Скачать материал
Скачать материал
Рабочие листы
к вашим урокам
Скачать
Краткое описание документа:
Большинство учеников 6 класса испытывает затруднения при решении уравненй. В данном методическом материале собраны способы решений уравнений, а также описаны метод проб и ошибок и метод перебора. Последние методы редко разбирают на уроках, но с их помощью можно решить множество задач, в том числе олимпиадных.
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 363 271 материал в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Материал подходит для УМК
Другие материалы
Урок по теме»Решение уравнений»
- Учебник: «Математика (в 2 частях)», Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
- Тема: 42. Решение уравнений
- 19.08.2019
- 232
- 1
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
-
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
-
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
-
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
-
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
-
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
-
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
-
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
-
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
-
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
-
Настоящий материал опубликован пользователем Лапикова Марина Владимировна. Инфоурок является
информационным посредником и предоставляет пользователям возможность размещать на сайте
методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайтЕсли Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
сайта, Вы можете оставить жалобу на материал.Удалить материал
-
- На сайте: 6 лет и 9 месяцев
- Подписчики: 0
- Всего просмотров: 5436
-
Всего материалов:
4
AcademicMathematicsNCERTClass 7
Trial and Error
If you mean, solving an equation by trial and error method then:
Substituting different values of the variable and checking the equality of LHS and RHS in an equation is the trial and error method.
Let us solve the equation $4x + 5 = 17$.
We start to substitute different values of $x$.
The value for which both the sides are balanced is the required solution.
For example If we put $x = 1$ in the equation $4(1) + 5 = 9$ ≠ 17.
So let us try another value of $x,
x = 3,
=> 4(3) + 5 = 12 + 5= 17 = 17$ or
LHS = RHS.
Hence we have solved the equation by trial and error method and the solution is $x$ = 3.
Tutorialspoint
Simply Easy Learning
Updated on: 10-Oct-2022
409 Views
- Related Articles
- Solve the equation by trial and error method $2p+4=10$
- The Role of Trial and Error in Data Analysis
- Solve the following equations by trial and error method:$(i).\ 5p+2=17$$(ii).\ 3m-14=4$
- How trial balance is prepared by using balances and totals method?
- What is adjusted trial balance?
- What is unadjusted trial balance?
- What is trial balance in accounting?
- In trial and error method (SIMPLE EQUATIONS) is it compulsory to try and then find the answer or we can find the answer in the first try?
- How trial balance is prepared by using the totals method?
- Explain how trial balance is prepared by using the balances method
- Method Overloading and null error in Java
- Prepare trial balance using total and balance method for the given data
- What is Error Detection?
- What is Error Correction?
- What is Parallax error ?
Kickstart Your Career
Get certified by completing the course
Get Started
Advertisements
Как решить задачу с помощью метода проб и ошибок
Метод проб и ошибок — один из самых простых и эффективных способов решения задач. Суть метода заключается в том, что вы пробуете различные варианты решения до тех пор, пока не найдете наилучшее решение.
Когда использовать метод проб и ошибок
Метод проб и ошибок подходит для решения задач, где:
- Вы не знаете точного решения задачи
- Возможно несколько вариантов решения
- Ответ не может быть найден аналитически
Такой подход особенно эффективен, когда отсутствует явный алгоритм решения задачи, а необходимо найти самый оптимальный вариант решения.
Шаги решения задачи методом проб и ошибок
Шаги решения задачи с помощью метода проб и ошибок следующие:
- Определить возможные варианты решения задачи
- Протестировать каждый вариант решения
- Оценить каждый из вариантов решения и выбрать наиболее оптимальный
Пример решения задачи методом проб и ошибок
Допустим, у нас есть задача найти наибольший общий делитель (НОД) двух чисел. Не будем использовать формулу для нахождения НОД, а попробуем методом проб и ошибок.
Шаг 1: Определить возможные варианты решения задачи. В этом случае, мы можем попробовать делить каждое число на все числа от 1 до самого числа.
Шаг 2: Протестировать каждый вариант решения. Для каждого числа мы будем делить оба числа на это число и проверять, делится ли число без остатка. Если делится без остатка, то это число может быть НОД.
