Наименьшую ошибку при титровании дают индикаторы

Кривые титрования. Индикаторные ошибки титрования

Для
того чтобы иметь возможность выбрать
индикатор для титрования, кроме
качественных показателей, необходимо
использовать методы, дающие количественную
характеристику этого процесса. К таким
методам относятся метод построения
“кривых титрования”, метод вычисления
индикаторной ошибки, совершаемой при
титровании.

Метод “кривых
титрования”

При
прибавлении к 0,1 н. раствору кислоты
раствора щелочи такой же нормальности
происходит изменение реакции среды из
кислой в нейтральную, а затем в щелочную.
Количество прилитого раствора щелочи
будет соответствовать определенной
величине рН и цвету индикатора.

Чтобы
иметь возможность точно изучить этот
процесс и выбрать нужный индикатор,
используют графический метод. Для этого
на оси ординат откладывают величину
рН, а на оси абсцисс – количество раствора
NaOH
мл).
При этом образуется кривая, которая
будет характеризовать изменение рН в
зависимости от количества миллилитров
прилитого рабочего раствора. Различают
три случая: А, Б и В.

Кривая титрования
сильной кислоты (НС1) сильным основанием

Для
построения кривой в коническую колбу
наливают 20 мл
0,1 н. раствора
соляной кислоты и из бюретки добавляют
постепенно 20 мл
0,1 н. раствора натрия гидроксида.
Рассчитывают величины рН, получающиеся
в зависимости от прилитого количества
миллилитров гидроксида, и по точкам
строят кривую.

Сначала
находят начальную (исходную) точку
кривой Сhci
= 0,1 н. = 0,1
М,
поэтому концентрация [Н+]=0,1=10ˉ1
г-ион/л
и рН = 1, поскольку степень диссоциации
соляной кислоты при С = 0,1 н. будет равна
1. VNaOH
= 0, начальная точка кривой будет иметь
координаты: х1
= 0, y1
= 1. Затем определяют конечную точку
кривой (точку эквивалентности).
Концентрация растворов равна 0,1 н.,
поэтому на 20 мл
соляной кислоты будет израсходовано
20 мл
раствора натрия гидроксида и [H+]=
[OH]
= 10ˉ7,
а рН = 7.

В
растворе будет находиться соль, натрия
хлорид, которая не будет подвергаться
гидролизу, и координаты точки
эквивалентности будут хn
= 20, рН = 7 (точка «2»), Зная координаты
начальной и конечной точек, приступают
к расчету промежуточных точек. Допустим,
что в точке «3» к 20 мл
0,1 н. раствора соляной кислоты прибавили
18,00 мл
0,1 н. раствора натрия гидроксида NaOH,
тогда в растворе осталось 2 мл
0,1 н, раствора соляной кислоты, т. е. в 10
раз меньше, и поэтому С3
=
и рН = –lg
+]
=
–lg (10ˉ2)
= 2. В точке «4» прилили 19,80 мл
NaOH, поэтому chci
=
0,001 М,
+]
= 10ˉ3
и рН = 3.

Таким же способом
рассчитывают и другие промежуточные
точки. По данным таблицы 10.1 строим кривую
титрования сильной кислоты сильным
гидроксидом.

Таблица 1

Изменение рН при титровании 20 мл 0,1 н. Раствора соляной кислоты раствором натрия гидроксида

Прибавление
NaOH

Остаток НС1

рН

%

мл

%

г-экв/л

0

90

99

99,9

100,0

100,1

101

110

200

0

18

19,8

19,98

20,00

20,02

20,2

22

40

100

10

1,0

0.1

0

0,1

1,0

10,0

100

0,1

0,01

0,001

0,0001

10ˉ7

Избыток

0,0001

0,001

0,01

0,1

1

2

3

4

7

10

11

12

13

По
кривой титрования (рис. 1) видно, что к
концу этого титрования происходит
сильное изменение величины рН раствора
и наблюдается резкий скачок. Если за
время нейтрализации 99,9% кислоты рН
изменяется постепенно от 1,0 до 4,0, то при
добавлении весьма небольшого количества
раствора натрия гидроксида (0,1 % до точки
нейтрализации и 0,1% избыточных) рН
повышается с 4,0 до 10,0. Последняя капля
добавленной щелочи вызывает изменение
рН на 6 единиц, а [Н+]
в 1.000.000 раз, поэтому кривая на этом
отрезке занимает вертикальное положение
– этот вертикальный участок кривой
называют скачком рН на кривой титрования.
Если после достижения точки эквивалентности
продолжать добавлять раствор гидроксида
NaOH,
то [Н+]
будет уменьшаться и кривая во второй
половине будет такой же пологой, как и
в первой.

