Абсолютной ошибкой приближенного значения некоторой величины называют

1.1.
Источники и классификация погрешностей

1.2.
Абсолютная и относительная погрешности.
Форма записи данных

1.3. Вычислительная
погрешность. Погрешность функции

1.4. Понятия о
погрешности машинной арифметики

1.1. Источники и классификация погрешностей

Источниками
возникновения погрешности численного
решения задачи являются:

  1. Неточность
    математического описания, в частности,
    неточность задания начальных данных.

  2. Неточность
    численного метода решения задачи.

(Данная
причина, например, возникает когда
решение математической задачи требует
неограниченного или неприемлемо большого
числа арифметических операций, что
приводит к необходимости ограничения
их числа, т.е. использования приближенного
решения.)

  1. Конечная
    точность машинной
    арифметики.

Виды погрешностей:

  1. Неустранимая
    погрешность

  2. Погрешность
    метода.

  3. Вычислительная
    погрешность.

Неустранимая
погрешность

состоит из двух частей: а) погрешность,
обусловленная погрешностью задания
числовых данных, входящих в математическое
описание задачи; б) погрешность, являющаяся
следствием несоответствия математического
описания задачи реальной действительности
(погрешность математической модели).
Для вычислителя погрешность задачи
следует считать неустранимой, хотя
постановщик задачи иногда может ее
изменить.

Результирующая
погрешность определяется как сумма
величин всех перечисленных выше
погрешностей.

Погрешность
метода

связана со способом решения поставленной
математической задачи. Она появляется
в результате замены исходной математической
модели другой и/или конечной
последовательностью других более
простых (например, линейных) моделей.
При создании численных методов
закладывается возможность отслеживания
таких погрешностей и доведения их до
сколь угодно малого уровня. Отсюда
естественно отношение к погрешности
метода как устранимой (или условной).

Вычислительная
погрешность

(погрешность округлений) обусловлена
необходимостью выполнять арифметические
операции над числами, усеченными до
количества разрядов, зависящего от
применяемой вычислительной техники.

1.2. Абсолютная и относительная погрешности. Формы записи данных

Определение
1.1.
Если a

точное значение некоторой величины и
a

известное приближение к нему, то
абсолютной погрешностью приближенного
значения a
называют некоторую величину
,
про которую известно, что

.
(1.1)

Определение
1.2.
Относительной
погрешностью приближенного значения
называют некоторую величину
,
про которую известно, что

.
(1.2)

Относительную
погрешность часто выражают в процентах.

Определение
1.3.
Значащими
цифрами числа называют все цифры в его
записи, начиная с первой ненулевой
слева.

Пример
1.1

(Здесь цифры,
записанные курсивом, значащие)

Определение
1.4.
Значащую
цифру называют верной, если модуль
погрешности числа не превосходит единицы
разряда, соответствующего этой цифре.

Пример
1.2

(Здесь цифры,
записанные курсивом, верные)

Определение
1.5.
Если все
значащие цифры верные, то говорят, что
число записано со всеми верными цифрами.

Иногда
употребляется термин число
верных цифр после запятой
:
подсчитывается
число верных цифр после запятой от
первой цифры до последней верной цифры.

Довольно
часто информация о некоторой величине
задается пределами измерений

.

Принято
записывать эти пределы с одинаковым
числом знаков после запятой, так как
обычно достаточно грубого представления
о погрешности. В записи чисел a1,
a2
обычно берут столько значащих цифр,
сколько нужно для того, чтобы разность
содержала одну, две значащие цифры.

Информацию
о том, что
является приближенным значением числаa
с абсолютной погрешностью
,
принято также записывать в виде

.
(1.3)

Числа
,принято записывать с одинаковым
количеством знаков после запятой.

Пример 1.3

Информацию
о том, что
является приближенным значением числаа
с относительной погрешностью
записывают в виде

.

Пример 1.4

(Данная запись
числа эквивалентна записи чисел из
примера 1.2)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Раздел
1

Приближенные
числа и действия над ними

Лекция 1.

1.1.
Приближенное
значение величины. Абсолютная и относительная погрешности

План лекции

1.       Приближенное значение величины. Погрешность

2.       Численные методы

3.       Абсолютная и относительная погрешности

1. Приближенное значение величины.
Погрешность

В процессе решения задачи вычислитель сталкивается с
различными числами, которые могут быть точными или приближенными. Точные числа
дают истинное значение величины числа, приближенные – близкое к истинному,
причем степень близости определяется погрешностью вычисления.

