-axis (positive or negative value)

3. XY TRACK CONCAVEPOCKETFIGUREFIGURE

Page 205: EMCO WinNC for Fanuc 31i Mill Software description, software

D125 Fanuc 31i Mill

Programming manualguide i

XY Polygon concave G1225

Entry fields marked with * are optional and should not be populated.

Position / Size

Element Meaning

T Figure type • [CONCAV]: used as inside contour for contour machining or as contour for pocket milling.

B Base position Z Z-coordinates of the final surface when plane machining(in the tool axis direction).

L Height / Depth

If the top surface of a workpiece is selected as BASISPOSITION, the distance to the bottom surface of the side is given as a negative value (radius value). → DepthIf the bottom surface of a workpiece is selected as BASISPOSITION, the distance to the top surface of theworkpiece is given as a positive value (radius value). → Height

H Centre point X X-coordinates of the centre point of a rectangular contour.

V Centre point Y Y-coordinates of the centre point of a rectangular contour.

E Number of angle Number of edges, positive integer between 3 and 99.

U Input type of size• [RADIUS]: Radius• [LENGTH]: Edge length• [WIDTH]: Key width

W Polygon radius, U1 Dependent on U

A* Angle Gradient of a straight line which connects an apex and the centre point relative to the 1st axis.

4. XY POLYGON CONCAVEPOCKET

FIGUREFIGURE

Corner information

Element Meaning

C Corner type• [NOTHIN]:• [CHAMFR]:• [ARC]:

R* Corner size Chamfer radius

Page 206: EMCO WinNC for Fanuc 31i Mill Software description, software

D126 Fanuc 31i Mill

Programming manualguide i

XY Free concave figure

Entry fields marked with * are optional and should not be populated.

5. XY FREE CONCAVE FIGUREPOCKET

FIGUREFIGURE

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Note:Description for the input elements see «Free figure convex».

Page 207: EMCO WinNC for Fanuc 31i Mill Software description, software

D127 Fanuc 31i Mill

Programming manualguide i

Insert startpoint

Data element Meaning

T Figure type • [CONCAV]: is specified and cannot be changed.

X Start point X X-coordinates of the contour startpoint.

Y Start point Y Y-coordinates of the contour startpoint.

Z Base position (Z) Position of the machining surface for any contour.

D Height / Depth Height of depth of the basis position to the cut surface

Note:Description for the input elements see «Free figure convex».

XA plane free concave figure for cylinder G1700

Entry fields marked with * are optional and should not be populated.

6. XA PLANE FREE CONCAVE FIGURE FOR CYLINDERCONT.

FIGUREFIGURE

Page 208: EMCO WinNC for Fanuc 31i Mill Software description, software

D128 Fanuc 31i Mill

Programming manualguide i

Page 209: EMCO WinNC for Fanuc 31i Mill Software description, software

D129 Fanuc 31i Mill

Programming manualguide i

Subroutines

Fixforms

FIXFRM

M-code menuM-CODE

Page 210: EMCO WinNC for Fanuc 31i Mill Software description, software

D130 Fanuc 31i Mill

Programming manualguide i

Sub-routinesFIGURE

SUB-ROUTINE

3 Set the cursor on the subroutine to be selected and open it for machining with the «SELECT» softkey.

4 The register card «SUBROUTINE» lists all cur-rent subroutines that are stored in the directory for the currently open program.

5 A list of programs is shown in a communal fold-er:

CNC_MEM/USER/LIBRARY

6 The softkey «VIEW» shows a preview of the suprogram. Press the softeky again to turn off the preview.

SELECT

CUR F

COM F

VIEW

2 Press softkey and register card

SUB-ROUTINEFIGURE

1 Select «Edit» mode.

Programming

M98 Call subroutineM99 Jump back to the calling program

Example

M98 P1234

Page 211: EMCO WinNC for Fanuc 31i Mill Software description, software

D131 Fanuc 31i Mill

Programming manualguide i

Frequently recurring machining processes can be saved as fixed form and inserted in the NC program.This method saves the user repeated entry of the same machining processes.

Fixed forms

1 Select «Edit» mode.

2 Press softkey.

The predefined fixed forms can be selected by means of the register cards FORM1 to FORM5.

FIXFRM

3 Select the desired Fixform with «INSERT» and insert it into the program.

INSERT

Page 212: EMCO WinNC for Fanuc 31i Mill Software description, software

D132 Fanuc 31i Mill

Programming manualguide i

Creating fixed forms

1 Press softkey «SETING» to open editor for fixed forms.

SETING

4 Press the softkey to create a new fixed form or to process an existing fixed form.

NEW ALTER

5 Press softkey to delete a fixed form.

DELETE

Note:• The fixed form set menu displayed under the

tab «FORM 1» has the same content as the menu displayed under «START».

• The fixed form set menu displayed under the tab «FORM 5» has the same content as the menu displayed under «END».

2 Press «SELECT» to open a pre-defined block for turning or milling.

SELECT

3 Press «CANCEL» to leave the settings menu.

CANCEL

Note:Fixed forms can be created in all operating modes.

Page 213: EMCO WinNC for Fanuc 31i Mill Software description, software

D133 Fanuc 31i Mill

Programming manualguide i

6 Enter or change registration name.

7 Enter or change registration set.

8 Save pre-defined block on external memory card or upload it.

9 Press softkey to open dialogue for saving or uploading.

OUTPUT INPUT

When the special character «?» appears in the parts program, the operator is requested to enter defined data.

11 «TO MNU» Return to the selection of a pre-de-fined block.TO MNU

10 The softkey «STAND.» performs a reset of the fixed forms to the condition after the software installation (corresponds to the condition pre-set by the factory).

Fixed form sets that have been entered or al-tered will be deleted or reset.

STAND.

Example: Tool change for milling

(TOOL CHANGE) T???? M6 (?);G0 G90 G? X? Y? S? M3;

Page 214: EMCO WinNC for Fanuc 31i Mill Software description, software

D134 Fanuc 31i Mill

Programming manualguide i

M-code menu

1 Select «Edit» mode.

2 Open M-code menu.

Select the desired M-code with the cursor keys.M-CODE

3 Pressing the «INSERT» softkey inserts the se-lected M-code into the program directly after the cursor position.

4 Pressing the «INS+;» softkey inserts an End of Block (EOB) directly after the M-code.

If several sequential M-codes are inserted in a block, press the «INS +;» softkey to close the entry.

INSERT

INS+;

Page 215: EMCO WinNC for Fanuc 31i Mill Software description, software

E1 Fanuc 31i Mill

G code proGramminG

E: G code programming

Instructions:This programming manual describes all functions that can be executed with WinNC.Depending on the machine you are operating with WinNC, not all functions may be available.

Example:The Concept MILL 55 milling machine has no position-controlled main spindle, so it is also not pos-sible to program spindle positions.

OverviewM-commands

M00 Programmed stopM01 Optional stop

M02 End of program

M03 Spindle ON clockwiseM04 Spindle ON counterclockwiseM05 Spindle stop

M06 Perform tool change

M07 Minimal lubrication ONM08 Coolant ONM09 Coolant OFF, minimal lubrication OFF

M10 Divider clamp onM11 Slacken divider clamping

M25 Open clamping deviceM26 Close clamping deviceM27 Swivel dividerM29 Thread tapping without compensation

chuck

M30 End of main program

M51 C-axis mode activationM52 C-axis mode deactivation

M71 Exhaust ONM72 Exhaust OFF

M98 Call subroutineM99 Jump back to calling program

Page 216: EMCO WinNC for Fanuc 31i Mill Software description, software

E2 Fanuc 31i Mill

G code proGramminG

Command MeaningAND Logical AND linkDIV Integer divisionDO Loop constructEND Loop constructEQ EqualFUP Round upGE Greater than or equal toGT Greater thanGOTO Loop constructIF Loop constructLT Less thanLE Less than or equal toNE Not equal toOR Logical OR linkPOW PowerTHEN Loop constructWHILE Loop constructXOR Exclusive OR

Command abbreviations overviewPart 1 valid for turning and milling

Page 217: EMCO WinNC for Fanuc 31i Mill Software description, software

E3 Fanuc 31i Mill

G code proGramminG

Command Meaning[, ], *, /, +, -, = Calculation functionsSIN() Sine functionCOS() Cosine functionTAN() Tangent functionASIN() Arc sine functionACOS() Arc cosine functionATAN() Arc tangent function (value)ATAN2(,) Arcurod function (X-section, Y-section)SQRT() Square root functionEXP() Exponential function (base e)LN() Natural logarithmic functionABS() Absolute functionRND() Rounding functionMOD() Modulo functionFIX() DetachROUND Round down

Calculation operators for NC program

Page 218: EMCO WinNC for Fanuc 31i Mill Software description, software

E4 Fanuc 31i Mill

G code proGramminG

Overview of machine G-commands

G-code Group Meaning

G00

01

Rapid traverse

G01 Straight interpolation

G02 Circular interpolation/clockwise

G03 Circular interpolation/counterclockwise

G04

00

Dwell time

G09 Precision stop (block-by-block)

G10 Data setting

G1517

End polar coordinates command

G16 Polar coordinates command

G17

02

XY plane selection

G18 ZX plane selection

G19 YZ plane selection

G2006

Switch to imperial (inches) input

G21 Switch to metric input

G40

07

End mill radius compensation

G41 Left mill radius compensation

G42 Right mill radius compensation

G43

08

Tool length offset plus

G44 Tool length offset minus

G49 Tool length offset end

G5011

End scaling

G51 Scaling

G50.122

End programmable axis mirroring

G51.1 Programmable axis mirroring

G520

Additive zero point offset programming

G53 Zero point offset suppression

G54

14

Workpiece coordinates system 1 selection

G55 Workpiece coordinates system 2 selection

G56 Workpiece coordinates system 3 selection

G57 Workpiece coordinates system 4 selection

Page 219: EMCO WinNC for Fanuc 31i Mill Software description, software

E5 Fanuc 31i Mill

G code proGramminG

G5814

Workpiece coordinates system 5 selection

G59 Workpiece coordinates system 6 selection

G6115

Precision stop (effective modally)

G64 Path control operation

G65 00 Macro call

G6612

Modal macro call

G67 End modal macro call

G68 16 Rotate coordinates system

G73

09

Deep hole boring with chip breaking

G74 Left-hand thread cutting cycle

G76 Fine boring cycle

G80 End fixed cycle

G81 Boring cycle (modal)

G82 Boring cycle with dwell time

G83 Deep hole boring with chip removal

G84 Right-hand thread cutting cycle

G85 Boring cycle with withdrawal (in feed)

G89 Boring cycle with dwell time and withdrawal

G90 Absolute dimension programming

G91 Incremental dimension programming

G9410

Feed in mm/min

G95 Feed in mm/revolution

Code Grp. A Group Meaning

Page 220: EMCO WinNC for Fanuc 31i Mill Software description, software

E6 Fanuc 31i Mill

G code proGramminG

Page 221: EMCO WinNC for Fanuc 31i Mill Software description, software

E7 Fanuc 31i Mill

G code proGramminG

This description is an extract from the programming instructions for the WinNC for Fanuc 31i controller and is considered in first line as a pro-gramming aid.

Brief description of G-commands

G00 Rapid traverse

FormatN…. G00 X… Y… Z…

The carriages are traversed at maximum speed to the programmed objective (tool change position, start point for the next machining process).

Notes

• A programmed carriage feed F is suppressed during G00.

• The rapid traverse speed is set to fixed.

• The feed offset switch is limited to 100%.

Example

absolute G90N40 G00 X70 Y86,5N50 G00 X40 Y56

incremental G91N40 G00 X70 Y86.5N50 G00 G91 X-30 Y-30.5

Absolute and incremental dimensional data

+X

-X

56

30

30,5

40

-Y

+Y

Page 222: EMCO WinNC for Fanuc 31i Mill Software description, software

E8 Fanuc 31i Mill

G code proGramminG

Entering chamfers and radii

Format….N… G01 X… Y… ,C/,RN… G01 X… Y…

Notes

• Programming chamfers and radii is possible only for the active plane in each case. What fol-lows defines the programming for the XY plane (G17).

• The movement which is programmed in the second block must begin with point b in the diagram. With incremental programming, the distance from point b must be programmed.

• In individual block mode, the tool stops first at point c and then at point d.

The following situations cause an error message: • If the travel in one of the two blocks G00/G01 is

so small that no intersection point was gener-ated when the chamfer or radius was entered, error message no. 55 is generated.

• If no G00/G01 command is programmed in the second block, error message no. 51 or 52 is generated

Entering chamfers and radii

G01 Straight interpolation

FormatN… G01 X… Y… Z… F…

Straight line movement with programmed feed speed.Example

absolute G90N.. G94…..N10 G00 X20 Y46N20 G01 X40 Y20.1 F200

incremental G91N.. G94 F200…..N10 G00 X20 Y46N20 G01 G91 X20 Y-25.9

Absolute and incremental values for G01

+X

-X

20,1

40

-Y

+Y

20

25,9

S

E

S.. StartpointE.. Endpoint

+Y530

+X

270

,R 6

,C 3

860

565

d

b c

Page 223: EMCO WinNC for Fanuc 31i Mill Software description, software

E9 Fanuc 31i Mill

G code proGramminG

Commands Tool movements

1

X2… (Y2…) ,A…

Direct drawing dimension input

X , 1 1

A

X

X / 2 2Y Y

Y

Notes

• Missing intersection points must not be calcu-lated.Angles (,A), chamfers (,C) and radii (,R) can be programmed directly into the program.The block after a block with C or R, must be a block with G01.Programming a chamfer is only possible with the comma symbol «,C», otherwise an error message appears because of unauthorized use of the C-axis.

• Input of angles (,A) is possible only with the comfort programming option.

• The following G-commands should not be used for blocks with chamfer or radius:

G-commands in Group 00:G7.1, G10, G11,G52, G53,G73, G74, G76, G77, G78

G-commands in Group 01:G02, G03, G-commands in Group 06:G20, G21

• These must not be used between blocks with chamfer or radius which define the sequence numbers.

Page 224: EMCO WinNC for Fanuc 31i Mill Software description, software

E10 Fanuc 31i Mill

G code proGramminG

Page 225: EMCO WinNC for Fanuc 31i Mill Software description, software

E11 Fanuc 31i Mill

G code proGramminG

Helical interpolation

Normally, only two axes are given for a circle and these also determine the planes in which the circle is.

If a third, vertical axis is given, the movements of the axis carriages are coupled in such a way that a helical line results.The programmed feed speed is not observed on the actual path, but on the circular (projected) path. The third axis, moved in a straight line, is also controlled so that it reaches the end point at the same time as the axes moved in a circle.

G02 Circular interpolation, clockwise

G03 Circular interpolation, counterclockwise

FormatN… G02 X… Y… Z… I… J… K… F…orN… G02 X… Y… Z… R… F…

X,Y, Z, ……. End point of the arc

I,J, K………. Incremental circular parameter (Distance from start point to the

centre of the circle, I is assigned to the X-axis, J to the Y-axis, K to the Z-axis)

R …………… Radius of the arc Circle < semicircle for +R, > semicir-

cle for -R, can be given instead of the parameters I, J, K.

The tool is moved along the defined arc to the objective with the feed programmed under F.

Notes

• You can only run a circular interpolation in the active plane.

• If I, J or K are equal to 0, the relevant parame-ters must not be given. The turning direction for G02, G03 is always considered vertically on the active plane.

G02 and G03 turning directions

Helical curve

G02

G03

G02G03

G17

Z

X Y

G19

G02

G03

G18

S

E

M

R

J

f

Z

X Y

Page 226: EMCO WinNC for Fanuc 31i Mill Software description, software

E12 Fanuc 31i Mill

G code proGramminG

G04 Dwell timeFormatN G04 X [sec]orN G04 P [msec]

The tool is held for the time defined under X or P (in the last position reached) — sharp edges — clean transfers, mill base, precise stop.

Notes• A decimal point cannot be used with the address

P.

• The dwell time begins after the feed speed has reached that of the preceding block «NULL».

ExamplesN75 G04 X2.5 (dwell time = 2.5 sec)N95 G04 P1000 (dwell time = 1 sec = 1000 msec)

G09 Precision stop (block-by-block)FormatN G09

A block will only be processed if the carriages are braked to a stop.In this way the corners will not be rounded and precise transitions achieved.G09 is effective block-by-block

Precision stop active Precision stop not active

Page 227: EMCO WinNC for Fanuc 31i Mill Software description, software

E13 Fanuc 31i Mill

G code proGramminG

G17-G19 Plane selection

Format N.. G17/G18/G19

G17 to G19 determine the planes in which circular interpolation and polar coordinate interpolation can be executed and in which the mill radius offset can be calculated.

The tool offset is executed in the vertical axis on the active plane.

G17 XY planeG18 ZX planeG19 YZ plane

Linear axis

Planes in the workspace

G20 Dimensional data in inches

FormatN.. G20

The G20 programming converts the following data into the imperial measurement system:• Feed F [mm/min, inches/min, mm/rev, inches/

rev]• Offset values (NPV, geometry and wear) [mm,

inches• Traverses [mm, inches]• Current position indication [mm, inches]• Cutting speed [m/min, feet/min]

G21 Dimensional data in milli-metres

FormatN.. G21

Comments and instructions similar to those for G20.

Page 228: EMCO WinNC for Fanuc 31i Mill Software description, software

E14 Fanuc 31i Mill

G code proGramminG

+X

-X

-Y

+YX, Y, Z

(1)

(2)

(1) (2)

Return to reference point

Initialize (move to intermediate position)

Return to reference point

G28 Return to reference point

FormatN… G28 X… Y.. Z…

X, Y, Z, Absolute intermediate coordinates

The G28 command is used to approach the refe-rence point via an intermediate position (X, Y, Z).First the movement to X, Y and Z, then movement to the reference point.

Both movements with G0.

The movement to the intermediate position can be programmed incrementally:

G-Code group B/CG91 G28 X10 Y10 Z10G90

Page 229: EMCO WinNC for Fanuc 31i Mill Software description, software

E15 Fanuc 31i Mill

G code proGramminG

G40 Deselection mill radius off-set

G40 deselects mill radius offset.Deselection is possible only in connection with a straight-line traverse movement (G00, G01).G40 can be programmed in the same block as G00 or G01 or in the preceding block.G40 is usually defined in the withdrawal to the tool change point.

Definition of G41 Mill radius correction left

Radius offset tool path

Definition of G42 Mill radius correction right

G42 Mill radius offset right

If the tool (viewed in the feed direction) is to the right of the contour to be machined, G42 must be programmed.

For instructions see G41!

