Измерения
в геодезии рассматриваются с двух точек
зрения: количественной, выражающей
числовое значение измеренной величины,
и качественной, характеризующей ее
точность.
Из практики
известно, что даже при самой тщательной
и аккуратной работе многократные
(повторные) измерения не дают одинаковых
результатов. Это указывает на то, что
получаемые результаты не являются
точным значением измеряемой величины,
а несколько отклоняются от него. Значение
отклонения характеризует точность
измерений. Если обозначить истинное
значение измеряемой величины X, а
результат измерения l, то истинная ошибка
измерения ∆ определится из выражения
∆ = l — X(5.1)
Любая
ошибка результата измерения есть
следствие действия многих факторов,
каждый из которых порождает свою
погрешность.
Ошибки,
происходящие от отдельных факторов,
называют элементарными. Ошибки результата
измерения являются алгебраической
суммой элементарных ошибок.
Изучением
основных свойств и закономерностей
действия ошибок измерений, разработкой
методов получения наиболее точного
значения измеряемой величины и
характеристик ее точности занимается
теория ошибок измерений. Излагаемые в
ней методы решения задач позволяют
рассчитать необходимую точность
предстоящих измерений и на основании
этого расчета выбрать соответствующие
приборы и технологию измерений, а после
производства измерений получить
наилучшие их результаты и оценить их
точность. Математической основой теории
ошибок измерений являются теория
вероятностей и математическая статистика.
Ошибки
измерений разделяют по двум признакам:
характеру их действия и источнику
происхождения.
По характеру
действия ошибки бывают грубые,
систематические и случайные.
Грубыми
называют ошибки, превосходящие по
абсолютной величине некоторый,
установленный для данных условий
измерений, предел. Они происходят в
большинстве случаев в результате
промахов и просчетов исполнителя. Такие
ошибки обнаруживают повторными
измерениями, а результаты, содержащие
их, бракуют и заменяют новыми. Ошибки,
которые по знаку или величине однообразно
повторяются в многократных измерениях
(например в длине линии из-за неточного
знания длины мерного прибора, из-за
неточности уложения мерного прибора в
створе этой линии и т. п.), называют
систематическими. Влияние систематических
ошибок стремятся исключить из результатов
измерений или ослабить тщательной
проверкой измерительных приборов,
применением соответствующей методики
измерений, а также введением поправок
в результаты измерений.
Случайные
ошибки — это ошибки, размер и влияние
которых на каждый отдельный результат
измерения остается неизвестным. Величину
и знак случайной ошибки заранее установить
нельзя. Однако теоретические исследования
и многолетний опыт измерений показывают,
что случайные ошибки подчинены
определенным вероятностным закономерностям,
изучение которых дает возможность
получить наиболее надежный результат
и оценить его точность.
По источнику
происхождения различают ошибки приборов,
внешние и личные.
Ошибки
приборов обусловлены их несовершенством,
например, ошибка в угле, измеренном
теодолитом, ось вращения которого
неточно приведена в вертикальное
положение.
Внешние
ошибки происходят из-за влияния внешней
среды, в которой протекают измерения,
например, ошибка в отсчете по нивелирной
рейке из-за изменения температуры
воздуха на пути светового луча (рефракция)
или нагрева нивелира солнечными лучами.
Личные
ошибки связаны с особенностями
наблюдателя, например, разные наблюдатели
по-разному наводят зрительную трубу на
визирную цель.
Так
как грубые ошибки должны быть исключены
из результатов измерений, а систематические
исключены или ослаблены до минимально
допустимого предела, то проектирование
измерений с необходимой точностью,
оценку результатов выполненных измерений
производят, основываясь на свойствах
случайных ошибок.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Измерения. Классификация ошибок измерений
В физике и в других науках весьма часто приходится производить измерения различных величин (например, длины, массы, времени, температуры, электрического сопротивления и т. д.).
Измерение – процесс нахождения значения физической величины с помощью специальных технических средств – измерительных приборов.