Например, в утверждениях: «куб имеет 6 граней»; «на руке 5
пальцев»; «в классе 32 ученика»; «в книге 582 страницы» числа 6, 5, 32, 582 –
точные. В утверждениях: «ширина дома 14,25 м»; «вес коробки 50 г»; «в лесу
около 5000 деревьев» числа 14,25; 50; 5000 – приближенные. Измерение ширины
дома производится измерительными средствами, которые сами могут быть неточными;
кроме того, измеритель при измерении допускает ошибку (погрешность). При
взвешивании коробки также допускается ошибка, так как автоматические весы не
чувствительны к увеличению или уменьшению веса на 0,5 г. Произвести точно
подсчет количества деревьев в лесу невозможно, так как некоторые деревья могут
быть подсчитаны дважды; другие совсем не включались в счет; некоторые деревья
были отнесены к кустарникам и исключены из счета, и, наоборот, кустарники
включены в счет количества деревьев.

Во многих случаях жизни невозможно найти точное значение
величины числа и вычислителю приходится довольствоваться его приближенным
значением. Кроме того, очень часто вычислитель сознательно заменяет точное
значение приближенным в целях упрощения вычислений.

Таким образом, приближенным
числом а
называется число, незначительно
отличающееся от точного числа
А и заменяющее последнее в вычислениях.

При решении той или иной задачи вручную или на
вычислительной машине мы получаем числовой результат, который, как правило, не
является точным, так как при постановке задачи и в ходе вычислений возникают
погрешности. Поэтому любая задача, связанная с
массовыми действиями над числами, может быть решена с той или иной степенью
точности. В связи с этим при постановке задачи должна быть указана точность ее
решения, т. е. задана погрешность, максимально допустимая в процессе всех вычислений.

Источниками погрешностей (ошибок) могут быть:

1) неточное отображение реальных процессов с помощью
математики, в связи с чем рассматривается не сам процесс, а его
идеализированная математическая модель. Не всегда реальные явления природы
можно точно отобразить математически. Поэтому принимаются условия, упрощающие
решение задачи, что вызывает появление погрешностей. Некоторые задачи
невозможно решить в точной постановке и они могут заменяться другими задачами,
близкими по результатам первым. При этом также возникают погрешности;

2) приближенное выражение величин, входящих в условие
задачи, вследствие их неточного измерения. Это погрешности исходных данных,
физических констант, чисел π, е и др.;

3) замена бесконечных процессов, пределами которых являются
искомые величины, конечной последовательностью действий. Сюда относятся
погрешности, образующиеся в результате обрыва какого-то бесконечного процесса
на некотором этапе. Например, если в ряде

sin x = x-x3/3!+x5/5!-x7/7!+…

взять определенное количество членов и принять их сумму за
sin х, то мы, естественно, допускаем погрешность;

4) округление исходных данных, промежуточных или
окончательных результатов, когда при вычислениях используется лишь конечное
число цифр числа.

При отбрасывании младших разрядов числа имеет место
погрешность. Пусть, например, число 0,7835478931 требуется записать в ячейку
электронной цифровой вычислительной машины с разрядной сеткой, допускающей
запись семизначного десятичного числа. Поэтому данное число нужно округлить
так, чтобы в нем осталось не более семи знаков после запятой. Тогда округленное
число примет следующий вид: 0,7835479;

5) кроме указанных выше случаев, погрешности могут
появляться в результате действий над приближенными числами. В этом случае
погрешности исходных данных в какой-то мере переносятся на результат
вычислений.

Полная погрешность является результатом сложного
взаимодействия всех видов погрешностей. При решении конкретных задач те или
иные погрешности могут отсутствовать или мало влиять на образование полной
погрешности. Однако для полного анализа погрешностей необходимо учитывать все
их виды.

Во всех случаях полная погрешность не может превышать по
своей абсолютной величине суммы абсолютных величин всех видов погрешностей, но
обычно она редко достигает такой максимальной величины.

Таким образом, погрешности можно подразделить на три
большие группы:

1) исходные, или неустранимые, к которым относятся
погрешности, возникающие в результате приближенного описания реальных процессов
и неточного задания исходных данных, а также погрешности, связанные с
действиями над приближенными числами. Эти погрешности проходят через все
вычисления и, являются неустранимыми;

2) погрешности округления (зарождающиеся), которые
появляются в результате округления исходных данных, промежуточных и
окончательных результатов;

3) остаточные, возникающие в результате замены бесконечных
процессов конечной последовательностью действий;

2. Численные методы

На практике в большинстве случаев найти точное решение
математических задач не удается. Это происходит главным образом не потому, что
мы не умеем это сделать, а поскольку искомое решение обычно не выражается в
привычным для нас элементарных или других известных функциях. Поэтому важное
значение приобрели методы, особенно в связи с возрастанием роли математических
методов в различных областях науки и техники и с появлением высокопроизводительных
ЭВМ.

Под численными методами подразумевается методы решения
задач, сводящиеся к арифметическим и некоторых логическим действиям над
числами, т.е. к тем действиям, которые выполняет ЭВМ.

