Объем доступной памяти недостаточен ошибка 111

Объем выборки и репрезентативность

Планируем исследования и эксперименты

Если суп хорошо перемешать, то достаточно одной ложки, чтобы сделать вывод о вкусе всей кастрюли — Д.Гэллоп.

Для того, чтобы оценить любое явление, не обязательно изучать все объекты (генеральную совокупность). Для оценки здоровья человека не нужно анализировать всю кровь, достаточно небольшой пробирки. Чтобы понять настроения россиян можно не опрашивать 146 миллионов, а ограничиться несколькими тысячами. Оценка не сильно потеряет в точности.

По части судить о целом

О возможности судить о целом по части миру рассказал российский математик П.Л. Чебышев. «Закон больших чисел» простым языком можно сформулировать так: количественные закономерности массовых явлений проявляются только при

достаточном числе наблюдений

. Чем больше выборка, тем лучше случайные отклонения компенсируют друг друга и проявляется общая тенденция.

А.М. Ляпунов чуть позже сформулировал центральную предельную теорему. Она стала фундаментом для создания формул, которые позволяют рассчитать вероятность ошибки (при оценке среднего по выборке) и размер выборки, необходимый для достижения заданной точности.

Строгие формулировки:

Еще раз: чтобы корректно оценивать популяцию по выборке, нам нужна не обычная выборка, а репрезентативная выборка достаточного размера. Начнем с определения этого самого размера.

Как рассчитать объем выборки

Достаточный размер выборки зависит от следующих составляющих:

  • изменчивость признака (чем разнообразней показания, тем больше наблюдений нужно, чтобы это уловить);
  • размер эффекта (чем меньшие эффекты мы стремимся зафиксировать, тем больше наблюдений необходимо);
  • уровень доверия (уровень вероятности при который мы готовы отвергнуть нулевую гипотезу)

ЗАПОМНИТЕ
Объем выборки зависит от изменчивости признака и планируемой строгости эксперимента

Формулы для расчета объема выборки:

Формулы для определения достаточного объема выборки

Формулы расчета объема выборки

Ошибка выборки значительно возрастает, когда наблюдений меньше ста. Для исследований в которых используется 30-100 объектов применяется особая статистическая методология: критерии, основанные на распределении Стьюдента или бутстрэп-анализ. И наконец, статистика совсем слаба, когда наблюдений меньше 30.

Предельная ошибка выборки

График зависимости ошибки выборки от ее объема при оценке доли признака в г.с.

Чем больше неопределенность, тем больше ошибка. Максимальная неопределенность при оценке доли — 50% (например, 50% респондентов считают концепцию хорошей, а другие 50% плохой). Если 90% опрошенных концепция понравится — это, наоборот, пример согласованности. В таких случаях оценить долю признака по выборке проще.

Репрезентативность

Репрезентативность — это степень соответствия характеристик выборки характеристикам генеральной совокупности. Только данные по репрезентативным выборкам можно экстраполировать на всю популяцию.

Репрезентативность достигается за счет случайного отбора. Случайный отбор — хорошо. Детерминированный отбор — плохо. Он искажает структуру выборки и как следствие результат измерений. Нельзя судить о среднем росте россиян по росту ста баскетболистов, которые тренируются во дворе вашего дома, просто потому что вам так удобно.

Репрезентативность

Идеальная выборка — это когда каждый человек имеет равную вероятность попасть в число опрошенных. Полностью случайный отбор трудно достижим (это очень дорого), но к нему нужно стремиться. Сам метод сбора данных может деформировать выборку (онлайн опросы отсекают пенсионеров, опрос по стационарным телефонам — экономических активных мужчин). Представьте, как будут различаться рейтинги, если провести электоральный опрос в «Вконтакте» и в бумажной газете «Лечебные письма».

Типы выборок

Существует методология, которая позволяет сократить детерминированность при формировании выборки и приблизиться к случайному отбору.

Стратифицированная выборка. Выделяются объективно существующие страты и из каждой страты отбираются единицы пропорционально их доле в генеральной совокупности. Например для опроса россиян страты могут быть определены пропорцией населения в регионах. После чего респонденты внутри каждого региона отбираются случайным образом.

Механический отбор. Все объекты сортируются по порядковым номерам, после чего осуществляется отбор с шагом n. Например, можно отсортировать телефонные номера потенциальных участников исследования и звонить каждому 100-му.

Серийная выборка (гнездовая, кластерная). Объективно существующие группы отбираются случайным образом. Объекты внутри групп обследуются полностью. Например вскрывается один контейнер продукции и каждый товар проверяется на брак.

Метод снежного кома. У каждого респондента запрашиваются контакты его знакомых, которые подходят под условия отбора. Условия случайности отбора грубо нарушается, но это один из способов провести исследование среди труднодостижимых групп. Как быть иначе, если ваша цель — опросить любителей стальных гоночных велосипедов выпущенных не позже 1987 года.

Стихийная выборка (выборка по удобству). Применяется, когда низкая цена получения данных — это главный приоритет. Для повышения качества стихийной выборки на неё накладываются квоты. Заранее рассчитываются пропорции признаков в выборке так, чтобы они соответствовали структуре генеральной совокупности. В социологии такими признаками служат пол, возраст, профессия, семейный статус, регион проживания…

Хотите систематизировать свои знания по аналитике?

Встречайте «Анализ данных для хулиганов»


Онлайн пособие о том, как создавать великолепные продукты и эффективно управлять маркетингом на основе данных⚡

Методики / Фреймворки / Шаблоны для скачивания

Ошибка репрезентативности выборочных параметров

По
части никогда не удается полностью
охарактеризовать целое, всегда остается
вероятность того, что выборочная оценка
недостаточна близка к значению параметра
генераль­ной совокупности, имеет
некоторую ошибку. Отличия
значений выборочных параметров от
генеральных называются ошибкой
репрезентативности данного параметра
,
или просто (статистической) ошибкой.
При уве­личении объема выборки ошибки
репрезентативности стремятся к нулю
(следствие закона больших чисел). Численно
выраженные статистические ошибки служат
мерой тех пределов, в которых выборочные
параметры могут отклоняться от значений
генеральных параметров. Например, если
для нескольких выборок, полученных из
одной и той же генеральной совокупности,
посчитать средние, а затем оценить
изменчивость этих средних, то стандартное
отклонение средних (SM)
и будет численной мерой ошибки
репрезентативности выборочной средней.
Она обозначается буквой m.

