Интеграл ошибок лапласа

Функция ошибок

Аргумент функции ошибок erf(x)
Функция ошибок
Дополнительная функция ошибок

Функция ошибок, она же функция Лапласа, он же интеграл вероятности — все это одна и та же сущность, которая выражается функцией

\operatorname {erf}\,x={\frac  {2}{{\sqrt  {\pi }}}}\int \limits _{0}^{x}e^{{-t^{2}}}\,{\mathrm  d}t

и используется в статистике и теории вероятностей.

Функция неэлементарная, то есть её нельзя представить в виде элементарных (тригонометрических и алгебраических) функций.

Для расчета в нашем калькуляторе, мы используем связь с неполной гамма функцией

\operatorname {erf}\,x=1-{\frac  {\Gamma \left({\frac  {1}{2}},x^{2}\right)}{{\sqrt  \pi }}}

Кроме этого мы сможем здесь же вычислить, дополнительную функцию ошибок, обозначаемую {\displaystyle \operatorname {erfc} \,x}  (иногда применяется обозначение {\displaystyle \operatorname {Erf} \,x}) и определяется через функцию ошибок:

\operatorname {erfc}\,x=1-\operatorname {erf}\,x={\frac  {2}{{\sqrt  {\pi }}}}\int \limits _{x}^{{\infty }}e^{{-t^{2}}}\,{\mathrm  d}t

В приницпе это все, что можно сказать о ней.

Калькулятор  высчитывает результат как в вещественном так и комплексном поле.

Замечание: Функция прекрасно работает на всем поле комплексных чисел при условии если аргумент ( фаза) меньше 180 градусов. Это связано с особенностью вычисления этой функции, неполной гамма функции,  интегральной показательной функцией через непрерывные дроби.

Отсюда следует вывод, что при отрицательных вещественных аргументах, функция будет выдавать неверные решения.  Но при всех положительных, а также отрицательных комплексных аргументах функция ошибок выдает верный ответ. 

Несколько примеров:

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Тогда

Т. к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

,

Которая называется Функцией Лапласа Или Интегралом вероятностей.

Значения этой функции при различных значениях Х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-Х) = — Ф(Х);

3) Ф(¥) = 1.

Функцию Лапласа также называют Функцией ошибок и обозначают erf X.

Еще используется Нормированная Функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как Правило трех сигм.

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

Т. е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется Правилом трех сигм.

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание А = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т. к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем:

Пример. Нормально распределенная случайная величина Х задана своими параметрами – А =2 – Математическое ожидание и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вероятности и построить ее график, найти вероятность того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2.

Плотность распределения имеет вид:

Построим график:

Найдем вероятность попадания случайной величины в интервал (1; 3).

Найдем вероятность отклонение случайной величины от математического ожидания на величину, не большую чем 2.

Тот же результат может быть получен с использованием нормированной функции Лапласа.

< Предыдущая   Следующая >

Рассмотрим две функции ─ интеграл ошибок erf (z)и функцию Лапласа

Φ(z):

def

2

z

def

2

z

t2

erf (z) =

et2 dt , Φ(z) =

e

2 dt , z .

(2.20)

π

2π

0

0

Интегрирование в формуле (2.20) проводится по произвольному пути, соединяющему начало координат с точкой t = z . Так как подынтегральные функции являются целыми функциями комплексного переменного t , то

результат интегрирования не зависит от пути и функции erf (z)и Φ(z) являются целыми. Разложение функции erf (z) в ряд по степеням z, сходящийся во всей комплексной плоскости, имеет вид

erf (z)= 2 ((1)k )z2k+1 .

π k=0 k! 2k +1

Упражнение. Получите указанное разложение.

Рис. 2.5

Очевидно, функции erf (z)и Φ(z) являются нечетными, Φ(0)= erf (0)= 0 , Φ(+∞)= erf (+∞)=1, поскольку

+∞et2 dt =

π

(интеграл ЭйлераПуассона).

(2.21)

2

0

Рассматриваемые функции встречаются в различных разделах прикладной математики, в частности в теории вероятностей и теории ошибок, в математической теории теплопроводности и других разделах математической физики.

38

§ 5. ИНТЕГРАЛЫ ФРЕНЕЛЯ

Синус-интегралом Френеля называется функция

z

def

2

S(z)=

sint2dt, z .

(2.22)

π

0

Косинус-интегралом Френеля называется функция

z

def

2

C(z)=

cost2dt, z .

(2.23)

π

0

Интегрирование в формулах (2.22), (2.23) проводится по произвольному пути, соединяющему начало координат с точкой t = z . Так как подынтегральные функции являются целыми функциями комплексного переменного t , то

результат интегрирования не зависит от пути и функции S(z) и C(z) также являются целыми. Их разложения в степенные ряды имеют вид

1

k

5

2

(

)

2

z

C(z)=

z

4k+1 =

z

+ ,

(2.24)

π

5 2

π k=0

(4k +1)(2k )!

(

1 k

z

3

z

7

2

2

S(z)=

)

z4k+3

=

+ .

(2.25)

π

6 7

π k=0

(4k +3)(2k +1)!

3

Упражнение. Получите разложения (2.24), (2.25).

Пусть z = x . Сделаем замену переменной t2 = u

в интегралах (2.22) и

(2.23). Тогда получим представления

2

2

S(x)=

1

xsin

u du

, C(x)=

1

xcosu du .

2π 0

u

2π 0

u

Теорема 1. Имеют место формулы

+∞cos x2dx = +∞sin x2dx =

.

π

(2.26)

2

2

0

0

Доказательство. Прежде всего, установим сходимость интегралов в

формуле (2.26). Сделаем замену переменной x2 =u , тогда

+∞cos x2dx = +∞cos

u

du = 1 cos

u

du + +∞

cos

u

du = I1 + I2 ,

(2.27)

0

0

2 u

0

2

u

1

2

u

+∞sin x2dx =

+∞

sin

u

du = 1 sin

u

du +

+∞

sin

u

du = I3 + I4 .

(2.28)

0

0

2 u

0 2 u

1

2

u

39

Интегралы

I2 , I4 в (2.27), (2.28) имеют вид

+∞f (u)g (u)du . Для

1

исследования сходимости интегралов такого вида нам понадобится признак Дирихле.

Теорема 2 (признак Дирихле). Пусть функция

f (u)

непрерывно

дифференцируема на

[a,+∞), монотонно убывает и

f (u)0

при

u → +∞.

Пусть функция g (u) непрерывна на

[a,+∞)

и

имеет

ограниченную

первообразную. Тогда интеграл

+∞f (u)g (u)du

1

сходится (вообще говоря, условно).

1

В доказательстве теоремы 1 положим

f (u)=

,

g (u)= cosu

или

2

u

g (u)= sinu

f (u)0

соответственно.

Очевидно,

монотонно

при

u → +∞.

