Грубая ошибка это метрология

7.1. Понятие о грубых погрешностях

Грубая
погрешность, или промах,

это погрешность результата отдельного
измерения, входящего в ряд измерений,
которая для данных условий резко
отличается от остальных результатов
этого ряда. Источником грубых погрешностей
нередко бывают резкие изменения условий
измерения и ошибки, допущенные оператором.
К ним можно отнести:

• неправильный
отсчет по шкале измерительного прибора,
происходящий из-за неверного учета
цены малых делений шкалы;

• неправильная
запись результата наблюдений, значений
отдельных мер использованного набора,
например гирь;


хаотические
изменения параметров питающего СИ
напряжения, например его амплитуды или
частоты.

Грубые
погрешности, как правило, возникают
при однократных измерениях и обычно
устраняются путем повторных измерений.
Их причинами могут быть внезапные и
кратковременные изменения условий
измерения или оставшиеся незамеченными
неисправности в аппаратуре.

7.2. Критерии исключения грубых погрешностей

При
однократных измерениях обнаружить
промах не представляется возможным.
Для уменьшения вероятности появления
промахов измерения проводят два-три
раза и за результат принимают среднее
арифметическое полученных отсчетов.
При
многократных измерениях для обнаружения
промахов используют статистические
критерии, предварительно определив,
какому виду распределения соответствует
результат измерений.

Вопрос
о том, содержит ли результат наблюдений
грубую погрешность, решается общими
методами проверки статистических
гипотез. Проверяемая гипотеза состоит
в утверждении, что результат наблюдения
х, не содержит грубой погрешности, т.е.
является одним из значений измеряемой
величины. Пользуясь определенными
статистическими критериями, пытаются
опровергнуть выдвинутую гипотезу. Если
это удается, то результат наблюдений
рассматривают как содержащий грубую
погрешность и его исключают.

Для
выявления грубых погрешностей задаются
вероятностью q
(уровнем значимости) того, что сомнительный
результат действительно мог иметь
место в данной совокупности результатов
измерений.

Критерий
«трех сигм»
применяется
для результатов измерений, распределенных
по нормальному закону. По этому критерию
считается, что результат, возникающий
с вероятностью q
< 0,003, маловероятен и его можно считать
промахом, если |х̅
i|
> 3Sx
, где Sx
— оценка СКО измерений. Величины
х и Sx
вычисляют без учета экстремальных
значений xi.
Данный
критерий надежен при числе измерений
n
>
20…
50.

Критерий
Романовского
применяется,
если число измерений n
< 20. При этом вычисляется отношение
|(х̅
— xi)/SX|
= 
и сравнивается с критерием т,
выбранным по табл. 7.1. Если 

т,
то результат хi
считается промахом и отбрасывается.

Пример
7.1.
При диагностировании топливной системы
автомобиля результаты пяти измерений
расхода топлива составили: 22, 24, 26, 28, 30
л на 100 км. Последний результат вызывает
сомнение. Проверить по критерию
Романовского, не является ли он промахом.

Найдем
среднее арифметическое значение расхода
топлива и его СКО без учета последнего
результата, т.е. для четырех измерений.
Они соответственно равны 25 и 2,6 л на 100
км.

Поскольку
n
< 20, то по критерию Романовского при
уровне значимости 0,01 и n
= 4 табличный коэффициент т
= 1,73. Вычисленное для последнего, пятого
измерения 
= |(25
30)|/2,6
= 1,92 > 1,73 .

Критерий
Романовского свидетельствует о
необходимости отбрасывания последнего
результата измерения.

Критерий
Шарлье
используется,
если число наблюдений в ряду велико
(n>
20).
Тогда по теореме Бернулли [56] число
результатов, превышающих по абсолютному
значению среднее арифметическое
значение на величину КШSx,
будет n[l
— Ф(КШ)],
где Ф(КШ)
— значение нормированной функции
Лапласа для X
= КШ.
Если сомнительным в ряду результатов
наблюдений является один результат,
то n[1-Ф(Кш)]
= 1. Отсюда Ф(КШ)
= (n
-1)/n.

Значения
критерия Шарлье приведены в табл. 7.2.

Таблица
7.1

Значения
критерия
Романовского

q

n
=4

n
= 6

n
=
8

n
=
10

n
=
12

n
=
15

n
= 20

0,01

1,73

2,16

2,43

2,62

22,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Таблица
7.2

Значения
критерия Шарльe

п

5

10

20

30

40

50

100

Кщ

1,3

1,65

1.96

2,13

2,24

2,32

2,58

Таблица
7.3

Значения
критерия Диксона

n

Zq
при
q,
равном

0,10

0,05

0,02

0,01

4

0,68

0,76

0,85

0,89

6

0,48

0,56

0,64

0,70

8

0,40

0,47

0,54

0,59

10

0,35

0,41

0,48

0,53

14

0,29

0,35

0,41

0,45

16

0,28

0,33

0,39

0,43

18

0,26

0,31

0,37

0,41

20

0,26

0,30

0,36

0,39

30

0,22

0,26

0,31

0,34

Пользуясь
критерием Шарлье, отбрасывают результат,
для значения которого в ряду из n
наблюдений выполняется неравенство
i
— х̅|
> КШSx
.

Вариационный
критерий Диксона
удобный
и достаточно мощный (с малыми вероятностями
ошибок). При его применении полученные
результаты наблюдений записывают в
вариационный возрастающий ряд х1,
х2,
. . ., xn
(x1
< х2
< . . .< хп).
Критерий Диксона определяется как КД
= (хn
— xn-1/(xn
–x1).
Критическая область для этого критерия
Р(КД
> Zq)
= q.
Значения Zf(
приведены в табл. 7.3 [56].

Контрольные
вопросы

1.
Что такое грубые погрешности и промахи?
Как определить их присутствие в выборке
по виду закона распределения или
гистограмме?

2.
Расскажите о критерии «трех сигм»
и его модификациях.

3.
Как применить критерий Романовского
для исключения из выборки промахов?

4.
В чем суть критерия Шарлье?

5.
Расскажите об использовании вариационного
критерия Диксона для нахождения
промахов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #



В статье рассмотрены различные критерии отбрасывания грубых погрешностей измерений, применяемые в практической деятельности, на основе рекомендаций ведущих специалистов-метрологов, а также с учетом действующих в настоящий момент нормативных документов.


Приведен пример использования Excel при оценке грубых погрешностей по критериям Стьюдента и Романовского при обработке реальных результатов измерений.



Ключевые слова:



грубые погрешности, критерии согласия, сомнительные значения, уровень значимости, нормальное распределение, критерий согласия Стьюдента, критерий Романовского, выборка, отклонения, Excel.

Одним из важнейших условий правильного применения статистических оценок является отсутствие грубых ошибок при наблюдениях. Поэтому все грубые ошибки должны быть выявлены и исключены из рассмотрения в самом начале обработки наблюдений.