Величина
ошиб­ки тем больше, чем больше
варьирование признака (S)
и чем мень­ше выборка (n).
Ошибку репрезентативности имеют все
статистические параметры, рассчитанные
по выборке. Для практики статистического
оценивания разработаны специальные
формулы. Для нормального распределения
они имеют следующий вид. Ошибка средней:
,

ошибка
стандартного отклонения:
,

ошибка
коэффициента вариации:
.

Вычисленные
значения ошибок подставляют к
соответствую­щим параметрам со знаками
плюс-минус (параметр ± ошибка) и в такой
форме представляют в научных отчетах
и публика­циях. В примере с бурозубками
для разных параметров имеем:

,
M = 9.3 ­­± 0.11 г,

,
S = 0.89 ± 0.079 г,

,
CV = 9.6 ± 0.9%.

Не
следует путать статистическую ошибку
с методическими ошибками и ошибками
точности (точности измерений, анализов,
подсчетов и т. д.), хотя методические
погрешности и увеличивают ошибку
репрезентативности, но другим путем –
методические огрехи увеличивают
изменчивость признака, стандартное
отклонение.

При
всей неиз­бежности статистической
ошибки она может быть сведена к ми­нимуму
отбором достаточного числа особей
(вариант). С ростом объема выборки оценки
параметров стабилизируются, а их ошибки
репрезентативности уменьшаются.

Доверительный интервал

Параметры
генеральной совокупности практически
всегда остаются не­известными, о них
судят по выборочным оценкам, используя
для этого значения ошибок репрезентативности.
Теоретические исследования поведения
выборочных средних (как случайных
величин) показали, что они подчиняются
нормальному закону, большинство из них
(95%) находится поблизости от генеральной
средней – в диапа-зонеMген. ± 1.96m
(приближенно ±2­m).
Это обстоятельство позво-ляет делать
обратное заключение – генеральная
средняя находится в диапазоне
Mвыбор. ± 1.96m,
т. е. предсказывать ширину интервала,
в котором заключен генеральный параметр,
давать интервальную
оценку
генеральному
параметру.

В
соответствии с законом нормального
распределения можно ожидать, что
генеральный параметр (истинное значение)
окажется в ин­тервале

от
М − tm
до М tm,

где
m
– ошибка средней арифме­тической,

t
– квантиль распределения Стьюдента
(табл. 6П)
при данном числе степеней свободы (df
уровне зна­чимости (обычно α = 0.05).

Сказанное
можно перефразировать так: с вероятностью
P
можно
ожидать, что генеральная средняя
находится в доверительном интервале
М ± tm,
построенном вокруг выборочной средней
арифметической M.

Доверительный
интервал – интервал значений изучаемого
признака, в котором с той или иной
вероятностью
P
находится значение генерального
параметра.

Возвращаясь
к примеру о весе землероек-бурозубок,
мы теперь можем записать доверительные
интервалы при разных уровнях вероятности
(граничные значения t
взяты для случая n = ∞):

для
Р = 0.95
М ± 
tт
=
9.3 ± 1.96 ∙ 0.11
= 9.3 ± 0.21 г;

для
Р = 0.99
М ± tт
= 9.3 ± 2.58 ∙ 0.11
= 9.3 ± 0.28 г.

Здесь
искомая генеральная средняя величина
веса землероек с вероятностью P = 95%
находится в пределах 9.11-9.53 г,
а при P = 99%
– 9.04-9.6 г.

Если
объем выборки, для которой были получены
параметры и ошибка репрезентативности
m,
был невелик (n < 50),
то необходимо вводить поправки на объем
выборки, расширяя область возможного
пребывания генерального параметра. Это
понятно, поскольку при дефиците информации
любые заключения не могут быть очень
точными. Так, для выборки объемом n = 20
экз. ошибка средней составит
г,
а доверительный интервал: М ± tт
=
9.3 ± 2.09∙0.2
= 9.3 ± 0.41
г – от 8.9 до 9.7 г (при уровне значимости
α = 0.05
и числе степеней свободы df − 1
= 20 − 1
= 19 табличная величина статистики
Стьюдента равна t
= 2.09).

Аналогичным
образом можно построить доверительный
интервал для стандартного отклонения
(± tmS),
коэффициента вариации (CV ± tmCV),
а также других статистических параметров
(коэффициентов асимметрии, эксцесса,
регрессии, корреляции).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В
статистике выделяют два основных метода
исследования — сплошной и выборочный.
При проведении выборочного исследования
обязательным является соблюдение
следующих требований: репрезентативность
выборочной совокупности и достаточное
число единиц наблюдений. При выборе
единиц наблюдения возможны ошибки
смещения
,
т.е. такие события, появление которых
не может быть точно предсказуемым. Эти
ошибки являются объектив­ными и
закономерными. При определении степени
точности выборочно­го исследования
оценивается величина ошибки, которая
может прои­зойти в процессе выборки
случайная
ошибка репрезентативности (
m)
является
фактической разностью между средними
или относительными величинами, полученными
при проведении выборочного исследования
и аналогичными величинами, которые были
бы получены при проведении исследования
на гене­ральной совокупности.

Оценка
достоверности результатов исследования
предусматривает определение:

1.
ошибки репрезентативности

2.
доверительных границ средних (или
относительных) величин в генеральной
совокупности

3.
достоверности разности средних (или
относительных) величин (по критерию t)

Расчет
ошибки репрезентативности

(mм)
средней арифмети­ческой величины
(М):

,
где σ
— среднее квадратическое отклонение; n
— численность выборки (>30).

Расчет
ошибки репрезентативности (mР)
относительной величины (Р):

,
где Р — соответствующая относительная
величина (рассчитанная, например, в %);

q
=100 — Ρ%
— величина, обратная Р; n
— численность выборки (n>30)

В
клинических и экспериментальных работах
довольно часто приходится использовать
малую
выборку,
когда
число наблюдений меньше или равно 30.
При малой выборке для расчета ошибок
репрезентатив­ности, как средних, так
и относительных величин,
число
наблюде­ний уменьшается на единицу,
т.е.

;
.

Величина
ошибки репрезентативности зависит от
объема выборки: чем больше число
наблюдений, тем меньше ошибка. Для оценки
достоверности выборочного показателя
принят следующий подход: показатель
(или средняя величина) должен в 3 раза
превышать свою ошибку, в этом случае он
считается достоверным.

