From Wikipedia, the free encyclopedia
In computer programming, a logic error is a bug in a program that causes it to operate incorrectly, but not to terminate abnormally (or crash). A logic error produces unintended or undesired output or other behaviour, although it may not immediately be recognized as such.
Logic errors occur in both compiled and interpreted languages. Unlike a program with a syntax error, a program with a logic error is a valid program in the language, though it does not behave as intended. Often the only clue to the existence of logic errors is the production of wrong solutions, though static analysis may sometimes spot them.
Debugging logic errors[edit]
One of the ways to find this type of error is to put out the program’s variables to a file or on the screen in order to determine the error’s location in code. Although this will not work in all cases, for example when calling the wrong subroutine, it is the easiest way to find the problem if the program uses the incorrect results of a bad mathematical calculation.
Examples[edit]
This example function in C to calculate the average of two numbers contains a logic error. It is missing parentheses in the calculation, so it compiles and runs but does not give the expected answer due to operator precedence (division is evaluated before addition).
float average(float a, float b) { return a + b / 2; // should be (a + b) / 2 }
See also[edit]
- Syntax error
- Off-by-one error
Логические ошибки
Логические
ошибки труднее всего обнаружить и
устранить. Эти ошибки не приводят к
прерыванию выполнения программы, т.е.
визуально все идет гладко и выглядит
так, как будто программа работает
безупречно. Но это только кажущаяся
идиллия, т.к. программа выдает неверные
результаты. Локализация логических
ошибок связана с тщательным анализом
алгоритма программы с привлечением
средств отладки УВА (рис. 12.8).
Рис.
12.8. Редактор кода в режиме прерывания
Инструкция Option Explicit
Простейшим
средством предотвращения случайных
ошибок является использование инструкции
Option
Explicit.
Эта инструкция предписывает явно
описывать все переменные, встречающиеся
в программе. Использование инструкции
Option
Explicit
позволяет избежать следующей трудно
отслеживаемой ошибки. Предположим, что
в программе используется переменная с
именем Ссуда, а при наборе имени этой
переменной где-то в программе вместо
русской буквы с по ошибке набрана
латинская буква с. Визуально, эти имена
ничем не отличаются друг от друга, но
воспринимаются программой как имена
разных переменных. Если бы использовалась
инструкция Option
Explicit,
а значит имело место явное описание
переменной Ссуда, то компилятор указал
бы на переменную Ссуда с латинской
буквой с, как на неописанную, и эта,
трудно отслеживаемая ошибка, была бы
быстро найдена.
Пошаговое выполнение программ
Редактор
VBA
позволяет выполнять пошаговую отладку
программы. Ее можно выполнить либо при
помощи панели инструментов Отладка
(Debug),
либо меню Отладка (Debug),
которое включает команды и соответствующие
комбинации клавиш (рис. 12.9). Если панель
инструментов Отладка (Debug)
не отображена на экране, то ее можно
отобразить, выполнив команду Вид, Панели
инструментов, Отладка (View,
Toolbars,
Debug).
Рис.
12.9. Панель инструментов Отладка и
раскрывающееся меню Отладка
Для
выполнения программы в пошаговом режиме
используются четыре команды:
-
Команда
Отладка, Шаг с заходом (Debug,
Step
Into),
либо кнопка Шаг с заходом (Step
Into)
панели инструментов Отладка (Debug)
осуществляет последовательную шаг за
шагом отладку всей программы, включая
процедуры, вызываемые в программе. -
Команда
Отладка, Шаг с обходом (Debug,
Step
Over),
либо кнопка Шаг с обходом (Step
Over)
панели инструментов Отладка (Debug)
осуществляет последовательную шаг за
шагом отладку всей программы, исключая
процедуры, т.е. если встречается
процедура, то она выполняется целиком,
а не пошагово, как это делается в команде
Отладка, Шаг с заходом (Debug,
Step
Into) -
Команда
Отладка, Шаг с выходом (Debug,
Step
Out),
либо кнопка Шаг с выходом (Step
Out)
панели инструментов Отладка (Debug)
завершает выполнение текущей процедуры
и останавливает процесс пошаговой
отладки на следующей после вызвавшей
ее инструкции программы. -
Команда
Отладка, Выполнить до текущей позиции
(Debug,
Run
to
Cursor)
выполняет программу до инструкции, на
которой установлен курсор.
Точка останова
Точка
останова устанавливается или снимается
с помощью команды Отладка, Точка останова
(Debug,
Toggle
Breakpoint),
либо посредством кнопки Точка останова
(Toggle
Breakpoint)
панели инструментов Отладка (Debug).
