-
Погрешности измерений физических величин
При измерении
любой физической величины возникают
погрешности (ошибки) измерений.
Погрешностью
измерения называется отклонение
результата измерения от истинного
значения измеряемой величины.
В приведенном
определении погрешности измерения
использованы понятия «результат
измерения» и «истинное значение
измеряемой величины». Под результатом
измерения
понимается оценка измеряемой физической
величины в виде некоторого числа принятых
для нее единиц, полученная путем
измерения. Истинное
значение измеряемой величины
– значение физической величины, которое
идеальным образом отражало бы в
качественном и количественном отношении
соответствующее свойство объекта.
Для истинного
значения формулируются постулаты:
-
Истинное значение
измеряемой величины существует. -
Истинное значение
измеряемой величины отыскать невозможно. -
Истинное значение
измеряемой величины постоянно.
По форме выражения
погрешностей измерений различают
погрешности абсолютные
и относительные.
Абсолютная
погрешность измерений – это погрешность,
выраженная в единицах измеряемой
величины. Так, если х0
– истинное значение измеряемой величины,
хi
– результат измерения, Δхi
– абсолютная погрешность измерения,
то
Δхi
= х0
– хi.
(2.1)
Относительная
погрешность измерения – это погрешность,
выраженная в долях истинного значения
измеряемой величины:
.
(2.2)
Чаще всего на
практике относительные погрешности
выражают в процентах:
(2.3)
Из вышесказанного
следует, что абсолютная погрешность
измеряется теми же единицами, что и
измеряемая величина. Поэтому нельзя
сравнивать абсолютные погрешности
измерения разнородных величин, имеющих
разную размерность. Для сравнения
погрешностей разнородных величин
используют относительную погрешность.
Измерение тем
более точно, чем меньше его погрешность.
Однако абсолютные погрешности в общем
случае зависят от значения измеряемой
величины и поэтому не годятся для
количественной характеристики точности
измерений. Этого недостатка не имеют
относительные погрешности. Поэтому —
Точностью
измерений называют число обратное
значению относительной погрешности.
Так, например, если
относительная погрешность измерения
составляет 2% = 2·10-2,
то точность этого измерения будет равна
50.
Для нахождения
погрешности измерения соотношение
(2.1) нельзя использовать по той простой
причине, что истинное значение измеряемой
величины всегда неизвестно (второй
постулат); если же его можно считать
известным, то измерение не
нужно.
Поэтому погрешности
измерений приходится оценивать с
использованием косвенных данных.
Классификация погрешностей измерений
Обязательными
компонентами всякого измерения являются
метод измерения
и средства
измерения;
очень часто измерения выполняются с
участием человека.
Несовершенство каждого компонента
измерения вносит вклад в погрешность
измерения. Поэтому в общем виде
Δх
= Δхм
+ Δхи
+ Δхл
,
(2.4)
где Δхм
– погрешность методическая; Δхи
– погрешность инструментальная; Δхл
– погрешность личная.
Каждая из
составляющих погрешности измерения в
свою очередь может вызываться рядом
причин. Так, методические
погрешности
могут возникать вследствие недостаточной
разработанности теории тех явлений,
которые положены в основу измерения, и
неточности тех соотношений, которые
используются для нахождения оценки
измеряемой величины.
Инструментальные
погрешности
измерения – погрешности из-за
несовершенства средств измерений.
Обычно различают основную погрешность
средств измерений – погрешность в
условиях принятых за нормальные
(давление, температура, влажность и
т.д., которые указываются в паспорте
прибора), и дополнительные погрешности,
обусловленные отклонением влияющих
величин от их нормальных значений или
старением средств измерений.
Личные
погрешности.
Обычно измерения выполняются людьми.
Человек отсчитывает показания приборов,
фиксирует момент исчезновения нити
накаливания на экране оптического
пирометра и т.д. Индивидуальные особенности
лица, выполняющего измерения, обуславливают
появление индивидуальных, свойственных
данному лицу погрешностей.
Приведенная
классификация погрешностей измерений
– классификация по
причинам возникновения погрешностей.
Для Вас это будет важно, если будете
профессионально заниматься научной
работой (например, при планировании
эксперимента) или будете работать в
метрологических учреждениях.
При выполнении
лабораторного практикума, т.е. при
проведении эксперимента для Вас будет
важна другая классификация – это
классификация погрешностей измерений
по их свойствам.
В этом отношении различают погрешности
систематические,
случайные и грубые.
Систематические
и случайные (статистические) погрешности
подчиняются абсолютно разным
закономерностям, поэтому различаются
и «способы борьбы» с этими погрешностями.
Систематической
погрешностью измерения
называется
составляющая погрешности измерения,
которая остается постоянной
или закономерно
изменяется
при повторных измерениях одной и той
же величины.
Величина и знак
систематической погрешности одинаковы
во всех повторных измерениях, выполненных
в тех же условиях, посредством одних и
тех же средств измерения (приборов) и
тем же экспериментатором (или закономерно
изменяются). Причинами систематических
погрешностей могут являться: недостатки
выбранного метода измерений, неточности
изготовления прибора и т.п. Так как эти
причины в большинстве случаев известны,
то систематические погрешности можно
в принципе устранить путем введения
поправки.
Однако существуют
такие виды погрешностей, которые
невозможно устранить и на которые нельзя
ввести поправку. Эти погрешности,
определяемые точностью измерительного
прибора, называют приборными
(инструментальными).
Они частично относятся к статистическим,
и частично к случайным погрешностям.
Любой прибор обладает определенной
погрешностью, обусловленной свойствами
конкретного физического явления, а
также допусками при изготовлении его
деталей. Об оценке приборной погрешности
мы будем говорить позже.
Случайной
погрешностью измерения называется
составляющая погрешности измерения,
величину и знак которой заранее
предсказать невозможно, т.е. меняется
случайным образом от измерения к
измерению.
Случайные
погрешности
тоже имеют вполне определенные причины,
обычно довольно многочисленные,
определяемые как свойствами исследуемого
объекта, так и неконтролируемым
воздействием факторов внешней среды.
Взаимодействие этих причин приводит к
такому разбросу измеряемых значений,
который зависит уже только от случая.
Предсказать величину случайной ошибки
для одного измерения в принципе
невозможно. Поэтому приходится повторять
измерения до определенного разумного
предела, а полученную совокупность
данных обрабатывать с помощью методов
теории вероятностей и математической
статистики. Обе
математические дисциплины образуют
основу так называемой теории
погрешностей.
К погрешностям
третьего типа относят так называемые
грубые
погрешности или промахи,
которые могут быть вызваны ошибками
экспериментатора или отказами
измерительного оборудования. Эти
погрешности в принципе легко заметить,
а дефектные измерения исключить.
И последнее, но
принципиальное
замечание в этом разделе:
Невозможно
провести измерения с любой точностью
(нулевой погрешностью). Существуют
естественно – физические пределы
точности измерений.
Это связано со
следующими ограничениями:
а) квантовомеханическим
принципом неопределенностей;
б) случайными
флуктуациями измерительных устройств,
называемых шумами.
Причины случайных
флуктуаций:
-
Броуновское
движение. -
Шумы сопротивлений
(тепловые шумы Джонсона). Всякое
электрическое сопротивление R
представляет источник случайных ЭДС,
которые возникают в результате теплового
движения электронов проводимости.
Чтобы исключить случайные ЭДС, возникающие
в металле, его нужно охладить до Т = 0,
что невозможно. -
Шумы, обусловленные
дискретностью вещества. Эти шумы связаны
с тем, что, например, ток переносится
отдельными электронами, или дырками
(полупроводники). -
Помехи. Помехи
могут возникать при скоплении статического
электричества, при появлении паразитных
колебаний напряжения в сети, внешним
электромагнитным излучением и т.д.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Абсолютная и относительная погрешность
4.2
Средняя оценка: 4.2
Всего получено оценок: 2248.
4.2
Средняя оценка: 4.2
Всего получено оценок: 2248.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Опыт работы учителем математики — более 33 лет.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
- при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
- при делении и умножении чисел требуется сложить относительные погрешности;
- при возведении в степень относительную погрешность умножают на показатель степени.
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Светлана Лобанова-Асямолова
10/10
-
Валерий Соломин
10/10
-
Анастасия Юшкова
10/10
-
Ксюша Пономарева
7/10
-
Паша Кривов
10/10
-
Евгений Холопик
9/10
-
Guzel Murtazina
10/10
-
Максим Аполонов
10/10
-
Olga Bimbirene
9/10
-
Света Колодий
10/10
Оценка статьи
4.2
Средняя оценка: 4.2
Всего получено оценок: 2248.
А какая ваша оценка?
Напечатано:: | Гость |
Дата: | пятница, 22 сентября 2023, 01:32 |
Описание
1. Понятие о погрешности измерения.
2. Классификация погрешностей измерения.
3. Систематические погрешности
Оглавление
- 1. Понятие о погрешности измерения
- 2. Классификация погрешностей измерения
- 3. Систематические погрешности
1. Понятие о погрешности измерения
Всякий процесс измерения независимо от условий, в которых его проводят, сопряжен с погрешностями, которые искажают представление о действительном значении измеряемой величины.
Погрешностью называют отличие между объективно существующим истинным значением физической величины и найденным в результате измерения действительным значением физической величины.
Истинное значение физической величины идеальным образом отражает соответствующее свойство объекта. Практически получено быть не может.
Действительное значение физической величины находится как результат измерения и приближается к истинному значению настолько, что для данной цели может применяться вместо него.
Источниками появления погрешностей при измерениях могут служить различные факторы, основными из которых являются: несовершенство конструкции средств измерений или принципиальной схемы метода измерения; неточность изготовления средств измерений; несоблюдение внешних условий при измерениях; субъективные погрешности и др.
2. Классификация погрешностей измерения
В зависимости от обстоятельств, при которых проводились измерения, а также в зависимости от целей измерения, выбирается та или иная классификация погрешностей. Иногда используют одновременно несколько взаимно пересекающихся классификаций, желая по нескольким признакам точно охарактеризовать влияющие на результат измерения физические величины. В таком случае рассматривают, например, инструментальную составляющую неисключённой систематической погрешности. При выборе классификаций важно учитывать наиболее весомые или динамично меняющиеся или поддающиеся регулировке влияющие величины. Ниже приведены общепринятые классификации согласно типовым признакам и влияющим величинам.
По виду представления, различают абсолютную, относительную и приведённую погрешности.
Абсолютная погрешность это разница между результатом измерения X и истинным значением Q измеряемой величины. Абсолютная погрешность находится как D = X — Q и выражается в единицах измеряемой величины.
Относительная погрешность это отношение абсолютной погрешности измерения к истинному значению измеряемой величины: d = D / Q = (X – Q) / Q .
Приведённая погрешность это относительная погрешность, в которой абсолютная погрешность средства измерения отнесена к условно принятому нормирующему значению QN , постоянному во всём диапазоне измерений или его части. Относительная и приведённая погрешности – безразмерные величины.
В зависимости от источника возникновения, различают субъективную, инструментальную и методическую погрешности.
Субъективная погрешность обусловлена погрешностью отсчёта оператором показаний средства измерения.
Инструментальная погрешность обусловлена несовершенством применяемого средства измерения. Иногда эту погрешность называют аппаратурной. Метрологические характеристики средств измерений нормируются согласно ГОСТ 8.009 – 84, при этом различают четыре составляющие инструментальной погрешности: основная, дополнительная, динамическая, интегральная. Согласно этой классификации, инструментальная погрешность зависит от условий и режима работы, а также от параметров сигнала и объекта измерения.
Методическая погрешность обусловлена следующими основными причинами:
– отличие принятой модели объекта измерения от модели, адекватно описывающей его метрологические свойства;
– влияние средства измерения на объект измерения;
– неточность применяемых при вычислениях физических констант и математических соотношений.
В зависимости от измеряемой величины, различают погрешность аддитивную и мультипликативную. Аддитивная погрешность не зависит от измеряемой величины. Мультипликативная погрешность меняется пропорционально измеряемой величине.
В зависимости от режима работы средства измерений, различают статическую и динамическую погрешности.
Динамическая погрешность обусловлена реакцией средства измерения на изменение параметров измеряемого сигнала (динамический режим).
Статическая погрешность средства измерения определяется при параметрах измеряемого сигнала, принимаемых за неизменные на протяжении времени измерения (статический режим).
По характеру проявления во времени, различают случайную и систематическую погрешности.
Систематической погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остаётся постоянной или закономерно меняется.
Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом.
3. Систематические погрешности
Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.
Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.
Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.
Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).
При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.
Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.
Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».
Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:
- устранение источников погрешностей до начала измерений;
- исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
- внесение известных поправок в результат измерения (исключение погрешностей начислением);
- оценка границ систематических погрешностей, если их нельзя исключить.
По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.
Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).
Прогрессивные погрешности – погрешности, которые в процессе измерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).
И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.
ВИДЕО УРОК
Абсолютная погрешность.
Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.
Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.
Существует формула
абсолютной погрешности. Обозначим точное число буквой А, а буквой а –
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:
∆а = А – а.
ПРИМЕР:
В школе учится 374 ученика. Если округлить это число до 400,
то абсолютная погрешность измерения равна:
400 – 374 = 26.
ПРИМЕР:
На предприятии 1284 рабочих и
служащих. При округлении этого числа до 1300 абсолютная
погрешность составляет
1300 – 1284 = 16.
При округлении до 1280 абсолютная
погрешность составляет
1284 – 1280 = 4.
Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.
ПРИМЕР:
Торговые весы могут дать абсолютную погрешность, не
превышающую 5 г, а аптекарские – не превышающую одной сотой грамма.
Записывают
абсолютную погрешность числа, используя знак
±.
ПРИМЕР:
Длина рулона обоев составляет.
30 м ± 3
см.
Границу абсолютной
погрешности называют предельной абсолютной погрешностью.
Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.
ПРИМЕР:
Допустим, что при измерении коридора длиной в 20
м мы допустили абсолютную погрешность
всего только в 1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 18
см длины, мы тоже допустили абсолютную
погрешность в 1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 20
м ошибка в 1
см вполне допустима и неизбежна, но
на 18
см такая ошибка является очень грубой.
Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 20 м погрешность в 1 см
составляет
долю
измеряемой величины, а при измерении корешка книги погрешность в 1 см составляет
долю
измеряемой величины.
Делаем вывод, что измеряя корешок книги, имеющий 18
см длины и допустив погрешность в 1
см, можно считать измерение с большой ошибкой. Но если погрешность в 1
см была допущена при измерении коридора
длиной в 20
м, то это измерение можно считать максимально точным.
Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.
Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 0,5 мм.
ПРИМЕР:
Для измерения длины болта использованы метровая линейка с
делениями 0,5 см и линейка с
делениями 1 мм. В обоих случаях получен результат 3,5
см. Ясно, что в первом случае отклонение найденной длины 3,5
см от истинной, не
должно по модулю превышать 0,5 см, во втором случае
0,1 см.
Если этот же результат получится при измерении
штангенциркулем, то
p(l; 3,5) = |l – 3,5 ≤ 0,01|.
Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае ∆l = 0,5 и, следовательно,
3
≤ l ≤ 4,
в другом – ∆l = 0,1 и
3,4
≤ l ≤ 3,6.
ПРИМЕР:
Длина листа бумаги формата А4 равна (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно (650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.
РЕШЕНИЕ:
Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной погрешности не
превышает 1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.
При измерении длины листа абсолютная погрешность не
превышает 0,1 см на 29,7 см, то есть в процентном отношении это составляет
0,1
: 29,7 ∙ 100% ≈ 0,33%
измеряемой величины.
Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает
1 км
на 650 км, что в процентном соотношении составляет
1
: 650 ∙ 100% ≈ 0,15%
измеряемой величины.
Видим, что расстояние между городами измерено точнее, чем
длинна листа формата А4.
Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.
Относительная погрешность.
Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.
Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах.
Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.
ПРИМЕР:
Округлим дробь 14,7 до целых и найдём относительную погрешность приближённого
значения:
14,7 ≈ 15,
Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.
ПРИМЕР:
При измерении в (сантиметрах) толщины
b
стекла и длины l книжной полки
получили следующие результаты:
b ≈ 0,4 с
точностью до 0,1,
l ≈ 100 с
точностью до 0,1.
Абсолютная погрешность каждого из этих измерений не
превосходит 0,1. Однако 0,1 составляет
существенную часть числа 0,4 и
ничтожную часть числа 100. Это показывает, что качество второго
измерения намного выше, чем первого.
В результате измерения нашли,
что b ≈ 0,4 с точностью до 0,1, то
есть абсолютная погрешность измерения не превосходит 0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно
то есть относительная погрешность приближения не превосходит 25%.
Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит
Говорят, что в первом случае измерение выполнено с
относительной точностью до 25%,
а во втором – с относительной точностью до 0,1%.
ПРИМЕР:
Если взять абсолютную погрешность в 1
см, при измерении длины отрезков 10
см и 10
м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для
отрезка длиной в 10 см погрешность
в 1
см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, эта ошибка всего в 0,1%.
Чем меньше относительная погрешность
измерения, тем оно точнее.
Различают
систематические и случайные погрешности.
Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.
Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.
В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.
ПРИМЕР:
Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря – 50
г. Взвешивание показало 3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 50
г. Относительная погрешность не превосходит
50/3600 ≈
1,4%.
Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.
Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.
В предыдущем примере
за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность 1,4%.
Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность
100 г, 150 г и вообще всякое
число, большее чем 50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 4,78 без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.
Предельная
абсолютная погрешность обозначается греческой буквой ∆ (<<дельта>>),
предельная относительная погрешность – греческой буквой δ
(<<дельта малая>>). Если приближённое число обозначить буквой а,
Правила округления.
На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.
ПРИМЕР:
Для х = 1,7 ± 0,2 относительная погрешность измерений равна:
ПРИМЕР:
Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 17,9 см. Какова предельная относительная погрешность этого
измерения ?
РЕШЕНИЕ:
Здесь а =
17,9 см. Можно принять ∆ = 0,1 см, так как с точностью
до 1 мм
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину). Относительная погрешность равна
Округляя, находим
ПРИМЕР:
Цилиндрический поршень имеет около 35
мм в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла 0,05% ?
РЕШЕНИЕ:
По условию, предельная относительная
погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная абсолютная
погрешность равна
или, усиливая, 0,02
мм.
Можно воспользоваться
формулой
Подставляя в формулу
а = 35,
𝛿 = 0,0005,
имеем
Значит,
∆
= 35 × 0,0005 = 0,0175 мм.
Действия над приближёнными числами.
Сложение и вычитание приближённых чисел.
Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.
ПРИМЕР:
Складываются приближённые числа
265 и 32.
РЕШЕНИЕ:
Пусть предельная погрешность первого есть 5,
а второго 1. Тогда предельная погрешность суммы равна
5
+ 1 = 6.
Так, если истинное значение первого есть 270,
а второго 33, то приближённая сумма
265
+ 32 = 297
на 6 меньше истинной
270
+ 33 = 303.
ПРИМЕР:
Найти сумму приближённых чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Предельная погрешность каждого слагаемого
0,00005.
Предельная погрешность суммы:
0,00005
∙ 9 = 0,00045.
Значит, в последнем (четвёртом) знаке суммы возможна ошибка до 5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 0,619,
здесь все знаки верные.
При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 1, 2, 3, 4 или даже на 5 единиц в ту и в другую сторону.
Например, первое
слагаемое может быть больше своего истинного значения на 4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.
Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 0,00045,
это произойдёт:
– когда истинная величина каждого слагаемого больше
приближённой величины на 0,00005;
– когда истинная величина каждого слагаемого меньше
приближённой величины на 0,00005.
Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 0,0000002% всех возможных случаев.
Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 0,07%
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 2% всех возможных случаев, а одну единицу –
примерно в 25%.
В остальных 75% случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.
ПРИМЕР:
Найти сумму точных чисел:
0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667
+ 0,0625 + 0,0588 + 0,0556 + 0,0526.
РЕШЕНИЕ:
Сложение даёт следующий результат – 0,6187.
Округлим их до тысячных и сложим:
0,091
+ 0,083 + 0,077 + 0,071 + 0,067
+ 0,062 + 0,059 + 0,056 + 0,053 = 0,619.
Предельная погрешность суммы:
0,0005
∙ 9 = 0,0045.
Приближённая сумма отличается от истинной на 0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.
Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет:
0,005
∙ 9 = 0,045.
Между тем получим:
0,09
+ 0,08 + 0,08 + 0,07 + 0,07
+ 0,06 + 0,06 + 0,06 + 0,05 = 0,62.
Истинная погрешность составляет только 0,0013.
Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.
ПРИМЕР:
Пусть предельная погрешность приближённого
уменьшаемого 85 равна 2,
а предельная погрешность вычитаемого 32 равна 3.
Предельная погрешность разности
85
– 32 = 53
есть
2
+ 3 = 5.
В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться
85
+ 2 = 87 и
32
– 3 = 29.
Тогда истинная разность есть
87
– 29 = 58.
Она на 5 отличается от
приближённой разности 53.
Относительная погрешность суммы и разности.
Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.
Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.
ПРИМЕР:
Найти предельную абсолютную и предельную относительную
погрешность суммы чисел:
24,4
+ 25,2 + 24,7.
РЕШЕНИЕ:
В каждом слагаемом суммы
24,4
+ 25,2 + 24,7 = 74,3
предельная относительная погрешность примерно одна и та
же, а именно:
0,05
: 25 = 0,2%.
Такова же она и для суммы.
Здесь предельная абсолютная погрешность равна 0,15,
а относительная
0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.
В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.
Относительные погрешности при сложении и вычитании
складывать нельзя.
Умножение и деление приближённых чисел.
При делении и умножении чисел требуется сложить
относительные погрешности.
ПРИМЕР:
Пусть перемножаются приближённые числа 50 и 20, и пусть предельная относительная погрешность первого
сомножителя есть 0,4%, а второго
0,5%.
Тогда предельная относительная погрешность произведения
50
× 20 = 1000
приближённо равна 0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть
50
× 0,004 = 0,2,
а второго
20
× 0,005 = 0,1.
Поэтому истинная величина произведения не больше чем
(50
+ 0,2)(20 + 0,1) = 1009,02,
и не меньше, чем
(50
– 0,2)(20 – 0,1) = 991,022.
Если истинная величина произведения есть 1009,2,
то погрешность произведения равна
1009,2
– 1000 = 9,02,
а если 991,02, то погрешность произведения равна
1000
– 991,02 = 8,98.
Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 9,02.
Предельная относительная погрешность равна
9,02
: 1000 = 0,902%,
то есть приближённо 0,9%.
Задания к уроку 16
- Задание 1
- Задание 2
- Задание 3
- Урок 1. Числовые неравенства
- Урок 2. Свойства числовых неравенств
- Урок 3. Сложение и умножение числовых неравенств
- Урок 4. Числовые промежутки
- Урок 5. Линейные неравенства
- Урок 6. Системы линейных неравенств
- Урок 7. Нелинейные неравенства
- Урок 8. Системы нелинейных неравенств
- Урок 9. Дробно-рациональные неравенства
- Урок 10. Решение неравенств с помощью графиков
- Урок 11. Неравенства с модулем
- Урок 12. Иррациональные неравенства
- Урок 13. Неравенства с двумя переменными
- Урок 14. Системы неравенств с двумя переменными
- Урок 15. Приближённые вычисления
Раздел
1
Приближенные
числа и действия над ними
Лекция 1.
1.1.
Приближенное
значение величины. Абсолютная и относительная погрешности
План лекции
1. Приближенное значение величины. Погрешность
2. Численные методы
3. Абсолютная и относительная погрешности
1. Приближенное значение величины.
Погрешность
В процессе решения задачи вычислитель сталкивается с
различными числами, которые могут быть точными или приближенными. Точные числа
дают истинное значение величины числа, приближенные – близкое к истинному,
причем степень близости определяется погрешностью вычисления.
Например, в утверждениях: «куб имеет 6 граней»; «на руке 5
пальцев»; «в классе 32 ученика»; «в книге 582 страницы» числа 6, 5, 32, 582 –
точные. В утверждениях: «ширина дома 14,25 м»; «вес коробки 50 г»; «в лесу
около 5000 деревьев» числа 14,25; 50; 5000 – приближенные. Измерение ширины
дома производится измерительными средствами, которые сами могут быть неточными;
кроме того, измеритель при измерении допускает ошибку (погрешность). При
взвешивании коробки также допускается ошибка, так как автоматические весы не
чувствительны к увеличению или уменьшению веса на 0,5 г. Произвести точно
подсчет количества деревьев в лесу невозможно, так как некоторые деревья могут
быть подсчитаны дважды; другие совсем не включались в счет; некоторые деревья
были отнесены к кустарникам и исключены из счета, и, наоборот, кустарники
включены в счет количества деревьев.
Во многих случаях жизни невозможно найти точное значение
величины числа и вычислителю приходится довольствоваться его приближенным
значением. Кроме того, очень часто вычислитель сознательно заменяет точное
значение приближенным в целях упрощения вычислений.
Таким образом, приближенным
числом а называется число, незначительно
отличающееся от точного числа А и заменяющее последнее в вычислениях.
При решении той или иной задачи вручную или на
вычислительной машине мы получаем числовой результат, который, как правило, не
является точным, так как при постановке задачи и в ходе вычислений возникают погрешности. Поэтому любая задача, связанная с
массовыми действиями над числами, может быть решена с той или иной степенью
точности. В связи с этим при постановке задачи должна быть указана точность ее
решения, т. е. задана погрешность, максимально допустимая в процессе всех вычислений.
Источниками погрешностей (ошибок) могут быть:
1) неточное отображение реальных процессов с помощью
математики, в связи с чем рассматривается не сам процесс, а его
идеализированная математическая модель. Не всегда реальные явления природы
можно точно отобразить математически. Поэтому принимаются условия, упрощающие
решение задачи, что вызывает появление погрешностей. Некоторые задачи
невозможно решить в точной постановке и они могут заменяться другими задачами,
близкими по результатам первым. При этом также возникают погрешности;
2) приближенное выражение величин, входящих в условие
задачи, вследствие их неточного измерения. Это погрешности исходных данных,
физических констант, чисел π, е и др.;
3) замена бесконечных процессов, пределами которых являются
искомые величины, конечной последовательностью действий. Сюда относятся
погрешности, образующиеся в результате обрыва какого-то бесконечного процесса
на некотором этапе. Например, если в ряде
sin x = x-x3/3!+x5/5!-x7/7!+…
взять определенное количество членов и принять их сумму за
sin х, то мы, естественно, допускаем погрешность;
4) округление исходных данных, промежуточных или
окончательных результатов, когда при вычислениях используется лишь конечное
число цифр числа.
При отбрасывании младших разрядов числа имеет место
погрешность. Пусть, например, число 0,7835478931 требуется записать в ячейку
электронной цифровой вычислительной машины с разрядной сеткой, допускающей
запись семизначного десятичного числа. Поэтому данное число нужно округлить
так, чтобы в нем осталось не более семи знаков после запятой. Тогда округленное
число примет следующий вид: 0,7835479;
5) кроме указанных выше случаев, погрешности могут
появляться в результате действий над приближенными числами. В этом случае
погрешности исходных данных в какой-то мере переносятся на результат
вычислений.
Полная погрешность является результатом сложного
взаимодействия всех видов погрешностей. При решении конкретных задач те или
иные погрешности могут отсутствовать или мало влиять на образование полной
погрешности. Однако для полного анализа погрешностей необходимо учитывать все
их виды.
Во всех случаях полная погрешность не может превышать по
своей абсолютной величине суммы абсолютных величин всех видов погрешностей, но
обычно она редко достигает такой максимальной величины.
Таким образом, погрешности можно подразделить на три
большие группы:
1) исходные, или неустранимые, к которым относятся
погрешности, возникающие в результате приближенного описания реальных процессов
и неточного задания исходных данных, а также погрешности, связанные с
действиями над приближенными числами. Эти погрешности проходят через все
вычисления и, являются неустранимыми;
2) погрешности округления (зарождающиеся), которые
появляются в результате округления исходных данных, промежуточных и
окончательных результатов;
3) остаточные, возникающие в результате замены бесконечных
процессов конечной последовательностью действий;
2. Численные методы
На практике в большинстве случаев найти точное решение
математических задач не удается. Это происходит главным образом не потому, что
мы не умеем это сделать, а поскольку искомое решение обычно не выражается в
привычным для нас элементарных или других известных функциях. Поэтому важное
значение приобрели методы, особенно в связи с возрастанием роли математических
методов в различных областях науки и техники и с появлением высокопроизводительных
ЭВМ.
Под численными методами подразумевается методы решения
задач, сводящиеся к арифметическим и некоторых логическим действиям над
числами, т.е. к тем действиям, которые выполняет ЭВМ.
В зависимости от сложности задачи, заданной точности,
применяемого метода и т.д. может потребоваться выполнить от нескольких десятков
многих миллиардов действий. Если число действий не превышают тысячи, то с такой
задачей обычно может справиться человек, имя в распоряжении калькулятор и набор
таблиц элементарных функций. Однако без ЭВМ явно не обойтись, если для решения
задач нужно выполнить, скажем, порядка миллиона действий и тем более, когда
решение должно быть найдено в жатые сроки.
Решение, полученное численным методом, обычно является
приближенным, т.е. содержит некоторую погрешность.
Оценка погрешности может быть произведена: с помощью
абсолютной погрешности; с помощью относительной погрешности; с помощью
остаточного члена; с помощью статистических оценок.
При работе с приближенными величинами вычислитель должен
уметь:
а) давать математические характеристики точности
приближенных величин;
б) зная степень точности исходных данных, оценить степень
точности результатов;
в) брать исходные данные с такой степенью точности, чтобы
обеспечить заданную точность результата. В этом случае не следует слишком
завышать точность исходных данных, чтобы избавить вычислителя от бесполезных
расчетов;
г) уметь правильно построить вычислительный процесс, чтобы
избавить его от тех выкладок, которые не окажут влияния на точные цифры
результата.
3. Абсолютная и относительная
погрешности
Пусть a – точное, вообще говоря, неизвестное
числовое значение некоторой величины.
a* –
известное приближенное числовое значение этой величины (приближенное число).
Абсолютная величина разности между точным числом и его
приближенным значением называется абсолютной погрешностью приближенного числа:
(1)
Здесь возможны два случая.
1. Точное чиcло а нам известно. Тогда абсолютная;
погрешность приближенного числа легко находится по формуле (1).
Пример 1. Пусть a
= 784,2737, a* = 784,274; тогда; абсолютная погрешность Δа
= |а- a*| = |784,2737—784,274| = 0,0003.
2. Точное число a нам неизвестно, тогда вычислить
абсолютную погрешность по формуле (1) нельзя. Поэтому пользуются понятием
границы абсолютной погрешности, удовлетворяющей неравенству
|a — a*| Δа*
Граница абсолютной погрешности, т. е. число, заведомо
превышающее абсолютную погрешность (или в крайнем случае равное ей), называется
предельной абсолютной погрешностью.
Следовательно, если Δа* – предельная
абсолютная погрешность, то
Δ(а*) = |а- a*| Δа* (2)
Значение точного числа А всегда заключено в следующих
границах:
a* — Δа* a
a* + Δа*. (3)
Выражение a* — Δа* есть приближение числа
a по недостатку, а а + Δа* – приближение числа a
по избытку. Значение числа a записывается так:
a = а ± Δа* (3′)
Пример 2. Число 45,3 получено округлением. Точное
значение числа неизвестно, однако, пользуясь правилами округления чисел, можно
сказать, что абсолютная погрешность не превышает (меньше или равна) 0,05.
Следовательно, границей абсолютной
погрешности (предельной абсолютной погрешностью) можно считать 0,05. Записывают
это так: 45,3 ( ± 0,05). Скобки часто опускают, так что запись 45,3 ± 0,05
означает то же самое. Двойной знак ± означает, что отклонение приближенного
значения числа от точного возможно в обе стороны. В качестве границы абсолютной
погрешности берут по возможности наименьшее число.
Пример 3. При измерении длины отрезка оказалось,
что ошибка, допущенная нами, не превышает 0,5 см; тем более она не превышает 1,
2 или 3 см. Каждое из этих чисел можно считать границей абсолютной погрешности.
Однако нужно указать наименьшую из них, так как чем меньше граница абсолютной
погрешности, тем точнее выражается приближенное значение числа. В записи
приближенного числа, полученного в результате измерения, обычно отмечают его
предельную абсолютную погрешность.
На
практике часто применяют выражения типа: «с точностью до 0,01»; «с точностью до
1 см и т. д. Это означает, что предельная абсолютная погрешность соответственно
равна 0,01; 1 см и т. д.
Пример 4. Если длина отрезка l = 184 см измерена с точностью до 0,05
см, то пишут l= 184 см ±0,05 см. Здесь предельная абсолютная
погрешность Δl*= 0,05 см, а точная величина
длины l отрезка заключена в следующих
границах: 183,95 см l
184,05 см.
По
абсолютной и предельной абсолютной погрешностям нельзя судить о том, хорошо или
плохо произведено измерение.
Пример 5. Пусть при измерении книги и
длины стола были получены результаты: l1 =
28,4 ±0,1 (см) и l2 = 110,3 ±0,1 (см). И в первом, и во
втором случае предельная абсолютная погрешность составляет 0,1 см. Однако
второе измерение было произведено более точно, чем первое.
Для
того чтобы определить качество произведенных измерений, необходимо определить,
какую долю составляет абсолютная или предельная абсолютная погрешность от
измеряемой величины, В связи с этим вводится понятие относительной погрешности.
Относительной
погрешностью а приближенного числа а называется
отношение абсолютной погрешности Δа к модулю точного числа А
(А0), т.е.
а=
(4)
Отсюда
Δа = |A| а (4’)
Число
*а, заведомо
превышающее относительную погрешность (или в крайнем случае равное ей),
называется предельной относительной погрешностью:
а
*а
.
(5)
Из
соотношений (4) и (5) вытекает, что
*а; Δа
|A|
а*.
Из
определения предельной абсолютной погрешности следует, что ΔаΔа*.
Тогда можно записать
Δа*=|A| а*.
(6)
и
за предельную относительную погрешность приближенного числа а можно
принять
а* =
. (7)
Учитывая,
что А, как правило, неизвестно и что А а,
равенства (6) и (7) можно записать так:
Δа*=|a| а*,
(6′)
а* =
. (7’)
Возвращаясь к примеру 5, найдем
предельные относительные погрешности измерения книги и стола:
*l1 = 0,1(см)/28,4(см)
0,0035, или 0,35%;
*l2 = 0,1(см)/110,3(см)
0,009, или 0,09%.
Таким образом, измерение стола было произведено
намного точнее.
Очевидно, что как
относительная погрешность, так и предельная относительная погрешность
представляют собой отвлеченные числа, не зависящие от единиц, в которых
выражаются результаты измерений.
Пример 6. Определить (в процентах) предельную
относительную погрешность приближенного числа а = 35,148 ±0,00074.
Решение. Воспользуемся формулой (7). Тогда
а* =
=0,00074/35,148= 0,000021
0,0021%.
Пример 7. Определить предельную абсолютную
погрешность приближенного числа а = 4,123, если а* = 0,01%.
Решение. Запишем проценты в виде десятичной дроби
и для определения предельной абсолютной погрешности и воспользуемся формулой
(6′); тогда
Δа* = | а | а*
= 4,123 • 0,0001 = 0,00042.
Пример 8. Определить относительные погрешности
чисел х и у, полученных при измерении углов. Какой из результатов
более точный?
X |
Δx |
Y |
Δy |
50030’10’’ |
3’’ |
45015’36’’ |
2’’ |
Решение. Переведем заданные значения x и у в секунды и определим относительные
погрешности измерений. Более точным измерением будет то, где относительная
погрешность меньше. Имеем:
x=
181810″ ±3″, x = 3/181810
0,000017
= 0,0017%;
у = 162936″±2″, y=2/162936
0,000013 = 0,0013%.
Измерение y произведено более точно.
Пример 9. Определить, какое равенство точнее: a1= 13/19 0,684
или a2 =
7,21?
Решение. Для нахождения предельных абсолютных
погрешностей берем числа a1 и a2 с большим числом десятичных знаков: 13/19 0,68421;
7,2111. Определяем предельные абсолютные погрешности,
округляя их с избытком:
Δ*а1
= |0,68421
-0,684| 0,00022
Δ*а2= | 7,2111-7,21| 0,0012.
Находим предельные относительные
погрешности:
*а1= Δ*а1/a1 = 0,00022/0,684
0,00033
= 0,033%;
*а2 = Δ*a2/a2 =
0,0012/7,21 0,00017=0,017%.
Второе равенство является более точным,
поскольку *а2 <
*а1.