83. Определение доверительных границ средних и относительных величин.

Знание
величины ошибки недостаточно для того,
чтобы быть уве­ренным в результатах
выборочного исследования, так как
конкрет­ная ошибка выборочного
исследования может быть значительно
больше (или меньше) величины средней
ошибки репрезентативности. Для
оп­ределения точности, с которой
исследователь желает получить ре­зультат,
в статистике используется такое понятие,
как вероят­ность безошибочного
прогноза, которая является характеристикой
надежности результатов выборочных
медико-биологических статистических
исследований. Обычно, при проведении
медико-биологических статистических
исследований используют вероятность
безошибочного прогноза 95% или 99%. В
наиболее ответственных случаях, когда
необходимо сделать особенно важные
выводы в теоретическом или практическом
отношении, используют вероятность
безошибочного прогноза 99,7%

Определенной
степени вероятности безошибочного
прогноза соот­ветствует определенная
величина предельной
ошибки случайной выборки (
Δ
— дельта)
,
которая определяется по формуле:

Δ=t
* m
, где t
— доверительный коэффициент, который
при большой выборке при вероятности
безо­шибочного прогноза 95% равен 2,6;
при вероятности безоши­бочного
прогноза 99% — 3,0; при вероятности
безошибочно­го прогноза 99,7% — 3,3, а при
малой выборке определяется по специальной
таблице значений t
Стьюдента.

Используя
предельную ошибку выборки (Δ),
можно определить до­верительные
границы
,
в которых с определенной вероятностью
безо­шибочного прогноза заключено
действительное значение статистичес­кой
величины,
характеризующей
всю генеральную совокупность (сред­ней
или относительной).

Для
определения доверительных границ
используются следующие формулы:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Справочник /
Лекторий Справочник /
Лекционные и методические материалы по статистике /
Ошибка репрезентативности и доверительный интервал для
генерального параметра

pdf

Конспект лекции по дисциплине «Ошибка репрезентативности и доверительный интервал для
генерального параметра»,
pdf

Файл загружается

Файл загружается

Благодарим за ожидание, осталось немного.

pdf

Конспект лекции по дисциплине «Ошибка репрезентативности и доверительный интервал для
генерального параметра»
.
pdf

txt

Конспект лекции по дисциплине «Ошибка репрезентативности и доверительный интервал для
генерального параметра», текстовый формат

Лекция 2. Ошибка репрезентативности и доверительный интервал для
генерального параметра
Выборочные характеристики, представляющие собой числа (точки на
шкале) называют точечными оценками (существуют также и интервальные
оценки). Оценки должны удовлетворять следующим требованиям: быть
состоятельными, эффективными, несмещенными. Только при удовлетворении
этих требований оценки хорошо представляют соответствующие параметры.
В математической статистике введено понятие статистической ошибки
или ошибки репрезентативности; она связана с точностью, с которой
выборочная оценка представляет, репрезентирует свой параметр.
Когда ошибка оценивания генерального параметра стремится к нулю при
возрастании объема выборки, т.е. значение оценки стремится к значению
параметра, то такая оценка называется состоятельной. Оценка называется
эффективной,
если
она
имеет
наименьшую
дисперсию
выборочного
распределения по сравнению с другими аналогичными оценками.
К примеру,
из трех показателей, описывающих положение центра
нормального распределения (средняя, медиана, мода), наиболее эффективной
является средняя арифметическая, наименее эффективной — мода.
Оценка
ожидание)
называется
ее
несмещенной,
выборочного
если
распределения
среднее
совпадает
(математическое
со
значением
генерального параметра. Выборочная средняя является несмещенной оценкой
генеральной средней, а тогда как выборочная дисперсия представляет собой
смещенную оценку.
Например, чтобы получить несмещенную оценку, надо при вычислении
выборочной дисперсии использовать формулу, где в знаменателе (N — 1):
D=S2=
1
2
( Xi  X )

N 1
Для понимания смысла этих требований нужно рассмотреть понятие
выборочного распределения оценок какого-либо параметра.
Рассмотрим
условный
пример
для
такого
понятия,
как
арифметическое среднее: пусть ГС представляет собой 5 результатов
выполнения некоторого психологического теста: 8 16 20 24 32:
=
8  16  20  24  32
= 20
5
Таким образом, 20 — это значение генерального параметра.
Заменим изучение генеральной совокупности изучением выборок объемом
n = 4. Рассмотрим все возможные варианты таких выборок:
1) 8
16 20 24
 = 17
2) 16 20 24 32
 = 23
3) 8
16 24 32
 = 20
4) 8
16 20 32
 = 19
Из нашего примера видно, что из 5 оценок средних лишь одна совпала
с параметром. Заранее мы не можем знать, как составить (отобрать) выборку,
чтобы оценка параметра по ней была близка к параметру.
Однако очевидно, что чем больше объем выборки, тем меньше вероятность
того, что  , определяемое по выборке, будет значительно отличаться от
генерального среднего (крайние случаи n=N-1 и n=2 ,т.е. N>>n) .
Когда
генеральная совокупность велика и, соответственно, число
возможных выборок велико, то совокупность выборочных оценок средних для
каждой
из
этих
концентрирующееся
выборок
вокруг
«концентрация» (дисперсия)
Дисперсия
образует
генерального
тем
выше,
нормальное
среднего,
чем
больше
распределение,
причем
эта
объемы выборок.
распределения средних имеет особое название, она именуется
ошибкой репрезентативности.
Выше речь шла о распределении выборочных средних.
Это же
рассуждение можно повторить для оценок дисперсии, моды, коэффициентов
корреляции и т.д.
В теории математической статистики доказано, что нормального
распределения при достаточном объеме выборки (на практике n  30),
стандартное отклонение среднего арифметического равно:
Sx =
S
N
; где
S — стандартное отклонение
N — объем выборки.
Эту величину называют также статистической ошибкой или ошибкой
репрезентативности, т.е. это средняя ошибка, которая допускается, когда 
рассматривается как генеральный параметр.
Для других параметров ошиб ки репрезентативности таковы:
Ошибка репрезентативности дисперсии:
Ss2=S2/ 2N
Ошибка репрезентативности стандартного отклонения
Ss=S/ 2N
Ошибка репрезентативности показателя асимметрии:
Sa= 6 / N
Ошибка репрезентативности показателя эксцесса:
Se= 24 / N
Теперь перейдем к понятию доверительного интервала, которое применяется
для любого параметра. Мы рассмотрим его для генеральной средней. По
известным выборочным характеристикам можно построить интервал, в котором
с той или иной степенью вероятности находится генеральное среднее. Понятие
доверительного интервала связано с понятием доверительной вероятности.
Согласно этому принципу, маловероятные события считаются практически
невозможными,
а
события,
вероятность
которых
близка
к
единице,
принимаются за почти достоверные. Обычно в психологии в качестве
доверительных используют вероятности р = 0,95 и р = 0,99. Это означает, что
при оценивании генерального параметра по известной выборочной оценке риск
ошибиться в первом случае — один раз на 20 испытаний, во втором случае 1 раз
на 100 испытаний.
С доверительной вероятностью связано понятие уровня значимости
 = 1- р
Геометрически — это площадь под нормальной кривой выборочного
распределения, выходящая за пределы той его части, которая соответствует
Р%, поскольку в сумме они соответствуют всей площади под кривой. Иначе
говоря,

