2.6.1
Коэффициент детерминации.
Для оценки качества построенной модели
регрессии можно использовать коэффициент
детерминации
.
Коэффициент детерминации может быть
вычислен по формуле:
.
С другой стороны,
для парной линейной регрессии верно
равенство:
.
При
близости значения коэффициента
детерминации к 1 говорят, что уравнение
регрессии статистически значимо и
фактор
оказывает сильное воздействие на
результирующий признак.
При анализе модели
парной линейной регрессии по значению
коэффициента детерминации можно сделать
следующие предварительные выводы о
качестве модели:
-
Если
,
то будем считать, что использование
регрессионной модели для аппроксимации
зависимости между переменнымиистатистически необоснованно. -
Если
,
то использование регрессионной модели
возможно, но после оценивания параметров
модель подлежит дальнейшему многостороннему
статистическому анализу. -
Если
,
то будем. считать, что у нас есть основания
для использования регрессионной модели
при анализе поведения переменной.
2.6.2 Средняя ошибка аппроксимации.
Другой
показатель качества построенной модели
–– среднее относительное отклонение
расчетных значений от фактических или
средняя
ошибка аппроксимации:
.
Построенное
уравнение регрессии считается
удовлетворительным, если значение
не превышает 10% – 12% .
3. Пример.
По
21 региону страны изучается зависимость
розничной продажи телевизоров ()
от среднедушевого денежного дохода в
месяц ().
Номер региона |
Среднедушевой |
Объем |
1 |
2 |
28 |
2 |
2,4 |
21,3 |
3 |
2,1 |
21 |
4 |
2,6 |
23,3 |
5 |
1,7 |
15,8 |
6 |
2,5 |
21,9 |
7 |
2,4 |
20 |
8 |
2,6 |
22 |
9 |
2,8 |
23,9 |
10 |
2,6 |
26 |
11 |
2,6 |
24,6 |
12 |
2,5 |
21 |
13 |
2,9 |
27 |
14 |
2,6 |
21 |
15 |
2,2 |
24 |
16 |
2,6 |
24 |
17 |
3,3 |
31,9 |
18 |
3,9 |
33 |
19 |
4 |
35,4 |
20 |
3,7 |
34 |
21 |
3,4 |
31 |
Необходимо
найти зависимость, наилучшим образом
отражающую связь между переменными
и
.
Рассмотрим вопрос
применения модели линейной регрессии
в этой задаче.
Построим
поле корреляции, т.е. нанесем исходные
данные на координатную плоскость. Для
этого воспользуемся, например,
возможностями MS
Excel
2003.
Подготовим таблицу
исходных данных.
Нанесем на
координатную плоскость исходные данные:
Характер
расположения точек на графике дает нам
основание предположить, что искомая
функция регрессии линейная:
.
Для оценки коэффициентов уравнения
регрессии необходимо составить и решить
систему нормальных уравнений ( ).
По исходным данным
рассчитываем необходимые суммы:
Номер региона |
|
|
|
|
|
1 |
2 |
28 |
56 |
4 |
784 |
2 |
2,4 |
21,3 |
51,12 |
5,76 |
453,69 |
3 |
2,1 |
21 |
44,1 |
4,41 |
441 |
4 |
2,6 |
23,3 |
60,58 |
6,76 |
542,89 |
5 |
1,7 |
15,8 |
26,86 |
2,89 |
249,64 |
6 |
2,5 |
21,9 |
54,75 |
6,25 |
479,61 |
7 |
2,4 |
20 |
48 |
5,76 |
400 |
8 |
2,6 |
22 |
57,2 |
6,76 |
484 |
9 |
2,8 |
23,9 |
66,92 |
7,84 |
571,21 |
10 |
2,6 |
26 |
67,6 |
6,76 |
676 |
11 |
2,6 |
24,6 |
63,96 |
6,76 |
605,16 |
12 |
2,5 |
21 |
52,5 |
6,25 |
441 |
13 |
2,9 |
27 |
78,3 |
8,41 |
729 |
14 |
2,6 |
21 |
54,6 |
6,76 |
441 |
15 |
2,2 |
24 |
52,8 |
4,84 |
576 |
16 |
2,6 |
24 |
62,4 |
6,76 |
576 |
17 |
3,3 |
31,9 |
105,27 |
10,89 |
1017,61 |
18 |
3,9 |
33 |
128,7 |
15,21 |
1089 |
19 |
4 |
35,4 |
141,6 |
16 |
1253,16 |
20 |
3,7 |
34 |
125,8 |
13,69 |
1156 |
21 |
3,4 |
31 |
105,4 |
11,56 |
961 |
Сумма |
57,4 |
530,1 |
1504,46 |
164,32 |
13926,97 |
Составляем систему
уравнений:
Имеем систему
линейных алгебраических уравнений,
которая может быть решена, например, по
формулам Крамера. Для этого вычислим
следующие определители:
Тогда, согласно
теореме Крамера,
Получаем уравнение
регрессии:
Величина
коэффициента регрессии
означает, что увеличение среднедушевого
месячного дохода на 1 тыс. руб. приведет
к увеличение объема розничной продажи
в среднем на 7 540 телевизоров. Коэффициентв данном случае не имеет содержательной
интерпретации.