G41 Mill radius offset left

If the tool (viewed in the feed direction) is to the left of the contour to be machined, G41 must be programmed.So that a radius can be calculated, when selecting the mill radius offset, you must state a D param-eter from the table: Tool correction => TOOL RADIUS OFFSET gaps => GEOMETRY AND WEAR which equals the mill radius, e.g. N.. G41 D..

Notes• A direct switch between G41 and G42 is not

allowed — prior deselection with G40.• Approach in connection with G00 or G01 re-

quired.• The mill radius data is essential, the H param-

eter is effective only until it is deselected with H0 or a different H parameter is programmed.

Mill radius offsetIf mill radius offset is used, a parallel contour path will be calculated by the controller automatically and the mill radius compensated in this way.

Page 230: EMCO WinNC for Fanuc 31i Mill Software description, software

E16 Fanuc 31i Mill

G code proGramminG

R

G40G42

Approach or move away from a corner point from the front

Approach or move way from the side to the rear

Approach or move away from a corner point from behind

For arcs, you always approach on the tangents in the circle start/end point.The approach path to the contour and the path away from the contour must be greater than the mill radius R, otherwise the program will stop with an alarm.If contour elements are less than the mill radius R, contour infringements can occur.

Programmed tool path Actual tool path

Tool paths when selecting/deselecting mill radius offset

RG42

G40

R

G42

G40

Page 231: EMCO WinNC for Fanuc 31i Mill Software description, software

E17 Fanuc 31i Mill

G code proGramminG

Tool path at an inside corner Tool path at an outside corner > 90°

Tool path at an outside corner < 90°

Programmed tool path Actual tool path

R

G42

R

G41

Tool paths in the program sequence with mill radius offset

For arcs, you always approach on the tangents in thecircle start/end point.

If contour elements are less than the mill radius R, contour infringements can occur.

RG42

G41

R

R

G42

G41

Page 232: EMCO WinNC for Fanuc 31i Mill Software description, software

E18 Fanuc 31i Mill

G code proGramminG

G43 Tool length offset positiveG44 Tool length offset negative

FormatN.. G43/G44 H..

G43 and G44 can call up a value from the offsetregister (GEOMT) and add or subtract it as a tool length. This value is added or subtracted for all subsequent Z movements (with active XY plane — G17) in the program.

ExampleN.. G43 H05

The value in line 5 of the table:Tool correction gaps TOOL LENGTH CORREC-TION GEOMETRY AND WEAR is added as tool length to all subsequent Z move-ments.

G50 Deselection scaling factorG51 Scaling factor

FormatN.. G50N.. G51 X.. Y.. Z.. I.. J.. K..

G51 computes all position data to scale, until the scale is deselected with G50. X, Y and Z deter-mines a reference point PB , from which all the dimensions are calculated.I, J and K determine an appropriate scaling factor (in 1/1000) for each axis.

G49 Deselection tool length offset

The positive (G43) or negative (G44) offset is cancelled.

ZPB

G51 X Y Z I2000 J2000 K2000

X Y

Z

Enlarging a contour

Page 233: EMCO WinNC for Fanuc 31i Mill Software description, software

E19 Fanuc 31i Mill

G code proGramminG

G51.1 Mirroring a contourG50.1 Deselecting mirroring

If different scaling factors are given for the indi-vidual axes, the contours are distorted.Circular movements must not be distorted or an alarm will sound.

PB

Y

X

G51 X0 Y0 Z0 I2000 J1000 Z1000

Distorting a contour: X 1:2, Y,Z 1:1

Programmable mirror image

(1) Original image of a programmed command(2) Image symmetrical about a line parallel to the Y-axis and crossing the X-axis at 50(3) Image symmetrical about point (50,50)(4) Image symmetrical about a line parallel to the X-axis and crossing the Y-axis at 50

Page 234: EMCO WinNC for Fanuc 31i Mill Software description, software

E20 Fanuc 31i Mill

G code proGramminG

G52 Local coordinates system

FormatN.. G52 X.. Y.. Z..

G52 offsets the instantaneous coordinate source around the X, Y and Z values. Use this to create a sub-coordinate system to the existing coordinate system.

The programmed offset is maintained until a dif-ferent offset is called.

G53 Machine coordinates sys-tem

FormatN.. G53

The machine zero point is set by itsmanufacturer (EMCO milling machines: at the left front edge of the machine table).

Certain work steps (tool change, measurement position, etc.) are always executed at the same position in the workspace.

G53 disables the zero point offset for a program block ans the coordinate data is related to the machine zero point.

G54-G59 Zero point offsets 1-6

Six positions in the workspace can bepreset as zero points (e.g. points on fixed mount-ed clamping devices). These zero point offsets are called with G54 — G59.

See chapter A Entering zero point offset funda-mentals.

Page 235: EMCO WinNC for Fanuc 31i Mill Software description, software

E21 Fanuc 31i Mill

G code proGramminG

G61 Precision stop (modally effective)

FormatN.. G61

A block will only be processed if the carriages are braked to a stop.In this way the corners will not be rounded and precise transitions achieved.G61 effective until it is deselected with G64.

G64 Cutting mode

FormatN.. G64

The Y-axis is accelerated before reaching the tar-get point in the X-direction. This achieves an even movement during contour transfers. The contour transfer is not an exactly sharp angle (parabola, hyperbola).The contour transfer size is normally within the tolerance range in the drawings.

Precision stop active Precision stop not active

P P0 1

P P0 1

P P0 1

X axis

Y axis

Contour transfer

Spe

ed

Speed characteristic of the carriage with G64

Page 236: EMCO WinNC for Fanuc 31i Mill Software description, software

E22 Fanuc 31i Mill

G code proGramminG

G65 Macro call

G65 calls up a macro with user-defined values. A macro is a subroutine which runs a given opera-tion with values assigned to variable parameters (boring image, contours). FormatG65 Pxxxx Lrrrr Arguments

or G65 Pxxxx Lrrrr Arguments

Xxxx is the macro number (e.g. O0123) • rrrr the repetition value• «program.CNC» is the name of the macro file • Arguments is a list of variable designators and

values.

Arguments for macro calls are given by using the letters A-Z, excluding G, L, N, O and P. Macros are written like normal programs. Howev-er, macro programs can access their arguments with numbers: #1 for A, #2 for B etc. (exceptions: # 4-6 for I-K, # 7-11 for D-H).

A macro can use the negative of an argument with a minus sign in front of the ‘#’. Other computing operations are not supported.Macros can call other macros (up to 4 levels in depth), macro M-functions and sub-routines. Mac-ro M-functions and sub-routines can call macros.

Example for a main program

G65 <TEST.CNC> A5 B3 X4Macro TEST.CNC:G1 X#X Y#A Z-#BThis call will produceG1 X4 Y5 Z-3

Page 237: EMCO WinNC for Fanuc 31i Mill Software description, software

E23 Fanuc 31i Mill

G code proGramminG

G66 Macro call (modal)FormatN.. G66 P.. L..Argument..

P ………….. Program numberL ……………. Number of repetitions (default is 1)Argument … A list of variable designators and

values which are transferred to the macro.

G67 Macro call (modal) EndFormatN.. G67

This function ends the macro call.

ZZ

Example of macro call programming

Page 238: EMCO WinNC for Fanuc 31i Mill Software description, software

E24 Fanuc 31i Mill

G code proGramminG

G68 Coordinate system rotation

FormatN.. G68 X.. Y.. R….N.. G69

G68 ………. Coordinates system rotation ONG69 ………. Coordinates system rotation OFFX / Y ………. Designates the coordinates of the

rotation centre point in the relevant plane.

R …………… Gives the angle of rotation

This function can, for example, change programs by using a rotation command.

Example

N5 G54N10 G43 T10 H10 M6N15 S2000 M3 F300N20 M98 P030100 ; sub-routine callN25 G0 Z50N30 M30

00100 (sub-routine 0100) N10 G91 G68 X10 Y10 R22.5N15 G90 X30 Y10 Z5N20 G1 Z-2N25 X45N30 G0 Z5N35 M99

Y

X(α, β)

G68/G69 coordinates system rotation

Instructions:Rotation takes place in the applicable plane (G17, G18 or G19) in each case.

X

Z(10, 10)

22,5°

22,5°

22,5°

R20

621

Example/Coordinates system rotation

Page 239: EMCO WinNC for Fanuc 31i Mill Software description, software

E25 Fanuc 31i Mill

G code proGramminG

Drilling Cycles G73 — G89

Systematic G98/G99

G98 ……After reaching the drilling depth the tool retracts to the start plane

G99 ……After reaching the drilling depth the tool retracts to the withdrawal plane- defined by the R parameter

Is no G98 or G99 active, the tool retracts to the start plane. If G99 (Withdrawal to the withdrawal plane) is programmed the address R must be programmed. With G98 R need not to be pro-grammed.

The compution of the R parameter is different with incremental and absolute programming:

Absolute programming (G90):R defines the height of the withdrawal plane over the actual workpiece zero point.

Incremental programming (G91):R defines the height of the withdrawal plane re-lated to the last Z position (start position of the drilling cycle). With a negative value for R the withdrawal plane will be below the start position, with a positive value the withdrawal plane will be over the start position.

Sequence of movements

1: The tool traverses with rapid speed from the start position (S) to the plane defined by R (R).

2: Cycle-specific drill machining down to end deptht (E).

3: The withdrawal occurs a: with G98 to the start plane (S) and b: with G99 to the withdrawal plane.

Number of repetitions

The K parameter defines the number of repetiti-ons of the cycle.With absolute programming (G90) it would make no sense to drill several times in the same hole.With incremental programming (G91) the tool mo-ves on each time for the distances X and Y. This is a simple way of programming rows of borings.

Make sure that G98 is active!

Withdrawal plane R

start plane

G98 G99

Movements with G98 and G99

Sequence of movements G98, G99

Cycle repetition for a row of holes

R

S

E

1

2

3a

3b

X

Y

X X

YY

Page 240: EMCO WinNC for Fanuc 31i Mill Software description, software

E26 Fanuc 31i Mill

G code proGramminG

QQ

Q

R

start plane

Dwell P

G73 (G98)

Chip break drilling with retraction to the startplane

Chip break drilling with retraction to the withdra-wal plane

QQ

QR

G73

Withdrawal plane

Dwell P

(G99)

G73 Chip Break Drilling Cycle

FormatN… G98(G99) G73 X… Y… Z… (R)… P… Q… F… K…

The tool dips into the work piece for the infeed Q, drives back 0,5 mm to break the chips, dips in again etc. until end depth is reached and retracts with rapid feed.

Applications

deep borings, material with bad cutting property

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole position

Z ……………..Absolute (incremental) drilling depth

R [mm] ……..Absolute (with G91 incremental) value of the withdrawal plane

P [msec] ……Dwell at the hole bottom P1000 = 1 sec

F ……………..Feed rate

Q [mm] ……..Cutting division — infeed per cut

K ……………..Number of repetitions

G74 Left Tapping CycleWith this cycle left threads can be produced. The cycle G74 works like G84 but with reversed tur-ning directions.Tapping chuck without length compensation is activated with M29.See Tapping Cycle G84.

Page 241: EMCO WinNC for Fanuc 31i Mill Software description, software

E27 Fanuc 31i Mill

G code proGramminG

Fine drilling cycle

start plane

Withdrawal plane

Q

G76 Fine Drilling Cycle

Only for machines with oriented spindle stop.FormatN…G98(G99) G76 X… Y… Z… (R)… F… Q… K…

This cycle is for enlarging borings with boring and facing heads.The tool traverses with rapid feed to the withdra-wal plane, with the programmed feed to the end depth, the milling spindle will be stopped oriented, the tool traverses with rapid speed horizontally (Q) off the surface in direction of the positive Y-axis and traverses with rapid speed to the withdra-wal plane (G99) or start plane (G98) and traverses back for the value Q to the original position.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..FeedQ ……………..Horizontal traverse-off valueK ……………..Number of repetitions

G80 Cancel Drilling Cycles

FormatN… G80

The drilling cycles are modal. They have to be cancelled by G80 or another group 1 command (G00, G01, …).

Page 242: EMCO WinNC for Fanuc 31i Mill Software description, software

E28 Fanuc 31i Mill

G code proGramminG

G81 Drilling Cycle

FormatN…G98(G99) G81 X… Y… Z… (R)… F… K…

The tool traverses down to end depth with feed speed and retracts with rapid feed.

Application:Short drillings, material with good cutting pro-perties

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..FeedK ……………..Number of repetitions

Drilling cycle

Drilling cycle with dwell and retraction to the start plane

Start-plane

Withdrawalplane RR

G98 G99

start plane

Dwell P

G82 (G98)

Drilling cycle with dwell and retraction to the withdrawal plane

Withdrawalplane R

Dwell P

G82 (G98)

G82 Drilling Cycle with Dwell

FormatN… G98(G99) G82 X… Y… Z… (R)… P… F… K…

The tool traverses down to end depth with feed speed, dwells turning to clean the hole ground and retracts with rapid feed.

Applications

Short borings, material with good cutting property

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeP [msec] ……Dwell at the hole bottom P1000 = 1 secF ……………..Feed rateK ……………..Number of repetitions

Page 243: EMCO WinNC for Fanuc 31i Mill Software description, software

E29 Fanuc 31i Mill

G code proGramminG

G83 Withdrawal Drilling Cycle

FormatN.. G98(G99) G83 X… Y… Z… (R)… P… Q… F… K…

The tool dips into the work piece for the infeed Q, drives back to the withdrawal plane, to break the chips and remove it from the hole, traverses with rapid speed until 0,5 mm over the previous drilling depth, dips in again for the infeed Q etc. until end depth is reached and retracts with rapid feed.

Applicationsdeep borings, (soft) material with long chips

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeP [msec] ……Dwell at the hole bottom P1000 = 1 secF ……………..Feed rateQ [mm] ……..Cutting division — infeed per cutK ……………..Number of repetitions

G84 Tapping Cycle without length compensation

FormatN.. M29 S… G98(G99) G84 X… Y… Z… (R)… F… P… K…

The tool moves turning clockwise with program-med feed into the workpiece down to drilling depth Z, dwells (P), switches to counterclockwise turning and retracts with feed.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) tapping depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF …………… Feed rate with G94………………….Thread pitch with G95P [msec] ……Dwell at thread ground……………… P 1000 = 1 secK ……………..Number of repetitions

Deep hole drilling with retraction to the withdra-wal plane

Tapping cycle (with G99)

F

P

R

QQ

QG83

Withdrawal plane

Dwell P

(G99)

R

Page 244: EMCO WinNC for Fanuc 31i Mill Software description, software

E30 Fanuc 31i Mill

G code proGramminG

G89 Reaming cycle with dwell time

See G85

The tool moves at feed speed to the final depth and stops for the dwell time P. The retraction to the retraction plane takes place with feed, de-pendent on G98, the start plane is reached with rapid traverse.

R

G85 Reaming Cycle

FormatN… G98 (G99) G85 X… Y… Z… (R)… F… K…

The tool traverses down to end depth with feed speed and retracts to the withdrawal plane with feed. Retraction to withdrawal plane with rapid feed depending on G98.

G98(G99)….Return to starting plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) drilling depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF ……………..Feed rateK ……………..Number of repetitions

Reaming cycle with withdrawal to the start plane

start plane

G85 (G98)

G84 Tapping Cycle with length compensation

FormatN.. G98(G99) G84 X… Y… Z… (R)… F… P… K…

The tool moves turning clockwise with program-med feed into the workpiece down to drilling depth Z, dwells (P), switches to counterclockwise turning and retracts with feed.

G98(G99)….Retraction to start plane (withdrawal plane)

X, Y ………….Hole positionZ ……………..Absolute (incremental) tapping depthR [mm] ……..Absolute (with G91 incremental) value

of the withdrawal planeF …………… Feed rate with G94………………….Thread pitch with G95P [msec] ……Dwell at thread ground……………… P 1000 = 1 secK ……………..Number of repetitions

Tapping cycle (with G99)

F

P

R

Page 245: EMCO WinNC for Fanuc 31i Mill Software description, software

E31 Fanuc 31i Mill

G code proGramminG

G90 Absolute value programming

FormatN.. G90

There are two ways to program travels of the tool: the absolute programming, and the incrementalprogramming.In the absolute programming, coordinate value of the end position is programmed.The incremental programming is used to program the amount of a tool movement.

Notes• A direct change between G90 and G91 is also

allowed block by block.• G90 (G91) may also be programmed in conjunc-

tion with other G-functions: (N… G90 G00 X… Y… Z…)

G91 Incremental value programming

FormatN.. G91

Instructions similar to those for G90.

G94 Feed per minute

G94 means all values defined under F (feed) as mm/min.

FormatN.. G94 F…

G95 Feed per revolution

G94 means all values defined under F (feed) as mm/rev.

FormatN.. G95 F…

����

��

��

���

��

��

���

�� ��

Absolute value and increment value programming

Page 246: EMCO WinNC for Fanuc 31i Mill Software description, software

E32

Page 247: EMCO WinNC for Fanuc 31i Mill Software description, software

F1 Fanuc 31i Mill

Tool managemenT

F: Tool management

Tool settings• Press softkey.

• «T-OFS» displays the tool offset data window.

3 register cards are available for selection:

• Tool offset (tool lengths and tool radius com-pensation)

• Tool data• Simulation data

T-OFS

Parameter Meaning

NR Tool number. A maximum of 99 tool offsets is available

Tool length offset

Geometry Entry of the measured geometry data (with default setting device)

Wear Tool wear entry

Tool radius compensation

Geometry Entry of the measured geometry data (with default setting device)

SCHN-wear Tool wear entry

Page 248: EMCO WinNC for Fanuc 31i Mill Software description, software

F2 Fanuc 31i Mill

Tool managemenT

Tool length offset entry

• Press softkey.

«+INPUT» opens the entry mask.

Current value + workpiece geom-etry offset is displayed.

Enter the value calculated previ-ously for the geometry offset.»INPUT» closes the data entry.

+INPUT

Tool radius offset entry• Press softkey.

• «+INPUT» opens the entry mask.

Current value + workpiece ge-ometry offset compensation is displayed.

Enter the value calculated previ-ously for the geometry offset.»INPUT» closes the data entry.

+INPUT

Page 249: EMCO WinNC for Fanuc 31i Mill Software description, software

F3 Fanuc 31i Mill

Tool managemenT

Tool wear offsetTool wear offset entries should be made in the same way as those for tool length and tool radius offsets.

Page 250: EMCO WinNC for Fanuc 31i Mill Software description, software

F4 Fanuc 31i Mill

Tool managemenT

Tool data• Press softkey.

• «T-OFS» displays the tool offset data window.T-OFS

Parameter Description

NR Tool number

Use the softkey to select the tool

TOOL Tool name

SET Setting 1 to 4. The tool tip is defined by the tool mounting position.