Первообразные

cosudu = sinu +C, sinudu = −cosu +C, C = const

являются

ограниченными функциями при

[

)

. Следовательно,

интегралы I

2

, I

4

u 1,+∞

сходятся по признаку Дирихле.

I1, I3 в

(2.27),

(2.28).

Так

как

Установим

сходимость

интегралов

cosu

1

sinu

u

1

du

u

, 2

=

при

u 0

и

интеграл

0

сходится,

то

2

2

2

2

u

u

u

u

u

интеграл

1 cos

u

du

сходится

по

признаку

сравнения,

а

интеграл

1 sin

u

du

0

2 u

0 2 u

является собственным.

Для вычисления интегралов (2.26)

выходим в комплексную плоскость.

Рассмотрим

функцию

f (z)= eiz2 , z = x +iy

и

контур Γ, состоящий из

отрезка

[0, R]

действительной

прямой,

дуги

окружности

CR ={z :

z

= R, 0 arg z π 4} и отрезка L ={z : arg z =π 4, 0

z

R}.

Сделаем замену переменной z2

=ζ , тогда

eiz2 dz =

eiζ

dζ ,

CR={ζ :

ζ

= R2

, 0 argζ π 2}.

2 ζ

CR

CR

По лемме Жордана интеграл по дуге CRстремится к нулю при R → ∞. По интегральной теореме Коши и в силу аддитивности интеграла

eiz2 dz = R eix2 dx + eiz2 dz +eiz2 dz = 0 .

40

Если z L , то z = t exp(iπ4), z2 = t2 exp(iπ2)= it 2 , следовательно

0

R

R

2

2

d (teiπ 4 )= −eiπ 4

2

2

2

2

eiz

dz = et

et

dt = −

+i

et

dt ,

2

2

L

R

0

0

R eix2 dx = R cos x2dx +iR sin x2dx.

0

0

0

Пусть R → +∞. Тогда получим с учетом (2.21):

+∞

+∞

+∞

2

2

2

2

t2

2

2

π

cos x

dx +i sin x

dx =

+i

e

dt =

+i

.

2

2

2

2

2

0

0

0

Выделяя действительную и мнимую части, найдем, что

+∞cos x2dx =

+∞sin2 xdx =

.

π

2

2

0

0

Следствие. S(+∞)= C(+∞)= 12 .

Для построения графиков интегралов Френеля при x > 0 заметим, что графики имеют горизонтальную асимптоту y =12, и в силу (2.24), (2.25)

C(x)

2

x,

S(x)

2

x3

, x 0.

π

3

π

2

(x)=

2

2 π cos x

,

2

π sin x

,

то

функции

имеют

Поскольку C (x)=

S

колебательный

характер.

На

рис.

2.6

изображены

графики

функций

C(x)= x cost2dt и y =

S(x)= x sint2dt .

y =

π

π

2

0

2

0

Установим связь интегралов Френеля с интегралом ошибок. Положим

z = x

i = x(1+i)

2 = xeiπ 4 , x > 0.

В качестве пути интегрирования выберем

отрезок

биссектрисы

первого

координатного

угла,

т.е.

положим

t = ueiπ 4 , 0 u x в формуле (2.20):

erf (xeiπ 4 )=

2

x

2

2

x

x

eiπ 4

eiu

du =

eiπ 4

cosu2du i

sinu2du =

π

0

π

0

0

=

eiπ 4 C(x)iS(x)

2

Аналогично,

erf (xeiπ4 )= 2eiπ4 C(x)+iS(x) ,

откуда получаем выражения функций C(x) и S(x)через интеграл ошибок:

41

Error function
Plot of the error function

Plot of the error function

General information
General definition {\displaystyle \operatorname {erf} z={\frac {2}{\sqrt {\pi }}}\int _{0}^{z}e^{-t^{2}}\,\mathrm {d} t}
Fields of application Probability, thermodynamics
Domain, Codomain and Image
Domain \mathbb {R}
Image {\displaystyle \left(-1,1\right)}
Basic features
Parity Odd
Specific features
Root 0
Derivative {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {erf} z={\frac {2}{\sqrt {\pi }}}e^{-z^{2}}}
Antiderivative {\displaystyle \int \operatorname {erf} z\,dz=z\operatorname {erf} z+{\frac {e^{-z^{2}}}{\sqrt {\pi }}}+C}
Series definition
Taylor series {\displaystyle \operatorname {erf} z={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z}{2n+1}}\prod _{k=1}^{n}{\frac {-z^{2}}{k}}}

In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as:[1]

{\displaystyle \operatorname {erf} z={\frac {2}{\sqrt {\pi }}}\int _{0}^{z}e^{-t^{2}}\,\mathrm {d} t.}

Some authors define \operatorname {erf} without the factor of {\displaystyle 2/{\sqrt {\pi }}}.[2]
This nonelementary integral is a sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.

In statistics, for non-negative values of x, the error function has the following interpretation: for a random variable Y that is normally distributed with mean 0 and standard deviation 1/2, erf x is the probability that Y falls in the range [−x, x].

Two closely related functions are the complementary error function (erfc) defined as

{\displaystyle \operatorname {erfc} z=1-\operatorname {erf} z,}

and the imaginary error function (erfi) defined as

{\displaystyle \operatorname {erfi} z=-i\operatorname {erf} iz,}

where i is the imaginary unit.

Name[edit]

The name «error function» and its abbreviation erf were proposed by J. W. L. Glaisher in 1871 on account of its connection with «the theory of Probability, and notably the theory of Errors.»[3] The error function complement was also discussed by Glaisher in a separate publication in the same year.[4]
For the «law of facility» of errors whose density is given by

{\displaystyle f(x)=\left({\frac {c}{\pi }}\right)^{\frac {1}{2}}e^{-cx^{2}}}

(the normal distribution), Glaisher calculates the probability of an error lying between p and q as:

{\displaystyle \left({\frac {c}{\pi }}\right)^{\frac {1}{2}}\int _{p}^{q}e^{-cx^{2}}\,\mathrm {d} x={\tfrac {1}{2}}\left(\operatorname {erf} \left(q{\sqrt {c}}\right)-\operatorname {erf} \left(p{\sqrt {c}}\right)\right).}Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Applications[edit]

When the results of a series of measurements are described by a normal distribution with standard deviation σ and expected value 0, then erf (a/σ 2) is the probability that the error of a single measurement lies between a and +a, for positive a. This is useful, for example, in determining the bit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of the heat equation when boundary conditions are given by the Heaviside step function.