В зависимости от сложности задачи, заданной точности,
применяемого метода и т.д. может потребоваться выполнить от нескольких десятков
многих миллиардов действий. Если число действий не превышают тысячи, то с такой
задачей обычно может справиться человек, имя в распоряжении калькулятор и набор
таблиц элементарных функций. Однако без ЭВМ явно не обойтись, если для решения
задач нужно выполнить, скажем, порядка миллиона действий и тем более, когда
решение должно быть найдено в жатые сроки.

Решение, полученное численным методом, обычно является
приближенным, т.е. содержит некоторую погрешность.

Оценка погрешности может быть произведена: с помощью
абсолютной погрешности; с помощью относительной погрешности; с помощью
остаточного члена; с помощью статистических оценок.

При работе с приближенными величинами вычислитель должен
уметь:

а) давать математические характеристики точности
приближенных величин;

б) зная степень точности исходных данных, оценить степень
точности результатов;

в) брать исходные данные с такой степенью точности, чтобы
обеспечить заданную точность результата. В этом случае не следует слишком
завышать точность исходных данных, чтобы избавить вычислителя от бесполезных
расчетов;

г) уметь правильно построить вычислительный процесс, чтобы
избавить его от тех выкладок, которые не окажут влияния на точные цифры
результата.

3. Абсолютная и относительная
погрешности

Пусть a – точное, вообще говоря, неизвестное
числовое значение некоторой величины.

a* –
известное приближенное числовое значение этой величины (приближенное число).

Абсолютная величина разности между точным числом и его
приближенным значением  называется абсолютной погрешностью приближенного числа:

                                    
                                                                                   (1)

Здесь возможны два случая.

1. Точное чиcло а нам известно. Тогда абсолютная;
погрешность приближенного числа легко находится по формуле (1).

Пример 1. Пусть a
= 784,2737,
a* = 784,274; тогда; абсолютная погрешность Δа
= |а-
a*| = |784,2737—784,274| = 0,0003.

2. Точное число a нам неизвестно, тогда вычислить
абсолютную погрешность по формуле (1) нельзя. Поэтому пользуются понятием
границы абсолютной погрешности, удовлетворяющей неравенству

|a — a*|  Δа*

Граница абсолютной погрешности, т. е. число, заведомо
превышающее абсолютную погрешность (или в крайнем случае равное ей), называется
предельной абсолютной погрешностью.

Следовательно, если Δа*предельная
абсолютная погрешность
, то

Δ(а*) = |а- a*| Δа*                                                                                                                 (2)

Значение точного числа А всегда заключено в следующих
границах:

a* — Δа* a  a* + Δа*.                                                                                                            (3)

Выражение a* — Δа* есть приближение числа
a по недостатку, а а + Δа* – приближение числа a
по избытку. Значение числа a записывается так:

a = а ± Δа*                                                                                                                                 (3′)

Пример 2. Число 45,3 получено округлением. Точное
значение числа неизвестно, однако, пользуясь правилами округления чисел, можно
сказать, что абсолютная погрешность не превышает (меньше или равна) 0,05.

Следовательно, границей абсолютной
погрешности (предельной абсолютной погрешностью) можно считать 0,05. Записывают
это так: 45,3 ( ± 0,05). Скобки часто опускают, так что запись 45,3 ± 0,05
означает то же самое. Двойной знак ± означает, что отклонение приближенного
значения числа от точного возможно в обе стороны. В качестве границы абсолютной
погрешности берут по возможности наименьшее число.

Пример 3. При измерении длины отрезка оказалось,
что ошибка, допущенная нами, не превышает 0,5 см; тем более она не превышает 1,
2 или 3 см. Каждое из этих чисел можно считать границей абсолютной погрешности.
Однако нужно указать наименьшую из них, так как чем меньше граница абсолютной
погрешности, тем точнее выражается приближенное значение числа. В записи
приближенного числа, полученного в результате измерения, обычно отмечают его
предельную абсолютную погрешность.

На
практике часто применяют выражения типа: «с точностью до 0,01»; «с точностью до
1 см и т. д. Это означает, что предельная абсолютная погрешность соответственно
равна 0,01; 1 см и т. д.

Пример 4. Если длина отрезка l = 184 см измерена с точностью до 0,05
см, то пишут
l= 184 см ±0,05 см. Здесь предельная абсолютная
погрешность Δ
l*= 0,05 см, а точная величина
длины
l отрезка заключена в следующих
границах: 183,95 см  
l  184,05 см.

По
абсолютной и предельной абсолютной погрешностям нельзя судить о том, хорошо или
плохо произведено измерение.

Пример 5. Пусть при измерении книги и
длины стола были получены результаты:
l1 =
28,4 ±0,1 (см) и
l2 = 110,3 ±0,1 (см). И в первом, и во
втором случае предельная абсолютная погрешность составляет 0,1 см. Однако
второе измерение было произведено более точно, чем первое.