На
листе модуля точки останова выделяются
полосой кирпичного цвета и кругом того
же цвета (рис. 12.10).
В
одном проекте может быть несколько
точек останова. Точки останова
предназначены для приостановки выполнения
программы. Все инструкции, расположенные
выше, между и ниже точек останова,
выполняются в обычном режиме.
Одновременно
снять все точки останова можно, выполнив
команду Отладка, Снять все точки останова
(Debug,
Clear
All
Breakpoint).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.
Определение
Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.
Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:
- Появляется сообщение об ошибке, но приложение продолжает функционировать.
- ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
- Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.
Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.
История происхождения термина
Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:
- 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
- Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.
Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.
Как классифицируют
Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:
- Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
- Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
- Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.
Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.
Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.
Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.
Виды
Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).
Разработчики выделяют следующие типы ошибок по уровню сложности:
- «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
- «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
- «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
- «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.
Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.
Типы багов
Ошибки в программах бывают:
- логическими;
- синтаксическими;
- взаимодействия;
- компиляционные;
- ресурсные;
- арифметические;
- среды выполнения.
Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.
Ошибки синтаксиса
Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.
Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:
Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.
Логические
Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».
Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.
Выше – пример логической ошибки в программе. Тут:
- Происходит сравнение значения i с 15.
- На экран выводится сообщение, если I = 15.
- В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.
Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.
Время выполнения
Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.
Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.
Компиляционный тип
Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.
Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.
Ресурсные
Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.
Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.
Взаимодействие
Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.
Исключения и как избежать багов
Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.
Исключения бывают:
- Программными. Они генерируются приложением или ОС.
- Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.
Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.
P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.
Аннотация: Лекция посвящена описанию вопросов, касающихся отладки приложений и работы с ошибками.
8.1. Ошибки при создании программы
Можно выделить два типа ошибок, с которыми сталкивается программист. Во-первых — это ошибки, которые сопровождают создание программ, а во вторых — ошибки времени выполнения.
Если вы неправильно введете оператор или ключевое слово, если забудете указать часть выражения — ошибка сразу же будет заметна в редакторе. Такие ошибки относятся к синтаксическим. Также на этапе разработки можно обнаружить и устранить логические ошибки. Они связаны с неправильными формулами расчета показателей, неверным использованием переменных и т.д.
Приведем несколько примеров синтаксических ошибок.
- Неправильное ключевое слово. Такая ошибка сразу будет отмечена редактором. Например, если в конструкции цикла For-Next сделать ошибку в ключевом слове For — вы увидите сообщение об ошибке как только попытаетесь перейти к написанию следующей, после начала цикла, строки.
- Ошибка при объявлении переменной. Если вы забудете указать ключевое слово Dim при объявлении переменной — редактор выдаст сообщение об ошибке. Однако, сделает он это лишь при попытке запуска программы.
А вот — логические ошибки.
- Неправильное использование операторов. Например, вместо знака обычного деления вы случайно использовали знак целочисленного деления.
- Расчет какого-либо показателя по неправильной формуле. Например, если неточно расставить скобки в каком-либо выражении — это приведет к ошибке, хотя внешне все может выглядеть правильным.
- Неправильное использование функций — как встроенных, так и пользовательских. Например, используя функцию Str для получения строкового представления числа, вы не учли, что для положительных чисел эта функция добавляет в начало строки пробел. Далее вы попытались узнать первую цифру числа, вырезав первый символ полученной строки. Естественно, никакой цифры в этом случае не получится — лишь знак пробела для положительных или «минус» для отрицательных чисел.
- Неправильное использование переменных. Например, вы используете два вложенных цикла для обработки двумерного массива. Одна из цикловых переменных имеет имя i, вторая — j. Они довольно сильно похожи внешне, их можно случайно перепутать при указании индексов массива. К тому же, обрабатывая массив в цикле довольно легко перепутать место каждой из переменных при указании индекса массива. Использование понятных имен переменных (например — my_Age или num_Vozrast для хранения возраста и т.д.) позволяет эффективно бороться с такими ошибками.
- Случайное использование «новых» переменных. Например, вы предложили пользователю ввести некое значение и записали его в переменную num_Inp, а использовав эту переменную в выражении, напечатали не num_Inp, а num_Ihp. Внешне они похожи, но, присмотревшись, вы можете обнаружить, что имена разные. Еще сложней искать ошибки в латинских именах переменных, в которые «вкрались» русские буквы. Разницу между my_Name и my_Namе вы не увидите, но это — разные переменные — в конце второй вместо латинской e использована русская е. Эффективно бороться с такими ошибками можно, если задать в редакторе опцию обязательного объявления переменных ( Option Explicit ). При появлении необъявленной переменной редактор даст знать об этом.