Оценим тесноту
линейной связи между переменными и
качество построенной модели в целом.
Для оценки тесноты
линейной зависимости рассчитаем
коэффициент детерминации. Для этого
необходимо провести ряд дополнительных
вычислений.
Прежде
всего, найдем выборочное
среднее
по формуле:
.
Для рассматриваемого
примера имеем:
Теперь произведем
расчет остальных вспомогательных
величин:
Номер региона |
|
|
|
|
|
|
|
1 |
2 |
28 |
19,76 |
8,24 |
67,89 |
2,76 |
7,60 |
2 |
2,4 |
21,3 |
22,75 |
-1,45 |
2,11 |
-3,94 |
15,55 |
3 |
2,1 |
21 |
20,51 |
0,49 |
0,24 |
-4,24 |
18,00 |
4 |
2,6 |
23,3 |
24,25 |
-0,95 |
0,90 |
-1,94 |
3,77 |
5 |
1,7 |
15,8 |
17,52 |
-1,72 |
2,95 |
-9,44 |
89,17 |
6 |
2,5 |
21,9 |
23,50 |
-1,60 |
2,56 |
-3,34 |
11,17 |
7 |
2,4 |
20 |
22,75 |
-2,75 |
7,57 |
-5,24 |
27,49 |
8 |
2,6 |
22 |
24,25 |
-2,25 |
5,04 |
-3,24 |
10,52 |
9 |
2,8 |
23,9 |
25,74 |
-1,84 |
3,39 |
-1,34 |
1,80 |
10 |
2,6 |
26 |
24,25 |
1,75 |
3,08 |
0,76 |
0,57 |
11 |
2,6 |
24,6 |
24,25 |
0,35 |
0,13 |
-0,64 |
0,41 |
12 |
2,5 |
21 |
23,50 |
-2,50 |
6,24 |
-4,24 |
18,00 |
13 |
2,9 |
27 |
26,49 |
0,51 |
0,26 |
1,76 |
3,09 |
14 |
2,6 |
21 |
24,25 |
-3,25 |
10,54 |
-4,24 |
18,00 |
15 |
2,2 |
24 |
21,26 |
2,74 |
7,53 |
-1,24 |
1,54 |
16 |
2,6 |
24 |
24,25 |
-0,25 |
0,06 |
-1,24 |
1,54 |
17 |
3,3 |
31,9 |
29,48 |
2,42 |
5,86 |
6,66 |
44,32 |
18 |
3,9 |
33 |
33,96 |
-0,96 |
0,93 |
7,76 |
60,17 |
19 |
4 |
35,4 |
34,71 |
0,69 |
0,47 |
10,16 |
103,17 |
20 |
3,7 |
34 |
32,47 |
1,53 |
2,34 |
8,76 |
76,69 |
21 |
3,4 |
31 |
30,23 |
0,77 |
0,60 |
5,76 |
33,14 |
Сумма |
57,4 |
530,1 |
130,68 |
545,73 |
Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбцы «»
и– это столбцы, так называемых, «остатков»:
разностей между исходными значениями,и рассчитанными с помощью уравнения
регрессии,
а также их квадратов, а в последних двух
столбцах – разности между исходными
значениями,
выборочным средним,
а также их квадраты.
Для
вычисления коэффициента детерминации
воспользуемся формулой ( ):
Значение
коэффициента детерминации позволяет
сделать предварительный вывод о том,
что у нас имеются основания использовать
модель линейной регрессии в данной
задаче, поскольку
.
Построим
линию регрессии на корреляционном поле,
для чего добавим на координатной
плоскости точки, соответствующие
уравнению регрессии ().
Нанесем
теперь уравнение регрессии на диаграмму,
используя специальные средства Excel.