The error function and its approximations can be used to estimate results that hold with high probability or with low probability. Given a random variable X ~ Norm[μ,σ] (a normal distribution with mean μ and standard deviation σ) and a constant L < μ:

{\displaystyle {\begin{aligned}\Pr[X\leq L]&={\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} {\frac {L-\mu }{{\sqrt {2}}\sigma }}\\&\approx A\exp \left(-B\left({\frac {L-\mu }{\sigma }}\right)^{2}\right)\end{aligned}}}

where A and B are certain numeric constants. If L is sufficiently far from the mean, specifically μLσln k, then:

{\displaystyle \Pr[X\leq L]\leq A\exp(-B\ln {k})={\frac {A}{k^{B}}}}

so the probability goes to 0 as k → ∞.

The probability for X being in the interval [La, Lb] can be derived as

{\displaystyle {\begin{aligned}\Pr[L_{a}\leq X\leq L_{b}]&=\int _{L_{a}}^{L_{b}}{\frac {1}{{\sqrt {2\pi }}\sigma }}\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)\,\mathrm {d} x\\&={\frac {1}{2}}\left(\operatorname {erf} {\frac {L_{b}-\mu }{{\sqrt {2}}\sigma }}-\operatorname {erf} {\frac {L_{a}-\mu }{{\sqrt {2}}\sigma }}\right).\end{aligned}}}

Properties[edit]

Integrand exp(−z2)

erf z

The property erf (−z) = −erf z means that the error function is an odd function. This directly results from the fact that the integrand et2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is an entire function which takes real numbers to real numbers, for any complex number z:

{\displaystyle \operatorname {erf} {\overline {z}}={\overline {\operatorname {erf} z}}}

where z is the complex conjugate of z.

The integrand f = exp(−z2) and f = erf z are shown in the complex z-plane in the figures at right with domain coloring.

The error function at +∞ is exactly 1 (see Gaussian integral). At the real axis, erf z approaches unity at z → +∞ and −1 at z → −∞. At the imaginary axis, it tends to ±i.

Taylor series[edit]

The error function is an entire function; it has no singularities (except that at infinity) and its Taylor expansion always converges, but is famously known «[…] for its bad convergence if x > 1[5]

The defining integral cannot be evaluated in closed form in terms of elementary functions (see Liouville’s theorem), but by expanding the integrand ez2 into its Maclaurin series and integrating term by term, one obtains the error function’s Maclaurin series as:

{\displaystyle {\begin{aligned}\operatorname {erf} z&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}\\[6pt]&={\frac {2}{\sqrt {\pi }}}\left(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{10}}-{\frac {z^{7}}{42}}+{\frac {z^{9}}{216}}-\cdots \right)\end{aligned}}}

which holds for every complex number z. The denominator terms are sequence A007680 in the OEIS.

For iterative calculation of the above series, the following alternative formulation may be useful:

{\displaystyle {\begin{aligned}\operatorname {erf} z&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }\left(z\prod _{k=1}^{n}{\frac {-(2k-1)z^{2}}{k(2k+1)}}\right)\\[6pt]&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z}{2n+1}}\prod _{k=1}^{n}{\frac {-z^{2}}{k}}\end{aligned}}}

because −(2k − 1)z2/k(2k + 1) expresses the multiplier to turn the kth term into the (k + 1)th term (considering z as the first term).

The imaginary error function has a very similar Maclaurin series, which is:

{\displaystyle {\begin{aligned}\operatorname {erfi} z&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z^{2n+1}}{n!(2n+1)}}\\[6pt]&={\frac {2}{\sqrt {\pi }}}\left(z+{\frac {z^{3}}{3}}+{\frac {z^{5}}{10}}+{\frac {z^{7}}{42}}+{\frac {z^{9}}{216}}+\cdots \right)\end{aligned}}}

which holds for every complex number z.

Derivative and integral[edit]

The derivative of the error function follows immediately from its definition:

{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {erf} z={\frac {2}{\sqrt {\pi }}}e^{-z^{2}}.}

From this, the derivative of the imaginary error function is also immediate:

{\displaystyle {\frac {d}{dz}}\operatorname {erfi} z={\frac {2}{\sqrt {\pi }}}e^{z^{2}}.}

An antiderivative of the error function, obtainable by integration by parts, is

{\displaystyle z\operatorname {erf} z+{\frac {e^{-z^{2}}}{\sqrt {\pi }}}.}

An antiderivative of the imaginary error function, also obtainable by integration by parts, is

{\displaystyle z\operatorname {erfi} z-{\frac {e^{z^{2}}}{\sqrt {\pi }}}.}

Higher order derivatives are given by

{\displaystyle \operatorname {erf} ^{(k)}z={\frac {2(-1)^{k-1}}{\sqrt {\pi }}}{\mathit {H}}_{k-1}(z)e^{-z^{2}}={\frac {2}{\sqrt {\pi }}}{\frac {\mathrm {d} ^{k-1}}{\mathrm {d} z^{k-1}}}\left(e^{-z^{2}}\right),\qquad k=1,2,\dots }

where H are the physicists’ Hermite polynomials.[6]

Bürmann series[edit]

An expansion,[7] which converges more rapidly for all real values of x than a Taylor expansion, is obtained by using Hans Heinrich Bürmann’s theorem:[8]

{\displaystyle {\begin{aligned}\operatorname {erf} x&={\frac {2}{\sqrt {\pi }}}\operatorname {sgn} x\cdot {\sqrt {1-e^{-x^{2}}}}\left(1-{\frac {1}{12}}\left(1-e^{-x^{2}}\right)-{\frac {7}{480}}\left(1-e^{-x^{2}}\right)^{2}-{\frac {5}{896}}\left(1-e^{-x^{2}}\right)^{3}-{\frac {787}{276480}}\left(1-e^{-x^{2}}\right)^{4}-\cdots \right)\\[10pt]&={\frac {2}{\sqrt {\pi }}}\operatorname {sgn} x\cdot {\sqrt {1-e^{-x^{2}}}}\left({\frac {\sqrt {\pi }}{2}}+\sum _{k=1}^{\infty }c_{k}e^{-kx^{2}}\right).\end{aligned}}}

where sgn is the sign function. By keeping only the first two coefficients and choosing c1 = 31/200 and c2 = −341/8000, the resulting approximation shows its largest relative error at x = ±1.3796, where it is less than 0.0036127:

{\displaystyle \operatorname {erf} x\approx {\frac {2}{\sqrt {\pi }}}\operatorname {sgn} x\cdot {\sqrt {1-e^{-x^{2}}}}\left({\frac {\sqrt {\pi }}{2}}+{\frac {31}{200}}e^{-x^{2}}-{\frac {341}{8000}}e^{-2x^{2}}\right).}

Inverse functions[edit]

Inverse error function

Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1, there is a unique real number denoted erf−1 x satisfying

{\displaystyle \operatorname {erf} \left(\operatorname {erf} ^{-1}x\right)=x.}

The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk |z| < 1 of the complex plane, using the Maclaurin series[9]