NOS ANGLE Cutting angle

Instructions:The available parameters can differ, according to the tool selected.

Page 251: EMCO WinNC for Fanuc 31i Mill Software description, software

F5 Fanuc 31i Mill

Tool managemenT

Select tool• Click on the tool symbol or move the cursor on

to it with the arrow keys and select the wanted tool.

The following tools are available for lathes.

Enter tool name

Softkey bar with the available tools.Scroll the pages forwards and backwards with the expansion button.

Page 252: EMCO WinNC for Fanuc 31i Mill Software description, software

F6 Fanuc 31i Mill

Tool managemenT

Tool setting number• Mark a tool setting number with the cursor for an

instruction window to pop up in the right hand portion of the screen.

For a boring tool, this is: Enter the tool setting number (1 to 4) to make

the setting.

Instructions:The available parameters can differ, accord-ing to the tool selected.

Settings for a boring tool

Settings for a milling tool

Page 253: EMCO WinNC for Fanuc 31i Mill Software description, software

F7 Fanuc 31i Mill

Tool managemenT

Setting angle, corner angle• Mark the tool data with the cursor and an in-

struction window pops up. Enter the tool data here.

When entering in degrees, three integers and one decimal place are allowed.

If you are entering in inches or millimetres, an eight-digit number is allowed. If numbers

with several decimal places are entered, they are rounded to 1 decimal place.

The descriptions and numbers of the elements are dependent on the tool type. Details are in the ta-ble below. Tools that do not need tool data settings are not included.No tool data is required to execute milling cycles.Milling cycles can therefore be executed, although no tool data was set.

Tool type Borer Countersink

Data 1 Tip angle*) Mill diameter

*) the cycle can be machined without a setting.

Tool form data for milling

Page 254: EMCO WinNC for Fanuc 31i Mill Software description, software

F8 Fanuc 31i Mill

Tool managemenT

Cutting position of milling and drilling tools

Milling tools

CountersinkFace milling cutterHigh speed face milling cutterTapSurface milling cutter

Cutting position of drilling and milling tools

Page 255: EMCO WinNC for Fanuc 31i Mill Software description, software

F9 Fanuc 31i Mill

Tool managemenT

Tool correction and tool data input and output

The path to save and read the data is set in EMConfig under the «Directory exchange» heading.

• Press the data output softkey

The default save for tool correc-tion data is in the file TOOLOFST.TXT.You can change the file name, subject to obeying the following restrictions:A maximum of 8 characters and no special characters should be used.The tool data is filed in the file TOOLDB.DAT.

OUTPUT

Page 256: EMCO WinNC for Fanuc 31i Mill Software description, software

F10 Fanuc 31i Mill

Tool managemenT

• Press the data input softkey

Select the desired file and open with «INPUT».

INPUT

Page 257: EMCO WinNC for Fanuc 31i Mill Software description, software

F11 Fanuc 31i Mill

Tool managemenT

Simulation data3D tool3D tools from the tool manager can be imported into the tool list. An independent color assignment for the individual tools can be made .

1 Press softkey.

2 Select simulation data.

3 Double-click the 3D tool to activate the tool selection (drop down menu). Press the space bar to scroll in the tool selection.

4 To deactivate a tool, the blank line (at the very top) must be selected in the drop down menu.

T-OFS

Page 258: EMCO WinNC for Fanuc 31i Mill Software description, software

F12 Fanuc 31i Mill

Tool managemenT

Instructions:If no color is selected, it is taken over from the 3D tool manager. Otherwise a selected color has priority.

Color selectColors can be assigned to tools in order to display them better in the simulation.

1 Double-click the color selection (alternatively use the space bar) to open the color selection window.

2 Predefined colors are stored as basic colors, user defined colors as custom colors

• Create Custom colors: Move the mouse in the colored area to the

required color an click to select. Alternatively the values for R,G,B can be entered manually.

• By clicking «Add to Custom Colors» a new color is added.

3 To deselect a color, select black.

4 Confirm with OK or quit with Cancel.

Page 259: EMCO WinNC for Fanuc 31i Mill Software description, software

F13 Fanuc 31i Mill

Tool managemenT

Measuring tool manuallyScratch method

The workpiece must be clamped in the workspace such that the measuring point on the workpiece with the tool housing reference point can be reached with all measuring tools.

The tool housing reference point for the EMCO Concept Mill 105 is on the reference tool, which must be clamped in position in advance.

If a mechanical meter is used instead of the refer-ence tool, this must be mounted on the machine table.

1 Call «JOG» mode.

2 If you do not use a meter, then place a thin sheet of paper between the workpiece and the milling spindle.

Approach the stationary spindle on the work-piece with the tool housing reference point.

Reduce the feed to 1%, so that the sheet of paper you inserted is still just movable.

3 If you are using a meter, approach this with the tool housing reference point.

4 Press the «ACTPOS» softkey to display the rel-ative coordinates.

5 Press the «PRESET» softkey and enter the value 0 in the Z axis.

ACTPOS

PRESET

Page 260: EMCO WinNC for Fanuc 31i Mill Software description, software

F14 Fanuc 31i Mill

Tool managemenT

6 Accept changes with the «ALTER» softkey.

7 Tilt the workpiece to be measured.

8 Scratch the tool on the workpiece or the meter.

9 Press softkey.

10 Set the cursor to the correct tool number.

11 Press softkey.

12 Set the cursor to Z-AXIS.

13 Press softkey. The tool is now measured in Z.

14 Enter the tool radius geometry under «Cutter compensation».

ALTER

T-OFS

INP.C.

INPUT

Page 261: EMCO WinNC for Fanuc 31i Mill Software description, software

G1 Fanuc 31i Mill

Program sequence

G: Program sequence

PreconditionsSet zero pointsThe zero points used must be measured and entered.

ToolsThe tools used must be measured and entered.The tools must be in the corresponding positions (t) in the tool changer.

Reference pointThe reference point must be approached in all axes.

MachineThe machine must be ready for operation.The workpiece must be securely clamped.Loose parts (spanners, etc.) must be removed from the work area to avoid collisions.The machine doors must be closed at the start of the program.

AlarmsThere must be no alarms pending.

Instructions:During the program sequence the tool data for the tools used may not be changed.

Page 262: EMCO WinNC for Fanuc 31i Mill Software description, software

G2 Fanuc 31i Mill

Program sequence

NC stopThis button stops the NC program run. The sim-ulation can be continued with this «Cycle start» button.

Program start, program stop• Open a program for execution.

• Select «AUTO» mode.

• Open program.

• This softkey opens the selected program.

• Press the «Cycle start» button.

• Stop program with «Cycle stop», continue with «Cycle start».

• Cancel program with «NC reset».

OPEN

NC startFor the NC program run to be started, a Fanuc program must be open. The file name of the cur-rently open program is shown in the centre of the simulation window.

NC resetUse this button to stop the NC program run and reset to the start conditions.

Page 263: EMCO WinNC for Fanuc 31i Mill Software description, software

G3 Fanuc 31i Mill

Program sequence

Repositioning

If a program interruption occurs in automatic mode, e.g. after a tool break, then the tool can be moved away from the contour in manual mode. To avoid later collisions the axes must be moved to a safe position.The coordinates of the interruption position will be saved.The travel difference between the axes that has been brought about in manual mode is shown in the current values window. This travel different is called «Repos shift».

Continue program execution

• Select REPOS mode. Thus the tool can again be brought to the contour of the workpiece.

• Select each axis to be moved one after the other and move to the cancellation position.

• Continue machining in automatic mode again with «Cycle start».

Page 264: EMCO WinNC for Fanuc 31i Mill Software description, software

G4 Fanuc 31i Mill

Program sequence

Block scan• Select «Edit» mode.

• Open program.

Select the appropriate program line from which the program is to start.

• Select «AUTO» mode.

• Press NC start button. The following message appears: «Start in the middle of the Start/Ref program»

Press the NC start button again to confirm.

OPEN

Caution:• All command that are before the selected

line are ignored. • This relates these to the chosen tools, zero

point shifts, etc.

Page 265: EMCO WinNC for Fanuc 31i Mill Software description, software

H1

AlArms And messAges

H: Alarms and MessagesMachine Alarms 6000 — 7999These alarms will be triggered by the machines.There are different alarms for the different machines.The alarms 6000 — 6999 normally must be confirmed with RESET. The alarms 7000 — 7999 are messages which normally will disappear when the releasing situation is finished.

PC MILL 50 / 55 / 100 / 105 / 125 / 155Concept MILL 55 / 105 / 155

6000: EMERGENCY OFFThe EMERGENCY OFF key was pressed. Re-move the endangering situation and restart ma-chine and software.

6001: PLC-CYCLE TIME EXCEEDINGContact EMCO Service.

6002: PLC — NO PROGRAM CHARGEDContact EMCO Service.

6003: PLC — NO DATA UNITContact EMCO Service.

6004: PLC — RAM MEMORY FAILUREContact EMCO Service.

6005: OVERHEAT BRAKEMODULMain drive was braked too often, large changes of speed within a short time. E4.2 active

6006: OVERLOAD BRAKE RESISTORsee 6005

6007: SAFETY CIRCUIT FAULTAxis and main drive contactor with machine switched off not disabled. Contactor got stuck or contact error. E4.7 was not active during switch-on.

6008:MISSING CAN SUBSCRIBERCheck fuses or EMCO customer service.Contact EMCO Service.

6009: SAFETY CIRCUIT FAULTA running CNC program will be interrupted, the auxiliary drives will be stopped, the reference position will be lost.

6010: DRIVE X-AXIS NOT READYThe step motor board is defective or too hot, a fuse or cabling is defective.A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost.Check fuses or contact EMCO service.

6011: DRIVE Y-AXIS NOT READYsee alarm 6010.

6012: DRIVE Z-AXIS NOT READYsee alarm 6010.

6013: MAIN DRIVE NOT READYMain drive power supply defective, main drive too hot, fuse defective.A running program will be stopped, the auxilliary drives will be switched off.Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEEDThis will be released, when the spindle speed is lower than 20 rpm because of overload.Alter cutting data (feed, infeed, spindle speed).The CNC program will be aborted, the auxilliary drives will be stopped.

6019: VICE TIME EXCEEDThe electric vice has not reached a stop position within 30 seconds.The control or the clamping device board are defective, the vice is stuck. Adjust the proximity switches of the stop position.

6020: VICE FAILUREWhen the electric vice is closed, the signal «clamping device clamped» of the clamping de-vice board has failed.The control, the clamping device board or the wiring are defective.

K 2017-07

Page 266: EMCO WinNC for Fanuc 31i Mill Software description, software

H2

AlArms And messAges

6022: CLAMPING DEVICE BOARD DEFECTIVEThe signal «clamping device clamped» is con-stantly released, although no command has been given.Replace the board.

6024: MACHINE DOOR OPENThe door was opened while a machine movement. The program will be aborted.

6027: DOOR LIMIT SWITCH DEFECTIVEThe limit switch of the automatic door is dis-placed, defective, wrong cabled.Contact EMCO service.

6028: DOOR TIMEOUTThe automatic door stucks, the pressured air supply is insufficient, the limit switch is displaced.Check door, pressured air supply, limit switch or contact EMCO service.

6030: NO PART CLAMPEDNo workpiece inserted, vice cheek displaced, control cam displaced, hardware defective.Adjust or contact EMCO service.

6040: TOOL TURRET INDEX FAILUREAfter WZW procedure drum pressed down by Z-axis. Spindle position wrong or mechanical defect. E4.3=0 in lower state

6041: TOOL CHANGE TIMEOUTTool drum stucks (collision?), main drive not ready, fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

6043-6046: TOOL DISK POSITION FAULTPosition error of main drive, error of position supervising (inductive proximity switch defective or disadjusted, drum allowance), fuse defective, hardware defective.The Z axis could have been slipped out of the toothing while the machine was switched off.A running CNC program will be stopped.Contact EMCO service.

6047: TOOL DISK UNLOCKEDTool drum turned out of locked position, inductive proximity switch defective or disadjusted, fuse defective, hardware defective.A running CNC program will be interrupted.Contact EMCO service.When the tool drum is turned out of locked posi-tion (no defect), act as following:

Turn the drum into locking position manuallyChange into MANUAL (JOG) mode.Turn the key switch. Traverse the Z slide upwards, until the alarm disappears.

6048: DIVIDING TIME EXCEEDEDDividing head stucks, insufficient pressured air supply, hardware defective.Check for collision, check pressured air supply or contact EMCO service.

6049: INTERLOCKING TIME EXCEEDEDsee alarm 6048

6050: M25 AT RUNNING MAIN SPINDLECause: Programming mistake in NC program.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Correct NC program

6064: DOOR AUTOMATIC NOT READYCause: pressure failure automatic door automatic door stucks mechanically limit switch for open end position defective security print circuits defect cabling defective fuses defectiveA running program will be aborted.The auxilliary drives will be switched off.Remedy: service automatic door

6069: CLAMPING FOR TANI NOT OPENWhen opening the clamping pressure switch does not fall within 400ms. Pressure switch defec-tive or mechanical problem. E22.3

6070: PRESSURE SWITCH FOR TANI MISS-ING

When closing the clamping pressure switch does not respond. No compressed air or mechanical problem. E22.3

6071: DIVIDING DEVICE NOT READYServo Ready Signal from frequency converter missing. Excess temperature drive TANI or fre-quency converter not ready for operation.

6072: VICE NOT READYAttempt to start the spindle with an open vice or without clamped workpiece.Vice stucks mechanically, insufficient com-pressed air supply, compressed air switch defec-tive, fuse defective, hardware defective.Check the fuses or contact EMCO service.

Page 267: EMCO WinNC for Fanuc 31i Mill Software description, software

H3

AlArms And messAges

6073: DIVIDING DEVICE NOT READYCause: locking switch defective cabling defective fuses defectiveA running program will be aborted.The auxilliary drives will be switched off.Remedy: service automatic dividing device lock the dividing device

6074: DIVIDING TIME EXCEEDEDCause: dividing device stucks mechanically locking switch defective cabling defective fuses defective insufficient compressed-air supply.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Check for collision, check the compressed-

air supply or contact the EMCO service.

6075: M27 AT RUNNING MAIN SPINDLECause: Programming mistake in NC program.A running program will be aborted.The auxilliary drives will be switched off.Remedy: Correct NC program

6110: 5TH AXIS NOT CONNECTEDCause: 4th/5th axis was selected in EMConfig, but

not connected electrically.Remedy: Connect 4th/5th axis or deselect in EM-

Config.

6111: 5TH AXIS CONNECTEDCause: 4th/5th axis was deselected in EMConfig,

but is electrically connected.Remedy: Remove 4th/5th axis from machine or

select in EMConfig.

6112: MOTOR PROTECTION RELEASEDCause: A motor protection switch has triggered.

A possibly active NC program is stopped immediately.

Remedy: Check the device connected to the motor protection switch and switch on again. If recurring, contact EMCO service depart-ment.

7000: INVALID TOOL NUMBER PROGRAMMEDThe tool position was programmed larger than 10.The CNC program will be stopped.Interrupt program with RESET and correct the program.

7001: NO M6 PROGRAMMEDFor an automatic tool change you also have to program a M6 after the T word.

7007: FEED STOP!The axes have been stopped by the robotics in-terface (robotics entry FEEDHOLD).

7016: SWITCH ON AUXILIARY DRIVESThe auxiliary drives are off. Press the AUX ON key for at least 0.5 sec. (to avoid accidentally switching on) to switch on the auxiliary drives.

7017: REFERENCE MACHINEApproach the reference point.When the reference point is not active, manual movements are possible only with key switch at position «setting operation».

7018: TURN KEY SWITCHWith NC-Start the key switch was in position «set-ting operation».NC-Start is locked.Turn the key switch in the position «automatic» to run a program.

7020: SPECIAL OPERATION MODE ACTIVESpecial operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position «setting operation» and the consent key is pressed.Manual traversing the axes is possible with open door. Swivelling the tool turret is not possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SIN-GLE block operation.For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: INITIALIZE TOOL TURRETThe tool turret operating was interrupted.No traversing operation is possible.Press tool turret key in JOG operation. Message occurs after alarm 6040.

7022: INITIALIZE TOOL TURRET!see 7021

7023: WAITING TIME MAIN DRIVE!The LENZE frequency converter has to be sepa-rated from the mains supply for at least 20 sec-onds before you are allowed to switch it on again. This message will appear when the door is quickly openend/ closed (under 20 seconds).

7038: LUBRICATION SYSTEM FAULTThe pressure switch is defective or gagged.NC-Start is locked. This can be reset only by switching off and on the machine.Contact EMCO service.

Page 268: EMCO WinNC for Fanuc 31i Mill Software description, software

H4

AlArms And messAges

7039: LUBRICATION SYSTEM FAULTNot enough lubricant, the pressure switch is defective.NC-Start is locked.Check the lubricant and lubricate manually or contact EMCO service.

7040: MACHINE DOOR OPENThe main drive can not be switched on and NC-Start can not be activated (except special opera-tion mode)Close the machine to run a program.

7042: INITIALIZE MACHINE DOOREvery movement and NC-Start are locked.Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHEDA predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7050: NO PART CLAMPEDAfter switching on or after an the vice is neither at the open position nor at the closed position.NC-Start is locked.Traverse the vice manually on a valid end posi-tion.

7051: DIVIDING HEAD NOT LOCKED!Either the dividing head is in an undefined posi-tion after the machine has been switched on, or the locking signal after a dividing process is missing.Initiate the dividing process, check, respectively adjust the proximity switch for locking.

7054: VICE OPENCause: the workpiece is not clampedWhen switching on the main spindle with M3/M4 alarm 6072 (vice not ready) will be released.Remedy: Clamp

7055: OPEN TOOL CLAMPING SYSTEMA tool is clamped in the main spindle and the control does not recognize the corresponding T number.Eject the tool from the main spindle when the door is open by means of the PC keys «Strg» and » 1 «.

7056: SETTING DATA INCORRECTAn invalid tool number is stored in the setting data.Delete the setting data in the machine directory xxxxx.pls.

7057: TOOLHOLDER OCCUPIEDThe clamped tool cannot be positioned in the tool turret since the position is occupied.Eject the tool from the main spindle when the door is open by means of the PC keys «Strg» and » 1 «.

7058: RETRACTING THE AXESThe position of the tool turret arm cannot be clearly defined during the tool change.Open the machine door, push the tool turret magazine backwards to the stop. Move the milling head in the JOG mode upwards to the Z reference switch and then traverse the reference point.

7087: MOTOR PROTECTION HYDRAULIC CLAMPING RELEASED!