Рис.12
Кривая титрования сильной кислоты
сильной щелочью

Такая
кривая характеризуется такими
особенностями:

а) точка эквивалентности
лежит на линии нейтральности:

б) скачок рН на
кривой титрования (при 0,1 н. растворах)
имеет большой интервал – от рН = 4,0 до
рН = 10;

в)
при титровании раствора щелочи кислотой
начальная точка располагалась бы при
рН = 13 – в нижней области графика.

На
основании кривой титрования (для 0,1 н.
растворов НС1 и NaOH) можно сделать вывод,
что в этом случае применимы следующие
индикаторы: метиловый оранжевый,
метиловый красный, нейтральный красный
и фенолфталеин, т.е. такие индикаторы,
показатели титрования – рН которых
находятся в области скачка рН на кривой.

Для того чтобы не
усложнять расчеты, увеличение объема
раствора при титровании не учитывают.

Соседние файлы в папке Лекции

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчет индикаторных погрешностей кислотно-основного титрования

Согласно ионно-хромофорной теории индикаторов, интервал перехода окраски индикатора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 12). Середина области перехода окраски (при этом pH близко к Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) называется показателем титрования с данным индикатором или рТ индикатора. Индикаторные погрешности отсутствуют, когда рТ индикатора практически совпадает с pH в ТЭ. Основой для выбора индикатора является расчет и построение кривой титрования, определение области скачка и pH в ТЭ.

Таблица 8.12

Важнейшие кислотно-основные индикаторы

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

При правильно выбранном индикаторе индикаторная ПТ не должна превышать заданную погрешность измерения объема раствора в титриметрии. Типы (виды) индикаторных ПТ кислотно-осиовиого титрования и названия, встречающиеся в разных учебниках и сборниках задач, происхождение погрешностей и формулы для расчета приведены в табл. 8.13. Формулы легко выводятся из определения погрешности титрования как отношения недотитро-ванного или перетитрованного количества кислоты или основания к первоначально взятому для титрования (то есть к произведению Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Погрешность выражают в %, а вид и знак устанавливают по ходу процесса (кривой) титрования и составу раствора в КТТ (табл. 8.13, примеры 8.28 и 8.29).

Таблица 8.13

Индикаторные погрешности кислотно-основного титрования

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.28.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании а) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и б) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения рабочим раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения в условиях примера 8.21, если считать относительную погрешность измерения объема 0,4 %.

Решение:

а). Как следует из табл. 8.4 и рис. 8.1(1), для случая титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при погрешности определения объема 0,4 % область скачка на кривой титрования соответствует изменению pH от 3,4 до 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения равен 7,0. Следовательно, для титрования можно выбрать индикаторы от №2 до №10 (табл. 8.12), т. к. их рТ и интервалы перехода окраски находятся в области скачка кривой.

Однако используемые для расчета ПТ формулы показывают, что чем ближе рТ и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, тем меньше ПТ. «Идеально» подходит бромтимоловый синий, поскольку его рТ 7 практически совпадает с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Рассчитаем величину ПТ с двумя индикаторами: с рТ < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и с р Г > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и проверим их пригодность для титрования в заданных условиях.

С индикатором метиловым красным (рТ 5,5 < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе остается неоттитрованная сильная кислота, следовательно, возникает протонная ошибка со знаком «-» (см. формулы в табл. 8.13):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

С индикатором фенолфталеином (рТ 9,0 > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе -избыток сильного основания, в результате чего ПТ представляет собой Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения— ошибку (гидроксидную) со знаком «+»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В данном случае оба индикатора пригодны, поскольку вычисленные значения ПТ не превышают заданную погрешность титрования (0,4%), но с метиловым красным систематическая индикаторная погрешность меньше.

