Интервальное оценивание доверительная вероятность предельная ошибка выборки

Оценка генеральной дисперсии.

Теорема. Выборочная
дисперсия σ
в2
повторной и бесповторной выборок
является смещенной и состоятельной
оценкой генеральной дисперсия
.

Замечание.В процессе
доказательства теоремы получено, что,
т.е. выборочная дисперсия уменьшает
генеральную дисперсию. При замененадопускается систематическая погрешность
в сторону уменьшения. В связи с этим
вводится «исправленная дисперсия»,
которая является несмещенной оценкой.

Пример.Предельная
нагрузка на стальной болтХі,
которая измерялась в лабораторных
условиях, задана как интервальное
статистическое распределение:

Xi,

кг/мм2

4,5-5,5

5,5-6,5

6,5-7,5

7,5-8,5

8,5-9,5

10,5-11,5

11,5-12,5

12,5-13,5

40

32

28

24

20

16

12

8

Определить точечные несмещенные и
состоятельные оценки для
и.

6. Понятие интервального оценивания. Доверительная вероятность и предельная погрешность выборки

Точечная оценка
n
является приближенным значением
неизвестного параметра
и в том случае, когда она несмещенная
(в среднем совпадает с),
состоятельная (приближается кс ростомn)
и эффективная (характеризуется наименьшей
степенью отклонений от)
и при выборке малого объема возможная
значительная разность между оценкой
параметра и параметром, т.е. привести к
грубым ошибкам.

По этой причине, для получения более
точной и достоверной оценки
nпараметра,
используют интервальную оценку параметра.

Интервальной оценкой параметра
называется числовой интервал, который с заданной вероятностьюнакрывает неизвестное значение параметра
.

Границы интервала
его длина, определяются по выборочным
данным и потому являются случайными
величинами, в отличие от параметра— величины неслучайной и в связи с этим
правильнее говорить, что интервал
«накрывает», а не «содержит» значение.

Интервальная оценка определяется двумя
числами — концами интервала.

Интервал
называют
доверительным (его
концы –
доверительными границами),
а вероятность
доверительной вероятностью
или
надежностью оценки.

Длина доверительного интервала
значительно зависит от объема выборки
n (уменьшается
с ростомn)
и от значения доверительной вероятности(увеличивается с приближениемк единице). В большинстве, но не всегда,
доверительный интервал выбирается
симметричным относительно параметра,
т.е..
Метод доверительных интервалов разработал
американский статистик Ю. Нейман на
основании идей Р.Фишера.

Предельной ошибкой выборки
называется наибольшее отклонение ∆
выборочной средней (доли) от генеральной
средней (доли), которое возможно с
заданной доверительной вероятностью
.

Ошибка
является ошибкойрепрезентативностивыборки. Она возникает только вследствие
того, что исследуется не вся генеральная
совокупность, а только ее часть.

Нахождение доверительного интервала для генеральной средней и генеральной доли по большим выборкам.

Построение доверительных интервалов
для параметров генеральных совокупностей
можно осуществить с помощью прямогометода (если исходить из генерального
распределения, откуда как следствие
получать выборочное распределение и
из него распределение статистик), иликосвенногометода, который позволяет
при некоторых общих предположениях
получить асимптотические (приn→∞)
распределения статистик. Рассмотрим
второй метод.

Теорема. Вероятность
того, что отклонение выборочной средней
(доли) от генеральной средней (доли) на
величину, которая не превышает по
абсолютной величиной число ∆>0 равна
:

,где, (2.12)

,где.
(2.13)

Доказательство.

Формулы (2.12) и (2.13) называются формулами
доверительной вероятности для средней
и доли.

Средней квадратической ошибкой
называется среднее квадратическое
отклонение выборочной средней и
выборочной доли собственно случайной
выборки.

Формулы для вычисления
для разных статистик и разных выборок
можно получить из формул 2.14, 2.15, 2.18, 2.19
и они имеют вид:

а) выборка собственно случайная повторная:

для средней –
(2.14)

для доли –
(2.15)

б) выборка собственно случайная без
повторная:

для средней –
(2.16)

для доли –
(2.17)

Замечание.Из рассмотренной
теоремы следует, что доверительные
интервалы для генеральной средней и
генеральной доли находятся по формулам:

,(2.18)

,.
(2.19)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В статистике имеются два подхода к оцениванию неизвестных параметров распределений: точечный и интервальный. В соответствии с точечным оцениванием, которое рассмотрено в предыдущем разделе, указывается лишь точка, около которой находится оцениваемый параметр. Желательно, однако, знать, как далеко может отстоять в действительности этот параметр от возможных реализаций оценок в разных сериях наблюдений.