Измерительным прибором называют устройство, с помощью которого осуществляется сравнение измеряемой величины с физической величиной того же рода, принятой за единицу измерения.
Различают прямые и косвенные методы измерений.
Прямые методы измерений – методы, при которых значения определяемых величин находятся непосредственным сравнением измеряемого объекта с единицей измерения (эталоном). Например, измеряемая линейкой длина какого-либо тела сравнивается с единицей длины – метром, измеряемая весами масса тела сравнивается с единицей массы – килограммом и т. д. Таким образом, в результате прямого измерения определяемая величина получается сразу, непосредственно.
Косвенные методы измерений – методы, при которых значения определяемых величин вычисляются по результатам прямых измерений других величин, с которыми они связаны известной функциональной зависимостью. Например, определение длины окружности по результатам измерения диаметра или определение объема тела по результатам измерения его линейных размеров.
Ввиду несовершенства измерительных приборов, наших органов чувств, влияния внешних воздействий на измерительную аппаратуру и объект измерения, а также прочих факторов все измерения можно производить только с известной степенью точности; поэтому результаты измерений дают не истинное значение измеряемой величины, а лишь приближенное. Если, например, вес тела определен с точностью до 0,1 мг, то это значит, что найденный вес отличается от истинного веса тела менее чем на 0,1 мг.
Точность измерений – характеристика качества измерений, отражающая близость результатов измерений к истинному значению измеряемой величины.
Чем меньше погрешности измерений, тем больше точность измерений. Точность измерений зависит от используемых при измерениях прибо- ров и от общих методов измерений. Совершенно бесполезно стремиться при измерениях в данных условиях перейти за этот предел точности. Можно свести к минимуму воздействие причин, уменьшающих точность измерений, но полностью избавиться от них невозможно, то есть при измерениях всегда совершаются более или менее значительные ошибки (погрешности). Для увеличения точности окончательного результата всякое физическое измерение необходимо делать не один, а несколько раз при одинаковых условиях опыта.
В результате i-го измерения (i – номер измерения) величины «Х”, получается приближенное число Хi, отличающееся от истинного значения Хист на некоторую величину ∆Хi = |Хi – Х|, которая является допущенной ошибкой или, другими словами, погрешностью. Истинная погрешность нам не известна, так как мы не знаем истинного значения измеряемой величины. Истинное значение измеряемой физической величины лежит в интервале
Хi – ∆Х < Хi – ∆Х < Хi + ∆Х
где Хi – значение величины Х, полученное при измерении (то есть измеренное значение); ∆Х – абсолютная погрешность определения величины Х.
Абсолютная ошибка (погрешность) измерения ∆Х – это абсолютная величина разности между истинным значением измеряемой величины Хист и результатом измерения Xi: ∆Х = |Хист – Xi|.
Относительная ошибка (погрешность) измерения δ (характеризующая точность измерения) численно равна отношению абсолютной погрешности измерения ∆Х к истинному значению измеряемой величины Хист (часто выражается в процентах): δ = (∆Х / Хист) • 100% .
Погрешности или ошибки измерений можно разделить на три класса: систематические, случайные и грубые (промахи).
Систематической называют такую погрешность, которая остается постоянной или закономерно (согласно некоторой функциональной зависимости) изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, недостатков принятого метода измерений, каких-либо упущений экспериментатора, влияния внешних условий или дефекта самого объекта измерения.
В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но порядок которой можно учесть. Систематические погрешности либо увеличивают, либо уменьшают результаты измерения, то есть эти погрешности характеризуются постоянным знаком. Например, если при взвешивании одна из гирь имеет массу на 0,01 г большую, чем указано на ней, то найденное значение массы тела будет завышенным на эту величину, сколько бы измерений ни производилось. Иногда систематические ошибки можно учесть или устранить, иногда этого сделать нельзя. Например, к неустранимым ошибкам относятся ошибки приборов, о которых мы можем лишь сказать, что они не превышают определенной величины.