{\displaystyle \operatorname {erf} ^{-1}z=\sum _{k=0}^{\infty }{\frac {c_{k}}{2k+1}}\left({\frac {\sqrt {\pi }}{2}}z\right)^{2k+1},}

where c0 = 1 and

{\displaystyle {\begin{aligned}c_{k}&=\sum _{m=0}^{k-1}{\frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}\\&=\left\{1,1,{\frac {7}{6}},{\frac {127}{90}},{\frac {4369}{2520}},{\frac {34807}{16200}},\ldots \right\}.\end{aligned}}}

So we have the series expansion (common factors have been canceled from numerators and denominators):

{\displaystyle \operatorname {erf} ^{-1}z={\frac {\sqrt {\pi }}{2}}\left(z+{\frac {\pi }{12}}z^{3}+{\frac {7\pi ^{2}}{480}}z^{5}+{\frac {127\pi ^{3}}{40320}}z^{7}+{\frac {4369\pi ^{4}}{5806080}}z^{9}+{\frac {34807\pi ^{5}}{182476800}}z^{11}+\cdots \right).}

(After cancellation the numerator/denominator fractions are entries OEIS: A092676/OEIS: A092677 in the OEIS; without cancellation the numerator terms are given in entry OEIS: A002067.) The error function’s value at ±∞ is equal to ±1.

For |z| < 1, we have erf(erf−1 z) = z.

The inverse complementary error function is defined as

{\displaystyle \operatorname {erfc} ^{-1}(1-z)=\operatorname {erf} ^{-1}z.}

For real x, there is a unique real number erfi−1 x satisfying erfi(erfi−1 x) = x. The inverse imaginary error function is defined as erfi−1 x.[10]

For any real x, Newton’s method can be used to compute erfi−1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges:

{\displaystyle \operatorname {erfi} ^{-1}z=\sum _{k=0}^{\infty }{\frac {(-1)^{k}c_{k}}{2k+1}}\left({\frac {\sqrt {\pi }}{2}}z\right)^{2k+1},}

where ck is defined as above.

Asymptotic expansion[edit]

A useful asymptotic expansion of the complementary error function (and therefore also of the error function) for large real x is

{\displaystyle {\begin{aligned}\operatorname {erfc} x&={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\left(1+\sum _{n=1}^{\infty }(-1)^{n}{\frac {1\cdot 3\cdot 5\cdots (2n-1)}{\left(2x^{2}\right)^{n}}}\right)\\[6pt]&={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{\infty }(-1)^{n}{\frac {(2n-1)!!}{\left(2x^{2}\right)^{n}}},\end{aligned}}}

where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x, and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has

{\displaystyle \operatorname {erfc} x={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{N-1}(-1)^{n}{\frac {(2n-1)!!}{\left(2x^{2}\right)^{n}}}+R_{N}(x)}

where the remainder is

{\displaystyle R_{N}(x):={\frac {(-1)^{N}}{\sqrt {\pi }}}2^{1-2N}{\frac {(2N)!}{N!}}\int _{x}^{\infty }t^{-2N}e^{-t^{2}}\,\mathrm {d} t,}

which follows easily by induction, writing

{\displaystyle e^{-t^{2}}=-(2t)^{-1}\left(e^{-t^{2}}\right)'}

and integrating by parts.

The asymptotic behavior of the remainder term, in Landau notation, is

{\displaystyle R_{N}(x)=O\left(x^{-(1+2N)}e^{-x^{2}}\right)}

as x → ∞. This can be found by

{\displaystyle R_{N}(x)\propto \int _{x}^{\infty }t^{-2N}e^{-t^{2}}\,\mathrm {d} t=e^{-x^{2}}\int _{0}^{\infty }(t+x)^{-2N}e^{-t^{2}-2tx}\,\mathrm {d} t\leq e^{-x^{2}}\int _{0}^{\infty }x^{-2N}e^{-2tx}\,\mathrm {d} t\propto x^{-(1+2N)}e^{-x^{2}}.}

For large enough values of x, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of erfc x (while for not too large values of x, the above Taylor expansion at 0 provides a very fast convergence).

Continued fraction expansion[edit]

A continued fraction expansion of the complementary error function is:[11]

{\displaystyle \operatorname {erfc} z={\frac {z}{\sqrt {\pi }}}e^{-z^{2}}{\cfrac {1}{z^{2}+{\cfrac {a_{1}}{1+{\cfrac {a_{2}}{z^{2}+{\cfrac {a_{3}}{1+\dotsb }}}}}}}},\qquad a_{m}={\frac {m}{2}}.}

Integral of error function with Gaussian density function[edit]

{\displaystyle \int _{-\infty }^{\infty }\operatorname {erf} \left(ax+b\right){\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)\,\mathrm {d} x=\operatorname {erf} {\frac {a\mu +b}{\sqrt {1+2a^{2}\sigma ^{2}}}},\qquad a,b,\mu ,\sigma \in \mathbb {R} }

which appears related to Ng and Geller, formula 13 in section 4.3[12] with a change of variables.

Factorial series[edit]

The inverse factorial series:

{\displaystyle {\begin{aligned}\operatorname {erfc} z&={\frac {e^{-z^{2}}}{{\sqrt {\pi }}\,z}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}Q_{n}}{{(z^{2}+1)}^{\bar {n}}}}\\&={\frac {e^{-z^{2}}}{{\sqrt {\pi }}\,z}}\left(1-{\frac {1}{2}}{\frac {1}{(z^{2}+1)}}+{\frac {1}{4}}{\frac {1}{(z^{2}+1)(z^{2}+2)}}-\cdots \right)\end{aligned}}}

converges for Re(z2) > 0. Here

{\displaystyle {\begin{aligned}Q_{n}&{\overset {\text{def}}{{}={}}}{\frac {1}{\Gamma \left({\frac {1}{2}}\right)}}\int _{0}^{\infty }\tau (\tau -1)\cdots (\tau -n+1)\tau ^{-{\frac {1}{2}}}e^{-\tau }\,d\tau \\&=\sum _{k=0}^{n}\left({\tfrac {1}{2}}\right)^{\bar {k}}s(n,k),\end{aligned}}}

zn denotes the rising factorial, and s(n,k) denotes a signed Stirling number of the first kind.[13][14]
There also exists a representation by an infinite sum containing the double factorial:

{\displaystyle \operatorname {erf} z={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-2)^{n}(2n-1)!!}{(2n+1)!}}z^{2n+1}}

Numerical approximations[edit]

Approximation with elementary functions[edit]

  • Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:
    {\displaystyle \operatorname {erf} x\approx 1-{\frac {1}{\left(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}\right)^{4}}},\qquad x\geq 0}

    (maximum error: 5×10−4)

    where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

    {\displaystyle \operatorname {erf} x\approx 1-\left(a_{1}t+a_{2}t^{2}+a_{3}t^{3}\right)e^{-x^{2}},\quad t={\frac {1}{1+px}},\qquad x\geq 0}

    (maximum error: 2.5×10−5)

    where p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

    {\displaystyle \operatorname {erf} x\approx 1-{\frac {1}{\left(1+a_{1}x+a_{2}x^{2}+\cdots +a_{6}x^{6}\right)^{16}}},\qquad x\geq 0}

    (maximum error: 3×10−7)

    where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

    {\displaystyle \operatorname {erf} x\approx 1-\left(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5}\right)e^{-x^{2}},\quad t={\frac {1}{1+px}}}

    (maximum error: 1.5×10−7)

    where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

    All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).