означает площадь двух хвостов под кривой нормального
распределения. При при р = 0,95 и  = 0, 05 на каждый «хвост» приходится
по 2,5 % площади.
Вероятность того, что  будет находиться в пределах
доверительного интервала x — t SX     + t SX,
описывается
особой функцией, которая сведена в таблице (обычно это таблица 1 в
приложении учебников по математической статистике)
для р= 0,95
t=1,96
для р=0,99
t = 2,58
для p=0, 999 t =3,29
График нормальной кривой
Выбор того или иного уровня доверительной вероятности зависит от
исследователя, от его оценки ответственности за ошибочность выводов
относительно генерального параметра .
Пример: При измерении объема памяти у 100 испытуемых
получено среднее значение числа запоминаемых сигналов
было
= 9 и
стандартное отклонение S = 3. 27. Построить доверительный
интервал для генеральной средней .
Вычисления проводятся по формуле:
x — t SX     + t SX
9 — 1,96
3271
.
327
.
   92+1,96
100
100
или 9+ 0.196  3,27    9 + 1..96  3,27 или 8. 36    9.64.
Таким образом, с вероятностью р = 0.95 генеральный параметр 
находится в интервале 8.36 — 9.64.
95%

Статистика

Статистика

Курс : Статистика
Статистика В.М. Гусаров Москва, Юнити , 2003г
Статистика В.С. Мхиторян , Москва, Экономист, 2005г.
Статистика И.И. Елисеева
Статисти…

Смотреть все

Поделись лекцией и получи скидку!

Заполни поля, отправь лекцию и мы вышлем тебе скидку-промокод на Автор24

Предмет

Название лекции

Авторы

Описание

Другие Экономические предметы

  • Экономика

  • Менеджмент

  • Бухгалтерский учет и аудит

  • Управление персоналом

  • Статистика

  • Маркетинг

  • Экономика предприятия

  • Государственное и муниципальное управление

  • Финансовый менеджмент

  • Эконометрика

  • Финансы

  • Менеджмент организации

  • Бизнес-планирование

  • Управление проектами

  • Экономический анализ

  • Экономическая теория

  • Микро-, макроэкономика

  • Инновационный менеджмент

  • Логистика

  • Анализ хозяйственной деятельности

Доверительный интервал за 15 минут

Добрый день, уважаемые читатели!

Меня зовут Кирилл Мильчаков. Сегодня мы продолжаем наш разговор о биостатистике. Тема сегодняшней нашей беседы будет «Доверительный интервал». Что такое доверительный интервал? Вы наверняка встречались с ним в научной литературе. Доверительный интервал 95 %, либо сочетание символов ДИ и CI (confidence interval) 95 %. Что же означают эти 95 %? Какие он еще может принимать значения? И как его рассчитывать самостоятельно? Об этом обо всем сегодня мы и поговорим в этой статье.

Видео-версия статьи о доверительном интервале

Генеральная совокупность и выборочная совокупность

Прежде чем углубляться в тайны доверительного интервала, хотел бы вспомнить с вами 2 основных понятия статистической совокупности, с которыми чаще всего работают – это генеральная совокупность или выборочная совокупность или выборка.

Генеральная совокупность – это тот массив данных, о которых вы хотите сделать выводы.

Выборка является частью генеральной совокупности, которая участвует непосредственно в вашем эксперименте. Есть такое понятие как репрезентативность, сегодня мы не будем его касаться, главное запомнить, что выборка должна быть репрезентативной.

Если привести небольшой пример относительно генеральной совокупности и выборки, то можно вспомнить о простом случае из вашей жизни. Когда вы хотите узнать, достаточно ли посолен суп, вы берете ложку супа и пробуете его. Вам необязательно есть весь суп, чтобы понять, насколько он посолен. Ложка в данном случае является выборкой, по которой вы делаете вывод обо всей кастрюле супа. В данном случае кастрюля супа является генеральной совокупностью, а ложка супа является выборкой.

Итак, мы вспомнили с вами о 2 ключевых статистических совокупностях – о генеральной совокупности и выборочной совокупности. Теперь нужно вспомнить, что типы исследования, которые проводятся над генеральной совокупностью и выборочной совокупностью, называют по-разному. Над генеральной совокупностью проводятся так называемые сплошные исследования, над выборочной совокупностью – выборочные.

Теперь вспомним небольшие отличия между параметрами этих 2 совокупностей. Сегодня для того, чтобы понять, что такое доверительный интервал, нам понадобятся следующие вещи: во-первых, отличие средней арифметической в генеральной совокупности и в выборочной совокупности. В генеральной совокупности она имеет значок µ (мю), в выборочной – это x̅ (х с чертой) — это средние арифметические по каждому виду совокупности.

Далее нужно знать, что стандартное отклонение имеет значок выборочной – либо S, либо SD (standard deviation), а в случае генеральной совокупности оно носит название среднеквадратичного отклонения и обозначается буквой σ (сигма).

Приведем пример расчета доврительного интервала

Представьте чисто гипотетическую ситуацию, когда перед нами стоит задача исследований среднего роста марсианина. Для того, чтобы его узнать, было отправлено 3 экспедиции. Первой из них повезло больше всего: они смогли поймать каждого из 200 марсианин и померить его рост.

Как мы помним, по закону нормального распределения по оси Х находится величина изучаемого признака, либо варианта (в данном случае это рост в сантиметрах), а по оси Y – частота встречаемости какого-то признака (мы его обозначаем буквой П.