- Неправильное использование оператора сравнения. Например, это может быть оператор, который сравнивает некие величины не так, как вы предполагали — вместо знака < вы случайно использовали > или, редактируя сравнение (скажем, скопировав похожий оператор сравнения из другого места программы для ускорения работы), поменяли местами сравниваемые переменные или выражения, не поменяв знака и т.д.
Ошибки логики можно найти лишь тщательно проверив и протестировав программу. Чтобы облегчить работу с кодом программы, рекомендуется снабжать ее комментариями. Вовсе необязательно комментировать каждую строчку, достаточно выделить крупные функциональные блоки.
8.2. Ошибки при выполнении программы
Такие ошибки называют еще ошибками времени выполнения. Происходят они, как правило, при неправильном вводе данных пользователем, при возникновении обстоятельств, делающих дальнейшую нормальную работу программы невозможной. Например, ошибку вызовет попытка использовать текстовые данные в арифметическом выражении, попытка сохранения файла в несуществующей директории, деление на ноль и т.д.
Ошибки времени выполнения возникают в нормально работающих программах, которые прошли проверку на синтаксическую и логическую правильность. С этими ошибками можно бороться используя один из двух методов. Первый — разработка программы таким образом, чтобы не допустить этих ошибок, создание программных конструкций, которые предотвращают возникновение ошибок. Второе — перехват ошибок и их обработка.
Давайте, для начала, рассмотрим способы поиска ошибок в процессе создания программ
8.3. Тестирование программ и поиск ошибок
Синтаксические ошибки, как уже было сказано, выявляются обычно на очень раннем этапе — сразу после набора текста в редакторе. А вот для поиска логических ошибок полезно протестировать программу.
Для начала протестируйте вашу программу в обычном режиме работы. Например, если вы предлагаете ввести пользователю число — введите сами число и проверьте результаты работы. Если действия программы будут различаться в зависимости от введенных данных — попытайтесь перебрать все варианты этих данных — так, чтобы проверить все ветви программы.
Если обычные проверки закончились успешно — можно считать, что ваша программа корректно работает, не имеет синтаксических и логических ошибок.
После этого можно усложнить режим тестирования, чтобы как можно более полно сымитировать действия пользователя программы и посмотреть на ее поведение. Еще лучше — попытайтесь целенаправленно вызвать ошибку. Гораздо лучше, когда программа даст сбой на вашем рабочем столе, и вы сможете оперативно устранить этот сбой, чем ждать, когда то же самое произойдет у другого пользователя.
Для проверки программы в реальных условиях попробуйте провести следующие эксперименты.
- Если программа запрашивает число — введите какое-нибудь слово, очень большое число, ноль, отрицательное число, оставьте поле ввода пустым, введите дробное число. Если вы не предусмотрели никаких специальных мер по обработке ошибок, при выполнении подобных операций вы почти гарантированно встретитесь с проблемами.
- Попытайтесь запустить программу, открыв несколько окон с документами.
- Попытайтесь прервать работу программы, а потом снова возобновить ее. Если в вашей программе есть участки, в течение выполнения которых нельзя допускать прерывания работы программы пользователем — вам следует подумать о том, чтобы запретить прерывание работы программы на этих участках.
- Попытайтесь использовать вашу программу в более старой версии Microsoft Office, в нерусифицированной версии. Обратите внимание, например, на различия расширений имен файлов в Office 2007 и более старых версиях, на различия в объектных моделях. В общем случае программы из более старых версий Office будут работать в Office 2007, однако если они используют какие-то специфические особенности Office — такие программы нуждаются в проверке и обновлении. В то же время, макросы для Office 2007, использующие новые объектные модели, могут не работать или работать неправильно в старых версиях.
- Попытайтесь поработать с вашей программой на чужом ПК. Вполне возможно, что при таком эксперименте вы столкнетесь с ошибкой. Например, вы программно работаете с файлами на вашем рабочем ПК — если эти файлы отсутствуют на ПК другого пользователя или находятся в других директориях, или тех директорий, которые нужны вашей программе, нет на ПК другого пользователя — вы столкнетесь с ошибкой.
- Во время работы программы сделайте что-нибудь необычное. Как правило, от пользователей можно ожидать любых странных на первый взгляд действий. Если вы тестируете программу для MS Word, которая правит текст или занимается автоматическим созданием текста, попробуйте во время ее работы переключаться между документами, читать документ, вносить в него правки, выделять произвольные участки текста. То же самое касается MS Excel — во время работы программы попробуйте переключаться между открытыми книгами, между листами, выделять ячейки, попробуйте запустить программу, делая различные листы активными, открыв несколько книг. Результаты такого тестирования могут быть совершенно непредсказуемыми. Проанализировав их, вы можете прити к выводу, что, например, на время выполнения программы нужно скрывать или блокировать документ, пользоваться альтернативными методами работы с документом. Яркий пример — объект Selection в MS Word, который чувствителен к смене выделения в процессе работы, и объект Range, который может работать совсем без создания выделения в тексте.