Шаг 3: Оценить каждый из вариантов решения и выбрать наиболее оптимальный. Мы сравниваем все возможные НОД, которые мы нашли на шаге 2, и выбираем наибольшее.
В данном примере мы использовали метод проб и ошибок для нахождения НОД двух чисел. Метод проб и ошибок — это простой, но эффективный подход к решению задач, который может быть использован для выполения широкого круга задач.
24
Международный университет
научно-технического
творчества и развития
Неалгоритмические
методы решения задач
Конспект
лекций
Преподаватели
— Герасимов О.М.
Захаров А.Н.
Санкт-Петербург
1996 г.
Народ о МПиО:
Пословицы: Семь раз
примерь, один раз отрежь.
Песни: Если долго
мучиться, что-нибудь получится. Сделать
хотел грозу, а получил козу, сделать
хотел утюг, — слон получился вдруг.
Сказки: Репка (несколько
попыток уборки урожая), Курочка Ряба
(несколько попыток разбить яйцо), Три
медведя (несколько попыток выбрать
стул, похлебку, кровать), Лиса, заяц и
петух (несколько попыток выгнать лису),
Сказка о попе и работнике его Балде
(несколько попыток чертей победить
Балду), Сказка о царе Салтане (несколько
попыток угодить царю), Сказка о рыбаке
и рыбке (несколько попыток рыбалки).
1. Примеры решения задач
из разных областей техники с помощью
МПиО:
Конструктор
ЗИЛа И.Г.Шаров, самобытный
инженер-изобретатель, прекрасно
рисовал, сочинял хорошую музыку, писал
стихи:
Это пишется и рвется,
Это корчится в корзине.
Это трудно, как в
пустыне
От колодца до колодца…
(Захарченко В.Д. Это Вы
можете. Приглашение к творчеству. М.,
«Молодая гвардия», 1989, с. 174).
1720 |
Пылеуловители
В сознании засела 000.23130.321000 А |
1830 |
История разработки
Любой химик со школы 000.22720.321000 МПиО. |
1910 |
Многие измельчительные
Взрывы, движение
Решение — использовать 000.23100.321000 МПиО |
2053 |
Многочисленые попытки 000.23130.321000 МПиО |
2476 |
Долго мучались при 000.23130.321000 МПиО |
3297 |
До тех пор
Подобный прием привел С.Лем. 130.20000.321000 Подтверждение |
— осада Трои, деревянный
конь ахейцев (карт. № 675);
0675 |
Ахейцам, осаждавшим 000.22720.321000 МПиО |
—
случайно удалось добиться растяжения
частиц дробящегося материала (карт. №
679);
0679 |
Максимальное
Однажды на молокозаводе 000.22410.321000 МПиО |
—
защита автомобильной фары от загрязнений
(карт. № 666);
0666 |
При 000.23340.321000 МПиО |
1518 |
Самоочищающаяся фара
Анализ известных
А если не допускать 000.23340.32100 МПиО: |
—
способ дробления горных пород ударным
способом (карт. № 661);
0661 |
Отбойный молоток —
С.Кишкашев перебрал 000.23110.321000 МПиО в действии. ЗРТС |
1.1. Новая личина МПиО:
—
Т.Эдисон, создание НИИ (карт. № 676);
0676 |
Т.Эдисон в своих 000.22420.321000 МПиО |
—
математическое моделирование и компьютер
— современный антураж МПиО (карт. №
855).
0855 |
Моделирование на ЭВМ 000.22420.322410 Прием |
—
команда из клуба “ЧГК” может быть
городской службой решения задач (карт.
№ 2163).
2163 |
Команда «знатоков» 000.23000.311000 МПиО |
1.2. Задачи, которые
решают с помощью метода проб и ошибок:
Как
доказать способность бетонного сооружения
выдержать падение реактивного
самолета? Для решения этого важного
вопроса, речь идет о куполах АЭС, хранилищ
радиоактивных и отравляющих веществ,
на опытном полигоне в одном из штатов
США бросают на таран «Фантомы»,
которые стоят десятки миллионов долларов.