Случайными ошибками называют ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту. Появление случайных ошибок обусловлено действием многих разнообразных и неконтролируемых причин.
Например, при взвешивании весами этими причинами могут быть колебания воздуха, осевшие пылинки, разное трение в левом и правом подвесе чашек и др. Случайные ошибки проявляются в том, что, произведя измерения одной и той же величины Х в одинаковых условиях опыта, мы получаем несколько различающихся значений: Х1, Х2, Х3,…, Хi,…, Хn, где Хi – результат i-го измерения. Установить какую-либо закономерность между результатами не удается, поэтому результат i — го измерения Х считается случайной величиной. Случайные ошибки могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.
Промахи и грубые погрешности – чрезмерно большие ошибки, явно искажающие результат измерения. Этот класс погрешностей вызван чаще всего неправильными действиями экспериментатора (например, из-за невнимательности вместо показания прибора «212» записывается совершенно другое число – «221»). Измерения, содержащие промахи и грубые погрешности, следует отбрасывать.
Измерения могут быть проведены с точки зрения их точности техническим и лабораторным методами.
При использовании технических методов измерение проводится один раз. В этом случае удовлетворяются такой точностью, при которой погрешность не превышает некоторого определенного, заранее заданного значения, определяемого погрешностью примененной измерительной аппаратурой.
При лабораторных методах измерений требуется более точно указать значение измеряемой величины, чем это допускает ее однократное измерение техническим методом. В этом случае делают несколько измерений и вычисляют среднее арифметическое полученных значений, которое принимают за наиболее достоверное (истинное) значение измеряемой величины. Затем производят оценку точности результата измерений (учет случайных погрешностей).
Из возможности проведения измерений двумя методами вытекает и существование двух методов оценки точности измерений: технического и лабораторного.
Добавил: Basilio (28.08.2010) | Категория: Механика
Просмотров: 42067 | Загрузок: 0
| Рейтинг: 5.0/3 |
Теги: эксперимент, измерение, ошибка, классификация
На чтение 9 мин Просмотров 2к. Опубликовано
Теория ошибок измерений изучает свойства ошибок и законы их распределения, методы обработки измерений с учетом их ошибок, а также способы вычисления числовых характеристик точности измерений. При многократных измерениях одной и той же величины результаты измерений получаются неодинаковыми. Этот очевидный факт говорит о том, что измерения сопровождаются разными по величине и по знаку ошибками. Задача теории ошибок – нахождение наиболее надежного значения измеренной величины, оценка точности результатов измерений и их функций и установление допусков, ограничивающих использование результатов обработки измерений.
По своей природе ошибки бывают грубые, систематические и случайные.
Грубые ошибки являются результатом промахов и просчетов. Их можно избежать при внимательном и аккуратном отношении к работе и организации надежного полевого контроля измерений. В теории ошибок грубые ошибки не изучаются.
Систематические ошибки имеют определенный источник, направление и величину. Если источник систематической ошибки обнаружен и изучен, то можно получить формулу влияния этой ошибки на результат измерения и затем ввести в него поправку; это исключит влияние систематической ошибки. Пока источник какой-либо систематической ошибки не найден, приходится считать ее случайной ошибкой, ухудшающей качество измерений.
Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то-есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок.
Случайная истинная ошибка измерения Δ – это разность между измеренным значением величины l и ее истинным значением X:
(1.25)
Свойства случайных ошибок. Случайные ошибки подчиняются некоторым закономерностям:
1. при данных условиях измерений абсолютные значения случайных ошибок не превосходят некоторого предела; если какая-либо ошибка выходит за этот предел, она считается грубой,
2. положительные и отрицательные случайные ошибки равновозможны,
3. среднее арифметическое случайных ошибок стремится к нулю при неограниченном возрастании числа измерений. Третье свойство случайных ошибок записывается так:
(1.26)
4. малые по абсолютной величине случайные ошибки встречаются чаще, чем большие.