- Если ваша программа использует файлы, находящиеся в локальной сети, отключите сеть во время работы программы. Проверьте ее реакцию. То же самое можно сделать, если ваша программа работает с принтером — проверьте ее реакцию на выключенный принтер, на принтер, в котором нет бумаги.
- Наконец, представьте, что вы — пользователь программы и просто поработайте с ней. А еще лучше — попросите потенциального пользователя немного «пообщаться» с вашей программой. Этот способ позволяет протестировать программу в условиях, максимально приближенных к реальным.
Возможно, вам покажется, что такая проверка не нужна вашей программе. Если вы пишете небольшой макрос для собственного использования, скорее всего, так оно и есть. Но стоит вашему проекту хоть немного вырасти, методы поиска и устранения ошибок могут оказаться очень кстати.
Если вы встретитесь с ошибками и затрудняетесь определить, где именно они происходят — попробуйте выполнить программу в пошаговом режиме, используйте встроенные в редактор VBA средства для отладки программ.
8.4. Отладка программ в редакторе VBA
Основной метод отладки — это пошаговое исполнение программы с использованием точек останова (breakpoint).
Чтобы создать в программе точку останова, достаточно щелкнуть мышью в редакторе на серой панели напротив команды, на которой нужно остановить выполнение программы. Там появится большая красная точка (рис. 8.1.) — здесь программа будет остановлена в процессе выполнения. Строка будет подсвечена красным цветом.
Рис.
8.1.
Точка останова в программе
Следует понимать, что строка, подсвеченная при остановке программы еще не выполнялась — редактор указывает на нее, как бы говоря «Эта строка будет выполнена следующей».
Таких точек останова можно установить столько, сколько нужно — на тех строках программы, где вы подозреваете возникновение ошибки. Чтобы убрать точку останова, щелкните по ней мышью.
Установить точку останова в строку можно, выделив строку и выбрав команду Debug o Toggle Breakpoint (Отладка o Установить точку останова). Для удаления всех точек останова из программы можно воспользоваться командой Debug o Clear All Breakpoints (Отладка o Очистить точки останова).
Вместо точек останова, расставленных мышью или из меню, можно использовать оператор Stop. Он останавливает работу программы и переводит ее в режим отладки.
Так же режим отладки можно включить, нажав во время работы программы комбинацию клавиш Ctr + Pause Break и нажав в появившемся окне кнопку Debug. Текущая строка будет выделена желтым цветом, напротив нее будет установлена желтая стрелочка. Однако такой способ обычно не позволяет точно «попасть» в то место программы, где находится предполагаемая ошибка (рис. 8.2.).
Рис.
8.2.
Программа, остановленная во время выполнения
Чтобы запущенная программа останавливалась на каждой строке, можно запустить ее в режиме Step Into командой Debug o Step Into (Отладка o Пошаговое исполнение). Того же эффекта можно достичь, нажав клавишу F8 на клавиатуре.
Когда программа остановлена, вы можете выполнить следующие действия
- Просмотреть значения переменных, наведя на них указатель мыши. Например, на рис. 8.3. вы видите всплывающее окно, которое содержит значение переменной.
Рис.
8.3.
Значение переменной во всплывающем окне - Продолжить выполнение программы в режиме Step Into — выбрав соответствующую команду меню или нажав клавишу F8.
- Отредактировать программу.
- Продолжить исполнение программы в обычном режиме командой Run o Sub/User Form (Запустить o Процедуру/Форму), нажатием клавиши F5 или соответствующей кнопкой на панели инструментов
- Остановить выполнение программы командой Run o Reset (Запустить o Перезагрузка) или кнопкой на панели инструментов
- Воспользоваться другими средствами отладки — окнами Immediate, Locals, Watch.
Помимо режима Step Into существуют следующие режимы отладки, доступные в меню Debug.
- Step Over (Перейти на следующую строку). Эта команда полезна при отладке программы, содержащей вызовы уже отлаженных процедур. В режиме Step Over отладчик не входит в процедуру, выполняя ее без отладки, после чего переходит на следующую строку. Например, вы выполняете программу в режиме Step Into и при очередной остановке видите, что подсвеченная строка содержит вызов процедуры, которую отлаживать не нужно. Вы выбираете команду Step Over, процедура выполняется без остановок на каждой ее строке, после чего следующая остановка происходит на строке вашей программы, которая идет за вызовом процедуры.