  • Exponential bounds and a pure exponential approximation for the complementary error function are given by[15]
    {\displaystyle {\begin{aligned}\operatorname {erfc} x&\leq {\tfrac {1}{2}}e^{-2x^{2}}+{\tfrac {1}{2}}e^{-x^{2}}\leq e^{-x^{2}},&\quad x&>0\\\operatorname {erfc} x&\approx {\tfrac {1}{6}}e^{-x^{2}}+{\tfrac {1}{2}}e^{-{\frac {4}{3}}x^{2}},&\quad x&>0.\end{aligned}}}
  • The above have been generalized to sums of N exponentials[16] with increasing accuracy in terms of N so that erfc x can be accurately approximated or bounded by 2(2x), where
    {\displaystyle {\tilde {Q}}(x)=\sum _{n=1}^{N}a_{n}e^{-b_{n}x^{2}}.}

    In particular, there is a systematic methodology to solve the numerical coefficients {(an,bn)}N
    n = 1
    that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ (x), Q(x) ≤ (x), or Q(x) ≥ (x) for x ≥ 0. The coefficients {(an,bn)}N
    n = 1
    for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset.[17]

  • A tight approximation of the complementary error function for x ∈ [0,∞) is given by Karagiannidis & Lioumpas (2007)[18] who showed for the appropriate choice of parameters {A,B} that
    {\displaystyle \operatorname {erfc} x\approx {\frac {\left(1-e^{-Ax}\right)e^{-x^{2}}}{B{\sqrt {\pi }}x}}.}

    They determined {A,B} = {1.98,1.135}, which gave a good approximation for all x ≥ 0. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.[19]

  • A single-term lower bound is[20]

    {\displaystyle \operatorname {erfc} x\geq {\sqrt {\frac {2e}{\pi }}}{\frac {\sqrt {\beta -1}}{\beta }}e^{-\beta x^{2}},\qquad x\geq 0,\quad \beta >1,}

    where the parameter β can be picked to minimize error on the desired interval of approximation.

  • Another approximation is given by Sergei Winitzki using his «global Padé approximations»:[21][22]: 2–3 
    {\displaystyle \operatorname {erf} x\approx \operatorname {sgn} x\cdot {\sqrt {1-\exp \left(-x^{2}{\frac {{\frac {4}{\pi }}+ax^{2}}{1+ax^{2}}}\right)}}}

    where

    {\displaystyle a={\frac {8(\pi -3)}{3\pi (4-\pi )}}\approx 0.140012.}

    This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the relative error is less than 0.00035 for all real x. Using the alternate value a ≈ 0.147 reduces the maximum relative error to about 0.00013.[23]

    This approximation can be inverted to obtain an approximation for the inverse error function:

    {\displaystyle \operatorname {erf} ^{-1}x\approx \operatorname {sgn} x\cdot {\sqrt {{\sqrt {\left({\frac {2}{\pi a}}+{\frac {\ln \left(1-x^{2}\right)}{2}}\right)^{2}-{\frac {\ln \left(1-x^{2}\right)}{a}}}}-\left({\frac {2}{\pi a}}+{\frac {\ln \left(1-x^{2}\right)}{2}}\right)}}.}
  • An approximation with a maximal error of 1.2×10−7 for any real argument is:[24]
    {\displaystyle \operatorname {erf} x={\begin{cases}1-\tau &x\geq 0\\\tau -1&x<0\end{cases}}}

    with

    {\displaystyle {\begin{aligned}\tau &=t\cdot \exp \left(-x^{2}-1.26551223+1.00002368t+0.37409196t^{2}+0.09678418t^{3}-0.18628806t^{4}\right.\\&\left.\qquad \qquad \qquad +0.27886807t^{5}-1.13520398t^{6}+1.48851587t^{7}-0.82215223t^{8}+0.17087277t^{9}\right)\end{aligned}}}

    and

    {\displaystyle t={\frac {1}{1+{\frac {1}{2}}|x|}}.}
  • An approximation of {\displaystyle \operatorname {erfc} } with a maximum relative error less than {\displaystyle 2^{-53}} {\displaystyle \left(\approx 1.1\times 10^{-16}\right)} in absolute value is:[25]

    for {\displaystyle x\geq 0},

    {\displaystyle {\begin{aligned}\operatorname {erfc} \left(x\right)&=\left({\frac {0.56418958354775629}{x+2.06955023132914151}}\right)\left({\frac {x^{2}+2.71078540045147805x+5.80755613130301624}{x^{2}+3.47954057099518960x+12.06166887286239555}}\right)\\&\left({\frac {x^{2}+3.47469513777439592x+12.07402036406381411}{x^{2}+3.72068443960225092x+8.44319781003968454}}\right)\left({\frac {x^{2}+4.00561509202259545x+9.30596659485887898}{x^{2}+3.90225704029924078x+6.36161630953880464}}\right)\\&\left({\frac {x^{2}+5.16722705817812584x+9.12661617673673262}{x^{2}+4.03296893109262491x+5.13578530585681539}}\right)\left({\frac {x^{2}+5.95908795446633271x+9.19435612886969243}{x^{2}+4.11240942957450885x+4.48640329523408675}}\right)e^{-x^{2}}\\\end{aligned}}}

    and for x<0

    {\displaystyle \operatorname {erfc} \left(x\right)=2-\operatorname {erfc} \left(-x\right)}

Table of values[edit]

x erf x 1 − erf x
0 0 1
0.02 0.022564575 0.977435425
0.04 0.045111106 0.954888894
0.06 0.067621594 0.932378406
0.08 0.090078126 0.909921874
0.1 0.112462916 0.887537084
0.2 0.222702589 0.777297411
0.3 0.328626759 0.671373241
0.4 0.428392355 0.571607645
0.5 0.520499878 0.479500122
0.6 0.603856091 0.396143909
0.7 0.677801194 0.322198806
0.8 0.742100965 0.257899035
0.9 0.796908212 0.203091788
1 0.842700793 0.157299207
1.1 0.880205070 0.119794930
1.2 0.910313978 0.089686022
1.3 0.934007945 0.065992055
1.4 0.952285120 0.047714880
1.5 0.966105146 0.033894854
1.6 0.976348383 0.023651617
1.7 0.983790459 0.016209541
1.8 0.989090502 0.010909498
1.9 0.992790429 0.007209571
2 0.995322265 0.004677735
2.1 0.997020533 0.002979467
2.2 0.998137154 0.001862846
2.3 0.998856823 0.001143177
2.4 0.999311486 0.000688514
2.5 0.999593048 0.000406952
3 0.999977910 0.000022090
3.5 0.999999257 0.000000743