Единственным достаточно надежным способом выявления грубых ошибок является тщательный анализ условий самих испытаний. При этом наблюдения, проводившиеся в нарушенных условиях, должны отбрасываться, независимо от их результата. Например, если при проведении эксперимента, связанного с электричеством, в лаборатории на некоторое время был выключен ток, то весь эксперимент обязательно нужно проводить заново, хотя результат, быть может, не сильно отличается от предыдущих измерений. Точно так же отбрасываются результаты измерений на фотопластинках с поврежденной эмульсией и вообще на любых образцах с обнаруженным позднее дефектом.

На практике, однако, не всегда удается провести подобный анализ условий испытания. Чаще всего приходится иметь дело с окончательным цифровым материалом, в котором отдельные данные вызывают сомнение лишь своим значительным отклонением от остальных. При этом сама «значительность» отклонения во многом субъективна — зачастую приходится сталкиваться со случаями, когда исследователь отбрасывает наблюдения, которые ему не понравились, как ошибочные исключительно по той причине, что они нарушают уже созданную им в воображении картину изучаемого процесса.

Строгий научный анализ готового ряда наблюдений может быть проведен лишь статистическим путем, причем должен быть достаточно хорошо известен характер распределения наблюдаемой случайной величины. В большинстве случаев исследователи исходят из нормального распределения. Каждая грубая ошибка будет соответствовать нарушению этого распределения, изменению его параметров, иными словами, нарушится однородность испытаний (или, как говорят

,

однородность наблюдений), поэтому выявление грубых ошибок можно трактовать как проверку однородности наблюдений.

Промахи, или грубые погрешности, возникают при единичном измерении и обычно устраняются путем повторных измерений. Причиной их возникновения могут быть:

  1. Объективная реальность (наш реальный мир отличается от идеальной модели мира, которую мы принимаем в данной измерительной задаче);
  2. Внезапные кратковременные изменения условий измерения (могут быть вызваны неисправностью аппаратуры или источников питания);
  3. Ошибка оператора (неправильное снятие показаний, неправильная запись и т. п.).

В третьем случае, если оператор в процессе измерения обнаружит промах, он вправе отбросить этот результат и провести повторные измерения.

В настоящее время определение грубой погрешности приведено в ГОСТ Р 8.736–2011: «Грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей» [1, с. 6].

Общие подходы к методам отсеивания грубых погрешностей, как это уже давно принято в практике измерений, заключаются в следующем.

Задаются вероятностью

Р

или уровнем значимости

α

(

) того, что результат наблюдения содержит промах. Выявление сомнительного результата осуществляют с помощью специальных критериев. Операция отбрасывания удаленных от центра выборки сомнительных значений измеряемой величины называется «цензурированием выборки».

Проверяемая гипотеза состоит в утверждении, что результат наблюдения

x

i


не содержит грубой погрешности, т. е. является одним из значений случайной величины

x

с законом распределения Fx(x), статистические оценки параметров которого предварительно определены. Сомнительным может быть в первую очередь лишь наибольший x

max

или наименьший xmin из результатов наблюдений.

Предложим для практического использования наиболее простые методы отсева грубых погрешностей.

Если в распоряжении экспериментатора имеется выборка небольшого объема

n

≤ 25, то можно воспользоваться методом вычисления максимального относительного отклонения [2, с. 149]:

(1)

где

x


i

— крайний (наибольший или наименьший) элемент выборки, по которой подсчитывались оценки среднего значения

и среднеквадратичного отклонения

;


τ


1-


p

— табличное значение статистики

τ

, вычисленной при доверительной вероятности

.

Таким образом, для выделения аномального значения вычисляют значение статистики,

(2)

которое затем сравнивают с табличным значением

τ

1-α


:

τ





τ

1-α


. Если неравенство

τ



τ


1-α

соблюдается, то наблюдение не отсеивают, если не соблюдается, то наблюдение исключают. После исключения того или иного наблюдения или нескольких наблюдений характеристики эмпирического распределения должны быть пересчитаны по данным сокращенной выборки.

Квантили распределения статистики

τ

при уровнях значимости

α

= 0,10; 0,05; 0,025 и 0,01 или доверительной вероятности


=

0,90; 0,95; 0,975 и 0,99 приведены в таблице 1. На практике очень часто используют уровень значимости

α

= 0,05 (результат получается с 95 %-й доверительной вероятностью).

Функции распределения статистики

τ

определяют методами теории вероятностей. По данным таблицы, приведенной в источниках [2, с. 283; 3, с. 184] при заданной доверительной вероятности

или уровне значимости

α

можно для чисел измерения п = 3–25 найти те наибольшие значения

которые случайная величина

может еще принять по чисто случайным причинам.

Процедуру отсева можно повторить и для следующего по абсолютной величине максимального относительного отклонения, но предварительно необходимо пересчитать оценки среднего значения

и среднеквадратичного отклонения

для выборки нового объема

Таблица 1


Квантили распределения максимального относительного отклонения при отсеве грубых погрешностей [2, с. 283]


n

Уровень значимости

α


n

Уровень значимости

α

0,10

0,05

0,025

0,01

0,10

0,05

0,025

0,01

3

1,41

1,41

1,41

1,41

15

2,33

2,49

2,64

2,80

4

1,65

1,69

1,71

1,72

16

2,35

2,52

2,67

2,84

5

1,79

1,87

1,92

1,96

17

2,38

2,55

2,70

2,87

6

1,89

2,00

2,07

2,13

18

2,40

2,58

2,73

2,90

7

1,97

2,09

2,18

2,27

19

2,43

2,60

2,75

2,93

8

2,04

2,17

2,27

2,37

20

2,45

2,62

2,78

2,96

9

2,10

2,24

2,35

2,46

21

2,47

2,64

2,80

2,98

10

2,15

2,29

2,41

2,54

22

2,49

2,66

2,82

3,01

11

2,19

2,34

2,47

2,61

23

2,50

2,68

2,84

3,03

12

2,23

2,39

2,52

2,66

24

2,52

2,70

2,86

3,05

13

2,26

2,43

2,56

2,71

25

2,54

2,72

2,88

3,07

14

2,30

2,46

2,60

2,76

В литературе можно встретить большое количество методических рекомендаций для проведения отсева грубых погрешностей измерений, подробно рассмотренных в [4, с. 25]. Обратим внимание на некоторые из существующих критериев отсеивания грубых погрешностей.

  1. Критерий «трех сигм» применяется для случая, когда измеряемая величина

    x

    распределена по нормальному закону. По этому критерию считается, что с вероятностью

    Р

    = 0,9973 и значимостью

    α

    = 0,0027 появление даже одной случайной погрешности, большей, чем

    маловероятное событие и ее можно считать промахом, если



    x

    i


    > 3

    S

    x


    , где

    S

    x







    оценка среднеквадратического отклонения (СКО) измерений. Величины

    и

    S

    x


    вычисляют без учета экстремальных значений

    x

    i


    . Данный критерий надежен при числе измерений

    n

    ≥ 20…50 и поэтому он широко применяется. Это правило обычно считается слишком жестким, поэтому рекомендуется назначать границу цензурирования в зависимости от объема выборки: при

6 <

n

≤100 она равна 4

S

x


; при 100 <

n

≤1000 − 4,5

S

x


; при 1000 <

n

≤10000–5

Sx

. Данное правило также используется только при нормальном распределении.