- Step Out (Выполнить процедуру) — эта команда позволяет выполнить текущую процедуру (например, вызванную из кода основной программы при обычной отладке ) без остановки в каждой строке. Следующая остановка будет сделана на строке, которая следует за вызовом процедуры в основном тексте программы.
- Run To Cursor (Выполнить до курсора) — выполняет программу до позиции, на которой установлен курсор. Аналогично установке одиночной точки останова.
Помимо точек останова существуют и другие средства отладки. Они полезны при проверке значений переменных (ведь если переменных достаточно много — проверка их значений в коде программы может превратиться в утомительное и непродуктивное занятие), свойств объектов, которые могут вызвать ошибки и в других случаях.
Логическая ошибка (программирование)
-
Эта статья о логической ошибке в программировании. Об ошибках, связанных с нарушением логической правильности рассуждений, см. Логическая ошибка.В программировании логической ошибкой называется баг, который приводит к некорректной работе программы, но не к краху программы.
Логические ошибки могут происходить как в компиляторах, так и в интерпретаторах. В отличие от синтаксических ошибок, программы с логическим изъяном являются правильными программами, хотя в большинстве случаев ведут себя не так, как задумано первоначально.
Существование данного вида ошибок связано с неправильными действиями на этапе принятия решений.
В С++ логической ошибкой также называется особое исключение (logic_exception).
Источник: Википедия
Связанные понятия
Код ошибки (англ. Error code) в программировании, — это номер (или сочетания буквы и номера), который соответствует конкретной проблеме в работе программы. Коды ошибок используются для идентификации неправильной работы аппаратного и программного обеспечения, неверного ввода данных пользователем без обработки возникающей при этом исключительной ситуации в коде программы, хотя иногда коды ошибок используются в сочетании с обработкой исключений. Коды ошибок не следует путать с кодами возврата, хотя…
Перегрузка операторов в программировании — один из способов реализации полиморфизма, заключающийся в возможности одновременного существования в одной области видимости нескольких различных вариантов применения оператора, имеющих одно и то же имя, но различающихся типами параметров, к которым они применяются.
Программи́рование ме́тодом копи́рования-вста́вки, C&P-программирование или копипаста в программировании — процесс создания программного кода с часто повторяющимися частями, произведёнными операциями копировать-вставить (англ. copy-paste). Обычно этот термин используется в уничижительном понимании для обозначения недостаточных навыков компьютерного программирования или отсутствия выразительной среды разработки, в которой, как правило, можно использовать подключаемые библиотеки.
Стратегия вычисления (англ. evaluation strategy) — правила семантики языка программирования, определяющие, когда следует вычислять аргументы функции (метода, операции, отношения), и какие значения следует передавать. Например, стратегия «вызов-при-упоминании/передача-по-ссылке» (call-by-worth/pass-by-reference) диктует, что аргументы должны быть вычислены перед выполнением тела вызываемой функции, и что ей должны быть предоставлены две возможности в отношении каждого аргумента: чтение текущего значения…
Опера́тор ветвле́ния (усло́вная инстру́кция, усло́вный опера́тор) — оператор, конструкция языка программирования, обеспечивающая выполнение определённой команды (набора команд) только при условии истинности некоторого логического выражения, либо выполнение одной из нескольких команд (наборов команд) в зависимости от значения некоторого выражения.
Подробнее: Ветвление (программирование)
Упоминания в литературе
Слишком абстрактные, слишком широкие формулировки гипотез допускают потом «игру в наперсток», многочисленные манипуляции, которые затрудняют осознание истинного положения дел – что гипотеза не получает подтверждения. В результате в работах встречаются логические ошибки, примеры фактического опровержения которых во множестве представлены в данной книге. Самые частые ошибки, встречающиеся в статьях, содержащих адаптационистские объяснения, следующие.
• целостность поведения (behavioral integrity): система ведет себя, как предполагается, и не допускает логических ошибок;
Пожалуй, главным в процессе мышления каждого человека, если тот, конечно, не желает допускать логических ошибок, является знание и правильное применение логических законов.