Ответ на этот вопрос – тоже приближенный – дает другой способ оценивания параметров – интервальный. В соответствии с этим способом оценивания находят интервал, который с вероятностью, близкой к единице, накрывает неизвестное числовое значение параметра.

Понятие интервальной оценки

Точечная оценка является случайной величиной и для возможных реализаций выборки принимает значения лишь приближенно равные истинному значению параметра . Чем меньше разность , тем точнее оценка. Таким образом, положительное число , для которого , характеризует точность оценки и называется Ошибкой оценки (или предельной ошибкой).

Доверительной вероятностью (или надежностью) называется вероятность β, с которой осуществляется неравенство , т. е.

. (3.20)

Заменив неравенство равносильным ему двойным неравенством , или , получим

. (3.21)

Интервал , накрывающий с вероятностью β, , неизвестный параметр , называется Доверительным интервалом (или интервальной оценкой), соответствующим доверительной вероятности β.

Случайной величиной является не только оценка , но и ошибка : ее значение зависит от вероятности β и, как правило, от выборки. Поэтому доверительный интервал случаен и выражение (3.21) следует читать так: “Интервал накроет параметр с вероятностью β ”, а не так: “Параметр попадет в интервал с вероятностью β ”.

Смысл доверительного интервала состоит в том, что при многократном повторении выборки объема в относительной доле случаев, равной β, доверительный интервал, соответствующий доверительной вероятности β, накрывает истинное значение оцениваемого параметра. Таким образом, доверительная вероятность β характеризует Надежность доверительного оценивания: чем больше β, тем вероятнее, что реализация доверительного интервала содержит неизвестный параметр.

Следует, однако, иметь в виду, что с ростом доверительной вероятности β в среднем растет длина доверительного интервала, то есть уменьшается точность доверительного оценивания. Выбор доверительной вероятности определяется конкретными условиями; обычно используются значения β, равные 0,90; 0,95; 0,99.

Вероятность (3.22)

называется Уровнем значимости и характеризует относительное число ошибочных заключений в общем числе заключений.

В формуле (3.21) границы доверительного интервала симметричны относительно точечной оценки. Однако не всегда удается построить интервал, обладающий таким свойством. Более общим является следующее определение.

Доверительным интервалом (или Интервальной оценкой) параметра с доверительной вероятностью β, 0< β <1, называется интервал со случайными границами , , накрывающий с вероятностью β неизвестный параметр , т. е.

. (3.23)

Иногда вместо двусторонних доверительных интервалов рассматривают односторонние доверительные интервалы, полагая или .

Построение интервальных оценок

Доверительный интервал задается своими концами и . Однако найти функции и из условия (3.23) невозможно, поскольку закон распределения этих функций зависит от закона распределения ξ и, следовательно, зависит от неизвестного параметра . Используют следующий прием, позволяющий в ряде случаев построить доверительный интервал. Подбирается такая функция , чтобы:

— ее закон распределения был известен и не зависел от неизвестного параметра ;

— функция Была непрерывной и строго монотонной по .

Тогда для любого β можно выбрать два числа и так, чтобы выполнялось равенство

. (3.24)

Отсюда находят и как квантили функции распределения . Границы искомого доверительного интервала выражают через найденные квантили и выборочные данные, используя для этого соотношения, связывающие новую и старую случайные величины.

Если плотность распределения случайной величины Симметрична, то доверительный интервал симметричен относительно точечной оценки , и для нахождения границ доверительного интервала вместо условия (3.23) можно использовать соотношение (3.21).

Основные статистические распределения

Построение разного рода оценок и статистических критериев часто основывается на использовании ряда специальных распределений случайных величин.

Нормальное распределение. Случайная величина имеет нормальное распределение с параметрами и , что обозначается как , если плотность вероятности этой случайной величины имеет вид

. (3 .25)

График плотности вероятности случайной величины, имеющей нормальное распределение, представлен на рисунке 3.5, на котором видно, что максимум функции находится в точке .

Поскольку нормальное распределение подробно изучается в курсе теории вероятностей, напомним свойства нормальной случайной величины, которые будут использоваться в дальнейшем.

Рис. 3.5

1) , .

2) Случайная величина называется Центрированной, если ее математическое ожидание равно нулю. Для того чтобы центрировать случайную величину, надо вычесть из нее математическое ожидание:

.

3) Случайная величина называется Нормированной, если ее дисперсия равна единице, а математическое ожидание равно нулю.