Итак, оказалось, что у всех 200 марсиан средний рост составил 40 сантиметров. Таким образом, первая экспедиция смогла провести так называемое сплошное исследование, так как поработала со всеми единицами наблюдения генеральной совокупности. Поэтому мы имеем право назвать этот параметр µ.

Однако, второй и третьей экспедиции повезло гораздо меньше. Они попали в самые плохо населенные участки Марса и смогли отобрать только 10 марсиан. В данном случае оказалось, что средний рост по их выборке составил всего 38 сантиметров в первом случае и 41 сантиметр во втором случае.

Что же делать? Да, у нас есть данные из самого полного исследования, которое относится к первой экспедиции. Но представьте, что ни одна бы из них не смогла бы поработать со всей совокупностью полностью, и у нас были бы данные только от второй и третьей экспедиции. Что же в этой ситуации делать? Видно, что никто 40 сантиметров в действительности не достиг: во второй экспедиции Б она равна 38 сантиметрам, а в экспедиции В – 41 сантиметр. То есть в реальности никто не достиг 40 сантиметров. Что же делать в данном случае?

И вот здесь на помощь к нам приходит доверительный интервал, точнее оценка параметра. Доверительный интервал является вторым этапом оценки параметра. Прежде чем строить доверительный интервал, нам нужно понять, насколько в принципе этот параметр наша средняя (x̅б, x̅в) может отличаться, ошибаться от реального параметра в генеральной совокупности. Насколько?

И тут нам помогает оценка параметра или нахождение ошибки репрезентативности. Ошибка репрезентативности обозначается mr или mx. Чаще я использую mr. Что же это значит? mr по-английски обозначается как standard error, по-русски она часто называется стандартная ошибка средней или ошибка репрезентативности. Как же она находится? А находится она следующим образом? Она учитывает стандартное квадратичное отклонение в генеральной совокупности и размер в выборке. От чего же зависит ошибка репрезентативности? А зависит она от 2 вещей: от среднеквадратичного отклонения в генеральной совокупности (я напоминаю, это насколько каждая варианта отличается от средней, о законе нормального распределения мы с вами поговорим в следующий раз) и от размера выборки или . То есть, таким образом, чем менее разбросан признак генеральной совокупности, и чем больше у нас размер выборки, тем меньше наша ошибка репрезентативности.

Итак, предположим, мы нашли нашу ошибку репрезентативности mr. В данном случае она составила 2,7 сантиметра. Но что же это нам дает? А дает нам это уже достаточно много. Теперь мы, зная, насколько в принципе наша выборка может ошибаться относительно генеральной совокупности, можем составить определенное предположение о том, где же находится реальный параметр – реальные 40 сантиметров генеральной совокупности на основании данных лишь нашей выборки.

Каким же образом это происходит? Мы провели точечную оценку нашего параметра. Дальше происходит второй этап построения доверительного интервала – это интервальная оценка параметра. Каким же образом строится этот интервал? А складывается он из 2 вещей: так называемой предельной ошибки +∆ и -∆. Формула нахождения предельной ошибки достаточно проста и составляет:

±∆ = t*mr

Для того, чтобы не залезать в критерий Стьюдента сегодня, я скажу лишь, что:

для доверительного интервала 95 % используется t=2,

для доверительного интервала 99 % используется t=3

и для доверительного интервала 68 % используется t=1.

Итак, после того, как мы нашли нашу предельную ошибку, мы можем построить доверительный интервал. Но для этого нам нужно самим задать тот доверительный интервал, который для нас подходит больше всего. Чаще всего в медицине используется вероятность ошибки 5 %, то есть доверительный интервал 95 % или вероятность ошибки 5 % (р=0,05, р=5 %).

Что же значат эти 95 %? А значат они следующее, что с 95%-ной вероятностью в нашем интервале лежит реальное значение, и лишь в 5 % случаев мы ошибаемся. То есть в нашем конкретном случае наша ошибка репрезентативности составила 2,7 сантиметра. Предельная ошибка отсюда будет равна чему? Именно 5,4 сантиметра, то есть доверительный интервал, так как здесь и плюс, и минус, то есть нам нужно ошибку умножить на 2, составил 10,8 сантиметров. А именно наши 38 см±5,4 см. Ширина всего доверительного интервала составляет 10,8 см. Напомню, что он складывается из положительной и отрицательной предельных ошибок вокруг нашей выборочной средней.

Итак, говоря о доверительном интервале, нужно сделать ряд важных выводов.

  • Во-первых, доверительный интервал относится к выборочной совокупности. Он показывает, насколько параметры из выборочной совокупности могут отличаться от реально существующих данных в генеральной совокупности. Насколько мы ошибаемся при формировании той или иной выборки, мы закладываем в так называемую ошибку репрезентативности, в ошибку средней и вокруг нее собственно и строим доверительный интервал.
  • Ширину доверительного интервала задает собственно сам исследователь, варьируя тот критерий t, который он принимает в качестве необходимого. Чаще всего применяется t=2, которое и соответствует ширине доверительного интервала 95 %. 95 % означает, что с 95%-ной вероятностью действительно вокруг выборочной средней существует определенный доверительный интервал, в который и попадает реально существующая средняя из генеральной совокупности. Этот доверительный интервал может быть либо уже, если t=1; либо шире, если t=3.
  • Доверительный интервал задается самостоятельно исследователем. Чаще всего он равен 95 %.

Если это видео оказалось Вам полезным, оно хотя бы немного раскрыло тайны доверительного интервала, ставьте лайки, подписывайтесь на наши рассылки и в комментариях пишите, какие темы по биостатистике вам бы были интересны для следующих выпусков. На этом я с вами прощаюсь. Меня зовут Кирилл. Пока!

Если Вам понравилась статья и оказалась полезной, Вы можете поделиться ею с коллегами и друзьями в социальных сетях:

Как мы уже знаем, репрезентативность — свойство выборочной совокупности представлять характеристику генеральной. Если совпадения нет, говорят об ошибке репрезентативности — мере отклонения статистической структуры выборки от структуры соответствующей генеральной совокупности. Предположим, что средний ежемесячный семейный доход пенсионеров в генеральной совокупности составляет 2 тыс. руб., а в выборочной — 6 тыс. руб. Это означает, что социолог опрашивал только зажиточную часть пенсионеров, а в его исследование вкралась ошибка репрезентативности. Иными словами, ошибкой репрезентативности называется расхождение между двумя совокупностями — генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получения информации о генеральной совокупности.