Кроме того, во всей массе случайных ошибок не должно быть явных закономерностей ни по знаку, ни по величине. Если закономерность обнаруживается, значит здесь сказывается влияние какой-то систематической ошибки.
Средняя квадратическая ошибка одного измерения. Для оценки точности измерений можно применять разные критерии; в геодезии таким критерием является средняя квадратическая ошибка. Это понятие было введено Гауссом; он же разработал основные положения теории ошибок. Средняя квадратическая ошибка одного измерения обозначается буквой m и вычисляется по формуле Гаусса:
(1.27)
где: ;
n – количество измерений одной величины.
Средняя квадратическая ошибка очень чувствительна к большим по абсолютной величине ошибкам, так как каждая ошибка возводится в квадрат. В то же время она является устойчивым критерием для оценки точности даже при небольшом количество измерений; начиная с некоторого n дальнейшее увеличение числа измерений почти не изменяет значения m; доказано, что уже при n = 8 значение m получается достаточно надежным.
Предельная ошибка ряда измерений обозначается Δпред; она обычно принимается равной 3*m при теоретических исследованиях и 2*m или 2.5*m при практических измерениях. Считается, что из тысячи измерений только три ошибки могут достигать или немного превосходить значение Δпред = 3*m.
Отношение mx/X называется средней квадратической относительной ошибкой; для некоторых видов измерений относительная ошибка более наглядна, чем m. Относительная ошибка выражается дробью с числителем, равным 1, например, mx/X = 1/10 000.
Средняя квадратическая ошибка функции измеренных величин. Выведем формулу средней квадратической ошибки функции нескольких аргументов произвольного вида:
F = f( X, Y, Z … ), (1.28)
здесь: X, Y, Z … – истинные значения аргументов,
F – истинное значение функции.
В результате измерений получены измеренные значения аргументов lX, lY, lZ, при этом:
(1.29)
где ΔX, ΔY, ΔZ – случайные истинные ошибки измерения аргументов.
Функцию F можно выразить через измеренные значения аргуметов и их истинные ошибки:
Разложим функцию F в ряд Тейлора, ограничившись первой степенью малых приращений ΔX, ΔY, ΔZ:
(1.30)
Разность является случайной истинной ошибкой функции с противоположным знаком, поэтому:
(1.31)
Если выполнить n измерений аргументов X, Y, Z, то можно записать n уравнений вида (1.31). Возведем все эти уравнения в квадрат и сложим их; суммарное уравнение разделим на n и получим
В силу третьего свойства случайных ошибок члены, содержащие произведения случайных ошибок, будут незначительными по величине, и их можно не учитывать; таким образом,
(1.32)
Как частные случаи формулы (1.32) можно написать выражения для средней квадратической ошибки некоторых функций:
Если функция имеет вид произведения нескольких аргументов,
F = x * y * z,
то для нее можно записать выражение относительной ошибки функции:
(1.33)
которое в некоторых случаях оказывается более удобным, чем формула (1.32).
Принцип равных влияний. В геодезии часто приходится определять средние квадратические ошибки аргументов по заданной средней квадратической ошибке функции. Если аргумент всего один, то решение задачи не представляет трудности. Если число аргументов t больше одного, то возникает задача нахождения t неизвестных из одного уравнения, которую можно решить, применяя принцип равных влияний. Согласно этому принципу все слагаемые правой части формулы (1.32) или (1.33) считаются равными между собой.
Арифметическая середина. Пусть имеется n измерений одной величины X, то-есть,
(1.34)
Сложим эти равенства, суммарное уравнение разделим на n и получим:
(1.35)
Величина (1.36)
называется средним арифметическим или простой арифметической серединой. Запишем (1.35) в виде
по третьему свойству ошибок (1.26) можно написать:
что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению измеряемой величины. При ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины.
Запишем формулу (1.36) в виде
и подсчитаем среднюю квадратическую ошибку арифметической середины, которая обозначается буквой M. Согласно формуле (1.32) напишем:
или
Но ml1 = ml2 = … = mln= m по условию задачи, так как величина X измеряется при одних и тех же условиях. Тогда в квадратных скобках будет n * m2, одно n сократится и в итоге получим:
M2 = m2/n
или
(1.37)
то-есть, средняя квадратическая ошибка арифметической середины в корень из n раз меньше ошибки одного измерения.