[edit]

Complementary error function[edit]

The complementary error function, denoted erfc, is defined as

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
{\displaystyle {\begin{aligned}\operatorname {erfc} x&=1-\operatorname {erf} x\\[5pt]&={\frac {2}{\sqrt {\pi }}}\int _{x}^{\infty }e^{-t^{2}}\,\mathrm {d} t\\[5pt]&=e^{-x^{2}}\operatorname {erfcx} x,\end{aligned}}}

which also defines erfcx, the scaled complementary error function[26] (which can be used instead of erfc to avoid arithmetic underflow[26][27]). Another form of erfc x for x ≥ 0 is known as Craig’s formula, after its discoverer:[28]

{\displaystyle \operatorname {erfc} (x\mid x\geq 0)={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\exp \left(-{\frac {x^{2}}{\sin ^{2}\theta }}\right)\,\mathrm {d} \theta .}

This expression is valid only for positive values of x, but it can be used in conjunction with erfc x = 2 − erfc(−x) to obtain erfc(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the erfc of the sum of two non-negative variables is as follows:[29]

{\displaystyle \operatorname {erfc} (x+y\mid x,y\geq 0)={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\exp \left(-{\frac {x^{2}}{\sin ^{2}\theta }}-{\frac {y^{2}}{\cos ^{2}\theta }}\right)\,\mathrm {d} \theta .}

Imaginary error function[edit]

The imaginary error function, denoted erfi, is defined as

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
{\displaystyle {\begin{aligned}\operatorname {erfi} x&=-i\operatorname {erf} ix\\[5pt]&={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{t^{2}}\,\mathrm {d} t\\[5pt]&={\frac {2}{\sqrt {\pi }}}e^{x^{2}}D(x),\end{aligned}}}

where D(x) is the Dawson function (which can be used instead of erfi to avoid arithmetic overflow[26]).

Despite the name «imaginary error function», erfi x is real when x is real.

When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

w(z)=e^{-z^{2}}\operatorname {erfc} (-iz)=\operatorname {erfcx} (-iz).

Cumulative distribution function[edit]

The error function is essentially identical to the standard normal cumulative distribution function, denoted Φ, also named norm(x) by some software languages[citation needed], as they differ only by scaling and translation. Indeed,

the normal cumulative distribution function plotted in the complex plane
the normal cumulative distribution function plotted in the complex plane
{\displaystyle {\begin{aligned}\Phi (x)&={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x}e^{\tfrac {-t^{2}}{2}}\,\mathrm {d} t\\[6pt]&={\frac {1}{2}}\left(1+\operatorname {erf} {\frac {x}{\sqrt {2}}}\right)\\[6pt]&={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {x}{\sqrt {2}}}\right)\end{aligned}}}

or rearranged for erf and erfc:

{\displaystyle {\begin{aligned}\operatorname {erf} (x)&=2\Phi \left(x{\sqrt {2}}\right)-1\\[6pt]\operatorname {erfc} (x)&=2\Phi \left(-x{\sqrt {2}}\right)\\&=2\left(1-\Phi \left(x{\sqrt {2}}\right)\right).\end{aligned}}}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as

{\displaystyle {\begin{aligned}Q(x)&={\frac {1}{2}}-{\frac {1}{2}}\operatorname {erf} {\frac {x}{\sqrt {2}}}\\&={\frac {1}{2}}\operatorname {erfc} {\frac {x}{\sqrt {2}}}.\end{aligned}}}

The inverse of Φ is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as

{\displaystyle \operatorname {probit} (p)=\Phi ^{-1}(p)={\sqrt {2}}\operatorname {erf} ^{-1}(2p-1)=-{\sqrt {2}}\operatorname {erfc} ^{-1}(2p).}

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer’s function):

{\displaystyle \operatorname {erf} x={\frac {2x}{\sqrt {\pi }}}M\left({\tfrac {1}{2}},{\tfrac {3}{2}},-x^{2}\right).}

It has a simple expression in terms of the Fresnel integral.[further explanation needed]

In terms of the regularized gamma function P and the incomplete gamma function,

{\displaystyle \operatorname {erf} x=\operatorname {sgn} x\cdot P\left({\tfrac {1}{2}},x^{2}\right)={\frac {\operatorname {sgn} x}{\sqrt {\pi }}}\gamma \left({\tfrac {1}{2}},x^{2}\right).}

sgn x is the sign function.

Generalized error functions[edit]

Graph of generalised error functions En(x):
grey curve: E1(x) = 1 − ex/π
red curve: E2(x) = erf(x)
green curve: E3(x)
blue curve: E4(x)
gold curve: E5(x).

Some authors discuss the more general functions:[citation needed]

{\displaystyle E_{n}(x)={\frac {n!}{\sqrt {\pi }}}\int _{0}^{x}e^{-t^{n}}\,\mathrm {d} t={\frac {n!}{\sqrt {\pi }}}\sum _{p=0}^{\infty }(-1)^{p}{\frac {x^{np+1}}{(np+1)p!}}.}

Notable cases are:

  • E0(x) is a straight line through the origin: E0(x) = x/eπ
  • E2(x) is the error function, erf x.

After division by n!, all the En for odd n look similar (but not identical) to each other. Similarly, the En for even n look similar (but not identical) to each other after a simple division by n!. All generalised error functions for n > 0 look similar on the positive x side of the graph.

These generalised functions can equivalently be expressed for x > 0 using the gamma function and incomplete gamma function:

{\displaystyle E_{n}(x)={\frac {1}{\sqrt {\pi }}}\Gamma (n)\left(\Gamma \left({\frac {1}{n}}\right)-\Gamma \left({\frac {1}{n}},x^{n}\right)\right),\qquad x>0.}

Therefore, we can define the error function in terms of the incomplete gamma function:

{\displaystyle \operatorname {erf} x=1-{\frac {1}{\sqrt {\pi }}}\Gamma \left({\tfrac {1}{2}},x^{2}\right).}

Iterated integrals of the complementary error function[edit]

The iterated integrals of the complementary error function are defined by[30]

{\displaystyle {\begin{aligned}\operatorname {i} ^{n}\!\operatorname {erfc} z&=\int _{z}^{\infty }\operatorname {i} ^{n-1}\!\operatorname {erfc} \zeta \,\mathrm {d} \zeta \\[6pt]\operatorname {i} ^{0}\!\operatorname {erfc} z&=\operatorname {erfc} z\\\operatorname {i} ^{1}\!\operatorname {erfc} z&=\operatorname {ierfc} z={\frac {1}{\sqrt {\pi }}}e^{-z^{2}}-z\operatorname {erfc} z\\\operatorname {i} ^{2}\!\operatorname {erfc} z&={\tfrac {1}{4}}\left(\operatorname {erfc} z-2z\operatorname {ierfc} z\right)\\\end{aligned}}}