Для
того чтобы определить качество произведенных измерений, необходимо определить,
какую долю составляет абсолютная или предельная абсолютная погрешность от
измеряемой величины, В связи с этим вводится понятие относительной погрешности.

Относительной
погрешностью а
приближенного числа а называется
отношение абсолютной погрешности Δа к модулю точного числа А
0),
т.е.

а=                                          (4)

Отсюда

Δа = |A| а                                         (4’)

Число
*а, заведомо
превышающее относительную погрешность (или в крайнем случае равное ей),
называется предельной относительной погрешностью:

а*а
.         
                               
(5)

Из
соотношений (4) и (5) вытекает, что

*а; Δа|A| а*.

Из
определения предельной абсолютной погрешности следует, что ΔаΔа*.
Тогда можно записать

Δа*=|A| а*.          
                        
(6)

и
за предельную относительную погрешность приближенного числа а можно
принять

а* = .                                         (7)

Учитывая,
что А, как правило, неизвестно и  что А  а,
равенства (6) и (7) можно записать так:

Δа*=|a| а*,                                        
(6′)

а* = .                                         (7’)

Возвращаясь к примеру 5, найдем
предельные относительные погрешности измерения книги и стола:

*l1 = 0,1(см)/28,4(см) 0,0035, или 0,35%;

*l2 = 0,1(см)/110,3(см) 0,009, или 0,09%.

Таким образом, измерение стола было произведено
намного точнее.

Очевидно, что как
относительная погрешность, так и предельная относительная погрешность
представляют собой отвлеченные числа, не зависящие от единиц, в которых
выражаются результаты измерений.

Пример 6. Определить (в процентах) предельную
относительную погрешность приближенного числа а = 35,148 ±0,00074.

Решение. Воспользуемся формулой (7). Тогда

а* = =0,00074/35,148= 0,000021  0,0021%.

Пример 7. Определить предельную абсолютную
погрешность приближенного числа а = 4,123, если а* = 0,01%.

Решение. Запишем проценты в виде десятичной дроби
и для определения предельной абсолютной погрешности и воспользуемся формулой
(6′); тогда

Δа* = | а | а
= 4,123 • 0,0001 = 0,00042.

Пример 8. Определить относительные погрешности
чисел х и у, полученных при измерении углов. Какой из результатов
более точный?

X

Δx

Y

Δy

50030’10’’

3’’

45015’36’’

2’’

Решение. Переведем заданные значения x и у в секунды и определим относительные
погрешности измерений. Более точным измерением будет то, где относительная
погрешность меньше. Имеем:

x=
181810″ ±3″,   
x = 3/181810  0,000017
= 0,0017%;

у = 162936″±2″,    y=2/162936 0,000013 = 0,0013%.

Измерение y произведено более точно.

Пример 9. Определить, какое равенство точнее: a1= 13/19  0,684
или
a2 =  7,21?

Решение. Для нахождения предельных абсолютных
погрешностей берем числа
a1 и a2 с большим числом десятичных знаков: 13/19  0,68421;  7,2111. Определяем предельные абсолютные погрешности,
округляя их с избытком:

Δ*а1
= |0,68421
-0,684
|  0,00022

Δ*а2= | 7,2111-7,21|  0,0012.

Находим предельные относительные
погрешности:

*а1= Δ*а1/a1 = 0,00022/0,684  0,00033
= 0,033%;

*а2 = Δ*a2/a2 =
0,0012/7,21  0,00017=0,017%.

Второе равенство является более точным,
поскольку *а2 < *а1.

ВИДЕО УРОК

Абсолютная погрешность.

Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.

Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.

Существует формула
абсолютной погрешности. Обозначим точное число буквой 
А, а буквой  а
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:

а = А – а.

ПРИМЕР:

В школе учится  374 ученика. Если округлить это число до  400,
то абсолютная погрешность измерения равна
:

400 – 374 = 26.

ПРИМЕР:

На предприятии  1284  рабочих и
служащих. При округлении этого числа до 
1300  абсолютная
погрешность составляет

1300 – 1284 = 16.

При округлении до  1280  абсолютная
погрешность составляет

1284 – 1280 = 4.

Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.

ПРИМЕР:

Торговые весы могут дать абсолютную погрешность, не
превышающую 
5 г, а аптекарские – не превышающую одной сотой грамма.

Записывают
абсолютную погрешность числа, используя знак 
±.

ПРИМЕР:

Длина рулона обоев составляет.

30 м ± 3
см.

Границу абсолютной
погрешности называют предельной абсолютной погрешностью.

Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.