б). При титровании Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 8.5, рис. 8.1(2)) для той же точности титрования (99,6%) величина скачка меньше и составляет 7,2 — 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — 8,9. Круг пригодных индикаторов сужается до №7 — №9. Для индикаторов с рТ > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, как и в случае (а), ПТ соответствует Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — ошибке (гидроксидной) со знаком «+».

Например, при выборе фенолфталеина (рТ = 9,0):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

а при выборе тимолфталеина (рТ = 10,0) погрешность возрастает в 10 раз: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выбор фенолфталеина приводит к меньшей индикаторной погрешности титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, но могут использоваться оба индикатора.

При титровании с индикаторами, для которых рТ < рНтэ, в растворе остается неоттитрованная слабая кислота, т. е. присутствует НА-ошибка (кислотная) со знаком «-» (см. табл. 8.13). Если использовать индикатор бромтимоловый синий (рТ 7,0), то вычисленная ПТ не удовлетворяет заданной точности, индикатор не пригоден:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

или при проведении расчета по приближенной формуле:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.29.

Какой индикатор позволяет оттитровать 0,1000 М гидразин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,1000 М раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с меньшей погрешностью: бромкрезоловый пурпурный (рТ 6,0) или метиловый красный (рТ 5,5)?

Решение:

Реакция титрования:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

приводит к образованию слабой сопряженной кислоты Расчет индикаторных погрешностей кислотно-основного титрования с примерами решенияРасчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Тогда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и вычисляется с учетом того, что Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сравнивая рТ индикаторов и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, видим, что в обоих случаях остается неоттитрованный гидразин, поэтому для оценки ПТ рассчитываем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения ошибку (основную) со знаком «-». С бромкрезоловым пурпурным (рТ 6):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

и с метиловым красным (рТ 5,5):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Из предложенных индикаторов метиловый красный позволяет провести титрование гидразина с меньшей погрешностью.

Расчет индикаторных погрешностей окислительно-восстановительного титрования

При использовании окислительно-восстановительных (редокс) индикаторов потенциал в ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения может не совпадать с потенциалом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, который связан с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. (табл. 8.14) и интервалом перехода его окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Таблица 8.14

Примеры распространенных окислительно-восстановительных индикаторов

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Полуреакция восстановления и интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Наиболее часто в полуреакции восстановления (окисления) индикатора участвуют 2 электрона. Для индикаторов №1 — №6 Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения слабо зависит от pH. При расчете ПТ необходимо:

  • сравнить Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения для выбора редокс-пары участников реакции титрования и уравнения Нернста для расчета ПТ.

Например, если Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при титровании восстановителя (пример 8.30-а), то реакция не завершена; из уравнения Нернста для полуреакции титруемого компонента находят (объемы раствора в числителе и знаменателе одинаковы):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сумма числителя и знаменателя здесь составляет 100 % титруемого вещества. Индикатор считается пригодным, если ПТ не превышает 0,1 -0,2%.

Пример 8.30.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании раствора соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения раствором соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Решение:

Как следует из табл. 8.8 и рис. 8.3 (кривая 1, пример 8.25), область скачка (при относительной погрешности измерения объема 0,1 %) на кривой титрования 0,95 — 1,26 В, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Следовательно, для титрования можно выбрать индикаторы от №3 до №5 (табл. 8.14).

Выберем для рассмотрения порядка расчета два индикатора:

а) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения-дипиридил, для которого Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

б) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, например нитрофенантролин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

В случае а) интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,0 В. В растворе остаются неоттитрованными ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (оттитрованные ионы -ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения). Для расчета ПТ используем уравнение Нернста для ре-докс- пары титруемого компонента (Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения/Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Тогда: ПТ = Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В случае б) интервал перехода индикатора нитрофенантролина в виде комплекса с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,28 В и раствор перетитровывается. В этом случае ПТ имеет положительный знак и рассчитывается по уравнению Нернста для редокс-пары, образуемой титрантом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения .

Тогда количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (после ТЭ образования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения не происходит) соответствует количеству взятых для титрования ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, а количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — их перетитрованному количеству.

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Таким образом, оба выбранных индикатора оказались приемлемыми.

Расчет индикаторных погрешностей комплексонометрического титрования

В конечной точке титрования общие концентрации определяемого иона с(М) и титранта c(Y) можно представить выражениями {для упрощения записи в общем виде упустим заряды ионов):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм определяемого иона, кроме входящего в комплекс Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм титранта, кроме входящего в комплекс MY.