The general recurrence formula is

{\displaystyle 2n\cdot \operatorname {i} ^{n}\!\operatorname {erfc} z=\operatorname {i} ^{n-2}\!\operatorname {erfc} z-2z\cdot \operatorname {i} ^{n-1}\!\operatorname {erfc} z}

They have the power series

{\displaystyle \operatorname {i} ^{n}\!\operatorname {erfc} z=\sum _{j=0}^{\infty }{\frac {(-z)^{j}}{2^{n-j}j!\,\Gamma \left(1+{\frac {n-j}{2}}\right)}},}

from which follow the symmetry properties

{\displaystyle \operatorname {i} ^{2m}\!\operatorname {erfc} (-z)=-\operatorname {i} ^{2m}\!\operatorname {erfc} z+\sum _{q=0}^{m}{\frac {z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}}}

and

{\displaystyle \operatorname {i} ^{2m+1}\!\operatorname {erfc} (-z)=\operatorname {i} ^{2m+1}\!\operatorname {erfc} z+\sum _{q=0}^{m}{\frac {z^{2q+1}}{2^{2(m-q)-1}(2q+1)!(m-q)!}}.}

Implementations[edit]

As real function of a real argument[edit]

  • In POSIX-compliant operating systems, the header math.h shall declare and the mathematical library libm shall provide the functions erf and erfc (double precision) as well as their single precision and extended precision counterparts erff, erfl and erfcf, erfcl.[31]
  • The GNU Scientific Library provides erf, erfc, log(erf), and scaled error functions.[32]

As complex function of a complex argument[edit]

  • libcerf, numeric C library for complex error functions, provides the complex functions cerf, cerfc, cerfcx and the real functions erfi, erfcx with approximately 13–14 digits precision, based on the Faddeeva function as implemented in the MIT Faddeeva Package

See also[edit]

[edit]

  • Gaussian integral, over the whole real line
  • Gaussian function, derivative
  • Dawson function, renormalized imaginary error function
  • Goodwin–Staton integral

In probability[edit]

  • Normal distribution
  • Normal cumulative distribution function, a scaled and shifted form of error function
  • Probit, the inverse or quantile function of the normal CDF
  • Q-function, the tail probability of the normal distribution
  • Standard score

References[edit]

  1. ^ Andrews, Larry C. (1998). Special functions of mathematics for engineers. SPIE Press. p. 110. ISBN 9780819426161.
  2. ^ Whittaker, E. T.; Watson, G. N. (1927). A Course of Modern Analysis. Cambridge University Press. p. 341. ISBN 978-0-521-58807-2.
  3. ^ Glaisher, James Whitbread Lee (July 1871). «On a class of definite integrals». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (277): 294–302. doi:10.1080/14786447108640568. Retrieved 6 December 2017.
  4. ^ Glaisher, James Whitbread Lee (September 1871). «On a class of definite integrals. Part II». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (279): 421–436. doi:10.1080/14786447108640600. Retrieved 6 December 2017.
  5. ^ «A007680 – OEIS». oeis.org. Retrieved 2 April 2020.
  6. ^ Weisstein, Eric W. «Erf». MathWorld.
  7. ^ Schöpf, H. M.; Supancic, P. H. (2014). «On Bürmann’s Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion». The Mathematica Journal. 16. doi:10.3888/tmj.16-11.
  8. ^ Weisstein, Eric W. «Bürmann’s Theorem». MathWorld.
  9. ^ Dominici, Diego (2006). «Asymptotic analysis of the derivatives of the inverse error function». arXiv:math/0607230.
  10. ^ Bergsma, Wicher (2006). «On a new correlation coefficient, its orthogonal decomposition and associated tests of independence». arXiv:math/0604627.
  11. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). Handbook of Continued Fractions for Special Functions. Springer-Verlag. ISBN 978-1-4020-6948-2.
  12. ^ Ng, Edward W.; Geller, Murray (January 1969). «A table of integrals of the Error functions». Journal of Research of the National Bureau of Standards Section B. 73B (1): 1. doi:10.6028/jres.073B.001.
  13. ^ Schlömilch, Oskar Xavier (1859). «Ueber facultätenreihen». Zeitschrift für Mathematik und Physik (in German). 4: 390–415.
  14. ^ Nielson, Niels (1906). Handbuch der Theorie der Gammafunktion (in German). Leipzig: B. G. Teubner. p. 283 Eq. 3. Retrieved 4 December 2017.
  15. ^ Chiani, M.; Dardari, D.; Simon, M.K. (2003). «New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels» (PDF). IEEE Transactions on Wireless Communications. 2 (4): 840–845. CiteSeerX 10.1.1.190.6761. doi:10.1109/TWC.2003.814350.
  16. ^ Tanash, I.M.; Riihonen, T. (2020). «Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials». IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
  17. ^ Tanash, I.M.; Riihonen, T. (2020). «Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]». Zenodo. doi:10.5281/zenodo.4112978.
  18. ^ Karagiannidis, G. K.; Lioumpas, A. S. (2007). «An improved approximation for the Gaussian Q-function» (PDF). IEEE Communications Letters. 11 (8): 644–646. doi:10.1109/LCOMM.2007.070470. S2CID 4043576.
  19. ^ Tanash, I.M.; Riihonen, T. (2021). «Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function». IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
  20. ^ Chang, Seok-Ho; Cosman, Pamela C.; Milstein, Laurence B. (November 2011). «Chernoff-Type Bounds for the Gaussian Error Function». IEEE Transactions on Communications. 59 (11): 2939–2944. doi:10.1109/TCOMM.2011.072011.100049. S2CID 13636638.
  21. ^ Winitzki, Sergei (2003). «Uniform approximations for transcendental functions». Computational Science and Its Applications – ICCSA 2003. Lecture Notes in Computer Science. Vol. 2667. Springer, Berlin. pp. 780–789. doi:10.1007/3-540-44839-X_82. ISBN 978-3-540-40155-1.
  22. ^ Zeng, Caibin; Chen, Yang Cuan (2015). «Global Padé approximations of the generalized Mittag-Leffler function and its inverse». Fractional Calculus and Applied Analysis. 18 (6): 1492–1506. arXiv:1310.5592. doi:10.1515/fca-2015-0086. S2CID 118148950. Indeed, Winitzki [32] provided the so-called global Padé approximation
  23. ^ Winitzki, Sergei (6 February 2008). «A handy approximation for the error function and its inverse» (Document).
  24. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 0-521-43064-X), 1992, page 214, Cambridge University Press.
  25. ^ Dia, Yaya D. (2023). Approximate Incomplete Integrals, Application to Complementary Error Function. Available at SSRN: https://ssrn.com/abstract=4487559 or http://dx.doi.org/10.2139/ssrn.4487559, 2023
  26. ^ a b c Cody, W. J. (March 1993), «Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers» (PDF), ACM Trans. Math. Softw., 19 (1): 22–32, CiteSeerX 10.1.1.643.4394, doi:10.1145/151271.151273, S2CID 5621105
  27. ^ Zaghloul, M. R. (1 March 2007), «On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand», Monthly Notices of the Royal Astronomical Society, 375 (3): 1043–1048, Bibcode:2007MNRAS.375.1043Z, doi:10.1111/j.1365-2966.2006.11377.x
  28. ^ John W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations Archived 3 April 2012 at the Wayback Machine, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.
  29. ^ Behnad, Aydin (2020). «A Novel Extension to Craig’s Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis». IEEE Transactions on Communications. 68 (7): 4117–4125. doi:10.1109/TCOMM.2020.2986209. S2CID 216500014.
  30. ^ Carslaw, H. S.; Jaeger, J. C. (1959), Conduction of Heat in Solids (2nd ed.), Oxford University Press, ISBN 978-0-19-853368-9, p 484
  31. ^ «math.h — mathematical declarations». opengroup.org. 2018. Retrieved 21 April 2023.
  32. ^ «Special Functions – GSL 2.7 documentation».