Практические вычисления проводят следующим образом [5, с. 65]:

  1. Выявляют сомнительное значение измеряемой величины. Сомнительным значением может быть лишь наибольшее, либо наименьшее значение наблюдения измеряемой величины.
  2. Вычисляют среднее арифметическое значение выборки

    без учета сомнительного значения

    измеряемой величины.

(3)

  1. Вычисляют оценку СКО выборки

    без учета сомнительного значения

    измеряемой величины.

(4)

  1. Вычисляют разность среднеарифметического и сомнительного значения измеряемой величины и сравнивают.

Если

то сомнительное значение отбрасывают, как промах.

Если

то сомнительное значение оставляют как равноправное в ряду наблюдений.

Данный метод «трех сигм» среди метрологов-практиков является самым популярным, достаточно надежным и удобным, так как при этом иметь под рукой какие-то таблицы нет необходимости.

  1. Критерий В. И. Романовского применяется, если число измерений невелико,

    n

    ≤ 20. При этом вычисляется соотношение

(5)

где

— результат, вызывающий сомнение,

— коэффициент, предельное значение которого

определяют по таблице 2. Если

, сомнительное значение

исключают («отбрасывают») как промах. Если


,

сомнительное значение оставляют как равноправное в ряду наблюдений [5, с. 65].

Таблица 2

Значение критерия Романовского

Уровень значимости,

α

Число измерений,

n


n

= 4


n

= 6


n

= 8


n

= 10


n

= 12


n

= 15


n

= 20

0,01

1,73

2,16

2,43

2,62

2,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Несмотря на многообразие существующих и применяемых на практике методов отсеивания грубых погрешностей в настоящее время действует национальный стандарт ГОСТ Р 8.736–2011, который является основным нормативным документом в данной области. В новом стандарте для исключения грубых погрешностей применяется критерий Граббса.

  1. Статистический критерий Граббса (Смирнова) исключения грубых погрешностей основан на предположении о том, что группа результатов измерений принадлежит нормальному распределению [1, с. 8]. Для этого вычисляют критерии Граббса (Смирнова) G1 и G2, предполагая, что наибольший хmax или наименьший xmin результат измерений вызван грубыми погрешностями.

и

(6)

Сравнивают G1 и G2 с теоретическим значением GT критерия Граббса (Смирнова) при выбранном уровне значимости α. Таблица критических значений критерия Граббса (Смирнова) приведена в приложении к стандарту [1, с. 12]. Следует отметить, что критические значения критерия Граббса (Смирнова) GT отличаются от критических значений критериев

t

-статистик или значений критериев Стьюдента при одних и тех же величинах уровней значимости, что может вызывать некоторые трудности у пользователей при выборе конкретного метода отсеивания погрешностей, соответствующего нормативным документам.

Если G1>GТ, то хmax исключают как маловероятное значение. Если G2>GТ, то xmin исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонение ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.

Если G1

GТ, то хmax не считают промахом и его сохраняют в ряду результатов измерений. Если G2

GТ, то xmin не считают промахом и его сохраняют в ряду результатов измерений.

Отсев грубых погрешностей можно производить и для больших выборок (

n

= 50…100). Для практических целей лучше всего использовать таблицы распределения Стьюдента. Этот метод исключения аномальных значений для выборок большого объема отличается простотой, а таблицы распределения Стьюдента имеются практически в любой книге по математической статистике, кроме того, распределение Стьюдента реализовано в пакете Excel. Распределение Стьюдента относится к категории распределений, связанных с нормальным распределением. Подробно эти распределения рассмотрены в учебниках по математической статистике [3, с. 24].

Известно, что критическое значение

τ


p

(

p

— процентная точка нормирования выборочного отклонения) выражается через критическое значение распределения Стьюдента

t

α, n-2


[6, с. 26]:

(7)

Учитывая это, можно предложить следующую процедуру отсева грубых погрешностей измерения для больших выборок (

n

= 100):

1) из таблицы наблюдений выбирают наблюдение имеющее наибольшее отклонение;


2)

по формуле

вычисляют значение статистики

τ

;


3)

по таблице (или в программе Excel) находят процентные точки

t

-распределения Стьюдента

t


(



α,


n


-2



)

:

t


(95




%, 98)

= 1,6602, и

t

(



99




%, 98)

= 3,1737;

По предыдущей формуле в программе Excel вычисляют соответствующие точки

t


(95




%, 100)

= 1,66023и

t


(99




%, 100)

=3,17374.

Сравнивают значение расчетной статистики с табличными критическими значениями и принимают решение по отсеву грубых погрешностей.

Рекомендуемый метод отсева грубых погрешностей удобен еще тем, что максимальные относительные отклонения могут быть разделены на три группы: 1)

2)

3)

.

Наблюдения, попавшие в первую группу, нельзя отсеивать ни в коем случае. Наблюдения второй группы можно отсеять, если в пользу этой процедуры имеются еще и другие соображения экспериментатора (например, заключения, сделанные на основе изучения физических, химических и других свойств изучаемого явления). Наблюдения третьей группы, как правило, отсеивают всегда.

Рассмотрим далее пример с использованием средств программного пакета Excel, который позволяет снизить трудоемкость расчетов при осуществлении данной процедуры. К сожалению, в настоящее время средства Excel не позволяют автоматизировать расчеты по всем известным критериям отсеивания грубых погрешностей, поэтому проиллюстрируем рассмотренные методы с использованием доступных в Excel критериев Стьюдента.


Пример 1.

Имеется выборка из 100 шт. резисторов с номинальным сопротивлением

R


н

= (150,0 ± 5 %) кОм, которая используется для оценки качества партии резисторов (генеральная совокупность). Используя критерий Стьюдента, отсеем грубые погрешности (промахи) при измерениях.

  1. Заносим данные измерений в таблицу Excel в ячейки В2:В101
  2. Составляем вариационный ряд — располагаем данные в порядке возрастания с помощью функции «Сортировка по возрастанию» в ячейках С2:С101 (рис. 1)

Фрагмент диалогового окна с данными измерений и вариационного ряда

) того, что результат наблюдения содержит промах. Выявление сомнительного результата осуществляют с помощью специальных критериев. Операция отбрасывания удаленных от центра выборки сомнительных значений измеряемой величины называется «цензурированием выборки».

Проверяемая гипотеза состоит в утверждении, что результат наблюдения

x

i


не содержит грубой погрешности, т. е. является одним из значений случайной величины

x

с законом распределения Fx(x), статистические оценки параметров которого предварительно определены. Сомнительным может быть в первую очередь лишь наибольший x

max

или наименьший xmin из результатов наблюдений.