Вычисление средней квадратической ошибки по уклонениям от арифметической середины. Формулу Гаусса (1.27) применяют лишь в теоретических выкладках и при исследованиях приборов и методов измерений, когда известно истинное значение измеряемой величины. На практике оно, как правило, неизвестно, и оценку точности выполняют по уклонениям от арифметической середины.
Пусть имеется ряд равноточных измерений величины X:
l1, l2 , …, ln .
Вычислим арифметическую середину X0 = [1]/n и образуем разности:
(1.38)
Сложим все разности и получим [l] – n * X0 = [V]. По определению арифметической середины n * X0 = [l], поэтому:
[V] = 0. (1.39)
Величины V называют вероятнейшими ошибками измерений; именно по их значениям и вычисляют на практике среднюю квадратическую ошибку одного измерения, используя для этого формулу Бесселя:
(1.40)
Приведем вывод этой формулы. Образуем разности случайных истинных ошибок измерений Δ и вероятнейших ошибок V:
(1.41)
Разность (X0 – X) равна истинной ошибке арифметической середины; обозначим ее Δ0 и перепишем уравнения (1.41):
(1.42)
Возведем все уравнения (1.42) в квадрат, сложим их и получим:
.
Второе слагаемое в правой части этого выражения равно нулю по свойству (1.39), следовательно,
.
Разделим это уравнение на n и учтя, что [Δ2]/n =m2, получим:
(1.43)
Заменим истинную ошибку арифметической середины Δ0 ее средней квадратической ошибкой ; такая замена практически не изменит правой части формулы (1.43). Итак,
,
откуда ;
после перенесения (n-1) в правую часть и извлечения квадратного корня получается формула Бесселя (1.40).
Для вычисления средней квадратической ошибки арифметической середины на основании (1.37) получается формула:
(1.44)
Веса измерений. Измерения бывают равноточные и неравноточные. Например, один и тот же угол можно измерить точным или техническим теодолитом, и результаты таких измерений будут неравноточными. Или один и тот же угол можно измерить разным количеством приемов; результаты тоже будут неравноточными. Понятно, что средние квадратические ошибки неравноточных измерений будут неодинаковы. Из опыта известно, что измерение, выполненное с большей точностью (с меньшей ошибкой), заслуживает большего доверия.
Вес измерения – это условное число, характеризующее надежность измерения, степень его доверия; вес обозначается буквой p. Значение веса измерения получают по формуле:
p = C/m2 (1.45)
где C – в общем случае произвольное положительное число.
При неравноточных измерениях одной величины наиболее надежное ее значение получают по формуле средневесовой арифметической середины:
(1.46)
или X0 = [l*p] / [p] .
Ошибку измерения, вес которого равен 1, называют средней квадратической ошибкой единицы веса; она обозначается буквой m. Из формулы (1.45) получаем
откуда (1.47)
то-есть, за число C принимают квадрат ошибки единицы веса.
Подсчитаем вес P средневесовой арифметической середины. По определению веса имеем:
(1.48)
Согласно (1.46) и (1.32) напишем:
Подставим сюда вместо mli2 их выражения через вес m2 = C/p , тогда:
Подставим это выражение в формулу (1.48) и получим,
P = [p], (1.49)
то-есть, вес средневесовой арифметической середины равен сумме весов отдельных измерений.
В случае равноточных измерений, когда веса всех измерений одинаковы и равны единице, формула (1.49) принимает вид:
P = n. (1.50)
При обработке больших групп измерений (при уравнивании геодезических построений по МНК) вычисляются значение ошибки единицы веса, веса измерений и других элементов после уравнивания, а ошибка любого уравненного элемента подсчитывается по формуле:
(1.51)
где pi – вес i-того элемента.