Further reading[edit]

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. «Chapter 7». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 297. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007), «Section 6.2. Incomplete Gamma Function and Error Function», Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Temme, Nico M. (2010), «Error Functions, Dawson’s and Fresnel Integrals», in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.

External links[edit]

  • A Table of Integrals of the Error Functions

 Задвижки, фильтры, кланы, клапаны, виброкомпенсаторы ABRA

Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблицы DPVA.ru — Инженерный Справочник

Free counters!


Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Теория вероятностей. Математическая статистика. Комбинаторика.  / / Таблица. Интеграл вероятности или интеграл вероятностей. Таблица значений функции Лапласа. Она же функция ошибок erf

Таблица. Интеграл вероятности или интеграл вероятностей. Таблица значений функции Лапласа. Она же функция ошибок erf.

Таблица. Функция Лапласа или интеграл вероятностей. (Функция ошибок)

Интегральная функция вероятности распределения обычно выражается через специальную функцию erf(z).

z

0

1

2

3

4

5

6

7

8 9
0,00 0,0000 0011 0023 0034 0045 0056 0068 0079 0090 0102
1 0113 0124 0135 0147 0158 0169 0181 0192 0203 0214
2 0226 0237 0248 0260 0271 0282 0293 0305 0316 0327
3 0338 0350 0361 0372 0384 0395 0406 0417 0429 0553
4 0451 0462 0474 0485 0496 0507 0519 0530 0541 0553
5 0564 0575 0586 0598 0609 0620 0631 0643 0654 0665
6 0676 0688 0699 0710 0721 0732 0744 0755 0766 0777
7 0789 0800 0811 0822 0834 0845 0856 0867 0878 0890
8 0901 0912 0923 0934 0946 0957 0968 0979 0990 1002
9 1013 1024 1035 1046 1058 1069 1080 1091 1102 1113
10 1125 1136 1147 1158 1169 1180 1192 1203 1214 1225
1 1236 1247 1259 1270 1281 1292 1303 1314 1325 1386
2 1348 1359 1370 1381 1392 1403 1414 1425 1436 1448
3 1459 1470 1481 1492 1503 1514 1525 1536 1547 1558
4 1569 1581 1592 1603 1614 1625 1636 1647 1658 1669
5 1680 1691 1702 1713 1724 1735 1746 1757 1768 1779
6 1790 1801 1812 1823 1834 1845 1856 1867 1878 1889
7 1900 1911 1922 1933 1944 1955 1966 1977 1988 1998
8 2009 2020 2031 2042 2053 2064 2075 2086 2097 2108
9 2118 2129 2140 2151 2162 2173 2184 2194 2205 2216
20 2227 2238 2249 2260 2270 2281 2292 2303 2314 2324
1 2335 2346 2357 2368 2378 2389 2400 2411 2421 2432
2 2443 2454 2464 2475 2486 2497 2507 2518 2529 2540
3 2550 2561 2572 2582 2593 2604 2614 2625 2636 2646
4 2657 2668 2678 2689 2700 2710 2721 2731 2742 2753
5 2763 2774 2784 2795 2806 2816 2827 2837 2848 2858
6 2869 2880 2890 2901 2911 2922 2932 2943 2953 2964
7 2974 2985 2995 3006 3016 3027 3037 3047 3058 3068
8 3079 3089 3100 3110 3120 3131 3141 3152 3162 3276
9 3183 3193 3204 3214 3224 3235 3246 3255 3266 3276
30 3286 3297 3307 3317 3327 3338 3348 3358 3369 3379
1 3389 3399 3410 3420 3430 3440 3450 3461 3471 3481
2 3491 3501 3512 3522 3532 3542 3552 3562 3573 3583
3 3593 3603 3613 3623 3633 3643 3653 3663 3674 3684
4 3694 3704 3714 3724 8734 3744 2754 3764 3774 3784
5 3794 3804 3814 3824 3834 3844 3854 3864 3873 3883
6 3893 3903 3913 3923 3933 8943 3953 3963 3972 3982
7 3992 4002 4012 4022 4031 4041 4051 4061 4071 4080
8 4090 4100 4110 4119 4129 4189 4149 4158 4168 4178
9 4187 4197 4207 4216 4226 4236 4245 4255 4265 4274
40 4284 4294 4303 4313 4322 4332 4341 4351 4361 4370
1 4380 4389 4399 4408 4418 4427 4437 4446 4456 4465
2 4475 4484 4494 4503 4512 4522 4531 4541 4550 4559
3 4569 4578 4588 4597 4606 4616 4625 4634 4644 4653
4 4662 4672 4681 4690 4699 4709 4718 4727 4736 4746
5 4755 4764 4773 4782 4792 4801 4810 4819 4828 4837
6 4847 4856 4865 4874 4883 4892 4901 4910 4919 4928
7 4937 4946 4956 4965 4974 4983 4992 5001 5010 5019
8 5027 5036 5045 5054 5063 5072 5081 5090 5099 5108
9 5117 5126 5134 5143 5152 5161 5170 5179 5187 5196

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:|

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

www.dpva.ru Инженерный справочник.

Понравилась статья? Поделить с друзьями:
  • Инструменты человеческого фактора для предотвращения ошибок
  • Интеграл ошибок erf
  • Интеграл вероятностей и функция ошибок
  • Инструменты предотвращения ошибок персонала росатом
  • Инструменты предотвращения ошибок персонала аэс