ПРИМЕР:

Допустим, что при измерении коридора длиной в  20
м  мы допустили абсолютную погрешность
всего только в 
1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 
18
см  длины, мы тоже допустили абсолютную
погрешность в 
1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 
20
м  ошибка в 
1
см  вполне допустима и неизбежна, но
на 
18
см  такая ошибка является очень грубой.

Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 
20 м погрешность в  1 см 
составляет

долю
измеряемой величины, а при измерении корешка книги погрешность в 
см составляет


долю
измеряемой величины
.

Делаем вывод, что измеряя корешок книги, имеющий  18
см  длины и допустив погрешность в 
1
см, можно считать измерение с большой ошибкой. Но если погрешность в 
1
см  была допущена при измерении коридора
длиной в 
20
м, то это измерение можно считать максимально точным.

Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.

Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 
0,5 мм.

ПРИМЕР:

Для измерения длины болта использованы метровая линейка с
делениями 
0,5 см  и линейка с
делениями 
1 мм. В обоих случаях получен результат  3,5
см. Ясно, что в первом случае отклонение найденной длины 
3,5
см  от истинной, не
должно по модулю превышать 
0,5 см, во втором случае 
0,1 см.

Если этот же результат получится при измерении
штангенциркулем, то

p(l; 3,5) = |l – 3,5 ≤ 0,01|.

Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае 
l = 0,5  и, следовательно,

3
l ≤ 4,

в другом – l = 0,1  и

3,4
l ≤ 3,6.

ПРИМЕР:

Длина листа бумаги формата  А4  равна  (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно 
(650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.

РЕШЕНИЕ:

Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной  погрешности не
превышает  1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.

При измерении длины листа абсолютная погрешность не
превышает 
0,1 см на  29,7 см, то есть в процентном отношении это составляет

0,1
: 29,7 ∙ 100% ≈ 0,33%

измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает 
1 км 
на 
650 км, что в процентном соотношении составляет

1
: 650 ∙ 100% ≈ 0,15%

измеряемой величины.

Видим, что расстояние между городами измерено точнее, чем
длинна листа формата 
А4.

Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.

Относительная погрешность.

Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.

Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах. 

Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.

ПРИМЕР:

Округлим дробь  14,7 до целых и найдём относительную погрешность приближённого
значения
:

14,7 ≈ 15,

Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.

ПРИМЕР:

При измерении в (сантиметрах) толщины 
b 
стекла и длины 
l  книжной полки
получили следующие результаты
:

b 0,4 с
точностью до
  0,1,

l 100 с
точностью до
  0,1.

Абсолютная погрешность каждого из этих измерений не
превосходит 
0,1. Однако  0,1  составляет
существенную часть числа 
0,4  и
ничтожную часть числа 
100. Это показывает, что качество второго
измерения намного выше, чем первого.

В результате измерения нашли,
что 
b
0,4  с точностью до  0,1, то
есть абсолютная погрешность измерения не превосходит 
0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно

то есть относительная погрешность приближения не превосходит  25%.

Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит

Говорят, что в первом случае измерение выполнено с
относительной точностью до 
25%,
а во втором – с относительной точностью до
  0,1%.

ПРИМЕР:

Если взять абсолютную погрешность в  1
см,  при измерении длины отрезков 
10
см  и  10
м, то относительные погрешности будут соответственно равны 
10%  и  0,1%. Для
отрезка длиной в 
10 см  погрешность
в 
1
см  очень велика, это ошибка в  
10%. А для десятиметрового отрезка  1 см  не имеет значения, эта ошибка всего в   0,1%.

Чем меньше относительная погрешность
измерения, тем оно точнее.

Различают
систематические и случайные погрешности.

Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.

Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.

В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.

ПРИМЕР:

Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря –
50
г. Взвешивание показало  
3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 
50
г. Относительная погрешность не превосходит 

50/3600
1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.

В предыдущем примере
за предельную абсолютную погрешность можно взять 
50 г, а за предельную относительную погрешность  1,4%.

Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность 
100 г, 150 г  и вообще всякое
число, большее чем 
50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 
4,78  без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 
0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.

Предельная
абсолютная погрешность обозначается греческой буквой 
(<<дельта>>),
предельная относительная погрешность – греческой буквой 
δ
(<<дельта малая>>). Если приближённое число обозначить буквой 
а

Правила округления.

На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.

ПРИМЕР:

Для  х = 1,7 ± 0,2  относительная погрешность измерений равна:

ПРИМЕР:

Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 
17,9 см. Какова предельная относительная погрешность этого
измерения
?

РЕШЕНИЕ:

Здесь  а =
17,9
см. Можно принять 
= 0,1 см, так как с точностью
до 
1 мм 
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся
(при навыке можно прочесть на хорошей линейке и  0,02  и даже  0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину
). Относительная погрешность равна

Округляя, находим

ПРИМЕР:

Цилиндрический поршень имеет около  35
мм  в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла
  0,05% ?