Дорого, но дешевле Чернобыля. (МИ
0126, «Изобретатель и рационализатор»,
1/91).
2. МПиО — исторически
сложившийся метод решения задач:
— процесс выделения
человека из мира животных начался
примерно 2 млн. лет назад: охота,
рыболовство, собирательство. Применение
подручных средств (камень, палка), потом
— производство примитивных орудий
(заостренная палка-копалка, более острый
камень). Длившееся тысячелетиями
совершенствование заостренной палки
привело к созданию мотыги, лопаты,
плуга…
— Т.Эдисон — 10 тыс. опытов
для создания щелочного аккумулятора,
50 тыс. опытов в поисках материала для
нити лампы накаливания.
— Ч.Гудьир — многочисленные
опыты с целью повысить стойкость
натурального каучука;
—
О.К.Антонов — создание оперения для
“Антея”3
—
С.С.Брюхоненко, изобретение аппарата
“искусственное сердце-легкое”, 1975 г.
Самое
сложное — напитать кровь кислородом.
Поверхность бронхов легких человека,
где кровь обогащается кислородом, равна
почти Красной площади! Как добиться
такой площади соприкосновения в
небольшом аппарате? Цель казалась
недостижимой.
Однажды
я, как всегда, утром брился в ванной. И
вдруг у меня мелькнула мысль: нашел,
нашел… На эту мысль меня натолкнула
пена, падавшая с помазка на раковину
умывальника. Надо просто вспенить кровь
с помощью кислорода! Именно это открытие
оказалось решающим в конструировании
аппарата.
(Захарченко
В.Д. Это Вы можете. Приглашение к
творчеству. М., «Молодая гвардия»,
1989, с. 43).
В.Ф.Гудов, изобретатель
метода механического сшивания кровеносных
сосудов, переключился на использование
ферромагнетиков для лечения тяжелых
заболеваний, например, рака…
Нужно,
чтобы принимаемое лекарство действовало
лишь на больной орган. В.Ф.Гудов поставил
перед собой необыкновенно сложную
задачу: доставить препарат непосредственно
к опухоли.
Необходимый
транспорт — кровь. Но как удержать
лекарство в нужной точке? У Гудова
сработала инженерная интуиция: осадить
лекарство на тончайшую ферромагнитную
пыль, подмешать к кровотоку, задержать
магнитом в нужном месте.
Мысль
работает дальше: разогревать ферромагнетик
до нужных 43,5оС
— губительная температура для раковых
клеток, а для клеток тела человека —
45,5оС.
Как не перейти границу? Введение
термометра — очень грубо и сложно.
Случайно помощь пришла из астрофизики:
температуру можно измерить с помощью
замера радиоизлучения тела.
Итак,
ЭВМ следит за перемещением ферромагнитных
частиц в организме, нагревает их до
нужной температуры, удерживает
температуру нужное время…
Десятки
ученых создают ЭВМ, многие НИИ разрабатывают
элементы схемы…
(Захарченко
В.Д. Это Вы можете. Приглашение к
творчеству. М., «Молодая гвардия»,
1989, с. 48).
3. О современных задачах
и их решениях — сложные задачи, задач
много, времени на решение мало. Требования
к образованию:
—
приобретение навыков постоянного
самообразования и умения творчески
мыслить (карт. № 889);
0889 |
Быстрый 000.22200.332000
Научить человека см. |
— надо
готовить людей к неопределенному
будущему (карт. № 1736).
1736 |
|
4. “Творцы”: рецепты
творчества, пояснения к процессу.