Предложим для практического использования наиболее простые методы отсева грубых погрешностей.

Если в распоряжении экспериментатора имеется выборка небольшого объема

n

≤ 25, то можно воспользоваться методом вычисления максимального относительного отклонения [2, с. 149]:

(1)

где

x


i

— крайний (наибольший или наименьший) элемент выборки, по которой подсчитывались оценки среднего значения

и среднеквадратичного отклонения

;


τ


1-


p

— табличное значение статистики

τ

, вычисленной при доверительной вероятности

.

Таким образом, для выделения аномального значения вычисляют значение статистики,

(2)

которое затем сравнивают с табличным значением

τ

1-α


:

τ





τ

1-α


. Если неравенство

τ



τ


1-α

соблюдается, то наблюдение не отсеивают, если не соблюдается, то наблюдение исключают. После исключения того или иного наблюдения или нескольких наблюдений характеристики эмпирического распределения должны быть пересчитаны по данным сокращенной выборки.

Квантили распределения статистики

τ

при уровнях значимости

α

= 0,10; 0,05; 0,025 и 0,01 или доверительной вероятности


=

0,90; 0,95; 0,975 и 0,99 приведены в таблице 1. На практике очень часто используют уровень значимости

α

= 0,05 (результат получается с 95 %-й доверительной вероятностью).

Функции распределения статистики

τ

определяют методами теории вероятностей. По данным таблицы, приведенной в источниках [2, с. 283; 3, с. 184] при заданной доверительной вероятности

или уровне значимости

α

можно для чисел измерения п = 3–25 найти те наибольшие значения

которые случайная величина

может еще принять по чисто случайным причинам.

Процедуру отсева можно повторить и для следующего по абсолютной величине максимального относительного отклонения, но предварительно необходимо пересчитать оценки среднего значения

и среднеквадратичного отклонения

для выборки нового объема

Таблица 1


Квантили распределения максимального относительного отклонения при отсеве грубых погрешностей [2, с. 283]


n

Уровень значимости

α


n

Уровень значимости

α

0,10

0,05

0,025

0,01

0,10

0,05

0,025

0,01

3

1,41

1,41

1,41

1,41

15

2,33

2,49

2,64

2,80

4

1,65

1,69

1,71

1,72

16

2,35

2,52

2,67

2,84

5

1,79

1,87

1,92

1,96

17

2,38

2,55

2,70

2,87

6

1,89

2,00

2,07

2,13

18

2,40

2,58

2,73

2,90

7

1,97

2,09

2,18

2,27

19

2,43

2,60

2,75

2,93

8

2,04

2,17

2,27

2,37

20

2,45

2,62

2,78

2,96

9

2,10

2,24

2,35

2,46

21

2,47

2,64

2,80

2,98

10

2,15

2,29

2,41

2,54

22

2,49

2,66

2,82

3,01

11

2,19

2,34

2,47

2,61

23

2,50

2,68

2,84

3,03

12

2,23

2,39

2,52

2,66

24

2,52

2,70

2,86

3,05

13

2,26

2,43

2,56

2,71

25

2,54

2,72

2,88

3,07

14

2,30

2,46

2,60

2,76

В литературе можно встретить большое количество методических рекомендаций для проведения отсева грубых погрешностей измерений, подробно рассмотренных в [4, с. 25]. Обратим внимание на некоторые из существующих критериев отсеивания грубых погрешностей.

  1. Критерий «трех сигм» применяется для случая, когда измеряемая величина

    x

    распределена по нормальному закону. По этому критерию считается, что с вероятностью

    Р

    = 0,9973 и значимостью

    α

    = 0,0027 появление даже одной случайной погрешности, большей, чем

    маловероятное событие и ее можно считать промахом, если



    x

    i


    > 3

    S

    x


    , где

    S

    x







    оценка среднеквадратического отклонения (СКО) измерений. Величины

    и

    S

    x


    вычисляют без учета экстремальных значений

    x

    i


    . Данный критерий надежен при числе измерений

    n

    ≥ 20…50 и поэтому он широко применяется. Это правило обычно считается слишком жестким, поэтому рекомендуется назначать границу цензурирования в зависимости от объема выборки: при

6 <

n

≤100 она равна 4

S

x


; при 100 <

n

≤1000 − 4,5

S

x


; при 1000 <

n

≤10000–5

Sx

. Данное правило также используется только при нормальном распределении.

Практические вычисления проводят следующим образом [5, с. 65]:

  1. Выявляют сомнительное значение измеряемой величины. Сомнительным значением может быть лишь наибольшее, либо наименьшее значение наблюдения измеряемой величины.
  2. Вычисляют среднее арифметическое значение выборки

    без учета сомнительного значения

    измеряемой величины.

(3)

  1. Вычисляют оценку СКО выборки

    без учета сомнительного значения

    измеряемой величины.

(4)

  1. Вычисляют разность среднеарифметического и сомнительного значения измеряемой величины и сравнивают.

Если

то сомнительное значение отбрасывают, как промах.

Если

то сомнительное значение оставляют как равноправное в ряду наблюдений.

Данный метод «трех сигм» среди метрологов-практиков является самым популярным, достаточно надежным и удобным, так как при этом иметь под рукой какие-то таблицы нет необходимости.

  1. Критерий В. И. Романовского применяется, если число измерений невелико,

    n

    ≤ 20. При этом вычисляется соотношение

(5)

где

— результат, вызывающий сомнение,

— коэффициент, предельное значение которого

определяют по таблице 2. Если

, сомнительное значение

исключают («отбрасывают») как промах. Если


,

сомнительное значение оставляют как равноправное в ряду наблюдений [5, с. 65].

Таблица 2

Значение критерия Романовского

Уровень значимости,

α

Число измерений,

n


n

= 4


n

= 6


n

= 8


n

= 10


n

= 12


n

= 15


n

= 20

0,01

1,73

2,16

2,43

2,62

2,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Несмотря на многообразие существующих и применяемых на практике методов отсеивания грубых погрешностей в настоящее время действует национальный стандарт ГОСТ Р 8.736–2011, который является основным нормативным документом в данной области. В новом стандарте для исключения грубых погрешностей применяется критерий Граббса.

  1. Статистический критерий Граббса (Смирнова) исключения грубых погрешностей основан на предположении о том, что группа результатов измерений принадлежит нормальному распределению [1, с. 8]. Для этого вычисляют критерии Граббса (Смирнова) G1 и G2, предполагая, что наибольший хmax или наименьший xmin результат измерений вызван грубыми погрешностями.

и

(6)

Сравнивают G1 и G2 с теоретическим значением GT критерия Граббса (Смирнова) при выбранном уровне значимости α. Таблица критических значений критерия Граббса (Смирнова) приведена в приложении к стандарту [1, с. 12]. Следует отметить, что критические значения критерия Граббса (Смирнова) GT отличаются от критических значений критериев

t

-статистик или значений критериев Стьюдента при одних и тех же величинах уровней значимости, что может вызывать некоторые трудности у пользователей при выборе конкретного метода отсеивания погрешностей, соответствующего нормативным документам.

Если G1>GТ, то хmax исключают как маловероятное значение. Если G2>GТ, то xmin исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонение ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.

Если G1

GТ, то хmax не считают промахом и его сохраняют в ряду результатов измерений. Если G2

GТ, то xmin не считают промахом и его сохраняют в ряду результатов измерений.

Отсев грубых погрешностей можно производить и для больших выборок (

n

= 50…100). Для практических целей лучше всего использовать таблицы распределения Стьюдента. Этот метод исключения аномальных значений для выборок большого объема отличается простотой, а таблицы распределения Стьюдента имеются практически в любой книге по математической статистике, кроме того, распределение Стьюдента реализовано в пакете Excel. Распределение Стьюдента относится к категории распределений, связанных с нормальным распределением. Подробно эти распределения рассмотрены в учебниках по математической статистике [3, с. 24].

Известно, что критическое значение

τ


p

(

p

— процентная точка нормирования выборочного отклонения) выражается через критическое значение распределения Стьюдента

t

α, n-2


[6, с. 26]:

(7)

Учитывая это, можно предложить следующую процедуру отсева грубых погрешностей измерения для больших выборок (

n

= 100):

1) из таблицы наблюдений выбирают наблюдение имеющее наибольшее отклонение;


2)

по формуле

вычисляют значение статистики

τ

;


3)

по таблице (или в программе Excel) находят процентные точки

t

-распределения Стьюдента

t


(



α,


n


-2



)

:

t


(95




%, 98)

= 1,6602, и

t

(



99




%, 98)

= 3,1737;

По предыдущей формуле в программе Excel вычисляют соответствующие точки

t


(95




%, 100)

= 1,66023и

t


(99




%, 100)

=3,17374.

Сравнивают значение расчетной статистики с табличными критическими значениями и принимают решение по отсеву грубых погрешностей.

Рекомендуемый метод отсева грубых погрешностей удобен еще тем, что максимальные относительные отклонения могут быть разделены на три группы: 1)

2)

3)

.

Наблюдения, попавшие в первую группу, нельзя отсеивать ни в коем случае. Наблюдения второй группы можно отсеять, если в пользу этой процедуры имеются еще и другие соображения экспериментатора (например, заключения, сделанные на основе изучения физических, химических и других свойств изучаемого явления). Наблюдения третьей группы, как правило, отсеивают всегда.

Рассмотрим далее пример с использованием средств программного пакета Excel, который позволяет снизить трудоемкость расчетов при осуществлении данной процедуры. К сожалению, в настоящее время средства Excel не позволяют автоматизировать расчеты по всем известным критериям отсеивания грубых погрешностей, поэтому проиллюстрируем рассмотренные методы с использованием доступных в Excel критериев Стьюдента.


Пример 1.

Имеется выборка из 100 шт. резисторов с номинальным сопротивлением

R


н

= (150,0 ± 5 %) кОм, которая используется для оценки качества партии резисторов (генеральная совокупность). Используя критерий Стьюдента, отсеем грубые погрешности (промахи) при измерениях.

  1. Заносим данные измерений в таблицу Excel в ячейки В2:В101
  2. Составляем вариационный ряд — располагаем данные в порядке возрастания с помощью функции «Сортировка по возрастанию» в ячейках С2:С101 (рис. 1)

Рис. 1. Фрагмент диалогового окна с данными измерений и вариационного ряда

3. Находим среднее значение выборки с помощью мастера функций в категории «Статистические» и функции — СРЗНАЧ, результат в ячейке Н3 (рис. 2).

Фрагмент диалогового окна при нахождении среднего значения выборки

Рис. 2. Фрагмент диалогового окна при нахождении среднего значения выборки

  1. Находим среднеквадратическое отклонение —

    S


    x

    . Выделяем ячейку Н4, вызываем «Мастер функций», категория «Статистические», функция — СТАНДОТКЛОН, результат в ячейке Н4–1,20 (рис. 3).

Фрагмент диалогового окна при нахождении среднего квадратического отклонения

Рис. 2. Фрагмент диалогового окна при нахождении среднего значения выборки

  1. Находим среднеквадратическое отклонение —

    S


    x

    . Выделяем ячейку Н4, вызываем «Мастер функций», категория «Статистические», функция — СТАНДОТКЛОН, результат в ячейке Н4–1,20 (рис. 3).

Рис. 3. Фрагмент диалогового окна при нахождении среднего квадратического отклонения

  1. Находим максимальное значение в выборке —

    x


    макс

    . Выделяем ячейку Н5, в категории «Статистические», функция — МАКС, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н5–153,10 (рис. 4).

Фрагмент диалогового окна при нахождении максимального значения

Рис. 4. Фрагмент диалогового окна при нахождении максимального значения

  1. Находим минимальное значение в выборке —

    x


    мин

    . Выделяем ячейку Н6, в категории «Статистические», функция — МИН, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н6–147,6 (рис. 5).

Фрагмент диалогового окна при нахождении минимального значения

Рис. 4. Фрагмент диалогового окна при нахождении максимального значения

  1. Находим минимальное значение в выборке —

    x


    мин

    . Выделяем ячейку Н6, в категории «Статистические», функция — МИН, выделяем мышкой вариационный ряд C2:С101, результат в ячейке Н6–147,6 (рис. 5).

Рис. 5. Фрагмент диалогового окна при нахождении минимального значения

  1. Находим максимальное и минимальное отклонения — Δ

    макс

    и Δ

    мин

    . Вводим в ячейки Н7 и Н8 формулы:

  1. Находим теоретическое значение —

    t


    теор

    . для максимального и минимального отклонений. Вводим в ячейки Н9 и Н12 формулу

. и

  1. Находим табличное значение

    t


    табл.

    Выделяем ячейку Н10, вызываем в категории «Статистические» функцию — СТЬЮДЕНТ.ОБР, «Вероятность» — 0,95, степени свободы (

    n

    -2) — 98, результат в ячейке Н10–1,66 (рис. 6).

Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

  1. Находим теоретическое значение —

    t


    теор

    . для максимального и минимального отклонений. Вводим в ячейки Н9 и Н12 формулу

. и

  1. Находим табличное значение

    t


    табл.

    Выделяем ячейку Н10, вызываем в категории «Статистические» функцию — СТЬЮДЕНТ.ОБР, «Вероятность» — 0,95, степени свободы (

    n

    -2) — 98, результат в ячейке Н10–1,66 (рис. 6).

Рис. 6. Фрагмент диалогового окна при нахождении табличного значения критерия Стьюдента

  1. Сравниваем теоретическое значение

    t


    теор

    = 2,24 критерия Стьюдента для максимального значения — 153,1 кОм с табличным значением:

    t


    табл

    .= 1,6605.
  2. Аналогично п. 9 проверим на наличие грубой погрешности у минимального значения в выборке — 147,6 кОм. Результат в ячейке Н12–2,35 (рис. 7).

Фрагмент диалогового окна при окончательном анализе данных

Рис. 7. Фрагмент диалогового окна при окончательном анализе данных

  1. Делаем вывод о наличии грубых ошибок в данных измерениях. Рассмотренная процедура подтвердила наши сомнения относительно достоверности максимального и минимального значений в данной выборке, т. е., указанные результаты могут быть отброшены из результатов измерений, и проверка может быть повторена снова без этих данных.

Пример расчета теоретического критерия Романовского по аналогичным формулам в Excel и диалоговое окно представлены на рис. 8, при условии α = 0,05, число измерений

n

= 20, β

табл

= 2,78 (из таблицы 2).

Фрагмент диалогового окна при расчете критерия Романовского

Рис. 7. Фрагмент диалогового окна при окончательном анализе данных

  1. Делаем вывод о наличии грубых ошибок в данных измерениях. Рассмотренная процедура подтвердила наши сомнения относительно достоверности максимального и минимального значений в данной выборке, т. е., указанные результаты могут быть отброшены из результатов измерений, и проверка может быть повторена снова без этих данных.

Пример расчета теоретического критерия Романовского по аналогичным формулам в Excel и диалоговое окно представлены на рис. 8, при условии α = 0,05, число измерений

n

= 20, β

табл

= 2,78 (из таблицы 2).

Рис. 8. Фрагмент диалогового окна при расчете критерия Романовского


Выводы

  1. Для использования различных критериев отбрасывания грубых погрешностей измерений необходимо учитывать требования действующих нормативных документов.
  2. Рассмотренный пример показал, что расчеты погрешностей по критерию Стьюдента с использованием таблиц и формул Excel значительно упрощаются, а процесс отбрасывания грубых погрешностей можно осуществить наиболее качественно и быстро.

Литература:

1. ГОСТ Р 8.736–2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения. — М.: ФГУП Стандартинформ, 2013. — 24 с.

2. Пустыльник Е. И. Статистические методы анализа и обработки наблюдений. — М.: Наука, 1968. — 288 с.

3. Львовский Е. Н. Статистические методы построения эмпирических формул: Учеб. пособие. — М.: Высш. школа, 1982. — 224 с.

4. Фаюстов А. А. Ещё раз о критериях отсеивания грубых погрешностей. — Законодательная и прикладная метрология, 2016, № 5, с. 25–30.

5. Сергеев А. Г. Метрология: Учебник. — М.: Логос, 2005. — 272 с.

6. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, Главная редакция физико-математической литературы, 1983. — 416 с.

Основные термины (генерируются автоматически): диалоговое окно, сомнительное значение, уровень значимости, измеряемая величина, погрешность, критерий, нормальное распределение, ячейка, вариационный ряд, минимальное значение.

7.1. Понятие о грубых погрешностях

Грубая
погрешность, или промах,

это погрешность результата отдельного
измерения, входящего в ряд измерений,
которая для данных условий резко
отличается от остальных результатов
этого ряда. Источником грубых погрешностей
нередко бывают резкие изменения условий
измерения и ошибки, допущенные оператором.
К ним можно отнести:

• неправильный
отсчет по шкале измерительного прибора,
происходящий из-за неверного учета
цены малых делений шкалы;

• неправильная
запись результата наблюдений, значений
отдельных мер использованного набора,
например гирь;


хаотические
изменения параметров питающего СИ
напряжения, например его амплитуды или
частоты.

Грубые
погрешности, как правило, возникают
при однократных измерениях и обычно
устраняются путем повторных измерений.
Их причинами могут быть внезапные и
кратковременные изменения условий
измерения или оставшиеся незамеченными
неисправности в аппаратуре.

7.2. Критерии исключения грубых погрешностей

При
однократных измерениях обнаружить
промах не представляется возможным.
Для уменьшения вероятности появления
промахов измерения проводят два-три
раза и за результат принимают среднее
арифметическое полученных отсчетов.
При
многократных измерениях для обнаружения
промахов используют статистические
критерии, предварительно определив,
какому виду распределения соответствует
результат измерений.

Вопрос
о том, содержит ли результат наблюдений
грубую погрешность, решается общими
методами проверки статистических
гипотез. Проверяемая гипотеза состоит
в утверждении, что результат наблюдения
х, не содержит грубой погрешности, т.е.
является одним из значений измеряемой
величины. Пользуясь определенными
статистическими критериями, пытаются
опровергнуть выдвинутую гипотезу. Если
это удается, то результат наблюдений
рассматривают как содержащий грубую
погрешность и его исключают.

Для
выявления грубых погрешностей задаются
вероятностью q
(уровнем значимости) того, что сомнительный
результат действительно мог иметь
место в данной совокупности результатов
измерений.

Критерий
«трех сигм»
применяется
для результатов измерений, распределенных
по нормальному закону. По этому критерию
считается, что результат, возникающий
с вероятностью q
< 0,003, маловероятен и его можно считать
промахом, если |х̅
i|
> 3Sx
, где Sx
— оценка СКО измерений. Величины
х и Sx
вычисляют без учета экстремальных
значений xi.
Данный
критерий надежен при числе измерений
n
>
20…
50.

Критерий
Романовского
применяется,
если число измерений n
< 20. При этом вычисляется отношение
|(х̅
— xi)/SX|
= 
и сравнивается с критерием т,
выбранным по табл. 7.1. Если 

т,
то результат хi
считается промахом и отбрасывается.

Пример
7.1.
При диагностировании топливной системы
автомобиля результаты пяти измерений
расхода топлива составили: 22, 24, 26, 28, 30
л на 100 км. Последний результат вызывает
сомнение. Проверить по критерию
Романовского, не является ли он промахом.

Найдем
среднее арифметическое значение расхода
топлива и его СКО без учета последнего
результата, т.е. для четырех измерений.
Они соответственно равны 25 и 2,6 л на 100
км.

Поскольку
n
< 20, то по критерию Романовского при
уровне значимости 0,01 и n
= 4 табличный коэффициент т
= 1,73. Вычисленное для последнего, пятого
измерения 
= |(25
30)|/2,6
= 1,92 > 1,73 .

Критерий
Романовского свидетельствует о
необходимости отбрасывания последнего
результата измерения.

Критерий
Шарлье
используется,
если число наблюдений в ряду велико
(n>
20).
Тогда по теореме Бернулли [56] число
результатов, превышающих по абсолютному
значению среднее арифметическое
значение на величину КШSx,
будет n[l
— Ф(КШ)],
где Ф(КШ)
— значение нормированной функции
Лапласа для X
= КШ.
Если сомнительным в ряду результатов
наблюдений является один результат,
то n[1-Ф(Кш)]
= 1. Отсюда Ф(КШ)
= (n
-1)/n.

Значения
критерия Шарлье приведены в табл. 7.2.

Таблица
7.1

Значения
критерия
Романовского

q

n
=4

n
= 6

n
=
8

n
=
10

n
=
12

n
=
15

n
= 20

0,01

1,73

2,16

2,43

2,62

22,75

2,90

3,08

0,02

1,72

2,13

2,37

2,54

2,66

2,80

2,96

0,05

1,71

2,10

2,27

2,41

2,52

2,64

2,78

0,10

1,69

2,00

2,17

2,29

2,39

2,49

2,62

Таблица
7.2

Значения
критерия Шарльe

п

5

10

20

30

40

50

100

Кщ

1,3

1,65

1.96

2,13

2,24

2,32

2,58

Таблица
7.3

Значения
критерия Диксона

n

Zq
при
q,
равном

0,10

0,05

0,02

0,01

4

0,68

0,76

0,85

0,89

6

0,48

0,56

0,64

0,70

8

0,40

0,47

0,54

0,59

10

0,35

0,41

0,48

0,53

14

0,29

0,35

0,41

0,45

16

0,28

0,33

0,39

0,43

18

0,26

0,31

0,37

0,41

20

0,26

0,30

0,36

0,39

30

0,22

0,26

0,31

0,34

Пользуясь
критерием Шарлье, отбрасывают результат,
для значения которого в ряду из n
наблюдений выполняется неравенство
i
— х̅|
> КШSx
.

Вариационный
критерий Диксона
удобный
и достаточно мощный (с малыми вероятностями
ошибок). При его применении полученные
результаты наблюдений записывают в
вариационный возрастающий ряд х1,
х2,
. . ., xn
(x1
< х2
< . . .< хп).
Критерий Диксона определяется как КД
= (хn
— xn-1/(xn
–x1).
Критическая область для этого критерия
Р(КД
> Zq)
= q.
Значения Zf(
приведены в табл. 7.3 [56].

Контрольные
вопросы

1.
Что такое грубые погрешности и промахи?
Как определить их присутствие в выборке
по виду закона распределения или
гистограмме?

2.
Расскажите о критерии «трех сигм»
и его модификациях.

3.
Как применить критерий Романовского
для исключения из выборки промахов?

4.
В чем суть критерия Шарлье?

5.
Расскажите об использовании вариационного
критерия Диксона для нахождения
промахов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ПРОМАХ

ПРОМАХ
ПРОМАХ

ПРО́МАХ, -а (-у), муж.

1. Удар, выстрел мимо цели. Дать п. Бить без промаха.

2. перен. Ошибочный поступок по недомыслию, оплошность. Сделать, допустить п.

Не промах кто (разг.) о том, кто ловок, сообразителен, своего не упустит. Он парень не промах.

Толковый словарь Ожегова.

1949-1992.

.

Синонимы:

Смотреть что такое «ПРОМАХ» в других словарях:

  • ПРОМАХ — ПРОМАХ, промаха, муж. 1. Удар, выстрел мимо цели. Стрелять без промаху. Дать промах. 2. перен. Ошибка, оплошность, неудача. «Тот, сватаясь успел, а тот дал промах.» Грибоедов. Сделать промах. ❖ Не промах (разг.) о человеке ловком, сообразительном …   Толковый словарь Ушакова

  • промах — См. ошибка дать промах, не промах… Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. промах ошибка, погрешность, оплошность, просчет; непопадание; неустойка, неверный шаг, ложный шаг,… …   Словарь синонимов

  • промах — Погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Примечание. Иногда вместо термина «промах» применяют термин грубая погрешность… …   Справочник технического переводчика

  • Промах — участник похода эпигонов, сын Партенопея. (Источник: «Мифы Древней Греции. Словарь справочник.» EdwART, 2009.) …   Энциклопедия мифологии

  • Промах — Промах. Персонаж древнегреческой мифологии. Сын Парфенопея. Мать  нимфа Климена, по версиям, его звали Стратолай, Фесимен или Тлесимен [1]. Участник похода Эпигонов [2] Статуя в Аргосе вместе с другими эпигонами [3], статуя в Дельфах [4].… …   Википедия

  • промах —   Не промах (разг.) о человеке ловком, сообразительном.     Он парень не промах. Милый не промах. Анютка девка не промах. Чехов.     Как малый не промах, я сейчас же рассчитал, как это будет отлично, если я поговорю с Лабуле по душе. Салтыков… …   Фразеологический словарь русского языка

  • промах — 3.1.40 промах (significant fault): Ошибка бóльшая, чем поверочный интервал весоизмерительного датчика v. Приведенные ниже показатели не следует рассматривать как промах, даже если они превышают поверочный интервал весоизмерительного датчика v:… …   Словарь-справочник терминов нормативно-технической документации

  • ПРОМАХ — В промах. Дон. Об оплошности. СДГ 3, 68. Не промах. Разг. О ловком, сообразительном человеке. ДП, 476; ФСРЯ, 363 …   Большой словарь русских поговорок

  • промах — • грубый промах • крупный промах …   Словарь русской идиоматики

  • промах — (иноск.) ошибка, оплошность, ошибочный расчет; промахи давать ошибаться Ср. И на Машку живет промашка . Ср. Как усердно ни хлопочем, Все мы промахи даем: Или цель мы перескочим, Иль до цели не дойдем. Кн. П.А. Вяземский. Si jeunesse savait, si… …   Большой толково-фразеологический словарь Михельсона

Справочник /

Термины /

Механика /

Промахи или грубые ошибки

Термин и определение

Промахи или грубые ошибки

Опубликовано:
masha.klimenko.80

Предмет:
Механика

👍 Проверено Автор24

ошибки, возникающие в результате небрежности отсчета по приборам, неверной записи показаний и т.п.; такие ошибки следует устранять повторными измерениями.

Научные статьи на тему «Промахи или грубые ошибки»

1.

Измерения в физике

Основные типы погрешностей измерений включают в себя:

Грубые ошибки (промахи), которые возникают в результате…
Случайные ошибки возникают по разным причинам, действие которых различны в каждом из опытов, они не могут…
Систематические ошибки возникают в результате неправильного метода измерения, неисправности приборов…
Этих видов ошибок невозможно избежать и они должны быть учтены наряду со случайными ошибками.

Статья от экспертов

Автор24

2.

Инновационные методы измерительных систем в технической диагностики энергетического оборудования

В работе представлены основные требования предъявляемые к типам измерительных систем, используемых в процессах диагностики тяжелого энергетического оборудования методами неразрушающего контроля. Исследованы основные достоинства и недостатки каждого типа измерительных систем. Таким образом, установлена связь между качеством измерения и качество проводимой диагностики энергетического оборудования. Установлено влияние ошибок измерения на получение конечного результата для определения техническог…

3.

Стилистика и литературное редактирование

и смысл использованных стилистических приемов, синтаксические и лексические пристрастия автора, его промахи
и ошибки, редактор сможет продуманно вести критику текста….
редактор подготовляет основу для четкого понимания задач стилистической критики исходного текста – какие ошибки
Некоторые редакторы пользуются ими прямолинейно, грубо, не считаясь с задачами и особенностями контекста…
знать приемы анализа, которые могут помочь заметить и устранить типичные нормативно-стилистические ошибки

Статья от экспертов

Автор24

Повышай знания с онлайн-тренажером от Автор24!

  • 📝 Напиши термин
  • ✍️ Выбери определение из предложенных или загрузи свое
  • 🤝 Тренажер от Автор24 поможет тебе выучить термины, с помощью удобных и приятных
    карточек

ляп

Слово «ляп» состоит из 3 букв:

— первая буква Л

— вторая буква Я

— третья буква П

Посмотреть значние слова «ляп» в словаре.

Альтернативные варианты определений к слову «ляп», всего найдено — 29 вариантов:

  • Безответственный друг Тяпа
  • Деревянная колотушка, для глушения рыбы, особенно трески
  • Досадный промах
  • Киноошибка
  • Крупный просчет, оплошность (разг.)
  • Напарник Тяпа
  • Нелепая ошибка
  • Нечаянная ошибка, вызывающая смех
  • Огрех редактора
  • Описка
  • Оплошность
  • Очепятка
  • Ошибка
  • Ошибка (прост.)
  • Ошибка (разг.)
  • Ошибка редактора
  • Ошибка, досадная шибко
  • Ошибка, как правило, смешная
  • Ошибочка
  • Прикольная ошибка
  • Прокол киносюжета
  • Промашка, что вышла
  • Просчет
  • Смешная оговорка диктора
  • Собрат тяпа
  • Спутник тяпа у бракодела
  • Тяп да …
  • Тяп-…
  • Чекуша, чекмарь [Даль]

Другие вопросы:

  • Одна из элементарных частиц
  • Предложение руки и сердца
  • Частица, которой «сделали зарядку»
  • Ощущение щекотания в горле
  • Малышня, что галдит в песочнице
  • Что в быту нам заменяет указку?
  • Приемщица товара у Буренки
  • Имя кинорежиссера Феллини
  • Птица семейства воробьиных
  • «Текстильная столица» Польши

Поиск ответов на кроссворды и сканворды

Ответ на вопрос «Грубая ошибка, промах «, 3 (три) буквы:
ляп

Альтернативные вопросы в кроссвордах для слова ляп

Определение слова ляп в словарях

Примеры употребления слова ляп в литературе.

Ну, будет в нем поломка, ошибка, ляп какой-нибудь — всегда на Бабанова спишем.

Громко и торжествующе он пытался донести до них свою новость: Лили эги, ляп, ляп, бэмь.

Разговор шел о политике, о предстоящих выборах, о тех ляпах, которые допустили те или иные кандидаты.

Хуэй-цзы был первым советником в царстве Ляп, и Чжуан-цзы захотел навестить его.

Чего стоит такой ляп, когда подготовленный боевик объяснял телезрителям, что питаются ваххабиты не ворованной у дагестанцев живностью, а якобы той, что подстрелена российскими солдатами.

Шелковников беспрестанно отирал пот со лба, Сухоплещенко являл собою соляной столп, — было ему отчего онеметь, такой ляп приключался с ним едва ли не впервые, выходит, человек, которого он искал столько времени, спокойно стоял напротив особняка, а подполковник принимал его за охранника из собственной службы.

Источник: библиотека Максима Мошкова

Полученное из опыта значение измеряемой величины может
отличаться от ее действительного (истинного) значения.

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой
величины.

Это может быть обусловлено конструктивными недостатками прибора, несовершенством технологии его
изготовления, а также влиянием различных внешних факторов.

Таким образом, погрешности классифицируют:

  1. По источнику возникновения (метод, инструмент, субъект)

    -Методические (зависят от метода измерения и способа включения приборов в электрическую цепь)

    -Инструментальные (зависят от средства измерения)

    -Субъективные (зависят от измерителя)

  2. По условиям проведения измерений (температура, давление, влажность)

    -Основные (измерения проводятся в нормальных условиях — при нормальной температуре, давлении,
    влажности)

    -Дополнительные (условия отличны от нормальных)

  3. По характеру проявления (систематические, случайные, промахи)

    Систематические – погрешности, остающиеся постоянными или закономерно изменяющимися при повторных
    измерениях тем же способом и средствами. Т.е. они заранее известны и их легко исключить.

    Случайные – погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же
    величины.  Обычно выявляются в результате многократных измерений (не менее 10).

    Промах – грубая ошибка, обусловленная неправильным отсчетом или расчетом, небрежностью измеряющего,
    поломки прибора, неправильно собранной схемы, невнимательности и т.д. Такие данные необходимо исключать.

  4. По временному поведению измеряемой величины (статическая, динамическая)

    Статическая – когда измеряемая величина не меняется за время измерения

    Динамическая – когда прибор не успевает реагировать на изменения измеряемой величины.

  5. По способу выражения измеряемой величины

    • абсолютная;

    • относительная;

    • приведенная.

      Абсолютной погрешностью
      D
      Х называется разность между измеренным и действительным значениями.

       – измеренное значение;

      – действительное значение измеряемой величины.

      Выражается
      D
      Х в единицах измеряемой величины.

      Относительная погрешность
       – отношение абсолютной погрешности к действительному значению измеряемой величины.

      Выражается в процентах или относительных единицах. Относительная погрешность характеризует
      точность измерений.

      Приведенная погрешность
      g
      пр – отношение абсолютной погрешности к номинальному (нормированному) значению – верхнему пределу диапазона
      или поддиапазона измерения прибора.

      Пределом измерения прибора называется наибольшая величина, на которую рассчитан данный
      прибор.

      Прибор может иметь несколько пределов измерений (например, вольтметр).

      Чем меньшую погрешность дает прибор, тем он точнее.

    • Выражается в процентах.

      Максимальная приведенная погрешность определяет класс точности прибора.

    • Электроизмерительные приборы изготавливаются нескольких классов точности

0,01

0,02

0,2

1,5

0,05

0,5

2,5

0,1

1,0

4

Эти числа определяют максимальную погрешность прибора при полном отклонении указателя (стрелки).

Определяют также среднеквадратическую погрешность результата измерения по формуле:

Выражается  в единицах измеряемой величины.

За действительное значение измеряемой величины принимается обычно среднее арифметическое из ряда
измерений.

Хд = ХСР = 1 + Х2 +
Х3 + … + Хn)/n,

где Х1, Х2,… , Хn – результаты измерений


       n – количество измерений

Понравилась статья? Поделить с друзьями:
  • Грубая ошибка фигуриста 7 букв сканворд
  • Грубые ошибки спутниковых измерений
  • Грубая ошибка 6 букв сканворд первая л
  • Грубая ошибка промах три буквы
  • Грохот не умолкая катится дальше ошибка