Наряду с термином «ошибка репрезентативности» в отечественной литературе можно встретить другой — «ошибка выборки». Иногда они употребляются как синонимы, а иногда «ошибка выборки» используется вместо «ошибки репрезентативности» как количественно более точное понятие.

Ошибка выборки — отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.

На практике ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. В социологии при обследованиях взрослого населения чаще всего используют данные переписей населения, текущего статистического учета, результаты предшествующих опросов. В качестве контрольных параметров обычно применяются социально-демографические признаки. Сравнение средних генеральной и выборочной совокупностей, на основе этого определение ошибки выборки и ее уменьшение называется контролированием репрезентативности. Поскольку сравнение своих и чужих данных можно сделать по завершении исследования, такой способ контроля называется апостериорным, т.е. осуществляемым после опыта.

В опросах Института Дж. Гэллапа репрезентативность контролируется по имеющимся в национальных переписях данным о распределении населения по полу, возрасту, образованию, доходу, профессии, расовой принадлежности, месту проживания, величине населенного пункта. Всероссийский центр изучения общественного мнения (ВЦИОМ) использует для подобных целей такие показатели, как пол, возраст, образование, тип поселения, семейное положение, сфера занятости, должностной статус респондента, которые заимствуются в Государственном комитете по статистике РФ. В том и другом случае генеральная совокупность известна. Ошибку выборки невозможно установить, если неизвестны значения переменной в выборочной и генеральной совокупностях.

Специалисты ВЦИОМ обеспечивают при анализе данных тщательный ремонт выборки, чтобы минимизировать отклонения, возникшие на этапе полевых работ. Особенно сильные смещения наблюдаются по параметрам пола и возраста. Объясняется это тем, что женщины и люди с высшим образованием больше времени проводят дома и легче идут на контакт с интервьюером, т.е. являются легко достижимой группой по сравнению с мужчинами и людьми «необразованными»35.

Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки.

Ошибки выборки подразделяются на два типа — случайные и систематические. Случайная ошибка — это вероятность того, что выборочная средняя выйдет (или не выйдет) за пределы заданного интервала. К случайным ошибкам относят статистические погрешности, присущие самому выборочному методу. Они уменьшаются при возрастании объема выборочной совокупности.

Второй тип ошибок выборки — систематические ошибки. Если социолог решил узнать мнение всех жителей города о проводимой местными органами власти социальной политике, а опросил только тех, у кого есть телефон, то возникает предумышленное смещение выборки в пользу зажиточных слоев, т.е. систематическая ошибка.

Таким образом, систематические ошибки — результат деятельности самого исследователя. Они наиболее опасны, поскольку приводят к довольно значительным смещениям результатов исследования. Систематические ошибки считаются страшнее случайных еще и потому, что они не поддаются контролю и измерению.

Они возникают, когда, например:

  1. выборка не соответствует задачам исследования (социолог решил изучить только работающих пенсионеров, а опросил всех подряд);
  2. налицо незнание характера генеральной совокупности (социолог думал, что 70% всех пенсионеров не работает, а оказалось, что не работает только 10%);
  3. отбираются только «выигрышные» элементы генеральной совокупности (например, только обеспеченные пенсионеры).

Внимание! В отличие от случайных ошибок систематические ошибки при возрастании объема выборки не уменьшаются.

Обобщив все случаи, когда происходят систематические ошибки, методисты составили их реестр. Они полагают, что источником неконтролируемых перекосов в распределении выборочных наблюдений могут быть следующие факторы:

  • нарушены методические и методологические правила проведения социологического исследования;
  • выбраны неадекватные способы формирования выборочной совокупности, методы сбора и расчета данных;
  • произошла замена требуемых единиц наблюдения другими, более доступными;
  • отмечен неполный охват выборочной совокупности (недополучение анкет, неполное их заполнение, труднодоступность единиц наблюдения).

Намеренные ошибки социолог допускает редко. Чаще ошибки возникают из-за того, что социологу плохо известна структура генеральной совокупности: распределение людей по возрасту, профессии, доходам и т.д.

Систематические ошибки легче предупредить (по сравнению со случайными), но их очень трудно устранить. Предупреждать систематические ошибки, точно предвидя их источники, лучше всего заранее — в самом начале исследования.

Вот некоторые способы избежать ошибок выборки:

  • каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;
  • отбор желательно производить из однородных совокупностей;
  • надо знать характеристики генеральной совокупности;
  • при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.

Если выборочная совокупность (или просто выборка) составлена правильно, то социолог получает надежные результаты, харастеризующие всю генеральную совокупность. Если она составлена неправильно, то ошибка, возникшая на этапе составления выборки, на каждом следующем этапе проведения социологического исследования приумножается и достигает в конечном счете такой величины, которая перевешивает ценность проведенного исследования. Говорят, что от такого исследования больше вреда, нежели пользы.

Подобные ошибки могут произойти только с выборочной совокупностыо. Чтобы избежать или уменьшить вероятность ошибки, самый простой способ — увеличивать размеры выборки (в идеале до объема генеральной: когда обе совокупности совпадут, ошибка выборки вообще исчезнет). Экономически такой метод невозможен. Остается другой путь — совершенствовать математические методы составления выборки. Они то и применяются на практике. Таков первый канал проникновения в социологию математики. Второй канал — математическая обработка данных.

Особенно важной проблема ошибок становится в маркетинговых исследованиях, где используются не очень большие выборки. Обычно они составляют несколько сотен, реже — тысячу респондентов. Здесь исходным пунктом расчета выборки выступает вопрос об определении размеров выборочной совокупности. Численность выборочной совокупности зависит от двух факторов:

  1. стоимости сбора информации,
  2. стремления к определенной степени статистической достоверности результатов, которую надеется получить исследователь.

Конечно, даже не искушенные в статистике и социологии люди интуитивно понимают, что чем больше размеры выборки, т.е. чем ближе они к размерам генеральной совокупности в целом, тем более надежны и достоверны полученные данные. Однако выше мы уже говорили о практической невозможности сплошных опросов в тех случаях, когда они проводятся на объектах, численность которых превышает десятки, сотни тысяч и даже миллионы. Понятно, что стоимость сбора информации (включающая оплату тиражирования инструментария, труда анкетеров, полевых менеджеров и операторов по компьютерному вводу) зависит от той суммы, которую готов выделить заказчик, и слабо зависит от исследователей. Что же касается второго фактора, то мы остановимся на нем чуть подробнее.

Итак, чем больше величина выборки, тем меньше возможная ошибка. Хотя необходимо отметить, что при желании увеличить точность вдвое вам придется увеличить выборку не в два, а в четыре раза. Например, чтобы сделать в два раза более точной оценку данных, полученных путем опроса 400 человек, вам потребуется опросить не 800, а 1600 человек. Впрочем, вряд ли маркетинговое исследование испытывает нужду в стопроцентной точности. Если пивовару необходимо узнать, какая часть потребителей пива предпочитает именно его марку, а не сорт его конкурента, — 60% или 40%, то на его планы никак не повлияет разница между 57%, 60 или 63%.

Ошибка выборки может зависеть не только от ее величины, но и от степени различий между отдельными единицами внутри генеральной совокупности, которую мы исследуем. Например, если нам нужно узнать, какое количество пива потребляется, то мы обнаружим, что внутри нашей генеральной совокупности нормы потребления у различных людей существенно различаются (гетерогенная генеральная совокупность). В другом случае мы будем изучать потребление хлеба и установим, что у разных людей оно различается гораздо менее существенно {гомогенная генеральная совокупность). Чем больше различия (или гетерогенность) внутри генеральной совокупности, тем больше величина возможной ошибки выборки. Указанная закономерность лишь подтверждает то, что нам подсказывает простой здравый смысл. Таким образом, как справедливо утверждает В. Ядов, «численность (объем) выборки зависит от уровня однородности или разнородности изучаемых объектов. Чем более они однородны, тем меньшая численность может обеспечить статистически достоверные выводы».

Определение объема выборки зависит также от уровня доверительного интервала допустимой статистической ошибки. Здесь имеются в виду так называемые случайные ошибки, которые связаны с природой любых статистических погрешностей. В.И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5%-ной ошибки:
Это означает,что если вы, опросив, предположим, 400 человек в районном городе, где численность взрослого платежеспособного населения составляет 100 тыс. человек, выявили, что 33% опрошенных покупателей предпочитают продукцию местного мясокомбината, то с 95%-ной вероятностью можете утверждать, что постоянными покупателями этой продукции являются 33+5% (т.е. от 28 до 38%) жителей этого города.

Можно также воспользоваться расчетами института Гэллапа для оценки соотношения размеров выборки и ошибки выборки.

Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.

Репрезентативность — что это?

понятие репрезентативности

Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.

Другие определения

Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.

репрезентативность что это

Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.

Репрезентативная выборка

Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.

Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.

репрезентативность результатов

Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.

Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.

Вероятностная выборка

Вероятностные выборки также могут подразделяться на несколько видов:

  • Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
  • Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
  • Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.

репрезентативность информации

Вероятностные выборки

Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:

  • Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
  • Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.

Выборка потребителей

Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.

Размер выборки

Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.

ошибка репрезентативности

Понятие ошибки репрезентативности

Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.

Виды ошибок

Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:

  • Систематические.
  • Случайные.
  • Преднамеренные.
  • Непреднамеренные.
  • Стандартные.
  • Предельные.

Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.

Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.

репрезентативность данных

Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.

Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.

Преднамеренные и непреднамеренные ошибки репрезентативности

Ошибки смещения данных бывают преднамеренными и непреднамеренными.

Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.

Валидность, надежность, репрезентативность. Расчет ошибок

1

Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).

Среднее квадратическое отклонение: численность выборки (>30).

Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).

В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.

Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.

2

Репрезентативные системы

Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:

3

  • Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
  • Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
  • Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.

4

  • Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.

валидность надежность репрезентативность

Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.

Пример об ошибке репрезентативности

Лекция 4.1 Выборочный метод

К настоящему времени Вы заработали баллов: 0 из 0 возможных.

ГЕНЕРАЛЬНАЯ И ВЫБОРОЧНАЯ СОВОКУПНОСТЬ

Генеральная совокупность — вся подлежащая изучению совокупность объектов (наблюдений).

Генеральная совокупность носит гипотетический характер. Она представляет собой совокупность всех мыслимых наблюдений, которые могли бы быть произведены при данных условиях. Даже если бы у нас была возможность провести сплошное исследование всей совокупности признака, все равно в нее не попали бы объекты, которое по какой то причине отсутствуют на текущий момент, но должны были существовать при данных условиях.

Та часть объектов, которая отобрана для непосредственного изучения, называется выборочной совокупностьюили выборкой

Сущность выборочного метода

Сущность выборочного метода состоит в том, чтобы по некоторой части генеральной совокупности выносить суждение о её свойствах в целом

Чтобы по данным выборки иметь возможность судить о генеральной совокупности, она должна быть репрезентативной(представительной).

Репрезентативная выборка сохраняет и повторяет структуру генеральной совокупности.

Если две выборки взяты из одной генеральной совокупности, то разница в получаемых оценках (например, средних) будет носить случайный характер, как следствие ошибки репрезентативности

Ошибка репрезентативности возникает по причине того, что мы исследуем не всю совокупность, а только её части (выборки). Мы получаем случайную комбинацию элементов из генеральной совокупности.

Для того, чтобы минимизировать различия однородных (взятых из одной генеральной совокупности) выборок необходимо правильным образом их формировать.

Наилучшим способом формирования репрезентативной выборки является случайный отбор элементов из генеральной совокупности без расчленения на части или группы (случайная выборка).

Пример об ошибке репрезентативности

Рассмотрим следующий пример.

Исследователь задался вопросом: «существуют ли различия в эмпатических способностях между психологами и педагогами?». Для того чтобы это прояснить он набрал две группы испытуемых в соответствии с их профессиональной деятельностью и предложил им заполнить опросник на эмпатические способности. Далее, он рассчитал среднее значение в каждой группе.

В группе психологов среднее составило 23,4 балла, а в группе педагогов 21,1. Таким образом, разница в средних между группами составила2,3 балла (23,4 — 21,1 = 2,3).

Если бы представители этих профессий не отличались по изучаемому признаку, тогда разница в средних равнялась бы нулю.

Однако, можно ли считать эту разницу в 2,3 балла достаточной, чтобы судить о реальных различиях между группами? Может сложится так, что психологи и педагоги по эмпатии в реальности не отличаются (выборки однородны), а разница в 2,3 балла, полученная исследователем носит случайный характер, как ошибка репрезентативности.