Hydraulic motor is defective, stiff, circuit breaker is set incorrectly.Replace motor or check circuit breaker and re-place if necessary.

7090: ELECTRICAL CABINET OVERRIDE SWITCH ACTIVE

The cabinet door can only be opened when the key switch is switched on without raising an alarm.Switch off key switch.

7107: OTOR PROTECTION RELEASEDA motor protection switch has triggered. A pos-sibly running NC program will be completed. A new NC start will be prevented.Check the device connected to the motor pro-tection switch and switch on again. If recurring, contact EMCO service department.

7270: OFFSET COMPENSATION ACTIVE !Only with PC-MILL 105Offset compensation activated by the following operation sequence.- Reference point not active- Machine in reference mode- Key switch in manual operation- Press STRG (or CTRL) and simultaneously 4This must be carried out if prior to the tool change procedure spindle positioning is not completed (tolerance window too large)

7271: COMPENSATION FINISHED, DATA SAVED !

see 7270

Page 269: EMCO WinNC for Fanuc 31i Mill Software description, software

H5

AlArms And messAges

Page 270: EMCO WinNC for Fanuc 31i Mill Software description, software

H6

AlArms And messAges

6000: EMERGENCY OFFThe EMERGENCY OFF key was pressed.The reference position will be lost, the auxiliary drives will be switched off.Remove the endangering situation and restart machine and software.

6001: PLC-CYCLE TIME EXCEEDINGThe auxiliary drives will be switched off.Contact EMCO Service.

6002: PLC — NO PROGRAM CHARGEDThe auxiliary drives will be switched off.Contact EMCO Service.

6003: PLC — NO DATA UNITThe auxiliary drives will be switched off.Contact EMCO Service.

6004: PLC — RAM MEMORY FAILUREThe auxiliary drives will be switched off.Contact EMCO Service.

6005: K2 OR K3 NOT DE-ENERGIZEDTurn machine on/off. Defective security board.

6006 EMERGENCY-OFF RELAY K1 NOT DE-ENERGIZED

Turn machine on/off. Defective security board.

6007 SAFETY CIRCUIT FAULT

6008: MISSING CAN SUBSCRIBERThe PLC-CAN board is not identified by the con-trol.Check the interface cable and the power supply of the CAN board.

6009: SAFETY CIRCUIT FAULT

6010: DRIVE X-AXIS NOT READYThe step motor board is defective or too hot, a fuse is defective, over- or undervoltage from mains.

A running program will be stopped, the auxiliary drives will be switched off, the reference position will be lost.Check fuses or contact EMCO service.

6011: DRIVE Z-AXIS NOT READYsee 6010.

6012: DRIVE Z-AXIS NOT READYsee 6010.

6013: MAIN DRIVE NOT READYMain drive power supply defective or main drive too hot, fuse defective, over- or undervoltage from mains.A running program will be stopped, the auxilliary drives will be switched off.Check fuses or contact EMCO Service.

6014: NO MAIN SPINDLE SPEEDThis alarm will be released, when the spindle speed is lower than 20 rpm because of overload.Alter cutting data (feed, infeed, spindle speed).The CNC program will be aborted, the auxiliary drives will be switched off.

6015: NO DRIVEN TOOL SPINDLE SPEEDsee 6014.

6016: AUTOMATIC TOOL TURRET SIGNAL COUPLED MISSING

6017: AUTOMATIC TOOL TURRET SIGNAL UNCOUPLED MISSING

In the tool turret that can be coupled, the position of the coupling and uncoupling magnet is moni-tored by means of two proximity switches. It has to be made sure that the coupling is in the rear stop position so that the tool turret can get to the next tool position. Equally, during operation with driven tools the coupling has to be safe in the front stop position.Check and adjust the cables, the magnet and the stop position proximity switches.

PC TURN 50 / 55 / 105 / 120 / 125 / 155Concept TURN 55 / 60 / 105 / 155 / 250 / 260 / 460Concept MILL 250EMCOMAT E160EMCOMAT E200EMCOMILL C40EMCOMAT FB-450 / FB-600

Page 271: EMCO WinNC for Fanuc 31i Mill Software description, software

H7

AlArms And messAges

6018: AS SIGNALS, K4 OR K5 NOT DE-ENERGIZED

Turn machine on/off. Defective security board.

6019: POWER SUPPLY MODULE NOT READY Turn machine on/off. Power supply module, de-fective axis controller 6020 AWZ drive failure turn machine on/off, defective axis controller.

6020: DRIVEN TOOL DRIVE MALFUNCTIONThe driven tool power supply defective or the driv-en tool drive is too hot, fuse defective, mains over-voltage or undervoltage. A running CNC program will be aborted, the auxiliary drives will be stopped. Check the fuses or contact EMCO service.

6021: COLLET TIME OUTDuring closing of the clamping device the pres-sure switch has not reacted within one second.

6022: CLAMPING DEVICE BOARD DEFEC-TIVE

The signal «clamping device clamped» is con-stantly released, even though no command has been given. Replace the board.

6023: COLLET PRESSURE MONITORINGThe pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).

6024: MACHINE DOOR OPENThe door was opened while a machine movement. The program will be aborted.

6025: GEARBOX COVER NOT CLOSEDThe gearbox cover was opened while a machine movement. A running CNC program will be aborted.Close the cover to continue.

6026: MOTOR PROTECTION COOLANT PUMP RELEASED

6027: DOOR LIMIT SWITCH DEFECTIVEThe limit switch of the automatic door is dis-placed, defective, wrong cabled.Contact EMCO service.

6028: DOOR TIMEOUTThe automatic door stucks, the pressured air supply is insufficient, the limit switch is displaced.Check door, pressured air supply, limit switch or contact EMCO service.

6029: TAILSTOCK QUILL TIME EXCEEDThe tailstock quill does not reach a final position within 10 seconds.Adjust the control and the stop position proximity switches, or the tailstock quill is stuck.

6030: NO PART CLAMPEDNo workpiece inserted, vice cheek displaced, control cam displaced, hardware defective.Adjust or contact EMCO service.

6031: QUILL FAILURE

6032: TOOL CHANGE TIMEOUTsee alarm 6041.

6033: TOOL TURRET SYNC ERRORHardware defective.Contact EMCO service.

6037: CHUCK TIMEOUTThe pressure switch does not react within one second when the clamping device is closed.

6039: CHUCK PRESSURE FAILUREThe pressure switch turns off when the clamping device is closed (compressed air failure for more than 500ms).

6040: TOOL TURRET INDEX FAILUREThe tool turret is in no locked position, tool turret sensor board defective, cabling defective, fuse defective.A running CNC program will be stopped.Swivel the tool turret with the tool turret key, check fuses or contact EMCO service.

6041: TOOL CHANGE TIMEOUTTool drum stucks (collision?), fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

6042: TOOL TURRET OVERHEATTool turret motor too hot.With the tool turret a max. of 14 swivel procedures a minute may be carried out.

6043: TOOL CHANGE TIMEOUTTool drum stucks (collision?), fuse defective, hardware defective.A running CNC program will be stopped.Check for collisions, check fuses or contact EMCO service.

Page 272: EMCO WinNC for Fanuc 31i Mill Software description, software

H8

AlArms And messAges

6044: BRAKING RESISTANCE — MAIN DRIVE OVERLOADED

Reduce number of speed changes in the program.

6045: TOOL TURRET SYNC MISSINGHardware defective.Contact EMCO service.

6046: TOOL TURRET ENCODER FAULTFuse defective, hardware defective.Check fuses or contact EMCO service.

6048: CHUCK NOT READYAttempt to start the spindle with open chuck or without clamped workpiece.Chuck stucks mechanically, insufficient pressured air supply, fuse defective, hardware defective.Check fuses or contact EMCO service.

6049: COLLET NOT READYsee 6048

6050: M25 DURING SPINDLE ROTATIONWith M25 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6055: NO PART CLAMPEDThis alarm occurs when with rotating spindle the clamping device or the tailstock reach the end position.The workpiece has been pushed out of the chuck or has been pushed into the chuck by the tailstock.Check clamping device settings, clamping forces, alter cutting data.

6056: QUILL NOT READYAttempt to start the spindle or to move an axis or to swivel the tool turret with undefined tailstock position.Tailstock is locked mechanically (collision), in-sufficient pressured air supply, fuse defective, magnetic switch defective.Check for collisions, check fuses or contact EMCO service.

6057: M20/M21 DURING SPINDLE ROTA-TION

With M20/M21 the main spindle must stand still (consider run-out time, evtl. program a dwell)

6058: M25/M26 DURING QUILL FORWARDTo actuate the clamping device in an NC program with M25 or M26 the tailstock must be in back end position.

6059: C-AXIS SWING IN TIMEOUTC-axis does not swivel in within 4 seconds.Reason: not sufficient air pressure, and/or me-chanics stuck.

6060: C-AXIS INDEX FAILUREWhen swivelling in the C-axis the limit switch does not respond.Check pneumatics, mechanics and limit switch.

6064: AUTOMATIC DOOR NOT READYDoor stucks mechanically (collision), insufficient pressured air supply, limit switch defective, fuse defective.Check for collisions, check fuses or contact EMCO service.

6065: LOADER MAGAZINE FAILURELoader not ready.Check if the loader is switched on, correctly con-nected and ready for operation and/or disable loader (WinConfig).

6066: CLAMPING DEVICE FAILURENo compressed air at the clamping deviceCheck pneumatics and position of the clamping device proximity detectors.

6067: NO COMPRESSED AIRTurn the compressed air on, check the setting of the pressure switch.

6068: MAINDRIVE OVERTEMPERATURE

6070: LIMIT SWITCH TAILSTOCK SLEEVE ACTIVE

Cause: The axis arrived in the tailstock sleeve.Remedy: Drive the travel off the tailstock sleeve.

6071: LIMIT SWITCH X AXIS ACTIVECause: The axis arrived to the end switch.Remedy: Drive the axis off the end switch again.

6072: LIMIT SWITCH Z AXIS ACTIVEsee 6071

6073: CHUCK GUARD OPENCause: The chuck guard is open. Remedy: Close the chuck guard.

6074: NO FEEDBACK FROM USB-PLCTurn machine on/off. Check cabling, defective USB board.

6075: AXIS LIMIT SWITCH TRIGGEREDsee 6071

Page 273: EMCO WinNC for Fanuc 31i Mill Software description, software

H9

AlArms And messAges

6076: DRIVE Y-AXIS NOT READYsee 6010

6077 VICE NOT READYCause: Loss of pressure in clamping system.Remedy: Check pressurised air and air ducts.

6078 MOTOR PROTECTION TOOL MAGA-ZINE RELEASED

Cause: Swing intervals are too short.Remedy: Raise swing intervals.

6079 MOTOR PROTECTION TOOL CHANG-ER RELEASED

see 6068

6080 PRESSURE SWITCH FOR TANI MISS-ING

Cause: The pressure switch fails to active when the clamping closes. No pressurised air or mechanical problem.

Remedy: Check pressurised air.

6081 CLAMPING FOR TANI NOT OPENsee 6080

6082 FAULT AS/SIGNALCause: Active Safety-Signal X/Y-controller is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6083 FAULT AS/SIGNALCause: Active Safety-Signal main spindle/Z-

controller is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6084 FAULT AS/SIGNAL UE-MODULCause: Active Safety-Signal Uncontrolled power

supply module is faulty.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO.

6085 N=0 RELAY NOT DE-ENERGIZEDCause: Rotation zero relay did not drop.Remedy: Delete alarm using the RESET key and/

or switch the machine on/off. If this error reoccurs, contact EMCO (replace relay).

6086 DIFFERENT DOOR-SIGNALS FROM USBPLC AND ACC-PLC

Cause: ACC-PLC and USBSPS receive different door status reports.

Remedy: Delete alarm using the RESET key. If this error reoccurs, contact EMCO.

6087 DRIVE A-AXIS NOT READYsee 6010

6088 PROTECT SWITCH DOOR CONTROL UNIT RELEASED

Cause: Door drive overload.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace motor, drive).

6089 DRIVE B-AXIS NOT READYsee 6010

6090 CHIP CONVEYOR CONTACTOR NOT DE-ENERGIZED

Cause: Chip conveyor guard not down.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace guard).

6091 AUTOMATIC DOOR CONTACTOR NOT DE-ENERGIZED

Cause: Automatic door guard not down.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs sev-eral times, contact EMCO (replace guard).

6092 EMERGENCY-OFF EXTERNAL

6093 FAULT AS/SIGNAL A-AXISCause: Active Safety-Signal A control element

faulty.Remedy: Cancel alarm with RESET button or switch

machine on/off. If the problem occurs several times, contact EMCO.

6095 OVERHEATING IN THE SWITCHGEAR CABINET

Cause: Temperature monitoring responded.Remedy: Check switchgear cabinet filter and fan,

raise triggering temperature, switch ma-chine on and off.

6096 SWITCHGEAR CABINET DOOR OPENCause: Switchgear cabinet door opened without

key switch release.Remedy: Close switchgear cabinet door, switch

machine off and on.

Page 274: EMCO WinNC for Fanuc 31i Mill Software description, software

H10

AlArms And messAges

6097 EMERGENCY-OFF TEST REQUIREDCause: Functional test of Emergency off.Remedy: Press EMERGENCY-OFF button on the

control panel and unlock again. Press Rest-button to acknowledge the emergency stop state.

6098 FLOAT SWITCH HYDRAULIC MISSINGEffect: Auxiliary units are switched off.Meaning: The hydraulic float switch has released.Remedy: Refill hydraulic oil.

6099 PROX. SWITCH SPINDLE-BRAKE 1 MISSING

Effect: Feed stop, Read in lockMeaning: M10 Spindle brake on Inductive proximity

switch stays 0. M11 Spindle brake off Inductive proximity

switch stays 1.Remedy: Check inductive proximity switch, check

magnetiv valve spindle brake.

6100 LOW PRESSURE QUILLEffect: Auxiliary units are switched off.Meaning: At the moment of a spindle start command

the tailstock pressure was not built up or the pressure dropped while spindle run.

Remedy: Check clamping device pressure and pres-sure switch.

Check program.

6101 QUILL -B3 OR -B4 MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for the movement of

the quill was activated, but the switches –B3 and –B4 does not alter its status.

Remedy: Check switches, magnetic valves.

6102 QUILL POSITION ALARM (PART MOVED?)

Effect: Feed stop, Read in lockMeaning: The tailstock target position was overtrav-

elled in AUTOMATIC mode.Remedy: Check tailstock target position, check tech-

nology (clamping device pressure higher, tailstock pressure lower)

6103 QUILL NO BACKPOSITIONEffect: Feed stop, Read in lockMeaning: The magnetic valve for the tailstock was

activated, but the switch for «tailstock back» stays 0.

Remedy: Check magnetic valve, check switch.

6104 LOW PRESSURE CLAMPING EQUIPMENT 1

Effect: Auxiliary units are switched off.Meaning: At the moment of a spindle start command

the clamping pressure was not built up or the clamping pressure dropped while spindle run.

Remedy: Check clamping device pressure and pres-sure switch.

Check program.

6105 CLAMPING EQUIPMENT 1 NOT OPENEffect: Feed stop, Read in lockMeaning: The analogous proximity switch for clamp-

ing device 1 was not actuated.Remedy: Adjust inductive proximity switch (see

«Machine Description — chapter «C Pro-gramming and operation»).

6106 CLAMPING EQUIPMENT 1 NOT CLOSEDEffect: Feed stop, Read in lockMeaning: The pressure switch for «clamping device

closed» does not switch.Remedy: Check pressure switch

6107 LIMIT SWITCH CLAMPING EQUIPMENT 1Effect: Auxiliary units are switched off.Remedy: Adjust clamping device (do not clamp in

end position of the clamping system — see «Machine Description, chapter C Program-ming and Operation»).

6108 PARTS CATCHER FORWARD MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for «collection tray

forward/backward» was activated, but the switch for «collection tray forward/backward» does not alter its status.

Remedy: Check switches, magnetic valves.

6109 PARTS CATCHER ROTATE IN MISSINGEffect: Feed stop, Read in lockMeaning: The magnetic valve for «collection tray in/

out» was activated, but the switch for «col-lection tray in/out» does not alter its status.

Remedy: Check switch, magnetic valve.

6900 USBPLC not availableCause: USB communication with the safety board

could not be established.Remedy: Switch the machine off and on again.

Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

Page 275: EMCO WinNC for Fanuc 31i Mill Software description, software

H11

AlArms And messAges

6901 Error emergency-off relay USBPLCCause: USBPLC EMERGENCY-OFF relay error.Remedy: Switch the machine off and on again.

Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6902 Error standstill monitoring XCause: Unauthorized movement of the X axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6903 Error standstill monitoring ZCause: Unauthorized movement of the Z axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6904 Error alive circuit PLCCause: Error in the connection (Watchdog) of the

safety board with the PLC.Remedy: Delete the alarm with the RESET button and

switch the machine off and on again. Please contact the EMCO after-sales service in case the error occurs repeatedly.

6906 Error overspeed spindleCause: The main spindle speed exceeds the

maximum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales service in case the error occurs repeatedly.

6907 Error enable pulses ER-moduleCause: ACC-PLC did not shutdown the input/

negative feeder-module.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6908 Error standstill monitoring main driveCause: Unexpeced warm up of the main spindle

in the operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6909 Error main drive enable without spindle start

Cause: The release of the control unit of the main spindle was given by the ACC-PLC without the spindle-start key being pressed.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6910 Error standstill monitoring YCause: Unauthorized movement of the Y axis in

the current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6911 Error standstill axesCause: Unauthorized movement of the axis in the

current operating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6912 Error overspeed axisCause: The feed of the axes exceeds the maximum permissible value for the current op-erating condition.Remedy: Delete the alarm with the RESET button

and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6913 Error overspeed XCause: The feed of the X axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6914 Error overspeed YCause: The feed of the Y axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

Page 276: EMCO WinNC for Fanuc 31i Mill Software description, software

H12

AlArms And messAges

6915 Error overspeed ZCause: The feed of the Y axis exceeds the maxi-

mum permissible value for the current operating condition.

Remedy: Delete the alarm with the RESET button and switch the machine off and on again. Please contact the EMCO after-sales ser-vice in case the error occurs repeatedly.

6916 ERROR: X-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by X axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6917 ERROR: Y-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by Y axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6918 ERROR: Z-INDUCTIVE PROXIMITY SWITCH DEFECT

Cause: No signal is delivered by Z axis Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6919 ERROR: SPINDLE-INDUCTIVE PROX-IMITY SWITCH DEFECT

Cause: No signal is delivered by main spindle Bero.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.

6920 INVERSION OF X-DIRECTION TOO LONG «1»Cause: The change in direction of X axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6921 INVERSION OF Y-DIRECTION TOO LONG «1»Cause: The change in direction oY axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6922 INVERSION OF Z-DIRECTION TOO LONG «1»Cause: The change in direction of Z axis was be-

ing sent to USBSPS for more than three seconds.

Remedy: Delete alarm using the RESET key. Avoid driving back and forth using the manual wheel. If this error reoccurs, contact EMCO.

6923 DIFFERENT DOOR-SIGNALS FROM USBPLC AND ACC-PLC

Cause: ACC-PLC and USBSPS receive different door status reports.

Remedy: Delete alarm using the RESET key. If this error reoccurs, contact EMCO.

6924 ERROR ENABLE PULSES MAIN DRIVECause: The pulse release on the main spindle

control element was interrupted by the USBSPS, as the PLC did not shut it down in a timely fashion.

Remedy: Cancel alarm with RESET button. If the problem occurs several times, contact EMCO.

6925 GRID PROTECTION ERROR!Cause: Grid protection does not drop out in current

operating state, or does not engage.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6926 MOTOR PROTECTION ERROR!Cause: Motor protection drops out in current op-

erating state.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6927 EMERGENCY OFF ACTIVE ERROR!Cause: Emergency off button was pressed.Remedy: Restart the machine.

6928 TOOL CHANGER SHUTDOWN MONI-TORING ERROR

Cause: Unauthorised tool changer movement in the current operating state.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6929 MACHINE DOOR CLOSING/LOCKING ERROR

Cause: State of the door lock not plausible or door closure unserviceable.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

Page 277: EMCO WinNC for Fanuc 31i Mill Software description, software

H13

AlArms And messAges

6930 BEROS MAIN SPINDLE PLAUSIBILITY ERROR

Cause: Beros main spindle signal different.Remedy: Clear alarm with emergency off button

and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6931 MAIN DRIVE QUICK STOP FUNCTION PLAUSIBILITY ERROR

Cause: Main drive actuator does not confirm the quick stop function in the current operating state.

Remedy: Clear alarm with emergency off button and restart the machine. Contact EMCO Customer Service if the error occurs on several occasions.

6999 USB-EXTENSION FOR ROBOTIK NOT AVAILABLE

Cause: The USB extension for robotics cannot be addressed by ACC.

Remedy: Contact EMCO.

7000: INVALID TOOL NUMBER PRO-GRAMMED

The tool position was programmed larger than 8.The CNC program will be stopped.Interrupt program with RESET and correct the program.

7007: FEED HOLDIn the robotic mode a HIGH signal is at input E3.7. Feed Stop is active until a low signal is at E3.7.

7016: SWITCH ON AUXILIARY DRIVESThe auxiliary drives are off. Press the AUX ON key for at least 0.5 sec. (to avoid accidentally switching on) to switch on the auxiliary drives (also a lubricating pulse will be released).

7017: REFERENCE MACHINEApproach the reference point.When the reference point is not active, manual movements are possible only with key switch at position «setting operation».

7018: TURN KEY SWITCHWith NC-Start the key switch was in position «set-ting operation».NC-Start is locked.Turn the key switch in the position «automatic» to run a program.

7019: PNEUMATIC LUBRICATION MONI-TORING!

Refill pneumatic oil

7020: SPECIAL OPERATION MODE ACTIVESpecial operation mode: The machine door is opened, the auxiliary drives are switched on, the key switch is in position «setting operation» and the consent key is pressed.Manual traversing the axes is possible with open door. Swivelling the tool turret is possible with open door. Running a CNC program is possible only with standing spindle (DRYRUN) and SIN-GLE block operation.For safety: If the consent key is pressed for more than 40 sec. the function of this key is interrupted, the consent key must be released and pressed again.

7021: TOOL TURRET NOT LOCKEDThe tool turret operating was interrupted.NC start and spindle start are locked. Press the tool turret key in the RESET status of the control.

7022: COLLECTION DEVICE MONITORINGTime exceed of the swivelling movement.Check the pneumatics, respectively whether the mechanical system is jammed (possibly a work-piece is jammed).

7023: ADJUST PRESSURE SWITCH !During opening and closing of the clamping de-vice the pressure switch has to turn off and on once.Adjust the pressure switch. This alarm does not exist any more for versions starting with PLC 3.10.

7024: ADJUST CLAMPING DEVICE PROXIM-ITY SWITCH !

When the clamping device is open and the posi-tion stop control is active, the respective proximity switch has to feed back that the clamping device is «Open».Check and adjust the clamping device proximity switch, check the cables.

7025 WAITING TIME MAIN DRIVE !The LENZE frequency converter has to be sepa-rated from the mains supply for at least 20 sec-onds before you are allowed to switch it on again. This message will appear when the door is quickly openend/ closed (under 20 seconds).

7026 PROTECTION MAIN MOTOR FAN RE-LEASED!

Page 278: EMCO WinNC for Fanuc 31i Mill Software description, software

H14

AlArms And messAges

7038: LUBRICATION SYSTEM FAULTThe pressure switch is defective or gagged.NC-Start is locked. This alarm can be reset only by switching off and on the machine.Contact EMCO service.

7039: LUBRICATION SYSTEM FAULTNot enough lubricant, the pressure switch is defective.NC-Start is locked.Check the lubricant and lubricate manually or contact EMCO service.

7040: MACHINE DOOR OPENThe main drive can not be switched on and NC-Start can not be activated (except special opera-tion mode)Close the machine to run a program.

7041: GEARBOX COVER OPENThe main spindle cannot be switched on and NC start cannot be activated.Close the gearbox cover in order to start a CNC program.

7042: INITIALIZE MACHINE DOOREvery movement and NC-Start are locked.Open and close the machine door to initialize the safety circuits.

7043: PIECE COUNT REACHEDA predetermined number of program runs was reached. NC-Start is locked. Reset the counter to continue.

7048: CHUCK OPENThis message shows that the chuck is open. It will disappear if a workpiece will be clamped.

7049: CHUCK — NO PART CLAMPEDNo part is clamped, the spindle can not be switched on.

7050: COLLET OPENThis message shows that the collet is open. It will disappear if a workpiece will be clamped.

7051: COLLET — NO PART CLAMPEDNo part is clamped, the spindle can not be switched on.

7052: QUILL IN UNDEFINED POSITIONThe tailstock is in no defined position.All axis movements, the spindle and the tool tur-ret are locked.Drive the tailstock in back end position or clamp a workpiece with the tailstock.

7053: QUILL — NO PART CLAMPEDThe tailstock reached the front end position. Trav-erse the tailstock back to the back end position to continue.

7054: NO PART CLAMPEDNo part clamped, switch-on of the spindle is locked.

7055: CLAMPING DEVICE OPENThis message indicates that the clamping device is not in clamping state. It disappears as soon as a part is clamped.

7060 RETRACT SLEEVE LIMIT SWITCH !The axis arrived in the tailstock sleeve. Drive the travel off the tailstock sleeve.

7061 RETRACT X AXIS LIMIT SWITCH !The axis arrived to the end switch. Drive the axis off the end switch again.

7062 RETRACT Z AXIS LIMIT SWITCH !see 7061

7063 OIL LEVEL CENTRAL LUBRICATION !Low oil level in central lubrication. Refill oil as per maintenance instructions to the machine.

7064 CHUCK GUARD OPEN !The chuck guard is open. Close the chuck guard.

7065 MOTOR PROTECTION COOLANT PUMP RELEASED !

Overheated coolant pump. Check the coolant pump for ease of motion and presence of dirt. Ensure sufficient amount of coolant fluid in the coolant facility.

7066 CONFIRM TOOL !To confirm the tool change, press T after the change has been completed.

7067 MANUAL OPERATING MODEThe Special Operation key switch is in the Set position (manual).

7068 X AXIS HANDWHEEL ACTIVEThe safety wheel is locked for manual travel movement. The safety wheel locking is monitored by contactless switches. With the manual wheel locked, the axis feed cannot be switched on. For automatic processing of a program, the manual wheel must be released again.

7069 Y AXIS HANDWHEEL ACTIVEsee 7068

Page 279: EMCO WinNC for Fanuc 31i Mill Software description, software

H15

AlArms And messAges

7070 Z AXIS HANDWHEEL ACTIVEsee 7068

7071 VERTICAL TOOL CHANGEThe sheath for manual clamping of the tool holder is monitored by a switch. The switch reports a unaccepted socket wrench or a sheath which was left open. Remove the socket wrench after clamping the tool and close the sheath.

7072 HORIZONTAL TOOL CHANGEThe turning knob for manual tool clamping on the horizontal spindle is monitored by a switch. The switch reports a tightened turning knob. The spindle gets locked. Release the turning knob after clamping the tool.

7073 RETRACT Y AXIS LIMIT SWITCH !see 7061

7074 CHANGE TOOLClamp programmed tool.

7076: SWIVEL UNIT VOR MILLING HEAD UNLOCKED

The milling head is not fully swung. Fix the mill-ing head mechanically (the end switch must be pushed).

7077: ADJUST TOOL TURRETNo valid machine data for tool change are avail-able. Contact EMCO.

7078: POCKET NOT IN HOME POSITIONCancel during tool change. Swing back tool re-cessed in setup operation.

7079: TOOL ARM NOT IN HOME POSITIONsee 7079

7080: INCORRECT TOOL CLAMPED !The tool cone lies beyond tolerance. The clamped tool is twisted by 180°. Bero tool clamping is dis-placed. Check the tool and clamp it again. If this problem occurs with more tools, contact EMCO.

7082: MOTOR PROTECTION CHIP CONVEY-OR RELEASED

The scrap belt is overloaded. Check the conveyor belt for ease of motion and remove jammed scrap.

7083: MAGAZINE IS ACTIVE !A tool has been removed from the non-chaotic tool administration from the main spindle. Fill the tool drum.

7084: VICE OPEN !The vice is not clamped. Clamp the vice.

7085 ROUNDAXIS A MOVE TO 0 DEGRE !Cause: The MOC only shuts down if the A Round

axis is at 0°. When 4.5. is present, a round axis must

be made each time before the machine is switched off.

Remedy: Move round axis to 0°.

7088 SWITCHGEAR CABINET OVERHEAT-ING

Cause: Temperature monitoring responded.Remedy: Check switchgear cabinet filter and fan,

raise trigger temperature.

7089 SWITCHGEAR CABINET DOOR OPENCause: Switchgear cabinet door open.Remedy: Close switchgear cabinet door.

7091 WAIT FOR USB-I2C SPSCause: Communication with the USB-I2C PLC

could not be established.Remedy: If the message does not self-extinguish,

switch off and on the machine. Please contact EMCO service when the message occurs permanently even after power off.

7092 TEST STOP ACTIVECause: Safety test for monitoring the safety func-

tions is active.Remedy: Wait until the safety test is finished.

7093 SET REFERENCE POINTCause: The reference point acknowledge mode

was activated by the operator.

7094 SET X-REFERENCE POINTCause: The reference value of the X axis was

adopted to the acc.esd file.

7095 SET Y-REFERENCE POINTCause: The reference value of the Y axis was

adopted to the acc.esd file.

7096 SET Z-REFERENCE POINTCause: The reference value of the Z axis was

adopted to the acc.esd file.

7097 FEED OVERRIDE 0Cause: The override switch (feed control) was set

by the operator on 0%

Page 280: EMCO WinNC for Fanuc 31i Mill Software description, software

H16

AlArms And messAges

7098 SPINDLE-BRAKE 1 ACTIVEEffect: spindle stop.

7099 QUILL DRIVES FORWARDEffect: Feed stop, Read in lockMeaning: M21 was programmed pressure switch

«tailstock in front position» is not yet 1.Remedy: Disappears with pressure switch front

position.

7100 QUILL DRIVES BACKWARDEffect: Feed stop, Read in lockMeaning: M20 was programmed limit switch «tail-

stock back» is not yet 1Remedy: Disappears with limit switch «back position».

7101 REFERENCE POINT TOOL TURRET MISSING

Effect: Feed stop, Read in lockMeaning: At NC start the tool turret is not referenced.Remedy: Reference tool turret in JOG mode with

tool turret key.

7102 TOOL TURRET IN MOTIONEffect: Tool turret swivels to the programmed

position.

7103 LIMIT-SWITCH CLAMPING EQUIP-MENT 1

Effect: Locking of NC start and main drive start, spindle stop S1

Meaning: The pick-up for the analouge value detects the clamping position as end position.

Remedy: Change clamping range of the clamping device (see «Machine Description — chapter C Programming and Operation»).

7104 QUILL IN INTERMEDIATE POSITIONEffect: Feed hold / read in stop.

7105 SET AWZ REFERENCE POINTEffect: The reference value of the AWZ motor was

transferred to the acc.msd file.

7900 INITIALIZE EMERGENCY OFF!Cause: The emergency off button must be initial-

ized.Remedy: Press and then release emergency off

button.

7901 INITIALIZE MACHINE DOORS!Cause: The machine doors must be initialized.Remedy: Open the machine doors and close them

again.

7906 SET A-REFERENCE POINT Cause: The reference value of the A axis was

adopted to the acc.esd file.

Page 281: EMCO WinNC for Fanuc 31i Mill Software description, software

H17

AlArms And messAges

Inputunit alarms 1700 — 1899These alarms and messages are raised by the control keyboard.

1701 Error in RS232Cause: Serial port settings are invalid or the con-

nection to the serial keyboard were inter-rupted.

Remedy: Check the settings of the serial interface and/or turn keyboard off/on and check the control cable connection.

1703 Ext. keyboard not availableCause: Connection with the external keyboard can

not be made.Remedy: Check the settings of the external keyboard

and/or check the cable connection.

1704 Ext. keyboard: checksum errorCause: Error in the transmission.Remedy: The connection to the keyboard is auto-

matically restored. If this fails, turn off or on the keyboard.

1705 Ext. keyboard: general errorCause: The attached keyboard reported an error.Remedy: Plug the keyboard off and on again.Con-

tact EMCO Customer Service if the error occurs on several occasions.

1706 General USB errorCause: Error in the USB communication.Remedy: Plug the keyboard off and on again.Con-

tact EMCO Customer Service if the error occurs on several occasions

1707 Ext. Keyboard: no LEDsCause: Fehlerhaftes LED-Kommando wurde an

die Tastatur gesandt.Remedy: EMCO-Service kontaktieren.

1708 Ext. Keyboard: unknown commandCause: Unknown command was sent to the key-

board.Remedy: Contact EMCO Customer Service

1710 Installation of Easy2control is damaged!Cause: Incorrect installation of Easy2controlRemedy: Reinstall software and/or contact EMCO

Customer Service

1711 Initialization of Easy2Control failed!Cause: Configuration file onscreen.ini for Easy-

2control is missing.Remedy: Reinstall software and/or contact EMCO

Customer Service.

1712 USB-Dongle for Easy2control could not be found!

Cause: USB-Dongle for Easy2control is not con-nected. Easy2control is displayed but can not be operated.

Remedy: Connect USB-Dongle for Easy2control.

1801 Keytable not found!Cause: The file with the keytable couldn’t be found.Remedy: Reinstall software and/or contact EMCO

Customer Service.

1802 Connection to keyboard lostCause: Connection to the serial keyboard was

interrupted.Remedy: Turn keyboard off/on and check the cable

connection.

Page 282: EMCO WinNC for Fanuc 31i Mill Software description, software

H18

AlArms And messAges

Page 283: EMCO WinNC for Fanuc 31i Mill Software description, software

H19

AlArms And messAges

8000 Fatal Error AC8100 Fatal init error ACCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8101 Fatal init error ACsee 8101.8102 Fatal init error ACsee 8101.8103 Fatal init error ACsee 8101.8104 Fatal system error ACsee 8101.8105 Fatal init error ACsee 8101.8106 No PC-COM card foundCause: PC-COM board can not be accessed (ev.

not mounted).Remedy: Mount board, adjust other address with

jumper8107 PC-COM card not workingsee 8106.8108 Fatal error on PC-COM cardsee 8106.8109 Fatal error on PC-COM cardsee 8106.8110 PC-COM init message missingCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8111 Wrong configuration of PC-COMsee 8110.8113 Invalid data (pccom.hex)see 8110.8114 Programming error on PC-COMsee 8110.8115 PC-COM packet acknowledge missingsee 8110.8116 PC-COM startup errorsee 8110.8117 Fatal init data error (pccom.hex)see 8110.8118 Fatal init error ACsee 8110, ev. insufficient RAM memory

8119 PC interrupt no. not validCause: The PC interrupt number can not be used.Remedy: Find out free interrupt number in the Win-

dows95 system control (allowed: 5,7,10, 11, 12, 3, 4 und 5) and enter this number in WinConfig.

8120 PC interrupt no. unmaskablesee 81198121 Invalid command to PC-COMCause: Internal error or defective cableRemedy: Check cables (screw it); Restart software or

reinstall when necessary, report to EMCO, if repeatable.

8122 Internal AC mailbox overrunCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8123 Open error on record fileCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8124 Write error on record fileCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8125 Invalid memory for record bufferCause: Insufficient RAM, record time exceeding.Remedy: Restart software, ev. remove drivers etc.

to gain more RAM, reduce record time.8126 AC Interpolation overrunCause: Ev. insufficient computer performance.Remedy: Set a longer interrupt time in WinConfig.

This may result in poorer path accuracy.8127 Insufficient memoryCause: Insufficient RAMRemedy: Close other programs, restart software, ev.

remove drivers etc. to gain more RAM.8128 Invalid message to ACCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8129 Invalid MSD data — axisconfig.see 8128.8130 Internal init error ACsee 8128.8130 Internal init error ACsee 8128.

Axis Controller Alarms 8000 — 9000, 22000 — 23000, 200000 — 300000

Page 284: EMCO WinNC for Fanuc 31i Mill Software description, software

H20

AlArms And messAges

8132 Axis accessed by multiple channelssee 8128.8133 Insufficient NC block memory ACsee 8128.8134 Too much center points programmedsee 8128.8135 No centerpoint programmedsee 8128.8136 Circle radius too smallsee 8128.8137 Invalid for Helix specifiedCause: Wrong axis for helix. The combination of

linear and circular axes does not match.Remedy: Program correction.8140 Maschine (ACIF) not respondingCause: Machine off or not connected.Remedy: Switch on machine or connect.8141 Internal PC-COM errorCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8142 ACIF Program errorCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8143 ACIF packet acknowledge missingsee 8142.8144 ACIF startup errorsee 8142.8145 Fatal init data error (acif.hex)see 8142.8146 Multiple request for axissee 8142.8147 Invalid PC-COM state (DPRAM)see 8142.8148 Invalid PC-COM command (CNo)see 8142.8149 Invalid PC-COM command (Len)see 8142.8150 Fatal ACIF errorsee 8142.8151 AC Init Error (missing RPG file)see 8142.8152 AC Init Error (RPG file format)see 8142.8153 FPGA program timeout on ACIFsee 8142.8154 Invalid Command to PC-COMsee 8142.8155 Invalid FPGA packet acknowledgesee 8142 or hardware error on ACIF board (contact EMCO Service).

8156 Sync within 1.5 revol. not foundsee 8142 or Bero hardware error (contact EMCO Service).8157 Data record donesee 8142.8158 Bero width too large (referencing)see 8142 or Bero hardware error (contact EMCO Service).8159 Function not implementedBedeutung: In normal operation this function can

not be executed8160 Axis synchronization lost axis 3..7Cause: Axis spins or slide is locked, axis synchro-

nisation was lostRemedy: Approach reference point8161 X-Axis synchronization lostStep loss of the step motor. Causes:- Axis mechanically blocked- Axis belt defective- Distance of proximity detector too large

(>0,3mm) or proximity detector defective- Step motor defective8162 Y-Axis synchronization lostsee 81618163 Z-Axis synchronization lostsee 81618164 Software limit switch max axis 3..7Cause: Axis is at traverse area endRemedy: Retract axis8168 Software limit overtravel axis 3..7Cause: Axis is at traverse area endRemedy: Retract axis8172 Communication error to machineCause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable. Check connection PC — machine, eventu-

ally eliminate distortion sources.8173 INC while NC program is runningRemedy: Stop the program with NC stop or with

Reset. Traverse the axis.8174 INC not allowedCause: At the moment the axis is in motion.Remedy: Wait until the axis stops and then traverse

the axis.8175 MSD file could not be openedCause: Internal errorRemedy: Restart software oder bei Bedarf neu in-

stallieren, report to EMCO, if repeatable.8176 PLS file could not be openedsee 8175.

Page 285: EMCO WinNC for Fanuc 31i Mill Software description, software

H21

AlArms And messAges

8177 PLS file could not be accessedsee 8175.8178 PLS file could not be writtensee 8175.8179 ACS file could not be openedsee 8175.8180 ACS file could not be accessedsee 8175.8181 ACS file could not be writtensee 8175.8183 Gear too highCause: The selected gear step is not allowed at

the machine. 8184 Invalid interpolaton command8185 Forbidden MSD data changesee 8175.8186 MSD file could not be openedsee 8175.8187 PLC program errorsee 8175.8188 Gear command invalidsee 8175.8189 Invalid channel assignementsee 8175.8190 Invalid channel within messagesee 8175.8191 Invalid jog feed unitCause: The machine does not support the rotation

feed in the JOG operating mode.Remedy: Order a software update from EMCO.8192 Invalid axis in commandsee 8175.8193 Fatal PLC errorsee 8175.8194 Thread without lengthCause: The programmed target coordinates are

identical to the starting coordinates.Remedy: Correct the target coordinates.8195 No thread slope in leading axisRemedy: Program thread pitch8196 Too manny axis for threadRemedy: Program max. 2 axes for thread.8197 Thread not long enoughCause: Thread length too short. With transition from one thread to the other

the length of the second thread must be sufficient to produce a correct thread.

Remedy: Longer second thread or replace it by a linear interpolation (G1).

8198 Internal error (to manny threads)see 8175.

8199 Internal error (thread state)Cause: Internal errorRemedy: Restart software or reinstall when neces-

sary, report to EMCO, if repeatable.8200 Thread without spindle onRemedy: Switch on spindle8201 Internal thread error (IPO)see 8199.8201 Internal thread error (IPO)see 8199.8203 Fatal AC error (0-ptr IPO)see 8199.8204 Fatal init error: PLC/IPO runningsee 8199.8205 PLC Runtime exceededCause: Insufficient computer performance8206 Invalid PLC M-group initialisationsee 8199.8207 Invalid PLC machine datasee 8199.8208 Invalid application messagesee 8199.8212 Rotation axis not allowedsee 8199.8213 Circle and rotation axis can’t be inter-polated8214 Thread and rotation axis cant’t be in-terpolated8215 Invalid statesee 8199.8216 No rotation axis for rotation axis switchsee 8199.8217 Axis type not valid!Cause: Switching during the rotary axis operating

mode when the spindle is running.Remedy: Stop the spindle and switch over to the

rotary axis operating mode.8218 Referencing round axis without select-ed round axis!see 8199.8219 Thread not allowed without spindle encoder!Cause: Thread cutting, respectively tapping is

only possible with spindles with encoders.8220 Buffer length exceeded in PC send message!see 8199.8221 Spindle release although axis is no spindle!see 8199.

Page 286: EMCO WinNC for Fanuc 31i Mill Software description, software

H22

AlArms And messAges

8222 New master spindle is not validCause: The indicated master spindle is not valid

when switching over to the master spindle.Remedy: Correct the spindle number.8224 Invalid stop modesee 8199.8225 Invalid parameter for BC_MOVE_TO_IO!Cause: The machine is not configurated for touch

probes. A traversing movement with rotary axis is not allowed during touch probe operating mode.

Remedy: Remove the rotary axis movement from the traversing movement.

8226 Rotary axis switch not valid (MSD data)!Cause: The indicated spindle does not have a

rotary axis.8228 Rotary axis switch not allowed while axis move!Cause: The rotary axis has moved during switching

over to the spindle operating mode.Remedy: Stop the rotary axis before switching.8229 Spindle on not allowed while rotary axis is active!8230 Program start not allowed due to active spindle rotation axis!8231 Axis configuration (MSD) for TRANS-MIT not valid!Cause: Transmit is not possible at this machine.8232 Axis configuration (MSD) for TRACYL not valid!Cause: Tracyl is not possible at this machine.8233 Axis not available while TRANSMIT/TRACYL is active!Cause: Programming of the rotary axis is not al-

lowed during Transmit/ Tracyl.8234 Axis control grant removed by PLC while axis interpolates!Cause: Internal errorRemedy: Delete error with reset and inform EMCO.8235 Interpolation invalid while axis control grant is off by PLC!see 8234.8236 TRANSMIT/TRACYL activated while axis or spindle moves!see 8234.8237 Motion through pole in TRANSMIT!Cause: It is not allowed to move through the co-

ordinates X0 Y0 inTransmit.Remedy: Alter the traversing movement.

8238 Speed limit in TRANSMIT exceeded!Cause: The traversing movement gets too close to

the coordinates X0 Y0. In order to observe the programmed feed rate, the maximum speed of the rotary axis would have to be exceeded.

Remedy: Reduce the feed rate. Set the value of the C-axis feed limitation in WinConfig, machine data settings / general machine data/ to 0.2. Thus, the feed rate will be automatically reduced near the coordinates X0 Y0.

The distance to the center is calculated with the following formula:

for CT155/CT325/CT450: F[mm/min] * 0.0016 = distance [mm] for CT250: F[mm/min] * 0.00016 = distance [mm] This applies for rapid traverse in transmit: CT155/250/325: 4200 mm/min CT450: 3,500 mm/min8239 DAU exceeded 10V limit!Cause: Internal errorRemedy: Start the software again or install it anew.

Report the error to EMCO.8240 Function not valid during active trans-formation (TRANSMIT/TRACYL)!Cause: The Jog and INC operating mode are not

possible during Transmit in X/C and during Tracyl in the rotary axis.

8241 TRANSMIT not enabled (MSD)!Cause: Transmit is not possible at this machine.8242 TRACYL not enabled (MSD)!Cause: Tracyl is not possible at this machine.8243 Round axis invalid during active trans-formation!Cause: It is not allowed to program the rotary axis

during Transmit/Tracyl.8245 TRACYL radius = 0!Cause: When selecting Tracyl, a radius of 0 was

used.Remedy: Correct the radius.8246 Offset alignment not valid for this state!see 8239.8247 Offset alignment: MSD file write pro-tected!8248 Cyclic supervision failed!Cause: The communication with the machine

keyboard is interrupted.Remedy: Start the software again or install it anew.

Report the error to EMCO.8249 Axis motion check alarm!see 8239

Page 287: EMCO WinNC for Fanuc 31i Mill Software description, software

H23

AlArms And messAges

8250 Spindle must be rotation axis !see 82398251 Lead for G331/G332 missing !Cause: The threading pitch is missing or the start-

ing coordinates are identical to the target coordinates.

Remedy: Program the threading pitch. Correct the target coordinates.8252 Multiple or no linear axis programmed for G331/G332 !Remedy: Program exactly one linear axis.8253 Speed value for G331/G332 and G96 missing !Cause: No cutting speed has been programmed.Remedy: Program the cutting speed.8254 Value for thread starting point offset not valid!Cause: The thread starting point offset is not within

the range of 0 to 360°.Remedy: Correct the thread starting point offset.8255 Reference point not in valid software limits!Cause: The reference point has been defined

outside the software limit switches.Remedy: Correct the reference points in WinConfig.8256 Spindle speed too low while executing G331/G332!Cause: During tapping the spindle speed has de-

creased. Perhaps the incorrect threading pitch was used or the core drilling is not correct.

Remedy: Correct the threading pitch. Adapt the diameter to the core drilling.

8257 Real Time Module not active or PCI card not found!Cause: ACC could not be started correctly or the

PCI card in the ACC was not recognized.Remedy: Report the error to EMCO.8258 Error allocating Linux data!see 8257.8259 Current thread in sequence not valid!Cause: One block of a thread in sequence has

been programmed without thread G33.Remedy: Correct the program.

8260 Change of leading axis within the thread sequence !Cause: Occurs if the thread run-out of the longitu-

dinal thread is set so that it’s not possible to reach the target point. with the required stopping distance

Remedy: The thread run-out should be at least as large as the pitch. this error also occurs. if the pitch of a thread chain is too large when changing the leading axis.

8261 Missing thread in sequence !Cause: A successive thread has not been pro-

grammed for a thread in sequence, the number has to be in accordance with the SETTHREADCOUNT () that has been defined before.

Remedy: Correct the number of threads in the thread in sequence and add a thread.

8262 Reference marks are not close enough !Cause: The settings of the linear scale have been

changed or the linear scale is defective.Remedy: Correct the settings. Contact EMCO.8263 Reference marks are too close togeth-er!see 8262.8265 No or wrong axis in axis switch com-mand!Cause: Internal error.Remedy: Please contact the EMCO after-sales

service.8266 Invalid toolCause: Programmed tool is not set in magazine.Remedy: Correct tool number and/or load tool in

magazine.8267 Speed difference to highCause: Die Soll- und Istgeschwindigkeit der Achse

weichen zu stark voneinander ab.Remedy: Run the program again with reduced feed.

If this does not remedy the problem, contact EMCO.

8269 USBSPS and ACC speed values or override are differentCause: USBSPS and ACC have diferent rotations

saved.Remedy: Delete alarm using the RESET key. If this

error reoccurs, contact EMCO.8270 Reference switch defectiveCause: The reference switch did not switch within

the specified range.Remedy: Cancel alarm with RESET button. If the

problem occurs several times, contact EMCO.

8271 Tool load in locked place not possibleCause: There was an attempt to swing a tool into

a locked place in the magazine.Remedy: Choose a free, unlocked place in the

magazine and then swing the tool into the magazine.

8272 Old PLC version, update necessaryCause: The PLC version is too old to fully support

randomised tool management.Remedy: Update the PLC.

Page 288: EMCO WinNC for Fanuc 31i Mill Software description, software

H24

AlArms And messAges

8273 Spindle overloadCause: The spindle was overloaded and during

processing the speed fell (to half of the target speed for more than 500ms).

Remedy: Cancel alarm with RESET button. Change the cut data (feed, speed, infeed).

8274 Define tool before loadingCause: The tool must be defined in the tool list

before it is possible to transfer the tool into the spindle.

Remedy: Create the tool in the tool list, then load.8275 Could not read position from absolute encoderCause: The position of an absolute encoder could

not be read.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times8276 Physical axis left the valid travel rangeCause: An axis with absolute encoder is outside

the valid range for travel.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times.8277 Sinamics drive package error activeCause: Error in Sinamics drive.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times.8278 Control not compatible with ACpnCause: The WinNC control is incompatible with

the ACpn machine.Remedy: Install a WinNC control which is compatible

with the Acpn.8279 Connection to drive got lostCause: the connection between Acpn and CU320

was lost.Remedy: Turn off and on the machine. Contact EMCO

service it the error occurs multiple times8280 Reference point in setting data not equivalent with machine data, please check!Cause: The reference point saved in the AC setting

data does not match the reference point in the machine data (ACC_MSD).

Remedy: Measure the reference point of all axes anew and enter into EMConfig.

8704 Feed override absent, REPOS is not ex-ecuted

Cause: The REPOS command is not executed because the feed override is set to 0%.

Remedy: Change the feed override and restart REPOS.

8705 Tool sorting activeCause: The tools will be re-sorted with random

tool management to facilitate non-random operation (tool 1 at place 1, tool 2 at place 2, etc.).

Remedy: Wait until sorting has finished. The control-ler will delete the report independently.

8706 Check new controller — tool tableCause: The controller was changed with random

tool management active.Remedy: Check the tool or place table to clear the

alarm.8707 Ending with auxiliary drives switched on not possibleCause: An attempt was made to end the control-

ler, although the auxiliary drives are still switched on.

Remedy: Switch off the auxiliary drives and then end the controller.

8710 Initiating communication with drivesCause: Acpn connects to the Sinamics drivesRemedy: Wait until the connection was established.

8712 JOG in X and C deactivated during TransmitCause: JOG in X and C ist not possible at active

Transmit.

22000 Gear change not allowedCause: Gear step change when the spindle is ac-

tive.Remedy: Stop the spindle and carry out a gear step

change.22270 Feed too high (thread)Cause: Thread pitch too large / missing, Feed for

thread reaches 80% of rapid feedRemedy: Program correction, lower pitch or lower

spindle speed for thread

200000 to 300000 are specific to the drives and show up only in combination with the alarm # «8277 Sinamics error».

201699 — „(F) SI P1 (CU): Test of the shutdown path is necessary“Cause: A test of the shutdownpath is necessary.

The machine remains operational.Remedy: The test is performed automatically during

the next restart of the WinNC.235014 TM54F: Teststop necessaryCause: A teststop is necessary.Remedy: Shutdown and restart the WinNC. The test is performed automatically during

restart.

Page 289: EMCO WinNC for Fanuc 31i Mill Software description, software

H25

AlArms And messAges

Page 290: EMCO WinNC for Fanuc 31i Mill Software description, software

H26

AlArms And messAges

Axis Controller Messages

8700 Execute REPOS in all axes before pro-gram startCause: After the program was stopped, the axes

were manipulated with the hand wheel or with the jog keys and then a restart of the program was attempted.

Remedy: Before starting the program again, one should reposition the axes along the contour by executing «REPOS».

8701 No NCStop during offset alignCause: The machine is currently executing an

automatic offset adjustment. NC stop is not possible at this time.

Remedy: Wait until the offset adjustment is finished and then stop the program with NC stop.

8702 No NCStop during positioning after block searchCause: The machine is currently finishing the block

search operation and then it starts to go back to the last programmed position. No NC stop is possible in the meantime.

Remedy: Wait until positioning is finished and then stop the program with NC stop.

8703 Data record doneThe recording of data is finished and the file record.acp has been copied to the installation folder.

8705 Feed-override missing, REPOS will not be executedCause: The spindle was overloaded and during

processing the speed fell (to half of the target speed for more than 500ms).

Remedy: Cancel alarm with RESET button. Change the cut data (feed, speed, infeed).

8706 Tool sorting activeCause: The tools were resorted during randomised

tool management in order to enable non-randomised operation (tool 1 to place 1, tool 2 to place 2, etc.).

Remedy: Wait till the sorting is finished. The message will be deleted automatically by the control system.

8707 New control — please check tool tableCause: The control system was changed when

randomised tool management was active.Remedy: Check the tool or place table to cancel the

alarm.8708 Switch off auxiliary drives for shutdownCause: There was an attempt to shut down the

control system although the auxiliary drives are still switched on.

Remedy: Switch off the auxiliary drives and then shut down the control system.

8709 Insert tool in spindle for loadingCause: During loading a tool must be physically

available in the spindle.Remedy: Clamp tool in the spindle. The message disap-

pears.

Page 291: EMCO WinNC for Fanuc 31i Mill Software description, software

H27

AlArms And messAges

Control alarms 2000 — 5999The alarms are released by the software.

2200 Syntax error in line %s, column %sCause: Syntax error in the program code.

2001 Circle end point invalidCause: The start-middle point and middle-end point

distances differ by more than 3 µm.Remedy: Correct circular arc point.

2300 tracyl without corresponding round-axis invalidCause: Maybe the machine has no rotary axis.

3000 Traverse feed axis manually to position %sRemedy: Move the axis manually to the required

position.

3001 Tool T.. change!Cause: A new tool was programmed in the NC

program.Remedy: Clamp the required tool in the machine.

4001 slot width too smallCause: The tool radius is too large for the slot to

be milled.

4002 slot length to smallCause: The slot length is too small for the slot to

be milled.

4003 length equal zeroCause: Pocket length, pocket width, stud length,

stud width are zero.

4004 slot width too bigCause: The programmed slot width is larger than

the slot length.

4005 depth equal zeroCause: No machining takes place since no effec-

tive cutting depth has been defined.

4006 corner radius too bigCause: The corner radius is too large for the size

of the pocket.

4007 diameter too bigCause: The remaining material (nominal diameter

— diameter of the prebore) /2 is larger than the tool diameter.

4008 diameter too smallCause: The tool diamter is too large for the intended

bore.Remedy: Enlarge the nominal diameter and use a

smaller milling cutter.

4009 length too smallCause: Width and length must be larger than the

double tool radius.

4010 diameter less equal zeroCause: The pocket diameter, the stud diameter,

etc. must not be zero.

4011 blank diameter too bigCause: The diameter of the machined pocket

must be larger than the diameter of the premachined pocket.

4012 blank diameter too smallCause: The diameter of the machined stud must

be smaller than the diameter of the premachined stud.

Fagor 8055 TC/MC Heidenhain TNC 426 CAMConcept EASY CYCLESinumerik OPERATEFanuc 31iHeidenhain TNC 640

Page 292: EMCO WinNC for Fanuc 31i Mill Software description, software

H28

AlArms And messAges

4013 start angle equal to end angleCause: Start angle and end angle for hole pattern

are identical.

4014 tool radius 0 not permittedCause: Tool radius zero is not permitted.Remedy: Select a valid tool.

4015 no outer contour definedCause: The contour file indicated in the cycle was

not found.

4017 tool radius too bigCause: For the programmed machining, a tool

being too large was selected. Therefore, machining is not possible.

4018 allowance must not be 0Cause: There were programmed finishing opera-

tions without finishing offset.

4019 too many iterationsCause: The contour definitions are too complex

for the roughing-out cycle.Remedy: Simplify the contour.

4020 illegal radian correctionCause: An error has occured during the program-

ming of the radius compensation.Remedy: Check the cycle parameters.

4021 can’t calculate parallel contourCause: The control was not able to calculate the

tool radius compensation.Remedy: Check the programmed contour for plausibil-

ity. Maybe contact EMCO.

4022 illegal contour definitionCause: The programmed contour is not suited to

the selected machining.Remedy: Check the programmed contour.

4024 no contour definitionCause: The contour file being defined in the cyle

has not been found.

4025 internal calculation errorCause: An unexpected error has occured during

calculation of the cycle movements.Remedy: Please inform the EMCO after-sales service.

4026 allowance too bigCause: A part of the finishing offset (for several

finishing passes) is larger than the total finishing offset.

Remedy: Correc the finishing offsets.

4028 pitch 0 not permittedCause: The thread was programmed with pitch

zero.

4029 undefinded working modeCause: Internal error (invalid machining type for

the thread).

4030 function not yet supportedCause: Roughing out with pockets is not imple-

mented yet.Remedy: Please inform the EMCO after-sales service.

4031 value not permittedCause: An invalid retracting direction was pro-

grammed during inside turning.

4032 plunging must be definedCause: For the programmed cycle no cutting depth

has been programmed.

4033 radius/chamfer too bigCause: The radius, respectively the chamfer, can-

not be inserted in the programmed contour.Remedy: Reduce the radius, respectively the chamfer.

4034 diameter too bigCause: The programmed starting point and the

machining diameter are contradictory.

4035 diameter too smallCause: The programmed starting point and the

machining diameter are contradictory.

4036 unknown working directionCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4037 unknown working typeCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4038 unknown sub cycleCause: Internal error.Remedy: Please inform the EMCO after-sales service.

Page 293: EMCO WinNC for Fanuc 31i Mill Software description, software

H29

AlArms And messAges

4039 rounding not possibleCause: The programmed radius contradicts the

rest of the cycle parameters.

4042 illegal tool widthCause: The tool width for the cutting-off cycle must

be defined.

4043 groove width too smallCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4044 distance not definedCause: The distance for the multiple grooving cycle

must not be zero.

4045 illegal allowance typeCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4046 invalid speedCause: The spindle speed must be nonzero.

4047 invalid end pointCause: The programmed end point contradicts the

rest of the cycle definition.

4048 tool cut width too smallCause: The cutting edge is too small for the pro-

grammed cutting depth.

4050 invalid distanceCause: The hole patterns do not tally with the

selected distance.

4052 working pattern not possibleCause: Error in the definition of the hole pattern.

The number of bores is contradictory.

4053 invalid start pointCause: Internal error.Remedy: Please inform the EMCO after-sales service.

4055 illegal working directionCause: The machining direction is contradictory

to the rest of the cycle definition.

4057 plunging angle less equal zeroCause: The plunging angle must be between 0

and 90 degree.

4058 chamfer too largeCause: The programmed chamfer is too large for

the pocket cycle.

4062 radius/chamfer too smallCause: The radius, respectively the chamfer,

cannot be machined with the current tool radius.

4066 invalid mill stepCause: The mill step must be greater than zero.

4069 invalid angleCause: An angle of zero degree is not permitted.

4072 plunging too smallCause: For the cycle, a cutting depth has been

selected that leads to extra-long machining time.

4073 invalid clearance angleCause: The clearance angle indicated for the tool

cannot be machined.Remedy: Correct the clearance angle for the tool.

4074 contour-file not foundCause: The contour file indicated in the cycle has

not been found.Remedy: Please select the contour file for the cycle.

4075 not machinable with selected toolCause: The tool is too wide for the programmed

groove.

4076 reciprocating plunge cut impossible (initial move too short)Cause: The first movement of the contour is

shorter than the double tool radius and cannot be therefore used for the swinging delivery.

Remedy: Extend the first movement of the contour.

4077 wrong tool type in grooving or cut-off cylceCause: The wrong tool type was used in the cutting

cycle.Remedy: Use only grooving and punch tools in the

cutting cycles.

4078 radius of helix too smallCause: The pitch of the helix is ≤ 0.Remedy: Program the radius > 0.

4079 pitch of helix too smallCause: The radius of the helix is ≤ 0.Remedy: Program the pitch > 0..

Page 294: EMCO WinNC for Fanuc 31i Mill Software description, software

H30

AlArms And messAges

4080 radius of helix or tool too largeCause: The helical approach cannot be executed

with the selected data for the helix and the current tool radius without a contour breach.

Remedy: Use a tool with a smaller radius or reduce the radius of the helix.

4200 leaving movement is missingCause: No movement after the tool radius com-

pensation was deactivated in the current plane.

Remedy: Insert the departing movement in the current plane after having deactivated the tool radius compensation.

4201 TPC off missingCause: The tool radius compensation has not been

deactivated. Remedy: Deactivate the tool radius compensation.

4202 TPC requires at least three movementsCause: The tool radius compensation requires at

least 3 movements in the current plane in order to calculate the tool radius compen-sation.

4203 approaching movement not possibleCause: It was not possible to calculate the ap-

proaching movement.

4205 leaving movement not possibleCause: It was not possible to calculate the depart-

ing movement.

4208 TPC curve could not be calculatedCause: It was not possible to calculate the tool

radius compensation for the programmed contour.

4209 switching the plane is not allowed when TPC is switched onCause: The programmed plane must not be

changed during the tool radius compensa-tion.

Remedy: Remove the change of planes during the tool radius compensation.

4210 tool path compensation already activatedCause: G41 is active and G42 was programmed or

G42 is active and G41 was programmed.Remedy: Switch tool radius compensation off with G40

before programming the radius compensa-tion again.

4211 Bottleneck detectedCause: In the radius correction calculation some

parts of the contour were omitted, as too large a milling cutter tool was used.

Remedy: Use a smaller milling cutting tool to process the contour completely.

4212 Infeed has been programmed twice dur-ing approachCause: After the approach movement a second

infeed has been programmed, without previously moving to the work plane.

Remedy: First program a movement to the work plane before programming a second infeed.

5000 drill manually now

5001 contour has been adjusted to the pro-grammed clearance angleCause: The programmed contour was adapted to

the programmed clearance angle. Maybe there will remain rest material that cannot be machined with this tool.

5500 3D simulation: Internal errorCause: Internal error inside the 3D simulation.Remedy: Restart the software or, if necessary, report

the error to EMCO customer service.

5502 3D simulation: Tool place invalidCause: Tool place unavailable on the machine

used. Remedy: Correct tool call-up.

5503 3D simulation: Chuck invalid owing to the unmachined part definitionCause: The distance from the front of the unma-

chined part is > the unmachined part length.Remedy: Change the distance.

5505 3D simulation: Unmachined part defini-tion invalidCause: Implausibility in the unmachined part geom-

etry (e.g. expansion in one axis ≤ 0, inside diameter > outside diameter, unmachined part contour not closed, etc.).

Remedy: Correct unmachined part geometry.

5506 3D simulation: STL chuck file has auto-overcutsCause: Error in the chuck description. Remedy: Correct file.

Page 295: EMCO WinNC for Fanuc 31i Mill Software description, software

H31

AlArms And messAges

5507 3D simulation: Pole transit on TRANS-MIT!Cause: Travel comes too close to the X0 Y0 co-

ordinates.Remedy: Change travel.

Page 296: EMCO WinNC for Fanuc 31i Mill Software description, software

H32

Page 297: EMCO WinNC for Fanuc 31i Mill Software description, software

I1

Fanuc 31i controller alarms

I: Fanuc 31i controller alarms

Controller alarms 0001 — 88000The controller triggers these alarms. These are the same alarms as would have occurred on the Fanuc 31i controller.

A 2014-12

0006 ILLEGAL USE OF MINUS SIGN Declaration: Illegal minus sign (-) in a NC com-mand word or a system variable.

0010 IMPROPER G-CODE Declaration: Improper G-Code commanded.The parameter for piercing with continuous circu-lar motion is not effective. The activation signal for piercing with continuous circular motion is «0».

0030 ILLEGAL OFFSET NUMBER Declaration: Illegal offset number specified.Alarm also comes on if, in tool offset memory B, the number of tool form offsets exceeds the max-imum number of tool offset sets.

0051 MISSING MOVE AFTER CNR/CHF Declaration: Improper move or travel in the set after chamfering or rounding. Correct program.

0055 MISSING MOVE VALUE IN CHF/CNRExplanation: In the set for chamfering/rounding, the path is less than the amount of the chamferor rounding. Correct program.

0077 TOO MANY SUB,MACRO NESTINGDeclaration: In total, more subroutines and mac-ro calls have been commanded than allowed.Further subroutine calls during subroutine call from external memory

0114 ILLEGAL EXPRESSION FORMAT Declaration: Format error in a printout of a client macro instruction.The punched tape format parameter is incorrect.

0115 VARIABLE NO. OUT OF RANGE Declaration: A local, global or system variable in a client macro contains an out of range number.A non-existent client macro variable number has

been given in the «EGB axis fadeout» function (G31.8). Or the number of client macro variables for saving jump positions is insufficient.High speed cycle machinings are incorrect. The alarm is triggered in the following cases:1) The program head corresponding to the called machining cycle number is missing.2) The value of the cycle connection information is outside the permitted range (0 to 999).3) The number of data elements in the program head is outside the permitted range (1 to 65535).4) The memory start data variable number of the executable data is outside the per-mitted range (#20000 to #85535/#200000 to #986431/#2000000 to #3999999).5) The memory end data variable number of the executable data is outside the permitted range (#85535/#986431/#3999999).6) The memory start data variable number of the executable data is the same variable number as that used by the program head.

0116 WRITE PROTECTED VARIABLEDeclaration: In a client macro, a variable should be used on the left page of a printout that may only appear on the right page.

0128 ILLEGAL MACRO SEQUENCE NUMBERExplanation: The figure program includes The given set number was not found in the set number search.The set number given in GOTO— and M99P— as the jump destination was not found.

0175 ILLEGAL G07.1 AXIS Declaration: Axis with which cylindrical interpo-lation is impossible. Several axes in a G07.1 set. Cylindrical interpolation is ended for an axis that is not in this mode.Set the axis for cylindrical interpretation in pa-rameter 1022 not on 0, but on 5, 6 or 7 (parallel axis), in order to describe the arc with the rotation axis (ROT parameter 1006#1 on 1, the parameter 1260 is configured).

0310 FILE NOT FOUND Declaration: The file was not found when calling up the subroutine or macro.

Page 298: EMCO WinNC for Fanuc 31i Mill Software description, software

I2

Fanuc 31i controller alarms

0312 ILLEGAL COMMAND IN DIRECT DRAW-ING DIMENSIONS PROGRAMMING Declaration: Illegal command format for direct drawing dimensions programming. An illegal G-Code was used for direct drawing dimensions programming.There are two or more sets without a positioning command between two commands for direct drawing dimensions programming. Decimal point in direct drawing dimensions programming, al-though decimal points must not be used (bit 4 of parameter no. 3405 = 1).

1330 ILLEGAL OFFSET NUMBERDeclaration: Spindle number higher than the number of controlled spindles while loading pa-rameters or lead error offset data from punched tape or with G10.

1960 ACCESS ERROR (MEMORY CARD)Declaration: Illegal memory card access.This alarm is also triggered while reading if the end of the file is reached and no EOR code ‘%’ is found.

3506 WRONG CUTTING AREADeclaration: The cutting area is illegal.Remedy: Change the cutting program so that a correct cutting area is given, so that part contour and raw part contour match with the cutting pro-file.

3507 WRONG CUTTING CONDITION Declaration: The cutting conditions are illegal. Remedy: Change the cutting program so that the cutting conditions, such as feed speed, are normal.

3514 WRONG FIGURE DATA Declaration: The figure data is illegal.Remedy: Change the cutting program so that the figure data is correct.

3516 NO NECESSARY ADDRESSDeclaration: The necessary addresses for a cy-cle cutting command or other 4-digit G-commands were not entered.Remedy: Change the cutting program, e.g. by adding the necessary addresses.

3530 WRONG MACHINING TYPE Explanation: The machining type specification is illegal.Remedy: Change the machining program so that the machining type is appropriate.

3531 WRONG RETURN MODEExplanation: The return mode is illegal.Remedy: Change the machining program so that the return mode is appropriate.

3535 WRONG THREADING LEADDeclaration: The threading lead setting is illegal.Remedy: If, say, a negative value was entered as the threading lead,change the machining program so that the thread-ing lead is correct.

3538 WRONG CUTTING DIRECTIONExplanation: The cutting direction setting is illegal.Remedy: A value was entered that must not be given for turning or other machining directions. Change the machining program so that the ma-chining direction is permitted.

3539 WRONG CUT DEPTH DIRECTION Declaration: The cut depth direction setting is illegal. Remedy: A value was entered that must not be given for turning or other cut depth directions. Change the machining program so that the cut depth direction is permitted.

3541 WRONG CHAMFERING AMOUNTExplanation: The chamfering amount setting is illegal.Remedy: A value was entered that is not permit-ted for chamfering or other chamfer values, e.g. a negative value. Change the machining program so that the chamfering amount is permitted.

3542 WRONG EJECTION STROKEDeclaration: The ejection stroke setting is illegal.Remedy: A value was entered that is not permit-ted for chamfering or other plane area ejection stroke amounts, e.g. a negative value.Change the machining program so that the ejec-tion stroke amount is permitted.

3543 WRONG THICKNESSExplanation: The given machining thickness is illegal.Remedy: A value was entered that is not per-mitted for pocket milling or other machining thicknesses, e.g. a negative value. Change the machining program so that the machining thick-ness is permitted.

Page 299: EMCO WinNC for Fanuc 31i Mill Software description, software

I3

Fanuc 31i controller alarms

3547 WRONG CUTTING DEPTH ANGLEDeclaration: The cutting depth angle is illegal.Remedy: A value was entered that is not per-mitted for pocket milling or other cutting depth angles. Change the machining program so that the cutting depth angle is permitted.

3548 WRONG CLEARANCE Declaration: — The clearance is illegal. Remedy: A clearance value was entered that is illegal, e.g. a negative value. Change the machin-ing program so that the clearance is permitted.

3551 WRONG FINISHING NUMBER Declaration: — The number of finished machining processes is illegal. Remedy: An illegal value for the number of thread cutting processes or for other finished machining process was entered, e.g. 0. Change the ma-chining program so that the number of finished machining processes is permitted.

3552 WRONG APPROACH SETTINGDeclaration: The approach setting is illegal. Remedy: A value was entered that is not per-mitted for contour cutting or other approaches. Change the machining program so that the ap-proach is permitted.

3553 WRONG ESCAPE SETTINGDeclaration: The escape setting is illegal.Remedy: A value was entered that is not permit-ted for contour cutting or other escapes. Change the machining program so that the escape is permitted.

3575 WRONG FIGURE TYPEExplanation: The figure type is illegal.Remedy: A figure type that is not permitted was selected for a figure set.Change the machining program so that the figure type is permitted.

3579 WRONG CORNER SETTING Declaration: The corner rounding setting is il-legal.Remedy: A value for rounding the corner of a figure type that is not permitted was entered. Change the machining program so that the en-tered value is permitted.

3582 WRONG FIGURE RADIUSDeclaration: The figure radius setting is illegal.Remedy: A value for rounding the corner of a figure type that is not permitted was entered.

Change the machining program so that the en-tered value is permitted.

3584 WRONG PITCH SETTINGDeclaration: The pitch setting is illegal.Remedy: A value for a pitch for a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3585 WRONG HOLE/GROOVE NUMBERDeclaration: The number of holes/grooves is illegal.Remedy: A value for the number of holes or grooves in a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3586 WRONG COORDINATE POSITIONDeclaration: The coordinate positions are illegal.Remedy: A value for the coordinates of a figure set that is not permitted was entered. Change the machining program so that the set value is permitted.

3592 WRONG OMITTED POINTDeclaration: A random figure is not closed.Remedy: A random figure that was entered for plane cutting, pocket milling or turning was not closed. Change the machining program so that there is a closed figure that has identical start and end points.

5010 END OF RECORDDeclaration: The EOR (end of record) code was in the middle of a set. An alarm is also generated if the percent sign is read at the end of the program.

5044 G68 FORMAT ERRORDeclaration: Error in the three-dimensional coor-dinate conversion command:(1) No I, J or K in the three-dimensional coor-dinate conversion command string (without the «Coordinate rotation» option).(2) I, J or K are all 0 in the three-dimensional coordinate conversion command string.(3) No rotating angle R in the three-dimensional coordinate conversion command string.

Page 300: EMCO WinNC for Fanuc 31i Mill Software description, software

I4

Fanuc 31i controller alarms

Page 301: EMCO WinNC for Fanuc 31i Mill Software description, software

W1

WinnC Starting information aCCeSSory funCtionS

W: Accessory Functions

Activating accessory functionsAccording to the machine (turn/mill) the following accessories can be taken into operation:• automatic tailstock• automatic vice/clamping device• Air purge system• Dividing attachment• Robot interface• Automatic doors• Win3D view simulation software• DNC interface

The accessories are activated with EMConfig.

Robotic InterfaceThe robotic interface is used to connect the con-cept machines to an FMS/CIM system.

The most important functions of a concept ma-chine can be automated via the inputs and outputs of an optional hardware module.The following functions can be controlled via the robotic interface:• Program START / STOP• Door open / closed• Quill clamp / back• Clamping device open / closed• Feed STOP

Automatic doorsPreconditions for activation:• The auxiliary drives must be switched on.• The main spindle must be still (M05 or M00) —

this also means that the run-out phase of the main spindle must be ended (program dwell time if required).

• The feed axes must be still.• The tool changer must be still.

Behavior when automatic doors active:

Opening doorThe door can be opened manually, via the robot interface or DNC interface.In addition, the door opens when the following commands are executed in the CNC program:• M00• M01• M02• M30

Closing door:The door can be closed by manually pressing the button via the robot interface. It is not possible to close the door via the DNC interface.

Win3D ViewWin3D View is a 3D simulation for turning and milling, which is offered as an additional option for the WinNC product. Graphical simulations of CNC controls are primarily designed for industrial practice. The Win3D View screen representation goes beyond the industrial standard. Tools, raw parts, clamping devices and the processing steps are represented extremely realistically. The pro-grammed movement paths of the tool are checked by the system for a collision with clamping device and raw part. A warning message is issued when there is danger. This makes possible to have understanding and control of the manufacturing process already on the screen.Win3D View is used to visualize and prevent costly collisions.Win3D View offers the following advantages:• Extremely realistic representation of workpiece• Tool and clamping device collision control• Cut representation• Zoom functions and turning of views• Representation as solid or wireframe model

Note:The functionality of the Win3D-View is de-pending on the control software that is used.