РЕШЕНИЕ:

По условию, предельная относительная
погрешность должна составлять 
0,05%  от  35 мм. Следовательно, предельная абсолютная
погрешность равна

или, усиливая, 0,02
мм.

Можно воспользоваться
формулой

Подставляя в формулу 

а = 35,

𝛿 = 0,0005,

имеем

Значит,


= 35 × 0,0005 = 0,0175
мм.

Действия над приближёнными числами.

Сложение и вычитание приближённых чисел.

Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.

ПРИМЕР:

Складываются приближённые числа

265  и  32.

РЕШЕНИЕ:

Пусть предельная погрешность первого есть  5,
а второго 
1. Тогда предельная погрешность суммы равна

5
+ 1 = 6.

Так, если истинное значение первого есть  270,
а второго 
33, то приближённая сумма

265
+ 32 = 297

на  6  меньше истинной

270
+ 33 = 303.

ПРИМЕР:

Найти сумму приближённых чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Предельная погрешность каждого слагаемого 

0,00005.

Предельная погрешность суммы:

0,00005
9 = 0,00045.

Значит, в последнем (четвёртом) знаке суммы возможна ошибка до  5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 
0,619,
здесь все знаки верные.

При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 
9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 
1, 2, 3, 4  или даже на  5 единиц в ту и в другую сторону.

Например, первое
слагаемое может быть больше своего истинного значения на 
4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.

Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 
0,00045,
это произойдёт:

– когда истинная величина каждого слагаемого больше
приближённой величины на 
0,00005;

– когда истинная величина каждого слагаемого меньше
приближённой величины на 
0,00005.

Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 
0,0000002%  всех возможных случаев.

Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 
0,07% 
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 
2%  всех возможных случаев, а одну единицу –
примерно в 
25%.
В остальных 
75%  случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.

ПРИМЕР:

Найти сумму точных чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Округлим их до тысячных и сложим:

0,091
+ 0,083 + 0,077 + 0,071 + 0,067

 + 0,062 + 0,059 + 0,056 + 0,053 = 0,619.

Предельная погрешность суммы:

0,0005
9 = 0,0045.

Приближённая сумма отличается от истинной на  0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.

Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет
:

0,005
9 = 0,045.

Между тем получим:

0,09
+ 0,08 + 0,08 + 0,07 + 0,07

 + 0,06 + 0,06 + 0,06 + 0,05 = 0,62.

Истинная погрешность составляет только  0,0013.

Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.

ПРИМЕР:

Пусть предельная погрешность приближённого
уменьшаемого 
85  равна  2,
а предельная погрешность вычитаемого 
32  равна  3.
Предельная погрешность разности

85
– 32 = 53

есть

2
+ 3 = 5.

В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться

85
+ 2 = 87 
и

32
– 3 = 29
.

Тогда истинная разность есть

87
– 29 = 58.

Она на  5  отличается от
приближённой разности 
53.

Относительная погрешность суммы и разности.

Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.

Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.

ПРИМЕР:

Найти предельную абсолютную и предельную относительную
погрешность суммы чисел
:

24,4
+ 25,2 + 24,7.

РЕШЕНИЕ:

В каждом слагаемом суммы

24,4
+ 25,2 + 24,7 = 74,3

предельная относительная погрешность примерно одна и та
же, а именно
:

0,05
: 25 = 0,2%.

Такова же она и для суммы.

Здесь предельная абсолютная погрешность равна  0,15,
а относительная

0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.

В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.

Относительные погрешности при сложении и вычитании
складывать нельзя.

Умножение и деление приближённых чисел.

При делении и умножении чисел требуется сложить
относительные погрешности.

ПРИМЕР:

Пусть перемножаются приближённые числа  50  и  20, и пусть предельная относительная погрешность первого
сомножителя есть 
0,4%, а второго 
0,5%.

Тогда предельная относительная погрешность произведения

50
× 20 = 1000

приближённо равна  0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть

50
× 0,004 = 0,2,

а второго

20
× 0,005 = 0,1
.

Поэтому истинная величина произведения не больше чем

(50
+ 0,2)(20 + 0,1) = 1009,02,

и не меньше, чем

(50
– 0,2)(20 – 0,1) = 991,022
.

Если истинная величина произведения есть  1009,2,
то погрешность произведения равна

1009,2
– 1000 = 9,02,

а если  991,02, то погрешность произведения равна

1000
– 991,02 = 8,98.

Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 
9,02.
Предельная относительная погрешность равна

9,02
: 1000 = 0,902%,

то есть приближённо  0,9%.