Ясно, что сведение всего смысла объективности к его «слабой» компоненте было просто следствием «дуалистической эпистемологии», которую мы рассматривали в предшествующих разделах. Именно благодаря этому предрассудку упомянутое отождествление стало казаться не логической ошибкой (а именно принятие необходимого условия за достаточное), а просто следствием фактического обстоятельства (т. е. невозможности когда-либо выполнить требование «сильного» смысла объективности). Если теперь рассмотреть конкретно науку, мы можем сказать, что в истории современной науки можно увидеть нечто вроде резюме общей разноголосицы, которую мы попытались изобразить при анализе понятия «объективное знание». Начиная с Галилея, наука рассматривалась как поставщик объективного знания в сильном смысле, поскольку, как мы видели, предполагалось, что она имеет дело непосредственно с некоторыми внутренними (пусть уже и не существенными) свойствами вещей. С очень немногочисленными исключениями это убеждение оставалось глубоко укорененным в умах практикующих ученых, так же как и в общераспространенном здравом смысле, по крайней мере до конца XIX столетия. А тем временем философия, с другой стороны, совершила переход от античной концепции сильной объективности к новой концепции слабой объективности. К концу XIX в., а еще более с началом XX в. нечто подобное утрате веры в возможность «постичь объект» произошло и в науке, повторяя в некотором смысле ситуацию, имевшую место в философии в период от Галилея до Канта[70].
Можно привести и другие, столь же мудреные и ненадежные определения. В чем их недостаток? Они для определения интеллекта используют сложные понятия. Это грубая логическая ошибка. Хорошее определение может свести понятие к более общему с добавлением достаточного уточняющего признака. Например, белая береза – это дерево с белой корой. При условии что понятие «дерево» уже определено и больше деревьев с белой корой не существует, это определение вполне удачно. Причем черную березу (а такая тоже есть) мы в определении отмели, так как ограничились именно белой.
Связанные понятия (продолжение)
Продолжение (англ. continuation) представляет состояние программы в определённый момент, которое может быть сохранено и использовано для перехода в это состояние. Продолжения содержат всю информацию, чтобы продолжить выполнения программы с определённой точки. Состояние глобальных переменных обычно не сохраняется, однако для функциональных языков это несущественно (выборочное сохранение/восстановление значений глобальных объектов в Scheme достигается отдельным механизмом dynamic-wind). Продолжения…
Си (англ. C) — компилируемый статически типизированный язык программирования общего назначения, разработанный в 1969—1973 годах сотрудником Bell Labs Деннисом Ритчи как развитие языка Би. Первоначально был разработан для реализации операционной системы UNIX, но впоследствии был перенесён на множество других платформ. Согласно дизайну языка, его конструкции близко сопоставляются типичным машинным инструкциям, благодаря чему он нашёл применение в проектах, для которых был свойственен язык ассемблера…
Структу́рное программи́рование — парадигма программирования, в основе которой лежит представление программы в виде иерархической структуры блоков.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Правило одного определения (One Definition Rule, ODR) — один из основных принципов языка программирования C++. Назначение ODR состоит в том, чтобы в программе не могло появиться два или более конфликтующих между собой определения одной и той же сущности (типа данных, переменной, функции, объекта, шаблона). Если это правило соблюдено, программа ведёт себя так, как будто в ней существует только одно, общее определение любой сущности. Нарушение ODR, если оно не будет обнаружено при компиляции и сборке…
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Обнаруже́ние оши́бок в технике связи — действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) — процедура восстановления информации после чтения её из устройства хранения или канала связи.
Пролог (англ. Prolog) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться…
Терна́рная усло́вная опера́ция (от лат. ternarius — «тройной») (обычно записывается как ?:) — во многих языках программирования операция, возвращающая свой второй или третий операнд в зависимости от значения логического выражения, заданного первым операндом. Как можно судить из названия, тернарная операция принимает всего три указанных операнда. Аналогом тернарной условной операции в математической логике и булевой алгебре является условная дизъюнкция, которая записывается в виде и реализует алгоритм…
Синтаксический сахар (англ. syntactic sugar) в языке программирования — это синтаксические возможности, применение которых не влияет на поведение программы, но делает использование языка более удобным для человека.
Гейзенбаг (англ. heisenbug) — жаргонный термин, используемый в программировании для описания программной ошибки, которая исчезает или меняет свои свойства при попытке её обнаружения. Это слово, в отличие от слова «баг» (англ. bug), в русском языке используется редко. Не полностью идентичный, но достаточно близкий по значению русскоязычный термин — «плавающая ошибка», жаргонный термин — «глюк».
Программирование методом подбора, который иногда называют «случайным программированием», это подход к разработке программного обеспечения, при котором программист решает проблему итеративно, делая небольшие изменения (перестановки) и тестирование каждого изменения, чтобы увидеть, ведёт ли оно себя, как хотелось бы.
Поиск клонов в исходном коде — анализ исходного кода с помощью различных алгоритмов, с целью обнаружения клонированного кода, который может иметь вредоносный характер.