Для этого необходимо выделить правой
кнопкой мыши исходные точки и выбрать
опцию Добавить
линию тренда.
В
открывшемся меню Параметры
линии тренда
выбрать Линейную
аппроксимацию.
Далее поставить флажок напротив полей
Показывать
уравнение на диаграмме
и Поместить
на диаграмму величину достоверности
аппроксимации .
Нажав
на ОК, получаем еще одну прямую на
диаграмме, которая совпадает с построенными
ранее точками линии регрессии:
Сплошная
черная линия на диаграмме – это линия
регрессии, рассчитанная средствами
Excel.
Линия регрессии, построенная нами ранее,
совпала с данной линией регрессии.
Нетрудно убедиться, что уравнение
регрессии и коэффициент детерминации
тоже совпадают с полученными ранее
вручную.
Найдем
теперь среднюю ошибку аппроксимации
для оценки погрешности модели. Для этого
нам потребуется вычислить еще ряд
промежуточных величин:
Номер региона |
|
|
|
|
|
1 |
2 |
28 |
19,76 |
8,24 |
0,29 |
2 |
2,4 |
21,3 |
22,75 |
-1,45 |
0,07 |
3 |
2,1 |
21 |
20,51 |
0,49 |
0,02 |
4 |
2,6 |
23,3 |
24,25 |
-0,95 |
0,04 |
5 |
1,7 |
15,8 |
17,52 |
-1,72 |
0,11 |
6 |
2,5 |
21,9 |
23,50 |
-1,60 |
0,07 |
7 |
2,4 |
20 |
22,75 |
-2,75 |
0,14 |
8 |
2,6 |
22 |
24,25 |
-2,25 |
0,10 |
9 |
2,8 |
23,9 |
25,74 |
-1,84 |
0,08 |
10 |
2,6 |
26 |
24,25 |
1,75 |
0,07 |
11 |
2,6 |
24,6 |
24,25 |
0,35 |
0,01 |
12 |
2,5 |
21 |
23,50 |
-2,50 |
0,12 |
13 |
2,9 |
27 |
26,49 |
0,51 |
0,02 |
14 |
2,6 |
21 |
24,25 |
-3,25 |
0,15 |
15 |
2,2 |
24 |
21,26 |
2,74 |
0,11 |
16 |
2,6 |
24 |
24,25 |
-0,25 |
0,01 |
17 |
3,3 |
31,9 |
29,48 |
2,42 |
0,08 |
18 |
3,9 |
33 |
33,96 |
-0,97 |
0,03 |
19 |
4 |
35,4 |
34,71 |
0,69 |
0,02 |
20 |
3,7 |
34 |
32,47 |
1,53 |
0,05 |
21 |
3,4 |
31 |
30,23 |
0,77 |
0,02 |
Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбец «»
– это столбец так называемых «остатков»:
разностей между исходными значениями,
и рассчитанными с помощью уравнения
регрессии,и, наконец, последний столбец «»
– это вспомогательный столбец для
вычисления элементов суммы по формуле
( ). Просуммируем теперь элементы
последнего столбца и разделим полученную
сумму на 21 – общее количество исходных
данных:
.
Переведем это
число в проценты и запишем окончательное
выражение для средней ошибки аппроксимации:
.
Итак,
средняя ошибка аппроксимации оказалась
около 8%, что говорит о небольшой
погрешности построенной модели. Данную
модель, с учетом неплохих характеристик
ее качества, вполне можно использовать
для прогноза – одной из основных целей
эконометрического анализа. Предположим,
что среднедушевой месячный доход в
одном из регионов составит 4,1 тыс. руб.
Оценим, каков будет уровень продаж
телевизоров в этом регионе согласно
построенной модели? Для этого необходимо
выбранное значение фактора
подставить в уравнение регрессии (
):
(тыс.
руб.),
т.е. при таком
уровне дохода, розничная продажа
телевизоров составит, в среднем, 35 480
телевизоров.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Коэффициент корреляции
Тесноту (силу) связи изучаемых показателей в предмете эконометрика оценивают с помощью коэффициента корреляции Rxy, который может принимать значения от -1 до +1.
Если Rxy > 0,7 — связь между изучаемыми показателями сильная, можно проводить анализ линейной модели
Если 0,3 < Rxy < 0,7 — связь между показателями умеренная, можно использовать нелинейную модель при отсутствии Rxy > 0,7
Если Rxy < 0,3 — связь слабая, модель строить нельзя
Для нелинейной регрессии используют индекс корреляции (0 < Рху < 1):
Средняя ошибка аппроксимации
Для оценки качества однофакторной модели в эконометрике используют коэффициент детерминации и среднюю ошибку аппроксимации.