Задания к уроку 16

  • Задание 1
  • Задание 2
  • Задание 3
  • Урок 1. Числовые неравенства
  • Урок 2. Свойства числовых неравенств
  • Урок 3. Сложение и умножение числовых неравенств
  • Урок 4. Числовые промежутки
  • Урок 5. Линейные неравенства
  • Урок 6. Системы линейных неравенств
  • Урок 7. Нелинейные неравенства
  • Урок 8. Системы нелинейных неравенств
  • Урок 9. Дробно-рациональные неравенства
  • Урок 10. Решение неравенств с помощью графиков
  • Урок 11. Неравенства с модулем
  • Урок 12. Иррациональные неравенства
  • Урок 13. Неравенства с двумя переменными
  • Урок 14. Системы неравенств с двумя переменными
  • Урок 15. Приближённые вычисления

Содержание:

  1. Приближённые вычисления
  2. Абсолютная и относительная погрешности
  3. Выполнение действий над приближёнными числами
  4. Выполнение действий без точного учёта погрешности

Приближённые вычисления

Приближённые вычисления — вычисления, в которых данные и результат (или только результат) являются числами, приближенно представляющими истинные значения соответствующих величин. Числовые данные, полученные измерением реальных объектов, редко бывают точными значениями соответствующей величины, а обычно имеют некоторую погрешность

Абсолютная и относительная погрешности

При решении практических задач часто приходится иметь дело с приближёнными значениями разных числовых величин. К ним относятся: результаты измерения разных величин с помощью приборов; значения полученные при считывании на графиках, диаграммах, номограммах; проектные данные; результаты округления чисел; результаты действий над приближёнными числами; табличные значения некоторых величин; результаты вычислений значений функции. Приближённые значения (приближение, приближённые числа) могут значительно отличаться от точных, либо быть близкими к ним.

Для оценки отклонения приближённых чисел от точных используют такие понятия как абсолютная и относительная погрешности.

Абсолютной погрешностью  приближённой называется модуль разности между точным значением величины Приближённые вычисления в математике и её приближённым значением х, то есть

Приближённые вычисления в математике

Пример.

Абсолютная погрешность приближённого числа Приближённые вычисления в математике числом 0,44 составляет

Приближённые вычисления в математике

Если точное число неизвестно, то найти абсолютную погрешность Приближённые вычисления в математике невозможно. На практике вводят оценку допустимой при данных измерениях или вычислениях абсолютной погрешности, которую называют пределом абсолютной погрешности и обозначают буквой h. Считают, что hПриближённые вычисления в математике. Как правило, предел абсолютной погрешности устанавливают из практических соображений, например, при измерениях  пределом абсолютной погрешности считают наименьшее деление прибора.

При записи приближённых чисел часто используют понятия верной и сомнительной цифры.

Цифра Приближённые вычисления в математике называется верной, если предел абсолютной погрешности данного приближения не превышает единицы того разряда, в котором записана эта цифра. В другом случае цифра называется  сомнительной.

Например: в числе Приближённые вычисления в математикедве цифры верны, поскольку погрешность 0,04 не превышает единицу разряда десятых. Цифры 9 и 7 верны, поскольку Приближённые вычисления в математике а цифры 4 и 6 являются сомнительными, поскольку Приближённые вычисления в математике

В конечной записи приближённого числа сохраняют только верные цифры. Так число Приближённые вычисления в математике можно записать в виде  Приближённые вычисления в математике, число Приближённые вычисления в математике в виде Приближённые вычисления в математике Если в десятичной дроби последние верные цифры — нули, то их оставляют в записи числа.

Например: если Приближённые вычисления в математике, то правильной записью числа будет 0,260.

Если в целом числе последние нули являются сомнительными, их исключают из записи числа.

Именно поэтому при работе с приближёнными числами широко используют стандартную форму записи числа.

Например: в числе Приближённые вычисления в математике верными являются три первые цифры, а два последних нуля — сомнительные цифры. Запись числа возможна только в виде: 

Приближённые вычисления в математике

Следовательно, в десятичной записи приближённого числа последняя цифра указывает на точность приближённости, то есть предел абсолютной погрешности не превышает единицу последнего разряда.

Например:

1. Запись Приближённые вычисления в математике означает, что Приближённые вычисления в математике, то есть предел абсолютной погрешности h=0,01.

2. Запись Приближённые вычисления в математике

3. Если Приближённые вычисления в математике

В десятичной записи числа значимыми цифрами называются все его верные цифры начиная с первой слева, отличной от нуля.

Например: в числе 1,13 — три значимых цифры, в числе 0,017 — две, в числе 0,303 — три, в числе 5,200 — четыре, в числе 25*10— две значимых цифры.

При таком подходе к записи приближенного числа необходимо уметь округлять числа.

Правила округления чисел:

— Если первая цифра, которую отбрасываем является меньше пяти, то в основном разряде, который сохраняется цифра не меняется. Например: 879,673≈879,67.

— Если первая цифра, которую отбрасываем больше пяти, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 456,87≈456,9.