Функциона́льное программи́рование — раздел дискретной математики и парадигма программирования, в которой процесс вычисления трактуется как вычисление значений функций в математическом понимании последних (в отличие от функций как подпрограмм в процедурном программировании).
Пара́метр в программировании — принятый функцией аргумент. Термин «аргумент» подразумевает, что конкретно и какой конкретной функции было передано, а параметр — в каком качестве функция применила это принятое. То есть вызывающий код передает аргумент в параметр, который определен в члене спецификации функции.
Вариативный шаблон или шаблон с переменным числом аргументов в программировании — шаблон с заранее неизвестным числом аргументов, которые формируют один или несколько так называемых пакетов параметров.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
В области математики и теории информации линейный код — это важный тип блокового кода, использующийся в схемах определения и коррекции ошибок. Линейные коды, по сравнению с другими кодами, позволяют реализовывать более эффективные алгоритмы кодирования и декодирования информации.
Подробнее: Линейный код
Полный перебор (или метод «грубой силы», англ. brute force) — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
В приведённой ниже таблице отмечено наличие или отсутствие тех или иных возможностей в некоторых популярных сегодня языках программирования. Столбцы упорядочены по алфавиту. Если возможность в языке недоступна напрямую, но может быть эмулирована с помощью других средств, то в таблице отмечено, что её нет.
Подробнее: Сравнение языков программирования
Мультиме́тод (англ. multimethod) или мно́жественная диспетчериза́ция (англ. multiple dispatch) — механизм, позволяющий выбрать одну из нескольких функций в зависимости от динамических типов или значений аргументов. Представляет собой расширение одиночной диспетчеризации (виртуальных функций), где выбор метода осуществляется динамически на основе фактического типа объекта, для которого этот метод был вызван. Множественная диспетчеризация обобщает динамическую диспетчеризацию для случаев с двумя или…
Самопримени́мость в теории алгоритмов — свойство алгоритма успешно завершаться на данных, представляющих собой формальную запись этого же алгоритма.
В информатике типобезопасность (англ. type safety) языка программирования означает безопасность (или надёжность) его системы типов.
Перебор по словарю (англ. dictionary attack) — атака на систему защиты, использующая метод полного перебора (англ. brute-force) предполагаемых паролей, используемых для аутентификации, осуществляемого путём последовательного пересмотра всех слов (паролей в чистом виде или их зашифрованных образов) определённого вида и длины из словаря с целью последующего взлома системы и получения доступа к секретной информации.
Конкатенативный язык программирования — это язык программирования, основанный на том, что конкатенация двух фрагментов кода выражает их композицию. В таком языке широко используется неявное указание аргументов функций (см. бесточечное программирование), новые функции определяются как композиция функций, а вместо аппликации применяется конкатенация. Этому подходу противопоставляется аппликативное программирование.
Обобщённое программирование (англ. generic programming) — парадигма программирования, заключающаяся в таком описании данных и алгоритмов, которое можно применять к различным типам данных, не меняя само это описание. В том или ином виде поддерживается разными языками программирования. Возможности обобщённого программирования впервые появились в виде дженериков (обобщённых функций) в 1970-х годах в языках Клу и Ада, затем в виде параметрического полиморфизма в ML и его потомках, а затем во многих объектно-ориентированных…
Неопределённое поведение (англ. undefined behaviour, в ряде источников непредсказуемое поведение) — свойство некоторых языков программирования (наиболее заметно в Си), программных библиотек и аппаратного обеспечения в определённых маргинальных ситуациях выдавать результат, зависящий от реализации компилятора (библиотеки, микросхемы) и случайных факторов наподобие состояния памяти или сработавшего прерывания. Другими словами, спецификация не определяет поведение языка (библиотеки, микросхемы) в любых…
Перегрузка процедур и функций — возможность использования одноимённых подпрограмм: процедур или функций в языках программирования.
Присва́ивание — механизм связывания в программировании, позволяющий динамически изменять связи имён объектов данных (как правило, переменных) с их значениями. Строго говоря, изменение значений является побочным эффектом операции присваивания, и во многих современных языках программирования сама операция также возвращает некоторый результат (как правило, копию присвоенного значения). На физическом уровне результат операции присвоения состоит в проведении записи и перезаписи ячеек памяти или регистров…
Сравнение с обменом (англ. compare and set, compare and swap, CAS) — атомарная инструкция, сравнивающая значение в памяти с одним из аргументов, и в случае успеха записывающая второй аргумент в память. Поддерживается в семействах процессоров x86, Itanium, Sparc и других.
Хеширование (англ. hashing – «превращать в фарш», «мешанина») — преобразование массива входных данных произвольной длины в (выходную) битовую строку установленной длины, выполняемое определённым алгоритмом. Функция, воплощающая алгоритм и выполняющая преобразование, называется «хеш-функцией» или «функцией свёртки». Исходные данные называются входным массивом, «ключом» или «сообщением». Результат преобразования (выходные данные) называется «хешем», «хеш-кодом», «хеш-суммой», «сводкой сообщения».
Каламбур типизации является прямым нарушением типобезопасности. Традиционно возможность построить каламбур типизации связывается со слабой типизацией, но и некоторые сильно типизированные языки или их реализации предоставляют такие возможности (как правило, используя в связанных с ними идентификаторах слова unsafe или unchecked). Сторонники типобезопасности утверждают, что «необходимость» каламбуров типизации является мифом.
Синтаксическая ошибка может возникать при некорректном вводе уравнения в калькулятор. Это может быть вызвано, например, путём открытия скобок без их закрытия, или, реже, вводом нескольких десятичных разделителей подряд.
Блокировка с двойной проверкой (англ. Double checked locking) — параллельный шаблон проектирования, предназначающийся для уменьшения накладных расходов, связанных с получением блокировки. Сначала проверяется условие блокировки без какой-либо синхронизации; поток делает попытку получить блокировку, только если результат проверки говорит о том, что получение блокировки необходимо.
Автома́тное программи́рование — это парадигма программирования, при использовании которой программа или её фрагмент осмысливается как модель какого-либо формального автомата. Известна также и другая «парадигма автоматного программирования, состоящая в представлении сущностей со сложным поведением в виде автоматизированных объектов управления, каждый из которых представляет собой объект управления и автомат». При этом о программе, как в автоматическом управлении, предлагается думать как о системе…
Фортра́н (англ. Fortran) — первый язык программирования высокого уровня, получивший практическое применение, имеющий транслятор и испытавший дальнейшее развитие. Создан в период с 1954 по 1957 год группой программистов под руководством Джона Бэкуса в корпорации IBM. Название Fortran является сокращением от FORmula TRANslator (переводчик формул). Фортран широко используется в первую очередь для научных и инженерных вычислений. Одно из преимуществ современного Фортрана — большое количество написанных…
Виртуальный метод (виртуальная функция) — в объектно-ориентированном программировании метод (функция) класса, который может быть переопределён в классах-наследниках так, что конкретная реализация метода для вызова будет определяться во время исполнения. Таким образом, программисту необязательно знать точный тип объекта для работы с ним через виртуальные методы: достаточно лишь знать, что объект принадлежит классу или наследнику класса, в котором объявлен метод. Одним из переводов слова virtual с…
Криптографические хеш-функции — это выделенный класс хеш-функций, который имеет определенные свойства, делающие его пригодным для использования в криптографии.
Подробнее: Криптографическая хеш-функция
Код с запашко́м (код с душко́м, дурно пахнущий код англ. code smell) — термин, обозначающий код с признаками (запахами) проблем в системе. Был введён Кентом Беком и использован Мартином Фаулером в его книге Рефакторинг. Улучшение существующего кода.
Программная ошибка (жарг. баг) — означает ошибку в программе или в системе, из-за которой программа выдает неожиданное поведение и, как следствие, результат. Большинство программных ошибок возникают из-за ошибок, допущенных разработчиками программы в её исходном коде, либо в её дизайне. Также некоторые ошибки возникают из-за некорректной работы инструментов разработчика, например из-за компилятора, вырабатывающего некорректный код. Программу, которая содержит большое число ошибок, серьёзно ограничивающие…
Обучение с ошибками в кольце (англ. Ring learning with errors, RLWE)— это вычислительная задача, которая была сформулирована как вариант более общей задачи обучения с ошибками (с англ. LWE), с целью использовать преимущество дополнительной алгебраической структуры (т.е. кольца многочленов) из теории решеток, что дало возможность повысить и расширить возможности шифрования тех криптографических приложений, которые ранее основывались на LWE. Задача RLWE стала основой новых криптографических алгоритмов…
Ошибка на единицу или ошибка неучтённой единицы (англ. off-by-one error) — логическая ошибка в алгоритме, включающая в частности дискретный вариант нарушения граничных условий.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Ссылочная прозрачность и ссылочная непрозрачность — это свойства частей компьютерных программ. Выражение называется ссылочно прозрачным, если его можно заменить соответствующим значением без изменения поведения программы. В результате вычисления ссылочно прозрачной функции дает одно и то же значение для одних и тех же аргументов. Такие функции называются чистыми функциями.