Для того чтобы нормировать случайную величину, надо ее поделить на среднее квадратическое отклонение:

.

Центрированная и нормированная нормальная случайная величина называется стандартной. Таким образом, стандартной будет случайная величина

~ . (3.26)

Вероятность попадания случайной величины в интервал (α,β) вычисляется по формуле

, (3.27)

Где — интеграл вероятности, представляющий собой функцию распределения стандартной нормально распределенной случайной величины. Интеграл вероятности табулирован. Его значения приведены в таблице В Приложения.

Для стандартной нормальной случайной величины и симметричного промежутка формула (3.27) принимает следующий вид:

. (3.28)

Распределение (хи-квадрат). Если , независимые стандартные нормальные случайные величины, то говорят, что случайная величина

(3.29)

Имеет распределение хи-квадрат с степенями свободы, что обозначается как . Графики плотности вероятности для двух значений степени свободы приведены на рис.3.6.

Рис. 3.6

С увеличением числа степеней свободы плотность вероятности стремится к нормальной. При плотность вероятности постоянно убывает, а при имеет единственный максимум , , .

Распределение Стьюдента. Пусть , , , — независимые стандартные нормальные случайные величины. Тогда случайная величина

(3.30)

Имеет распределение Стьюдента с степенями свободы, что обозначается как , при этом

, .

На рис.3.7 приведены кривые стандартного нормального распределения (кривая 1) и плотности распределения Стьюдента (кривая 2).

Рис. 3.7

При плотность распределения Стьюдента стремится к плотности стандартной нормальной случайной величины.

На практике, как правило, используется не плотность вероятности, а Квантиль Распределения. Напомним, что квантилью порядка (или уровня) непрерывной случайной величины называется такое ее значение , которое удовлетворяет равенству ,

Где — функция распределения, а — заданное значение вероятности. Рис.3.8 поясняет понятие квантили порядка .

Рис. 3.8

Следующая теорема устанавливает свойства основных выборочных характеристик, вычисленных по выборке, соответствующих нормальному распределению.

Теорема Фишера. Пусть — случайная выборка из генеральной совокупности , тогда выборочное среднее и несмещенная выборочная дисперсия независимы, и при этом

1) случайная величина имеет распределение ;

2) случайная величина имеет распределение ;

3) случайная величина имеет распределение .

Доказательство теоремы приведено в [2].

Интервальные оценки математического ожидания нормального распределения

Интервальная оценка математического ожидания при известной дисперсии. Построим доверительный интервал для математического ожидания наблюдаемой случайной величины при известной дисперсии по выборке .

Образуем вспомогательную случайную величину , где — точечная оценка математического ожидания . Согласно утверждению 1 теоремы Фишера, случайная величина имеет нормальное распределение и ее функция распределения не зависит от неизвестного параметра.

Доверительный интервал, соответствующий надежности β, определяется из условия (3.20), которое в нашем случае имеет вид

. (3.31)

Неравенства и являются равносильными, то есть для любой выборки они выполняются или не выполняются одновременно, поэтому соотношение (3.31) можно записать в виде

. (3.32)

Поскольку случайная величина имеет стандартное нормальное распределение, вероятность в левой части формулы (3.32) можно выразить через нормальную стандартную функцию распределения по формуле (3.7):

. (3.33)

Приравняв правую часть формулы (3.33) заданной доверительной вероятности β, получим уравнение . Решение этого уравнения является квантилью порядка стандартного нормального распределения и определяется по таблице значений стандартной нормальной функции распределения (см. табл. В Приложения). Предельная ошибка вычисляется по формуле . Таким образом, доверительным интервалом математического ожидания, соответствующим надежности β, является интервал

. (3.34)

Интервальная оценка математического ожидания при неизвестной дисперсии. По выборке из нормального распределения требуется построить доверительный интервал для неизвестного математического ожидания при неизвестной дисперсии D=σ2.

Введем новую случайную величину , где — несмещенная выборочная дисперсия.

Статистика согласно утверждению 3 теоремы Фишера имеет распределение Стьюдента с степенями свободы. Рассуждая аналогично случаю, когда дисперсия известна, получим следующий доверительный интервал для математического ожидания:

, (3.35)

Где — квантиль порядка распределения Стьюдента. В отличие от доверительного интервала (3.34) длина интервала (3.35) случайна и зависит от случайной величины . Поскольку с увеличением числа степеней свободы распределение Стьюдента быстро приближается к нормальному, то для больших выборок интервалы (3.34) и (3.35) практически совпадают.