Средняя ошибка аппроксимации определяется как среднее отклонение полученных значений от фактических
Допустимая ошибка аппроксимации не должна превышать 10%.
В эконометрике существует понятие среднего коэффициента эластичности Э – который говорит о том, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины.
Пример нахождения коэффициента корреляции
Исходные данные:
Номер региона |
Среднедушевой прожиточный минимум в день одного трудоспособного, руб., |
Среднедневная заработная плата, руб., |
1 |
81 |
124 |
2 |
77 |
131 |
3 |
85 |
146 |
4 |
79 |
139 |
5 |
93 |
143 |
6 |
100 |
159 |
7 |
72 |
135 |
8 |
90 |
152 |
9 |
71 |
127 |
10 |
89 |
154 |
11 |
82 |
127 |
12 |
111 |
162 |
Рассчитаем параметры парной линейной регрессии, составив таблицу
x |
x2 |
y |
xy |
y2 |
|
1 |
81 |
6561 |
124 |
10044 |
15376 |
2 |
77 |
5929 |
131 |
10087 |
17161 |
3 |
85 |
7225 |
146 |
12410 |
21316 |
4 |
79 |
6241 |
139 |
10981 |
19321 |
5 |
93 |
8649 |
143 |
13299 |
20449 |
6 |
100 |
10000 |
159 |
15900 |
25281 |
7 |
72 |
5184 |
135 |
9720 |
18225 |
8 |
90 |
8100 |
152 |
13680 |
23104 |
9 |
71 |
5041 |
127 |
9017 |
16129 |
10 |
89 |
7921 |
154 |
13706 |
23716 |
11 |
82 |
6724 |
127 |
10414 |
16129 |
12 |
111 |
12321 |
162 |
17982 |
26244 |
Среднее |
85,8 |
7491 |
141,6 |
12270,0 |
20204,3 |
Сумма |
1030,0 |
89896 |
1699 |
147240 |
242451 |
σ |
11,13 |
12,59 |
|||
σ2 |
123,97 |
158,41 |
формула расчета дисперсии σ2 приведена здесь.
Коэффициенты уравнения y = a + bx определяются по формуле
Получаем уравнение регрессии: y = 0,947x + 60,279.
Коэффициент уравнения b = 0,947 показывает, что при увеличении среднедушевого прожиточного минимума в день одного трудоспособного на 1 руб. среднедневная заработная плата увеличивается на 0,947 руб.
Коэффициент корреляции рассчитывается по формуле:
Значение коэффициента корреляции более — 0,7, это означает, что связь между среднедушевым прожиточным минимумом в день одного трудоспособного и среднедневной заработной платой сильная.
Коэффициент детерминации равен R2 = 0.838^2 = 0.702
т.е. 70,2% результата объясняется вариацией объясняющей переменной x.
По территориям региона приводятся данные за 200Х г.
Номер региона | Среднедушевой прожиточный минимум в день одного трудоспособного, руб., х | Среднедневная заработная плата, руб., у |
---|---|---|
1 | 78 | 133 |
2 | 82 | 148 |
3 | 87 | 134 |
4 | 79 | 154 |
5 | 89 | 162 |
6 | 106 | 195 |
7 | 67 | 139 |
8 | 88 | 158 |
9 | 73 | 152 |
10 | 87 | 162 |
11 | 76 | 159 |
12 | 115 | 173 |
Задание:
1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.
2. Рассчитайте параметры уравнения линейной регрессии
.
3. Оцените тесноту связи с помощью показателей корреляции и детерминации.
4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
5. Оцените с помощью средней ошибки аппроксимации качество уравнений.
6. Оцените с помощью F-критерия Фишера статистическую надёжность результатов регрессионного моделирования.
7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости .
8. Оцените полученные результаты, выводы оформите в аналитической записке.
Решение:
Решим данную задачу с помощью Excel.
1. Сопоставив имеющиеся данные х и у, например, ранжировав их в порядке возрастания фактора х, можно наблюдать наличие прямой зависимости между признаками, когда увеличение среднедушевого прожиточного минимума увеличивает среднедневную заработную плату. Исходя из этого, можно сделать предположение, что связь между признаками прямая и её можно описать уравнением прямой. Этот же вывод подтверждается и на основе графического анализа.