Условные константы устойчивости (см. выражение 8.16) связывают Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Отсюда относительная погрешность титрования (ПТ) определяется выражением (с учетом (8.18) и (8.19)):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Подставляем в это уравнение выражение для Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (8.20):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Вблизи ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения очень мала, поэтому Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

следовательно: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выражение (8.21) тождественно выражению: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Если конечная точка титрования находится после точки эквивалентности (степень оттитрованности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения), то относительная погрешность будет положительной. В случае недотитровывания, т. е. когда конечная точка титрования будет зафиксирована с помощью индикатора до точки эквивалентности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, ПТ будет со знаком «-».

Конечная точка титрования определяется интервалом перехода окраски индикатора (интервалом рМ, в котором индикатор меняет свою окраску):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения индикатора эриохром черный Т Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, образующего комплексы с ионами металлов при pH 10, составляет для ионов: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.31.

Рассчитайте погрешность титрования 0,1 ОМ раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,10 М раствором ЭДТА в присутствии индикатора эриохром черный Т в аммиачном буферном растворе при pH 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,2 моль/л (см. условия в примере 8.27).

Решение:

В данных условиях Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (пример 8.23). Интервал перехода окраски индикатора: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения или в интервале концентраций магния от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Точка эквивалентности попадает в указанный интервал, индикатор считается пригодным для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, КТТ наступает после ТЭ, когда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л.

Погрешность титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с «эриохром черным Т»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.32.

Докажите возможность использования индикатора эриохром черный Т для титрования 0,010 М раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,010 М раствором ЭДТА при pH = 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,10 моль/л. Рассчитайте погрешность титрования при использовании этого индикатора.

Решение:

1. Рассчитаем условную константу Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Общие константы устойчивости для аммиачных комплексов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 4 приложения): Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Для свободных ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения по формуле (2.8) предварительно рассчитаем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

По табл. 7 и табл. 4 приложения находим Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Константа устойчивости комплекса Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с ЭДТА при заданных условиях с учетом выражения (8.16):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В точке эквивалентности:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски индикатора эриохром черный Т в случае титрования ионов цинка при pH 10: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, т.е. от 9,8 до 11,8 или от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л. Точка эквивалентности попадает в интервал концентраций, при которых индикатор меняет свою окраску. Следовательно, эриохром черный Т пригоден для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при заданных условиях.

2. Конечная точка титрования наступает при [Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения], равной Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л, отсюда концентрация всех форм Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, за исключением связанных в комплекс с ЭДТА, составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Эти примеры взяты со страницы примеров решения задач по аналитической химии:

Решение задач по аналитической химии

Возможны вам будут полезны эти страницы:

1.

Индикаторные ошибки
кислотно-основного титрования
1

2.

Водородная ошибка возникает, когда
недотитрована сильная кислота,
перетитровано сильное или слабое основание
Водородная ошибка – отношение количества
ионов водорода n(H+) в конце титрования к
первоначально взятому количеству вещества
n(X)
n
(H+)к.т.
X(H+) = ———— · 100%
n(X)
2

3.

n(X) = Сэкв(Х) · V(X)
Сэкв(Х) – молярная концентрация эквивалента
первоначально взятого вещества
V(X) – объем первоначально взятого вещества
n(H+)к.т. = [H+]к.т.· Vк.т.
Vк.т. – объем в конце титрования
Vк.т. = V(X) + V(Т)
3

4.

+] · (V(X) + V(Т))
[H
к.т.
+
X(H ) = ——————————— · 100%
С(1/z Х) · V(X)
рНк.т. = рТInd
[H+]к.т = 10–рН = 10–рТ
–рТ · (V(X) + V(Т))
10
X(H+) = ————————— · 100%
Сэкв(Х) · V(X)
4

5.

Гидроксильная ошибка обусловлена наличием
гидроксид-ионов в конце титрования и возникает, когда недотитровано сильное основание,
перетитрована сильная или слабая кислота
n(OH–)к.т.
X(OH–) = ———— · 100%
n(X)
n(OH–)к.т = [OH–]к.т. · (V(X) + V(Т))
n(X) = Сэкв(Х) · V(X)
–]
[OH
·
(V
(X) + V(Т))
к.т.
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
5

6.

рНк.т. = рТInd
т.к. рН + рОН = 14
рОН = 14 – рН = 14 – рТ
[OH–] = 10–(14 – рТ) = 10рТ–14
рТ–14 · (V(X) + V(Т))
10
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
6

7.

Кислотная ошибка возникает, когда остается
недотитрованной слабая кислота
Кислотная ошибка – отношение концентрации
недотитрованной кислоты в конце титрования
к ее оттитрованной части
HA + KOH H2O + KA
[HA]к.т.
X(HA) = ———— · 100%
[A–]к.т.
Оттитрованная часть кислоты будет
определяться анионами соли
7

8.

HAк.т. H+к.т. + A–к.т.
[H+]к.т. · [A–]к.т.
Kк-ты = ———————
[HA]к.т.
[HA]к.т. [H+]к.т.
———=
———
[A–]к.т.
Kк-ты
[H+]к.т.
X(HA) = ———— · 100%
Kк-ты
8

9.

рНк.т. = рТInd
[H+]к.т = 10–рН = 10–рТ
Kк-ты = 10–рК
10–рТ
X(HA) = ———— · 100%
10–рКк-ты
X(HA) =10рКк-ты–рТ · 100%
9

10.

Основная ошибка возникает, когда остается
недотитрованным слабое основание
Основная ошибка – отношение концентрации
неоттитрованного основания в конце
титрования к его оттитрованной части
[BOH]к.т.
X(BOH) = ———— · 100%
[B+]к.т.
10

11.

Аналогично с кислотной ошибкой можно
показать
[BOH]к.т.
[OH–]к.т.
—————
=
—————
[B+]к.т.
Kосн
[OH–]к.т.
X(BOH) = ———— · 100%
Kосн
Т.к. [OH–]к.т. = 10рТ–14
Kосн = 10–рКосн
11

12.

10рТ–14
X(BOH) = ———— · 100%
10–рКосн
X(BOH) =10рКосн + рТ–14 · 100%
12

13.

Вычислить ошибку титрования 0,2 н. раствора
HCl 0,2 н. раствором NaOH с индикатором
метиловым оранжевым.
рТ(м/о) = 4
ошибка водородная
–рТ · (V(X) + V(Т))
10
X(H+) = ————————— · 100%
Сэкв(Х) · V(X)
–4 · (10 + 10)
10
X(H+) = ——————— · 100 = 0,1%
0,2 · 10
Индикаторная ошибка должна быть 0,1%
13

14.

Вычислить индикаторную ошибку титрования
0,2 н. раствора HCl 0,2 н. раствором NaOH с
индикатором фенолфталеином
рТ(ф/ф) = 9
ошибка гидроксильная
рТ–14 · (V(X) + V(Т))
10
X(OH–) = —————————— · 100%
Сэкв(Х) · V(X)
9–14 · (10 + 10)
10
X(OH–) = ——————— · 100 = 0,01 %
0,2 · 10
14

15.

Вычислить ошибку титрования 0,1 н. раствора
муравьиной кислоты 0,1 н. раствором сильного основания с индикатором метиловым
красным
рТ(м/к) = 5
рК(HCOOH) = 3,76
рНт.э. = 7 + ½ рКк-ты + ½ lg Cсоли = 8,38
Раствор недотитрован ошибка кислотная
15

16.

X(HA) =10рКк-ты–рТ · 100%
X(HA) =103,76–5 · 100 = 5,7 %
Индикатор использовать нельзя.
16

17.

Чему равна ошибка титрования 0,1 н. раствора
аммиака 0,1 н. раствором HCl с индикатором
крезоловым пурпуровым
рТ(к/п) = 8
рК(NH4OH) = 4,75
рНт.э. = 7 – ½ рКосн – ½ lg Cсоли = 5,10
Раствор недотитрован ошибка основная
X(BOH) =10рКосн + рТ–14 · 100%
X(BOH) =104,75 + 8–14 · 100 = 5,6%
17

Понравилась статья? Поделить с друзьями:
  • Наилучший это ошибка
  • Назовите типы речевых лексических ошибок
  • Наилегчайший вес ошибка
  • Назовите типы ошибок выявляемых при отладке программы
  • Наивная ошибка вячеслав добрынин минус