Пример 3.2. По результатам 9 измерений напряжения батареи получено среднее арифметическое значение 30,6В. Точность вольтметра характеризуется средним квадратическим отклонением 0,2В. Требуется найти доверительный интервал для истинного значения напряжения батареи, соответствующий доверительной вероятности β=0,95, предполагая, что контролируемый признак имеет нормальный закон распределения.

Решение. Для нахождения доверительного интервала воспользуемся формулой (3.34). Квантиль порядка 0,975 найдем по таблице А Приложения: .Поскольку предельная ошибка , то доверительный интервал имеет вид

.

Интервальная оценка дисперсии нормального распределения

Построим доверительный интервал для дисперсии D=σ2 наблюдаемой случайной величины ~ по случайной выборке при неизвестном математическом ожидании.

Введем случайную величину (статистику) , (3.36)

Которая согласно утверждению 2 теоремы Фишера имеет распределение с степенями свободы. Поскольку плотность распределения этого закона асимметрична, доверительный интервал, соответствующий надежности β, найдем из формулы (3.31) в виде:

. (3.37)

Обычно доверительный интервал для случайной величины выбирают так, чтобы вероятность ее попадания за пределы этого интервала влево и вправо была одинаковой ( рис. 3.9):

.

Тогда условия для определения значений и будут иметь вид:

, . (3.38)

По таблице квантилей — распределения ( табл. С Приложения) найдем

, . (3.39)

Рис. 3.9.

Неравенства эквивалентны неравенствам , поэтому

.

Следовательно, интервал

(3.40)

Является доверительным интервалом дисперсии, соответствующим доверительной вероятности β.

Пример 3.3. По данным выборочного контроля найти выборочное математическое ожидание и несмещенную оценку дисперсии нормальной случайной величины ξ. Найти доверительные интервалы для них, соответствующие доверительной вероятности β=0,98.

Таблица 3.4

42

43

45

46

48

51

52

54

1

2

3

6

4

3

1

1

Решение. Выборочное математическое ожидание найдем по формуле (3.14), используя табл.3.4

При .

Несмещенную выборочную дисперсию вычислим по формуле (3.19):

, .

Доверительный интервал для математического ожидания определим по формуле (3.35). При из таблицы А Приложения находим квантиль распределения Стьюдента . Вычислив предельную ошибку ,

Получим искомый доверительный интервал для математического ожидания:

.

Границы доверительного интервала для дисперсии определим по формуле (3.20). По таблице квантилей распределения χ2 (см. табл. С Приложения) при определим квантили:

, .

Подставив эти значения, а также и в формулу (3.20), получим искомый доверительный интервал для дисперсии

.

Вопросы для самопроверки

2. Что называется выборкой?

3. Как произвести оценку выборочного математического ожидания и выборочной дисперсии?

4. Как найти функцию распределения для дискретной случайной величины?

5. Что такое несмещенная оценка параметра?

6. Дайте определение состоятельной оценки.

7. Что такое интервальная оценка?

< Предыдущая   Следующая >

11.2. Оценка результатов выборочного наблюдения

11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ( \mu ).

В теории выборочного наблюдения выведены формулы для определения  \mu , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.

Например, если применяется повторная собственно случайная выборка, то  \mu определяется как:

— при оценивании среднего значения признака;

— если признак альтернативный, и оценивается доля.

При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):

— для среднего значения признака;

— для доли.

Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.

Предельная ошибка выборки (\Delta) равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):

\Delta =t \mu.

Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.

Уровень предельной ошибки выборки зависит от следующих факторов:

  • степени вариации единиц генеральной совокупности;
  • объема выборки;
  • выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
  • уровня доверительной вероятности.

Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.

Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.

Таблица
11.2.

Значение доверительной вероятности P 0,683 0,954 0,997
Значение коэффициента доверия t 1,0 2,0 3,0

Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:

Итак, определение границ генеральной средней и доли состоит из следующих этапов:

Ошибки выборки при различных видах отбора

  1. Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.

Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки ( \mu )

где \sigma^{2} — дисперсия признака в выборочной совокупности.

Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.

Таблица
11.4.

Уровень фондоотдачи, руб. До 1,4 1,4-1,6 1,6-1,8 1,8-2,0 2,0-2,2 2,2 и выше Итого
Количество предприятий 13 15 17 15 16 14 90

В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:

  1. По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:

Таблица
11.5.