Чтобы построить поле корреляции можно воспользоваться ППП Excel. Введите исходные данные в последовательности: сначала х, затем у.
Выделите область ячеек, содержащую данные.
Затем выберете: Вставка / Точечная диаграмма / Точечная с маркерами как показано на рисунке 1.
Рисунок 1 Построение поля корреляции
Анализ поля корреляции показывает наличие близкой к прямолинейной зависимости, так как точки расположены практически по прямой линии.
2. Для расчёта параметров уравнения линейной регрессии
воспользуемся встроенной статистической функцией ЛИНЕЙН.
Для этого:
1) Откройте существующий файл, содержащий анализируемые данные;
2) Выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики.
3) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.
4) В окне Категория выберете Статистические, в окне функция – ЛИНЕЙН. Щёлкните по кнопке ОК как показано на Рисунке 2;
Рисунок 2 Диалоговое окно «Мастер функций»
5) Заполните аргументы функции:
Известные значения у – диапазон, содержащий данные результативного признака;
Известные значения х – диапазон, содержащий данные факторного признака;
Константа – логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;
Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.
Щёлкните по кнопке ОК;
Рисунок 3 Диалоговое окно аргументов функции ЛИНЕЙН
6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу <F2>, а затем на комбинацию клавиш <Ctrl>+<Shift>+<Enter>.
Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:
Значение коэффициента b | Значение коэффициента a |
Стандартная ошибка b | Стандартная ошибка a |
Коэффициент детерминации R2 | Стандартная ошибка y |
F-статистика | Число степеней свободы df |
Регрессионная сумма квадратов | Остаточная сумма квадратов |
Рисунок 4 Результат вычисления функции ЛИНЕЙН
Получили уровнение регрессии:
Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.
3. Коэффициент детерминации означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х – среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.
По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .
Связь оценивается как тесная.
4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.
Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:
Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее, и то же самое произведём со значениями у.
Рисунок 5 Расчёт средних значений функции и аргумент
Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.
С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.
Порядок действий следующий:
1) проверьте доступ к Пакету анализа. В главном меню последовательно выберите: Файл/Параметры/Надстройки.
2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.
3) В окне Надстройки установите флажок Пакет анализа, а затем нажмите кнопку ОК.
• Если Пакет анализа отсутствует в списке поля Доступные надстройки, нажмите кнопку Обзор, чтобы выполнить поиск.
• Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да, чтобы установить его.
4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия, а затем нажмите кнопку ОК.
5) Заполните диалоговое окно ввода данных и параметров вывода:
Входной интервал Y – диапазон, содержащий данные результативного признака;
Входной интервал X – диапазон, содержащий данные факторного признака;
Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет;
Константа – ноль – флажок, указывающий на наличие или отсутствие свободного члена в уравнении;
Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона;
6) Новый рабочий лист – можно задать произвольное имя нового листа.
Затем нажмите кнопку ОК.
Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия
Результаты регрессионного анализа для данных задачи представлены на рисунке 7.
Рисунок 7 Результат применения инструмента регрессия
5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.
Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»
Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:
Рисунок 9 Расчёт средней ошибки аппроксимации
Средняя ошибка аппроксимации рассчитывается по формуле:
Качество построенной модели оценивается как хорошее, так как не превышает 8 – 10%.
6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:
Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).
8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.
Выдвигаем гипотезу Н0 о статистически незначимом отличии показателей от нуля:
.
для числа степеней свободы
На рисунке 7 имеются фактические значения t-статистики:
t-критерий для коэффициента корреляции можно рассчитать двумя способами:
I способ:
где – случайная ошибка коэффициента корреляции.
Данные для расчёта возьмём из таблицы на Рисунке 7.
II способ:
Фактические значения t-статистики превосходят табличные значения:
Поэтому гипотеза Н0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.
Доверительный интервал для параметра a определяется как
Для параметра a 95%-ные границы как показано на рисунке 7 составили:
Доверительный интервал для коэффициента регрессии определяется как
Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.
7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:
Тогда прогнозное значение прожиточного минимума составит:
Ошибку прогноза рассчитаем по формуле:
где
Дисперсию посчитаем также с помощью ППП Excel. Для этого:
1) Активизируйте Мастер функций: в главном меню выберете Формулы / Вставить функцию.
2) В окне Категория выберете Статистические, в окне функция – ДИСП.Г. Щёлкните по кнопке ОК.
3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК.
Рисунок 10 Расчёт дисперсии
Получили значение дисперсии
Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.
Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:
Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.
Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2003. – 192 с.: ил.