Таким образом, мы можем сформулировать две гипотезы:

Гипотезы являются альтернативами по отношению к друг другу. Принятие одной из них как верной влечет за собой исключение «истинности» другой.

СТАТИСТИЧЕСКАЯ ГИПОТЕЗА

Статистическая гипотеза – это любое предположение о виде или параметрах неизвестного закона распределения (закона распределения генеральной совокупности)

В статистике принято формулировать пару гипотез. Первая гипотеза называется нулевой, а вторая – альтернативной.

Нулевая гипотеза Н Альтернативная гипотеза Н1
1. 1. Является проверяемой 2. Обычно гипотеза об отсутствии явления (например, различий или зависимости) Является логическим отрицанием нулевой
Поскольку нулевая гипотеза является проверяемой, то её можно отвергать и принимать Альтернативную гипотезу принимают как следствие отрицания нулевой гипотезы

пример:

· Н (нулевая): Женщины не отличаются от мужчин по среднему уровню развития эмпатических способностей (средние значения равны)

· Н1 (альтернативная): Средний уровень эмпатических способностей выше у женщин по сравнению с мужчинами

пример:

· Н (нулевая): Линейная корреляция между самооценкой и тревожностью равна 0

· Н1 (альтернативная): Самооценка отрицательно связана с тревожностью (линейная корреляция меньше нуля / чем выше самооценка, тем ниже тревожность и наоборот)

Вопрос:Какая из двух формулировок соответствует нулевой гипотезе Н?

· А) между психологами и педагогами нет различий по среднему уровню выраженности эмпатии

· Б) между психологами и педагогами есть различия по среднему уровню выраженности эмпатии

Статистический критерий

Правило, по которому нулевая гипотеза отвергается или принимается, называется статистическим критерием.

Статистика – это специально составленная выборочная характеристика (распределение), у которой есть критическое значение такое, что если верна нулевая гипотеза, то вероятность (α) того, что случайная величина превысит это критическое значение, мала (Кремер Н.Ш., 2004).

Критическое значение делит распределение «нулевой гипотезы» на две области: область допустимых значений и область критических значений

Таким образом, критические значения позволяют исследователю либо принять, либо отвергнуть нулевую гипотезу.

В математической статистике можно подбирать критические значение для разных альфа-уровней (уровней значимости). Чаще всего:

1. Критическое значение, которое выделяет критическую область с вероятностью α

Источник

Ошибки статистического наблюдения и основные приёмы их устранения

Всякое статистическое наблюдение должно быть полным и достоверным. Однако по ряду причин степень точности данных может быть различной.

Все ошибки наблюдения подразделяются на два вида:

Ошибки регистрации возникают вследствие неправильного установления фактов в процессе наблюдения или неправильной их записи.

Ошибки регистрации могут возникать как при сплошном наблюдении, так и при несплошном и имеют следующие виды:

Случайные ошибки – это ошибки, которые возникают в результате небрежной описки или невнимательного отношения регистратора при заполнении формуляра (ошибки в подсчёте).

Систематические ошибки – это ошибки, которые искажают сведения по каждой отдельной единице наблюдения в одном и том же направлении.

Систематические ошибки делятся на:

Преднамеренные ошибки (сознательные, тенденциозные ошибки), возникающие в результате сознательного искажения статистической информации. К ним относятся: приписки, неправильные сведения об объёме выпущенной продукции, об остатках сырья и материалов и т. д.

Непреднамеренные ошибки – это ошибки, которые возникают в результате случайных причин, т.е. неумышленно (неисправность измерительных приборов, невнимательность регистратора и т.д.).

Ошибки репрезентативности свойственны несплошному наблюдению. Они возникают в результате выборочного наблюдения, когда отобранная часть единиц совокупности недостаточно полно отражает состав всей изучаемой совокупности.

Ошибки репрезентативности (так же, как и ошибки регистрации) могут быть случайными и систематическими.

Случайные ошибки оцениваются с помощью математических методов.

Систематические ошибки – это отклонения, которые возникают в результате случайного отбора единиц изучаемой совокупности. Их размеры не поддаются количественной оценке.

Для выявления и устранения допущенных при регистрации ошибок применяются следующие методы:

а) внешний контроль;

б) логический контроль;

в) счётный контроль.

При внешнем контроле проверяется: правильность оформления документов; наличие всех необходимых записей, которые предусмотрены инструкцией и т.д.

Логический контроль заключается в проверке ответов на вопросы программы наблюдения путём сопоставления полученных данных с другими источниками.

Сущность счётного (арифметического) контроля заключается в счётной проверке всех итоговых показателей, которые содержатся в отчётности или формуляре исследования. Задачей такого контроля является исправление итогов и отдельных числовых показателей.

В ряде случаев, при счётном контроле данных статистического наблюдения применяется метод балансовой увязки показателей (наличие на начало отчётного периода плюс поступления минус расход должно быть равно наличию на конец отчётного периода). Такой метод применяют: при проверках поголовья скота, при учёте поступления и расхода сырья и материалов и т.д.

Указанные методы проверки достоверности статистического наблюдения позволяют сократить до минимального значения допуск ошибок.

Источник

Репрезентативность — что это за процесс? Ошибка репрезентативности

Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.

Репрезентативность — что это?

Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.

Другие определения

Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.

Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.

Репрезентативная выборка

Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.

Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.

Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.

Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.

Вероятностная выборка

Вероятностные выборки также могут подразделяться на несколько видов:

  • Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
  • Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
  • Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.

Вероятностные выборки

Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:

  • Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
  • Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.

Выборка потребителей

Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.

Размер выборки

Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.

Понятие ошибки репрезентативности

Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.

Виды ошибок

Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:

  • Систематические.
  • Случайные.
  • Преднамеренные.
  • Непреднамеренные.
  • Стандартные.
  • Предельные.

Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.

Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.

Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.

Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.

Преднамеренные и непреднамеренные ошибки репрезентативности

Ошибки смещения данных бывают преднамеренными и непреднамеренными.

Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.

Валидность, надежность, репрезентативность. Расчет ошибок

Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).

Среднее квадратическое отклонение: численность выборки (>30).

Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).

В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.

Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.

Репрезентативные системы

Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:

  • Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
  • Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
  • Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.

  • Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.

Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.

Источник

Понравилась статья? Поделить с друзьями:
  • Объяснительная записка счетная ошибка
  • Объективные ошибки фотометрирования связаны
  • Объяснительная записка на работу об ошибке на производстве
  • Объяснительная записка врача на ошибку
  • Объем выборки влияет на ее ошибку