Результаты наблюдения Расчетные значения
уровень фондоотдачи, руб., xi количество предприятий, fi середина интервала, xi\xb4 xi\xb4fi xi\xb42fi
До 1,4 13 1,3 16,9 21,97
1,4-1,6 15 1,5 22,5 33,75
1,6-1,8 17 1,7 28,9 49,13
1,8-2,0 15 1,9 28,5 54,15
2,0-2,2 16 2,1 33,6 70,56
2,2 и выше 14 2,3 32,2 74,06
Итого 90 162,6 303,62

Выборочная средняя

Выборочная дисперсия изучаемого признака

  1. Определяем среднюю ошибку повторной случайной выборки

  2. Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.

Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.

  1. Предельная ошибка выборки с вероятностью 0,954 равна

    \delta_{x}= t\mu_{x}= 2*0.035 = 0.07

  2. Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности

Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.

Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле

Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:

\delta_{x}= t\mu_{x}= 2*0.027 = 0.054

Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:

Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.

По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:

  1. рассчитаем выборочную долю.

Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда

m = 60, n = 90, w = m/n = 60 : 90 = 0,667;

  1. рассчитаем дисперсию доли в выборочной совокупности

\sigma_{w}^{2}= w(1 - w) = 0,667(1 - 0,667) = 0,222;

  1. средняя ошибка выборки при использовании повторной схемы отбора составит

Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит

  1. зададим доверительную вероятность и определим предельную ошибку выборки.

При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):

\delta_{x}= t\mu_{x}= 3*0.04 = 0.12

  1. установим границы для генеральной доли с вероятностью 0,997:

Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.

  1. Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда

N1 + N2 + … + Ni + … + Nk = N.

Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки

n1 + n2 + … + ni + … + nk = n.

Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.

Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:

n = ni · Ni/N

где ni — количество извлекаемых единиц для выборки из i-й типической группы;

n — общий объем выборки;

Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;

N — общее количество единиц генеральной совокупности.

Отбор единиц внутри групп происходит в виде случайной или механической выборки.

Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.

Таблица
11.6.
Формулы для расчета средней ошибки выборки (\mu) при использовании типического отбора, пропорционального объему типических групп

Здесь \sigma^{2} — средняя из групповых дисперсий типических групп.

Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:

Таблица
11.7.

Номер курса Всего студентов, чел., Ni Обследовано в результате выборочного наблюдения, чел., ni Среднее число посещений библиотеки одним студентом за семестр, xi Внутригрупповая выборочная дисперсия, \sigma_{i}^{2}
1 650 33 11 6
2 610 31 8 15
3 580 29 5 18
4 360 18 6 24
5 350 17 10 12
Итого 2 550 128 8

Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:

  • общий объем выборочной совокупности:

    n = 2550/130*5 =128 (чел.);

  • количество единиц, отобранных из каждой типической группы:

аналогично для других групп:

n2 = 31 (чел.);

n3 = 29 (чел.);

n4 = 18 (чел.);

n5 = 17 (чел.).

Проведем необходимые расчеты.

  1. Выборочная средняя, исходя из значений средних типических групп, составит:

  2. Средняя из внутригрупповых дисперсий

  3. Средняя ошибка выборки:

    С вероятностью 0,954 находим предельную ошибку выборки:

    \delta_{x} = t\mu_{x} = 2*0.334 = 0.667

  4. Доверительные границы для среднего значения признака в генеральной совокупности:

Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.

  1. Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.

Среднюю ошибку малой выборки определяют по формуле

Предельная ошибка малой выборки:

\delta_{MB}= t\mu_{MB}

Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.

Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.

Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.

  1. Среднее значение признака в выборке равно

  2. Значение среднего квадратического отклонения составляет

  3. Средняя ошибка выборки:

  4. Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
  5. Предельная ошибка выборки:

    \delta_{MB}= t\mu_{MB}=2,365*0,344 = 0,81356 ~ 0,81 (ч)

  6. Доверительный интервал для среднего значения признака в генеральной совокупности:

То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.

11.2.2. Определение численности выборочной совокупности

Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):

  1. вид предполагаемой выборки;
  2. способ отбора (повторный или бесповторный);
  3. выбор оцениваемого параметра (среднего значения признака или доли).

Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.

Таблица
11.8.
Формулы для определения численности выборочной совокупности

Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.

Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.

При использовании повторного случайного отбора следует проверить

При бесповторном случайном отборе потребуется проверить

Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.

Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.

Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.

Понравилась статья? Поделить с друзьями:
  • Интервальная ошибка прогноза
  • Интервал перерыва ошибка
  • Интерактивный прием лови ошибку
  • Интерактивная игра огонь ошибок не прощает
  • Интел чипсет ошибка