— Если первая цифра, которая отбрасывается пять и за ней есть ещё отличны от нуля, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 1246,5002≈1247.

— Если первая цифра, которая отбрасывается — пять и за ней нет больше никаких цифра, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 0,275≈0,28; 1,865≈1,86.

Абсолютная погрешность не полностью характеризует точность приближения. Например, Приближённые вычисления в математике будет грубой ошибкой при измерении жука, и незначительной при измерении кита. Тоже самое можно сказать и про предел абсолютной погрешности. Качество (точность) приближённости лучше характеризуется относительной погрешностью.

Относительной погрешностью Приближённые вычисления в математике (омега) приближённости х величины Приближённые вычисления в математике называется отношением абсолютной погрешности Приближённые вычисления в математике этого приближения к модулю приближённого значения х, то есть 

Приближённые вычисления в математике

Поскольку абсолютная погрешность Приближённые вычисления в математике обычно бывает неизвестна, то на практике оценивают модуль относительной погрешности некоторым числом, которое не меньше чем этот модуль: 

Приближённые вычисления в математике

Число Приближённые вычисления в математике называется пределом относительной погрешности.

Предел относительной погрешности можно вычислить по формуле: Приближённые вычисления в математике

Конечно относительная погрешность выражается в процентах.

С помощью относительной погрешности легко установить точность приближённости.

Пример 1. Найти относительную погрешность числа Приближённые вычисления в математике

Решение: Имеем Приближённые вычисления в математике

Следовательно Приближённые вычисления в математике

Пример 2. Сравнить точность измерения толщины книги d (см) и высоты стола H (см), если известно, что  Приближённые вычисления в математике.

Решение: 

Приближённые вычисления в математике

Как видим, точность измерения высоты стола значительно выше.

Выполнение действий над приближёнными числами

Результат арифметических действий над приближёнными числами является также приближённым числом.

Необходимо уметь устанавливать погрешности результатов вычислений. Их находят с точным и без точного учёта погрешностей исходных данных. Правила нахождения погрешностей результатов действий с точным учётом погрешности приведены в таблице (обозначения — Приближённые вычисления в математике исходные данные; Приближённые вычисления в математике пределы абсолютных погрешностей относительно чисел; Приближённые вычисления в математикепределы относительных погрешностей).

Приближённые вычисления в математике

Пример 3. Вычислить приближение значения выражения Приближённые вычисления в математике и найти предел погрешностей результата.

Решение: находим значение квадрата числа 5,62 и квадратного корня из числа 18,50. Приближённые вычисления в математике

Найдём границу относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата:

Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Пример 4. Вычислить приближение значения выражения Приближённые вычисления в математике  и найти предел погрешностей результата.

Решение: находим значение квадратного корня из числа 6,24 и Приближённые вычисления в математике, имеем:

Приближённые вычисления в математике

Граница относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата: Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Выполнение действий без точного учёта погрешности

Точный учёт погрешности усложняет вычисление. Поэтому, если не надо учитывать погрешность промежуточных результатов, можно использовать более простые правила. 

Сложение и вычитание приближённых вычислений рекомендуется выполнять так:

а) выделить слагаемое с наименьшим числом верных десятичных знаков;

б) округлить другие слагаемые так, чтобы каждое из них содержало на один десятичный знак больше чем выделенное;

в) выполнить действия, учитывая все сохранённые десятичные знаки;

г) результаты округлить и сохранить столько десятичных знаков, сколько их есть в приближённом числе с наименьшим числом десятичных знаков.

Умножение и деление приближённых вычислений рекомендуется выполнять так:

а) выделить среди данных чисел, число с наименьшим количеством верных значимых цифр;

б) округлить оставшиеся данные так, чтобы каждое из них содержало на одну значащую цифру больше, чем в выделенном;

в) выполнить действия — сохранить все значимые цифры;

г) сохранять в результате столько значащих цифр, сколько их имеет выделенное число с наименьшим количеством верных значимых цифр.

При возведении в степень приближённого числа в результате сохраняют столько значимых цифр, сколько верных значимых цифр имеет основа степени.

При извлечении корня из приближённого числа в результате сохраняют столько верных цифр, сколько имеет подкоренное число.

Лекции:

  • Уравнение сферы
  • Пределы: примеры решения
  • Площадь поверхности конуса
  • Целые рациональные выражения
  • Числовые ряды. Числовой ряд. Сумма ряда
  • Свойства логарифмов
  • Линейные дифференциальные уравнения первого порядка
  • Скрещивающиеся прямые
  • Скалярное призведение двух векторов
  • Теоремы, связанные с понятием производной

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики — более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2248.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Абсолютная ошибка среднего значения формула
  • Абсолютная ошибка опыта
  • Абсолютная ошибка определения массы
  • Абсолютная ошибка округления числа пи
  • Абсолютная ошибка обозначение