Page 302: EMCO WinNC for Fanuc 31i Mill Software description, software

W2

Accessory Functions Winnc stArting inFormAtion

DNC interfaceThe DNC interface (Distributed Numerical Con-trol) enables the control system (WinNC) to be controlled remotely via a software protocol.The DNC interface is activated with EMConfig, by indicating TCP/IP or a serial interface for the DNC.During the installation of the control software, the DNC interface is enabled and configured, and can be reconfigured with EMConfig later on.

The DNC interface creates a connection between a higher-level computer (production control com-puter, FMS computer, DNS host computer, etc.) and the control computer of an NC machine. After activation of the DNC drive the DNC computer (Master) takes over control of the NC machine (Client). The DNC computer takes over complete control of the manufacturing. The automation fit-tings such as door, chuck (collet), quill, coolant, etc. can be controlled from the DNC computer. The current status of the NC machine is visible on the DNC computer.

The following data can be transferred or loaded via the DNC interface:• NC Start • NC Stop • NC programs *)• Zero point shifts *)• Tool data *)• RESET • Approach reference point • Periphery control • Override data

The DNC interface can be operated with the following CNC control types:• SINUMERIK Operate T and M• FANUC 31i T and M

Further details of the functions and the DNC pro-tocol can be found in the accompanying product documentation.

If the DNC interface is operated with TCP/IP, it will wait for incoming connections on port 5557.

*) not for SINUMERIK Operate and FANUC 31i

Page 303: EMCO WinNC for Fanuc 31i Mill Software description, software

X1

WinnC Starting information EmConfig

X: EMConfig

General

EMConfig is a configuration software for WinNC.EMConfig helps you to alter the settings of WinNC.

The most important settings are:• Control language• System of measurement mm — inch• Activate accessories• Selection of interface for control keyboard

Using EMConfig you can also activate diagnostic functions in case of troubles — that way you get help immediately.

Safety-related parameters are protected by a password. They can only be activated by set-up technicans or by technical support representa-tives.

Note:The settings which are available in EMConfig are depending on the machine and the control that is used.

Page 304: EMCO WinNC for Fanuc 31i Mill Software description, software

X2

EMConfig WinnC Starting inforMation

Change the language of EMConfig

How to start EMConfig

Open EMConfig.

In case several control types are installed, a se-lection box will appear on the screen.

Select the required control type and click OK.

The following settings are only valid for the se-lected control type.

The window for EMConfig appears on the screen.

Icon for EMConfig

Selection box for control type

Here you can change the lan-guage of EMConfig. In order to activate the settings, restart the program.

Note:Select the desired menu item. The appropri-ate function is explained in the text box.

Page 305: EMCO WinNC for Fanuc 31i Mill Software description, software

X3

WinnC Starting information EmConfig

How to activate accessoriesWhen you install accessories on your machine, you need to activate them here.

Activate accessories

High Speed Cutting

On activating this checkbox, High Speed Cutting is turned on.

Activate High Speed Cutting

By using high speed cutting, the setting of the axis controller is adjusted. This gain is only effective until the programmed feed rate of 2500 mm/min and allows contour faithful retrac-tion of the tool path and gen-erating of sharp edges. If the feed is set up to higher than 2500 mm/min, it is auto-matically reset to the normal operating mode and sanded and rounded edges are cre-ated.

Page 306: EMCO WinNC for Fanuc 31i Mill Software description, software

X4

EMConfig WinnC Starting inforMation

Settings

This mask allows you to enable or disable Easy-2control and make settings.

Easy2control on screen opera-tion

Installation and activation using the example of WinNC for Sinumerik Operate.

Easy2control settings

Activating Easy2control

Dial feed-override anddial speed-override:

• Aktive: dial always con-trollable via mouse/touch-screen (even with available hardware- version).

• Inaktive: dial not controlla-ble via mouse/touchscreen.

• Standard: dial controllable via mouse/touchscreen when no hardware-version is available.

Note:If Easy2control is used without the hardware-dongle, the controls are diactivated and an appropriate alarm is output by the controller.However, the virtual keyboard is displayed completely.

When installing the software WinNC for Sinumerik Oper-ate you will be prompted to activate Easy2control. In order to use the Software without restriction, the supplied dongle must be connected to a free USB port.

Page 307: EMCO WinNC for Fanuc 31i Mill Software description, software

X5

WinnC Starting information EmConfig

Activate camera

Machine room camera

The accessory machine room camera is available for all controls which support Easy2control.

Please refer to chapter Y “external input devices” for more information about the installation guide for the the camera.

Danger:Make sure the machine room camera is placed properly in the work area that colli-sions with the tool turret and the axes are avoided.

Attention:The camera may not be operated without the supplied waterproof case.

If the camera is operated without the water-proof case it may be damaged by coolant and chips.

Page 308: EMCO WinNC for Fanuc 31i Mill Software description, software

X6

EMConfig WinnC Starting inforMation

How to save changes

After the settings, the changes must be saved.

Select «Save» or click on the icon.

How to create machine data floppy disk or machine data USB flash drive

After having changed the machine data, the ma-chine data floppy disk or the machine data USB flash drive must be in the appropriate drive.Otherwise your changes cannot be saved and get lost.

After saving the changes, create a machine data floppy disk (MSD) or a machine data USB flash drive.

Note:Input fields highlighted in red indicate inad-missible values. Inadmissible values are not saved in EMConfig.

Page 309: EMCO WinNC for Fanuc 31i Mill Software description, software

Y1

WinnC Starting information ExtErnal input DEviCES

Y: External Input DevicesEMCO Control Keyboard USB

Scope of supply

The scope of supply for a complete control key-board consists of two parts:• Basic case• Key module

VDE BSI UL

Ref. No. Description

X9B 000 Basic unit with USB cable

X9Z 600 TFT Display with screen cable and power supply unit

A4Z 010 Mains cable VDE

A4Z 030 Mains cable BSI

A4Z 050 Mains cable UL

X9Z 050N Key module FAGOR 8055 TC 2 key sheets with keys

X9Z 055N Key module FAGOR 8055 MC 2 key sheets with keys

X9Z 426N Key module HEIDENHAIN 426/430 2 key sheets with keys 1 package exchange keys

X9Z 060 Key module WinNC for SINUMERIK OPERATE 2 key sheets with keys

X9Z 030 Key module WinNC for FANUC 31i 2 key sheets with keys 1 package exchange keys

X9Z 640 Key module Emco WinNC for HEIDENHAIN TNC 640

Page 310: EMCO WinNC for Fanuc 31i Mill Software description, software

Y2

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Assembling• Place the correseponding key sheet with the

clips in the basic case (1).• Pull the key sheet into the basic case, it must

be insertet plainly (2).• Fix the key sheet with the two knurled screws

(3).

Take offPull out carefully the key caps to be exchanged with a fine screw driver or a knife.

Clip onMove the key body in the middle of the recess. Push the key cap vertically down onto the key body, until the key cap snaps in tactily.

Exchange of single key caps

Off works the keyboards are equipped with the keys for turning.The scope of supply includes a package of ex-change key caps to equip the keyboard for mill-ing.If you want to use the control keyboard for milling, you have to exchange a part of the key caps. Ex-change them as shown on the following pages.

Note:The key sheets must not be bended, otherwise the switching function can not be warranted.

Note:For the control type Emco WinNC for HEIDEN-HAIN TNC 640 only a milling version is avail-able.

1

23

123

4

Page 311: EMCO WinNC for Fanuc 31i Mill Software description, software

Y3

WinnC Starting information ExtErnal input DEviCES

6

31

4

7 9

X ZY?

, @

F[ ] & SP

U V WQ

I J K RA

D H B

+ X

+Z

-Z

-X

— 4

+4- Y

+Y

10000

1000

100

101

EDIT

6080

90

100

110

120

864

0

21

10

40 7020

FANUC 31iMExchange key capsfor milling

Connection to the PCThe control keyboard is connected via USB inter-face to the PC.The connection cable USB taking over at the same time the energy supply of the control key-board is situated at the rear side of the control keyboard.

Settings at the PC softwareSetting during new installation of the PC softwareDuring the installation indicate the control key-board and the respective USB interface.

Setting in case of PC software al-ready installedSelect in EMConfig at the INI data settings the USB control keyboard as means of entry and the respective interface USB.Furthermore, set the keyboard type to “New”. Don’t forget to memorize the settings.

Page 312: EMCO WinNC for Fanuc 31i Mill Software description, software

Y4

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Easy2control On Screen operationEasy2control adds a range of attractive applica-tions to the successful interchangeable control system used in EMCO training machines. Suitable for use in machines and simulation workplaces alike, it displays additional control elements di-rectly on the screen and, when used together with a touchscreen monitor, provides the ideal input interface.

Scope of supply

The software for Easy2control is part of the con-trol software. The dongle for a workstation license is delivered:

Ref. No. X9C 111

Technical data for the screen:

16:9 Full-HD Monitor (1920×1080) at the minimum

Currently available controls (T and M):

• Sinumerik Operate• Fanuc 31i• Emco WinNC for Heidenhain TNC 640 (M only)• Emco WinNC for Heidenhain TNC 426 (M only)• Fagor 8055

Note:If a Full HD monitor is used without touch-screen function, the control is operated just with mouse and keyboard.

Page 313: EMCO WinNC for Fanuc 31i Mill Software description, software

Y5

WinnC Starting information ExtErnal input DEviCES

Operating areas

Sinumerik Operate

Fanuc 31i

Machine control panel

Machine control panel

Controller-specific op-eration

Control operation com-plete

Control operation complete

Page 314: EMCO WinNC for Fanuc 31i Mill Software description, software

Y6

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Emco WinNC for Heidenhain TNC 640

Machine control panel

Machine control panel

Controller-specific op-eration

Controller-specific op-eration

Control operation com-plete

Control operation com-plete

Heidenhain TNC 426

Page 315: EMCO WinNC for Fanuc 31i Mill Software description, software

Y7

WinnC Starting information ExtErnal input DEviCES

Note:The screen display, based on customer-spe-cific configurations, may look different.

Refer to the chapter “Key Description” of the respective control description for operation and key function.

Fagor 8055

Machine control panel Control operation com-plete

Page 316: EMCO WinNC for Fanuc 31i Mill Software description, software

Y8

ExtErnal Input DEvIcEs WInnc startIng InformatIon

Installing the camera

Requirement

USB WLAN adapter for the machine.

Setup WLAN

• press NEXT (1) or PREV (2) until an operat-ing mode appears which supports WLAN, e.g. MOVIE. The symbol for WLAN (3) appears in the corner on top left.

• Open EMConfig and activate the camera.

• Connect the WLAN adapter to the USB port to the machine.

• Open windows network and sharing centre (4).

• Select the wireless network, enter the password and finish the connect setup.

The name of the network (5) and the password are supplied together with the camera.

• Open the control software with activated Easy-2control.

Activating WLAN

Connect WLAN

1 3

45

2

Machine room cameraThis accessory can be ordered using the following order number:

Ref. No.: S4Z750

Page 317: EMCO WinNC for Fanuc 31i Mill Software description, software

Y9

WinnC Starting information ExtErnal input DEviCES

Operating the camera

• Click the Easy2control logo to open the sidebar.

Functions of the sidebar• Click the camera symbol to open the preview

window (2).

• Open the operating manual of the control.

• Option for the second screen: — duplicate screen — screen extention to two monitors

• Creates a screenshot of the control in *.png format.

Operating the machine room camera

1

2

Note:The option for the second screen is only avail-able for machines CT/CM 260 and 460.

Attention:The camera may not be operated without the supplied waterproof case.

If the camera is operated without the water-proof case it may be damaged by coolant and chips.

Page 318: EMCO WinNC for Fanuc 31i Mill Software description, software

Y10

Page 319: EMCO WinNC for Fanuc 31i Mill Software description, software

Z1

WinnC Starting information SoftWare inStallation

Z: Software Installation Windows

Variants of WinNCYou can install EMCO WinNC for the following CNC control types:

• WinNC for SINUMERIK Operate T and M• WinNC for FANUC 31i T and M• HEIDENHAIN TNC 426• Emco WinNC for HEIDENHAIN TNC 640• FAGOR 8055 TC and MC• CAMConcept T and M

In case there are several control types installed, a menu appears when starting EM Launch from which you can select the desired type.The following versions can be installed from the WinNC variants:

• Demo licence: The demo licence is valid for 30 days after the

first use. 5 days before the demo licence ex-pires, you can enter another valid licence key (see licence manager)

• Programming station: Programming and operation of the appropriate

CNC control type is simulated by WinNC on your PC.• Single user licence: Authorizes to external programming of CNC-

controlled machine tools on one PC worksta-tion.

• Multi-user licence: Authorizes to external programming of CNC-

controlled machine tools. The multi-user li-cence can be installed on an unlimited number of PC workstations or in a network within the institute registered by the licensor.

• Educational licence version: Is a time-limited multi-licence especially for

schools and educational institutes.

• Machine licence: This licence allows to directly operate a PC-

controlled machine (PC TURN, Concept TURN, PC MILL, Concept MILL) of WinNC as if it was operated by an ordinary CNC control.

System prerequisites

Machine with integrated control PC• All Concept machines• Machines that were converted to ACC• MOC with Windows 7 or higher (32 / 64 Bit)

Machines with included control PC and pro-gramming stations• Windows 7 or higher (32 / 64 Bit)• free hard drive space 400 MB• Programming station: 1*USB, machine version:

2*USB• TCP/IP-capable network card for machine ver-

sion)

Recommended system prerequisites• PC Dual Core• Working memory 4 GB RAM• free hard drive space 2 GB

Software installation• Start Windows• Start the installation application on the USB

stick or your download file.• Follow the instructions from the installation

guide.

For more informations regarding software instal-lation and / or software update please refer to the documentation “short description for WinNC update installation”.

Note:PC TURN and PC MILL have to be equipped with the conversion kit for ACC in order to operate EMCO WinNC.

Page 320: EMCO WinNC for Fanuc 31i Mill Software description, software

Z2

Software inStallation winnC Starting information

Network card (ACC)

Setting the network card for the local connection to the machine:

IP address: 192.168.10.10Subnetmask 255.255.255.0

for:Concept Turn 55Concept Mill 55Concept Turn 105 Concept Mill 105Concept Turn 60

Only for machines with ACC kit:PC Turn 50PC Mill 50PC Turn 100PC Mill 120

Network card type: TCP/IP compatible network card

Connection of the machine to the PC

In case of problems observe the instructions of your operating system (Windows help).

Danger:Removal and installation of the network card must only be carried by skilled personnel.The computer must be disconnected from the power supply (pull the power plug).

Note:During a machine installation one network-card is reserved exclusively for the control of the machine.

Instructions:If the network connection to the machine could not be established at the start, the above adjustments are to be made.

Page 321: EMCO WinNC for Fanuc 31i Mill Software description, software

Z3

WinnC Starting information SoftWare inStallation

Starting WinNCIf you choose AUTO START YES during the in-stallation of your machine version, WinNC starts automatically after switching on the PC.

Otherwise proceed as follows:1 Switch the machine on.

2 Wait for 20 seconds to ensure that the ma-chine operating system is running before the network connection to the PC is established. Otherwise it is possible that no connection can be established.

3 Switch the PC on and start Windows.

4 Click on the start symbol at the bottom.

5 Select program, EMCO and click on WinNC.

6 The start image will be shown on the screen. The licence holder is registered in the start screen.

7 If you have only installed one CNC control type, it starts immediately.

8 If you have installed several CNC control types, the selection menu appears.

9 Select the desired CNC control type (use cur-sor buttons or mouse) and press ENTER to start it.

10 If you use the control keyboard, you can select the desired CNC control type with the cursor buttons or mouse and start with the «NC-Start» button.

Terminating WinNC1 Switch off auxiliary drive with AUX OFF. Only for machine places, not for programming

stations.

2 By simultaneously pressing these buttons WinNC for Sinumerik Operate will be terminated specifically.

This corresponds to Alt+F4 on the PC keyboard.

Selection menu EMLaunch

Note:EMLaunch displays all WinNC und CAMCon-cept controls that are installed in the same directory.

Page 322: EMCO WinNC for Fanuc 31i Mill Software description, software

Z4

Software inStallation winnC Starting information

In the ACC / ACpn-machine version EmLaunch is checking if a machine is available:

During the network configuration, the IP address is not configured correctly and DHCP for auto-matic configuration of the IP address is disabled. Connection to the machine is not possible.

DHCP disabled

IP-address configuration

Setup the connection to the machine

Checks by EmLaunch

It is attempt to configure the IP address automati-cally via DHCP.

The IP configuration is correct and the connection to the machine is checked. Once the machine is available, the selection of the available controls is displayed.

Page 323: EMCO WinNC for Fanuc 31i Mill Software description, software

Z5

WinnC Starting information SoftWare inStallation

Conncection to the machine is OK

The connection to the machine is completed and the corresponding control can be started.

Page 324: EMCO WinNC for Fanuc 31i Mill Software description, software

Z6

Software inStallation winnC Starting information

EMCO Licence Manager

Input window licence key enquiry

Licence managerThe query in the UAC dialog box must be con-firmed with Yes in order to start the Licence Manager.

For the release of additional function groups of exist-ing EMCO software products it is necessary to enter a new licence key (exception: demo licence).

The EMCO Licence Manager (see picture on the bottom on the left) enables the input of further new licence keys. For this purpose select the new product in the selection window and confirm the input.

The next time you start your control software an input window appears and asks you to enter name, address and licence key (see picture on the top left).

Please note that the licence key is asked for each software product individually. The picture on the left shows e.g. the input prompt for the licence key for the software product «Heidenhain TNC 426».

Input licence key:Start the WinNC with the option “Run as Admin-istrator” right after installing the programm or launching the licence manager.

Licence inputAfter the installation of an EMCO software prod-uct, an input window appears during initial opera-tion and asks for name, address and licence key. This input window appears for every software product that is installed. In case a demo licence is desired (see page Z1), please select «DEMO».Then the input window reappears only 5 days be-fore the expiry date of the demo licence. A subse-quent input of a licence key is also possible via the licence manager (see licence manager below).

Run EMCO licence manager as an administrator

Понравилась статья? Поделить с друзьями:
  • Ошибка 3490 бмв х1
  • Ошибка 349 пепси
  • Ошибка 3472 на уаз патриот
  • Ошибка 3505 бмв м57
  • Ошибка 35031 hp 1010