—
творческий процесс — это непрерывная
работа, непрерывные неудачные попытки…
(карт. № 1694);
1694 |
П.С.Александров: 000.22000.321000 Сколько |
— об
интуиции и озарении (карт. № 664);
0664 |
Творческое вдохновение 135.22300.330000 |
0663 |
|
0662 |
|
4.1. Методы, упоминаемые
М.Трингом (Как изобретать?, М., Мир, 1980,
с. 100):
а) Насилие на собой —
устанавливаются жесткие сроки, и
изобретатель заставляет себя упорно
размышлять над задачей, пока не появится
возможное решение (Т.Эдисон запирался
в маленьком буфете и просиживал там
многое часы, размышляя над лампой
накаливания);
б) “Высиживание” — на
листе бумаги пишется условие задачи и
вносятся заметки, поправки и пр. Процесс
может длиться неделями и месяцами, пока
не забрезжит свет и не появится идея
решения. Большое подспорье — техника
“случайного поиска” (поиск 1 книги по
интересующему вопросу, а затем просмотр
книг, стоящих на полке рядом!).
в) Синектика или
“мозговой штурм” (для поиска оригинальных
решений трудных и важных задач).
г) Систематический
метод — составляется таблица или список
всех возможных решений, которые затем
поочередно обдумываются. Вариант способа
— проводятся всевозможные лабораторные
эксперименты без ясной цели (!), но в
надежде на то, что какое-то наблюдение
даст ключ к решению задачи.
5. Чему учить новых
творцов? И как?
Важнейшую
роль в создании новой техники по-прежнему
играют индивидуальные таланты, способные
так или иначе предвидеть будущее и
опирающиеся на цельное восприятие
окружающего мира. Имено эти качества
помогают, по-видимому, преодолеть
«психологический пресс» и обнаружить
верные решения в безбрежном океане
«пустышек» и псевдоизобретений.
Весьма
вероятно, что такие таланты, роднящие
инженеров-новаторов с художниками,
могут быть выявлены с детства и развиты
особыми игровыми методами…
(Силин
А.А. На тропе в будущее. Размышления о
судьбе изобретений и открытий. М.,
«Знание», 1989, с. 205.)
Для
подготовки новых Дедалов требуется
какой-то совсем новый тип учебных задач.
Специфика инженерного творчества
далеко не раскрыта, и задачи, предлагаемые
будущим кулибиным и эдисонам, нередко
бьют мимо цели.
(Силин
А.А. На тропе в будущее. Размышления о
судьбе изобретений и открытий. М.,
«Знание», 1989, с. 146.)
Принятие
решений в системах управления на всех
уровнях народного хозяйства часто
связано с дефицитом времени: лучше
принять не самое хорошее решение, но
в требуемый срок…
(Системный
анализ в экономике и организации
производства. Уч. для ВУЗов. Л.,
«Политехника», 1991, с. 67)
Основные
направления повышения квалификации
специалистов — создателей эффективных
технологий:
—
непрерывность обучения;
—
обучение экономическим знаниям;
—
обучение психологии общения;
—
экологическое образование;
—
гуманизация научно-технического
образования;
—
обучение работе с информацией (ЭС, ЭВМ);
—
обучение инженерному творчеству.
(Александров
Л.В. и др. Роль изобретений в разработке
эффективных технологий. М., ВНИИПИ,
1991, с. 78)
6. Почему плох МПиО :
6.1. Для решения сложной
задачи, а именно такие задачи надо
решать, трудно сделать большое количество
проб:
Число проб |
Уровень |
Комментарий |
До 10 проб |
1 |
От 80 до 90% всех решаемых относятся |
До 100 проб |
2 |
|
До 10 тыс. Проб |
3 |
|
До 1 млн. Проб |
4 |
|
Свыше 1 млн. проб |
5 |
6.2. Нет гарантии, что
решение лежит на линии развития данной
системы.
6.3. Нет гарантии, что
решение является наилучшим.
6.4. Трудность, а чаще
всего невозможность перейти к решению
задачи, относящейся к другой области
техники.
6.5. Нет способов описания
систем с помощью специального языка
(для выявления возможной общности задач
и способов решения).
6.6. Неалгоритмичность
работы (работа в 1 шаг).
6.7. Нет системы подсказок
из уже решенных задач.
6.8.
Неучет свойств человеческой психики
вообще, психики конкретного человека
в частности. Источник ПИ — экономия
энергии при работе мозга (карт. № 650).
6.9. МПиО не развивается.
Хотя, если быть точным, есть его
модификации, но принцип остался прежним:
раскачка психики…
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #